
 Professur für
Thermofluiddynamik

Notes on

Computational
Thermo-Fluid Dynamics

Camilo F. Silva, Ph. D.

Kilian Förner, M. Sc.

Prof. Wolfgang Polifke, Ph. D.

Summer 2016

www.tfd.mw.tum.de

An expert is a man who has made all the mistakes, which can be made,
in a very narrow field.

Niels Bohr (1885-1962).

Contents

1 Introduction 9

1.1 Partial Differential Equations (PDEs) . 10

1.2 Generalities on partial differential equations (PDEs) 12

1.3 Parabolic PDEs . 14

1.4 Hyperbolic PDEs . 15

1.5 Elliptic PDEs . 16

1.6 Boundary conditions . 17

1.6.1 Dirichlet boundary condition . 18

1.6.2 Neumann boundary condition . 18

1.6.3 Robin boundary condition . 18

1.7 Overview of the course . 19

1.8 Exercises . 21

1.8.1 1D convection equation . 21

1.8.2 1D diffusion equation . 23

1.8.3 1D convection diffusion equation . 23

1.8.4 More videos. Now in 2D (Optional) . 24

1.8.5 Useful MATLAB commands . 24

2 Finite Differences 25

2.1 Computational grid . 26

2.2 Deriving FD numerical schemes of arbitrary order 27

5

6 CONTENTS

2.2.1 Taylor series and truncation error . 28

2.2.2 Forward Euler scheme . 28

2.2.3 Centered scheme . 30

2.2.4 Backward Euler scheme . 31

2.2.5 Second order derivatives . 32

2.3 2D steady heat equation . 33

2.3.1 Discretizing the 2D steady heat equation by finite differences 34

2.3.2 Boundary conditions . 36

2.3.3 Assembling the linear system . 37

2.4 Exercises . 38

2.4.1 Useful MATLAB commands . 39

2.4.2 Tips
by Juan Pablo Garcia (ex-student) . 40

3 Finite Volumes 41

3.1 Derivation of algebraic equations from PDE . 42

3.1.1 Applying divergence theorem . 42

3.1.2 Defining cell normals . 44

3.1.3 Applying an integral rule . 45

3.1.4 Applying Green’s theorem . 46

3.2 Exercises Part 1 . 49

3.3 Exercises Part 2 . 50

3.3.1 Useful MATLAB commands . 52

3.3.2 Tips
by Juan Pablo Garcia (ex-student) . 52

3.3.3 Flowchart . 52

4 Unsteady Problems 53

CONTENTS 7

4.1 Explicit time discretization . 55

4.1.1 Von Neumann stability analysis of FE scheme 56

4.2 Implicit time discretization . 62

4.2.1 Von Neumann analysis . 63

4.3 The weighted average or θ-method . 63

4.3.1 Von Neuman Analysis . 64

4.4 Predictor-corrector methods (Runge-Kutta) . 65

4.5 Exercises . 70

5 Sparse Matrices and Linear Solvers 71

5.1 Sparse matrix . 72

5.2 Iterative solvers and preconditioning . 74

5.3 Preconditioned Richardson iteration . 75

5.4 Projection methods . 77

5.5 Exercises . 79

5.5.1 Useful MATLAB commands . 81

5.5.2 Flowchart . 81

6 Green’s functions 82

6.1 Green’s function solution equation for the steady heat equation 83

6.2 Treatment of boundary conditions . 85

6.3 Derivation of the Green’s function for a simple problem 87

6.4 What to integrate? (Warning) . 89

6.5 Green’s functions for a rectangular domain . 90

6.6 Discussion . 92

6.7 Exercises . 92

6.7.1 Useful MATLAB commands . 94

8 CONTENTS

7 Optimization 95

7.1 Statement of the problem . 96

7.2 Formulation and Optimality Condition . 98

7.3 Gradient Descent . 99

7.4 Newton’s Method . 99

7.5 Constrained optimization: the method of Lagrange multipliers 101

7.6 Quasi-1D approximation of a fin . 102

7.7 Exercises: Optimal Cooling Fin Shape . 105

7.7.1 Useful MATLAB commands . 106

7.7.2 Flowchart . 106

8 Finite Element Methods 107

8.1 Weak Form . 108

8.2 Main Idea . 109

8.3 Base Functions . 109

8.4 Test Functions . 111

8.5 Element Matrix . 111

8.6 Boundary conditions . 112

8.7 System Matrix . 113

8.8 Exercises . 115

A Addendum to Finite Volumes 118

A.1 Uniform rectangular grid and Boundary Conditions 118

A.2 Boundary conditions . 121

A.2.1 South . 121

1
Introduction

References

[1] KUZMIN D. A guide to numerical methods for transport equations. Fiedrich-Alexander-Universität,
2010.

[2] POLIFKE, W., AND KOPITZ, J. Wärmeübertragung. Grundlagen, analytische und numerische Methoden.
Pearson Studium, 2005.

Objectives

• Getting introduced to PDEs

• Coding in Matlab analytical solutions of simple convection, diffusion and convection-diffusion
equations.

9

10 Chapter 1: Introduction

Contents
1.1 Partial Differential Equations (PDEs) . 10

1.2 Generalities on partial differential equations (PDEs) 12

1.3 Parabolic PDEs . 14

1.4 Hyperbolic PDEs . 15

1.5 Elliptic PDEs . 16

1.6 Boundary conditions . 17

1.6.1 Dirichlet boundary condition . 18

1.6.2 Neumann boundary condition . 18

1.6.3 Robin boundary condition . 18

1.7 Overview of the course . 19

1.8 Exercises . 21

1.8.1 1D convection equation . 21

1.8.2 1D diffusion equation . 23

1.8.3 1D convection diffusion equation . 23

1.8.4 More videos. Now in 2D (Optional) . 24

1.8.5 Useful MATLAB commands . 24

1.1 Partial Differential Equations (PDEs)

How to model pollutant dispersal in a river, or the evolving distribution of a harmful gas in
a city? How to describe heat conduction in solids or the propagation of sound through the
atmosphere? How to understand the flow of air in the vicinity of an airfoil? A general answer
to these apparently different queries is given by Partial Differential Equations (PDE). Generally,
PDEs are derived from first principles, as for example laws of conservation. We will introduce
now a general but also simple framework to formulate laws of conservation and derive PDEs
from them.

Let φ be the concentration per unit mass of a conserved scalar. Examples of this scalar φ could
be some intrinsic properties of a given substance as, for instance, specific internal energy, spe-
cific enthalpy or specific entropy, among others. A given component of the vector of momen-
tum per unit mass can be also seen as an example of a conserved scalar φ. Now, if we assume
ρ to be the density of the carrier flow, we define w = ρφ. We are refering then to the concentra-
tion of that scalar per unit volume. The whole amount of that scalar within a defined control
volume V is given by

W =
∫

V
w(x, t) dV =

∫
V

ρ(x, t)φ(x, t) dV, (1.1)

1.1 Partial Differential Equations (PDEs) 11

V

n

−→ f

∂V

Figure 1.1: An arbitrary control volume V with boundary ∂V, boundary normal vector n and
flux f

where x = (x, y, z) is a vector describing space and t denotes time. Any variation of the scalar
w(x, t) within the control volume will depend on the rate at which φ enters or leave the domain.
This is generally expressed as a flux f normal to the surface of the control volume as depicted
in Fig. 1.1. This can be mathematically written as

∂

∂t

∫
V

w(x,t)︷ ︸︸ ︷
ρ(x, t)φ(x, t) dV +

∫
∂V

f · n dS = 0. (1.2)

It is also possible that the scalar w(x, t) is produced or extinguished within the control vol-
ume. We define then a source (sink) s(x, t) as a mechanism that produces (annihilates) a given
amount of w(x, t) per unit volume and per unit time. The conservation equation reads

∂

∂t

∫
V

w(x,t)︷ ︸︸ ︷
ρ(x, t)φ(x, t) dV +

∫
∂V

f · n dS =
∫

V
s(x, t) dV. (1.3)

Sources (sinks) are usually placed at the right-hand side (RHS) of the conservation equation.
It is then clear that the amount of w(x, t) in a defined control volume at a given time depends
not only on how much of this quantity is entering and leaving the domain, but also on how
much of this quantity is being produced or consumed inside the domain. Let us now apply the
divergence theorem

∫
∂V

f · n dS =
∫

V
∇ · f dV, (1.4)

where

∇ =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
. (1.5)

Accordingly, Eq. (1.3) becomes

12 Chapter 1: Introduction

∂

∂t

∫
V

ρ(x, t)φ(x, t) dV +
∫

V
∇ · f dV =

∫
V

s(x, t) dV, (1.6)

and reordering

∫
V

[
∂

∂t
ρ(x, t)φ(x, t) +∇ · f − s(x, t)

]
dV = 0 (1.7)

Since these integrals refers to any control volume (the choice of the control volume is arbitrary),
this control volume can be chosen as small as possible (V→ dV) so that the evolution of w(x, t)
is then described by a PDE:

∂

∂t

w(x,t)︷ ︸︸ ︷
ρ(x, t)φ(x, t) +∇ · f = s(x, t) (1.8)

The only idea missing in the analysis is the evaluation of the flux f of w(x, t). A given flux f
is composed by a convective f con and a diffusive part f dif. On the one hand, the convective
contribution of the flux is defined as

f con = v(x, t) w(x, t) (1.9)

i. e. as function of the velocity of convection v, i. e. the velocity of the carrier fluid, in the
direction normal to the surface of the control volume. An illustration of convective flow is
given in Fig. 1.2(a). On the other hand, the diffusive contribution is written as

f dif = −D(x, t) ρ(x, t)∇φ(x, t), (1.10)

which is the simplest but also the most classical form. Principally, it is as a linear function
between the gradient of the concentration of φ and a diffusion coefficientD(x, t). This expression
is known as the Fick’s Law when referring to mass diffusion and as the Fourier’s law when talking
about heat conduction, respectively. An illustration of diffusive flux is given in Fig. 1.2(b).
Note that the diffusion coefficient D(x, t) is accompanied by a negative sign. Using this model,
diffusion occurs from regions of high concentration to regions of low concentration of w.

1.2 Generalities on partial differential equations (PDEs)

After having introduced the generic form of a transport equation (Eq. (1.8)), it is interesting to
perform now a standard classification of the PDEs that are often used in thermo-fluid dynam-

1.2 Generalities on partial differential equations (PDEs) 13

time=1

time=2

time=3

time=1

time=2

time=3

(a) (b)

Figure 1.2: Ilustration of two type of fluxes. (a) convective flux f con
(b) diffusive flux f dif.

ics. Let us write now a standard linear PDE

A
∂2φ(x, t)

∂t2 + B
∂2φ(x, t)

∂t∂x
+ C

∂2φ(x, t)
∂x2 + D

∂φ(x, t)
∂t

+ E
∂φ(x, t)

∂x
+ Fφ(x, t) = G (1.11)

where the coefficients A, B, C, D, E, F, G may either depend on time and/or space or be
constant. Defining now

α = B2 − 4AC (1.12)

it can be shown that, similar to conic sections which are defined by Ax2 + 2Bxt+Cy2 + · · · = 0,
a second order PDE is classified as:

• Elliptic: if α < 0

• Parabolic: if α = 0

• Hyperbolic if α > 0

whereas the PDE is always hyperbolic if A, B and C are zero. The behaviour of analytical
and numerical solutions of these equations depend on how the coefficients (A · · · F) interact
with each other. A ‘best’ numerical method for solving these three types of PDEs does not
exist: a given numerical scheme could be appropriate for solving a given PDE, but would fail
when intending to solve another. In addition, it is important to retain that, depending on how
these coefficients are related to each other, i. e. how a PDE is classified, boundary and/or initial
conditions are applied. Assuming that a given physical problem contains both convective and
diffusive flux, Eq. (1.8) becomes

14 Chapter 1: Introduction

∂

∂t
(ρφ) +∇ · (v ρφ)−∇ · (Dρ∇φ) = s, (1.13)

where the dependency on space and time of all variables is implicitly considered. Equa-
tion (1.13) is a general transport equation and we will referred to it in this course as the convection-
diffusion-reaction (CDR) equation. We point out that the equations of conservation of mass and
energy, in fluid mechanics, may be written as

• Mass conservation: φ = 1. Both diffusive and source terms are equal to zero.

• Energy conservation: φ = ht where ht refer to the total enthalpy of the fluid. s may con-
tain several sources of energy as the heat release coming from combustion, for example.

The momentum equation, in contrast, is a well recognized non-linear PDE and therefore cannot
be classified as previously described. This transport equation is written as

• Momentum conservation: [φ1, φ2, φ3] = v, s = −∇p where v and p are the velocity field
and the pressure field, respectively. Note that ρD∇v is the viscous stress tensor and that
D is associated, in Newtonian fluids, with two scalars known as kinematic viscosity and
bulk viscosity.

1.3 Parabolic PDEs

The general transport equation (Eq. (1.13)) is recognized as a parabolic PDE. Neglecting the
convective flux in particular, Eq. (1.20) becomes

∂

∂t
(ρφ)−∇ · (Dρ∇φ) = s. (1.14)

Replacing φ = cT, Dρc = λ, s = ω̇ and assuming constant density and constant c, Eq. (1.14)
results in

ρc
∂T
∂t
−∇ · (λ∇T) = ω̇, (1.15)

where c, λ, and ω̇ stand for the heat capacity of the medium, the thermal conductivity of the
medium, and a heat release rate source term, respectively. In this case, the diffusion coefficient
D is called thermal diffusivity. Equation (1.15) is known as the heat equation, a fundamental PDE
in this course.

1.4 Hyperbolic PDEs 15

Parabolic equations always need, in addition to boundary conditions, an initial condition, i. e.
an initial distribution of temperature for instance. Moreover, if a physical process is intended
to reach a steady state after a given transient, then the time derivative term is expected to
vanish and, consequently, the solution given by the corresponding elliptic equation (steady
state version) is obtained.

1.4 Hyperbolic PDEs

Equation (1.13) is a general case of a parabolic PDE. In this equation, there are two terms in
competition: the convective flux and the diffusive flux of a given scalar. An interesting case
can be taken from the energy equation where φ = cT, Dρc = λ, s = ω̇. If λ and the convective
velocity field v are constant in time and space, we can write

∂T
∂t

+ v∇ · T −D∇2T =
ω̇

ρc
. (1.16)

When the convective flux, or simply called convection (or sometimes advection), is of several
orders of magnitude larger than the diffusive flux, Eq. (1.16) starts behaving more as an hyper-
bolic equation than as a classical parabolic equation. The ratio of diffusion terms to convective
terms is defined by the Peclet number:

Pe =
v0L0

D0
, (1.17)

where v0, L0, and D0 stand for a reference velocity, a reference length, and a reference diffusion
coefficient, respectively. For significant high Peclet numbers, where v � D, Eq. (1.16) can be
approximated to

∂T
∂t

+ v∇ · T =
ω̇

ρc
. (1.18)

which is a PDE of hyperbolic type. An example of a physical mechanism described by Eq. (1.18)
would be present in a high speed combustion chamber in which a hot spot released by the
turbulent flame is convected downstream at a high velocity. This type of equation, although
it may appear simpler than Eq. (1.16), is indeed more difficult to solve. The reason is that hy-
perbolic conservation laws admit discontinuous solutions!. Sometimes numerical schemes that
aim to solve hyperbolic PDEs introduce a so-called artificial viscosity, i. e. a ficticious diffusion
coefficient in order to smooth solutions and avoid, therefore, too fine meshes in regions where
high gradients, or even discontinuities, of quantities involved are expected.

In a first order hyperbolic PDE, as Eq. (1.18), information travels in the direction of the flow,

16 Chapter 1: Introduction

i. e. ‘downstream’, as time evolves. As a result, this PDE needs only boundary conditions in the
upstream region, i. e. at the inlet of the system. Imposing boundary conditions downstream at
the domain outlet would lead to an ill-posed problem. An example of a second order hyper-
bolic PDE is the so-called wave equation (not shown here). In fluid dynamics, this equation
is obtained by combining mass and momentum equations. This hyperbolic PDE, in contrast
with the first order hyperbolic PDE, needs boundary conditions both at the inlet and the outlet
of the domain since information, i.e. waves, propagates not only forwards but also backwards
as time is evolving. In addition to boundary conditions, hyperbolic PDEs, as in the case for
parabolic PDEs, also require an initial condition.

1.5 Elliptic PDEs

A physical process, after a given transient, may reach a steady state. In such a case, the first
term of Eq. (1.13) vanishes resulting in

∇ · (v ρφ)−∇ · (Dρ∇φ) = s. (1.19)

This equation is classified as elliptic as long as D is defined as strictly positive. Further on, in a
flow at rest v = 0, we write

−∇ · (Dρ∇φ) = s. (1.20)

Assuming now a constant density as well as a constant diffusion coefficient and reordering,
Eq. (1.20) becomes

−∇2φ = s/Dρ. (1.21)

Equation (1.21) is known as the Poisson equation and is very useful in incompressible flows. The
Poisson equation describes the steady state of heat transfer in a uniform medium, as will be
shown in more detail in next chapters. When no source is present, i. e. s = 0, then the Poisson
equations turns into the Laplace equation and reads as

∇2φ = 0. (1.22)

Equations (1.19) to (1.22) are elliptic. All of them model a system in which any perturbation
somewhere within the domain (a sudden change in the position of the source s, a perturbation
on a boundary, etc) is felt immediately all over the whole domain. Accordingly, these equations
require boundary conditions at every border, i. e. restrictions in all frontiers of the system. Table

1.6 Boundary conditions 17

Elliptic ∇ · (v ρφ)−∇ · (Dρ∇φ) = s Steady Convection-Diffusion-Reaction

- ∇ · (Dρ∇φ) = s Steady Diffusion-Reaction

Parabolic ∂
∂t (ρφ) +∇ · (v ρφ)−∇ · (Dρ∇φ) = s Unsteady Convection-Diffusion-Reaction

∂
∂t (ρφ)−∇ · (Dρ∇φ) = s Unsteady Convection-Diffusion-Reaction

Hyperbolic ∂
∂t (ρφ) +∇ · (v ρφ) = s Unsteady Convection-Reaction

∇ · (v ρφ) = s Steady Convection-Reaction

Table 1.1: Summary of PDE’s classification. Reaction is described in all equations as long as

s 6= 0.

1.1 summarizes the classification of the PDEs described in this chapter.

1.6 Boundary conditions

In order to complete the statement of the physical problem, which is modelled through a given
CDR equation, we need to establish Boundary Conditions (BC), if elliptic equations are being
used, or both initial and BC if parabolic or unsteady hyperbolic equations are considered. Let
us consider Ω as a bounded domain with boundaries Γ. These boundaries can be decomposed

Γ = Γ− + Γ+ + Γ0, (1.23)

where Γ−, Γ+, and Γ0 represent inlet, outlet, and walls, respectively. They are defined as

Inlet Γ− = {x ∈ Γ| f · n < 0} (1.24)

Outlet Γ+ = {x ∈ Γ| f · n > 0} (1.25)

Wall Γ0 = {x ∈ Γ| f · n = 0} (1.26)

where n is the unit normal vector pointing outwards of the domain Ω at the point x ∈ Γ, as
shown in Fig. 1.3. Boundary conditions need to be applied to all boundaries if parabolic or
elliptic PDEs are considered. Only Γ− and Γ0 should be accounted for if an hyperbolic PDE of
first order is used. Boundary conditions are normally divided in three types as follows.

18 Chapter 1: Introduction

Ω

Γ+

Γ−

Γ0

n

−→

f

Figure 1.3: An arbitrary domain Ω with boundaries identified as inlets, outlets and walls.

1.6.1 Dirichlet boundary condition

Usually, the scalar w = ρφ is known (or can be imposed relatively easily) at inlet and walls of a
given system. Modeling requires then that w is fixed at a given value. In such situations

w(x, t) = wD(x, t) ∀x ∈ ΓD, (1.27)

where ΓD is the subset of Γ in which Dirichlet BC are applied.

1.6.2 Neumann boundary condition

Neumann BC are imposed generally at the outlet, where the flux of w is known. It follows

f (x, t) · n = g(x, t) ∀x ∈ ΓN , (1.28)

where ΓN is the subset of Γ in which Neumann BC are applied.

1.6.3 Robin boundary condition

Dirichlet and Neumman BC can be combined in a third type of boundaries known as Robin BC.
They are defined as

w(x, t) + f (x, t) · n = 0 ∀x ∈ ΓR, (1.29)

where ΓR is the subset of Γ on which Robin BC are applied.

1.7 Overview of the course 19

1.7 Overview of the course

After visualizing the general structure of a transport equation (Eq. 1.13), it becomes intriguing
to know the different ways in which they are aimed to be solved. Naturally, the first possibility
that is considered involves analytical methods. Some of them rely on separation of variables,
Fourier Series, eigenfunction expansions and Fourier transform techniques, among others. If
a given PDE can be solved analytically, there is probably no reason to look for a numerical
method. Analytical methods are sometimes preferable since they are exact, crystalline (you can
usually look through them) and compact. There are situations though, where implementing an
analytical method can be computationally expensive and maybe not exact. A clear example of
such a situation are the solutions based on series expansions: in theory a solution is exact as
long as a sum includes an infinite number of terms. In addition, analytical solutions are avail-
able only for relatively simple PDEs. This simplicity is related usually to the topology of the
associated domain: lines, rectangles, circles, cuboids, spheres or a given geometry with some
kind of regularity. The definition of ‘simple’ also considers the PDE structure for most of the
cases. A linear PDE with variable coefficients is already too complex to be solved analytically.
Moreover, for non-linear PDEs analytical solutions are very difficult to be obtained.

Due to these restrictions of analytical methods, numerical strategies are introduced. Numerical
methods, in the framework of PDEs, can be divided in three big groups: Finite Differences
(FD), Finite Volumes (FV) and Finite Elements (FEM):

• Finite Differences (Chap. 2) is a method derived from the definition of both the deriva-
tive and the Taylor series. It consists in replacing the differential terms of a PDE by the
corresponding finite difference expressions. Although very powerful, since high order
numerical schemes (very accurate schemes), can be easily derived, it is suitable only for
relatively simple geometries. Problems with complex geometries need mapping strate-
gies (mathematical transforms) to convert the geometry from the physical space to a com-
putational space with suitable coordinates so that the problem becomes tractable with FD
methods. Moreover, some times this method leads to numerical schemes that are not con-
servative.

• Finite Volumes (Chap. 3) is a numerical method widely spread in models describing flu-
ids, i. e. in Computational Fluid Dynamics (CFD). This is due to the corresponding numer-
ical scheme which is based on the conservation law, a fundamental principle in nature.
Another advantage is the facility in which the numerical scheme can be adapted to com-
plex topologies. The main drawback of FV is the relative difficulty that exists to increase
the order of the associated numerical schemes.

• Finite Elements (Chap. 8) is the most spread numerical method in structural mechan-
ics. The main reason for this success is the ability of such schemes to adapt to complex
geometries in an easy way and, sometimes under particular approaches, to account for

20 Chapter 1: Introduction

problems with discontinuous solutions. The principal disadvantage of FEM is its com-
plexity in both scheme derivation and numerical implementation.

Finite differences, finite volumes and finite elements are spatial discretization methods. Ac-
cordingly, they are used either alone when solving elliptic PDEs, or together with temporal
schemes when solving Unsteady problems (Chap. 4).

When a PDE is linear, the corresponding discretization (by any of the three methods above
mentioned) is a linear algebraic system, i.e. a system of the form Ax = b. Here, A, x and
b stand for the system matrix, the vector of unknowns and the source vector, respectively.
Solving this linear system means solving the associated PDE. There is no such a thing as ‘best’
algorithm to solve a linear system. The performace of a numerical algorithm when solving
Ax = b depends principally both on the structure (how the non-zero elements are distributed
within the matrix) and on the size of the matrix A. Consequently, it is fundamental to put some
attention in Sparse Matrices and Linear Solvers (Chap. 5)

As mentioned before, analytical approaches, if available, are sometimes preferable with respect
to numerical methods. At this point it is very useful to introduce Green’s functions (Chap. 6).
Green’s functions build an analytical framework in which a general solution of a given PDE
(for general boundary conditions and source terms) is explicitly constructed as a sum of inte-
gral terms. Green functions are another powerful option to solve PDEs, although it is somehow
restricted to topologies that can be easily described by either cartesian, polar or spherical coor-
dinates.

What is the next step when a system is understood and well described by a physical model?
The next step, at least from an engineering point of view, is to optimize it. Optimization is an
enormous field of research and in this course an introduction to this topic will be given. Some
Optimization techniques (Chap. 7) will be reviewed and applied, in addition to some of the
numerical methods developed all along the course, so that the shape of a fin is optimized to
maximize heat transfer.

1.8 Exercises 21

1.8 Exercises

In this chapter we introduced partial differential equations (PDEs) in the context of transport
equations. We have identified particularly three types of equations in which linear PDEs are
classified: parabolic, hyperbolic or elliptic. Now, we propose to use Matlab as the numerical
tool to write and visualize some analytical solutions that correspond to some specific cases of
these equations.

1.8.1 1D convection equation

The 1D convection equation reads:

∂φ

∂t
+ vx

∂φ

∂x
= 0 (1.30)

Any function φ with argument x− vxt is a solution of this equation. (φ(x, t) = φ(x− vxt)).

Stage 1: Use Matlab symbolic toolbox

We consider the function φ(x) defined as:

φ(x) =


x if 0 < x ≤ 1

(2− x) if 1 < x ≤ 2
0 if 2 < x < L

(1.31)

This function can describe, for example, the distribution of temperature in a fluid at given mo-
ment. This distribution could be observed as an initial condition when solving the convection-
diffusion equation. In order to introduce the information given by this function, it is necessary
to express it as a Fourier sine expansion as

φ(x) ≈ φ̃(x) =
N

∑
m=1

am sin
mπx

L
(1.32)

where N is a number high enough to satisfy a good approximation φ̃(x) (It is recommended
N > 100)1. The period is established as L = 50. The Fourier coefficients am are found by
solving

1Note that Eqs. (1.32), (1.35) and (1.37) are aproximations of the exact solution. The exact solution is obtained
when N = ∞. Here we prefer to stress that such a case is impossible to be achieved in practice and, accordingly, we
do not use equalities.

22 Chapter 1: Introduction

−20 −15 −10 −5 0 5 10 15 20
−1

−0.5

0

0.5

1

space

 !
(x

)

Figure 1.4: The function φ(x) with L = 20 and N = 100.

drawnow

[imind,cm] = rgb2ind(im,8)

if t==0

else

end

imwrite(imind,cm,filename,’gif’,’Loopcount’, inf)

imwrite(imind,cm,filename,’gif’,’W
riteMode’, ’append’, ’Delaytime’, 0)

im=frame2im(fram
e)

frame=getframe(gcf)

Figure 1.5: Commands to generate a video in gif format. Note that these command are in
disorder!

am =
2
L

∫ L

0
φ(x) sin

mπx
L

dx. (1.33)

Use matlab to compute Eq. (1.33) analitically.

Stage 2: Ploting φ̃(x)

• Code the expressions for am according to Eq (1.33) . Subsequently, code and plot the
function φ̃(x) resulting from Eq. (1.32). Try several values of N and see its influence
when estimating φ(x). The function φ̃(x) should look like shown in Fig. 1.4.

Stage 3: Making a movie of convection

• Replace φ̃(x) by φ̃(x− vxt) (note that coefficients am remain the same) for one value of vx

(vx = 1 m/s for example) and several times (ti+1 = ti + ∆t) for small ∆t.

• For each time t plot the function φ̃(x − vxt). In order to create the movie (here in gif
format) use the functions shown in Fig. 1.5.

1.8 Exercises 23

1.8.2 1D diffusion equation

The diffusion equation in a one dimensional domain reads

∂φ

∂t
−D ∂2φ

∂x2 = 0. (1.34)

The solution of this equation, for homogeneous Dirichlet boundary conditions, is written as

φ(x, t) ≈ φ̃(x, t)
N

∑
m=1

ame−D(mπ/L)2t sin
mπx

L
. (1.35)

This solution, which is based on a Fourier series expansion, is a classical way to solve the
diffusion equation mentioned in numerous books. As an example we can refer to chatper 14
in [3].

Stage 4: Making a movie of diffusion

• For each time t plot the function φ̃(x, t). In order to create the movie (here in gif format)
use the functions shown in Fig. 1.5.

1.8.3 1D convection diffusion equation

The convection-diffusion equation for 1D reads:

∂φ

∂t
+ ux

∂φ

∂x
−D ∂2φ

∂x2 = 0. (1.36)

Analytical solutions for this equation exist and are very different depending on the bound-
ary conditions used. For a very simple case, in which periodic boundary conditions are used
(φ(0, t) = φ(L, t)), the solution can be written as:

φ(x, t) ≈ φ̃(x, t) =
N

∑
m=1

ame−D(mπ/L)2t sin
mπ(x− vxt)

L
(1.37)

Stage 5: Making a movie of convection-diffusion

• For each time t plot the function φ̃(x, t). In order to create the movie (here in gif format)
use the functions shown in Fig. 1.5.

24 Chapter 1: Introduction

−20 −15 −10 −5 0 5 10 15 20
0

1

2

3

4

−20 −15 −10 −5 0 5 10 15 20
0

1

2

3

4

Figure 1.6: Solution of the 1D convection-diffusion equation with vx = 3 m/s and D = 0.1
m2/s (see Eq. (1.37)) . Left: Snapshot after t = 1 s. Right: Snapshot after t = 5 s.

1.8.4 More videos. Now in 2D (Optional)

Solutions of the previous equations can be also ploted as animated surfaces. In order to create
such plots, it is first required that the vector x and φ̃(x, t) (for a given value of t) is mapped to
a rectangular grid. Subsequently use the functions shown in Fig. 1.5. Two snapshots, which
correspond to a solution of the convection-diffusion equation, are shown in Fig. 1.6. Note that
the direction y is chosen arbitrarily.

1.8.5 Useful MATLAB commands

syms Defines the following symbols to be treated as symbols by the symbolic
toolbox of MATLAB (e.g. syms x defines x to be handled as symbol to
do symbolic calculations.)

Example:

>> syms x
>> int(x)

ans =

x^2/2

2
Finite Differences

References

[1] MORTON, K. W., AND MAYERS, D. F. Numerical solution of partial differential equations. Cambridge
University Press, 2005.

[2] POLIFKE, W., AND KOPITZ, J. Wärmeübertragung. Grundlagen, analytische und numerische Methoden.
Pearson Studium, 2005.

Objectives

• Learn to derive a finite difference numerical scheme for different orders of accuracy.

25

26 Chapter 2: Finite Differences

Contents
2.1 Computational grid . 26

2.2 Deriving FD numerical schemes of arbitrary order 27

2.2.1 Taylor series and truncation error . 28

2.2.2 Forward Euler scheme . 28

2.2.3 Centered scheme . 30

2.2.4 Backward Euler scheme . 31

2.2.5 Second order derivatives . 32

2.3 2D steady heat equation . 33

2.3.1 Discretizing the 2D steady heat equation by finite differences 34

2.3.2 Boundary conditions . 36

2.3.3 Assembling the linear system . 37

2.4 Exercises . 38

2.4.1 Useful MATLAB commands . 39

2.4.2 Tips
by Juan Pablo Garcia (ex-student) 40

2.1 Computational grid

A computational grid is a discretization of the computational domain, made of elements, faces
and nodes. Finite differences is a very efficient method for relative simple topologies, and
therefore it is mainly applied on Cartesian grids such as the ones shown in Fig. 2.1.

In Cartesian grids, the faces of the elements are aligned with the axes of a Cartesian frame or
reference. The nodes, defined as the intersection of the faces, can be placed either uniformly

Figure 2.1: Cartesian grids in 1D, 2D and 3D

2.2 Deriving FD numerical schemes of arbitrary order 27

WW W EEEP

∆x

w e

Figure 2.2: Labeling of 1D computational grid.

(equidistant) or non-uniformly. Accordingly, the elements (or cells) can be either lines (1D),
rectangles (2D) or cuboids (3D).

2.2 Deriving FD numerical schemes of arbitrary order

As already mentioned at the end of last chapter, the finite differences method consists in re-
placing derivative expressions of a given quantity at a specific point, by a linear combination
of values of that quantity at neighbour points. We could say then that derivative with respect
to x of a quantity φ at P is approximated by a linear combination:

dφ

dx

∣∣∣∣
xP

≈ · · ·+ aWWφWW + · · ·+ aPφP + aEφE + · · · , (2.1)

where the subindex indicate the position at which φ is evaluated. In practice, there are three
schemes highly used. The definition of these schemes is referred to a stream that flows from
left (upstream or West) to right (downstream or East) as illustrated in Fig. 2.2. These schemes
are:

• Forward Euler (FE): Linear combination of values of φ in the downstream region:

dφ

dx

∣∣∣∣
xP

≈ aPφP + aEφE + aEEφEE + · · · (2.2)

• Centered: Linear combination of values of φ in both upstream and downstream regions:

dφ

dx

∣∣∣∣
xP

≈ · · ·+ aWφW + aPφP + aEφE + · · · (2.3)

• Backward Euler (BE): Linear combination of values of φ in the upstream region:

dφ

dx

∣∣∣∣
xP

≈ · · ·+ aWWφWW + aWφW + aPφP (2.4)

The question now is how to establish appropriate values for the coefficients a so that a more
accurate approximation is obtained. We will see it in the following.

28 Chapter 2: Finite Differences

2.2.1 Taylor series and truncation error

The derivation of numerical schemes in the framework of finite differences is strongly related
with the definition of the Taylor series. This series expresses a function f evaluated at any point
in x as an infinite sum of terms that depend on the function derivatives at a reference point xP.
It is written as

f (x) =
∞

∑
k=0

(x− xP)
k

k!
dk f
dxk

∣∣∣∣
xP

= f (xP) + (x− xP)
d f
dx

∣∣∣∣
xP

+
(x− xP)

2

2!
d2 f
dx2

∣∣∣∣
xP

+
(x− xP)

3

3!
d3 f
dx3

∣∣∣∣
xP

+ · · ·+ (x− xP)
k

k!
dk f
dxk

∣∣∣∣
xP

+ · · · .

(2.5)

2.2.2 Forward Euler scheme

Let us start considering only two coefficients of the linear combination (Eq. (2.2)). The approx-
imation of d f

dx

∣∣∣
xP

is then given by

d f
dx

∣∣∣∣
xP

≈ a1 f (xP) + a2 f (xE). (2.6)

Considering now Eq. (2.5), fixing x = xE and rearranging

d f
dx

∣∣∣∣
xP

=
f (xE)− f (xP)

∆x
− ∆x

2!
d2 f
dx2

∣∣∣∣
xP

− (∆x)2

3!
d3 f
dx3

∣∣∣∣
xP

− · · · − (∆x)k−1

k!
dk f
dxk

∣∣∣∣
xP

+ · · · , (2.7)

where the notation ∆x = xE − xP has been introduced. In practice, it is not possible to carry
out an infinite summation of terms. Instead a truncation of the series is performed in which
only the significant terms are considered. Since the derivative terms in the RHS of Eq. (2.7) are
usually unknown they are dropped. The expression (2.7) is then written as

d f
dx

∣∣∣∣
xP

+O(∆x) =
f (xE)− f (xP)

∆x
and therefore

d f
dx

∣∣∣∣
xP

≈

a1︷ ︸︸ ︷(−1
∆x

)
f (xE) +

a2︷ ︸︸ ︷(
1

∆x

)
f (xP).

(2.8)

The term O(∆x) represents the truncation error introduced in the approximation. In this case

2.2 Deriving FD numerical schemes of arbitrary order 29

this term (O(∆x)) is of first order , i. e. the same order of ∆x. We say then that the scheme is first
order accurate. We introduce the definition of order of accuracy:

Order of accuracy: The accuracy order of a FD discretisation is the power of (∆x)
to which the truncation error is approximately proportional.

It means that if the distance between nodes (∆x = xE− xP) is reduced by the half, for instance,
the error in the discretisation of d f

dx

∣∣∣
xP

will also be reduced by approximately the half. In the

limit of ∆x → 0, we recover the definition of the derivative:

d f
dx

∣∣∣∣
xP

= lim
∆x→0

f (xE)− f (xP)

∆x
(2.9)

The truncation errorO(∆x) will be very small for very small ∆x, but it would represent consid-
erable large number of grid points, i.e large meshes! Let us instead be smart and add another
term to the linear combination. It means that we will consider the information given by a third
grid point. This leads to

d f
dx

∣∣∣∣
xP

≈ a1 f (xP) + a2 f (xE) + a3 f (xEE). (2.10)

We now evaluate f (xE) and f (xEE) using the Taylor series definition (Eq. (2.5)):

f (xE) = f (xP)+
∆x
1!

d f
dx

∣∣∣∣
xP

+
(∆x)2

2!
d2 f
dx2

∣∣∣∣
xP

+
(∆x)3

3!
d3 f
dx3

∣∣∣∣
xP

+ · · ·+ (∆x)k

k!
dk f
dxk

∣∣∣∣
xP

+ · · · (2.11)

f (xEE) = f (xP) +
2∆x
1!

d f
dx

∣∣∣∣
xP

+
(2∆x)2

2!
d2 f
dx2

∣∣∣∣
xP

+
(2∆x)3

3!
d3 f
dx3

∣∣∣∣
xP

+ · · ·+ (2∆x)k

k!
dk f
dxk

∣∣∣∣
xP

+ · · · ,

(2.12)

where a uniform grid is considered and therefore 2∆x = xEE − xP. By combining Eqs. (2.11)
and (2.12) with Eq. (2.10), we realize that three conditions between the coefficients arise. These
conditions are:

30 Chapter 2: Finite Differences

a1 + a2 + a3 = 0 since we want (a1 + a2 + a3) f (xP) = 0 (2.13)

a2∆x + 2a3∆x = 1 since we want (a2∆x + 2a3∆x)
d f
dx

∣∣∣∣
xP

=
d f
dx

∣∣∣∣
xP

(2.14)

a2/2 + 2a3 = 0 since we want (a2(∆x)2/2! + a3(2∆x)2/2!) = 0 (2.15)

which leads to a1 = −3/(2∆x), a2 = 2/∆x, a3 = −1/(2∆x). Plugging them into Eq. (2.10)
yields

d f
dx

∣∣∣∣
xP

+O(∆x)2 =
−3 f (xP) + 4 f (xE)− f (xEE)

2∆x
. (2.16)

The approximation of Eq. (2.16) is of order O(∆x)2, i. e. second order accurate. The terms of
second order O(∆x)2 of the Taylor series expression were ‘designed’ to be zero (Eq. (2.29)).
Note, nevertheless, that the remaining terms of order O(∆x)3 in the Taylor series are divided
by ∆x in Eq. (2.16), and that is why this approximation is second order accurate and not third
order accurate.

One advantage of a second order scheme in comparison with one of first order is that results
based on a second order scheme will approach the exact value of d f

dx

∣∣∣
xP

faster as ∆x → 0. It

can be reasoned: if the distance between nodes ∆x is reduced by two (increasing the number
of elements in the mesh by two), the truncation error in the approximation of d f

dx

∣∣∣
xP

will be

approximately four times smaller than previously (when the cells were 2 times larger). For
a first order scheme this error would be only approximately two times smaller if reducing
∆x by the half. Theoretically, we could increase the order of the approximation by adding
more terms to the linear combination (Eq. (2.10)). Accordingly, four terms would lead to an
approximation of third order, since terms O(∆x) and O(∆x)2 will be forced to vanish; five
terms would produce an approximation of fourth order, and so on. In practice, the length of
the stencil, i. e. number of coefficients involved in the approximation, should no be too high
since several difficulties can arise. For instance, if a large stencil scheme characterizes a linear
PDE, the resulting linear system is not as easy to solve as if a short stencil is considered: the
resulting matrix is less sparse and possibly more irregular with large stencils. Another problem
could be also related to computational memory issues since eventually too many coefficients
would be required to be stored at each node.

2.2.3 Centered scheme

Let us write the most classical centered scheme as a linear combination of two terms:

2.2 Deriving FD numerical schemes of arbitrary order 31

d f
dx

∣∣∣∣
xP

≈ a1 f (xW) + a2 f (xE) (2.17)

We proceed now as done previously. Using Eq. (2.5) the quantities f (xW) and f (xE) are de-
scribed as

f (xW) = f (xP)−
∆x
1!

d f
dx

∣∣∣∣
xP

+
(∆x)2

2!
d2 f
dx2

∣∣∣∣
xP

− (∆x)3

3!
d3 f
dx3

∣∣∣∣
xP

+ · · ·+ (∆x)k

k!
dk f
dxk

∣∣∣∣
xP

+ · · ·
(2.18)

f (xE) = f (xP)+
∆x
1!

d f
dx

∣∣∣∣
xP

+
(∆x)2

2!
d2 f
dx2

∣∣∣∣
xP

+
(∆x)3

3!
d3 f
dx3

∣∣∣∣
xP

+ · · ·+ (∆x)k

k!
dk f
dxk

∣∣∣∣
xP

+ · · · (2.19)

The equations to solve are:

a1 + a2 = 0 (2.20)

−a1∆x + a2∆x = 1 (2.21)

(2.22)

which give the solutions a1 = −1/(2∆x) and a2 = 1/(2∆x):

d f
dx

∣∣∣∣
xP

≈ f (xE)− f (xW)

2∆x
. (2.23)

which is actually second order accurate although information from only two grid points is
used!. The reason comes up by replacing Eq. (2.18) and Eq. (2.19) into Eq. (2.23): the term con-
taining (∆x) is actually eliminated by the subtraction! As done by the Forward Euler scheme,
the centered scheme can have also as many terms as desired, so that accuracy is increased.

2.2.4 Backward Euler scheme

Considering two terms, the Backward Euler (BE) scheme is written:

d f
dx

∣∣∣∣
xP

≈ a1 f (xP) + a2 f (xW) (2.24)

32 Chapter 2: Finite Differences

After, repeating the procedure previously used, we obtain the approximation

d f
dx

∣∣∣∣
xP

≈ f (xP)− f (xW)

∆x
. (2.25)

which is an approximation of order O(∆x). Higher accuracy can be obtained, as stated before,
by adding more terms to the linear combination of Eq. (2.24).

2.2.5 Second order derivatives

We have already seen how FD schemes are designed for a first order derivative using three
approaches: FE, centred and BE. Now, we will study the technique to compute a second order
derivative for a defined order of accuracy. We will concentrate on the centered scheme. As
before, we started expressing the second order derivative as a linear combination of three terms

d2 f
dx2

∣∣∣∣
xP

≈ a1 f (xW) + a2 f (xP) + a3 f (xE). (2.26)

Subsequently, we express f (xW) and f (xE) considering Eq. (2.18) and Eq. (2.19). As a result,
three equations are stated:

a1 + a2 + a3 = 0 since we want (a1 + a2 + a3) f (xi) = 0 (2.27)

−a1∆x + a3∆x = 0 since we want (−a1∆x + a3∆x)
d f
dx

∣∣∣∣
xP

= 0 (2.28)

a1(∆x)2/2 + a3(∆x)2/2 = 1 since we want (a1(∆x)2/2! + a2(∆x)2/2!)
d2 f
dx2

∣∣∣∣
xP

=
d2 f
dx2

∣∣∣∣
xP

(2.29)

which yield: a1 = 1/(∆x)2, a1 = −2/(∆x)2 and a3 = 1/(∆x)2. Replacing now these values in
Eq. (2.26) yields

d2 f
dx2

∣∣∣∣
xP

+O(∆x)2 =
f (xW)− 2 f (xP) + f (xE)

(∆x)2 . (2.30)

Naturally, we would expect that this approximation is of first order. Nevertheless, replacing
Eq. (2.18) and Eq. (2.19) in Eq. (2.30) turns out that, in addition to the first and second terms in
the RHS, also the fourth term cancels out. Consequently, the approximation given by Eq. (2.30)
is second order accurate. It should be mentioned, that this relation can be also computed by

2.3 2D steady heat equation 33

combining the definition of first order derivative as follows:

d2 f
dx2

∣∣∣∣
xP

≈
d f
dx

∣∣∣
xe
− d f

dx

∣∣∣
xw

(∆x)
=

[f (xE)− f (xP)] /∆x− [f (xP)− f (xW)] /∆x
∆x

, (2.31)

in which eventually the same expression given by Eq. (2.30) is recovered. As mentioned for
first order derivatives, the order of accuracy of second order derivatives approximations is also
strongly linked with the length of the stencil, i. e. number of coefficients involved in the linear
combination: the higher the number of coefficients, the higher the order accuracy.

Finally, a new concept will be introduced:

Consistency: A numerical scheme is consistent as long as the truncation error
tends to zero when ∆x tends to zero.

As observed in all previous FD schemes described, decreasing the value of ∆x results in a reduc-
tion of the truncation error. Therefore, we can conclude that all these schemes are consistent.
How large this reduction is, depends on the order of accuracy of the scheme.

2.3 2D steady heat equation

Now, that we have observed how first and second order derivatives are discretized, let us put
that in practice. Recall the general form of a diffusion-reaction transport equation

∂

∂t
(ρφ)−∇ · (Dρ∇φ) = s, (2.32)

where φ is the concentration of a conserved scalar per unit mass, ρ is the density of the carrier
flow and D is the diffusivity of φ. In an incompressible medium (constant density), the specific
internal energy u is given by u = cT, where c is the heat capacity. Considering then u as the
conserved scalar we are interested in, Eq. (2.32) becomes

ρc
∂T
∂t
− ρc∇ · (D∇T) = s, (2.33)

If now we consider the thermal diffusivity D = λ/(ρc), where λ is the thermal conductivity of
the medium, Eq. (2.33) results in

ρc
∂T
∂t
−∇ · (λ∇T) = ω̇. (2.34)

34 Chapter 2: Finite Differences

where ω̇ represents a given heat release source term. For two dimensions, Eq. (2.34) is written
as

ρc
∂T
∂t
− ∂

∂x

(
λ

∂T
∂x

)
− ∂

∂y

(
λ

∂T
∂y

)
= ω̇. (2.35)

Note that we are considering a thermal conductivity λ that depends on space and, as a result,
it cannot be taken outside from the spatial differential operator. In the following we will con-
sider the steady version of the heat equation and, in addition, no source inside the domain is
accounted for. The temperature distribution in the domain will only depend on the boundary
conditions and on the thermal conductivity of the medium.

2.3.1 Discretizing the 2D steady heat equation by finite differences

In the steady state, and considering, the problem of interest reduces to

∂

∂x

(
λ

∂T
∂x

)
+

∂

∂y

(
λ

∂T
∂y

)
= −ω̇ (2.36)

Applying now the approximation suggested by Eq. (2.30) leads to

∂

∂x

(
λ

∂T
∂x

)∣∣∣∣
P

≈
λe

(
∂T
∂x

)
e
− λw

(
∂T
∂x

)
w

∆x
=

λe
TE−TP

∆x − λw
TP−TW

∆x
∆x

=
λeTE − TP (λe + λw) + λwTW

(∆x)2

(2.37)

and

∂

∂y

(
λ

∂T
∂y

)∣∣∣∣
P

≈
λn

(
∂T
∂y

)
n
− λs

(
∂T
∂y

)
s

∆y
=

λn
TN−TP

∆y − λs
TP−TS

∆y

∆y

=
λnTN − TP (λn + λs) + λsTS

(∆y)2 .

(2.38)

where the notation (labeling of nodes) is shown in Fig. 2.3. The approximation of the steady
heat equation, which is second order accurate, in a Cartesian grid is given then by

2.3 2D steady heat equation 35

W EPw e

N

S

n

s

∆x

∆y

Figure 2.3: Labeling of a 2D computational grid

∂

∂x

(
λ

∂T
∂x

)∣∣∣∣
P

+
∂

∂y

(
λ

∂T
∂y

)∣∣∣∣
P

≈λeTE + λwTW

(∆x)2 +
λnTN + λsTS

(∆y)2 − TP

(
λe + λw

(∆x)2 +
λn + λs

(∆y)2

)
= −ω̇

(2.39)

The values of the thermal conductivity between nodes are computed by interpolation. The
discretization above can be rewritten as

λe

(∆x)2 TE +
λw

(∆x)2 TW +
λn

(∆y)2 TN +
λs

(∆y)2 TS +

(
− λe

(∆x)2 −
λw

(∆x)2 −
λn

(∆y)2 −
λs

(∆y)2

)
TP

(2.40)

=cETE + cWTW + cNTN + cSTS + cPTP = −ω̇. (2.41)

We want to point out that, when ω̇ = 0, the coefficient for the central node cP can be computed
as the sum of all other coefficients:

cP = − (cE + cW + cN + cS) , (2.42)

or, as will be more evident in chapter 5, that the resulting matrix is digonal dominant.

36 Chapter 2: Finite Differences

Conjugate Heat Transfer

Is
o
th

er
m

a
l

x

y
L

q̇y

Imposed heat flux

Figure 2.4: Boundary conditions

2.3.2 Boundary conditions

In the introductory chapter, three types of Boundary Conditions (BC) were introduced: Dirich-
let, Neumann and Robin. In this section, they are stated in the framework of the heat equation
and finite differences. Let us assume that we desire to impose a temperature profile TD(y) at
the West boundary (see Fig. 2.4). The equations at nodes where x = 0 and 0 ≤ y ≤ L are given
by

TP = TD(y) ∀ P ∈ ΓD Dirichlet BC (or first kind) (2.43)

where ΓD is the set of nodes that belong to the West boundary. Let us assume now that we
want to apply a given heat flux q̇ · n = g(x) at the South boundary. We want then that

q̇y
∣∣
P
= −λP

∂T
∂y

∣∣∣∣
P

= g(x) ∀ P ∈ ΓN Neumann BC (or second kind), (2.44)

where ΓN is the set of nodes that belong to the South boundary. The first idea that naturally
comes to our minds is to discretize this BC as

− λP

∂T
∂y

∣∣∣∣
P

= −λP

TN − TP

∆y
. (2.45)

Nevertheless, this BC is only first order accurate, as seen previously. In an elliptic equation the
information (a given error for instance) propagates everywhere in the domain. Accordingly,
even if we use a second order centered scheme to discretize the steady heat equation in at the
interior of the domain, the solution would not be anymore second order accurate but only first
order accurate due to the low order of accuracy of the downwind scheme used for discretizing
the BC. Instead, we can use the second order downwind scheme (Eq. 2.16) so that

2.3 2D steady heat equation 37

− λP

∂T
∂y

∣∣∣∣
P

= −λP

−3TP + 4TN − TNN

2∆y
= g(x). (2.46)

This is the equation that should be applied to the nodes belonging to ΓN if we want to conserve
the order of accuracy of the solution. Finally, we want to apply a Robin BC at the North and
East boundaries of the domain. For the North boundary, the BC reads:

α(TP − T∞) + λP

∂T
∂y

∣∣∣∣
P

= 0 ∀P ∈ ΓR Robin BC (or third kind) (2.47)

Equation (2.47) is a classical BC for conjugate heat transfer, i. e. heat transfer at the interface of
a solid and a fluid (see [3]). This boundary condition is widely used when evaluating cooling
(or heating) of a solid caused by the thermal interaction with the fluid in which it is immersed.
In this case, T∞ stands for the temperature of the surrounding fluid and α is the convective heat
transfer coefficient. Using a second order accurate scheme, Eq. (2.47) is discretized as:

α(TP − T∞) + λP

3TP − 4TS + TSS

2∆y
= 0. (2.48)

2.3.3 Assembling the linear system

Let us express Eq. (2.39), as a linear system of equations R T = bI for the inner nodes, and
Eqs. (2.43), (2.44) and (2.47) as a linear system of equations B T = bb for the boundary nodes.
A final system A T = b can be assembled, where A is a matrix composed by the sub matrices
R and B and b a vector composed by bI and bb. We have consequently a linear system

A T = b (2.49)

to be solved, where A is N × N matrix and N is the number of nodes of the complete system
after discretization. Correspondingly, T and b are vectors of size N × 1.

38 Chapter 2: Finite Differences

∆x

∆y

i

i + 1

i − 1

j
−

1

j
+

1

j
Figure 2.5: Suggested labeling of a 2D computational grid

2.4 Exercises

Discretizing the 2D steady heat equation

Stage 1: Understanding (pen and paper)

The 2D steady heat equation reads:

∂

∂x

(
λ

∂T
∂x

)
+

∂

∂y

(
λ

∂T
∂y

)
= 0.. (2.50)

• Derive a FD scheme of second order of accuracy with constant λ and Dirichlet Boundary
conditions. The suggested labeling of the grid is illustrated in Fig. 2.5

Stage 2: Coding in Matlab: Dirichlet BC and constant λ

A file ‘finite_diff.m’ is given as a starting point. Only the heading of the code is explicitly given.
It is suggested to start with very small systems (25 nodes at most).

Stage 3: Coding in Matlab: Different BC.

In addition to Dirichlet BC at the West, a Neumann BC will be imposed at the South whereas
Robin BC will be imposed at North and East. This is illustrated in Fig. 2.6.

Stage 4: Coding in Matlab: Considering variable thermal conductivity (optional).

Eq. (2.50) should be now discretized by considering λ depending on space.

Stage 5: Coding in Matlab: Considering a pointwise source (optional).

Consider a non-zero source in Eq. (2.50). An illustration of such a field is given in Fig. 2.7

2.4 Exercises 39

Conjugate Heat Transfer

Is
o
th

er
m

a
l

x

y
L

q̇y

Imposed heat flux

Figure 2.6: Boundary conditions at stage 3.

Figure 2.7: Example of temperature field obtained by finite differences.

2.4.1 Useful MATLAB commands

index = @(ii,jj) ii+(jj-1)∗n This is a useful definition to address an element of a
vector by two coordinates. If a property that is phys-
ically in 2D space with dimensions n× m has to be
saved in a 1D vector (dimension nm× 1), all colums
of the 2D object are concatenated to form only one
column. This functions lets you address an element
as if it were still in 2D (e.g. X(index(2,2)).

x=A\b Solve the linear system Ax = b for x. The backslash
operator (\) selects the best way to to this within
matlab.

40 Chapter 2: Finite Differences

2.4.2 Tips
by Juan Pablo Garcia (ex-student)

• It is suggested to start with a case in which ∆x = ∆y and Lx = Ly = 1 in order to avoid a
very complex problem from the beginning. In addition, by generating a small mesh and
simple values for Lx, Ly, ∆x and ∆y, the problem will be easier to debug. In order to do
that, is good to start with a mesh 11x11 and having ∆x = ∆y = 0.1

• Solving the problem will be done by solving one system of equations. It is suggested then
to refresh the knowledge on solving equation systems (with matrices).

• Some of the tools learned in the Teaser.m exercises are necessary. For example, generating
a vector with all the values of a matrix (if the matrix is 10× 10 tje vector will be 100× 1).

• Give a number (index) to each node corresponding to the position in the matrix. In order
to relate the position in the matrix to the position in the coordinates x, y two things should
be considered:

– As the number of column increases, it also increases the value of the x coordinate.
In contrast, as the number of row increases, the value of the y coordinate decreases
(due to the notation illustrated in Fig. 2.5).

– The position in the matrix is given by (row, column), which would correspond to
(y, x) instead of (x, y) that we usually use to name the points in the cartesian system
of coordinates.

3
Finite Volumes

Objectives

• Learn to derive a finite volume numerical scheme for non-Cartesian domains.

Contents
3.1 Derivation of algebraic equations from PDE . 42

3.1.1 Applying divergence theorem . 42

3.1.2 Defining cell normals . 44

3.1.3 Applying an integral rule . 45

3.1.4 Applying Green’s theorem . 46

3.2 Exercises Part 1 . 49

3.3 Exercises Part 2 . 50

3.3.1 Useful MATLAB commands . 52

3.3.2 Tips
by Juan Pablo Garcia (ex-student) 52

3.3.3 Flowchart . 52

In Chapter 2, we have seen how the 2D steady heat equation is discretized by the Finite Dif-
ferences (FD) technique. We resolved the 2D steady heat equation considering a rectangular
domain and a thermal conductivity λ dependent on space. In the present chapter we will add
an additional difficulty: the evaluation of heat conduction in a non-Cartesian grid. The fact that

41

42 Chapter 3: Finite Volumes

Figure 3.1: Illustration of domain and grid of interest. Nodes in blue are shown with the
respective notation in Fig. 3.2

the faces of cells are not longer aligned with the Cartesian frame of reference add an enormous
complexity to the problem if FD is the chosen approach. On the contrary, the Finite Volumes
method, a completely different approach, ‘defeats’ complexity. A great advantage of FV is that
under pure physical reasoning, a given PDE may be discretized even in complex geometries.
Moreover, it respects the laws of conservation under which transport equations are constructed
and is not computationally expensive if compared with techniques such as finite elements.

In order not to add superfluous complexity to the derivation of FV, the heat conductivity λ will
be considered constant over the whole domain. We are interesting then in solving

λ∇2T = 0, (3.1)

in a domain discretized with a non-Cartesian grid as the one illustrated in Fig. 3.1

3.1 Derivation of algebraic equations from PDE

Note that the derivation procedure that will be introduced holds for any geometry in 2D (and
eventually 3D). The procedure will be described as a sequence of steps.

3.1.1 Applying divergence theorem

We integrate Eq. (3.1) over a control surface1SP centered at the node P. This control surface SP

has vertices sw, se, ne and nw, as shown in Fig. 3.2(b), where s, e, n and w stand for ‘south’, ‘east’,
‘north’ and ‘west’ with respect to the node P. Note from Fig 3.2 that lowercase letters represent
points between nodes, whereas capital letters stand for the actual nodes of the grid (Fig. 3.2(a)).

3.1 Derivation of algebraic equations from PDE 43

PW

SW SE

NE
NW

E

N

S

nw
ne

sesw

P
w

e

SeSw

s

(a) (b) (c)

n

s

e

nE

sE

n

w
e

NeNw

n

s

w
nW

sW

(d) (e) (f)

Figure 3.2: Domain of interest. Six different illustrations where nodes and middle point be-
tween nodes are labeled by upper cases and lower cases, respectively. Control surfaces are
labelled with respect to the center node (or point) of the corresponding surface.

After applying the divergence theorem, this surface integral becomes a line integral. It reads:

∫
SP

λ∇2TdS =
∮

∂SP
λ∇T · ndl = 0. (3.2)

where n is the unit vector normal to the line element dl. It is positive defined if pointing
outwards with respect to SP. The value of λ∇2T at the node P is then given by

λ∇2T
∣∣
P
=

1
SP

∮
∂SP

λ∇T · ndl. (3.3)

Subsequently, we decompose the line integral by the corresponding contributions of the four
faces:

∮
∂SP

λ∇T · ndS =
∫

lse
sw

λ∇T · ndl +
∫

lne
se

λ∇T · ndl +
∫

lnw
ne

λ∇T · ndl +
∫

lsw
nw

λ∇T · ndl. (3.4)

1Note that we are considering here a two-dimensional case. That is why we treat a computational cell as a control
surface and not as a control volume.

44 Chapter 3: Finite Volumes

nn

nw

ne

ns

nw
nenn

klnw
ne
k

|�xnw
ne |

|�ynw
ne |

P

nw
ne

sesw

Figure 3.3: Normal vectors belonging to the control surface SP

3.1.2 Defining cell normals

The unit normal vector n of the four faces belonging to the control surface SP are defined as:

ns =
(∆yse

sw,−∆xse
sw)

‖lse
sw‖

where ‖lse
sw‖ =

√
(∆xse

sw)
2 + (∆yse

sw)
2, (3.5)

ne =
(∆yne

se ,−∆xne
se)

‖lne
se ‖

where ‖lne
se ‖ =

√
(∆xne

se)
2 + (∆yne

se)
2, (3.6)

nn =
(∆ynw

ne ,−∆xnw
ne)

‖lnw
ne ‖

where ‖lnw
ne ‖ =

√
(∆xnw

ne)
2 + (∆ynw

ne)
2, (3.7)

nw =
(∆ysw

nw,−∆xsw
nw)

‖lsw
nw‖

where ‖lsw
nw‖ =

√
(∆xsw

nw)
2 + (∆ysw

nw)
2, (3.8)

where ∆yb
a = yb − ya and ∆xb

a = xb − xa. The normal vectors are illustrated in Fig. 3.3. By
recalling that ∇ = (∂

∂x , ∂
∂y), the first term on the RHS of Eq. (3.4) becomes

∫
lse
sw

λ∇T · ndl =
λ

‖lse
sw‖

∫
lse
sw

(
∂T
∂x

,
∂T
∂y

)
· (∆yse

sw,−∆xse
sw) dl (3.9)

Performing now the inner product operation yields

∫
lse
sw

λ∇T · ndl =
λ∆yse

sw
‖lse

sw‖
∫

lse
sw

∂T
∂x

dl − λ∆xse
sw

‖lse
sw‖

∫
lse
sw

∂T
∂y

dl (3.10)

3.1 Derivation of algebraic equations from PDE 45

3.1.3 Applying an integral rule

Now it is necessary to perform the integration on the resulting terms. Let us define a variable
♥ that depends on l and assume we want to solve

∫
lse
sw

♥(l) dl. (3.11)

There are several techniques available of numerical integration. We show here three generally
used:

• Mid-point rule: ∫
lse
sw

♥(l) dl ≈ lse
sw ♥|s dl = ♥|s ‖lse

sw‖ (3.12)

• Trapezoidal rule: ∫
lse
sw

♥(l) dl ≈
∫

lse
sw

♥|sw + ♥|se
2

dl =
♥|sw + ♥|se

2
‖lse

sw‖ (3.13)

• Simpson’s rule:

∫
lse
sw

♥(l) dl ≈
∫

lse
sw

♥|sw + 4 ♥|s + ♥|se
6

dl =
♥|sw + 4 ♥|s + ♥|se

6
‖lse

sw‖ (3.14)

Applying now the mid point rule to Eq. (3.10) leads to

∫
lse
sw

λ∇T · ndl =
λ∆yse

sw
‖lse

sw‖
‖lse

sw‖
∂T
∂x

∣∣∣∣
s
− λ∆yse

sw
‖lse

sw‖
‖lse

sw‖
∂T
∂y

∣∣∣∣
s

= λ∆yse
sw

∂T
∂x

∣∣∣∣
s
− λ∆xse

sw
∂T
∂y

∣∣∣∣
s

(3.15)

A similar procedure is performed to the other three terms of the RHS of Eq. (3.4). The resulting
expression reads

∇2T
∣∣

P =
λ

SP

∮
∂SP
∇T · ndS ≈

λ

SP

[
∆yse

sw
∂T
∂x

∣∣∣∣
s
− ∆xse

sw
∂T
∂y

∣∣∣∣
s
+ ∆yne

se
∂T
∂x

∣∣∣∣
e
− ∆xne

se
∂T
∂y

∣∣∣∣
e

+ ∆ynw
ne

∂T
∂x

∣∣∣∣
n
− ∆xnw

ne
∂T
∂y

∣∣∣∣
n
+ ∆ysw

nw
∂T
∂x

∣∣∣∣
w
− ∆xsw

nw
∂T
∂y

∣∣∣∣
w

] (3.16)

46 Chapter 3: Finite Volumes

Note that it has been assumed that s, e, n and w are the midpoints between sw − se, se − ne,
ne− nw and nw− sw, respectively. Whereas this assumption is valid for meshes that are not
strongly deformed, it should be reexamined if that is not the case. For example, considering e
(which is defined as the midpoint between the nodes P and E) to be also the midpoint between
sw and se might be a strong assumption for the grid illustrated in Fig. 3.2. Instead, a true
midpoint e∗ = (xe∗ , ye∗) should be accounted for by doing xe∗ = (xsw + xse)/2 and ye∗ =

(ysw + yse)/2. This is not done here in order not to add unnecesary complexity in the notation.

3.1.4 Applying Green’s theorem

Green’s theorem, in its general form, is defined for a line integral so that, for a point s for
instance, we have

∂T
∂x

∣∣∣∣
s
=

1
Ss

∮
∂Ss

Tdy and
∂T
∂y

∣∣∣∣
s
=

1
Ss

∮
∂Ss
−Tdx, (3.17)

where Ss is the control surface with respect to the point s, as illustrated in Fig. 3.2(c). We
decompose now the first line integral of Eq. (3.16) by the contributions of all four faces of the
control surface Ss. It yields

∂T
∂x

∣∣∣∣
s
=

1
Ss

∫ Se

Sw
T dy +

1
Ss

∫ e

Se
T dy +

1
Ss

∫ w

e
T dy +

1
Ss

∫ Sw

w
T dy (3.18)

Applying now the mid-point rule of integration, Eq. (3.18) becomes

∂T
∂x

∣∣∣∣
s
≈ 1

Ss

(
∆ySe

SwTS + ∆ye
SeTse + ∆yw

e TP + ∆ySw
w Tsw

)
. (3.19)

Carrying out the same procedure to the second line integral of Eq. (3.17) yields:

∂T
∂y

∣∣∣∣
s
=

1
Ss

∮
∂Ss
−Tdx ≈ −1

Ss

(
∆xSe

SwTS + ∆xe
SeTse + ∆xw

e TP + ∆xSw
w Tsw

)
. (3.20)

In the same way, we can retrieve expressions for the other spatial derivatives of Eq. (3.16):

3.1 Derivation of algebraic equations from PDE 47

∂T
∂x

∣∣∣∣
e
=

1
Se

(
∆ysE

s Tse + ∆ynE
sE TE + ∆yn

nETne + ∆ys
nTP

)
, (3.21)

∂T
∂y

∣∣∣∣
e
=
−1
Se

(
∆xsE

s Tse + ∆xnE
sE TE + ∆xn

nETne + ∆xs
nTP

)
, (3.22)

∂T
∂x

∣∣∣∣
n
=

1
Sn

(
∆ye

wTP + ∆yNe
e Tne + ∆yNw

Ne TN + ∆yw
NwTnw

)
, (3.23)

∂T
∂y

∣∣∣∣
n
=
−1
Sn

(
∆xe

wTP + ∆xNe
e Tne + ∆xNw

Ne TN + ∆xw
NwTnw

)
, (3.24)

∂T
∂x

∣∣∣∣
w
=

1
Sw

(
∆ys

sWTsw + ∆yn
s TP + ∆ynW

n Tnw + ∆ysW
nWTW

)
, (3.25)

∂T
∂y

∣∣∣∣
w
=
−1
Sw

(
∆xs

sWTsw + ∆xn
s TP + ∆xnW

n Tnw + ∆xsW
nWTW

)
. (3.26)

Gathering all the terms, leads to the final expression for∇2T at the node P for the geometry of
Fig. 3.2. After replacing them in Eq. (3.16), we can write

∇2T
∣∣
P
≈

λ∆yse
sw

SPSs

(
∆ySe

SwTS + ∆ye
SeTse + ∆yw

e TP + ∆ySw
w Tsw

)
+

λ∆xse
sw

SPSs

(
∆xSe

SwTS + ∆xe
SeTse + ∆xw

e TP + ∆xSw
w Tsw

)
+

λ∆yne
se

SPSe

(
∆ysE

s Tse + ∆ynE
sE TE + ∆yn

nETne + ∆ys
nTP

)
+

λ∆xne
se

SPSe

(
∆xsE

s Tse + ∆xnE
sE TE + ∆xn

nETne + ∆xs
nTP

)
+

λ∆ynw
ne

SPSn

(
∆ye

wTP + ∆yNe
e Tne + ∆yNw

Ne TN + ∆yw
NwTnw

)
+

λ∆xnw
ne

SPSn

(
∆xe

wTP + ∆xNe
e Tne + ∆xNw

Ne TN + ∆xw
NwTnw

)
+

λ∆ysw
nw

SPSw

(
∆ys

sWTsw + ∆yn
s TP + ∆ynW

n Tnw + ∆ysW
nWTW

)
+

λ∆xsw
nw

SPSw

(
∆xs

sWTsw + ∆xn
s TP + ∆xnW

n Tnw + ∆xsW
nWTW

)

(3.27)

The areas of the control surfaces can be computed by applying the Gaussian trapezoidal for-

48 Chapter 3: Finite Volumes

mula as follows

SP =
1
2
|(xneyse − xseyne) + (xseysw − xswyse) + (xswynw − xnwysw) + (xnwyne − xneynw)| (3.28)

Ss =
1
2
|(xeySe − xSeye) + (xSeySw − xSwySe) + (xSwyw − xwySw) + (xwye − xeyw)| (3.29)

Se =
1
2
|(xnEysE − xsEynE) + (xsEys − xsysE) + (xsyn − xnys) + (xnynE − xnEyn)| (3.30)

Sn =
1
2
|(xNeye − xeyNe) + (xeyw − xwye) + (xwyNw − xNwyw) + (xNwyNe − xNeyNw)| (3.31)

Sw =
1
2
|(xnys − xsyn) + (xsysW − xsWys) + (xsWynW − xnWysW) + (xnWyn − xnynW)| (3.32)

whereas the values at points within nodes are obtained by interpolation:

Tsw =
TSW + TS + TP + TW

4
, (3.33)

Tse =
TS + TSE + TE + TP

4
, (3.34)

Tne =
TP + TE + TNE + TN

4
, (3.35)

Tnw =
TW + TP + TN + TNW

4
. (3.36)

Using this procedure to derive a FV scheme over an uniform rectangular domain allows sev-
eral simplifications, explained in detail in appendix A. The resulting algebraic expression is
nothing but the same derived from a FD scheme. The treatment of nodes at boundaries follows
the same derivation explained in this chapter. The corresponding derivation is also shown in
appendix A.

3.2 Exercises Part 1 49

h1/2

h2/2

L

f(x)

Figure 3.4: Illustration of domain of interest (note that d f /dx < 0).

3.2 Exercises Part 1

Stage 1: Pen and paper

• Understand the derivation of Eq. (3.27).

Stage 2: Building the Grid

As starting point five matlab files are given:

1. FVM_main.m: This is the main file of the program. It calls the file InitFVM and the
routines setUpMesh and solveFVM.

2. InitFVM: Initial parameters are given. Nothing need to be done.

3. solveFVM: subroutine to set up the matrix A and the vector B. In particular the vector B
needs to be filled.

4. stamp: routine to fill the elements of matrix A. This routine is given practically empty.

5. generate_stencil_innernode.m: routine to buid the stencil for the inner node.

The first task consist in:

• setUpMesh: This routine must be written. It should take into accout the formfunction
defined in InitFVM.

Stage 3: Just do it

This stage is anything but complete. Almost everything must be done

• complete routines solveFVM and stamp.

50 Chapter 3: Finite Volumes

α

Th
T∞

h1 h2

L

Figure 3.5: Sketch of a cooling fin.

3.3 Exercises Part 2

In the exercises, we examine the stationary temperature distribution in a cooling fin. The fin is
‘fat’, so the well-known quasi-1D approximation is not applicable. The configuration of the fin
is sketched in Fig. 3.5.

On the west surface, we assume a constant hot temperature Th. The other surfaces2 are cooled
by convection with an ambient temperature T∞. We apply then the conjugated heat transfer
formula

q̇|W = α(TW − T∞), (3.37)

with the heat-transfer coefficient α. Since the fin is symmetric, we can simulate only a half fin
to reduce the computational effort. Consequently, we set zero heat flux at the symmetry axis,
i. e.

q̇|S = 0. (3.38)

In Fig. 3.6, the computed temperature distribution is plotted (with h1 = 10, h2 = 3, l = 10,
Th = 100, λ = 1, α = 5, and T∞ = 90).

Stage 1: Pen and paper

• Based on the knowledge acquired when discretizing the heat equation for the inner nodes,
the students are asked to derive the numerical scheme corresponding to the boundaries
and the two corners.

Stage 2: Choosing a code

2denoted by .W for “wall”

3.3 Exercises Part 2 51

0
5

10 −5
0

590

95

100

yx

T

0 5 10
−5

0

5

x

y

92

94

96

98

100

Figure 3.6: Temperature distribution in a cooling fin as surface plot on the left-hand side and
as contour plot on the left.

• Each group is asked to discuss about the codes written in Session 03. Pick one of the
codes.

Stage 3: Just do it

• Let’s code the boundary conditions!. A text file ’stamp.m’ is provided with some lines
already written. Also, the files generate_stencil_east.m, generate_stencil_north.m and
generate_stencil_south.m are given (but not complete).

• And what about the edge boundary conditions?

52 Chapter 3: Finite Volumes

3.3.1 Useful MATLAB commands

switch x
case A
case B
end

Use this way of controlling the flow in the code to make decisions like
assigning boundary conditions to boundaries.

Example:

switch northernBoundary
case ’Dirichlet’
...
case ’Neumann’
...
case ’Robin’

end

3.3.2 Tips
by Juan Pablo Garcia (ex-student)

• The way of working is very similar to the one related to the session of finite differences.
It is then useful to review the tips provided in the previous chapter.

3.3.3 Flowchart

FVM_main.m

InitFVM.m

setUpMesh.m

solveFVM.m

post.m

stamp.m

l, h, λ, ...

formfunction, ...

X, Y

T, X, Y, ...

T, ...

X, Y, ...

stencil, b

T, X, Y, ...

4
Unsteady Problems

References

[1] MORTON, K. W., AND MAYERS, D. F. Numerical solution of partial differential equations. Cambridge
University Press, 2005.

Objectives

• Learn how to discretize the temporal operator of a transport equation.

• Learn how to compute stability of temporal schemes considering the Von Neumann stability anal-
ysis.

53

54 Chapter 4: Unsteady Problems

Contents
4.1 Explicit time discretization . 55

4.1.1 Von Neumann stability analysis of FE scheme 56

4.2 Implicit time discretization . 62

4.2.1 Von Neumann analysis . 63

4.3 The weighted average or θ-method . 63

4.3.1 Von Neuman Analysis . 64

4.4 Predictor-corrector methods (Runge-Kutta) . 65

4.5 Exercises . 70

We have already seen how elliptic PDEs may be discretized using either Finite Difference FD,
Finite Volume FV. In this chapter, we will focus on PDEs that describe unsteady processes. Let
us write a convection-diffusion equation for the specific internal energy u = cT of an incom-
pressible flow (constant density ρ). Deriving this expression from Eq. (1.13) (where φ = u)
results in

∂T
∂t

+∇ · vT −∇ · D∇T = s/ρ = sI , (4.1)

where the thermal diffusivity is defined as D = λ/(ρc). Combining now the PDE associated
to mass conservation ∇ · v = 0 with Eq. (4.1) results in

∂T
∂t

+ v · ∇T −D∇2T = sI , (4.2)

where D is considered constant in space. For a 2D flow, Eq. (4.2) becomes:

∂T
∂t

+ vx
∂T
∂x

+ vy
∂T
∂y
−D

(
∂2T
∂x2 +

∂2T
∂y2

)
= sI , (4.3)

The second order terms (diffusive terms) of Eq. (4.3) have been already discretized by finite
differences and finite volumes, as studied in previous chapters. We can express them as

D
(

∂2T
∂x2 −

∂2T
∂y2

)
= R(T), (4.4)

where R represents a linear operator. This operator becomes a matrix R if discretized by a
given numerical method (by FD or FV for example). The convective term of Eq. (4.3) has not
yet been discretized in our course. Its discretization by FD of FV is indeed simpler than for the

4.1 Explicit time discretization 55

second order terms. Let us denote the corresponding linear operator as L so that Eq. (4.3) is
written now as

∂T
∂t

+ L(T)−R(T) = sI , (4.5)

or as a semi-discretized equation:

∂T
∂t

+ L T − R T = −bI , (4.6)

where the matrices L and R are related to the linear operators L and R, respectively. In addi-
tion to Eq. (4.6), we have to consider the equations for boundary conditions, which can be of
Dirichlet, Neumann or Robin type. In any case, after discretization we obtain a linear system
of equations that relates the boundary nodes to the adjacent nodes. It is written as

B T = bb (4.7)

Equations 4.6 and 4.7 can be expressed together in a general semi-discretized equation

∂T
∂t
− A T = −b, (4.8)

where A is a N × N matrix than contains the sub-matrices R− L and B. In the same way, the
vector b is a global vector of size N × 1 that is composed by both bI and bb.

4.1 Explicit time discretization

The simplest numerical scheme for time discretization, known as the Forward Euler (FE) scheme,
is now applied to Eq. (4.8):

Tn+1 − Tn

∆t
− A Tn = −b, (4.9)

where Tn and Tn+1 denote the temperature T at time instants t = n∆t and t = (n + 1)∆t,
respectively. It should be noted that Tn+1 is entirely described here by the corresponding past
values. Reordering Eq. (4.9) yields

Tn+1 = Tn + ∆t (A Tn − b) . (4.10)

56 Chapter 4: Unsteady Problems

Let us emphasize that, by discretizing Eq. 4.8 explicitly in time, the temperature Tn+1 Eq. (4.10)
is obtained without any need to solve a linear system. As a consequence, all the solutions at
each time step of the convection-diffusion equation (Tn|n=1, Tn|n=2, · · · , Tn|n) can be calcu-
lated without too much computational effort. Moreover, if a steady solution exists after a given
elapsed time, this one is obtained just by advancing n times the initial solution.

Every strategy has always pros and cons. The great advantage of the Forward Euler (FE)
scheme is that, as mentioned before, very simple linear systems result after time discretiza-
tion, where there is not even the need to solve a linear system. Consequently, solutions at
every time step are obtained in a very simple way. The big disadvantage of the FE scheme lays
on its stability. Let us define stability:

Stability: If the exact solution is bounded, the numerical solution remains bounded. It means
that, for stability to hold, it is necessary that numerical errors, which are generated
during the solution of discretized equations, should not be magnified.

In the worst case, explicit schemes are unconditionally unstable. It means that, not matter what
is done, solutions will explode after certain elapsed time. In a better situation, although not
the best, explicit schemes can be conditionally stable. As a result, there are some parameters
to control so that solutions remain bounded as time grows. Most of the time, the principal
parameter to control is the time step ∆t as function of the cell size (∆x say).

A formal analysis of stability remains cumbersome for complex spatial discretization schemes
as finite volumes (when the grid is not cartesian) and finite elements. That is the reason why
most of the time formal analysis is carried out for simplified spatial schemes as finite differ-
ences. Although generality cannot be argued for such an analysis, this approach is useful in
order to define non-dimensional numbers that can be used as a measure when studying stabil-
ity in complex numerical problems. In the following, the Von Neumann stability analysis will
be introduced.

4.1.1 Von Neumann stability analysis of FE scheme

Von Neuman analysis, also known as Fourier analysis, is a technique based on Fourier de-
composition of numerical errors. It is related to FD spatial discretization of a linear PDE with
constant coefficients where boundaries are assumed to be periodic. In order to introduce Von
Neumann analysis, let us consider a homogeneous (s=0), linear PDE with constant coefficients
(which are equal to one) with one function T that depends on two variables x (space) and t
(time). This PDE reads

∂T
∂t

+
∂T
∂x
− ∂2T

∂x2 = 0, (4.11)

4.1 Explicit time discretization 57

This equation has particular solutions of the form T = eβtekx, where β and k are real constants
and  denotes the imaginary unit. The general solution reads as

T(x, t) =
∞

∑
m=1

ameβmtekmx, (4.12)

which is nothing but a linear combination of the particular solutions. Here, am are recognized
as the Fourier coefficients, km is the wave number defined as km = πm/L, where L is the length
of the domain, and βm is a real constant that depends on m. It can also be shown that the
general solution of the discretized equation associated to (4.11) at a given time tn = n∆t and at
a given discretized point xi = i∆x reads 1:

Tn
i =

M

∑
m=1

ameβmn∆tekmi∆x, (4.13)

where M = L/∆x. The error in the approximation εn
i is defined by

εn
i = Tn

i − T(xi, tn) (4.14)

and is strongly associated to the truncation error made when discretizing. Since both the exact
solution T(xi, tn) and the discretized solution Tn

i satisfy the discretized equation exactly, the
error εn

i also satisfies the dicretized equation. Accordingly, the error can be also expressed as a
linear combination of the form of Eq. (4.13), or particularly as

εn
i = eβmn∆tekmi∆x. (4.15)

The error εn+1
i and a time tn+1 = (n + 1)∆t is expressed as

εn+1
i = eβm(n+1)∆tekmi∆x = eβm∆t εn

i (4.16)

It is evident that whether the error grows, stays constant or decreases depends on whether
eβm∆t is bigger, equal or smaller than unity, respectively. In order to simplify the notation, let us
define the amplification factor eβm∆t as

G ≡ εn+1
i
εn

i
= eβm∆t. (4.17)

1Be aware that here  denotes the imaginary unit whereas i and j denote the nodes of a given computational grid.

58 Chapter 4: Unsteady Problems

Stability analysis of 1D convection-diffusion equation

Now that we have expressed the error in Eq. (4.15), we proceed to analyze the stability of
schemes discretizing Eq. (4.11). Note that no attention is given to boundary conditions (they
are considered periodic) and, therefore, their contribution on stability is neglected. In addi-
tion, since Von Neumann analysis is aimed for FD schemes, we define the operators describing
convective and diffusion mechanisms as

L(T) ≈ vx
(Ti+1 − Ti−1)

2∆x
(4.18)

R(T) ≈ D (Ti−1 − 2Ti + Ti+1)

(∆x)2 , (4.19)

which are obtained using a second order accurate centered 1D-FD scheme. Replacing these
operators in Eq. (4.10) and reordering yields

Tn+1
i = Tn

i −
ν

2
(Tn

i+1 − Tn
i−1) + δ(Tn

i−1 − 2Tn
i + Tn

i+1), (4.20)

where

ν =
vx∆t
∆x

and δ =
D∆t
(∆x)2 . (4.21)

The non-dimensional numbers ν and δ are of extreme importance in the stability analysis and
are known as the Courant number and diffusion number, respectively. As mentioned before, the
error in the approximation εn

j also satisfies Eq. (4.20) and therefore we can write

εn+1
i = εn

i −
ν

2
(εn

i+1 − εn
i−1) + δ(εn

i−1 − 2εn
i + εn

i+1). (4.22)

Let us now divide all terms by εn
i and replace by the definition of the error (Eq. (4.15)). This

results in

G = 1− ν

2
(ekm∆x − e−km∆x) + δ(e−km∆x − 2 + ekm∆x). (4.23)

Pure convective equation

In order to simplify the analysis, let us assume first a pure convection problem (δ = 0) and
develop the exponential terms using the Euler’s formula. It leads to

4.1 Explicit time discretization 59

G = 1− ν

2
[cos(km∆x) +  sin(km∆x)− cos(km∆x) +  sin(km∆x)] (4.24)

G = 1− ν sin(km∆x) ⇒ |G|2 = 1 + ν2 sin2(km∆x), (4.25)

where π/N ≤ km∆x ≤ π and N is the number of nodes of the discretized domain. Equation
(4.25) means that, even for very large values of N, the second order centered FD scheme always
presents |G| > 1, and therefore is unconditionally unstable. Let us redefine the operator L(T)
as

L(T) ≈ vx
(Ti − Ti−1)

∆x
, (4.26)

i.e. as a first order upwind 1D-FD scheme. The equation of the error becomes

εn+1
i = εn

i − ν(εn
i − εn

i−1) (4.27)

which leads to

G = 1− ν [1− cos(km∆x) +  sin(km∆x)] . (4.28)

It can be shown that for this case, G ≤ 1 as long as the CFL condition is satisfied, i. e. as long as
0 ≤ ν ≤ 1. The upwind scheme is recognized to be conditionally stable for the pure convection
equation. There is a more general way to interpret the CFL condition. In the convection equa-
tion, an hyperbolic PDE of first order, the information propagates always from the upstream
to the downstream region of the domain. The velocity of this propagation is the velocity of
the carrier flow. In a one dimensional domain with constant mean flow, the pure convection
equation is written as Eq. (4.11) neglecting the diffusive term. The solution of this equation is
actually any function f with argument (x − vxt). It means, that a perturbation f is constant
over a characteristic line, or in other words, that a perturbation f is convected at a velocity vx

without being disturbed. If f is a Gaussian pulse (a distribution of temperature, say), this pulse
is convected along the domain without losing its Gaussian distribution (see also exercises of
Chapter 1). This example is illustrated in Fig. 4.1(a).

Figure 4.1(a) shows that the solution T(xi, tn) of the PDE depends only on the information (on
the values of T) at the points belonging to the characteristic line. Let us now spatially discretize
the convection equation with the operator L of Eq. (4.26), and use the Foward Euler scheme
with two different time steps defined as ∆t = ν∆x/vx with ν < 1 and ν > 1, respectively.
Figure 4.1(b), illustrate the domain of dependence of Tn

i when these two different ∆t are used.
The domain of dependence of the solution Tn

i is actually the data used to compute this solution. It

60 Chapter 4: Unsteady Problems

x

t

T (xi, ti)

T (x0, t0)

x− vxt = 0

ch
ar
ac

ter
ist

ic
lin

e

x

T

x0 xi

at tiat t0

vxti

x

t

∆x

∆t

Tn
i

Tn−1
iTn−1

i−1

x

t

∆x

∆t

Tn
i

Tn−1
iTn−1

i−1

ν < 1

ν > 1

(a) (b)

Figure 4.1: Illustration of the CFL condition.

is interesting to notice that for ν > 1 the domain of dependence of the discretized equation does
not contain the domain of dependance of the PDE, i.e. the characteristic line, and actually the
solution diverges after a certain time. In contrast, convergence is achieved when ν < 1 since
the characteristic line lies within the domain of dependence of the discretized PDE. It should
be stressed out, though, that the CFL condition is a necessary condition, but no sufficient, for
stability.

Pure diffusion equation

The same procedure can be carried out to perform stability analysis on a pure diffusion equa-
tion. Let us consider Eq. (4.23) with ν = 0:

G = 1 + δ(e−km∆x − 2 + ekm∆x). (4.29)

and developing by means of Euler’s formula

G = 1 + δ [cos(km∆x)−  sin(km∆x)− 2 + cos(km∆x) +  sin(km∆x)] (4.30)

G = 1− 2δ [1− cos(km∆x)] ⇒ G = 1− 4δ sin2(km∆x/2). (4.31)

4.1 Explicit time discretization 61

The worst case takes place when km∆x = π. Stability is conditioned then by

|1− 4δ| ≤ 1 ⇒ δ ≤ 1
2

(4.32)

Stability analysis of 2D diffusion equation

During this course, we focus on the study of the heat equation mainly in two dimensional
domains. It is worth then to analyse the stability conditions in such cases. The solution of a
PDE with constant coefficients of a function T that depends on three variables (x, y and t) is
generally obtained by applying the technique of separation of variables. Accordingly, the a
error is now expressed as

εn
i,j = eβmn∆tekx,mi∆xeky,m j∆y (4.33)

where kx,m and ky,m represent the wave numbers in the x and y direction, respectively. Let us
define now the operatorR(T) according to a second order centered 2D-FD scheme:

R(T) ≈ D
(

Ti−1,j − 2Ti,j + Ti+1,j

(∆x)2 +
Ti,j−1 − 2Ti,j + Ti,j+1

(∆y)2

)
(4.34)

This defintion is now inserted in Eq. (4.10). After neglecting the convective terms, it yields

Tn+1
i,j = Tn

i,j +
D∆t
(∆x)2 (T

n
i−1,j − 2Tn

i,j + Tn
i+1,j) +

D∆t
(∆y)2 (T

n
i,j−1 − 2Tn

i,j + Tn
i,j+1). (4.35)

As mentioned before, the error in the approximation as defined in Eq. (4.3.1) also satisfies
Eq. (4.35). Therefore we can write

εn+1
i,j = εn

i,j +
D∆t
(∆x)2 (ε

n
i−1,j − 2εn

i,j + εn
i+1,j) +

D∆t
(∆y)2 (ε

n
i,j−1 − 2εn

i,j + εn
i,j+1) (4.36)

Dividing now all terms by εn
i,j, knowing that G = εn+1

i,j /εn
i,j and using the definition of Eq. (4.3.1),

Eq. (4.36) becomes

G = 1 +
D∆t
(∆x)2 (e

−kx,m∆x − 2 + ekx,m∆x) +
D∆t
(∆y)2 (e

−ky,m∆y − 2 + eky,m∆y) (4.37)

62 Chapter 4: Unsteady Problems

Applying now the Euler’s formula2leads to

G = 1− 4
D∆t
(∆x)2 sin2(kx,m∆x/2)− 4

D∆t
(∆y)2 sin2(ky,m∆y/2). (4.38)

The expression of Eq. (4.38) holds for a rectangular domain where ∆x is not necessary equal to
∆y. The worst case arises when kx,m∆x = kx,m∆y = π. The stability condition is then

∣∣∣∣1− 4
D∆t
(∆x)2 − 4

D∆t
(∆y)2

∣∣∣∣ ≤ 1 ⇒ ∆t ≤ 1
2D

[
(∆x)2(∆y)2

(∆x)2 + (∆y)2

]
. (4.39)

In the particular case when ∆x = ∆y, the stability condition reduces to

∆t ≤ (∆x)2

4D . (4.40)

Figures 4.2, 4.3 and 4.4 show an example of temperature evolution through time in a trape-
zoidal fin. Two different values of ∆t have been considered in order to visualize the stability of
the FE scheme (explicit scheme). We have observed so far, that stability of an explicit scheme is
not easy to obtain. Once a given numerical scheme is known to be consistent and in addition is
proved to be stable, then we can claim that such a numerical scheme is convergent.

Convergence: This property is achieved if the numerical solution approach the exact solution
of the PDE and converge to it as the mesh size tends to zero. In other words
a scheme is convergent if it is both consistent and stable.

4.2 Implicit time discretization

We have by now studied the stability issues of an explicit scheme. Although these schemes
do not imply the need of solving complex linear systems at each time step ∆t, they do require
generally small values ∆t to assure convergence. The idea is now to evaluate what happens
to stability if we go to the other extreme, i.e. if we consider fully implicit schemes. In a fully
implicit scheme, the time evolution of a quantity is computed based on future values of that
quantity. Therefore, instead of applying the spatial operator C to T at tn = n∆t, it is applied to
T at tn+1 = (n + 1)∆t. Therefore, Eq. (4.8) becomes

2

eα − 2 + e−α = 4

(
eα/2·2 − 2 + e−α/2·2

22

)
= 4

(
eα/2 − e−α/2

2

)2

= 4 sin2(α/2)

4.3 The weighted average or θ-method 63

Tn+1 − Tn

∆t
− A Tn+1 = −b. (4.41)

Eq. (4.42) can be reorganized as

(I − ∆t A)︸ ︷︷ ︸
A∗

Tn+1 = Tn − ∆t b︸ ︷︷ ︸
b∗

, (4.42)

to make clear that a linear system A∗ Tn+1 = b∗ is needed to be solved to obtain the field Tn+1.

4.2.1 Von Neumann analysis

Let us now define the operators L and R, as done before (the Eqs. (4.18) and (4.19)). Subse-
quently, we replace them in Eq. (4.42), where A is defined as in Eq. (4.8), and we neglect the
influence of the boundary conditions on the stability analysis as previously done. We obtain

Tn+1
i +

ν

2
(Tn+1

i+1 − Tn+1
i−1)− δ(Tn+1

i−1 − 2Tn+1
i + Tn+1

i+1) = Tn
i . (4.43)

where it becomes evident that obtaining the value of Tn+1 in an implicit scheme is not as easy
as it was for a explicit scheme: we need now to solve a linear system at each time step ∆t.
Nevertheless, despite this disadvantage, there is an enormous improvement in the stability
of such schemes. Applying the Von Neumann analysis for the corresponding pure diffusion
problem (ν = 0), it can be shown [XX1] that the amplification factor is given by

G =
1

1 + 4δ sin2(k∆x/2)
. (4.44)

Thus, the fully implicit scheme is then unconditionally stable, the best situation for stability, since
there is no value of δ, defined as strictly positive, for which G ≥ 1.

Figures 4.2, 4.3 and 4.4 show an example of temperature evolution through time in a trape-
zoidal fin. One value of ∆t have been considered in order to visualize the strong stability of the
BE scheme (implicit scheme).

4.3 The weighted average or θ-method

Equation (4.42) represents a fully implicit scheme, also known as Backward Euler (BE) Method.
A generalization can be performed for cases that lay between fully explicit (Forward Euler) and

64 Chapter 4: Unsteady Problems

fully implicit (Backward Euler). It is done by adding a weight coefficient θ which ‘tunes’ the
numerical scheme towards either FE or BE. The weighted expression reads:

Tn+1 − Tn

∆t
− θA Tn+1 − (1− θ)A Tn = −b. (4.45)

Note that a value of θ = 0 tunes the scheme to fully explicit while a value of θ = 1 makes it
fully implicit.

4.3.1 Von Neuman Analysis

1D convection-diffusion

The amplification of the θ-scheme is given by [XX1]

G =
1− 4(1− θ)δ sin2(k∆x/2)

1 + 4θδ sin2(k∆x/2)
. (4.46)

The worst case takes place when k∆x = π. In such situation, stability is then conditioned by

∣∣∣∣1− 4(1− θ)δ

1 + 4θδ

∣∣∣∣ ≤ 1 ⇒ δ(1− 2θ) ≥ 1
2

. (4.47)

Equation (4.47) tells us, on the one hand, that for values 0.5 ≤ θ ≤ 1 the numerical scheme
derived is expected to be unconditionally stable. On the other hand, values of θ in the range of
0 ≤ θ < 0.5 give conditionally stable schemes. Values of θ very close to 0.5 (but still smaller)
are unstable only for very large values of ∆t.

A special case of the θ-method is the so called Crank-Nicolson scheme, in which θ = 0.5. Fol-
lowing the analysis of order of accuracy seen in previous chapters (by applying the definition
of Taylor series), it can be demonstrated that this value makes the scheme become second order
accurate in time O(∆t)2. For FE and BE schemes the approximations in time are only of first
order O(∆t).

2D diffusion

Analogly to Eq. (4.36), the error εn+1
i,j at (i, j) for the time step n + 1 using the weighted average

method can be expressed as:

4.4 Predictor-corrector methods (Runge-Kutta) 65

εn+1
i,j =εn

i,j + ∆t θD
(

εn+1
i−1,j − 2εn+1

i,j + εn+1
i+1,j

(∆y)2 +
εn+1

i,j−1 − 2εn+1
i,j + εn+1

i,j+1

(∆x)2

)
+

(1− θ)D
(

εn
i−1,j − 2εn

i,j + εn
i+1,j

(∆y)2 +
εn

i,j−1 − 2εn
i,j + εn

i,j+1

(∆x)2

)
(4.48)

Applying the Fourier transform of the error and dividing by εn
i,j, this can be rewritten as:

G =1− eβm ∆t∆t θD
(

ekx,m∆x − 2 + e−kx,m∆x

(∆x)2 +
eky,m∆y − 2 + e−ky,m∆y

(∆y)2

)
+

∆t(1− θ)D
(

ekx,m∆x − 2 + e−kx,m∆x

(∆x)2 +
eky,m∆y − 2 + e−ky,m∆y

(∆y)2

)
=1− ∆tD

[
eβm ∆tθ + 1− θ

] (ekx,m∆x − 2 + e−kx,m∆x

(∆x)2 +
eky,m∆y − 2 + e−ky,m∆y

(∆y)2

)
(4.49)

By definition, G = eβm ∆t. Furthermore, we know from the previous discussion, that eα − 2 +

e−α = sin2(α/2) and so we can solve for G:

G =
1− ∆tD(1− θ)

1 + ∆tDθ

(
ekx,m∆x − 2 + e−kx,m∆x

(∆x)2 +
eky,m∆y − 2 + e−ky,m∆y

(∆y)2

)
=

1− ∆tD(1− θ)

1 + ∆tDθ

(
4 sin2(kx,m∆x/2)

(∆x)2 +
4 sin(ky,m∆y/2)

(∆y)2

)
(4.50)

We recall that a scheme is stable if |G| ≤ 1. For θ ∈ [0.5, 1], this condition is satisfied for every
∆t, for other θ values, we do a worst case estimation and receive:

∆t ≤ 1
2D (1− 2θ)

[
(∆x)2(∆y)2

(∆x)2 + (∆y)2

]
(4.51)

4.4 Predictor-corrector methods (Runge-Kutta)

As seen previously, it seems that fully explicit methods are ‘at most’ conditionally stable and
only first order accurate. Is there any strategy to build explicit schemes with higher levels of
accuracy and a better stability conditioning? The answer is yes. There are techniques, known

66 Chapter 4: Unsteady Problems

as predictor-corrector methods, in which information of the prediction made by a simple ex-
plicit scheme is not considered as the final result, but instead is used to construct more robust
algorithms. Suppose then we start assuming that

Tn+1 = Tn + ∆t A Tn, (4.52)

Equation (4.52) represents the FE scheme studied previously. Now, instead of assuming the
output of this equation as the final result, we take it as a preliminary prediction and we note it
with˜:

T̃n+1 = Tn + ∆tA Tn ⇐= Predictor (4.53)

The next step is to establish a correction formulation to correct it. A suitable one could be the
Crank-Nicolson method. It yields

Tn+1 = Tn +
1
2

∆t
[

A Tn + A T̃n+1
]

, ⇐= Corrector (4.54)

where the final estimate of Tn+1 is obtained. This two-level method is a good example to
introduce predictor-corrector methods. They are not the best to be used in practice, though,
since the associated stability is not ideal. We can, nevertheless, go further. Let us now introduce
multi-stage methods. These methods aim to use the information given by (A T) at times t that
lay between n∆t < t < (n + 1)∆t. Runge-Kutta formulations belong to this category. Let us
consider the most classical, called explicit Runge-Kutta of order 4 (some times also referred as
RK4). Under this method, the final estimate of Tn+1 is now given by:

Tn+1 = Tn +
1
6

∆t
[

A Tn + 2A Ṫn+1/2 + 2A T̈n+1/2 + A
...
Tn+1

]
︸ ︷︷ ︸

Correction for t=(n+1)∆t

, (4.55)

where

Ṫn+1/2 = Tn +
1
2

∆tA Tn ⇐= Prediction for t = (n + 1/2)∆t (4.56)

T̈n+1/2 = Tn +
1
2

∆t A Ṫn+1/2 ⇐= Correction for t = (n + 1/2)∆t (4.57)
...
Tn+1 = Tn + ∆tA T̈n+1/2 ⇐= Prediction for t = (n + 1)∆t. (4.58)

Note in Eq. (4.55) that the averaging technique used is the Simpson’s rule. It means that the

4.4 Predictor-corrector methods (Runge-Kutta) 67

correction gives more importance (more weight when averaging) to the estimates performed
at times t = (n + 1/2)∆t, the times between the time step intervals, than at times t = n∆t and
t = (n + 1)∆t, i.e. the estimates at the actual intervals. It is also worth to note that Eqs. (4.56)
and (4.57) are based on the FE and BE methods, respectively, whereas Eq. (4.58) is based on the
midpoint rule. The method RK4 is fourth order accurate in time O(∆t)4.

68 Chapter 4: Unsteady Problems

Explicit scheme with ∆t = 1.3 ms Explicit scheme with ∆t = 1 ms Implicit scheme with ∆t = 100 ms

0 5 10
−5

0

5

x

y

t = 0

92

94

96

98

100

0 5 10
−5

0

5

x

y

t = 0

92

94

96

98

100

0 5 10
−5

0

5

x

y

t = 0

92

94

96

98

100

0 5 10
−5

0

5

x

y

t = 0.50

90

92

94

96

98

100

0 5 10
−5

0

5

x

y

t = 0.50

90

92

94

96

98

100

0 5 10
−5

0

5

x
y

t = 0.50

90

92

94

96

98

100

0 5 10
−5

0

5

x

y

t = 1.00

90

92

94

96

98

0 5 10
−5

0

5

x

y

t = 1.00

90

92

94

96

98

100

0 5 10
−5

0

5

x

y

t = 1.00

90

92

94

96

98

100

0 5 10
−5

0

5

x

y

t = 1.22

90

92

94

96

98

0 5 10
−5

0

5

x

y

t = 1.22

90

92

94

96

98

100

0 5 10
−5

0

5

x

y

t = 1.22

90

92

94

96

98

100

0 5 10
−5

0

5

x

y

t = 1.26

80

85

90

95

0 5 10
−5

0

5

x

y

t = 1.26

90

92

94

96

98

100

0 5 10
−5

0

5

x

y

t = 1.26

90

92

94

96

98

100

Figure 4.2: Temporal evolution of temperature field in contour plots. Time in seconds.

4.4 Predictor-corrector methods (Runge-Kutta) 69

Explicit scheme with ∆t = 1.3 ms Explicit scheme with ∆t = 1 ms Implicit scheme with ∆t = 100 ms

0 5 10
−5

0

5

x

y

t = 1.30

0

50

100

150

0 5 10
−5

0

5

x

y

t = 1.30

90

92

94

96

98

100

0 5 10
−5

0

5

x

y

t = 1.30

90

92

94

96

98

100

-
0 5 10

−5

0

5

x

y

t = 2.00

90

92

94

96

98

100

0 5 10
−5

0

5

x

y

t = 2.00

90

92

94

96

98

100

-
0 5 10

−5

0

5

x

y

t = 4.00

90

92

94

96

98

100

0 5 10
−5

0

5

x

y

t = 4.00

90

92

94

96

98

100

Number of iterations = - Number of iterations=4000 Number of iterations=40

Figure 4.3: Temporal evolution of temperature field in contour plots. Time in seconds.

Explicit scheme with ∆t = 1.3 ms Explicit scheme with ∆t = 1 ms Implicit scheme with ∆t = 100 ms

0 5 10 −5
0

580

90

100

y

t = 1.26

x

T

0
5

10 −5
0

590

95

100

y

t = 2.00

x

T

0
5

10 −5
0

590

95

100

y

t = 2.00

x

T

0 5 10−5 0 5
0

50

100

150

y

t = 1.30

x

T

0
5

10 −5
0

590

95

100

y

t = 4.00

x

T

0
5

10 −5
0

590

95

100

y

t = 4.00

x

T

Figure 4.4: Temporal evolution of temperature field in surface plots. Time in seconds.

70 Chapter 4: Unsteady Problems

4.5 Exercises

Stage 1: Merging codes

• Each group is asked to discuss and choose one of the codes written in Session 04.

Stage 2: Coding temporal explicit scheme

• Add a case called ’unsteady’ in solveFVM. In that way, the code will be able to perform
both ’steady’ and ’unsteady’ computations.

• Discretize the time with an explicit scheme. Choose dirichlet Boundary conditions.

• Which should be the stability criterion to use?. Does it change if non rectangular geome-
tries are considered?

• Impose a Neumann BC at the south and Robin BC at north and east. Is the stability
criterion similar as previously ?

Stage 3: Coding temporal θ scheme

• Code the θ temporal scheme

Stage 3: Coding RK4 scheme (Optional)

• Code the RK4 scheme.

• Is there too much difference with respect to the explicit scheme?

5
Sparse Matrices and Linear Solvers

References

[XX1] MORTON, K. W. AND MAYERS, D. F. Numerical Solution of Partial Differential Equations. 2nd editon,
Chp. 7. Cambridge University Press, 2005.

[XX2] SAAD, Y. Iterative Methods for Sparse Linear Systems. 2nd edition. ociety for Industrial and Applied
Mathematics SIAM, 2003.

Objectives

• Get to know, what sparse matrices are and why they require less storage and less computational
effort.

• Get an overview of sparse linear solvers.

• Understand preconditioning techniques.

71

72 Chapter 5: Sparse Matrices and Linear Solvers

Contents
5.1 Sparse matrix . 72

5.2 Iterative solvers and preconditioning . 74

5.3 Preconditioned Richardson iteration . 75

5.4 Projection methods . 77

5.5 Exercises . 79

5.5.1 Useful MATLAB commands . 81

5.5.2 Flowchart . 81

As we have seen in the previous chapters, numerical problems derived from linear PDEs are
reduced to a system of linear equations. As the system dimension grows, also does the com-
putational time and the required storage. In this chapter, we discuss how the so-called sparse
matrices, obtained after discretization, can be optimally stored so that computational efficiency
increases. We will also observe how, for high dimension problems, iterative methods show
better performance with respect to direct methods, provided that a suitable preconditioning
is implemented. In this chapter we offer an overview of basic iterative methods based on the
Richardson iteration. Projection methods, which are more complex approaches, will be also
briefly described.

5.1 Sparse matrix

A linear system is usually described by

Ax = b, (5.1)

where x, b ∈ Rn and A = (aij) ∈ Rn×n. As we can see from Figs. 5.1 and 5.2, a system matrix
derived from PDE discretization contains generally mainly zero entries. Such matrices, pop-
ulated primarily with zeros, are called sparse matrices. As we can observe in these figures, the
ratio of non-zero elements to the possible number of entries n2 further reduces with a growing
number of nodes. This ratio is called the matrix density. This is an outcome of the discretization
stencil which is used. For example the FD stencil in 2D (see Eqs. (2.39) and (2.42)) relates a node
to its four neighbors such that in the linear system a maximum of five entries per line may oc-
cur. It should be clear then that, for high dimensions mainly, the storage of sparse matrices can
be reduced significantly by storing only the nonzero entries. This means that only the values
and the corresponding matrix position of each non-zero entry must be kept. By doing so, the

5.1 Sparse matrix 73

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 735

Figure 5.1: Non-zero pattern of a matrix de-
rived from FV discretization with 100 nodes
(density 0.0735).

0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

nz = 88305

Figure 5.2: Non-zero pattern of a matrix
derived from FV discretization with 10 000
nodes (density 8.8305e-04).

storage scales with the number of nonzero elements, which in turn scales with the number of
nodes n. It is observed then that, when using the sparse format of storage, the storage scales
in a linear way ≈ O(n). This is, indeed, a much better situation with respect to the required
storage in the full format, since it scales quadratically O(n2). In Fig. 5.3 the required storage in
MATLAB is plotted versus the number of unknowns n, where the dashed blue and solid red
line correspond to the sparse and dense matrix, respectively.

Let us take now a look of what happens with the computational effort when either full format
or sparse format is considered and a direct approach is used to solve the linear system. The
computational effort for solving a dense linear system scales with O(n3), when we use, say,
the Gaussian elimination. Operations involving sparse matrices include many zero operations,
and therefore they can be left out from the overall computation. As a result, if a matrix can
be treated in a sparse representation, the computational effort can be reduced significantly.
Figure 5.4 shows the computational time on Intel i7 CPU 3.4 GHz 4K/8T with 16GB Ram to
solve a linear system with n number of unknowns. Despite of the more efficient computation,
the numerical effort scale in most cases over-linearly (O(nc) with 1 < c < 3) when direct
methods are involved to solve a linear system.

74 Chapter 5: Sparse Matrices and Linear Solvers

10
1

10
2

10
3

10
4

10
−4

10
−2

10
0

10
2

10
4

n

st
or

ag
e

[M
B

]

Figure 5.3: Storage in MATLAB for a n-
dimensional sparse (dashed blue) and dense
(solid red) system matrix form the FVM dis-
cretization.

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

10
2

10
4

n

t [
se

c]

Figure 5.4: Compuational time in MAT-
LAB to solve a n-dimensional sparse (dashed
blue) and dense (solid red) system form the
FVM discretization (on Intel i7 CPU 3.4 GHz
4K/8T, 16GB Ram).

5.2 Iterative solvers and preconditioning

In many applications, iterative solvers scale better than direct sparse solvers. The former can
achieve a performance up to a quasi-linear behavior O(n log n). The key for a good perfor-
mance of such iterative solvers is a suitable preconditioning, a technique that we discuss fur-
ther down in this section.

An iterative solver approximates the solution of the linear system step by step until a certain
convergence criterion is satisfied. An indicator for a fast convergence is a small condition number
κ2(A) = ||A||2 ||A||−1

2 . This number can be seen as a measurement of how much the solution
x can change (how sensitive it is) for a small change in the right-hand side b. The condition
number is by definition greater or equal 1, being 1 for the identity matrix.

In practice, it is often not recommended to solve directly the original system (5.1) since the ma-
trix A might be associated with a big value of κ2 . Instead, a modified, so called preconditioned,
system is solved in order to improve the conditioning of the problem. For left preconditioning,
this is done by multiplying the system with a full range matrix C−1 ∈ Rn×n as:

C−1Ax = C−1b. (5.2)

The matrix C is called preconditioner. The above system has the same solution as the original

5.3 Preconditioned Richardson iteration 75

system but, with an appropriate choice of the preconditioner, the iteration convergences much
faster and the solver is hence more efficient. Usually, the matrix C−1 is not built explicitly,
but instead C−1 is applied at every iteration step in an implicit way. Choosing A as precondi-
tioner would be ideal, since κ2(A−1A) = 1. However, we would have to apply A−1, which is
practically the solution of the original problem. We choose then a preconditioner which is

• close to the original system matrix A

• cheap to apply.

5.3 Preconditioned Richardson iteration

A basic iterative solver is the Richardson iteration. Here at every iteration step m, the residual
b− Ax is added to the current iteration values x(m). Using preconditioning, the preconditioned
residual w(m) = C−1

(
b− Ax(m)

)
is added instead. Many iterative solvers are in fact such of a

solver with a particular preconditioner. This method is shown in Algorithm 5.1.

Algorithm 5.1 Preconditioned Richardson iteration

Guess initial value x(0)

while not converged do
w(m) = C−1

(
b− Ax(m))

)
x(m+1) = x(m) + w(m)

end while

We want to discuss when this iteration converges and therefore we rewrite the iteration as a
fixed point iteration. Let x∗ be the unique solution of Eq. (5.1) and e(m) = x(m) − x∗ the error
at the m-th iteration step. Furthermore, we define the iteration matrix T =

(
I − C−1A

)
, where I

denotes the n dimensional identity matrix. Then we get

e(m+1) = x(m) + C−1
(

b− Ax(m)
)
− x∗

= e(m) + C−1b︸ ︷︷ ︸
=C−1 Ax∗

−C−1Ax(m)

= (I − C−1A)e(m)

= Te(m)

= Tke(0) (5.3)

Thus, it follows that the iteration convergences for every initial value x(0) and every right-hand
side b, iff1 limm→∞ Tm = 0. This is the case, iff all absolute values of the eigenvalues λj of T are

1“iff” is an common abbreviation for “if and only if”.

76 Chapter 5: Sparse Matrices and Linear Solvers

less than 1. In terms of the spectral radius ρ(T) ≡ maxj
∣∣λj(T)

∣∣, this criterion can be written as

ρ(T) < 1. (5.4)

This means that the preconditioned Richardson iteration can also diverge! Only with a suitable
preconditioning, it converges. The concrete procedure depends on the choice of the precondi-
tioner C. Some classical solvers are listed in the following. Hereby, we split the matrix A into
its diagonal D as well as into its strict lower part E and strict upper part F, so A = D + E + F.

• Jacobi iteration: Taking the diagonal D as preconditioner leads to the Jacobi iteration. We
formulate this method in its classical pseudo code: Since D is diagonal, its diagonal values
aii act only on the corresponding line i of the system. Accordingly, at the m-iteration step,
we have to solve for the i-th line:

x(m+1)
i = x(m)

i +
1
aii

(
bi −

n

∑
j=1

aij x(m)
j

)

=
1
aii

(
bi −∑

j 6=i
aij x(m)

j

)
(5.5)

So when does this procedure convergence? We already know the answer, namely if
ρ
(

I − D−1A
)
< 1. Using the Gershgorin circle theorem, it can be shown that this crite-

rion is satisfied for diagonally dominant matrices. Such a matrix is a matrix, where

|aii| ≥∑
j 6=i

∣∣aij
∣∣ ∀i (5.6)

holds. Most matrices from discretization schemes satisfy this condition, e. g. for the FD
scheme (see Eq. (2.42)) every diagonal entry is formed as the sum over the other entries
in the same line. Other examples of methods which can be formulated as preconditioned
Richardson iteration are:

• Gauss-Seidel: Here, not only the diagonal but also lower part is used for preconditioning.
Thus, the preconditioner C = (D + E). In comparison to the Jacobi iteration, this method
converges mostly faster and more often but on the other hand is is a bit more laborious.

• SOR: The co-called successive over relaxation uses C = 1
ω (D + ωE) with the relaxation

factor ω ∈ (0, 2). For large values of ω, the relaxation factor can speed up the convergence
in comparison to the Gauss-Seidel method but it can also lead to a more unstable iteration.
Small relaxation factors (from zero to one) can lead to a stable iteration, where Gauss-
Seidel is unstable.

As we have seen previously, these methods do not converge for all linear systems. But similar
to criterion (5.4), convergence can be guaranteed for many practical cases.

5.4 Projection methods 77

Rn
x0

x∗

(a) Choosing a start vector x(0).

Rn
x0

x∗

x1

K1

(b) Solving the minimization prob-
lem on K1.

Rn
x0

x∗

x1

x2

K2

K1

(c) Solving the minimization prob-
lem on K2.

Figure 5.5: Sketch of the procedure of projection methods.

5.4 Projection methods

Powerful tools are the so called projection methods. Here, a brief description of two approaches is
given: the CG-method (conjugate gradient method) and GMRES (generalized minimal residual
method). For details we refer to [XX2]. Both CG and GMRES, approximate the solution on a
specific subspace, the so called Krylov space

Km = x(0) + span{r(0), Ar(0), ..., Am−1r(0)} ⊂ Rn, (5.7)

where r(0) =
(

b− Ax(0)
)
∈ Rn denotes the initial residual vector. Now, at the m iteration step

a minimization problem is solved on this subspace. For CG,

x(m) = argmin
x∈Km

(
1
2

xTC−1Ax− xTb
)

(5.8)

and for GMRES
x(m) = argmin

x∈Km

∣∣∣∣∣∣C−1(b− Ax)
∣∣∣∣∣∣

2
. (5.9)

If the residual is small enough, the procedure is stop, otherwise the Km is extended to K(m+1)

and the minimization problem is solved on a larger space. This is repeated until the residual is
below a certain boarder. For both problems, there exist very efficient implementations.

This iteration is illustrated in Fig. 5.5 where the exact solution is denoted as x∗. In the first step,
a initial value x(0) (Fig. 5.5(a)) is set and a one-dimensional spaceK1 is constructed (Fig. 5.5(b)).
Subsequently, the problem is projected on that subspace, i.e. the minimization problem is
solved over the one-dimensional region. If the residual r1 = b − Ax1 is too large, we have
to extend the space by one dimension, which leads to the 2D space K2 shown in (Fig. 5.5(c)).
The the minimization problem is then solved on that space and we obtain x2. We decide to
continue the procedure, if the residual r2 is still too large, otherwise we can stop the iteration.
It can be shown that by further increasing the space dimension, the residual reduces or stays
constant but never grows (a monotonical decay of the residual).

78 Chapter 5: Sparse Matrices and Linear Solvers

The CG-method can only be used for symmetrical matrices A (i. e. AT = A) whereas GMRES
can be used for all types of systems. With exact arithmetic 2, these projection methods converge
for every linear system. Since a single iteration step is more expensive than for the Richardson
iteration, the performance of projection methods highly depends on a suitable preconditioner.
Moreover, as in the case of methods based on the Richardson iteration, these methods only
show a good performance, if A is sparse!

2Note that the case of exact arithmetic is an ideal case. When computers are used, the machine error is introduced
and, although these errors are very small (of the order of 2−52 for a machine with double precision), exact arithmetic
cannot be argued.

5.5 Exercises 79

5.5 Exercises

Stage 1: Unifying a code

• Each group is asked either to merge the codes or chose one code (those written in Session
04). The important point here is to spend some time sharing ideas about the way of
coding.

Stage 2: Sparse Matrices (obtained from steady problems)

• Use the command spy to visualize the structure of your matrix.

• As observed in the lecture, storing and computing matrices in the sparse form leads to
considerable improvements in computational efficiency. The first to do is then to ’re-
write’ the code considering sparse matrices (indeed it resumes in expressing the matrix
A in the sparse format).

• Compare computational time invested and computational storage of A when using ei-
ther sparse or full formats. Use the commands tic and toc for time and whos for storage.
Generate two figures similar to Figs. 5.4 and 5.3 (three different cases to generate those
plots should be enough).

Stage 3: Iterative solvers 1

The backslash operator is a very efficient matlab routine to solve linear systems. This is due
mainly to two reasons: 1) It uses different approaches depending on the structure of the matrix
(square, diagonal, three-diagonal, symmetric, full , etc). 2) The selected approach is actually a
set of Basic Linear Algebra Subprograms (BLAS). These subprograms or routines are already
compiled (binary format) and therefore directly accessible for the computer. Sometimes, BLAS
routines also are optimized to manage the way memory (RAM, Cache) works for a given com-
puter.

Therefore, there is no point in comparing the backslash operator with ’self-made’ matlab rou-
tines to solve linear systems. A comparison would be fair, at least, if pre-compiled version of
the self-made routines are used so that our computers do not have to ‘waste’ time compiling:
converting the very high-level language (Matlab) to machine language (binary).

What is possible is to compare self-made routines with self-made routines and, by doing so, to
compare basic iterative methods for solving linear systems. At this point it is important to see
the influence of preconditioning approaches and its influence in the convergence of the solution
on problem

• Derive and code one algorithm for Jacobi, Gauss-Seidel and SOR, respectively.

80 Chapter 5: Sparse Matrices and Linear Solvers

• Create a random diagonal dominant matrix and a random vector b. Use Jacobi, Gauss-
Seidel and SOR to solve the corresponding linear system.

• Create a random three-diagonal dominant matrix and a random vector b. Use Jacobi,
Gauss-Seidel and SOR to solve the corresponding linear system.

• Create a full random matrix and a random vector b. Use Jacobi, Gauss-Seidel and SOR to
solve the corresponding linear system.

• Plot residual Vs number of iterations (One figure for each case) for a 100× 100 matrix.

note: use the command rand to create random arrays.

Stage 4: Iterative solvers 2

• Use Jacobi, Gauss-Seidel and SOR to solve the linear system given by the discretization
of the 2D heat Equation (finite volumes)

• Plot residual Vs number of iterations

Stage 5: The wall of fame (or shame)

• Each group is asked to compute the time invested to solve a given problem (given in class)
considering the best algorithm between Jacobi, Gauss-Seidel and SOR (time is taken just
before and after solving the linear system). Afterwards the code should be given so that
either Armin or I test it. We will put the final classification of names and times on a big
poster: the wall of fame.

• The stop parameter should be defined as

ε ≤ ‖b− Ax ‖2

‖b ‖2
(5.10)

where ‖ · ‖2 is recognized as the Euclidean norm and ε = 0.01. Stop if more than 2000
iterations are needed.

Stage 6: Very large matrices (optional)

• Use the best method between Jacobi, Gauss-Seidel and SOR to compare it with gmres
(already implemented in matlab). Use different sizes (medium, large, very large) of ma-
trices. Which one perform better?

5.5 Exercises 81

5.5.1 Useful MATLAB commands

max(eig(A)) Gives the largest eigenvalue of matrix A which is equal to the spectral
radius ρ of the matrix.

spy(A) Plots the structure of non-zero elements of matrix A. Non-zero ele-
ments are depicted as a dot.

tic
toc

the command tic starts a timer. The value of the timer is returned by
calling toc.

whos(A) This function gives you information about the memory used by the
matrix (or variable) A.

rand(n) Creates a dense n × n matrix filled with decimal values in the range
[0, 1].

5.5.2 Flowchart

FVM_main.m

InitFVM.m

setUpMesh.m

solveFVM.m

post.m

stamp.m

l, h, λ, ...

formfunction, ...

X, Y

T, X, Y, ...

T, ...

X, Y, ...

stencil, b

T, X, Y, ...

iterative
Solver.m

T, A, b

T

6
Green’s functions

References

[1] Kevin D. Cole, James V. Beck, A. Haiji-Sheik, and Bahman Litkouhi. Heat conduction using Green’s
functions. CRC Press, 2011.

Objectives

• Understand the great utility of Green’s functions together with its corresponding advantages and
disadvantages when solving partial differential equations.

82

6.1 Green’s function solution equation for the steady heat equation 83

Contents
6.1 Green’s function solution equation for the steady heat equation 83

6.2 Treatment of boundary conditions . 85

6.3 Derivation of the Green’s function for a simple problem 87

6.4 What to integrate? (Warning) . 89

6.5 Green’s functions for a rectangular domain . 90

6.6 Discussion . 92

6.7 Exercises . 92

6.7.1 Useful MATLAB commands . 94

So far, we have studied how to discretize the 2D heat equation in space and time. Space dis-
cretization was carried out by finite differences and finite volumes whereas time discretization
was performed using both explicit and implicit schemes. Finite differences was applied in a
rectangular geometry, whereas finite volumes was carried out on a non-Cartesian domain. In-
deed, analytical solutions exist for solving the unsteady/steady heat equation on a rectangular
topology and, as stated before, an analytical solution should be considered instead of a numer-
ical approach if the analytical solution is both available and feasible. Generally, an analytical
solution is derived for one specific partial differential equation with defined boundary condi-
tions and is valid only for that case. Actually, if the partial differential equation remains the
same and only small changes are applied to BC or to a given source, the previous analytical so-
lution does not hold anymore and another analytical derivation must be performed. It would
be very helpful, if the departing point of such derivations is the same for several different
boundary and initial conditions. Indeed, such a procedure exists in the framework of Green’s
functions.

6.1 Green’s function solution equation for the steady heat equation

The general solution of the heat equation in terms of Green’s Function (GF) also comprises the
unsteady version. Nevertheless, we will not consider variations in time in the solution. First of
all, let us recall the steady heat equation:

(
∂2T
∂x2 +

∂2T
∂y2

)
+

1
λ

ω̇(x, y) = 0, (6.1)

where ω̇ denotes a given source of heat placed at (x, y). Let us assume now that there is an
auxilary problem defined by

84 Chapter 6: Green’s functions

(
∂2G
∂x2 +

∂2G
∂y2

)
+ δ(x− xs) = 0, (6.2)

where G(x|xs) represents a GF. This function should be read as ‘the measurement of G at the
observation point x = (x, y) due to a pulse δ produced at position xs = (xs, ys)’. The function
δ represents the Dirac delta function which is mainly defined by its filter property:

∫ ∞

−∞
f (x)δ(x− xs) dx = f (xs) (6.3)

for a given function f (x). An important property of Green’s functions is called ‘reciprocity’
and is expressed as

G(x|xs) = G(xs|x). (6.4)

Based on the reciprocity property, we can then express Eqs. (6.1) and (6.2) in terms of xs as

(
∂2T
∂x2

s
+

∂2T
∂y2

s

)
+

1
λ

ω̇(xs, ys) = 0 and
(

∂2G
∂x2

s
+

∂G
∂y2

s

)
+ δ(x− xs) = 0. (6.5)

Subsequently, we multiply the first expression by G and the second expression by T and sub-
tract the last from the former. The general equation results after integrating over the control
area S containing the source.

∫
S

G
(

∂2T
∂x2

s
+

∂2T
∂y2

s

)
dxs +

1
λ

∫
S

G ω̇ dxs −
∫

S
T
(

∂2G
∂x2

s
+

∂2G
∂y2

s

)
dxs −

∫
S

Tδ(x− xs) dxs = 0.

(6.6)

Reordering Eq. (6.6) and knowing that
∫

S T(xs)δ(x− xs) dxs = T(x) results in

T(x) =
1
λ

∫
S

G ω̇ dxs +
∫

S

[
G
(

∂2T
∂x2

s
+

∂2T
∂y2

s

)
− T

(
∂2G
∂x2

s
+

∂2G
∂y2

s

)]
dxs. (6.7)

Leaving the first term on the RHS of Eq. (6.7) unchanged and applying Green’s second identity
on the second, leads to

T(x) =
1
λ

∫
S

G ω̇ dxs +
∮

∂S

[
G
(

∂T
∂xs

+
∂T
∂ys

)
− T

(
∂G
∂xs

+
∂G
∂ys

)]
· n dls. (6.8)

Equation (6.8) is the solution of the 2D steady heat equation. The first term on the RHS repre-

6.2 Treatment of boundary conditions 85

sents the contribution of the source term ω̇, whereas the second term accounts for the influence
of boundary conditions on the final distribution of temperature T(x). For the 1D case, Eq. (6.8)
reduces to

T(x) =
1
λ

∫
G ω̇ dxs +

[
G

dT
dxs
− T

dG
dxs

]E

W

(6.9)

6.2 Treatment of boundary conditions

Equation (6.8) holds for any 2D domain. Nevertheless, Green functions are not simple to obtain
(or do not exist) for complex geometries. We will consider, consequently, a 2D rectangular
domain as shown in Fig. 6.1. For that case, the second term of Eq. (6.8) can be developed as
follows:

x

y

Lx

Ly

0

(xs, ys)

Figure 6.1: 2D rectangular domain.

∮
∂S

[
G
(

∂T
∂xs

+
∂T
∂ys

)
− T

(
∂G
∂xs

+
∂G
∂ys

)]
· n dls

=
∫

lE

(
G

∂T
∂xs
− T

∂G
∂xs

)
· n dys +

∫
lN

(
G

∂T
∂ys
− T

∂G
∂ys

)
· n dxs

+
∫

lW

(
G

∂T
∂xs
− T

∂G
∂xs

)
· n dys +

∫
lS

(
G

∂T
∂ys
− T

∂G
∂ys

)
· n dxs

(6.10)

where lE, lN, lW and lS stand for the contour lines at east, north, west, and south, respec-
tively. The boundary conditions for the auxiliary problem (Eq. (6.2)) are always homogeneous.
Equations (6.11) to (6.13) list the definition of BC for both the actual problem and the auxiliary
problem taking as an example the West or East boundary.

86 Chapter 6: Green’s functions

• Dirichlet
T(Lx, ys) = f (ys) and G(Lx, ys) = 0 (6.11)

• Neumann
∂T(Lx, ys)

∂xs
· n =

q̇(Lx, ys)

λ
and

∂G(Lx, ys)

∂xs
· n = 0 (6.12)

• Robin

λ
∂T(Lx, ys)

∂xs
·n+ α [T(Lx, ys)− T∞(Lx, ys)] = 0 and λ

∂G(Lx, ys)

∂xs
·n+ αG(Lx, ys) = 0

(6.13)

Following the procedure introduced before, we multiply the BC of the actual problem by G and
the BC of the auxiliary problem by T, and we substract the last from the former. It yields

• Dirichlet
TG− GT = G f (6.14)

• Neumann (
G

∂T
∂xs
− T

∂G
∂xs

)
· n =

Gq̇
λ

, (6.15)

• Robin (
G

∂T
∂xs
− T

∂G
∂xs

)
· n =

αGT∞

λ
(6.16)

where the dependence on Lx and ys has been implicitly taken into account. Equation (6.14) is
of non utility since it does not give any additional information with respect to what we already
knew, namely that G = 0 at this boundary. On the contrary, Eqs. (6.15) and (6.16) clearly show
an evaluation of the expression inside the integral of the first term at the RHS of Eq. (6.10). Let
us now assume a problem in which:

• East→ Robin BC is applied

• North→ Robin BC is applied

• West→ Dirichlet BC is applied

• South→ Neuman BC is applied.

The solution of this particular problem for the 2D heat equation, after replacing Eqs. (6.15) and
Eq. (6.16) into Eq. (6.8), reads:

6.3 Derivation of the Green’s function for a simple problem 87

T(x, y) =
1
λ

∫
S

G ω̇ dysdxs +
1
λ

∫
lE

αGT∞kdys +
1
λ

∫
lN

αGT∞dxs +
∫

lW
T

∂G
∂xs

dys +
1
λ

∫
lS

Gq̇ dxs.

(6.17)

It is important to realize that all terms concerning Neumann or Robin BC will always be posi-
tive defined for any boundary. On the contrary, the term corresponding to Dirichlet BC will be
positive for South and W whereas it will be negative for East and North boundaries.

6.3 Derivation of the Green’s function for a simple problem

Until now we have mentioned ‘Green’s functions’ several times but they remain still somehow
abstract. The idea of this section is to derive the GF for a simple configuration so that we get an
idea of how they look like. At the end of this section some Green functions will be listed that
correspond to the solution of the 1D heat equation for several types of boundary conditions.
Let us then start by defining the 1D heat equation corresponding to the auxiliary problem. It
reads as

d2G(x|xs)

dx2 + δ(x− xs) = 0 for 0 < x < L, (6.18)

where xs is associated with the position of the source and is placed somewhere between 0 and
L. Let us now define the boundary conditions as follows:

G(0) = 0 at the inlet
dG(L)

dx
= 0 at the outlet (6.19)

In order to remove the singularity of the differential equation induced by the δ−source, the
strategy is now to decompose the domain into two sub-domains:

d2G1(x|xs)

dx2 = 0 for 0 < x < xs (6.20)

d2G2(x|xs)

dx2 = 0 for xs < x < L. (6.21)

Now, we have two problems to solve. The solutions are easily obtained by integration, so that

88 Chapter 6: Green’s functions

G1(x|xs) = C1x + C2 for 0 < x < xs (6.22)

G2(x|xs) = C3x + C4 for xs < x < L, (6.23)

where C1, C2, C3 and C4 are constants to be defined by four different equations. Two of these
equations are the boundary conditions defined in Eq. (6.19). The third equation comes from a
continuity condition G1(x|xs) = G2(x|xs) when x = xs so that

C1xs + C2 = C3xs + C4. (6.24)

The last equation arises by integrating the ‘missing’ part of the problem, i. e. by integrating
Eq. (6.18) in a region xs− ε < xs < xs + ε, where ε is a very small number. This condition reads
as

∫ xs+ε

xs−ε
λ

d2G(x|xs)

dx2 dx = −
∫ xs+ε

xs−ε
δ(x− xs) dx. (6.25)

This leads for ε→ 0 to

λ
dG(x|xs)

dx

∣∣∣∣xs

xs

= −1
dG2(x|xs)

dx
− dG1(x|xs)

dx
= −1.

Therefore, the fourth condition is expressed as

C3 − C1 = −1. (6.26)

Resolving Eqs. (6.19), (6.24), and (6.26) yields: C1 = 1, C2 = 0, C3 = 0 and C4 = xs. The Green’s
function for the problem defined by Eqs. (6.18) and (6.19) reads as

G(x|xs) =

{
x for 0 < x < xs

xs for xs < x < L
. (6.27)

In Table 6.1, we list some Green’s functions of our interest. Note that the suffixes in the column
‘Case’ stand for (1) Dirichlet BC, (2) Neumann BC and (3) Robing BC.

6.4 What to integrate? (Warning) 89

Case
Boundary Conditions Green Function

Inlet Outlet 0 < x < xs xs < x < L

X11 G(0|xs) = 0 G(L|xs) = 0 x(1− xs/L) xs(1− x/L)

X12 G(0|xs) = 0 dG(L|xs)
dx = 0 x xs

X13 G(0|xs) = 0 λ
dG(L|xs)

dx + TG(L|xs) = 0 x[1− B2(xs/L)/(1 + B2)] xs[1− B2(x/L)/(1 + B2)]

X23 dG(0|xs)
dx = 0 λ

dG(L|xs)
dx + TG(L|xs) = 0 L(1 + 1/B2 − xs/L) L(1 + 1/B2 − x/L)

X33
λ

dG(0|xs)
dx + TG(0|xs) = 0← Inlet (B1B2x + B1x− B1B2xxs/L (B1B2xs + B1xs − B1B2xxs/L

λ
dG(L|xs)

dx + TG(L|xs) = 0← Outlet −B2xs + B2L + L)/C −B2x + B2L + L)/C

where B1 = α1L/λ, B2 = α2L/λ and C = B1B2 + B1 + B2

Table 6.1: Some Green’s function of interest that satisfy the 1D steady heat equation. Taken

from [1].

6.4 What to integrate? (Warning)

Even for a simple case, such that one of Eq. (6.27), some confusion may be caused when inte-
grating. Let us assume we want to integrate that 1D Green’s function of Eq. (6.27) within the
domain 0 < x < L:

∫ L

0
G(x|xs) dxs, where G(x|xs) =

{
Ga = x for 0 < x < xs

Gb = xs for xs < x < L
. (6.28)

Should we do

∫ xs=x

xs=0
Ga dxs +

∫ xs=L

xs=x
Gb dxs︸ ︷︷ ︸

Option 1

or
∫ xs=x

xs=0
Gb dxs +

∫ xs=L

xs=x
Ga dxs︸ ︷︷ ︸

Option 2

? (6.29)

Option 1 is incorrect, thus option 2 is the one we must choose. Indeed, the first integral cor-
respond to the region 0 < xs < x whereas the second integral lies between x < xs < L (note
that the integration is performed with respect to xs and not with respect to x). Accordingly, Gb

corresponds to the first integral since xs < x and Ga with the second integral since x < xs.

90 Chapter 6: Green’s functions

Case
Green’s Function

Eigenfunction Xm(x) Eigenvalue βm, m = 1, 2, ... Norm Nx

X11 sin(βmx) βm = mπ/L, L/2

X12 sin(βmx) βm = (2m− 1)π/2L L/2

X13 sin(βmx) βmLcot(βmL) + B2 = 0 L/(2φ2m)

X23 cos(βmx) βmL tan(βmL)− B2 = 0 L/(2φ2m)

X33
βmL cos(βmx) tan(βmL)

L/(2φm)
+ B1 sin(βmx) +[βm(α1 + α2)/λ]/(β2

m − α1α2λ−2) = 0

where Bi = αi L/λ, φim = (β2
mL2 + B2

i)/(β2
mL2 + B2

i + Bi) and Φm = φ2m/(β2
mL2 + B2

1 + B1φ2m)

Table 6.2: Some Green’s function of interest that satisfy the 1D steady heat equation. (Series

version).

6.5 Green’s functions for a rectangular domain

The Green’s functions listed in Table 6.1 are very useful in the study of steady heat conduction
in a one-dimensional domain. However, they are not unique: another family of Green’s func-
tions exist for 1D steady heat conduction. This family is based on a series expansion and is
expressed as:

G(x|xs) =
∞

∑
m=1

1
β2

m

Xm(x)Xm(xs)

Nx
for 0 < x < Lx, (6.30)

where Xm(x) and βm denote a mth eigenfunction of the system and a mth eigenvalue of the
system, respectively. Nx represents the norm of the mth eigenfunction1. The eigenfunctions
Xm(x) and eigenvalues βm for several boundary conditions are listed in table 6.30.

In practice, Green’s functions expressed as series have an important disadvantage with respect
to Green’s functions expressed as polynomials (see Table 6.1): the solution based on the former
is accurate as long as a sufficient number of terms is included in the sum. On the one hand,
when considering homogeneous Dirichlet BC (T = 0), this is actually not a problem since no
more than six terms are usually needed in order to get a sufficiently accurate solution. On
the other hand, when non-homogenous Dirichlet BC make part of the problem, a convergence
problem arise. In such a case, hundreds of terms are most of the time necessary to reach a ‘fair’
solution. Figure 6.2 shows an example of the difficulty of the series based Green’s functions to
obtain correct values of T close to the boundaries, in the case in which a temperature different
from zero at the boundaries is imposed. This difficulty is highly visible at points very close to
Dirichlet boundaries and is the reason why a more refined discretization may perform worse

1Xm(x) and βm are called eigenfunction and eigenvalue, respectively, because they satisfy d2Xm(x)
dx2 + βmX(x) = 0.

6.5 Green’s functions for a rectangular domain 91

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

1.5

2

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

1.5

2

(a) (b)

Figure 6.2: Illustration of Gibbs phenomenon with Green’s function series of 80 terms. (a)
∆x, ∆y = 0.025 (b) ∆x, ∆y = 0.0125.

than a coarse one. Indeed, this kind of problem is recognized as the Gibbs phenomenon.

Although GFs based on series do not behave as well as GFs based on polynomials, they are
of relevance since Green’s function formulations for 2D and 3D Cartesian geometries are most
of the time based on them. A Green’s function associated to the steady heat equation in a
rectangular domain must satisfy

∂2G2D(x, y|xs, ys)

∂x2 +
∂2G2D(x, y|xs, ys)

∂y2 + δ(x− xs)δ(y− ys) = 0 for 0 < x < Lx; 0 < y < Ly.

(6.31)

By combining two 1D Green’s functions (Eq. (6.30) for x and y directions), a Green’s function
for a rectangular domain is constructed as

G2D(x, y|xs, ys) =
∞

∑
m=1

∞

∑
n=1

1
β2

m + θ2
n

Xm(x)Xm(xs)

Nx

Yn(y)Yn(ys)

Ny
for 0 < x < Lx; 0 < y < Ly,

(6.32)

where Yn(y) and θn denote a nth eigenfunction and a nth eigenvalue, respectively. Ny represents
the norm of the nth eigenfunction Yn(y). Values for Yn(y), θn and Ny are found in Table 6.2 by
replacing x by y and m by n.

92 Chapter 6: Green’s functions

6.6 Discussion

It might be dissapointing that an analytical solution, such as the one expressed in Eq. (6.32),
remains difficult to compute, specially for non-homogeneous Dirichlet boundary conditions.
One may question then the utility of such an approach and, instead, prefer to solve the 2D heat
equation by finite differences, for instance. Nevertheless, it is important to highlight the insight
that the analytical solution based on Green’s functions (see Eqs. (6.8) and (6.17)) give us. The
first remarkable feature of a solution of the heat equation is that the distribution of temperature
in the domain under study can be expressed as a superposition of solutions that correspond to
both a given source and the boundary conditions of the system. A second remarkable feature
is that, in contrast to the integrals associated to BC (see (6.17)), the integral associated to a
source is very easily computed using a GF, as the one of Eq. (6.32), since it converges very fast.
Moreover, since the integral is only performed over the domain in which the source is located,
a very accurate computation may result if highly refining only the source domain. This is a
much simpler approach than applying finite differences with a non-uniform mesh, so that only
mesh refinement is performed in the region of the source. Since the final objective is to solve
the heat equation (in 2D for our particular case) as accurately and computationally cheap as
possible, a good idea is to combine numerical methods (finite differences, finite volumes or
finite elements) with Green’s functions. Whereas the former are used to compute the temper-
ature distribution due to boundary conditions, the later is implemented to study the effect of
heat sources within the domain. It is interesting to note that a complete study of the influence
of heat sources on a given thermal system can be performed very efficiently by computing only
once the temperature field due to BC, and then GF as many times as desired for the heat sources
of interest.

6.7 Exercises

Stage 1: Numerical integration

Before implementing Green’s functions, it is useful first to refresh our minds about numerical
integration with the matlab function trapz

• Perform

∫ 2

0
x dx (6.33)

Note: The result should be a scalar.

• Perform and plot the corresponding result

6.7 Exercises 93

∫ 2

0

∫ 2

0
cos(xs) sin(ys) dxsdys (6.34)

Note: the result should be a scalar

Stage 2: 2D Green’s functions

For this stage, the GF of table 6.2 are considered. Compute the solution of the 2D steady heat
equation based on Eq. (6.8) with the Green’s function given by Eq. (6.32)

Define three points (x, y) for the observer and

• Consider a source distributed uniformly allong the domain. Take into account

– No Boundary conditions (take the GF as if there were Dirichlet boundaries)

– No Boundary conditions (take GF corresponding to Neumann BC for both North
and East and Dirichlet BC on West and South.)

• Consider a source distributed uniformly but only in a small region of the domain. Here
it is possible to create a mesh for the source entouring only the region of the source. Use

– No Boundary conditions (take the GF as if there were Dirichlet boundaries)

– No Boundary conditions (take GF corresponding to Neumann BC for both North
and East and Dirichlet BC on West and South.)

Define a whole field (x, y) for the observer and

• Consider a source distributed uniformly allong the domain. Take into account

– No Boundary conditions (take the GF as if there were Dirichlet boundaries)

– No Boundary conditions (take GF corresponding to Neumann BC for both North
and East and Dirichlet BC on West and South.)

• Consider a source distributed uniformly but only in a small region of the domain. Here
it is possible to create a mesh for the source entouring only the region of the source. Use

– No Boundary conditions (take the GF as if there were Dirichlet boundaries)

– No Boundary conditions (take GF corresponding to Neumann BC for both North
and East and Dirichlet BC on West and South.)

Stage 3: 2D Green’s functions and FD (or FV)

Green’s functions expressed as series can perform poorly when non-homogeneous Dirichlet BC
are applied. Remember that one of the most important ‘take away’ ideas of solutions based on

94 Chapter 6: Green’s functions

GF is that these can be explained as a superposition (contribution) of source and boundaries.
Therefore

• Compute a given problem in Finite Differences for a given set of boundary conditions.

• Compute one set up of that domain for several distribution of sources using Green func-
tions.

• Compute the final solution by adding the contribution of BC computed by FD with the
contribution of the source given by GF.

Stage 4: 2D Green’s functions: Robin BC (optional)

From table 6.2 it is observed that the eigenvalues βm for Robin BC are not given explicitly.
Indeed, the values of βm depend on the values of α and k and should be found by solving the
equation shown in table 6.2 (column 2) for each m. Consequently, applying Robin BC by the
approach of Green’s functions might become really expensive.

• Use Robin BC for both North and East and Dirichlet BC on West and South.

6.7.1 Useful MATLAB commands

trapz(X,Y) Computes the integral of Y with respect to X using trapezoidal integra-
tion

7
Optimization

References

[1] VENKATARAMAN P. Applied Optimization with MATLAB programming. John Wiley and Sons, 2009.

[2] ULBRICH M. Grundlagen der Nichtlinearen Optimierung. Zentrum Mathematik, Technische Univer-
sität München. 2009

[3] POLIFKE, W., AND KOPITZ, J. Wärmeübertragung. Grundlagen, analytische und numerische Methoden.
Pearson Studium, 2005.

[4] SCHMIDT, E. Die Wärmeübertragung durch Rippen. Z. des VDI, 70(26) 1926.

Objectives

• Understand the utility of combining optimization tools, such as the ones found in matlab, with
discretizaton schemes of a given PDE.

95

96 Chapter 7: Optimization

Contents
7.1 Statement of the problem . 96

7.2 Formulation and Optimality Condition . 98

7.3 Gradient Descent . 99

7.4 Newton’s Method . 99

7.5 Constrained optimization: the method of Lagrange multipliers 101

7.6 Quasi-1D approximation of a fin . 102

7.7 Exercises: Optimal Cooling Fin Shape . 105

7.7.1 Useful MATLAB commands . 106

7.7.2 Flowchart . 106

How does the optimal cooling fin look like? which are the optimal operating conditions for
a given wing to maximize lift and minimize drag? Finding an optimal configuration is an
issue that arise in many engineering applications. Most of the time, such problems cannot be
solved on paper. In this chapter, we have a look on how such optimization problems can be
mathematically formulated and numerically solved.

7.1 Statement of the problem

The statement of the problem starts by defining an objective function z1:

z = f (x) (7.1)

which depends on n scalar variables x = (x1, x2 · · · xn). It is natural also that the variables x
satisfy some given constrains:

gi(x) ≤,= or ,≥ bi (7.2)

It should be noted that the number of inequality constraints must not be greater than the num-
ber of variables since, in such a case, the problem would be overspecified. In the following we
describe some of the most common particular problems of optimization.

• General constrained optimization problem: This is indeed the more general problem in
optimization. Both the objective function and the constrains may be non-linear and the
constraints can be associated with inequalities.

1The objective function is also known with other names such as cost function, energy function, utility function,
etc.

7.1 Statement of the problem 97

• Classical optimization problem: Both the objection function and the constrains may be
non-linear and the constrains are only associated with equations (no inequalities).

– Linear programming problem: Both the objective function and the constrains are linear.

– Non-linear programming problem: At least one constrain or the objective function is
non-linear

– Quadratic programming problem: The objective function is quadratic whereas the con-
strains are linear.

– General unconstrained problem: The objective function may be non-linear. There are
no constrains.

An ’optimal’ method to solve all these problems does not exist. Instead, there is a very large
range of methods specialized in eache of these subproblems.

In most of the cases, a general constrained optimization problem can be stated as a classical
optimization problem. For doing so, the inequalities should be ‘transformed’ to equations by
introducing the so called slack and surplus variables. For example, the inequalities

g1(x) ≤ b1, g2(x) ≥ b2 (7.3)

are equivalent to

g1(x) + xn+1 = b1, g2(x)− xn+2 = b2 provided that xn+1, xn+1 ≥ 0, (7.4)

where xn+1 and xn+2 are the slack variable and the surplus variable, respectively. Now that we
have seen that almost all problems can be treated as classical optimization problems, we can
then classify the corresponding methods (algorithms) in three:

• The most simple algorithms are based on the so called search methods. In this case, only
the evaluation of the objective function at certain points is necessary. Although each
iteration of one of these algorithms is generally computationally cheap, the number of
iterations needed to find a reliable solution is sometimes very high.

• When the estimation of the first order derivative of the objective function can be com-
puted or, at least, modelled for a defined region, methods may consider this additional
information to compute the optimal solution. Convergence is generally improved with
respect to search methods. Popular methods in this group are Quasi-Newton methods,
interior point methods and gradient descent methods

• If the second order derivative of the objective function (called Hessian in technical lan-
guage) can be assessed, at least in a approximated way, highly reliable methods can be

98 Chapter 7: Optimization

implemented. Although these approaches are computationally expensive per iteration,
ideally not too many iterations should be necessary to compute the optimal solution. The
Sequential Quadratic Programming (SQP), a Newton’s based method, is a representative
approach of this group.

The previous methods can be applied for both constrained and unconstrained problems. Be-
ing the later much easier to solve, a good idea is to transform constrained problems into un-
constrained ones. Approaches for that purpose are commonly base on the so called Lagrange
multipliers. Before presenting an overview of of two popular methods in optimization such as
gradient descent and the Newton’s method, classical definitions of both necessary and sufficient
conditions for optimality are exposed.

7.2 Formulation and Optimality Condition

The unrestricted optimization problem is usually written as a minimization problem

min
x∈Rn

f (x), (7.5)

where f is the so-called objective function mapping the parameter space Rn on a scalar value.
Unrestricted means, that there are no other constrains which have to be satisfied. We want to
point out, that every optimization problem can be formulated as a minimization problem, since

max
x∈Rn

f (x) = min
x∈Rn
− f (x). (7.6)

As a result, the task is to find a minimum of f . We shortly recall that there are local and global
minima. If there is an area Bε(x̄) around a point x̄, where

f (x) ≥ f (x̄) (7.7)

holds, x̄ is called local minimum. If there is further more no other local minimum with a lower
function value, x̄ is called global minimum. Unfortunately, in most cases it is only possible to
determine local minima, but not global ones. Thus, we always have to keep in mind, that there
might be another, even better minimum.

If the objective function f is continuously differentiable, a necessary condition for a local min-
imum x̄ is, that the gradient of f is zero, in formula:

∇ f (x̄) = 0. (7.8)

This is reasonable, when we keep in mind, that −∇ f (x) is a vector pointing in the direction
of the steepest descent. At a minimum, there cannot be a decent in any direction. If f is
twice continuously differentiable, criterion (7.8) gets sufficient, when additionally the Hessian

7.3 Gradient Descent 99

H(x̄) = ∇2 f (x̄) is positive definite. This means, that

dT∇2 f (x̄)d > 0 ∀d ∈ Rn\{0}. (7.9)

7.3 Gradient Descent

The gradient descent is a first-order optimization algorithm. The idea is to approach the mini-
mum iteratively. At every iteration step k, we go in the direction of the steepest decent, i. e. in
the direction of the negative gradient −∇ f (xk). Subsequently, we have to decide how far we
go in that direction, e. g. we search on a line for the step size δk > 0 which in best case satisfies

min
αk

f
(

xk − δk∇ f (xk)
)

. (7.10)

A way to approximate this step size is e. g. the Armijo rule. So, the algorithm reads as: Figure 7.1

Algorithm 7.1 Gradient Descent

Guess initial value x(0)

while not converged do
Calculate a suitable step size δk
xk+1 = xk − δk∇ f (xk)

end while

illustrates the gradient method.

7.4 Newton’s Method

The purpose of Newton’s method is to find a better direction than the one given by the gradient
descent approach in order to minimize the number of iterations needed to find an optimal
solution. As stated at the beginning of this chapter, the Newton’s method is, per iteration,
computationally expensive. This is due to the fact that this method requires an estimate of
the Hessian H(x) = ∇2 f (x) in addition to first order derivatives of f (x). Let us first expand
f (xk + ∆x) at iteration k by means of Taylor series:

f (xk + ∆x) = f (xk) + ∆x∇ f (xk) (7.11)

where ∇ f (xk) should be recognized as the Jacobian of f . In the same way, we are allowed to
expand ∇ f (xk + ∆x) as

∇ f (xk + ∆x) = ∇ f (xk) + ∆x∇2 f (xk) (7.12)

100 Chapter 7: Optimization

x0

x1

x2

x3
x4

*

*

Figure 7.1: Illustration of gradient descent with step size proportional to the gradient.

Since we know that that a necessary condition for optimality is that the function gradient at the
optimal point x̄ is zero, we assume then that

∇ f (xk+1) = ∇ f (xk) + ∆x∇2 f (xk) = 0 (7.13)

where xk+1 = xk + ∆x. As a result, the optimal direction is given by

∆x = −H(xk)−1∇ f (xk). (7.14)

We can now summarize the Newton’s method with Algo. 7.4.

Algorithm 7.2 Newton Method for Optimization Problems

Guess initial value x0

while not converged do
∆x = −H(xk)−1 ∇ f (xk)
xk+1 = xk + ∆x

end while

7.5 Constrained optimization: the method of Lagrange multipliers 101

∇h(x)

−∇f(x)

h(x) = 0

∇h(x̄)

−∇f(x̄)

h(x) = 0

(a) (b)

Figure 7.2: Ilustration of Lagrange Multiplier. (a) Case 1: The point x is not located at a min-
imum. Following the dashed arrow, the value of objective function can be decreased without
hurting the constraint. (b) Case 2: The point x̄ is located at a minimum. There is a Lagrange
multiplier λ with: ∇ f (x̄) = λ∇h(x̄)

7.5 Constrained optimization: the method of Lagrange multipliers

Let us now consider a very popular method in constrained optimization. It is very popular
because, under a rather simple analysis, a constrained problem is transformed into an uncon-
strained one. Once the problem is stated as an unconstrained one, all the artillery for uncon-
strained problems can be applied. Further on, this method is generalized by the Karush-Kuhn-
Tucker conditions, which are recognized as necessary conditions for non-linear programming
under both equality and inequality constrains. Since in general inequality constrains can be
transform into equations (see Eq. (7.4)), we consider here only problems with equality con-
strains. The problem reads:

min
x

f (x), subject to h(x) = 0. (7.15)

With constrains, we cannot search minima in the whole space Rn but only in the restricted area
H = {x | h(x)}. But what is a necessary condition for minimum in that case? To answer that
question, we can take a look at Fig. 7.2(a) where the situation for one constraint h is illustrated.
Here, the point x̄ is not a minimum, since the value of f can be decreased when we follow the
dashed arrow and still we stay on H. Considering now the case of Fig. 7.2(b), we see that the
value of f can be decreased by going in the direction given by the negative gradient −∇ f (x̄).
Nevertheless, following that direction is not possible since we would violate the constraint h.
Actually, we observe that this particular situation occurs when

∇ f (x̄) = λ∇h(x̄) (7.16)

holds. The variable λ is recognized as a Lagrange multiplier. This concept can be extended to the
case of several constraints: At a minimum, the gradient ∇ f (x̄) can be constructed as a linear

102 Chapter 7: Optimization

�x

x1
x2

l(
x

1
)

l(
x

2
)

lN

lS

x

y

Figure 7.3: Quasi one-dimensional fin.

combination of gradients of the equality constraints ∇hi (i = 1, 2, . . . , p). This means that there
is a vector of Lagrange multipliers λ =

(
λ1, λ2, . . . , λp

)T for which

∇ f (x̄) +
p

∑
i=1

λi∇hi(x̄) = 0. (7.17)

is satisfied. By means of the Lagrange multiplier, we can reformulate the equality restricted
optimization problem (7.15) into the unrestricted one

min
x̃

F(x̃). (7.18)

The new variable is x̃ = (x, λ) with the objective function F(x, λ) = f + ∑
p
i=1 λihi(x̄). A min-

imum of system (7.18), ∇x̃F(x̄, λ) = ∇ f (x̄) + ∑
p
i=1 λi∇hi(x̄) = 0 holds, which is in fact the

optimality condition (7.17).

7.6 Quasi-1D approximation of a fin

In the following derivation, it is shown how heat transfer in a quasi-1D dimensional body can
be described by a compact expression of the heat equation. A solution for such an expression
can be easily obtained by integration. Moreover, an equation for the optimal shape can be easily
derived based on the knowledge of the optimal temperature profile.

Fig. 7.3 shows an schematic description of a quasi 1D body, i.e. a body whose temperature is
assumed to vary only along the longitudinal (x) axis. These assumption is indeed reasonable
for bodies characterized by a low Biot number Bi= αl/λ, or in other words, for bodies whose
thermal conductivity λ is much higher than the convective heat transfer coefficient α of the
surrounding medium. Thanks to this property, which is generally encountered in thin fins,
high levels of heat transfer can be achieved. Let us start by integrating the homogeneous heat
equation over a surface S and subsequently apply the divergence theorem:

∫
S
∇2T dS =

∮
∂S
∇T · n dl = 0. (7.19)

7.6 Quasi-1D approximation of a fin 103

We split now the line integral in four contributions:

∫ l(x1)

−l(x1)
∇T · n dy +

∫ l(x1)

−l(x1)
∇T · n dy +

∫
lN
∇T · n dlN +

∫
lS
∇T · n dlS = 0. (7.20)

Since the faces l(x1) and l(x2) are aligned with the y axis, Eq. (7.20) is simplified to

−
∫ l(x1)

−l(x1)

∂T
∂x

dy +
∫ l(x1)

−l(x1)

∂T
∂x

dy +
∫

lN
∇T · n dlN +

∫
lS
∇T · n dlS = 0. (7.21)

Now it is assummed that the temperature T is constant along the y axis. For that reason it is
possible to state that

∂T
∂x

2l(x) =
∫ l(x)

−l(x)

∂T
∂x

dy, (7.22)

and Eq. (7.21) becomes

∂T(x1)

∂x
2l(x2)−

∂T(x2)

∂x
2l(x1) +

∫
lN
∇T · n dlN +

∫
lS
∇T · n dlS = 0 (7.23)

Subsequently, Eq. (7.23) is divided by ∆x

∂T(x1)
∂x 2l(x2)− ∂T(x2)

∂x 2l(x1)

∆x
+

1
∆x

∫
lN
∇T · n dlN +

1
∆x

∫
lS
∇T · n dlS = 0 (7.24)

Finally, we consider the limit case in which ∆x → dx. It implies also that lN, lS → dlN, dlS. We
have then

∂

∂x

(
2l(x)

∂T(x)
∂x

)
+∇T · n dlN

dx
+∇T · n dlS

dx
= 0. (7.25)

If we consider the special case of a fin, we can replace the last two terms of Eq. (7.25) by the
corresponding boundary condition, which in this case is defined by the Robin type:

∇T · n = − α

λ
(T(x)− T∞) (7.26)

and therefore

104 Chapter 7: Optimization

d
dx

(
2l(x)

dT(x)
dx

)
− 2

α

λ

ds
dx

(T(x)− T∞) = 0 (7.27)

where an axisymmetric body is assumed and consequently lN = lS = s. Eq. (7.27) describes
the heat transfer of a 2D axysimmetric fin, assuming a very low Biot number in the conjugate
heat transfer problem. Now let us define a normalized temperature θ

θ ≡ T(x)− T∞

TW − T∞
. (7.28)

The condition of optimal heat transfer is given by Schmidt [4], where he states that the decay
of temperature along the x axis must be linear. Therefore we have

θ = 1− x
L

. (7.29)

Defining now two non-dimensional numbers

ζ(x) =
l(x)

L
and ξ =

x
L

(7.30)

and assuming a long fin so that ds ≈ dx, Eq. (7.27) becomes [3]

dζ

dξ
+

αL
λ
(1− ξ) = 0 (7.31)

The solution of Eq. (7.31) give us, consequently, an expression for an optimal profile. It reads:

ζ(ξ) =
αL
2λ

(ξ − 1)2 (7.32)

where the boundary condition ζ(1) = 0 has been applied.

7.7 Exercises: Optimal Cooling Fin Shape 105

ζ(ξ)

1

h1

2L h2

2L

Th
T∞

α

Figure 7.4: Cooling fin with a surface described by the function ζ(ξ)

7.7 Exercises: Optimal Cooling Fin Shape

We apply numerical optimization to determine the optimal cooling fin shape, i. e. the shape
that provides the largest heat flux through the boundaries surrounded by the atmosphere. The
fin is modeled as a 2D axisymmetric body.

Stage 1: The objective function

• Assume that the profile of the fin ζ(ξ) is given by a polynomial expression of second
order as

ζ(ξ) = c1 + c2ξ + c3ξ2, (7.33)

• Express the global heat flux through walls as

∫
lwall

∇T · nwall dlwall where ∇T · nwall = α(Twall − T∞), (7.34)

• Create a function that computes the thermal energy dissipated through the fin for given
values of the vector c = (c1, c2, c3)T.

Stage 2: The constrains

1) We want ζ(0) = h1
2L so that the fin model has the required height at the attachment area.

Accordingly we need

c1 =
h1

2L
. (7.35)

2) We set the length of the fin L. In correspondance, we need that

ζ(1) = (c1 + c2 + c3) ≥ 0. (7.36)

106 Chapter 7: Optimization

• Use the matlab function fmincon to find the optimal shape of the fin.

Stage 3: Validation

• Use the model of Eq. (7.32) to validate the results in the limit case of Bi� 1.

• Plot the Temperature along the axis of the fin. Is it linear?

Stage 4: Repeat the previous steps for more complex fin shapes (polynomials of third order or
higher):

ζ(ξ) = c1 + c2ξ + c3ξ2 + c4ξ3 + · · · (7.37)

7.7.1 Useful MATLAB commands

fmincon(...) calls a function (e.g. our finite volume code) several times using differ-
ent parameters. The optimal solution is returned along with the best
parameter values. How to call this rather complex function is well de-
scribed in the MATLAB documentation.

7.7.2 Flowchart

opti.m

FVM_main.m

post.m

T, q̇, ...

T, q̇, X, Y, ...

parameters

8
Finite Element Methods

Objectives

• Weak Formulation of a PDE

• Concept of the spacial discretisation using Finite Element Method

Contents
8.1 Weak Form . 108

8.2 Main Idea . 109

8.3 Base Functions . 109

8.4 Test Functions . 111

8.5 Element Matrix . 111

8.6 Boundary conditions . 112

8.7 System Matrix . 113

8.8 Exercises . 115

To complete the overview of the most important methods to solve PDEs, we will deal in this
chapter with the Finite Element Method (FEM) . It is the state of the art tool for solid body simula-
tions but is also used for CFD. Main features of FEM can be ‘sketched’ under a 1D approach. Ex-
tensions to 2D or 3D mainly consists in considering 2D and 3D elements, respectively, whereas
the general procedure remains the same. Accordingly, we discuss in this course the FEM for
solving the 1D heat equation.

107

108 Chapter 8: Finite Element Methods

8.1 Weak Form

A strong solution of the heat equation

λ∇2T − ρc
∂T
∂t

= 0 (8.1)

has to satisfy it at every spatial point of the domain Ω for every instance of time. For the case
of a parabolic equation, as the heat equation, this strong solution is generally found without
too much difficulty. In contrast, for hyperbolic problems, a strong solution sometimes does
not exist. This situation arises in cases, for example, when the solution accounts for disconti-
nuities (shock waves when solving the set of Euler equations for instance). In such points the
derivatives cannot be formed and, consequently, there is no solution in a strong meaning.

To overcome this issue, the concept of weak solutions has been introduced. For the heat equation,
it means that ∫

V
Ni(x)

[
λ∇2T − ρc

∂T
∂t

]
dV = 0 (8.2)

for a given set of test functions Ni. The set of test functions may consists of infinitesimal many
functions. It is necessary to point out that every strong solution is also a weak solution. More-
over, whenever there exits a strong solution, it is of course also the only weak solution.

From now on, we restrict the problem to be one dimensional so that Ω = [0, l]. To evaluate the
integral above, a common procedure is used derived from the partial integration

(uv)′ = uv′ + u′v =⇒ uv′ = −u′v + (uv)′ =⇒
∫

uv′ = uv−
∫

u′v. (8.3)

Note that for 2D or 3D cases, Green’s second identity is used instead of partial integration.
Considering now

u = Ni(x) and v′ = λ
∂2T(x, t)

∂x2 , (8.4)

we obtain from the first term of Eq. (8.2)

∫ l

0
λNi(x)

∂2T(x, t)
∂x2 dx =

[
λNi(x)

∂T(x, t)
∂x

]l

0
−
∫ l

0
λ

∂Ni(x)
∂x

∂T(x, t)
∂x

dx. (8.5)

Equation (8.2) is then expressed in its weak formulation as

∫ l

0
λ

∂Ni(x)
∂x

∂T(x, t)
∂x

dx +
∫ l

0
ρcNi(x)

∂T(x, t)
∂t

dx =

[
λNi(x)

∂T(x, t)
∂x

]l

0
(8.6)

8.2 Main Idea 109

which has to be satisfied for all test functions Ni.

By using the weak formulation, the degree of the derivative of the temperature T is reduced by
one and is “transported” to a derivative of the test function. Consequently, the aforementioned
difficulties related to discontinuities in the solution can be overcome. In addition, we observe
that the test functions require a certain differentiability, here at least piece wise.

8.2 Main Idea

We can use the above definition to derive a discretisation scheme. The main idea is to find a
suitable finite set of base functions Hj(x) by which we construct a numerical solution written
as a linear combination

T(x, t) =
n

∑
j=1

Hj(x)aj(t). (8.7)

As we can see here, a solution based on a FEM scheme provides a spatial function and not only
the values on certain grid points or volumes, as is the case for FDM and FVM. Having chosen
the base functions, the problem shrinks to find the n coefficients aj. To do so, we have to set up
n equations. This can be done by using n test functions Nj and plug them into Eq. (8.2). So, we
can set up a linear equation for every test function. Summarizing, we have to construct n base
functions and n test functions.

Since finding global suitable base and test functions can be challenging, especially for complex
geometries, the domain is split into several subdomains in which we can define those functions
independently from the other subdomains. Such a subdomain together with the corresponding
sets of base and test functions is the so-called finite element .

8.3 Base Functions

Here, we deal with linear base functions on a 1D element [xi−1, xi] . The linear function T(x),
for xi−1 ≤ x ≤ xi can be written as a linear combination of two base functions Hi−1(x) and
Hi(x) as clearly observed in Fig. 8.1. We extend this approach on the whole domain with the
hat functions

Hi(x) =


xi−1−x
xi−1−xi

, xi−1 ≤ x < xi
x−xi+1
xi−xi+1

, xi ≤ x ≤ xi+1

0 , elsewise
. (8.8)

110 Chapter 8: Finite Element Methods

Figure 8.1: Illustration of the base functions Hi composing the piecewise linear function T form
Eq. (8.9).

8.4 Test Functions 111

In total, the temperature distribution on the discretized domain with nodes {x1, x2, . . . , xn} is
described by the piecewise linear function

T(x, t) =
n

∑
j=1

Hj(x) · Tj(t). (8.9)

The composition of T by the base functions is illustrated in Fig. 8.1. By setting the base functions
in this manner, the coefficients aj(t) of Eq. (8.7) are equal to the temperature at the nodes Tj(t) =
T(xj, t).

8.4 Test Functions

To close the problem, we have to define the test functions Ni(x). A common approach, recog-
nized as the Galerkin approach, is to use the same test and base functions, i. e. Ni(x) = Hi(x).
Equation (8.6) can thus be written as

D
∫ l

0

∂Hi(x)
∂x

n

∑
j=1

∂Hj(x)
∂x

Tj(t)dx +
∫ l

0
Hi(x)

n

∑
j=1

Hj(x)
∂Tj(t)

∂t
dx =

[
DHi(x)

∂T(x, t)
∂x

]l

0
, (8.10)

where we assume constant material values and D = λ
ρc . Exchanging integration and summa-

tion, leads to

D
n

∑
j=1

Tj(t)
∫ l

0

∂Hi(x)
∂x

∂Hj(x)
∂x

dx +
n

∑
j=1

∂Tj(t)
∂t

∫ l

0
Hi(x)Hj(x)dx =

[
DHi(x)

∂T(x, t)
∂x

]l

0
(8.11)

for all Hi.

8.5 Element Matrix

Since we can evaluate the elements separately, we pick up an element [xi−1, xi] to discuss the
evaluation of the integrals in detail. Accordingly, the integrals are evaluated now from i− 1 to
i. For the element [xi−1, xi], as we have seen, there are contributions only of the test functions
Hi−1(x) and Hi(x). That is the reason why the sum is now evaluated only from i − 1 to i. If
higher order test functions were used, the sum would probably include a bigger amount of test
functions. Equation 8.11 reduces to

node i− 1

D
j=i

∑
j=i−1

Tj

∫ xi

xi−1

H′i−1H′j dx +
j=i

∑
j=i−1

Ṫj

∫ xi

xi−1

Hi−1Hjdx = 0 (8.12)

112 Chapter 8: Finite Element Methods

node i

D
j=i

∑
j=i−1

Tj

∫ xi

xi−1

H′i H′j dx +
j=i

∑
j=i−1

Ṫj

∫ xi

xi−1

Hi Hjdx = 0 (8.13)

where we introduced the abbreviations H′i =
∂Hi(x)

∂x and Ṫj =
∂Tj(t)

∂t .

Introducing now the vectors

HE =

(x−xi−1
xi−xi−1

x−xi
xi−1−xi

)
, H ′E =

(
1

xi−xi−1
1

xi−1−xi

)
, TE =

(
Ti−1

Ti

)
, (8.14)

Eqs. (8.12) and (8.13) can be summarized in matrix vector notation as

D
∫ xi

xi−1

H′EH′E
Tdx T +

∫ xi

xi−1

HEHE
Tdx Ṫ = 0. (8.15)

We determine the appearing integrals using the convention ∆x = xi − xi−1:

∫ xi

xi−1

H ′EH ′TE dx =
1

∆x

[
1 −1
−1 1

]
(8.16)

and ∫ xi

xi−1

HEHT
Edx = ∆x

[
1
3

1
6

1
6

1
3

]
. (8.17)

Inserting these values in Eq. (8.15) leads finally to

D
∆x

[
1 −1
−1 1

](
Ti−1

Ti

)
+ ∆x

[
1
3

1
6

1
6

1
3

] ˙(
Ti−1

Ti

)
=

(
0
0

)
. (8.18)

Exactly the same procedure for element [xi, xi+1] can be performed resulting in

D
∆x

[
1 −1
−1 1

](
Ti

Ti+1

)
+ ∆x

[
1
3

1
6

1
6

1
3

] ˙(
Ti

Ti+1

)
=

(
0
0

)
. (8.19)

8.6 Boundary conditions

Note that the treatment of boundary conditions is given directly by the weak formulation of
Eq. (8.6). For node 1 this equation reads:

8.7 System Matrix 113

D
j=2

∑
j=1

Tj

∫ x2

x1

H′1H′j dx +
j=2

∑
j=1

Ṫj

∫ x2

x1

H1Hj dx = −D ∂T(0, t)
∂x

(8.20)

and therefore the matrix for element [x1, x2] is given by

D
∆x

[
1 −1
−1 1

](
T1

T2

)
+ ∆x

[
1
3

1
6

1
6

1
3

] ˙(
T1

T2

)
= −D

(
∂T(0,t)

∂x
0

)
. (8.21)

In a similar way Eq. (8.6) for node n reads:

D
j=n

∑
j=n−1

Tj

∫ xn

xn−1

H′nH′j dx +
j=n

∑
j=n−1

Ṫj

∫ xn

xn−1

HnHj dx = D ∂T(L, t)
∂x

(8.22)

with the corresponding matrix for the element [xn−1, xn] defined as

D
∆x

[
1 −1
−1 1

](
Tn−1

Tn

)
+ ∆x

[
1
3

1
6

1
6

1
3

] ˙(
Tn−1

Tn

)
= D

(
0

∂T(L,t)
∂x

)
. (8.23)

It should be noted from Eqs. (8.21) and (8.23), that boundary conditions of the type Neumann
and Robin are imposed naturally in the weak formulation. The only procedure necessary to
do is to replaced the values of ∂T

∂x by the ones that need to be imposed. Dirichlet boundary
conditions are applied in a hard way. It means that the row corresponding to the node at which
Dirichlet is applied, is simply replaced by a row where the temperature T is directly imposed.
This should be more clear by the example given in the following section.

8.7 System Matrix

To set up the system matrix, we have to merge the contributes of each element in a single linear
system of equations. This will be done exemplarily for the domain {x1, x2, x3} consisting of
two elements. According to the previous section, we set up two linear systems assuming a
equidistant grid and constant values of thermal diffusivity D

D
∆x

[
1 −1
−1 1

](
T1

T2

)
+ ∆x

[
1
3

1
6

1
6

1
3

] ˙(
T1

T2

)
= −D

(
∂T
∂x
0

)
(8.24)

114 Chapter 8: Finite Element Methods

D
∆x

[
1 −1
−1 1

](
T2

T3

)
+ ∆x

[
1
3

1
6

1
6

1
3

] ˙(
T2

T3

)
= D

(
0
∂T
∂x

)
. (8.25)

We know that both the second line of system (8.24) and the first line of system (8.25) correspond
to the evaluations with the test function H2. Thus, we have to add those equations to come back
to the original from of Eq. (??). The total system is described by

D
∆x

 1 −1 0
−1 1 + 1 −1

0 −1 1


 T1

T2

T3

+ ∆x

 1
3

1
6 0

1
6

1
3 +

1
3

1
6

0 1
6

1
3


 Ṫ1

T2

T3

 = D

 − ∂T
∂x

0
∂T
∂x

 . (8.26)

We observe that

• the first element contributes to the positions (1, 1), (1, 2), (2, 1), (2, 2) ;

• the second element contributes to the positions (2, 2), (2, 3), (3, 2), (3, 3);

• at position (2, 2) expressions of both elements are added ;

• the right-hand side of the system contains only heat fluxes at the boundary (and eventual
sources).

If a Dirichlet boundary condition is desired, at node 1 for instance, this condition must be
imposed in a hard way. It means that the first row of Eq. (8.27) should be replaced by a row
that set up an equation exclusively for that node. In such a case Eq. (8.27) would turn out to be:

D
∆x

 ∆x 0 0
−1 1 + 1 −1

0 −1 1


 T1

T2

T3

+ ∆x

 0 0 0
1
6

1
3 +

1
3

1
6

0 1
6

1
3


 Ṫ1

T2

T3

 = D

 TWest

0
∂T
∂x

 . (8.27)

Having set up the spacial discretisation, we can solve the steady problem by setting Ṫ = 0 or
the unsteady problem using the temporal discretisation schemes discussed in Chp. 4

8.8 Exercises 115

8.8 Exercises

We want to solve

d2T
dx2 = −ex 0 < x < 1 with T(0) = 0 and T(1) = 0 (8.28)

An estimate of the solution can be expressed as a linear combination of base functions

T̃(x) = c1H1(x) + c2H2(x), (8.29)

where H1(x) and H2(x) are polynomials of second and third order, respectively. First, we have
to find bases functions H1(x) and H2(x) that satisfy the boundary conditions. Accordingly, we
can use

H1(x) = x(1− x) and H2(x) = x2(1− x). (8.30)

Stage 1: Analysis

• Derive the exact solution of Eq. (8.28).

Stage 2: Collocation method

The collocation method consists of forcing the residual

r(x) =
d2T̃
dx2 + ex (8.31)

to be zero at the so called collocation points.

• Choose two collocation points x1 and x2 within the domain. Two equations results after
evaluating the residuals at the chosen points. Solve the linear system to find the values
of c1 and c2.

• Choose three collocation points x1, x2, and x3 within the domain. Three equations results
after evaluating the residuals at the chosen points. Solve the overdetermined system to
find the values of c1 and c2 such that the residual is minimal in a least square sense.

• Write down the resulting expressions for T̃(x).

Stage 3: Method of least squares

The second method consists of minimizing the residual in an average sense. Now, we claim
that

M(c1, c2) =
∫ 1

0
r(x, c1, c2)

2dx to be a minimum ⇒ dM(c1, c2)

dci
= 0. (8.32)

116 Chapter 8: Finite Element Methods

• Find the values of the coefficients c1 and c2 such that the square of the residual averaged
on the domain is minimized.

• Write down the resulting expression for T̃(x).

Stage 4: Method of Galerkin

The Galerkin method consists of minimizing a weighted residual over the domain

∫ 1

0
Ni(x)r(x)dx = 0, (8.33)

where the test functions Ni(x) are taken to be the base functions Hi(x).

• Find the values of the coefficients c1 and c2 corresponding to the Galerkin method.

• Write down the resulting expression for T̃(x).

Stage 5: Method of Finite Elements combined with the Galerkin approach

• Resolve now the same equation discretizing the domain with three finite elements con-
sidering the hat base functions.

• Write down the resulting expression for T̃(x).

Stage 6: Finite elements and the heat equation

• Solve the steady heat equation for:

– West and East with Robin BC.

– West as Dirichlet BC and East as Robin BC.

• Solve the unsteady heat equation, considering an implicit scheme, for:

– West and East with Robin BC.

– West as Dirichlet BC and East as Robin BC.

Stage 7: Comparison (Optional)

• Plot the solutions given by each method in a single plot.

8.8 Exercises 117

• Repeat Stage 1 to 3 considering the linear combination

T̃(x) =
n

∑
n=1

cnHn(x), where Hn(x) = xn(x− 1) (8.34)

with n = 5. Integrate numerically.

Use the finite element method for 5 elements and the same hat base functions.

• Plot together the solutions given by each method.

A
Addendum to Finite Volumes

A.1 Uniform rectangular grid and Boundary Conditions

If the geometry under study is Cartesian, the following terms

• ∆ySe
Sw = ∆ysw

se = ∆yw
e = ∆ynw

ne = ∆yNw
Ne = ∆ys

sW = ∆ynW
n = ∆ysE

s = ∆ynE
n = 0

vanish, and the spatial derivatives of Eq. (3.16) become

118

A.1 Uniform rectangular grid and Boundary Conditions 119

∂T
∂x

∣∣∣∣
s
=

1
Ss

(
∆ye

SeTse + ∆ySw
w Tsw

)
, (A.1)

∂T
∂y

∣∣∣∣
s
=
−1
Ss

(
∆xSe

SwTS + ∆xw
e TP

)
, (A.2)

∂T
∂x

∣∣∣∣
e
=

1
Se

(
∆ynE

sE TE + ∆ys
nTP

)
, (A.3)

∂T
∂y

∣∣∣∣
e
=
−1
Se

(
∆xsE

s Tse + ∆xn
nETne

)
, (A.4)

∂T
∂x

∣∣∣∣
n
=

1
Sn

(
∆yNe

e Tne + ∆yw
NwTnw

)
, (A.5)

∂T
∂y

∣∣∣∣
n
=
−1
Sn

(
∆xe

wTP + ∆xNw
Ne TN

)
, (A.6)

∂T
∂x

∣∣∣∣
w
=

1
Sw

(
∆yn

s TP + ∆ysW
nWTW

)
, (A.7)

∂T
∂y

∣∣∣∣
w
=
−1
Sw

(
∆xs

sWTsw + ∆xnW
n Tnw

)
. (A.8)

(A.9)

The final expression simplifies then to

∇2T
∣∣

P ≈
λ

SP

[
−∆xse

sw
∂T
∂y

∣∣∣∣
s
+ ∆yne

se
∂T
∂x

∣∣∣∣
e
− ∆xnw

ne
∂T
∂y

∣∣∣∣
n
+ ∆ysw

nw
∂T
∂x

∣∣∣∣
w

]
=

λ∆xse
sw

SPSs

(
∆xSe

SwTS + ∆xw
e TP

)
+

λ∆yne
se

SPSe

(
∆ynE

sE TE + ∆ys
nTP

)
+

λ∆xnw
ne

SPSn

(
∆xe

wTP + ∆xNw
Ne TN

)
+

λ∆ysw
nw

SPSw

(
∆yn

s TP + ∆ysW
nWTW

)
(A.10)

Considering rectangular cells of same size, where ∆x = ∆xse
sw = ∆xSe

Sw = −∆xw
e = −∆xnw

ne =

∆xe
w = −∆xNw

Ne , and ∆y = ∆yne
se = ∆ynE

sE = −∆ys
nTP = −∆ysw

nw = ∆yn
s = −∆ysW

nW, Eq. (A.10)
breaks down into:

∇2T
∣∣

P ≈ −
∆x

(∆x∆y)2 (−∆xTS + ∆xTP) +
∆y

(∆x∆y)2 (−∆yTP + ∆yTE)

+
∆x

(∆x∆y)2 (−∆xTP + ∆xTN)− ∆y
(∆x∆y)2 (−∆yTW + ∆yTP)

(A.11)

120 Chapter A: Addendum to Finite Volumes

After some algebra, Eq. (A.11) becomes

∇2T =
1

SP

∮
∂SP
∇T · ndl ≈ TW − 2TP + TE

(∆x)2 +
TS − 2TP + TN

(∆y)2 (A.12)

which is in fact the formulation given by the finite difference approach for a 2D uniform rect-
angular grid.

A.2 Boundary conditions 121

A.2 Boundary conditions

In this section we will give an example of how to discretize the Laplacian operator ∇2 on a
node which lays on the ‘south’ boundary. The discretization of ∇2 on a node placed at ‘east’,
‘north’ or ‘west’ boundaries can be derived in a similar manner.

A.2.1 South

P
W

N
NE

NW

E P

nw

ne
n

w

e

�w

�e
�

(a) (b) (c)

P E

nen

e

nE
�E

�e
�

P

N
nw

ne
n

w

e

Ne
Nw

P
W

nw
n

w

nW
�W

�w
�

(d) (e) (f)

Figure A.1: Labeling of nodes and point between nodes in the region close to a South boundary.

Figure A.1 illustrates the cells and nodes adjancent to a given region at the south of the domain.
First, the Divergence theorem is applied to the region encircling P (Fig. A.1(a)):

∇2T
∣∣

P =
1

Sη

∮
∂Sη
∇T · ndl =

1
Sη

[∫
le
w

(∇T) · ndl +
∫

lne
e

(∇T) · ndl +
∫

lnw
ne

(∇T) · ndl +
∫

lw
nw

(∇T) · ndl
]

.
(A.13)

Subsequently the mid-point rule of integration is considered. The approximation of the Lapla-
cian operator at node P is written then as:

122 Chapter A: Addendum to Finite Volumes

∇2T
∣∣

P =
1

Sη

∮
∂Sη
∇T · ndS ≈ 1

Sη

[
∇T|P · n∆le

w +
∂T
∂x

∣∣∣∣
ηe

∆yne
e −

∂T
∂y

∣∣∣∣
ηe

∆xne
e

+
∂T
∂x

∣∣∣∣
n

∆ynw
ne −

∂T
∂y

∣∣∣∣
n

∆xnw
ne +

∂T
∂x

∣∣∣∣
ηw

∆yw
nw −

∂T
∂y

∣∣∣∣
ηw

∆xw
nw

]
(A.14)

Note that the first term on the right hand side of Eq. (A.14) is the term associated to the bound-
ary contour. It was not decomposed in x and y directions. Applying now Green’s theorem to
the remaining terms of Eq. (A.14) leads to

∂T
∂x

∣∣∣∣
ηe

=
1

Sηe

∮
∂Sηe

Tdy =
1

Sηe

(∫ E

P
Tdy +

∫ nE

E
Tdy +

∫ n

nE
Tdy +

∫ P

n
Tdy

)
≈

1
Sηe

(
∆yE

P T|e + ∆ynE
E T|ηE + ∆yn

nE T|ne + ∆yP
n T|η

) (A.15)

∂T
∂y

∣∣∣∣
ηe

=
1

Sηe

∮
∂Sηe

Tdx ≈−1
Sηe

(
∆xE

P T|e + ∆xnE
E T|ηE + ∆xn

nE T|ne + ∆xP
n T|η

)
(A.16)

∂T
∂x

∣∣∣∣
n
=

1
Sn

∫
∂Sn

Tdy ≈ 1
Sn

(
∆ye

w T|P + ∆yNe
e T|ne + ∆yNw

Ne T|N + ∆yw
Nw T|nw

)
(A.17)

∂T
∂y

∣∣∣∣
n
=

1
Sn

∫
∂Sn

Tdx ≈ −1
Sn

(
∆xe

w T|P + ∆xNe
e T|ne + ∆xNw

Ne T|N + ∆xw
Nw T|nw

)
(A.18)

∂T
∂x

∣∣∣∣
ηw

=
1

Sηw

∮
∂Sηw

Tdy ≈ 1
Sηw

(
∆yP

W T|w + ∆yn
P T|η + ∆ynW

n T|nw + ∆yW
nW T|ηW

)
(A.19)

∂T
∂y

∣∣∣∣
ηw

=
1

Sηw

∮
∂Sηw

Tdx ≈ −1
Sηw

(
∆xP

W T|w + ∆xn
P T|η + ∆xnW

n T|nw + ∆xW
nW T|ηW

)
(A.20)

The first term on the right hand side of Eq. (A.14) is now replaced by the desired boundary
condition as follows:

A.2 Boundary conditions 123

Neumann BC

− ∇T|P · n = q̇ (A.21)

Robin BC

∇T|P · n = − α

λ
(TP − T∞) (A.22)

Evidently for Dirichlet BC there is no necessity of deriving such a procedure, since values at
the corresponding node would be directly given.

Index

Amplification Factor, 54
Auxiliary Problem, 79

Characteristic Line, 56
Collocation Points, 111
condition number, 70
Conditionally Stable, 56
Conjugate Heat Transfer, 117
Convection-Diffusion Reaction, 14
convective heat transfer coefficient, 117
Coonditionally Stable, 62
Courant Number, 55

Diffusion Coefficient, 12
Diffusion Number, 55
Dirichlet Boundary Condition, 18
Domain of Dependence, 56

Fick’s Law, 12
finite element, 105
Finite Element Method, 103
First Order, 29
First Order Accurate, 29
Fmincon, 102
Fourier’s law, 12

General unconstrained Problem, 93

Jacobian, 95

Lagrange Multipliers, 94
Laplace Equation, 16
Linear Programming Problem, 93

Neumann Boundary Conditions, 18
Newton method, 95
Non-linear Programming Problem, 93

Partial Differential Equations, 10
Elliptic, 16
Hyperbolic, 15
Parabolic, 14

Poisson Equation, 16
preconditioning, 70

Quadratic Programming Problem, 93

Robin Boundary Condition, 18

Slack, 93
sparse matrix, 68
Strong solution, 104
Surplus, 93

Thermal Diffusivity, 14
Trapz Function, 88

Unconditionally Stable, 60
Unconditionally Unstable, 53

Wave Number, 54
Weak solution, 104

124

INDEX 125

	Introduction
	Partial Differential Equations (PDEs)
	Generalities on partial differential equations (PDEs)
	Parabolic PDEs
	Hyperbolic PDEs
	Elliptic PDEs
	Boundary conditions
	Dirichlet boundary condition
	Neumann boundary condition
	Robin boundary condition

	Overview of the course
	Exercises
	1D convection equation
	1D diffusion equation
	1D convection diffusion equation
	More videos. Now in 2D (Optional)
	Useful MATLAB commands

	Finite Differences
	Computational grid
	Deriving FD numerical schemes of arbitrary order
	Taylor series and truncation error
	Forward Euler scheme
	Centered scheme
	Backward Euler scheme
	Second order derivatives

	2D steady heat equation
	Discretizing the 2D steady heat equation by finite differences
	Boundary conditions
	Assembling the linear system

	Exercises
	Useful MATLAB commands
	Tips by Juan Pablo Garcia (ex-student)

	Finite Volumes
	Derivation of algebraic equations from PDE
	Applying divergence theorem
	Defining cell normals
	Applying an integral rule
	Applying Green's theorem

	Exercises Part 1
	Exercises Part 2
	Useful MATLAB commands
	Tips by Juan Pablo Garcia (ex-student)
	Flowchart

	Unsteady Problems
	Explicit time discretization
	Von Neumann stability analysis of FE scheme

	Implicit time discretization
	Von Neumann analysis

	The weighted average or -method
	Von Neuman Analysis

	Predictor-corrector methods (Runge-Kutta)
	Exercises

	Sparse Matrices and Linear Solvers
	Sparse matrix
	Iterative solvers and preconditioning
	Preconditioned Richardson iteration
	Projection methods
	Exercises
	Useful MATLAB commands
	Flowchart

	Green's functions
	Green's function solution equation for the steady heat equation
	Treatment of boundary conditions
	Derivation of the Green's function for a simple problem
	What to integrate? (Warning)
	Green's functions for a rectangular domain
	Discussion
	Exercises
	Useful MATLAB commands

	Optimization
	Statement of the problem
	Formulation and Optimality Condition
	Gradient Descent
	Newton's Method
	Constrained optimization: the method of Lagrange multipliers
	Quasi-1D approximation of a fin
	Exercises: Optimal Cooling Fin Shape
	Useful MATLAB commands
	Flowchart

	Finite Element Methods
	Weak Form
	Main Idea
	Base Functions
	Test Functions
	Element Matrix
	Boundary conditions
	System Matrix
	Exercises

	Addendum to Finite Volumes
	Uniform rectangular grid and Boundary Conditions
	Boundary conditions
	South

