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Abstract—In this work we introduce the Correlation Transmis-
sion Line Matrix (CTLM) method for time-domain computation
of the auto- and cross correlation functions (ACFs and CCFs)
of stationary stochastic electromagnetic fields. These ACFs and
CCFs are computed from the Johns matrices, i.e. the discrete-
time TLM Green’s functions and are directly related to the EMI
power spectra.
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I. INTRODUCTION

Future computing and communication systems will exhibit
high data bandwidth demands of up to 100 Gb/s [1]. On the
one hand, switching operations in such broadband circuits
will generate radiated electromagnetic interference (EMI), and
on the other hand, due to the high bandwidth and the low
power levels these circuits also will be very sensitive to EMI.
Therefore coexistence of systems with ubiquitous electromag-
netic noise and reliable operation requires a careful circuit and
system design accounting for signal integrity (SI).

Advanced computer aided design techniques accounting for
electromagnetic compatibility (EMC) and SI will be crucial for
reducing time-to-market. Integrated circuits are main sources
of radiated EMI in electronic circuits and systems. Therefore
the EMI radiated from the integrated circuits has to be
assessed [2]–[4]. Also interconnects in printed circuit boards
can be sources of radiated EMI [5].

In a stochastic EM field numerical amplitudes cannot be
specified for the field values. A complete description of
the stochastic EM field with Gaussian amplitude probability
distribution can be given by specifying all auto correlation
functions of the field amplitudes and the cross correlation
functions of each pair of field variables [6]. The auto and cross
correlation functions of the field variables in the observation
points OP1 and OP2 in Fig. 1 can be computed if the auto
and cross correlation functions of the sources S1 . . . S5 are
known.

The transmission line matrix (TLM) method is an efficient
time- and space discrete numerical method for modeling of
complex electromagnetic structures [7], [8]. In this work, we
introduce the Correlation Transmission Line Matrix (CTLM)
method for time-domain computation of the auto- and cross
correlation functions (ACFs and CCFs) of stationary stochastic
electromagnetic fields. These ACFs and CCFs are computed
from the Johns matrices, i.e. the discrete-time TLM Green’s
functions and are directly related to the EMI power spectra.
By convolution of the Johns matrices second order discrete
Green’s functions - relating the correlation functions of pairs
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Fig. 1. Stochastic sources S1 . . . S5 and observation points OP1 and OP2.

of observation points to the correlation functions of all pairs
of source points - are introduced.

II. STOCHASTIC EM FIELDS

The stochastic electric field with the time-windowed ampli-
tude spectrum ET (xa, ω) is represented by the dyadic [6]

Γ
E

(xa,xb, ω) = lim
T→∞

1

2T
〈ET (xa, ω)E†T (xb, ω)〉 , (1)

where the subscript T denotes the amplitude spectrum of
the field, time-windowed by a rectangular window covering
the time interval [−T, T ], and the excitation current density
with the time-windowed amplitude spectrum JT (xa, ω) is
represented by the dyadic

Γ
J

(xa,xb, ω) = lim
T→∞

1

2T
〈JT (xa, ω)J†T (xb, ω)〉 . (2)

The excited electric field E(x, ω) is related to the source
current distribution J(x′, ω) by

E(x, ω) =

∫
V

GEJ(x− x′, ω)J(x′, ω)d3x′ , (3)

where GEJ(x − x′, ω) is the Green’s dyadic relating the
excited electric field E(x, ω) to J(x, ω) and the integration
is extended over the whole volume V where J(x, ω) is non-
vanishing [6], [9]. From (3), (2), and (1) we obtain

Γ
E

(xa,xb, ω) =

∫∫
V

GEJ(xa − x′a)

×Γ
J

(x′a,x
′
b, ω)G†EJ(xb − x′b)d

3x′ad
3x′b . (4)
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III. DIGITAL SIGNAL PROCESSING

A. Time-Discrete Signals

The discrete-time signal function s[n] is related to the
continuous-time signal function s(t) of length T0 by

s[n] = s(n∆t) , with T0 = N∆t , (5)

where ∆t is the sampling interval. If a real-valued discrete
time sequence xj [n] is applied to a linear time-invariant system
with the impulse response hij [n], the output sequence yi[n] is
obtained by discrete convolution of the input signal xj [n] with
the impulse response hij [n] as [10, p. 64]

yi[n] = hij [n] ∗ xj [n] ≡
∞∑

m=−∞
hij [n−m]xj [m] , (6)

where the symbol ∗ denotes the convolution operation.

B. Discrete-Time Correlation Functions

The discrete-time correlation function cij [n, n+m] of two
real-valued discrete time sequences xi[n] and xj [n] is defined
as [10, p. 65]

cx
ij [n, n + m] = 〈xi[n]xj [n + m]〉, (7)

where 〈·〉 denotes the ensemble average. If si[n] and sj [n]
are stationary ergodic processes, cij [n, n+m] is independent
from n and the ensemble average is identical with the time
average and we can write

cx
ij [m] = 〈xi[n]xj [n + m]〉 (8)

= lim
N→∞

1

2N + 1

N∑
n=−N

x1[n]x2[n + m] .

From (6) and (7) we obtain

〈yp[n]yq[n + m]〉 = (9)

=

∞∑
k=−∞

∞∑
l=−∞

hpr[k]〈xr[n− k]xs[n + m− l]〉hqs[l] ,

cy
pq[m] =

∞∑
k=−∞

∞∑
l=−∞

hpr[k]cx
rs[m + k − l]hqs[l] . (10)

We define the correlation transfer function

ky
pq,rs[l] =

∞∑
k=−∞

hpr[k]hqs[l + k] (11)

and can write (10) as

cy
pq[m] =

∞∑
l=−∞

kpq,rs[l]cx
rs[m− l]. (12)
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Fig. 2. Schematic of the TLM cell: a) Space cell with samples of the tangential
electric and magnetic field values and wave pulse amplitudes, b) TLM node.

IV. TLM - A DISCRETE SCHEME OF ELECTROMAGNETISM

In the TLM–method, the electromagnetic field is modeled
by wave pulses propagating on a Cartesian mesh of transmis-
sion lines [11]–[13]. In 3D–TLM with symmetric condensed
node, the mesh node is modeled by a twelve–port with the
scattering matrix. Figure 2a) exemplifies the assignment of
incident and scattered wave amplitudes to the electromagnetic
field amplitudes, and Fig. 2b) shows the schematic repre-
sentation of a symmetric condensed TLM node. To account
for the two transverse polarizations, a pair of transmission
lines is assigned to every branch of the mesh. In a compact
formulation of the TLM scheme we summarize all 12N
incident wave pulses in the vector a[k] and all 12N scattered
wave pulses in the vector b[k]. The argument k enumerates
the discrete time step. We can formulate the TLM scheme in
the compact Hilbert space notation [14]–[16]:

b[k + 1] = S a[k] , (13a)
a[k] = Γ b[k] , (13b)

where the scattering matrix S describes the instantaneous
scattering of the wave pulses in the TLM node and Γ describes
the connection of the TLM nodes with the adjacent TLM
nodes. The TLM scheme as formulated in (13a) and (13b)
is a compact representation of discrete electrodynamics.

V. DISCRETE TLM GREEN’S FUNCTIONS

The response to a wave pulse incident on the boundary
of a certain spatial domain may be represented by discrete
TLM Green’s functions. On the other hand, the response
to a localized electromagnetic excitation at the boundary of
a certain spatial domain may be calculated directly from
Maxwell’s equations and be represented by analytic TLM
Green’s functions. For low frequencies and small wave num-
bers, the analytic TLM Green’s functions coincide with the
discrete TLM Green’s functions [14], [17]–[19]. Applying the
analytic TLM Green’s functions in the absorbing boundary
condition at the boundary to the open half-space reduces the
computational effort considerably when compared with the
application of the discrete TLM Green’s functions [20].



Fig. 3. Arrangement of source and observation points.

The discrete Green’s function for TLM can be written as
G[ni, k;nj , k

′] and relates the wave pulses a[ni, k
′] incident

on boundary port ni and time k′ to the wave pulses b[nj , k]
scattered from boundary port nj and time k [18], [21]. We
can write

bi[k] =
∑
nj∈B

∞∑
k′=−∞

Gi,j [k − k′]aj [k
′] , (14)

where B is a set {n1, n2, . . . nN} of N boundary nodes. For
stationary stochastic electromagnetic fields we can introduce
the following auto- and cross correlation functions of the wave
amplitudes:

ca
ij [m] = 〈ai[n]aj [n + m]〉 , (15a)

cb
ij [m] = 〈bi[n]bj [n + m]〉 . (15b)

We introduce the Correlation Green’s Function (CGF)
Kij;pq[k] for the TLM wave amplitude correlation functions

Kij;pq[k] =

∞∑
l=−∞

Gi,p[l]Gj,q[l + k] . (16)

With (15a), (15b), and (16), we obtain in analogy to (10) the
relation

cb
ij [m] =

∑
nr,ns∈B

∞∑
l=−∞

Kij;rs[l]ca
rs[m− l] , (17)

relating the auto- and cross correlation functions cb
ij [m] of the

wave amplitudes scattered from the boundary to the auto- and
cross correlation functions ca

rs[m] incident to the boundary.

VI. NUMERICAL EXAMPLE

In this numerical two-dimensional example, correlation data
according to (17) are obtained for five observation points
receiving EMI from two sources. This arrangement is depic-
tured in Fig. 3. Impulse responses at the observation points
P1, · · · , P5 are computed for excitation at the source points S1

and S2 using the TLM-based MEFiSTo electromagnetic full
wave solver. The impulse excitation is band limited to avoid
spurious solutions. Three cases are considered: correlated in-
phase, correlated antiphase, and uncorrelated sources. The
computed autocorrelation functions at the observation points,
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Fig. 4. Time domain autocorrelations of the observation points for a two-
source excitation with correlated in-phase, correlated antiphase, and uncorre-
lated sources.

also a measure for the power density at the respective points,
are graphed in Fig. 4. At the central point P3, we obtain
a power maximum for correlated in-phase sources and zero
power for correlated antiphase sources, and pronounced direc-
tivity patterns for either case. For the uncorrelated case, this
pattern is vanishing. Arbitrary degrees of source correlations
may be considered with this methodology. The information
obtained in this manner for the propagation of the correlation
information are available over a broad bandwidth.

VII. CONCLUSION

In this work we introduced and applied the Correlation
Transmission Line Matrix (CTLM) method for direct compu-
tation of the auto and cross correlation functions of stationary
stochastic electromagnetic fields. We used Correlation Green’s
Functions (CGFs) to compute these correlations and gave a nu-
merical example to demonstrate this method. The computation
is time-efficient since the correlation depends only on the time
delay of the correlation function and not on the time.
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