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Abstract— In this paper, we present an end-to-end approach
transforming multi-modal tactile signals into a compliant con-
trol to generate different dynamic robot behaviors. This is
obtained by fusing multi-modal sensor signals from our artifi-
cial skin and joint sensors with different control approaches.
One advantage of these compliant behaviors is to produce
safer robots, especially for physical Human-Robot Interaction.
A key component of our framework is a robot parametric
modeling based on the artificial skin multi-modal sensors
(proximity, force and acceleration). These generated models
are used to control a robot improving and even changing its
dynamic behavior. We validate our framework in a real wheeled
humanoid robot, where our presented framework enables a stiff
robotic system to be compliant and react to multi-modal tactile
events (pre-contacts and contacts).

I. INTRODUCTION

Physical Human–Robot Interaction (pHRI) [1] allows a

robot to share spaces with human co-workers. This expands

the potential applications of robotic systems into different

fields since their flexibility can be extended by combining

the high adaptability of the human partners with the accuracy

and endurance of a robot. This is of particular importance for

the new way of teaching robot sequences using programming

by demonstration methods which explicitly involves physical

interactions with the robot [2].

One of the most important requirements to develop ade-

quate robots for pHRI is the ability to detect tactile inter-

actions with the surrounding environment. This means the

robot should be able to detect and identify pre-contact, as

well as contact interactions. This includes recognizing the

location, magnitude, and nature (dynamic characteristics)

of the contacts. The sensing ability enables robots to dis-

criminate between unforeseen collisions and intended tactile

interactions (differentiate between good and bad contacts).

The first direct benefit of this capability is the increment

of the overall robot’s safety, especially when performing

cooperative activities with human counterparts, e.g. co-

manipulation and compliant tasks (frequent tasks in the

industrial and service domains). Being able to detect and

classify contact reactions is a critical element to accomplish

common tasks for humans, e.g. navigate in confined spaces

[3], open doors [4] or manipulate objects [5].

The contact information can be generated using

Force/Torque sensors (F/T) [6], commonly located at
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Fig. 1. Block diagram of our end-to-end approach. A) Multi-modal tactile
signals and processing, B) Network self-exploration and configuration, C)
Automatic reconstruction of the 3D surface and skin patches definition,
D) Skin patch calibration with respect to the robot links, E) Robot
parametrization using the multi-modal signals of the skin, F) Parametric
modeling (Kinematic and Dynamic) of the robot for control design, and G)
Control and command interface synthesis.

the end-effector, e.g. wrist or ankles, or using Inertial

Measurement Units (IMU) [7] based on models of the

contact stiffness. Another interesting methodology is to

use proprioceptive sensors to estimate the external contacts

based on the internal generalized forces, this method is

known as momentum-based residual [8], [9]. The main

advantage of this technique is that it doesn’t require F/T

sensors to estimate the contact forces, and for the case

of single contact points, the position of the contact and

the applied force can be estimated. However, for multiple

contact points, the location of the contacts is needed

to estimate the exerted forces [10]. Moreover, a precise

knowledge of the robot’s dynamic model is required which

imposes hard restrictions for this technique.

On the other hand, humans can handle naturally multiple

contacts with the environment, e.g. exploiting environment

constraints to reduce efforts, handling heavy objects using

the whole-body, using multiple external contacts for support,

etc. The principal element used in this sort of activities is our

skin covering the entire body. This sensitive and multi-modal

skin is a key component to handle contact rich scenarios in

the everyday life. In this sense, direct measurement of the

tactile interactions using artificial skin has gained popularity

in the last years. For an extensive review on artificial skin,

its principal motivation, and the most used technologies

see [11]. The preferred sensor used in the artificial skin

is a tactile sensor, e.g. [12], [13] and [14]. However other



technologies have been widely used, e.g. [15], [16], [17]. In

the literature, we can find several examples of using artificial

skin to successfully control a robot. The robot ARMAR-

III [18] presents skin patches based on piezo-resistive sen-

sor arrays with embedded multiplexers. The patches have

different shapes and are designed for the multiple parts of

the robot. Another example is the work of Cannata et al.

[12] where the authors demonstrate an artificial robot skin

based on a set of distributed capacitive tactile sensors that are

integrated on the iCub robot. These sensors cover the arms,

legs and chest of the robot and provide tactile feedback to

detect potential contacts with the environment. Also, Cirillo

et al. [17] introduce a flexible skin capable of measuring

three components of the applied force and the location of the

contact point. This skin is used to control a KUKA LWR, and

can recognize simultaneously intentional and unintentional

contacts.

The existing full-body skins are only modular at the

level of individual patches of skin, reducing their flexibility

[5]. Furthermore, large-scale artificial robot skin implicates

complex problems: a) sensor element organization, b) sensor

calibration, c) sensor integration with the robotic system,

among others. Fast and flexible reconfigurable sensor sys-

tems and its associated control methods are a key component

to increase the usability of robots. Especially in industrial

scenarios, such systems are expected to decrease the set-up

time to reconfigure robotic systems and increase the safety

for HRI [19]. However, manual calibration of a growing

number of distributed sensors on a large and arbitrarily

surface is slow, prone to errors and intractable. Moreover,

the general integration of sensor components and controls

is not a trivial task and is usually customized for a specific

robot. The integration of additional sensors impacts directly

on the complexity of the control design since we need to

include different mechanisms to fuse all these sensors. Fur-

thermore, the multi-modality is considered as a main and an

unquestionable feature of human-robot interaction [20]. This

reveals the need to develop multi-modal control approaches

that can be adaptable to different robots. Therefore, the

development and integration of technologies such as control

fusion, artificial skin, and multi-modal control design are

needed to increase the capabilities of standard robots, to

improve the safe physical interaction with robots, and to

simplify the robot programming.

In general, all the approaches found in the literature

consider either manual calibration, or detailed a priori infor-

mation, e.g., CAD models of the surface hosting the artificial

skin, the local transformations between the sensor elements

and the robot joints, or kinematic and dynamic models of

the robot to design controllers and integrate the skin sensors

signals into the control loop. In this work we present a End-

to-end approach to transform multi-modal tactile signals into

a compliant control method. This approach is able to use the

multi-modal information from the artificial skin to generate

different dynamic behaviors. The main component of our

approach is our self-organizing, self-calibrating multi-modal

artificial skin [21], which is used to automatically generate

kinematic and dynamic models to render controllers. Our

method is not limited to known surfaces and does not

require detailed information of the robot. Fig. 1 depicts

all the steps of our approach. Our complete approach has

been implemented using ROS middleware which provides a

convenient infrastructure to develop hardware interfaces in an

easy manner. In addition, several robot manufacturers already

provide interfaces for their robots in ROS1. This simplifies

the integration of our sensor/control approach with different

robots2. The following sections are devoted to describe

the different stages of our approach and its experimental

validation.

II. AUTOMATIC CONFIGURATION OF THE ROBOTIC SKIN

In order use the multi-modal signals of our artificial skin

to synthesize control schemes, we need to generate adequate

Kinematic and Dynamic models for both the robot and the

robotic skin. As the engineering of these models can be a

complex and tedious task, we try to automate the model

generation and reduce the human intervention to a minimum.

The automatic model generation fully takes advantage of

the multi-modal tactile signals and structural information of

our robot skin [21]. The modeling process is divided into

3 groups (in total 6 stages, see Fig. 1): i) Skin intrinsics

calibration, ii) Skin extrinsics calibration (Sec.II-A), and iii)

Robot parametrization and modeling (Sec. III).

A. Artificial Multi-Modal Robot Skin

Our artificial skin [21] is a modularized, multi-modal

robotic skin. The skin consists of hexagonally shaped skin

cells (see Fig. 1 A). Each skin cell has the same set

of sensors which transduce tactile information of different

modalities, such as vibrations (acceleration sensor), pressure

(capacitive force sensors), pre-touch (proximity sensor) and

temperature (temperature sensor). Micro-controllers on each

skin cell sample and filter the sensor data and pack the

acquired information. Our artificial skin uses a event mode

[22], [23] where the skin cells only send novel information

asynchronously, on occurrence to the PC. The event mode

allows huge reductions (up to 20% of non-event mode) in

terms of communication bandwidth and processing power.

Neighboring skin cells are connected to each other via Flex-

PCBs and exchange information. All the connected skin cells

realize a meshed and highly redundant skin network. Skin

cells which are directly connected to each other via Flex-

PCBs shape an entity called Skin Patch. Skin patches are

connected to interface boxes which ease the communication

between the skin network and the PC.

B. Self-Organizing Skin Cell Network

The skin network describes the communication network

between skin cells, skin patches, and interface boxes. The

1http://rosindustrial.org/
2The only requirement is that the robot provides an external control

interface, e.g., position, velocity or torque command interfaces. Besides the
UR-5 robot, currently, we are working on the deployment of our method
on the following robots: UR-10, PAL REEM-C, and KUKA-LWR.



skin network is highly redundant (skin cells can be connected

to four different neighbors, see Fig. 1 B), besides power

and network bandwidth there are no restrictions on how to

connect skin cells, patches, and interface boxes together. The

skin network is fully self-organizing, it automatically builds

up bi-directional communication paths between each skin

cell and the PC. It also can find new paths when connections

are broken. The self-organization takes places in 4 steps [21]:

1) The skin cells are synchronized with the PC and each

skin cell explores which of its 4 communication ports is bi-

directionally active and can be used for communication. 2)

The PC inserts a path exploration token into the skin network

and the skin cells automatically create active communication

ports to build paths for the bi-directional communication

tree. 3) The PC uses the communication tree for distributing

unique skin cell IDs. 4) Using these IDs a neighbor list is

created. This structural information is essential for the 3D

surface reconstruction step.

C. 3D Surface Reconstruction

The reconstruction algorithm [24] can automatically fully

reconstruct the shape of the surface covered with skin cells.

This 3D reconstruction is essential as it contains the neces-

sary structural information of the skin needed to synthesize

multi-modal controllers (e.g. force, proximity, etc.). The

algorithm uses the neighbor lists of the skin cells to create

a bidirectional connection graph for skin cells and deletes

edges in this graph which represent non-direct connections

(i.e. cables). At this point, there might be already several

unconnected graphs where each of them represents a skin

patch. Then, we use the Procrustes algorithm and the grav-

itational vectors measured at each skin cell to estimate the

rotation for all edges in the graph. These rotations represent

the relative orientations between neighboring skin cells. To

avoid singularities in the rotation estimation, the gravitational

vectors should be measured on different robot poses, see

Fig .1 C). The rotations and geometric information are

combined to generate homogeneous transformations between

neighboring skin cells. The algorithm searches for the skin

cell which has the shortest accumulated path to all the other

skin cells in the patch. This skin cell is defined as root

cell. Finally, we calculate the homogeneous transformations
CelliTRootk from every skin cell in the patch to this root cell,

i.e. we obtain the intrinsics calibration of the skin patches.

D. Patch Localization

As each skin patch is rigidly attached to a specific robot

link (see Fig. 1 D), the next step is to determine the relative

transformation between the root cell and its robot link,

namely RootkTLinkj
. This can be done either automatically

or manually (see Fig. 2). The manual calibration uses the

robot description (URDF3). The 3D model of the skin patch

is the result of the reconstruction algorithm. We attach an

interactive marker to the root cell and visualize the complete

patch and the robot in Rviz4. The interactive marker allows

3http://wiki.ros.org/urdf
4http://wiki.ros.org/rviz

Fig. 2. Interactive skin patch calibration. The user can set the relative pose
of the Root Cell (RootkTLinkj

) using the interactive marker.

the user to virtually move the patch to the desired robot

location. This inherently defines the transformation between

robot link and root cell. The automatic calibration uses an

external camera and the RGB LED of the skin cells as

adaptive markers [25] which can change colors, structure and

blink in different patterns. The algorithm uses these markers

and the OpenCV library to estimate the transformation

between root cell and camera frame. In combination with

a known transformation between the camera and the robot

base frame, the pose of the root cell in the robot frame can

be determined. Finally, the rigid transformation of every skin

cell in the robot link is easily computed as:

CelliTLinkj
=Rootk TLinkj

(

CelliTRootk

)

. (1)

III. ROBOT PARAMETRIC MODELING

Using the intrinsic and extrinsic skin parameters, and

the multi-modal sensor signals, we can automatically obtain

robot parameters and models. This is divided in two stages

(see Fig. 1 E, F).

A. Full Automatic Kinematic Modeling

For the kinematic model, we developed an algorithm [26]

which automatically acquires a DH-like parametrization of

the robot and the skin by using skin cell to joint associations,

special robot movement patterns and acceleration measure-

ments in every skin cell. The skin cell to joint associations

[27] (more specifically: which skin cells are directly and

rigidly attached to the moving part of a joint) can be

determined through joint wise movements and acceleration

changes observed in the skin cells which result in an activity

matrix. The DH-like parameters are estimated from the

circular points of the different joints using accelerations

measured at a specific skin cell for joint-wise movements. A

circular point is defined as a joint axis and the radial distance

to the skin cell (the center of the measured acceleration).

The measured acceleration is a superposition of 3 different

linear accelerations: gravitational, tangential and centripetal

accelerations. We design the robot motions in such a way that

these acceleration components can be separated and calcu-

lated step by step. Knowing the acceleration components we

can estimate the circular point of a skin cell and thus the

homogeneous transformation (or DH-like parametrization)

between the skin cell and the joint coordinate frame. As a

skin cell can usually be moved by several different joints we



can calculate the circular point of a skin cell with respect to

two different joints. The resulting transformations between

a specific skin cell and two different joint coordinate frames

can be used to calculate the inter-joint transformations (see

Eq. 2). Using the D-H convention, the inter-joint transforma-

tions contain only rotations around the joint z-axis such that

all the partial homogeneous transformations can be combined

to generate the kinematic chain from the robot base frame

to each skin cell.

LinkjTLinkj+1
=Linkj TCelli

(

Linkj+1T−1

Celli

)

. (2)

B. Parametric Dynamic Model

The next stage is to use the DH-like parameters to compute

the robot Kinematic and Dynamic models (see Fig. 1 F). This

process is based on an iterative Euler-Lagrange modeling

which is divided into the following steps: a) Compute the rel-

ative link transformations LinkjTLinkj−1
using the symbolic

DH-table. b) Compute the global transformation of each link

with respect to the robot base (Link0):

LinkjTLink0
=Linkj−1 TLink0

(

LinkjTLinkj−1

)

(3)

with j = 2, 3, ..., n where n is the robot DOF. Using the

transformations in Eq. (3) we can compute the global pose

of each skin cell with respect to the robot base Link0 as:

CelliTLink0
=Linkj TLink0

(

CelliTLinkj

)

. (4)

c) Extract the LinkjzLink0
axis and the position vector of

each joint Linkj tLink0
∈ R

3 from the homogeneous matrices

Eq. (3). d) Compute the geometric Jacobian of each joint
LinkjJLink0

∈ R
6×n. Finally use these Jacobians to compute

the symbolic matrices M (q) , C (q, q̇) ∈ R
n×n and G (q) ∈

R
n using the definitions of the Kinetic and Potential energy

in the Euler-Lagrange formulation [28]. The robot kinematic

models together with the global calibration of the skin cell

Eq. (3)-(4) can be used to compute the geometric Jacobian

of each skin cell, named CelliJLink0
∈ R

6×n.

All the stages in Sec. II and III are performed off-line and

only once per robot. The obtained models and parameters are

exploited to synthesize controllers and command interfaces

in the following sections.

IV. CONTROL OF ROBOT BEHAVIORS

We define robot behaviors as a collection of controllers

running in parallel. In this section, we provide some exam-

ples of the controllers that can be implemented and how to

integrate the interactions with the environment perceived by

the skin in the main control loop of the robot. Depending

on the command interface specified by the robot, a Torque

Resolver transforms these motor commands into a specific

interface type. The following subsections further elaborate

these components.

A. Skin Joint Control

In order to fuse the information from the artificial skin

sensors with different controllers (see Fig. 3), we need to

transform the sensors signals (e.g. pre-touch and pressure)

to generalized force commands. In this work, we use force

Fig. 3. Transforming skin signals into control signals.

vectors to transform tactile signals into joint torque signals.

This is achieved with the following two steps.

1) Multi-modal Tactile Signals to Force Vector: Each

Celli produces a set of three pressure signals fim ∈ R,m =
1, 2, 3 and a single proximity signal pi ∈ R, see Fig. 3. The

first step is to transform these signals into force vectors. By

design, both the pressure-signals and the proximity signal are

normal to the sensor Celli, defined by its z−axis. Therefore

the Celli force vectors can be constructed as follows:

Pi = [0, 0, wppi]
T , Fi = [0, 0, wf

3
∑

m=1

fim ]T , (5)

where wp, wf ∈ R are weighting gains for the proximity and

pressure signals, respectively. The above equations represent

the force vectors of each signal with respect to the Celli
frame. The force vector with respect to the robot base

(Link0) is obtained as:

CelliFLink0
=Celli RLink0

(

Fi + Pi

)

(6)

where CelliFLink0
∈ R

3 represents the total force vector pro-

duced by the tactile signals of the Celli. The rotation matrix
CelliRLink0

∈ SO(3) is extracted from the homogeneous

transformation CelliTLink0
, computed with Eq. (4).

2) Force Vector to Joint Torques: In the second step, the

torque τCelli ∈ R
n produced by the tactile signals of each

Celli is calculated as:

τCelli =
Celli JT

Link0

(

CelliWLink0

)

∈ R
n (7)

where CelliWLink0
= [CelliFT

Link0
, 01×3]T ∈ R

6 is the

wrench applied on Celli
5. The skin joint torque τskin ∈ R

n

generated by all the skin cells on every patch k is computed

as:

τskin =

p
∑

k=1

s
∑

i=1

τCellk,i
∈ R

n (8)

with s as the number of skin cells in a skin patch and p as the

total number of skin patches on the robot. The joint torque

obtained from Eq. (8) can be fused with other controllers to

produce specific robot behaviors. In our system, these are

some examples of the currently implemented controllers.

5We set the moment on Celli = 0 ∈ R3×1 since it is physically
impossible to apply a pure moment to an individual Celli with respect
to its own reference frame or even measure it with our skin sensors.



B. Joint Control

Based on [29] we implemented a second order sliding

mode controller in the joint space defined as:

τ = −KdSq + YrΘ ∈ R
n (9)

where Kd+
= KT

d+
∈ R

n and YrΘ ∈ R
n is the robot

regressor. The joint error surface Sq is defined as:

Sq = q̇ − q̇r ∈ R
n (10)

where the joint velocity reference q̇r ∈ R
n is given as

q̇r = q̇d −Kp (t)∆q + Sd −Ki1

∫ t

t0

Sδdζ −Ki2

∫ t

t0

tanh (µSδ) dζ

(11)

with tanh (µ•) as a smooth approximation for the function
sign(•), and µ > 0 ∈ R. Kij > 0 ∈ R

n×n, j = 1, 2, and
Kp (t) is a time-varying proportional gain given by:

Kp (t) =
(1 + ǫ) ξ̇ (t)

(1− ξ (t)) + δ
(12)

where ǫ and δ are positive small scalars, the function ξ (t) ∈
C

2 is defined as a spline-function satisfying the following

constraints: ξ (t0) = ξ̇ (tb) = 0, with tb > 0 as the

convergence time. The joint error manifold Sδ is

Sδ = S − Sd = (∆q̇ +Kp (t)∆q)−
(

S (t0) e
−κt

)

(13)

with the joint position error defined as:

∆q = q − qd ∈ R
n (14)

where ∆q̇ = q̇−q̇d is the joint velocity error, where qd and q̇d
stands for the desired joint position and velocity, respectively.

C. Spline Joint Control

For this controller, we use the same definition for the joint

velocity reference defined in Eq. (11), where the desired joint

position and velocity vectors qd, q̇d of Eq. (14) are defined as

a time-varying trajectories which can be generated on-line.

However, for this controller, the desired joint position is a

static goal qg ∈ R
n. In this case, the controller generates a

smooth trajectory from the initial joint position qi ∈ R
n to

the target one qg . The trajectory generator is defined as:

qd = a1 (qg − qi) + qi, q̇d = a2 (qg − qi) (15)

where r = t/tf is a time ratio between the current time t and

the desired total time tf . The coefficients ai are defined as:

a1 = 10r3−15r4+6r5, a2 = (30r2−60r3+30r4)/(tf ) and

a3 = (60r− 180r2 + 120r3)/(t2f ). This function guarantees

a smooth trajectory that satisfies the constraints qd (0) = qi,
qd (tf ) = qg and q̇ (0) = q̇ (tf ) = q̈ (0) = q̈ (tf ) = 0 ∈ R

n.

D. G & D Control

The G control is a Gravity Compensation control, defined

as τ = G (q) ∈ R
n, where G (q) is the robot’s gravita-

tional torque vector. In the same manner, the D controller

is a simple damping control given as τ = −Dq̇, where

D+ = DT
+ ∈ R

n×n is a damping matrix. The above

controllers are known as standard controllers. However, the

choice of joint torque as the common control output allows

the implementation of more sophisticated controllers, e.g.

Uncalibrated Image-Based Visual Servoing [30] or Image-

Based Position-Force Control [31].

E. Control Fusion

The mapping from tactile signals into joint torques (Eq.

(7)-(8)) allows the fusion of multiple controllers that use the

same generalized force representation. Thus, a simple nor-

malized Weighted-Sum approach to adding the contribution

of each individual controller to a total joint torque output τΣ
can be used:

τΣ = wsτskin +
∑u

k=1
wkτk, (16)

where u is the total number of controllers, ws, wk ∈ R are

weighting values and τk is the control output of a controller

defined by the user. We selected this fusion method to guar-

antee a deterministic behavior, even when local minimum is

present. Nevertheless, a more sophisticated approach can be

used in order to select an optimal combination of controls,

e.g. [32]. The selection of weights for the controllers depends

on the specific robot behavior that we need to generate. Some

examples of the different robot behaviors are depicted in Fig.

5. The importance of the Skin Joint Control is to generate a

compliance behavior on a non-compliant robot.

Inner Velocity Control

Control

Fusion
Command

Interface

Nonlinear Trajectory Generator

Torque InterfaceVelocity InterfacePosition Interface Internal Control Interface

Fig. 4. Torque resolver defined by two principal modules: a) Nonlinear
Trajectory Generator which produces desired trajectories based on user-
defined dynamic behaviors, b) Inner Velocity Control which generates a
desired joint velocity in order to compensate uncertainty in the robot
parameters. qv , q̇v represent the joint position/velocity of the virtual robot
(target position/velocity), q, q̇ are the joint position/velocity of the real
robot, qc, q̇c are the commanded joint position/velocities. E(q̇v , q̇) is a
joint velocity estimator.

F. Torque Resolver

The multi-modal controller in Fig. 3 is designed to provide

two low-level command interfaces, either Position/Velocity

interface, available in most of the modern industrial robots,

or Torque interface, see Fig. 4. In the case of the Torque

interface, we command directly τΣ to the control unit of

the robot. In order to control robots with a Position/Velocity

interface, we need to transform the total commanded joint

control τΣ into desired joint positions/velocities. To this

aim, we have implemented a Torque Resolver which uses

a Nonlinear Trajectory Generator to produce desired joint

commands. We obtain the full dynamic model to design the

trajectory generator using the kinematic models of the robot

in combination with the parametric dynamic model obtained

in Sec. III. This parametric model allows to specify user-

defined dynamic behaviors, e.g. it can increase the viscous

friction, thus generating a slower step response to an external



input (e.g. tactile interaction). The trajectory generator is

initialized using the joint positions/velocities of the real

robot. The joint torque τΣ is obtained using Eq. (16). In

the case of Position interface, the desired joint position qv
is commanded directly to the robot’s Control Unit using its

standard control interface. The Velocity interface requires a

Inner Velocity Control to avoid drifting between the real

velocity q̇ and the virtual velocity q̇v . In our case, we use

a PI velocity control with Feed-Forward estimation, where

E(q̇v, q̇) is a joint velocity estimator, e.g. [33]. This feed-

forward estimator is used to compensate the uncertainties in

the robot parameters. This velocity control uses two different

joint error velocities: ∆q̇ = q̇v− q̇ and ∆q̇e = q̇v− q̇e, where

q̇e is a feed-forward estimation of q̇. The generated desired

joint velocities q̇d are also commanded to the Control Unit,

see Fig. 4.

V. EXPERIMENTAL VALIDATION

We evaluate or Multi-level control approach in our

robotic platform Tactile Omni-directional Mobile Manip-

ulator (TOMM). TOMM is composed of two industrial

robot arms (UR-56) covered with our artificial skin (more

than 600 skin cells). The UR-5 robots are controlled using

Position/Velocity command interface. The controllers and the

artificial skin interface are implemented in ROS in a Work-

station with Intel Core i7-4702MQ CPU @ 2.20GHz, 16Gb

DDR3 RAM. For the experimental validation, we consider

three different dynamic behaviors, depicted in Fig. 5. Column

1) Joint Compliant: depicts the fused controllers (1a, 1c, 1d)

and the obtained joint trajectories (1b). In this experiment

qd = q(t0) = [161,−116,−82,−38,−58, 10]deg and q̇d =
0 ∈ R

6. When there is an external tactile perturbation (user

applies forces to the arm), e.g. t = [5, 7]s (1a), the robot

reacts to the tactile event and changes its position (1b), as

soon as the external perturbation is removed, e.g. t = 8s
the robot returns to its original position smoothly. Column

2) Joint Spline: In this case the goal position of the robot is

qg = [126,−150,−80,−34,−45, 50]deg the initial position

is qi = q(t0). The desired position qd is computing using

Eq. (15). In the same form 2a, 2c and 2d show the active

controllers and 2b depicts the joint position behavior. At

t = 0 the robot arm follows the spline trajectory qd (2b),

at t = 2s the user interferes the trajectory and it is detected

by the skin sensors (proximity and force) (2a), this produces

a compliant reactive behavior which forces a change in the

robot trajectory (2a). When the user is no longer generating a

tactile event t = 6s, the robot continues with the tracking of

the desired trajectory (without overshoot). The same behavior

is repeated at t = [8, 16]s. Column 3) Kinesthetic Joint: In

this behavior only the Skin Joint Control and the G & D

Control are activated (3a, 3c). At the beginning, the robot

is static and remains in that state until the skin sensors

detect a tactile event. At t = 5.5s the user interacts with the

arm and produces changes in its position (generated by the

Skin Control) (3a). Since only the gravity compensation and

6http://www.universal-robots.com/products/ur5-robot

damping are active, the robot stops (due to the damping) and

remains in its current position as soon as the user is no longer

touching the robot. The interaction is repeated several times

(t = [11, 26]s), generating changes reflected in the joint

position of the robot. We provide a video7 to illustrate these

behaviors in our robot TOMM using the proposed approach.

VI. CONCLUSIONS

In this paper, we presented an end-to-end approach to

transform multi-modal tactile signals into a compliant con-

trol. The approach uses our self -organizing/-calibrating

artificial skin and its multi-modal sensors to automatically

generate useful kinematic/dynamic models. These models are

used to synthesize customized controllers for each robot. The

approach has been validated in a real wheeled humanoid

robot where three different behaviors were generated. The

dynamic behavior can be adapted by the user allowing to

change the reactive level of the robot. Thus, enabling a

compliant behavior in a standard (stiff) industrial robot.
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