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Abstract

With drastic growth of the computing power in recent time, robots can be utilized
in many diverse ways, e.g. as a caregiver for patient with impaired balance control.
Physical contact with the patient requires an accurate management of interaction
forces, which is realized via Force Controller. The high frequency required by the
Force Controller cannot be provided by the current tracking systems. The approach
Local Gaussian Process aims to predict the human motion given current state to
fix this issue. The model combines several local GP clusters with a weight function
to achieve reasonable accuracy while staying under a certain user-defined complex-
ity roof. Kalman Filter is, in contrast to LGP, light on memory requirement and
computation, since it operates truly in real-time and does not require training data.
This IP aims to test these two models, evaluate their viability and choose the suited
one for our task.
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Chapter 1

Introduction

1.1 Background

A strategy ”light touch” for rehabilitation of patients with impaired balance has been
developed, which intends to facilitate a robot caregiver as an assistant to support
the patient’s balance control by resting a hand on the patient without taking the
patient’s weight. It aims to give the patient feedback signals that allow him /her to
gain enhanced body balance control. The force provided by the caregiver is small
comparing to the force that would be necessary for the actual lifting of patient’s
body, thus, the name ”light touch”. The strategy has been proven to be efficient in
various studies, e.g. [Jek06]. A Force Controller is regarded to be the approach in
order to provide the soft and comfortable interaction needed for the strategy.

1.2 Structure Outline

An experiment in order to evaluate this strategy can be illustrated as show in Figure
1.1

The motion caption of a subject is realized with Xsens MVN Studio, real-time full
body motion capture program. Up to 23 segments of the the body can be captured,
including motion of body parts such as neck, head, shoulders and arms etc. For
our evaluation, we focus on the right hand in the beginning. The details will be
described in the Section 2.1.

In order to use the motion anticipation code we wrote, the raw data captured via
this software has to be exported and due to the raw nature of the data, also be
decoded into normal float type data, and then edited into file that is compatible
with our motion prediction code. The raw data are streamed into local receiving
client via UDP connection. Details are explained in Section 2.2.
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Figure 1.1: Process Pipeline

The motion prediction code we use for this Ingeneurpraxis is based on my Bachelor
Thesis ”Human Movements Predicion using on-line Gaussian Processes”, which was
done prior to this Ingeneurpraxis. For prediction, we use Local Gaussian Process,
which is a modified version of the machine learning algorithm, Gaussian Process.
This, as well as another state-of-the-art model is further elaborated on in Section 2.3.

And finally, the result submission from the local PC to the Force Controller is shortly
mentioned in Section 2.4.

In Chapter 3, the two models are benchmarked against each other and a conclusion
is drawn.

1.3 Related Works

For data regression, several models come to mind immediately: Gaussian Process,
Support Vector Machine, Kalman Filter, Locally weighted Projection Regression etc.

Gaussian Process(GP) is first introduced in by C. E. Rasmussen and C. K. I.
Williams’ pioneer work [RW06]. In very simple words: a Gaussian Process can
be seen as generalization of the Gaussian distribution. Instead of random variables,
GP governs over functions. This model is non-parametric and flexible, scales how-
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ever cubically in data size due to its kernel inversion.

Locally Weighted Projection Regression(LWPR) [VS]. It is a model suggested by S.
Vijayakumar, S. Schaal, and A. D’Souza in 2005. In its core, it is a non-parametric
regression model with locally linear clusters. Due to this linear nature, the model
has a fantastic scaling of O(n) in data size and has been shown to perform well
in domains of high-dimensions. The fast learning speed combined with other prop-
erties such as low requirement for training data memorization, weighting kernels
adjustment based on local information and the ability do to deal with potentially
redundant information make this model the standard robot control method when it
comes to real-time learning.

The Local Gaussian Process model [NTSP09] that we use combines these two ap-
proaches and is able to deliver reasonable results while staying computationally
tractable for real-time robot control tasks.

Kalman Filter [WB06] is, comparing to the previous models, a straight-forward
model that works under the assumption that the system is linear. Uncertainties such
as process noise as well as the measurement noise can be taken into consideration.
Unlike previous models, KF does not require any training data to perform estimate
and therefore, is very light on the time-consumption and a candidate for our task,
since the motion we are dealing with is rather simple.
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Chapter 2

Human Motion Anticipation in a
functional Reach Task

2.1 Motion Caption

In order to capture a subject’s motion, a tracking suit is used, which is able to track
the movements of 23 joints/segments of the body. Here we try to collect the data
of a simple motion as shown in Figure 2.1
Since it is a simple gesture of lifting the right hand, we mainly focused on ”right
hand” segment specifically while performing regression and ignore other segments
such as neck, head, pelvis etc. Tracking frequency of this software is 120Hz and the
motion has around 250-300 frames. These motions are saved in .mvn-format, which
is specifically designed to be opened by MVN Studio. In order to read these data
and eventually predict motions, we need to transfer these data into a local client.
This will be covered in Section 2.2.

2.2 Data Processing

In this section, the data transmission between the program and a local client is
described. Furthermore, the structure of the datagram is analyzed and decoded
into readable data for our PC. Also, preparatory steps for motion predictions are
performed. The specs of the program and the network protocol can be read in
[Xse15].

2.2.1 Data Transfer

To transfer the data into local client, we use UDP connection. Unlike some other
protocols, UDP connection is unidirectional and therefore does not require the re-
ceiver to answer incoming packets. This allows greater speed.
The motion tracking program itself is able to stream the data on a local host, so
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Figure 2.1: Motion Demonstration

what we need is a socket that receives the data. The code PracticalSocket [DC02]
will serve this purpose. It is a wrapper class for UDP and TCP sockets that works
both on Unix and Windows platforms. It provides a simple interface and emphasizes
on clarity over efficiency. Instances of the class UDPSocket can be created with a
server-adress and -port. With the function recv(echoBuffer, ECHOMAX) is used
for data reception. The string echoBuffer will be filled with the raw data received
from UDP connection and the integer ECHOMAX defines the maximum length of the
reception. The function also returns the length of the received data as integer.
One thing that caught our eyes is that sometimes, a same frame is sent repeatedly.
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Should this occur frequently, it might lead to instability in the motion prediction
step, since the differentiated velocity will be zero and damaging the quality of the
training output overall. To avoid this, the time code of each frame is also recorded
and the data will only be stored, when the frame has a different time code than the
previous one.

2.2.2 Data Reception

A custom class bodyPart is created for storing information regarding one specific
segment of the body. The informations include: segment ID that indicates which
bodypart the information is from, the 3D-position in centimeter and 3D Euler-
rotation in degrees.

The struct bodyMotionframe is further created to capture the information of all 23
segments of one time instance in form of a vector of bodyPart. The time code of
the frame is also stored in millisecond.

In the main function, another vector is created, that consists of all the frames in one
motion. Now that all is set up, the last step is to decode the raw data and store
them into the buffers mentioned above.

2.2.3 Data Editing

The data is streamed in raw-format by the host. One single datagram-string con-
taining all the information regarding one specific frame of the motion is transferred.
Since these information are coded in different data types, we need to figure out the
position of the specific information we need in the datagram-string and the data
type they are encoded in. Note that the data is encoded in big-endian style and our
machine works with little-endian, the proper step of reverting the bytes is necessary.

The datagram for each frame starts with a 24-byte header, which contains various
information about the specific frame such as time code, sample counter, number of
items etc. We only store the time code information.

After the header, the positional and angular information of the 23 segments are
coded as floats. One can choose between different types of pose data to send in
the MVN Studio, we use the Euler type here, which has a y-up, right-handed co-
ordination system. Each segment contains 4 bytes segments ID in integer, 12 bytes
of positional data and 12 bytes of angular data in floats, which make altogether
28 bytes per segment. Knowing this, we extract the information of each segment,
decode them and store them into one bodyPart instance. All 23 of the bodyPart
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instances are then pushed into a bodyMotionframe instance. Lastly, all of the 254
bodyMotionframe instances are then pushed into a vector which we will use to write
the text file that is compatible with our motion prediction code.

The 3D pose data are used as training input and the corresponding velocity in three
Cartesian directions are used as training outputs for three LGPs.

2.3 Motion Anticipation

The motion prediction model can be read in detail in my Bachelor Thesis, ”Hu-
man Movements Prediction usding on-line Gaussian Processes” [Wan16]. Following
paragraphs can be also read in the chapter ”Approaches for on-line Robot Control”
in the thesis.

Gaussian Process, which is explained in detail in Rasmussen’s work [RW06], is used
as the base model as a mean for regression for our purpose.

2.3.1 Local Gaussian Process

Gaussian Process

A GP can be used as means for regression as following:
Assuming y being the observation made at the coordinate x and the process is
observed n times. Also assuming the prior mean is set to zero-constant as well as

the covariance matrix is K
(

Θ,X,X
′
)

, Θ being the vector of hyper-parameters of

the chosen kernel, then we can denote the GP as following:

f(X) ∼ GP (0,K (Θ,X,X′)) (2.1)

And the log marginal likelihood is:

log p(f|X,Θ) = −1

2
fTK−1f− 1

2
log det(K)− n

2
log(2π) (2.2)

For simplicity and readability, a few terms are shortened as following: K = K(Θ,X,X),
K∗ = K(X,X∗) and k∗ = k(x∗).
Maximizing the marginal likelihood function with respect to Θ will deliver us the
full specification of the GP. The first two parts on the right hand side of the equa-
tion can each be thought as the penalty terms for the fitting accuracy and for the
model’s complexity, respectively. With Θ given, making predictions about testing
values x∗ should work as following, given training data-set X, the predictive distri-
bution p(y∗|x∗, f(x),X) = N (y∗|m,var), with m being the posterior mean estimate
and var being the posterior variance estimate, the predictive results m and var for
a single test point x∗ can be calculated as following:
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m(x∗) = kT
∗K

−1y (2.3)

var(x∗) = k(x∗,x∗)− kT
∗K

−1k∗ (2.4)

For GP Regression, the most time consuming operation is the inversion of the kernel
matrix K−1, which can take up to O(n3) flops with Gauss-Jordan. For the time-
crucial operations in strategy ”light touch”, calculating the matrix from scratch
every time a new training pair is added will not suffice. Various mathematical
optimization to boost computation of the matrix inversion have been applied in our
code, however, we want to increase the computation speed from the core and we
want to have certain degree of control over the speed, instead of relying entirely on
the data.

Local Gaussian Process

Local Gaussian Process(LGP) [NTSP09] is a combination of GP and the model Lo-
cally Weighted Projection Regression(LWPR) [VS].

The regression process can be divided into three parts: data-clustering, model-
learning and prediction.

For data-clustering, we simply divide our training data into K subsets. If K = 1,
this model is no different than the standard GP regression model. Each subset can
be limited to a certain certain size Nmax. In our case, we simply divide the data-set
in a chronological order, but principally, the clustering function can be any arbitrary
function. The parameters needed are for the LGP are therefore: amount of subsets
K, maximum size of the subset Nmax and optionally, the clustering function. Since
the poor scaling of ( O(n3), n is the size of the entire trainingset ), which is the
major drawback of GP is, is due to the inversion of the kernel matrix, splitting the
data into smaller subsets leads to inversion of a much smaller kernel matrix and
thus,drastic reduction of the computing time, both for adding data and calculating
regression. By limiting the subsets to a fixed size, the total complexity is O(MN3),
where M is number of relevant models for the prediction and N is the size of the
subsets. In most cases, MN3 � n3.
The model-learning complexity of each local model can be reduced from O(n3) to
O(n2) with some optimization routines[See04].
A commonly used function for weight calculation is the Radial Basis Function:

wk(x) = exp

(
−‖x− ck‖2

2l2

)
(2.5)

l defines the characteristic length-scale and ck the centroid of k-th local model.
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Assuming points belonging to the same region are more informative for the pre-
diction, this function is our function of choice to determine the relevance wk of a
certain cluster is to a query point. When adding a new point x, the cluster i with
the highest relevance wi will be chosen. If the cluster size exceeds a certain limit, an
old point from the data-set will be removed in order to keep the size of the subset.
A weight threshold wth is introduced, so that if none of the cluster has a sufficiently
high weight, a new cluster will be created with with x as its centroid. These two
steps are can be summarized in Algorithm 1.

For prediction, we can apply the formulas (2.3) from GPR for local regression:

ȳk(x∗) = kT
∗K

−1y (2.6)

and for final regression:

ŷ(x) =

∑M
k=1wkȳk(x)∑M

k=1wk

(2.7)

where M is number of relevant models for the prediction. This is summarized in
Algorithm 2.
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Algorithm 1 Partitioning the data and updating the kernel

Require: New observation data {xnew, ynew}
for k = 1 to M = amount of all clusters do

Calculate the weights of these clusters
wk = f(xnew, ck,Θk)

end for
Choose the cluster with the highest weight
wmax = max(w1, ..., wM)
if wmax > wth then

Add the data pair to the cluster with the highest weight
Xnew = [X,xnew], ynew = [y, ynew]
Update the centroid of the cluster
cnew = mean(Xnew)
Update kernel inverse with techniques

else
Build new cluster with xnew as centroid
cM+1 = xnew, XM+1 = [xnew], yM+1 = [ynew]

end if

Algorithm 2 Prediction using LGP

Require: test point x∗, amount of clusters M
for k = 1 to M do

Calculate the weights of the clusters
wk = f(x∗, ck,Θk)
Calculate the mean ȳk using parameters from the local Gaussian Process with
eq.(2.3) and eq.(2.6)
ȳk = mk(x∗) = kT

∗K
−1y

end for
Calculate the weighted mean prediction ŷ from the local clusters with eq.(2.7)

ŷ(x∗) =
∑M

k=1 wkȳk(x∗)∑M
k=1 wk
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2.3.2 Kalman Filter

Kalman Filter [WB06] is also a linear model capable of making estimations about
a dynamic system in real-time. Knowing the system dynamic and the time step
beforehand, the model is able to make educated guess on a certain measurement,
concerning factors such as process noise and measurements noise.
Assume we have a linear model with following dynamics with xk ∈ Rn as the state
and zk ∈ Rm as the measurements:

xk = Axk−1 +Buk−1 + wk−1 (2.8)

zk = Hxk + vk (2.9)

In our case, we set the state and measurement as:

xk =

[
position
velocity

]
, zk =

[
position

]
so that our system dynamic matrices in eq. (2.8) and eq. (2.9) look as following:

A =

[
I ∆tI
0 I

]
, H =

[
I 0

]
with xk ∈ R6, zk ∈ R3, A ∈ R6×6, H ∈ R3×6 and ∆t as time step in seconds. Since
we only measure and try to predict in our work, we will set control input uk to zero.

wk and vk represent the process and measurement noise, respectively. We assume
them to be Gaussian distributed:

p(w) ∼ N (0, Q), p(v) ∼ N (0, R)

with process noise covariance Q and measurement noise covariance R.

Let x̂−k and x̂k be our a priori and a posteriori estimates respectively, e−k and ek the
respective errors, the error covariances can be calculated as:

P−k = E[e−k e
−T
k ], Pk = E[eke

T
k ]

With these system dynamics, we can predict from k-th state from k − 1-th state a
priori as following:

x̂−k = Ax̂k−1 +Buk−1, (2.10)

P−k = APk−1A
T +Q (2.11)

To minimize the a posteriori error covariance Pk, we compute the Kalman Gain K
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K = P−k H
T (HP−k H

T +R)−1 (2.12)

the updated Pk becomes:

Pk = (I −KkH)P−k (2.13)

And the new a posteriori estimate can be be calculated as:

x̂k = x̂−k +K(zk −Hx̂−k ) (2.14)

With equations eq.(2.10) - eq.(2.14), a closed loop is built so that this procedure
can be called recursively.
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2.4 Data Submission

After performing the LGP regression as explained in the previous section, one more
step awaits for the motion prediction: to integrate the predicted velocity into the
previously measured pose data. Since the code is supposed to work generically for
every subject from every initial position, we also subtract it from all the motion
data received in real-time.

Since the UDP is unidirectional, we need another socket for the regression data
submission to the Force Controller. For this, another instance of the class UDPSocket
is established and will facilitate as a sender. As mentioned in the Section 2.2, the
local small-endian style has to be reverted to big-endian before sending it through
network, the necessary steps are performed. The data reception on the side of the
Force Controller, however, has not yet been evaluated and is among the future works.
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Chapter 3

Experimental Results

3.1 Benchmark Results

After the steps in Chapter 2 have been performed for LGP estimate results, the
results of one take have been evaluated. The plots are shown in Figure 3.1.

We first reconstruct the trajectory and compare it with the original measurement.
See Figure 3.2a.

To see how it stands with state-of-the-art, we also use the Kalman Filter code
developed by Greg Welch and Gary Bishop, which is an implementation of the
article [WB06].
Since Kalman Filter only predicts upon the current measurement and works without
memory and thus requires no specific modification for each trial, the same system
dynamic matrix will be used for every plot.

Using the first take as training data for out LGP, we test it on motion data of an-
other take, results can be seen in Figure 3.2b.

To see if it works on a different person, we trained on the motion data of one per-
son and perform regression on a second person. The results are plotted in Figure 3.2c

The the consumed time for each model has also been logged. Since the Kalman
Filter is a local model, it requires no pre-logged training data, nor does it need the
differentiated velocity to perform regression, thus it has no memory requirement on
the system and is very time-saving, so that with the standard timing function from
c++ library std::clock(), there is barely any time consumed for the update step,
resulting in 0ms of computation. LGP however does need to consider the training
data and perform somewhat time-consuming operations such as matrix inversion.
Overall for each regression step, approx. 3ms seconds are needed (1ms for each
LGP-model, which is responsible for one direction).
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Figure 3.1: Velocity Comparison
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The blue line shows the true velocity, whereas the red line corresponds to the pre-
dicted velocity using LGP with 3 clusters and RBF as weighting function. x-axis
is the number of frame in a chronological manner and y-axis is the velocity in the
respective direction in [cm/s].
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Figure 3.2: Trajectory Comparisons

(a) The LGP is trained and tested on the same take from the same person.

(b) Here, the LGP is trained on motion data of a different take of the same person

(c) For this plot, the LGP is trained with motion data from one person and tested on a second
one.

In these figures, the blue line shows the original measured data, the red line shows
the KF estimates and the green line the LGP estimates.
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Table 3.1: RMSE Comparison

For Figure 3.2a In x1 In x2 In x3

LGP in [cm] 0.0421 0.0123 0.0062
KF in [cm] 0.0326 0.0091 0.0014

For Figure 3.2b In x1 In x2 In x3

LGP in [cm] 0.0421 0.0123 0.0062
KF in [cm] 0.0326 0.0091 0.0014

For Figure 3.2c In x1 In x2 In x3

LGP in [cm] 0.0421 0.0123 0.0062
KF in [cm] 0.0326 0.0091 0.0014

One can easily observe from the plots that the estimated data from both LGP
and KF are very close to the original line so that the visual difference is barely
noticeable. Therefor the exact Root-Mean-Square-Error of both models are logged
and compared to each other.

3.2 Conclusion

For simple gestures and time-crucial operations, there is no argument against using
the Kalman Filter over LGP due to its fast computation, easy-to-use interface and
its lightness for since it requires no prior training data, therefor also no memory
requirement for the system. Since the Force Controller has to operate around 1ms,
Kalman Filter will be the go-to model for our task.

Despite more time-consumption and memory requirement and a somewhat complex
setup procedure, the strength in LGP should lie in its adaptability, flexibility and
genericity. The more training data it possesses, the more accurate the estimation
would be, this has been proven in other studies, but in our task, the emphasis lies
in time-consumption and Kalman Filter will be the better choice.
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Chapter 4

Summary and Future Works

To sum up everything achieved in this Ingeneurpraxis so far:

• motion of a simple gesture (lifting right hand) has been captured repeatedly
through multiple takes, data is stored in raw format,

• data are streamed via UDP connection on a local host,

• a UDP client has been created for the data reception,

• necessary steps for reading specific data at the right position in a right way
have been performed,

• pre-processed the data to be zero-mean

• the training data are then stored locally in an instance of a custom class,

• the data in the instance containing all the information of the motion are written
in a file that is compatible with the motion prediction code,

• the online prediction of the first take is performed using KF and LGP,

• on-line the motions of a different repetition using KF and LGP and

• encoding the data into correct format and send them via UDP connection to
the Force Controller

The future works might include:

• experimentally evaluating the results with Force Controller,

• evaluation of a more complex motion and

• real-world task cooperated with a KUKA robot.
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