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Just as the constant increase of entropy 

 is the basic law of the universe, 

so it is the basic law of life 

to struggle against entropy. 

Văclav Havel 
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English Abstract 

This thesis focuses on the synthesis, reactivity and catalytic application of tetra 

N-heterocyclic carbene (NHC) iron complexes. Within this small but fast growing field of 

research it deals especially with complexes bearing cyclic tetra(NHC) ligands and their 

reactivity with small molecules such as carbon monoxide (CO), nitric oxide (NO), molecular 

oxygen (O2) and hydrogen peroxide (H2O2). Furthermore a comprehensive review of all 

reported cyclic tetra(NHC) ligands and their metal complexes until September 2016 is given. 

This thesis by publication is based on four first author full article publications. The first one 

published in Inorganic Chemistry in 2015 reportes the synthesis and characterization of a 

new cyclic tetra(NHC) iron(II) complex, resembling the long known and biologically important 

heme system and explores its reactivity with varoius small moleclues (NO, CO).  

The second one was published in Dalton Transactions in 2016 and sheds light on the 

reactivity of the previously reported cyclic tetra(NHC) iron complex with molecular oxygen 

(O2). The formation of a labile superoxo intermediate is proposed and supported by various 

independent methods. Two different decomposition products are isolated and 

characterized. 

The third one was published in ChemSusChem in 2015 presenting the respective cyclic 

tetra(NHC) iron(III) complex and revealing its outstanding catalytic activity towards 

epoxidation of olefins utilizing H2O2 as oxidant. Hereby TOFs (Turn over frequency [h-1]) of up 

to 183,000 are reported and various parameters are explored in depth. 

The fourth one was published in Organometallics in 2015 and investigates the redox 

potential of the Iron(II/III) centers in relation to the number of coordinated NHC ligands and 

the overall ligand structure. 

Four other publications with co-authorship covering a novel synthesis of 

2-imidazolylpyridines (Tetrahedron Let. 2013), the reactivity of a cyclic bis(NHC)/Pyridine iron 

complex (Organometallics 2015), the decomposition pathways of acyclic iron(III) NHCs 

(Chem. Eur. J. 2015) and mechanistic insights to a Wittig type reaction catalysed by iron(II) 

NHCs (J. Catal. 2016), are also briefly discussed. 
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Deutscher Abstract 

Der Schwerpunkt dieser Doktorarbeit liegt in der Synthese, Reaktivität und katalytischen 

Anwendung von tetra N-hetero zyklischen Eisenkomplexen. Innerhalb dieses noch kleinen 

aber schnell wachsenden Wissenschaftsfeldes behandelt sie besonders zyklische tetra(NHC)-

Eisenkomplexe und deren Reaktivität mit kleinen Molekülen wie Kohlenstoffmonoxid (CO), 

Stickstoffmonoxid (NO), molekularem Sauerstoff (O2) und Wasserstoffperoxid (H2O2). 

Weiterhin gibt sie einen vollständigen Überblick über alle bis September 2016 bekannten 

cyclischen tetra(NHC)-Liganden und deren Metallkomplexe. 

Diese kummulative Doktorarbeit basiert im Wesentlichen auf vier veröffentlichten 

Erstauthorenartikeln. Der erste - veröffentlicht 2015 in Inorganic Chemistry – befasst sich mit 

der Synthese und Charakterisierung eines neuen zyklischen tetra(NHC)-Eisen(II)komplexes 

mit hoher struktureller Ähnlichkeit zum bekannten und biologisch bedeutenden Häm-Sytem 

und erkundet dabei dessen Reaktivität mit kleinen Molekülen (NO, CO).  

Der zweite - veröffentlicht 2016 in Dalton Transactions – beleuchtet die Reaktivität des zuvor 

eingeführten Eisen(II)komplexes mit molekularem Sauerstoff (O2). Dabei wird die Bildung 

eines labilen Superoxo-Intermediates postuliert und durch unabhängige Methoden bestätigt. 

Des weiteren erfolgt die Isolierung und Charakterisierung zweier Abbauprodukte der 

Reaktion des Eisen(II)komplexes mit Sauerstoff. 

Der dritte - veröffentlicht 2015 in ChemSusChem – stellt den entsprechenden tetra(NHC) 

Eisen(III) Komplex vor und zeigt dessen herausragende katalytische Aktivität bei der 

Epoxidierung von Olefinen. Es werden TOFs (Turn over frequency [h-1]) von bis zu 183.000 

erreicht und es erfolgt eine tiefgehende Analyse verschiedener Reaktionsparameter. 

Der vierte - veröffentlicht 2015 in Organometallics – untersucht die Abhängigkeit des Redox-

Potenziales von Eisen(II/III) Zentren von der Anzahl koordinierter NHC-Liganden und der 

allgemeinen Ligandstruktur. 

Vier weitere Co-Autor Publikationen, welche die neuartige Synthese von 

2-Imidazolylpyridinen (Tett. Lett., 2013), die Reaktivität von zyklischen NHC/Pyridin Eisen-

komplexen (Organometallics, 2015), die Zerfallswege von azyklischen Eisen(III)-NHCs (Chem. 

Eur. J., 2015) und mechanistische Einblicke in von Eisen(II)-NHCs katalysierte Wittig 

Reaktionen (J. Catal., 2016) beinhalten, werden zudem kurz erläutert.  
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1. Introduction 

1.1. Preliminary Thoughts 

 

Almost 50 years ago John Naisbitt, a specialist for future studies, said: “Biology will take the 

present rank of chemistry and physics in the 21st century”. On the one hand, he was right: In 

recent years science and industry as well as society changed to a more biological 

perspective. This may be observed in the efforts of e.g. Bayer strengthening its biological 

protofolio buying Monsanto or the strikingly obvious trend towards a more ecological and 

sustainable way of life in the most western industrialised countries. But on the other hand 

the more our understanding of chemistry and biology proceedes, the more we recognize 

that both scientific disciplines are not diametrically opposed, but very closely related to each 

other. We understand they are two sides of the same coin, the one – chemistry – starting on 

the microscopic side of things while the other – biology – starting from the macroscopic 

perspective. Nevertheless, the principial understanding of the fundamental laws of life and 

nature are their most important goal. Due to this new understanding chemistry and biology 

converged quickly within the last decades, created new disciplines such as molecular 

biology1 and biomimetic chemisty2 complementing the long existing biochemistry, the first 

scientific discipline mediating between chemisty and biology. From the chemical side of the 

coin the sophisticated elegance of biological systems - the efficiency and selectivity of 

enzymes or the cooperative effect of hemoglobine transporting oxygen through our veins – 

provide desirable goals. From the biological perspective, the simple applicability on a 

technical scale – the world changing impact of the Haber-Bosch-Process or the “artificial” 

synthesis of complex biomolecules like heme and erythromycin - made an appealing goal. 

The fact that eight of the last 20 nobel prizes in chemistry were awarded for biological 

topics3 can also be taken as a case in point for the ongoing blurring of borders between 

chemistry and biology. Mimicking of biological processes - especially catalytic processes – 

with less complex artificial molecules was a still fast growing field of research during the last 

couple of years. This dissertation will provide a deeper insight into this area of biologically 

inspired inorganic chemistry, especially into those parts using cyclic NHC iron compounds for 

the mimicking of heme-related biological structures. 
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1.2. N-heterocyclic Carbenes: Structure and Properties 

 

During the last two decades, the thourough examination of N-heterocyclic carbenes as 

ligands for transition metals uncovered a very rich coordination chemistry with an increasing 

variety of applications:4,5,6,7,8 This includes homogeneous catalysis,9,10,11,12 medicinal 

chemistry,13,14,15 and photoluminescent materials.16 Polydentate NHC ligands - especially 

cyclic ones - were found to stabilize high-valence iron species, which are apparently key 

intermediates in catalytic oxidation and aziridation reactions.17,18,19,20,21,22,23 To understand 

the utmost importance which NHC ligands have gained in recent years, we have to take a 

closer look at the history and unique properties of this special kind of ligand. 

As many important discoveries before, the first NHC-complexes were mere “lab curiosities”. 

Even before the first NHC complexes were prepared in 1968 by Wanzlick and Öfele,24,25 

simple carbene complexes of late transition metals had been reported.26 For many decades 

the isolation of free cabenes was deemed impossible, due to their highly unstable and 

transitory nature, until Arduengo proved in 1991 that the isolation of free carbenes - NHCs in 

particular - is possible.27 To completely understand those achievements a detailed look at 

the valence orbitals of a carbene is required. “Carbene” refers to divalent carbon atoms, 

which, in contrast to common tetravalent carbon atoms, have only six rather then eight 

valence electrons (Figure 1). Based on this vacancy in the valence orbitals two different 

electronic configurations are possible: First the usually energetically – according to Hund’s 

rule - more favourable triplet state with two singly occupied sp3 hybrid orbitals (A). Second 

the less favourable singlet state with both electrons paired in one sp2 hybrid orbital and a 

perpendicular empty p orbital (B). 

 

Fig. 1 Possible electronic structures of free carbenes (left A/B). Stabilization of free carbenes 

(middle C). Arduengos first isolated free carbene (right). 
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The obvious diradical character of A makes this type of particle highly reactive and prone to 

dimerization or the initiation of radical chain reactions. Despite its relatively higher energy, B 

should be less reactive due to its free electron pair (compare nitrogen). Consequently, if the 

preferred electronic configuration of a free carbene can be pushed from A to B, a more 

stable particle should arise. This can principally be achieved in two ways: First, by lowering 

the energy of the sp2 orbital by adding electron withdrawing substituents to the carbon atom 

(C: -I-effect) and second, by stabilizing the empty p orbital by partially occupying it with 

electron density from adjacent atoms (C: +M-effect). These theoretical considerations lead 

to the conclusion that if R is an atom with high electronegativity and free electron pairs, the 

ground state of free carbenes can be changed form triplet A to singulet B,28 which is realized 

in NHCs (C). Despite their higher stability, those singulet carbenes are still prone to 

dimerization. Besides binding the carbene to a transition metal, the easiest way to prevent 

this - finally enabling the isolation of free carbenes - is the introduction of bulky groups 

making dimerization highly unfavourable. We can see that all those considerations are 

realized in “Arduengo’s Carbene” (Figure 1). 

None of this, however, explains why carbenes in general and NHCs in particular are such 

extraordinarily well-established and widely used class of ligands. It comes down to their 

special way of metal-carbon interaction and their high variability concerning the electron 

donating and accetpting properties. Although it is widely accepted that NHCs are primarily 

-donor ligands, which is represented by drawing mere single bonds instead of double 

bonds between the metal center and the coordinating NHC carbon, in contrast to other 

famous carbene type ligands such as Fischer or Schrock carbenes,29,30 they are not limited to 

this type of interaction.31 To a minor but variable extent – strongly depending on the 

respective electronic situation both of the NHC and the coordinated metal fragment – NHCs 

can also function as -donor- or -acceptor-type ligands (Figure 2). 

 

Fig. 2 Possible electronic interactions between a NHC and the coordinated transition metal (TM). 
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Due to these properties NHCs are significantly stronger ligands, both in terms of - and -

donor capability and kinetic stability, than posphanes, to which they are often compared to. 

Thus rapid dissociation and association processes often observed for phosphanes are mostly 

prevented by the partial double bond character of the M-carbon bond.7,8 This makes 

coordinated NHCs less prone to oxidation than posphanes, even if free NHCs are generally 

more sensitive towards oxygen than phosphanes, which are often air stable. However, the 

obstacle of the relative sensitivity of NHCs towards oxidation, especially in earlier transition 

metal complexes, was and is a significant hindrance in the broad application of those 

complexes as catalysts in oxidation reactions. Nevertheless, in the case of iron, Jenkins 

showed in 2011 and 2016 the advanced catalytic performance of two cyclic tetra(NHC) iron 

complexes as catalysts in the aziridination of a wide variety of substituted aliphatic alkenes 

using electron-donating aryl azides (D).22,32 In 2014 and 2015, Kühn could show that acyclic 

iron(II) NHCs are suitable catalysts for the epoxidation of olefins (E),33,34 the hydroxylation of 

aromatics35 (F) and the even more challenging C-H activation in saturated hydrocarbons such 

as cyclohexane (G) (Scheme 1, Section 1.5 for details).36 

 

Scheme 1: Oxidation reactions catalysed by iron NHCs as reported by Jenkins and Kühn. 

Considering those and other advances in the field of transition metal NHC chemistry, it is not 

surprising, that the number of publications and structures in this field of research is rapidly 

increasing.37 This is reflected in an astonishing number and very high diversity of the 
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reported transition metal NHC complexes (Figure 3). Still, most of the approximately 5,900 

crystallographically characterized compounds contain the “usual suspects”- Ru, Rh, Ir, Ni, Pd, 

Pt, Cu, Ag, Au – which altogether about are 5,000 or 85 % of all complexes. However, among 

the remaining 900 compounds, iron has by far taken the lead within the last years featuring 

close to 300 reported NHC compounds. Despite this, the overall count of cyclic iron 

tetra(NHC) species, is 17 (reported until September 2016), 7 of which are reported in this 

thesis alone.  

 

Fig. 3 Number of entries in the CCDC data base for metal complexes with N-heterocyclic carbene 

ligands based on imidazolylidenes (dark) and imidazolinylidenes (bright) as drawn top right. The data 

set is sorted by transition metal and NHC type and was accessed at “http://webcsd.ccdc.cam.ac.uk” 

on August 31, 2015. (used with friendly permission of the author.)37 

All of those complexes were reported within the last 6 years, showing the intensified efforts 

made in this field of research. Why did especially cyclic iron NHC complexes become such a 

“hot topic” in recent years? To answer this question we will discuss the structural properties, 

the synthesis and the unique reactivity of those compounds in the following sections. 
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1.3. Tetra-NHC Ligands: Synthesis and their Metal Complexes 

 

To provide a clear definition of a tetra(NHC) ligand and a complex of this type respectively, 

we explicitly exclude such tetra(NHC) complexes in which the NHC moieties are not 

covalently connected to each other. Examples for such complexes can be metals coordinated 

by four single NHC ligands, by two bis(NHC) ligands, or any combination thereof. In this well 

defined group of covalently connected tetra(NHC) ligands we will focus on the cyclic ligands 

and their complexes. Thus its synthesis was inspired through ideas from the early days of 

this work and its therefore very simlilar structure a non-cyclic tetra(NHC) ligand and its metal 

complexes are also described briefly later on. The reader may ask themselves why we focus 

on such an exclusive type of ligands, if thousands of metal NHC complexes and hundreds for 

iron alone are known? And this is exactly the point! While only a small number of iron NHC 

complexes displays suifficent stability for catalytic applications even less exceed comparable 

non-NHC complexes in the respective catalytic performance, such as epoxidation or 

hydrosylilation processes.38,39 The main reason for this is grounded in the lower kinetic and 

thermodynamic stability of the C-M bond of earlier transition metalls compared to later ones 

such as Pd, Pt or Au.40 Despite the generally high kinetic inertness of late TM-carbon bonds, 

early TM-carbon bonds tend to be thermodynamically and kinetically less stable.41 A simple 

explanation for this observation is smaller orbital overlap between the relatively hard early 

TMs and the soft NHC-carbon, resulting in a bonding situation with less covalent character 

compared to late-TM-NHC complexes. To overcome the emerging problems such as 

sensitivity towards water and/or oxygen, the chelate effect, which is widely found in 

coordination chemistry is also applied here. Originating from the ancient greek word 

“” meaning “crab claw”, it describes the obeservation that two or more covalently 

connected ligating moieties which coordinate to the same metal atom, form more stable 

complexes than the same number of isolated ligating moieties. This increase in kinetic and 

thermodynamic stability is based on an entropy increase, because such chelate ligands losing 

less degrees of freedom compared to simple nonchelating ligands. This entropic gain and 

therefore the thermodynamic stability is further enhanced by using cyclic tetra(NHC) ligands, 

losing a smaller number of degrees of freedom on coordination due to their lower flexibility. 

The use of four NHC moieties per ligand was chosen as a compromise between stability and 
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free coordination sites for reactivity. In addition, many biologically active iron componds 

bear a structurally related cyclic 4-ligand in their core structure, such as heme. 

Before this work only a small number of cyclic tetra(NHC) systems and their metal complexes 

have been reported. One of the first of these kind of ligands (L1) was published in 2007 by 

Murphy42 together with its corresponding Ag(I), Cu(I) and Pd(II) complexes. In this case the 

four NHCs were linked by propylene bridges, resembling the structure of so called crown 

ether ligands. In 2009 and 2010, the Co(II)43 and Ni(II)44 complexes of L1 were reported by 

the same group together with the first catalytic applications in the reduction of challenging 

organic substrates, throwing a first spotlight on the high catalytic potential of cyclic 

tetra(NHC) metall complexes (Section 1.5 for details). Two years before, in 2005, the first 

cyclic tetra(NHC) Pt complex (Pt-L2) was reported by Hahn.45 In that work a template-

controlled cyclization of -functionalized phenyl isocyanides yielded four single Pt 

coordinated N-heterocyclic carbene ligands, which were subsequently linked via DMF/COCl2 

to the respective tetra(NHC) complex Pt-L2. In 2008, another tetra(NHC) ligand (L3) and its 

Ag(I) and Au(I) complexes were repoted by Hahn.46 Despite of its display of several different 

potential binding patterns L3 was not mentioned ever since and no applications have been 

reported. The same is true for a very similar ligand L3Py which was also reported by Hahn in 

2010 (Figure 4).47,48 

 

Fig. 4 Structures of the first reported cyclic tetra(NHC) ligands (L1-3) and their metal complexes. 

The next step towards a smaller and more rigid tetra(NHC) ligand (L4) was made by Jenkins 

in 2010.49 Starting from easily accessible methylene(bisimidazole), the 18 membered cyclic 

tetra(NHC) ligands L4H and L4Ph were synthesized, along with the respective Pt(II) 

complexes. In 2013, he have been the smallest cyclic tetra(NHC) ligands until a 16 membered 

tetra(NHC) ligand (L5) and another 18 membered ligand (L6) were described, by Jenkins.50 
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However, they were not able to synthesize any metal complexes of L5 while the respective 

Ni(II) and Pd(II) complexes of L6 could be prepared in low yields (Figure 5). 

 

Fig. 5 Structures of several cyclic tetra(NHC) ligands (L4-6) and their metal complexes, as reported by 

Jenkins et al. 

A different synthetic approach, namely utilizing the Ag-complexes of L4 as transmetallation 

reagent, allowed synthesis of a broad array of L4-based metal complexes in 2012 and set the 

stage for catalytic applications.51 The research on Fe-L4Ph as an active and recyclable 

catalyst in the aziridination of olefins is still ongoing.52,53 Besides Murphy, Meyer has been 

exploring Fe-L4H its potential for the stabilization of high iron oxidation states21 and its 

reactivity with small molecules such as S8 or NO since 2013 (Section 1.5 for details).54,55,56 

Based on this work, the Ag(I)- and Au(I)-complexes of L0 have been publishded recently.57 

Both exhibit a unique molecular box type structure and the Ag(I) compound was utilized for 

transmetallation to the corresponding Ni(II), Pd(II) and Pt(II) complexes. Less surprising, all of 

these show the anticipated square planar geometry (Figure 6). 

 

Fig. 6 Structure of ligand L0 (left) and its metal complexes with Ag(I) and Au(I) (middle) and group 10 

metals (right), as reported by Kühn et al.57 

Although a number of acyclic tetra(NHC) ligands exists in literature, most of them have a 

very different coordination behaviour than their cyclic counterparts due to the reasons 

mentioned above.58,59,60,61 However, two of them, which are inspired by L0, L1 and L4, depict 
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a comparabale structure and reactivity. The synthesis as well as the preparation of the 

corresponding Ag(I) complexes of these acyclic tetra(NHC) ligands (L7/L8) was first reported 

by Kühn and coworkers in 2014 (Figure 7).62 

 

Fig. 7 Structures of two acyclic tetra(NHC) Ligands (L7/L8) and their metal complexes, as reported by 

Kühn et al. 

Subsequently, a number of metal complexes containing L7 and L8 was reported in 2015, 

revealing an interesting connection between the structure of the complex (square planar vs. 

sawhorse type) and the different linker used in the backbone of the ligands (CH2 vs. (CH2)3).63 

A remarkable structural flexibility especially of Fe-L7 opened possible catalytic applications 

for recations in need of two cis-oriented free coordination sites, which can hardly be 

provided by any of the cyclic tetra(NHC) complexes. In 2016, it was shown that for the Ru-

L7/L8 complexes a similar behaviour could be observed and proven for both complexes, that 

they are highly active transfer hydrogenation catalysts,64 which need cis-oriented free 

coordination sites to operate effictively.65 The structural resemblance among the coinage 

metal complexes of CM-L7 and the afore mentioned CM-L0 are remarkable, thus showing a 

certain amount of flexibility even in the relatively rigid structure of L0, allowing the CMs to 

keep their strongly preferred linear coordination. 

  



22 
 

1.4. Structure and Synthesis of Cyclic Tetra(NHC) Iron Complexes 

 

“The field of iron NHC chemistry has emerged as a diverse area of organometallic chemistry, and the 

iron compounds display a broad range of geometric and electronic variations. With regard to 

oxidation states, examples range from low-valent iron(0) and iron(I) over the most common iron(II) 

and iron(III) to high-valent iron(IV) and even iron(V). In terms of geometry, most reports describe 

tetrahedral or octahedral coordination at the iron center, however, some iron NHC compounds 

appear as trigonal bipyramidal or square planar complexes.”17 In case of cyclic tetra(NHC) iron 

complexes, despite the little variation in the equatorial positions (per definition 4 NHCs), significant 

differences in terms of geometry and electronic structure (oxidation state) are reported. Most of the 

cyclic tetra(NHC) iron complexes display octahedral coordination, bearing two axial ligands, but the 

nitrosyl componds show mostly a square pyramidal geometry. In one case even a purely square 

planar structure without any axial ligands is reported (Figure 8).32 

 

Fig. 8 Coordination geometry of iron in various cyclic tetra(NHC) complexes. 

Regarding the electronic situation and oxidation state the level of variation is even larger. 

While in most compounds the oxidation state of +II is preferred by the iron center – due to 

the high ligand field splitting induced by the four strong NHC-donors - in many cases the 

respective +III state can easily be reached (Figure 9), often by simple addition of molecular 

oxygen.21 If the strong donating character of the tetra(NHC) ligands are combined with other 

strong donors like oxide (O2-)21 or amide (NR2
-)22 iron(IV) species can also be stabilized for 

 

Fig. 9 Different oxidation states of iron in various cyclic tetra(NHC) complexes. 
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characterization or even be isolated. On the other hand if axial ligands with strong electron 

accepting properties such as isonitriles (CNR) or nitrosyls (NO) are applied, a rarely observed 

oxidation state of iron +I can be found.56 

Although there are several synthezic routes known from literature for the preparation of 

iron NHC complexes in general17 only three of them were successfully applied in the 

formation of cyclic tetra(NHC) iron compounds (Scheme 2). Even more, only two of them 

have been proven to provide the desired complexes in good yields. The first method (H),  

 

Scheme 2: Three different routes (H-J) applied for the synthesis of cyclic tetra(NHC) iron complexes. 

known for twenty years and first applied by Fehlhammer,66 includes the in situ generation of 

free NHC from the respective imidazolium salt, followed by addition of a suitable metal 

precursor. However, the reported yields for this synthetic route are only moderate (<25%),32 

but can be applied for every kind of metal. The second synthetic route (I) - the 

transmetallation of a Ag(I) carbenes prepared from Ag2O and the respective imidazolium salt 

- became the most common approach for the synthesis of any kind of NHC metal complex, 

since it was first reported by Lin in 1998.67,68 Even though the preparation of cyclic 

tetra(NHC) Ag(I) complexes can sometimes be challenging, due to Ag(I) mostly featuring 

linear coordination, resulting in complex polynuclear structures.51,57,59 However, the 

transmetallation to the respective iron compounds as well as to most other metalls proceeds 

relatively smooth and in high yields (40-93%).51 This can be attributed to the high 

thermodynamic driving force provided by the formation of insoluble Ag(I) halides and their 

simple separation from the reaction product by filtration. Especially for smaller sized (16- 

and 18-membered) cyclic tetra(NHC) ligands the use of iron bis(trimethylsilyl)amide 
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([Fe{N(SiMe3)2}2]) is preferred.21,69 Its first usage as a metal precursor was reported in 2004 

by Danopoulos and co-workers.70 Iron bis(trimethylsilyl)amide was introduced as an iron(II) 

precursor bearing two equiv. of internal base for deprotonation of the imidazolium salts, 

thus making it perfectly suitable for the synthesis of halide-free iron(II) complexes with two 

NHC ligands. A main drawback of [Fe{N(SiMe3)2}2] is its high sensitivity to air and moisture, 

making both preparation and transformation of this compound extremely demanding. 

However, the reactions usually proceed cleanly and with high yields, as the resulting amine 

can be removed in vacuo. Therefore, this synthetic route has become the preferred path to 

access Fe(II) NHC complexes in recent years.17 Using two equivalents has proven to provide 

moderate to very high yield (30-90%) for cyclic tetra(NHC) iron complexes. The resulting 

byproduct [Fe(MeCN)6]2+ 2X can be easily separated by filtration over silica. However, this 

protocol is limited to acetonitrile (MeCN) as the solvent of choice. Not only their relatively 

straightforward accessibility made cyclic tetra(NHC) iron complexes and NHC iron complexes 

in general popular target molecules, but also their diverse reactivity, and their possible 

catalytic applications. Both will be discussed in further detail in the following section. 
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1.5. Reactivity and Catalytic Applications of Cyclic Tetra(NHC) Transition Metal 

Complexes 

 

While most cyclic tetra(NHC) transition metal complexes have only been investigated from a 

structural point of view, the reactivity of five of them, namely Co/Ni-L1, Fe-L4H, Fe-L4-Ph 

and Fe-L6 are discussed in greater detail (Figure 10). This was done by the three groups of 

Murphy, Jenkins and Meyer, each of them performing pioneering work on this rather new 

topic of organometallic chemistry. Although no iron complex of L1 is known up to date, as 

the cyclic tetra(NHC) ligand with the first report of the reactivity of its Co(II)- und Ni(II)-

complexes, both closely related to iron, it may not miss on this list. In the following, all five 

of them, their reactivity and catalytic activity are described in more detail. 

 

Fig. 10 Cyclic tetra(NHC) iron complexes for which reactivity has been investigated (M-L1, Fe-L4H, Fe-

L4Ph and Fe-L6). 

The electronic properties of Co(II)-L1 were investigated by cyclic voltammetry. This revealed 

that its reduced Co(I)-L1 state is reversibly formed at a potential of -1.15 V in DMF. Its Co(III) 

state, however, is only and irreversible achievable at + 2.00 V. These are very unusual 

results, sice Co(II) normally tends to easily undergo oxidation to Co(III), especially if 

coordinated by strong ligands (ls d6 strongly favoured over hs d7!). A possible reason for this 

abnormal behaviour is the crown like shape of L1 and the tetrahedral geometry of the Co(II) 

complex. For an easy oxidation an octahedral geometry must be accessible, as the strongly 

electron donoating character of the NHC ligands should favour oxidation of Co(II). Cobalt(III) 

complexes highly favour octahedral geometry, and the ligand conformation is such that no 

facile rearrangement to such a geometry is possible.43 The reduction potential of -1.15 V 

made the respective Co(I)-L1 – generated in situ from Na/Hg in DMF – a suitable candidate 

for the consecutive reduction, cyclisation and isomerisation of aryl iodides (Scheme 3).71 
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Scheme 3: Proposed catalytic cycle of the cyclisation of aryl iodides using Co(I/II)-L1 as a 

reagent/catalyst. 

However, the initially desired isolation of indoles was not possible or, if at all, only in low 

yields, resulting from the difficulty to oxidize Co(II)-L1, which was unable to trap radical K. 

The fromation of indolines, on the other hand was performed very well, especially if the 

H-radical donor 1,4-cyclohexadiene (CHD) was added. Even more challenging subtrates such 

as aryl bromides and chlorides could be transformed in moderate to high yields. If the 

formation of the Co(I)-species was not induced by Na/Hg, but electrochemically, the reaction 

could be performed catalytically in Co-L1 for the case of aryl iodides. Overall, this first 

reported (catalytic) application of a cyclic tetra(NHC) transition metal complex paved the 

way for more advanced and selective catalytic processes in the following years. Next in line 

was Ni(II)-L1 and its application as a reducing reagent for challenging organic substrates.44 In 

contrast to its Co(II) counterpart, this complex showed a square planar coordination of the 

metal cation. Treated with Na/Hg, a presumable Ni(0)-species is formed being able to reduce 

I2 in an equimolar fashion. DFT calculations, however, reveal a ligand centered nature of the 

HOMO in the reduced species, thus Ni(0)-L1 may best be viewed as a ligand dianion. This 

shows the non-innocence of the macrocyclic tetra(NHC) ligand in this case, which is rarely 

known for NHC ligands.72,73,74 Due to the strong reduction potential of Ni(0)-L1 at -2.4 V (no 

Ni(III)-L1 was detected up to +2.5 V), it was applied as a reagent for reductions of 

challenging compounds such as the reductive coupling of aromatic aldehydes, reductive 

cleavage of N-aryl bonds and the reduction of aromatic rings (Birch Reduction) (Scheme 4). 

While the reductive coupling of aldehydes L is not extremely challenging, it has to be 

mentioned that the (d,l)-isomer of the corresponding pinacol products was formed 

exclusively. 
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Scheme 4: A selection of organic substrates reduced by Ni(0)-L1. 

The high selectivity stands in contrast with other Ni-based reductions of ketones and 

aldehydes, where mixtures of pinacol and alcohol products are seen.75,76 The reductive 

cleavage of the N-aryl bonds M was performed in excellent yields (95-99%) and high 

selectivity. The reduction of aromatic rings N, usually involving alkali metals in liquid 

ammonia,77 was also performed in good yields (54-85%) and mild conditions (1h, r.t.). Again, 

this shows the high importance of ligand design and the immense impact of noninnocent 

ligands on the reactivity of their coordinated metal. Both Co-L1 and Ni-L1 are examples for 

the destabilisation of lower oxidation states (Co(I), Ni(0)) evoked by the strong donation of 

electron density to the metal center, but for sterical reasons no higher oxidation states could 

be achieved in those cases. In the following reports about the cyclic tetra(NHC) iron 

complexes (Fe-L4H, Fe-L4Ph and Fe-L6) we will see that in their case, the full potential of this 

ligand type lies in the stabilisation of the higher oxidation states of iron (III/IV).  

The first tetra(NHC) iron complex (Fe-L4Ph) used as a catalyst was reported by Jenkins in 

2011.22 During his first investigations he proposed an iron(IV) imide O and proved its 

existence during the catalytic cycle by mass spectroscopy (Scheme 5). In a subsequent work 

published in 2014,23 he had a closer look at the mechanistic details of the reaction and 

revealed that an iron(IV) tetrazene complex P was formed as an intermediate in the catalytic 

aziridination reaction. Even more surprisingly, the tetrazene was also capable of yielding 

4,4-dimethylazobenzene Q when heated, which is the first reported metal assisted 

formation of this type of compound.  
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Scheme 5: Proposed catalytic cycle of the catalytic aziridination of olefins using Fe-L4Ph as a catalyst 

(O). Alternative reaction pathway over (P) and catalytic formation of 4,4-dimethylazobenzene (Q) - if 

no olefin substrate is available - are also depicted. 

To sum up the reactivity of Fe-L4Ph with a broad range of donor- and acceptor-substituted 

aryl azides, one can say that even supposedly straightforward reactions - more often than 

not - reveal alternative reaction pathways, if one is willing to take them into consideration.  

In 2016, Jenkins reported a second-generation iron aziridination catalyst Fe-L6, featuring a 

dianionic cyclic tetra(NHC) ligand, with even higher activity.32 This complex has a unique 

structure, exhibiting an iron(II) center with an unusual square planar coordination geometry 

lacking any additional axial ligands. The result of a square planar - formally counting 14 VE - 

iron(II) tetracarbene, whose highly unsaturated structure is even retained in coordinating 

solvents such as acetonitrile supports two assumptions: Firstly the dianionic cyclic 

tetra(NHC) ligand L6 significantly exceeds its neutral counterparts in terms of donor capacity. 

Secondly the two vacant coordination sites make a high catalytic activity very likely, which 

was shown later on. Not only from a structural point of view is Fe-L6 extraordinary, its 

electronic properties are also unique. In contrast to any other known tetra(NHC) iron(II) 

complex it displays a paramagnetic electronic ground state with two unpaired electrons 

(S = 1). In addition, while other iron(II) tetra(NHC) are relatively weak reducing agents, Fe-L6 

exhibits an iron(II/III) potential of -0.95 V. This is more than 1.1 V lower than for Fe-L4Ph, 

making it a strong reducing agent. The – thus far completely unknown - reasons for its 

unique electronic behaviour might be the key for a deeper understanding of this standalone 

tetra(NHC) iron complex. After discussing the structural and electronic features of Fe-L4Ph 

and Fe-L6, we will take a look at their catalytic performances. While Fe-L4Ph is able to 
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catalyze the transformation of moderately electron rich aromatic azides (R) to aziridines (0.1 

mol-% loading, 90°C, 18 h) in moderate to excellent yields (20-97 %), Fe-L6 can also convert 

aliphatic azides (S) (1 mol-% loading, 90°C, 18 h) and very electron rich aromatic (T) azides in 

good to excellent yields (47-95 %) (Scheme 6). Even more surprisingly, functionalized 

aliphatic azides (U) can alos be converted by Fe-L6, still in moderate to good yields 

(33-50 %). In addition, the intramolecular aziridination to 5- and 6-membered heterocycles 

can be catalysed (V), which makes Fe-L6 unmatched considering both activity and variability 

with respect to the range of possible substrates. 

 

Scheme 6. Selection of challenging catalytic aziridination reactions of olefins performed by using 

Fe-L4Ph or Fe-L6 as a catalyst. 

Overall the work reported by Jenkins is a huge step in the field of catalytic aziridination of 

olefins, because for the first time, Fe-L4Ph and to an even higher degree, Fe-L6 enabled 

simple access to the catalytic formation of electron rich aromatic and aliphatic azides. 

Previous reaction protocols included costly and difficult multistep reactions, if they could be 

achieved at all.78,79,80 

In 2013, Meyer reported the synthesis and characterization of another cyclic tetra(NHC) 

iron(II) complex (Fe-L4H) utilizing a ligand system previously reported by Jenkins in 2010.21,49 

Although no catalytic application of Fe-L4H has been reported up to date, a very thourough 
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investigations of its reactivity towards oxidants, especially molecular oxygen (O2), nitric oxide 

(NO) and even sulfur (S8), is reported.54,55,56 In his first publication on this topic in 2013, the 

crystallographic characterization of an iron(IV) oxo species (W) was reported. Being the first 

iron(IV) oxo species - bearing a cyclic terta(NHC) ligand - ever isolated, a number of 

interesting properties are described (Scheme 7). Its synthesis was only successful with a 

special iodosylbenzene derivative (X) at -40 °C and could not be achieved by either H2O2 or 

simple iodosylbenzene. The green iron(IV) oxo species is relatively stable in acetonitrile 

solution, exhibiting a half-life of about five hours at room temperature and almost indefinite 

stability at -40 °C. It is noteworthy that this high kinetic stability might be favoured by 

secondary interactions – namely hydrogen bonds – from the backbone of the cyclic 

tetra(NHC) ligand. Besides SQUID measurements the complex was also characterized by 

advanced Mössbauer spectroscopy, revealing an almost linear correlation between the 

oxidation state of the iron center and the respective isomer shift (-0.19 mm s-1), when 

compared to the initial iron(II) compound Fe-L4H and its iron(III) dimer (Y) formed with 

oxygen. The iron(III) oxide dimer - formed from oxygen and Fe-L4H in acetonitrile at room  

 

Scheme 7. Formation of iron(IV) oxo species (W) by iodosylbenzene (X) from Fe-L4H and formation of 

dimer (Y) by both oxygen or by heating of W. 

temperature - is another interesting and rare ls d5 iron compound. Unfortunatley no further 

reactivity of Y is reported, it potentially being a capable oxidant. In another publication from 

2015, Meyer reported the formation of a disulfide linked iron(III) dimer (Z), rather similar to 
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Y, which could be prepared by stirring a suspension of complex Fe-L4H with freshly 

sublimated sulfur in THF. The formed complex Z is an analogue for [2Fe−2S]-clusters 

naturally occurring in a number of metalloproteins.81 Interestingly Z is not stable in more 

polar solvent such as acetonitrile or acetone, because in those solvents the equilibrium of 

the reaction is shifted towards Fe-L4H and sulfur. Z is also sensitive to oxygen, which 

smoothly transforms it into complex Y and collodial sulfur (Scheme 8). Desipte the labile 

character of the Fe-S bond Mössbauer spectra and DFT calculations confirm the oxidation 

state of the iron centers to be +III and consequently the one of sulfur is –I. 

 

Scheme 8. Formation of iron(III) disulfide species (Z) from sulfur and Fe-L4H. Formation of dimer Y 

and sulfur upon contact of Z and oxygen. 

To conclude, this is an interesting example for the progress made in biomimetic chemistry, 

being aware of the essential role of iron in countless biological processes and not least in our 

very own existence. 

The reactivity of Fe-L4H and another biologically active small molecule, NO,82 was 

investigated by Meyer in 2015 and 2016.54,56 He was able to isolate and fully characterize the 

full series of {FeNO}x (x = 6, 7, 8) complexes and derive a consistent picture of the electronic 

structure of these unique organometallic variants of the bioinorganic {FeNO}x functional 

unit. For the preparation of the blue {FeNO}7 complex (A1), Fe-L4H was treated with either 

gaseous NO or 1 equiv. of trityl S-nitrosothiol (B1) in acetonitrile at room temperature. 

According to the unusually high νN−O absorption at 1742 cm-1, the almost linear Fe-N-O angle 

of 176.9° and DFT calculations, the complex might be viewed best as a FeI(NO+) compound. 

Consequently, the reduced green {FeNO}8 (C1) complex could be prepared by treating A1 

with the strong reductant CoCp2. This stable, diamagnetic complex is probably best 

described as a Fe0(NO+), because DFT calculations reveal a metal centered reduction. The 

yellow, oxidized {FeNO}6 complex D1 can be prepared by exposing either Fe-L4H or the 

{FeNO}7 complex A1 to an atmosphere of excess NO and molecular oxygen. This leads to a 
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rare example of an octahedrally coordinated non-heme {FeNO}6 complex, bearing an in situ 

generated O-bound nitrito ligand in the second axial position (D1). In agreement with the 

previous compounds the {FeNO}6 complex is best described as an FeII(NO+) complex. This 

also matches the spectroscopic observations that both the reduced {FeNO}8 species D1 and 

the oxidized {FeNO}6 species C1 show very different νN−O absorptions at 1590 cm−1 and 1877 

cm−1. This is in perfect accordance with the assigned oxidation state of the respective iron 

centers (Scheme 9). 

 

Scheme 9. Formation of {FeNO}7 complex A1 from Fe-L4H via NO or trityl S-nitrosothiol B1 and further 

preparation of the oxidized/reduced derivatives C1/D1 by using either NO/O2 or CoCp2. 

Since much of the work presented in chapter 3 was performed simultaneously to the work 

reported by Meyer, inspirations were taken from one another. Also a cooperation with the 

Meyer group is reported herein (see 3.6). However, desipte the high structural similarity of 

the cyclic terta(NHC) iron complexes Fe-L1H and 1, many differences regarding the reactivity 

of those closely related systems were revealed in the publications central to this 

dissertation. 
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2. Objective 

 

Taking into consideration that iron is the most abundant and cheap transition metal in 

earth’s crust and is widley used by nature supporting countless biological processes, it is a 

reasonable choice to further explore its nature for future applications. Taking further into 

account that its heavier homologues (Ru/Os) and especially its neighbours to the right in the 

periodic table (Co, Rh, Ir; Ni, Pd, Pt), are known foremost for their catalytic activity, it seems 

even more true. 

In particular, NHC complexes of iron show a high potential for enabling new catalytic 

pathways and applications, combining the unique traits of both iron and NHCs. Taking nature 

as a model, especially cyclic tetra(NHC) iron complexes, structurally and electronically closely 

related to naturally occuring “heme”, might be a promising way to go (Scheme 11). 

 

Fig. 11 Strong structural resemblance between heme and 1 – the central complex of this thesis – the 

structure of the latter emerging from the former by “simply” changing the “CNC”-motive of pyrrole 

against the “NCN”-motive of NHCs. 

The investigations reported in this thesis were performed to broaden the scope and the 

understanding of biomimetic iron compounds and pave the way for future research and 

applications.  

All investigations described here are part of a collaboration of the Technische Universität 

München (TUM) with the King Abdullah University of Science and Technology (KAUST), Saudi 

Arabia, within the Catalytic oxidation of light hydrocarbons project with Prof. Jean-Marie 

Basset acting as the principal investigator at KAUST. 
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3. Paper Discussions 

3.1. Synthesis and Characterization of an Iron Complex Bearing a Cyclic Tetra-N-

heterocyclic Carbene Ligand: An Artificial Heme Analogue? 

 

In this first publication the synthesis of bioinspired cyclic tetra(NHC) Iron(II) complex 1 is 

presented. Also included is an alternative halide-free synthesis of its ligand precursor L0, a 

macrocyclic 16 membered tetraimidazolium salt. Furthermore the reactivity of 1 with a 

variety of small molecules such as dimethylsulfoxide (DMSO), nitric monoxide (NO) and 

carbon monoxide (CO) is explored in depth. 

The crystal structure depicted below shows the structure of complex 1 (Figure 12). The cyclic 

tetra(NHC) ligand coordinates the iron(II) center in an almost ideally square planar fashion 

and the octahedral coordination geometry is completed by two axial acetonitrile ligands. 

 

Fig. 12 ORTEP-style drawing of the cationic fragment of compound 1. Hydrogen atoms and two PF6
− 

anions are omitted for clarity and thermal ellipsoids are shown at a 50% probability level. Selected 

bond lengths (Å) and angles (°): Fe1−C1: 1.912(3), Fe1−C5: 1.904(3); Fe1−N9: 1.930(1), Fe1−N10: 

1.933(1), N9−C17: 1.140(1), N10−C19: 1.133(1), C1−Fe1−C5: 90.31(2), N9−Fe1−N10: 177.08(3), 

Fe1−N9−C17: 173.25(3), Fe1−N10−C19: 177.50(4). 

 

1H-NMR experiments reveal a fast inversion of the saddle shaped ligand so that 1 appears to 

have a symmetry of D4h. In addition they show the labile nature of the axial acetonitrile 

ligands, which readily exchange even at low temperatures. This finding is utilized for the 

straightforward synthesis of the corresponding DMSO, CO and NO complexes 5, 6 and 7. The 

aforementioned flexible nature of the ligand is confirmed by the crystal structures of these 

complexes, all exhibiting different conformations: Almost planar for 5, saddle shaped for 6 
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and ruffled for 7 (Figure 13). This clearly shows the strong influence of the axial ligands in 

this complexes on both the conformation of the ligand and the coordination geometry of the 

iron center. 

 

Fig. 13 ORTEP-style drawing of the cationic fragment of compounds 5-7. Hydrogen atoms and PF6
− 

anions are omitted for clarity and thermal ellipsoids are shown at a 50% probability level. Selected 

bond lengths (Å) and angles (°): 5: Fe1−C1 1.936(3), Fe1−C5 1.938(3), Fe1−S1 2.205(1), S1−O1 

1.479(1), C1−Fe1−C5 90.41(2), 6: Fe1−C1 1.915(3), Fe1−C5 1.913(3), Fe1−C17 1.826(1), C17−O1 

1.127(1), Fe1−C18 1.815(1), C18−O2 1.128(1), C1−Fe1−C5 89.27(10), C1−Fe1−C13 90.21(10), 

Fe1−C18−O2 177.39(3), Fe1−C17−O1 173.14(3); C18−Fe1−C17 177.11(2) 7: Fe1−C1 1.950(3), Fe1−C5 

1.952(3), Fe1−N9 1.673(2), N9−O1 1.159(3), C1−Fe1−C5 86.77(10), Fe1−N9−O1 172.13(10). 

Electrochemical investigations of all the resulting iron(II) complexes revealed a strong 

influence of the coodinatiing ligands on the electronic properties of the complexes. Despite 

all - except 7 - showing a reversible iron(II/III) redox couple, their potential is strongly 

dependend on the respective ligand. While the redox potential of 1 is at 0.15 V those of 5 

and 6 are significantly altered to 0.74 V and 1.25 V, respectively. However, the {FeNO}7 

complex 7 can not be easily oxidized, most probably due to the strength of the Fe-NO bond, 

but it can be reduced to the respective {FeNO}8 compound at -1.06 V. This work paved the 

way for a deeper understanding of the synthesis and reactivity of 1 in particular and for 

cyclic tetra(NHC) iron complexes in general. This knowledge was the basis for more 

elaborate applications such as the utilization of 1 in epoxidation catalysis or the bonding of 

molecular oxygen, both described in the following sections. 
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3.2. Binding of Molecular Oxygen by an Artificial Heme Analogue: Investigation on the 

Formation of an Fe-Tetracarbene Superoxo Complex 

 

This second publication - building up on the investigations reported in section 3.1 - focuses 

on the reactivity of 1 with molecular oxygen. Divergent oxidation behavior of 1 is observed 

depending on the choice of solvent (acetonitrile or acetone). In the first case, exposure to 

molecular oxygen leads to an oxygen free iron(III) complex 2, whereas in the latter case an 

oxide-bridged iron(III) dimer 4 is formed. In acetone, an iron(III)-superoxide can be trapped, 

isolated and characterized as an intermediate at low temperatures. It is shown that the 

oxidation of the iron(II) complex in both solvents is a reversible process, thus 1 can be easily 

regenerated from both 2 and 4 by a number of organic and inorganic reducing agents.  

 

As depicted in scheme 10, in acetonitrile an one electron oxidation of 1 is observed resulting 

in der corresponding iron(III) complex 2, which was first reported by independent oxygen 

free experiments described in section 3.3. Despite being relatively similar in regard to 

structure and polarity, in acetone an oxide linked Fe(III)OFe(III) dimer (4)can be isolated in 

good yields, precipitating as a dark blue powder from the reaction mixture (Scheme 10).  

 
Scheme 10: Reactivity of 1 with molecular oxygen in acetonitrile/acetone. (left) DFT-derived structure 

of the cationic fragment [Fe(O2)CCCC]2+ of 3. Selected calculated bond lengths (Å) and angles (°): Fe1–

C1: 1.966, Fe1–C5: 1.956, Fe1–O1: 1.883, O1–O1*: 1.369, O1–H8: 2.426, C1–Fe1–C5: 87.62 C5-Fe1–

C9: 89.73, O1–Fe–O1*: 42.63, C8–H8–O1: 105.79. (right) 

 

However, at low temperatures a defined intermediate in the transformation of 1 into 4 can 

be trapped and isolated. This extremely sensitive reddish orange compound 3 was 

characterized by various analytical methods such as 1H-NMR, UV/Vis, EPR spin trapping and 

different reactivity studies including kinetics of its formation and decay. All of those 
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experiments along with DFT calculations confirm 3 being an paramagnetically coupled 

iron(III) side on superoxo compound. Unfortunatly, due to its high sensitivity no X-ray 

structure could be obtained, but the calculated structure matches perfectly with those 

reported for similar compounds (Scheme 10). Being diamagnetic, the formation and decay of 

3 could be monitored by 1H NMR showing a smooth reaction of 1 to 3 at -40°C. and, upon 

warming, a subsequent reaction of 3 to 4 (Scheme 11). The same reaction was observed 

when starting with 2 and KO2, unambiguously proving the superoxidic nature of 

intermediate 3.  

   
Scheme 11: Formation of 3 and subsequent conversion to 4 from both 1 and O2 and 2 and KO2. (left) 

ORTEP-style drawing of the cationic fragment of O[Fe(III)CCCC]2
4+ of 4. Hydrogen atoms and PF6

− 

anions are omitted for clarity and thermal ellipsoids are shown at a 50% probability level. Selected 

bond lengths (Å) and angles (°): Fe1–C1: 1.948(4), Fe1–C5: 1.941(1), Fe1–C9: 1.943(4), Fe1–C13: 

1.966(4), Fe1–O1: 1.7322(7), C1–Fe1–C5: 87.28(16) C5–Fe1–C9: 87.84(17), C9–Fe1–C13: 87.20(17), 

C1–Fe1–N13: 86.92(16), C1–Fe1–O1: 101.55(16), C5–Fe1–O1: 100.80(12), C9–Fe1–O1: 102.30(16), 

C13–Fe1–O1: 105.47(12), Fe1–O1–Fe1a: 162.7(2). (right) 

 

The stable product of both reactions, 4 could be easily isolated in high purity and good yields 

due to its insolubility in acetone. Its dual core iron(III) structure linked by an oxide was 

revealed by X-ray crystallography (Scheme 11). Reactivity studies revealed 4 being a capable 

oxidizing agent, smoothly transforming PPh3 into OPPh3 under regeneration of starting 

compound 1. The utilization of this high oxophilicity in catalysis is subject of the third 

pulbication. 
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3.3. Fighting Fenton Chemistry: A Highly Active Iron(III) Tetracarbene Complex in 

Epoxidation Catalysis 

 

This third publication around 1 focuses - besides the preparation and characterization of a 

rare example of a stable iron(III) NHC complex (Scheme 12) - on the extraordinary catalytic 

activity of complex 2 in terms of epoxidation of unfunctionalized olefins: Activities up to 

183,000 turnovers per hour at room temperature and turnover numbers of up to 4300 

at -30°C were reported for the most active iron(III) system. In addition, significant negative 

influence of Fenton chemistry in the case of the iron(II) complex and the impact of various 

reaction parameters (water content, loading, temperature and various oxidants) were 

investigated. Complex 2 was prepared from 1 by using [Th][PF6] as a one electron oxidant. 2 

was characterized by means of single-crystal XRD, UV/Vis spectroscopy, cyclic voltammetry, 

ESI-MS, and elemental analysis, which confirmed its purity and bulk composition.  

 

Scheme 12: Synthesis of iron(III) complex 2 by reacting thianthrenyl hexafluorophosphate as one 

electron oxidant with iron(II) complex 1. 

Both complexes 1 and 2 are examined with respect to selectivity and epoxide yield formed 

from cis-cyclooctene. In addition, they are compared to a previously reported bis(NHC) 

iron(II) complex. As shown in table 1 the activity of tetra(NHC) complexes exceeds that of the 

bis(NHC) complexes by far. They do not only deliver quantitative yield and perfect 

selectivities in about ten seconds, but can also be used at very low catalyst loadings of below 

0.5 mol%. Especially at low concentrations (<0.5%) 2 shows a higher activity than 1. This may 

be attributed to Fenton type deactivation processes becoming more relevant at lower 

concentrations. Thus, the formation of 2 from 1 as a first step in the catalytic cycle is 

indicated (Table 1). The evaluation of different reaction parameter revealed that low 

temperatures (-30°C) and high concentrated H2O2 (50%) as oxidant are favourable for the 

stability of 1 and 2.  
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Table 1. Performance of iron carbene complexes in epoxidation of cis-cyclooctene. 

rel. cat. conc. [mol %] Epoxide yield (selectivity) [%] 

[FeNCCN
Me

](PF6)2
a 

[Fe
II
cCCCC](PF6)2 (1) [Fe

III
cCCCC](PF6)3 (2) 

2.0 92 (˃99)  100 (˃99) 100 (˃99) 

1.0 66 (˃99)  100 (˃99) 100 (˃99) 

0.5 – 99 (˃99) 100 (˃99) 

0.25 – 82 (˃99) 96 (˃99) 

0.1 4 (˃99) 37 (˃99) 55 (˃99) 

Reaction conditions: Cis-cyclooctene (269 µmol, 100 mol %), H2O2 (aq. 50%, 403 µmol, 150 mol %), 

solvent MeCN, t = 5min, T = 25°C. Yields and selectivities were determined by GC/FID analysis. Reactions 

without catalyst did not yield any epoxide. 

 

Although the rate of the reaction is lowered, quantitative yield and selectivity can be achieved 

in still 10 min with a catalyst loading of 0.05 mol% (Figure 14). Further an almost linear relation 

between yield and catalyst loading could be observed under these reaction conditions. Kinetic 

measurements indicate an overall order of 2 for both 1 and 2. Nevertheless, 1 shows a 

significant initiation phase, while 2, being already oxidized to iron(III), does not.  

 

Fig. 14 Kinetic experiments at low temperatures for the epoxidation of cis-cyclooctene using 0.05 

mol% of 2 as catalyst in a solvent mixture of MeCN/methylene chloride (1:1). (left) Dependency of 

yield after 5 and 60 min on the catalyst concentration of 2. (right) 
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3.4. NHC Versus Pyridine: How "Teeth" Change the Redox Behavior of Iron(II) Complexes 

 

This fourth publication is divided into two parts with different focuses. The first one is 

centered around a systematic approach towards the synthesis of non cyclic tetradentate 

ligands, as well as the synthesis and characterization of their respective iron(II) complexes. 

The second part focuses on the electrochemical investigation of the various iron(II/III) redox 

potentials of those and comparable iron complexes, including complexes 1/2 (Figure 15). 

 

Fig. 15 Selection of varios tetradentate NHC iron(II) complexes bearing 1 - 4 NHC moieties reported in 

3.4 (left and right) and their different redox potentials depending on the number of coordinated NHCs 

using Fc as a reference (middle). 

The synthetic section gives access to a number of previously unreported imidazolium salts 

and iron(II) carbenes and sheds light on conditions met for tetradentate pyridine NHC 

ligands to coordinate either in a square planar or a saw horse like fashion. All new complexes 

are fully characterized by 1H/13C-NMR, single-crystal XRD, cyclic voltammetry, ESI-MS, and 

elemental analysis.  

The electrochemical evaluation of these ten compounds reveals a linear relationship 

between the number of coordinated NHCs and the redox potential of the corresponding 

complexes (Figure 16). This insight might be useful for future catalytic applications, thus 

allowing fine-tuning of the electrochemical properties. Further it clarifies the strong impact 

of NHCs on the electronic situation at the iron(II) center, which is much larger than those of 

the pyridine.  
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Fig. 16 Average E1/2  plotted against the number of  carbene donors. A linear relation for the 

compared sytems C1 to C10 is shown. Error bars indicate standard deviation. 

One of the complexes, C4, shows an especially interesting redox behaviour: Upon 

oxidation/reduction not only its overall charge, but also its structure changes (Figure 17). If 

oxidized at a potential of 0.56 V, the former 3-coordinated bis(NHC) iron(II) complex is 

subjected to a conformational change. The non-coordinating pyridine unit switches places 

with one acetonitrile: Whether it is an axial or an equatorial one is uncertain, but due to 

steric reasons, an exchange on the axial position seems more likely. However, this change is 

completely reversible and the 4-form switches back to its former 3-form upon reduction at 

0.31 V. This strongly suggests that the conformational change is driven by the enhanced 

lewis acidity of the iron(III) center, since pyridine is a better donor than acetonitrile. 

 

Fig. 17 Structural transformations during cyclic voltammetry of C4 at a low scan rate of 100 mV/s. 

Overall this work provided deeper insight into and understanding of both steric and 

electronic influences on the structure of iron(II) NHC complexes. 
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3.5. Formation of Highly-Strained N-Heterocycles via Decomposition of Iron N-

Heterocyclic Carbene Complexes: The Value of Labile Fe-C Bonds 

 

The utilization of the relative instability of open-chain iron(III) NHCs for the formation of 

highly strained annulated 2,2’-bisimdazoles by reductive elimination is the central point of 

this work. It is demonstrated that by this method highly strained systems such as 1Ox could 

be synthesized, which are not accessible via established synthetic methods. Furthermore, 

some of the resulting highly strained 2,2’-bisimdazoles were applied in the synthesis of Ni(II) 

complexes by oxidative addition to Ni(0) precursors. 

The annulated 2,2’-bisimidazoles are obtained via the intermediately formed iron(III) 

species. Unlike its cyclic counterparts (e.g. 2), acyclic iron(III) complex of 1Fe is not stable and 

reacts to soluble iron(II) salts by reductive elimination. Using this approach formerly 

inaccessible highly strained systems like 1Ox can be synthesized (Scheme 13). 

Scheme 13: Syntheses of annulated 2,2’-bisimidazolium salts 1Ox and 2Ox by one-electron oxidation of 

1Fe and 2Fe, respectively. Oxidation of 3Fe did not yield 3Ox. Th+: thianthrene cation radical. 

The interesting redox properties of the resulting annulated compounds are investigated 

using cyclic voltammetry, showing a significant influence of the stability of reduced species 

of ring size as well as substitution pattern. Further this work delivers the first example of 

NHC ligand formation by oxidative C-C bond activation, showing the fascinating reactivity of 

2,2’-bisimidazolium salts. Thereby these findings significantly increase the understanding of 

the Fe-C bond stability and show that dissociation of NHC ligands can selectively lead to 

useful and defined decomposition products. 
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3.6. Iron Complexes of a Macrocyclic N‑Heterocyclic Carbene/Pyridine Hybrid Ligand 

 

This work is the result of a cooperation with the group of Franc Meyer from the University of 

Göttingen. The synthesis and advanced characterization (Mössbauer spectroscopy, SQUID) 

of a new cyclic FeNCNC complex 8 and its oxidation to the respective stable iron(III) complex 

9 are described. In addition, the bisazido- and monocarbonyl-derivatives of the Fe(II) 

complex are presented (10/11) (Scheme 14). 

 

Scheme 14: Mössbauer spectra of the depicted iron(II) complex 8 and its oxidized counterpart 9. (left) 

Synthesis of [FeL1(MeCN)(CO)](PF6)2 (10) and [FeL1(N3)2] (11). (right) 

SQUID and Mössbauer experiments coherently showed that 9 has a S = 1/2 ground state, 

which corresponds to a ls d5 configuration of the iron(III) atom. However, crystallographic 

analyses of 8 and 9 revealed no significant difference of both structures, which may be 

attributed to the rigid structure of the applied ligand. The macrocyclic ligand in 8 is puckered 

and shows a significant barrier for ring inversion (ΔH⧧ = 15.1 kcal mol−1, and ΔS⧧ = −4.7 

cal mol−1 K−1). The detailed structural and electronic characterization allowed useful 

comparison with the related tetra(NHC) iron(II) complex Fe-L4H (see introduction). In its 

essence this investigation confirmed the supreme donor capacity of NHC vs. pyridine ligands 

and the improved stability of cyclic vs. acyclic iron NHCs. 
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3.7. Iron(II) N-Heterocyclic Carbene Complexes in Catalytic One-Pot Wittig Reactions: 

Mechanistic Insights 

 

An NHC iron(II) complex is used as catalyst for aldehyde olefination with ethyl diazoacetate 

(EDA) in the presence of triphenylphosphine. The reaction leads to high olefin yields with 

very good E-selectivities. The key step of the reaction is the catalytic in situ generation of a 

phosphorus ylide. Based on the experimental observations, a new mechanism for the 

transformation of phosphazine is proposed. 

While the Wittig reaction is long and well known in organic chemisty, there were some 

attempts to perform the reaction catalytically and not stoichiometrically in recent years. Iron 

complexes were reported to form iron(IV) carbenes as key intermediates in the catalytic 

cycle. This work, however, revealed that at least in case of iron(II) biscarbene 1a no carbene, 

but an iron-posphazine complex is involved under catalytic conditions, resulting in the 

catalytic generation of the phosphorus ylide (Scheme 15). The previously reported cyclic 

tetra(NHC) iron(II) complex 1 does actually form a carbene intermediate with diazoacetate,  

 

Scheme 15: Proposed catalytic cycle of the reaction. 

 

but is not an active catalyst for this type of reaction. Thus, the overall reaction can be 

divided into two independent steps: First, the catalytic formation of phosphorus ylide 

followed by second, a Wittig-type conversion of the aldehyde to the respective olefin. The 

overall olefination reaction proceeds with yields of up to 90% and very good E-selectivity (≥ 

94%) at 70 °C. 
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3.8. Facile and Scalable Preparation of 2-Imidazolylpyridines 

 

A novel method for the synthesis of 2-imidazolylpyridines is presented. The reaction of 

2-halopyridines, potassium carbonate, and imidazole at high temperatures under inert gas 

atmosphere leads exclusively to the formation of 2-imidazolylpyridines in high yields. The 

synthesis is scalable, comparatively inexpensive and the products can easily be isolated. 

2-imidazolylpyridines are important feedstocks in a broad range of applications such as 

N-heterocyclic carbene ligands (NHCs) and ionic liquids and serve as organic building blocks 

for pharmaceuticals. The most common method for their preparation is copper catalyzed 

coupling, which is relatively expensive and requires high effort. The presented novel, simple 

and cheap method is metal free and can also applied for multigram scale synthesis (Scheme 

16). It can be applied to a broad range of substrates and even pyridines with weak donor 

substitutents.  

 

Scheme 16: Novel synthesis of 2-imidazolylpyridines. 

Fast and simple aqueous work-up gives good to excellent yields and high purites. Overall, a 

significant progress in the efficient synthesis of 2-imidazolylpyridines is reported in this work. 
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6. Summary and Outlook 
 

The central idea of this thesis was the creation of bioinspired iron NHC complexes and to 

fathom their structure and reactivity. A secondary goal in this project was to employ the 

knowledge gained for the utilization of those compounds in biomimetic catalytic 

applications. Under this premise a broad spectrum of ligands and iron complexes was 

synthesized and underwent a thorough investigation. As an intermediate result of this 

endeavour the novel cyclic tetra(NHC) iron complex 1 was selected for an extensive 

investigation due to its remarkable stability and its close structural relation to the naturally 

occurring heme systems. Like its natural counterpart, the “handcrafted” complex 1 displays a 

high affinity for a large number of biologically important small molecules such as carbon- 

 

Scheme 17: Summary of the key features of complex 1: Synthesis, reactivity and application 

in epoxidation catalysis of olefins. 
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and nitrogen monoxide and sulfoxides as well as molecular oxygen and peroxides, which are 

the fuel and the bane for all higher biological life (Scheme 17). These analogies, supporting 

our previous theoretical considerations, yielded its application the most active epoxidation 

catalyst known to date (TOFs up to 183,000 h-1). Its high activity, however, comes at the cost 

of incompatibility with some functional groups e.g. halides. For unfunctionalized terminal 

and internal olefins 1 shows an outstanding performance concerning both conversion and 

selectivity at simple room temperature conditions. Thus, combined with its relatively cheap 

and straightforward preparation even in a multigram scale, 1 will surely find its use, be it in 

synthetic or even technical applications. For future developments, an endless field of new 

possibilities stands open. Besides the obvious choice of using other transition metals such as 

cobalt, manganese or the “usual suspects” for catalytic applications (Ru, Rh, Pd, Pt,… etc.), 

even if purely focused on iron, manifold structural modifications or new catalytic 

applications come into mind. On the side of structural modifications the exchange of labile 

acetonitrile ligands by further NHCs - free or covalently connected to the tetra(NHC) - could 

further enhance the ligand’s donor capability. First approaches in this direction were already 

undertaken for similar systems, revealing a significant change in complex behaviour. A 

possible variation of the number of NHC moieties embedded in the macrocyclic ring to five, 

six or even eight could lead to interesting new structures, be it mono- or bimetallic 

complexes with even heterobimetallic compounds imaginable (Scheme 18).  

 

Scheme 18: Theoretical concepts for ongoing development of cylic tetra(NHC) ligands and 

their complexes. 

Although the reactivity of 1 towards oxidizing agents is well investigated with reducing 

agents little is known. Suitable acceptor ligands (CO, CNR, etc.) might stabilize lower 

oxidation states (1, (0)?) or stabilize possible hydrides of 1. On the non structural side of 

modifications a further expansion in the scope of catalytic applications come to mind, again 

already known for closely related compounds. The applications of 1 or its derivatives for 
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aziridination, aromatic hydroxylation and even C-H oxidation are easy to comprehend, but 

more exotic possibilities like hydrogenation do not appear inconceivable. 
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