Lehrstuhl für Regelungstechnik Fakultät für Maschinenwesen Technische Universität München

SSS & SSSMOR

Analysis and Reduction of Large-Scale Dynamic Systems in MATLAB A. Castagnotto, M. Cruz Varona, B. Lohmann

Abstract

The accurate modeling of dynamical systems often results in a large number of differential equations. In this case, the system matrices then easily become too large to define state-space models (ss objects) in MATLAB. In this contribution we present two new toolboxes that allow the definition and analysis of large-scale models by introducing sparse state-space objects (sss). Through model order reduction (sssMOR) it is possible to obtain high fidelity, low order approximations of the relevant dynamics to further reduce the computational complexity.

Exploit the sparsity of system matrices

Linear time-invariant systems are often represented by state-space models for the purpose of control design. If the original order N is very high ($N \gg 10^3$), then the system matrices are generally sparse, meaning that the number of nonzero entries is much smaller than N^2 .

The Control System Toolbox in MATLAB¹ is not able to exploit this characteristic and stores all matrices as "full". For this reason, the definition of state-space models by the commands

sys = ss(A, B, C, D) or sys = dss(A, B, C, D, E)

is only possible up until an order of $O(10^4)$ on a standard computer. Indeed, the definition of a full identity matrix of size 10⁵ requires 80 GB of storage, while its sparse counterpart requires only 2.4 MB to be stored!

Functionality

sss exploits the sparsity of the system matrices, leading to substantial advantages in terms of storage and computational requirements. Sparse state-space models can be defined by simply calling

sys = sss(A, B, C, D, E)

High fidelity reduced order modeling

Even when using sss, computations with large-scale models can still be prohibitively demandind. For this reason, we often seek reduced order models of much lower order $n \ll N$ as high fidelity approximations of the full order dynamics. The process of model order reduction (MOR) can be seen as a Petrov-Galerkin projection

Accordingly, the task of MOR can be translated to finding appropriate projection matrices *V*, *W* depending on the properties of the original model to be preserved. Classical methods include modal truncation, balanced truncation and rational Krylov methods, while IRKA and CUREd SPARK are examples of state-of-the-art functions.

Functionality

Model order reduction can be achieved with sssMOR by passing an sss object to the respective MOR function, together with appropriate reduction parameters.

Function

modalMor(sys,n)

tbr(sys,n)

cure(sys)

Description

Balanced truncation with preservation of dominant Hankel Singular

CUmulative REduction with adaptive choice of reduced order

Modal truncation with preservation of dominant modes

In addition, sss contains many of the analysis function available in the Control System Toolbox adapted to exploit the sparsity, whenever possible.

Functions

Manipulation:

>> truncate(sys,p,m); connect(sys1,sys2);... >> sys1-sys2; sys1*sys2; c2d(sysC,Ts);...

Frequency domain analysis:

>> freqresp(sys,w); bode(sys); sigma(sys);...

Time domain analysis:

>> impulse(sys); step(sys); lsim(sys,u,Ts);...

Additional properties:

- >> sys.isDae; sys.isSym; sys.isSimo;...
- >> norm(sys,2); norm(sys,inf); isstable(sys);...
- >> eigs(sys); spy(sys); diag(sys);...

sss and **sssMOR** – extensions of the Control System Toolbox

In the following, we show the advantage of using sss and sssMOR by running the same analysis code on different model classes and comparing the computational effort for analysis. The simulations were run on a benchmark model of order N = 1357 representing the cooling of a steel profile (rail_1357)³.

Compatibility								
Old Code:								
>>	sys	=	ss(A,B,C,D)					
>>	myCc	bde	e(sys)					

>> sys = sss(A, B, C, D) >> myCode(sys)

New Code:

		Values
	rk(sys,s0)	Krylov-Subspace-Method with matching of transfer function Taylor series coefficients
	irka(sys,s0)	Iterative Rational Krylov Algorithm for \mathcal{H}_2 -optimal reduction
)	cirka(sys,s0)	Confined IRKA algorithm for fast \mathcal{H}_2 -optimal reduction
	<pre>spark(sys,s0)</pre>	Stability Preserving, Adaptive Rational Krylov Algorithm
	porkV()	\mathcal{H}_2 -Pseudo-Optimal Rational Krylov Algorithm

sssMOR – a comparison of reduction methods

In the following we give a small comparison of some reduction methods, contained in **sssMOR**, with respect to reduction time and approximation quality. Note that these may vary depending on the model and the reduction parameters selected. The rail model³ of order N = 1357 is reduced to an order n = 10. Krylov-algorithms were initialized at s0 = 0.

%% Memory requirement to store sys		reduction (tbr)	[s]	-	-	2.89
info =	whos('sys');			20.6	0.2	0.05
reqMem =	into.bytes	memory		29.0	0.3	0.05
%% Check stability		isstable	[s]	28.8	0.2	0.01
stabCheck = isstable(sys)						
%% Bode magnitude plot		bodemag	[s]	31.6	1.1	0.63
figure; bodemag(sys)						
88 H2 and Hinf norms		norm(sys)	[s]	62.2	54.3	0.01
h2norm = norm	(sys)		[-]	_		
h8norm = norm	(sys,Inf)	norm(sys,inf)	[S]	188	6.4	0.01

sss und sssMOR are open-source toolboxes released under BSD license to foster the education and exchange in the field of MOR. More information available under www.rt.mw.tum.de/?sss or www.rt.mw.tum.de/?sssMOR.

¹MATLAB and Control System Toolbox (Release 2015b) are trademarks of The MathWorks, Inc., Natick, Massachusetts, United States.

²SLICOT Benchmark Models: http://slicot.org/20-site/126-benchmark-examples-for-model-reduction ³Available at https://simulation.uni-freiburg.de/downloads/benchmark/Steel%20Profiles%20%2838881%29

Lehrstuhl für Regelungstechnik

Prof. Dr.-Ing. habil. Boris Lohmann www.rt.mw.tum.de {a.castagnotto, maria.cruz, lohmann}@tum.de Acknowledgements of financial support: Deutsche Forschungsgemeinschaft (DFG), LO408/19-1

Acknoledgments of contribution:

Heiko Peuscher, Rudy Eid, Sylvia Cremer, Stefan Jaensch Thomas Emmert, Jorge Silva, Rodrigo Mancilla, Siyang Hu, Niklas Kochdumper, Lisa Jeschek.

Third-Party **sss** & **sssMOR** support the usage of M-M.E.S.S., the matrix equation sparse solver developed at the MPI Magdeburg by Jens Saak, Martin Köhler and Peter Benner (GPL license).

