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Abstract— We present a Newton-based extremum seeking
algorithm for maximizing higher derivatives of unknown maps
in the presence of time delays. Different from previous works
about extremum seeking for higher derivatives, arbitrarily long
input-output delays are allowed. We incorporate a predictor
feedback with a perturbation-based estimate for the Hessian’s
inverse using a differential Riccati equation. As a bonus,
the convergence rate of the real-time optimizer can be made
user-assignable, rather than being dependent on the unknown
Hessian of the higher-derivative map. Furthermore, exponential
stability and convergence to a small neighborhood of the
unknown extremum point can be obtained for locally quadratic
derivatives by using backstepping transformation and averaging
theory in infinite dimensions. We also give a numerical example
in order to highlight the effectiveness of the proposed predictor-
based extremum seeking for time-delay compensation.

I. INTRODUCTION

Time delays are some of the most common phenomena
that arise in engineering practice and need to be handled
carefully. In this paper, we analyze the problem of non-model
based extremum seeking (ES) of higher derivatives in the
presence of time delays. We consider scalar Newton-based
ES under input-output delays. In recent years, there have
been a lot of publications on ES in theory [22], [23], [24],
[14], [15], [16], [17], [19] as well as applications [20], [21].
In [7] and [11] Newton-based ES in absence of delay was
deeply studied. A highlight of these works is the approach
used to estimate the Hessian’s inverse of the nonlinear map,
which is generated by means of Riccati filter. This is applied
to remove the dependence of the algorithm’s convergence
rate on the second derivative (Hessian), making it user-
assignable. Mentioned works just handled the extremum
seeking for the map itself.

However, there are applications were an extremum of
the map’s higher derivative is in focus. In [5] the authors
represent a refrigeration system where a suitable operating
point is located at the maximum negative slope which is
subject to change. This point of zero curvature corresponds
to a minimum of the first derivative of the input-output map.
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Hence, being able to track the minimum of the first derivative
in real-time would allow the system to operate almost whole
time in the most suitable operating condition.

A Newton-based ES generalization was presented in [12]
to maximize arbitrary higher derivatives of an unknown map.
Using sinusoidal perturbations, estimation of the gradient and
the Hessian of map’s nth derivative were obtained as well as
the local stability proof for the closed-loop system. However,
reference [12] does not handle the time delay case. On the
other hand, the first works which deal with Newton-based
ES in the presence of constant and known time delays are
references [1], [2], [3]. Unfortunately, the authors of [1], [2],
[3] just handled the extremum seeking for the map itself.

In this paper, we extend the applicability and usage of the
predictor-based controller with an averaging-based estimate
of the Hessian’s inverse proposed in [3] to maximize higher
derivatives of a static map despite the presence of time
delays.

We rigorously prove the stability for locally quadratic
derivatives via backstepping transformation [8] and averag-
ing theory in infinite dimensions [9], [10], considering the
whole system which is infinite dimensional due to delays.
Simulation results show the applicability of the proposed
algorithm.

Notation and Norms: The 2−norm of a finite-
dimensional (ODE) state vector X(t) is denoted by single
bars, |X(t)|. In contrast, norms of functions (of x) are
denoted by double bars. By default, ‖ · ‖ denotes the
spatial L2[0, D] norm, i.e., ‖ · ‖ = ‖ · ‖L2[0,D]. Since the
PDE state variable u(x, t) is a function of two arguments,
we should emphasize that taking a norm in one of the
variables makes the norm a function of the other variable.
For example, the L2[0, D] norm of u(x, t) in x ∈ [0, D]

is ‖u(t)‖ =
(∫D

0
u2(x, t)dx

)1/2

. The partial derivatives of
u(x, t) are denoted by ut(x, t) and ux(x, t) or, occasionally,
by ∂tuav(x, t) and ∂xuav(x, t) to refere the operator for its
average signal uav(x, t).

II. NEWTON-BASED EXTREMUM SEEKING OF HIGHER
DERIVATIVES FOR DELAY SYSTEMS

Scalar ES considers applications in which one want to
maximize (or minimize) the output y ∈ R of an unknown
nonlinear static map h(θ) by varying the input θ ∈ R in
real time. But like in many technical applications we have
to consider that the output may be time-delayed and hence,
we additionally assume that there is a constant and known
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Fig. 1. Block diagram of the basic prediction scheme for output-delay compensation in Newton-based ES for maximizing higher derivatives. The predictor
feedback with a perturbation-based estimate of the Hessian’s inverse obeys equations (9), (6) and (30). The dither and demodulating signals are given by
S(t), Υ(n+1) and Υ(n+2) which are calculated according to (7b)–(7d) and (8).

delay D ≥ 0 such that the output is expressed by

y(t) = h(θ(t−D)). (1)

As done in [3], in this work we also assume that our
system is output-delayed. In Fig. 1, we illustrate the proposed
scalar version of the Newton-based ES for maximization
of higher derivatives based on predictor feedback for delay
compensation.

Without loss of generality, let us consider the maximiza-
tion of nth derivative of the output in the presence of time
delay using Newton-based ES, where the maximizing value
of θ is denoted by θ∗. We state our optimization problem as
follows

max
θ̂∈R

h(n)(θ̂). (2)

Assumption 1: Let h(n)(·) be the nth derivative of a
smooth function h(·): R → R. Now let us define

θmax = {θ|h(n+1)(θ) = 0, h(n+2)(θ) < 0} (3)

to be a collection of maxima where h(n) is locally concave.
Now assume that θ∗ ∈ θmax and θmax 6= ∅. For simplicity
and without loss of generality, we assume that θmax = 0.
The design parameters k, kR, a, ω, c, > 0 are presented in
Fig. 1. According to [12], we switch from maximization to
minimization problem by setting sgn(γ0) = sgn(h(n+2)(0))
with γ0 as initial value of γ.

A. System and Signals

Let θ̂ be the estimate of maximum point and

θ̃(t) = θ̂(t)− θ∗ (4)

be the estimation error.
From the block diagram in Fig. 1, the error dynamics can

be written as
˙̃
θ(t) =

˙̂
θ(t) = U(t). (5)

Moreover we have

γ̇ = kRγ(1− γĥ(n+2)), (6)

where (6) is a differential Riccati equation.
From [12], the demodulated signals, ĥ(j) = yΥj , are

used to estimate the gradient (j = n + 1) and the Hessian
(j = n+2) of h(n). The equation (6) will be used to generate
an estimate of the Hessian’s inverse.

Now, we rearrange the equations given in [12], by chang-
ing them to the following:

θ = θ̂ + a sin(ωt), (7a)

Υj = Cj sin
(
jωt+

π

4
(−1)n+1

(
1 + (−1)j

))
, (7b)

Cj =
2jj!

aj
(−1)F , (7c)

F =

j −
∣∣∣∣sin(jπ2

)∣∣∣∣
2

, (7d)

where j = n + 1 for the gradient and j = n + 2 for the
Hessian estimate. We define the additive dither signal as

S(t) = a sin(ωt) (8)

which is not delayed. However, as shown in Fig. 1, the
multiplicative dither signals Υ(n+1) and Υ(n+2) are delayed
by D in order to cope with the delayed output y [1]. As
discussed in [3], [2] one could also advance the dither signal
(8) with D time units instead of delaying Υ(n+1) and Υ(n+2).

Furthermore, let us define the measurable signal

z(t) = γ(t)ĥ(n+1), (9)

where γ is updated according to (6) and ĥ(n+1) being the
demodulated signal. We can construct (9), because we only
use measurable/available signals γ(t) and ĥ(n+1).



B. Averaging Analysis

Without loss of generality, the authors in [12], used
equation (4) with θ∗ = 0 to write the following error
transformation

θ̃ = θ̂, (10)

γ̃ = γ − 1

h(n+2)(0)︸ ︷︷ ︸
H−1

. (11)

Consider the particular average version of the signal ηj :=
Υjy which is given by

ηj(θ̃av) =
1

Π

Π∫
0

Υjh
(
θ̃av + a sin(σ)

)
dσ, (12)

where Π = 2π/ω. Now, one can provide a convenient
expression of the demodulated signal ηj(θ̃av) = ĥ(n+1) for
arbitrary j = n+ 1 as follows

ηj(θ̃av) = h(j)(θ̃av) +
h(j+2)(θ̃av)

4(j + 1)
a2 +O(a4)︸ ︷︷ ︸

=X

. (13)

Futhermore, according to [12], the solutions of (10) and
(11), when changing to faster time scale τ = ωt, are

θ̃avE = θ̃∗ +O(a3), (14a)
γ̃avE = γ̃∗ +O(a3), (14b)

where

θ̃∗ =
h(n+3)(0)

4(n+ 2)h(n+2)(0)
a2, (15a)

γ̃∗ =
(h(n+3)(0))2

4(n+ 2)(h(n+2)(0))3
a2 (15b)

+
h(n+4)(0)

4(n+ 3)(h(n+2)(0))2
a2.

All maps satisfying Assumption 1 can be approximated
locally by a quadratic function

h(n)(θ) = Q∗ +
H

2
(θ − θ∗)2

, (16)

for some constants Q∗ > 0 and H < 0, where H is the
Hessian of the quadratic approximation [13]. Noticing that
X = 0 for locally quadratic assumption of h(n), plugging
(16) into (13) we get

ηn+1(θ̃av)(t) = Hθ̃av(t−D). (17)

Analogously to [12] , the following delayed equations for
the average error system can be written

dθ̃av(t)

dt
= −kγavηn+1

(
θ̃av(t−D)

)
, (18)

dγ̃av(t)

dt
= kRγav

(
1− γavηn+2

(
θ̃av(t−D)

))
, (19)

with γ 6= 0 and γav 6= 0. Hence, the right-hand side of (18)
is zero for ηn+1(θ̃av) = 0, and it follows from (17) that

the equilibrium of (18) is θ̃av = 0. In order to obtain the
equilibrium for (19), we first calculate ηn+2(θ̃av) which is
simply H. It follows that (19) is zero for (1 − γavH) = 0
which is true for γav = H−1. Now, consider the equation
(9) which can be written in averaged version as

zav(t) = γav(t)ηn+1

(
θ̃av(t)

)
. (20)

We linearize zav in (20) at γav(t) = 1/h(n+2)(0) = H−1 and
θ̃av = 0, under Assumption 1, and get for (9) a convenient
expression

zav(t) = θ̃av(t−D). (21)

C. Motivation for Predictor Feedback

From (5) it follows

˙̃
θ(t−D) = U(t−D). (22)

Now using (5), the following “shifted” average model can
be derived

˙̃
θav(t) = Uav(t), (23)

with Uav ∈ R being the resulting average control for U ∈ R.
One can try to feed back the future state zav(σ +D) in the
equivalent average system where σ is time. Assuming that
σ = t−D we get

zav(σ +D) = zav(t−D +D) = zav(t) (24)

and thus time-delay compensated signal which we feed back.
The delayed version of (23) is ˙̃

θav(t−D) = Uav(t−D).
Applying (21) and (23) one has

żav(t) = Uav(t−D). (25)

Feeding back the future state zav(t + D) for the delay
compensation motivates the use of predictor feedback design.

Applying variation of constants [8], the future state is
being calculated as

zav(t+D) = zav(t) +

t∫
t−D

Uav(σ)dσ. (26)

We derive a controller as follows

Uav(t) =
˙̃
θav(t) = −kzav(t+D), (27)

∀t ≥ D and k > 0, which yields to an average predictor-
based control

Uav(t) = −k

zav(t) +

t∫
t−D

Uav(σ)dσ

 . (28)

Furthermore using (20), (27) as well as time shifting we
obtain the average error dynamics of the following form

˙̃
θav(t) = −kzav(t+D) = −kθ̃av(t), (29)

∀t ≥ D, with eigenvalues which are determined by −k.
Thus, the system has an exponentially attractive equilibrium.



D. Predictor Feedback

We propose the predictor-based controller which incorpo-
rates low-pass filter [3]

U(t) =
c

s+ c

{
−k
[
z(t) +

∫ t

t−D
U(τ)dτ

]}
(30)

where c > 0 is sufficiently large, i.e., the predictor feedback
is of the form of a low-pass filtered of the non average
version of (28). Note that we mix the time and frequency
domain notation in (30) by using the braces {·} to denote that
the transfer function acts as an operator on a time-domain
function. The difficulty arises in the application of existing
Averaging Theorem to infinite dimensions due to delays [9],
[10]. Hence, we employs a low-pass filter, to still achieve
our control objectives by transforming the original distributed
input-output delays into state-delays for analysis purposes.

III. STABILITY ANALYSIS

In the following we give the main stability/convergence
result for the closed-loop system using steps stated in [3].

Theorem 1: There exists c∗ > 0 such that, ∀c ≥ c∗,
∃ ω∗(c) > 0 such that, ∀ω > ω∗, the delayed closed-loop
system (22) and (30), with z(t) in (9) ĥ(n+1) calculated
as in in (7), γ(t) in (6) and state γ̃(t), θ̃(t − D), U(σ),
∀σ ∈ [t − D, t], has a unique locally exponentially stable
periodic solution in t of period Π = 2π/ω, denoted by γ̃Π(t),
θ̃Π(t−D), UΠ(σ), ∀σ ∈ [t−D, t], satisfying, ∀t ≥ 0:(∣∣∣γ̃Π(t)

∣∣∣2 +
∣∣∣θ̃Π(t−D)

∣∣∣2
+
[
UΠ(t)

]2
+

∫ t

t−D

[
UΠ(τ)

]2
dτ

)1/2

≤ O
(
1

ω

)
. (31)

Furthermore,

lim sup
t→+∞

|θ(t)− θ∗| = O(a+ 1/ω) . (32)

Proof: The demonstration follows steps A to G.

A. Transport PDE for Delay Representation

According to [8], the delayed version of (5) can be
represented using a transport PDE as

˙̃
θ(t−D) = u(0, t), (33)
ut(x, t) = ux(x, t) , x ∈ [0, D] , (34)
u(D, t) = U(t) , (35)

where the solution of (34)–(35) is

u(x, t) = U(t+ x−D) . (36)

B. Equations of the Closed-loop System

First we derive an expression for the output in terms of θ̃
using (7a) and plugging it into (1)

y(t) = h(θ̃(t−D) + a sin(ω(t−D)). (37)

By representing the integrand in (30) using transport PDE
state it follows

U(t) =
c

s+ c

{
−k

[
z(t) +

∫ D

0

u(σ, t)dσ

]}
(38)

with z(t) as in (9). Now using (37) and (38) one can rewrite
(33)-(34) as

˙̃
θ(t−D) = u(0, t), (39)
∂tu(x, t) = ∂xu(x, t) , x ∈ [0, D] , (40)

u(D, t) =
c

s+ c

{
−k
[
z(t) +

∫ D

0

u(σ, t)dσ

]}
. (41)

C. Average Model of the Closed-loop System
The average version of system (39)–(41) is:

˙̃
θav(t−D) = uav(0, t), (42)
∂tuav(x, t) = ∂xuav(x, t), x ∈ [0, D] , (43)

uav(D, t) =
c

s+ c

{
−k
[
zav(t) +

∫ D

0

uav(σ, t)dσ

]}
.

(44)

Denoting

ϑ̃(t) = θ̃(t−D), (45)
ϑ̃av(t) = θ̃av(t−D) = zav(t), (46)

which is valid only locally because the quadratic condition
invoked to derive (21), one has the following linearized
average version of system (39)–(41):

ϑ̇av(t) = uav(0, t), (47)
∂tuav(x, t) = ∂xuav(x, t) , x ∈ [0, D], (48)
d

dt
uav(D, t) = −cuav(D, t)− ck

[
ϑav(t) +

∫ D

0
uav(σ, t)dσ

]
,

(49)

where the filter c/s+ c is also represented in the state-space
form. The solution of the transport PDE (48)–(49) is given
by uav(x, t) = Uav(t+ x−D).

From (6) and (16) we know that a local average for the
Hessian’s inverse estimation error is dγ̃av(t)

dt = −krγ̃av(t)−
krHγ̃

2
av(t) and its linearized version

dγ̃av(t)

dt
= −krγ̃av(t) , (50)

which is stable since kr is positive.

D. Backstepping transformation, its inverse and the
target system

Consider the infinite-dimensional backstepping transfor-
mation of the delay state

w(x, t) = uav(x, t) + k

[
ϑav(t) +

∫ x

0

uav(σ, t)dσ

]
(51)

which maps the system (47)–(49) into the target system

˙̃
ϑav(t) = −kϑav(t) + w(0, t) , (52)
wt(x, t) = wx(x, t) , x ∈ [0, D] , (53)

w(D, t) = −1

c
∂tuav(D, t) . (54)



Using (51) for x = D and the fact that uav(D, t) = Uav(t),
from (54) we get (49), i.e.,

Uav(t) =
c

s+ c

{
−k

[
ϑav(t) +

∫ D

0

uav(σ, t)dσ

]}
. (55)

Let us now consider w(D, t). It is easily seen that

wt(D, t) = ∂tuav(D, t) + kuav(D, t) , (56)

where ∂tuav(D, t)= U̇av(t). The inverse of (51) is given by

uav(x, t) = w(x, t)−k
[
e−kxϑ̃av(t) +

∫ x

0

e−k(x−σ)w(σ, t)dσ

]
.

(57)
Plugging (54) and (57) into (56), we get

wt(D, t) = −cw(D, t) + kw(D, t)

−k2

[
e−kDϑ̃av(t) +

∫ D

0

e−k(D−σ)w(σ, t)dσ

]
.

E. Lyapunov-Krasovskii Functional

Now consider the following Lyapunov functional

V (t)=
ϑ̃2

av(t)

2
+
a

2

∫ D

0

(1+x)w2(x, t)dx+
1

2
w2(D, t) , (58)

where the parameter a = 1/k. As computed in [3], one gets
from (58)

V̇ (t) ≤ − 1

4a
ϑ̃2

av(t)−
a

4(1 +D)

∫ D

0

(1 + x)w2(x, t)dx

−(c− c∗)w2(D, t) ,

(59)

where c∗ = a(1+D)
2 + k+ a

∣∣k2e−kD
∣∣2 + 1

a

∥∥k2e−k(D−σ)
∥∥2

.
Hence, from (59), if c is chosen such that c > c∗, we obtain

V̇ (t) ≤ −µV (t) , (60)

for some µ > 0. Thus, the closed-loop system is exponen-
tially stable in the sense of the full state norm(

|ϑ̃av(t)|2 +

∫ D

0

w2(x, t)dx+ w2(D, t)

)1/2

, (61)

i.e., in the transformed variable (ϑ̃av , w).

F. Exponential Stability Estimate (in L2 norm) for the
Average System (47)–(49)

To obtain exponential stability in the sense of the norm(
|ϑ̃av(t)|2 +

∫D
0
u2

av(x, t)dx+ u2
av(D, t)

)1/2

, we need to
show there exist positive numbers α1 and α2 such that

α1Ψ(t) ≤ V (t) ≤ α2Ψ(t), (62)

where Ψ(t) , |ϑ̃av(t)|2 +
∫D

0
u2

av(x, t)dx + u2
av(D, t), or

equivalently

Ψ(t) , |θ̃av(t−D)|2 +

∫ t

t−D
U2

av(τ)dτ + U2
av(t) . (63)

This is straightforward to establish by using (51), (57), (58)
and employing the Cauchy-Schwartz inequality and other

calculations, as in the proof of Theorem 2.1 in [8]. Hence,
with (60), we get

Ψ(t) ≤ α2

α1
e−µtΨ(0) , (64)

which completes the proof of exponential stability.

G. Invoking Averaging Theorem

Using (6), (10) and (11), the dynamics of the estimation
error of the Hessian can be written as

˙̃γ = ωr
[
γ̃ +H−1

] [
1− h(n+2)

(
γ̃ +H−1

)]
. (65)

Now, note that the closed-loop system (5), (30) and (65)
can be rewritten as:

˙̃
θ(t−D) = U(t−D) , (66)

U̇(t) = −cU(t)− ck
[
z(t) +

∫ t

t−D
U(τ)dτ

]
, (67)

˙̃γ(t) = ωr[γ̃(t) +H−1]

× [1− h(n+2)(γ̃(t) +H−1)] . (68)

where ξ(t) = [θ̃(t − D), U(t), γ̃(t)]T is the state vector.
Moreover, from (7) and (9), one has

ξ̇(t) = f(ωt, ξt) , (69)

where ξt(Θ) = ξ(t + Θ) for −D ≤ Θ ≤ 0 and f is an
appropriate continuous functional, such that the averaging
theorem by [9], [10] can be applied considering ω = 1/ε.
We conclude that the equilibrium γ̃av(t) = 0 of the linearized
error system (50) is exponentially stable since kr > 0.

In addition, from (64), the origin of the average closed-
loop system (47)–(49) with transport PDE for delay rep-
resentation is also exponentially stable. Thus, there exist
positive constants α and β such that all solutions satisfy
Υ(t) ≤ αe−βtΥ(0), ∀t ≥ 0, where Υ(t) , |γ̃av(t)|2 +
|θ̃av(t−D)|2 + U2

av(t) +
∫ t
t−D U

2
av(τ)dτ .

Then, according to the averaging theorem [9], [10], for ω
sufficiently large, (66)–(68) has a unique locally exponen-
tially stable periodic solution around the origin satisfying
(31). See [3] for computation of (32).

IV. SIMULATION RESULTS

Consider the following static cubic nonlinear map

h(θ) = −(θ − 0.5)3 + θ, (70)

which is subject to output delay D = 5 s where we maximize
h(θ̂) according to (2). However, recall that y = h(θ(t−D)).
Hence, we will plot the variable θ instead of θ̂. Fig. 2 shows
(70) and its first derivative.

We use low-pass and washout filters with corner frequen-
cies (ωh and ωl) to improve the controller performance (see
[11, Figure 4]). We present simulations of the predictor (30),
where c = 20, z is given by (9) with ĥ(j) as in (7) and γ
in (6). The tests are performed with the ωh = ωl = 1. Fig.
2 shows maximization of the first derivative of (70), where
after the transient, the Riccati equation converges close to the
actual value of the Hessian’s inverse. The initial transient in
γ after the controller “kicks in” at D = 5 sec, is driven by
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Fig. 2. The derivatives of h(n)(θ) for n=[0, 1] where
h(0)(θ)=h(θ) =black (continuous), h(1)(θ)=red (semicolon).

h(2) < 0 and makes γ increasingly positive. The output y(t)
converges to the value where the desired derivative has its
extremum.

V. CONCLUSIONS

In this work, we present and prove local stability of a
Newton-based extremum seeking algorithm in presence of
input-output delays, which maximizes arbitrary nth deriva-
tive of an unknown static map. The only available measure-
ments are from the map itself and not of its derivatives. We
give a rigorous proof in terms of backstepping transformation
and averaging analysis in infinite dimensions for locally
quadratic objective functions. The delay is assumed to be
known and constant. Generalization to include unknown and
time-varying delays as well as stochastic perturbations will
be studied in future works.
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