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Abstract: In this paper, we address optimal information control in cyber-physical systems.
In particular, we study the optimal closed-loop policy for transmission of measurements
of a stochastic dynamical system through a communication channel given estimation and
communication costs. We develop a framework for optimizing an aggregate cost function that
incorporates the estimation and the communication costs over a finite time horizon. We obtain
the optimal closed-loop policy, and show that it can be expressed directly in terms of the value
of information. In addition, we propose an approximation algorithm that yields a suboptimal
closed-loop policy. Numerical and simulation results are presented for a simple system.
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1. INTRODUCTION

Cyber-physical systems are tomorrow’s systems in which
cyber and physical components interact in all scales and
levels. They deeply integrate computation, communica-
tion, and control into physical systems. In this paper,
we address optimal information control in cyber-physical
systems. Consider two agents Alice and Bob. Alice who
has access to measurements of a stochastic dynamical
system in the environment desires to inform optimally Bob
whose task is to estimate the state of the system. However,
the directed communication of Alice to Bob has a price
due to the associated energy consumption, communica-
tion constraints, computational limits, and security issues.
Therefore, Alice should devise a policy that transmits only
data that is of valuable information to Bob. From an
information theoretic perspective, Alice and Bob require
a source encoder and a source decoder, respectively. Then,
a challenging problem is to design an optimal encoding
policy given estimation cost at the decoder and cost of
the communication. This study has a broad range of ap-
plications including planetary exploration, environmental
monitoring, wearable sensing, teleoperation, and many
other examples of cyber-physical systems (Lee (2008)).

In this study, the encoder employs a sampler to control the
information flow in the communication channel. Nonuni-
form sampling (Mark and Todd (1981)) and its important
subclass event-driven sampling (Åström and Bernhardsson
(2002)) in the context of the estimation problem have
received early attention in the literature. Meier et al.
(1967) extend the work of Kushner (1964) by looking at
the measurement control problem subject to measurement
cost and constraints, and by proposing dynamic program-
ming (DP) and the gradient method as computational
procedures. Åström and Bernhardsson (2002) show that

event-driven sampling can outperform periodic sampling
with respect to the estimation error of a scalar linear
system under a sampling rate constraint. Rabi et al. (2012)
study optimal event-driven sampling as a stopping time
problem for a scalar system under a finite transmission
budget constraint. Molin and Hirche (2012) investigate
the optimal design for event-driven sampling in a scalar
system with communication cost by considering a two-
player problem. Sijs and Lazar (2012) study the estimation
problem in event-driven sampling taking into account the
implied knowledge when no measurement is transmitted.
Furthermore, in the last few years several sampling policies
have been proposed including ones based on the error
between the current measurement and the last transmitted
measurement (Otanez et al. (2002); Miskowicz (2006)), on
the measurement innovation (Wu et al. (2013)), on the
covariance of the estimation error (Trimpe and D’Andrea
(2014); Soleymani et al. (2016b); Soleymani et al. (2016a)),
and on the Kullback-Leibler divergence between the prior
and the posterior conditional distributions (Marck and Sijs
(2010)).

In the sense of Witsenhausen (1971), and Bar-Shalom and
Tse (1974), we classify sampling policies based on the
information pattern of the problem under study into: open-
loop policies, feedback policies, and closed-loop policies. All
previous works on nonuniform sampling for estimation are
based on either open-loop policies (Kushner (1964); Meier
et al. (1967); Trimpe and D’Andrea (2014); Soleymani
et al. (2016b); Soleymani et al. (2016a)) or feedback
policies (Otanez et al. (2002); Miskowicz (2006); Rabi et al.
(2012); Molin and Hirche (2012); Sijs and Lazar (2012);
Wu et al. (2013)). In this paper, for the first time, we study
the optimal closed-loop sampling policy. The information
pattern in our problem is characterized as follows:



(1) The encoder has access to imperfect information, i.e.,
the encoder cannot access the state of the process,

(2) The estimator used at the decoder is causal, i.e., the
estimator depends on past and present transmitted
measurements,

(3) The estimator used at the decoder neglects the im-
plied knowledge when no measurement is transmit-
ted,

(4) The sampling policy is closed-loop, i.e., the policy
takes into account past and present measurements
and the statistics of measurements in the future.

We develop a framework for optimizing an aggregate
cost function that incorporates the estimation and the
communication costs over a finite time horizon given the
aforementioned information pattern. We define the value
of information (VOI) as “the maximum value that the
encoder would be willing to pay for the transmission of
a measurement”. We show that the optimal closed-loop
policy can be expressed directly in terms of the value of
information. In addition, we propose an approximation
algorithm that yields a suboptimal closed-loop policy.

The outline of the paper is as follows. After an intro-
duction on notations, the information control problem
is formulated in Section 2. In Section 3, we obtain the
optimal information control and propose an approximation
algorithm. We illustrate numerical and simulation results
in Section 4. Finally, concluding remarks are made in
Section 5.

1.1 Notations

In this paper, we represent an n dimensional vector with
x = [x1, . . . , xn]

T where xi is its ith component. We write
xT to denote the transpose of the vector x. The identity
matrix with dimension n is denoted by In. We use C†

to denote the Moore-Penrose inverse of the matrix C. We
write δkk′ to denote the Kronecker delta function. We write
p(x) to denote the probability distribution of the stochastic
variable x. The expected value and the covariance of x
are denoted by E[x] and Cov[x], respectively. The normal
distribution with mean µ and covariance Σ is denoted by
N(µ,Σ). For matrices A and B, we write A ≻ 0 and B � 0
to mean that A and B are positive definite and positive
semi-definite, respectively.

2. INFORMATION CONTROL PROBLEM

2.1 Dynamical System and Information Control

Consider a discrete-time dynamical system generated by
the following linear state equation:

xk = Fxk−1 + wk−1, (1)

yk = Hxk + vk, (2)

for k = 1, 2, . . . where xk ∈ Rn is the state of the system
at time k, F is the state matrix, wk ∈ Rn is a white
noise sequence with zero mean and covarianceQδkk′ where
Q ≻ 0, yk ∈ Rp is the output of the system at time k, H is
the output matrix, and vk ∈ Rp is a white noise sequence
with zero mean and covariance Rδkk′ where R ≻ 0. It is
assumed that the initial state x0 is a Gaussian vector with
zero mean and covariance P0, and that x0, wk, and vk are
mutually independent.

Measurements of the system are available to a source
encoder that samples measurements at times ks for s =
1, . . . ,M where M is unknown. Samples are transmitted
through a communication channel, and received by a
source decoder. Through this study, the decoder assumes
that measurements are never compromised.

Definition 1. (information control). The information con-
trol δk at time k is

δk =

{

1, if ∃s : k = ks,
0, otherwise,

(3)

where δ0 = 0.

A set of information controls π = {δ1, . . . , δN} is called an
information control policy (or a sampling policy). In addi-
tion, a policy is closed-loop if it takes into account past and
present measurements and the statistics of measurements
in the future.

Definition 2. (encoder’s information set). The encoder’s
information set is the σ-algebra generated by past and
present measurements and past information controls, i.e.,

Jk = σ{yl, δl−1 | l ≤ k}. (4)

Remark 1. The information set Jk is available at time k
to the encoder for decision making, i.e., δk = δk(Jk).

Definition 3. (decoder’s information set). The decoder’s
information set is the σ-algebra generated by measure-
ments transmitted to the decoder, i.e.,

Ik = σ{yl | l ≤ k, δl = 1}. (5)

Remark 2. The information set Ik specifies the set of
measurements available at time k for filtration at the
decoder. Notice that the encoder can reconstruct the
decoder’s information set Ik from its information set Jk,
i.e., Ik ⊂ Jk.

The encoder’s information set is autonomous, i.e.,

Jk = σ{Jk−1, yk, δk−1}. (6)

However, the decoder’s information set is a function of the
information control, i.e., Ik = Ik(δk). In particular, we
can write

Ik(δk) =

{

σ{Ik−1, yk}, if δk = 1,
Ik−1, otherwise.

(7)

2.2 Estimate Dynamics

Filtration at the decoder is based on the decoder’s informa-
tion set Ik(δk). We assume that the estimator neglects the
implied knowledge when no measurement is transmitted.
Therefore, the conditional distribution p(xk|Ik(δk)) is a
Gaussian distribution. Define

x̂k = E[xk|Ik(δk)], (8)

Pk = Cov[xk|Ik(δk)]. (9)

The conditional distribution N(x̂k, Pk) evolves in time due
to the system dynamics, and is updated at times ks due
to measurements.

Consider the transformation Ik = P−1

k where Ik is the
Fisher information matrix (FIM) (Guo et al. (2012)). Fol-
lowing the Kolmogorov forward equation (Åström (2006)),
the estimate and the FIM in the interval (ks−1, k

−
s ] are

propagated as

x̂k = F x̂k−1, k ∈ (ks−1, k
−
s ], (10)

Ik = (FI−1

k−1
FT +Q)−1, k ∈ (ks−1, k

−
s ], (11)



where k−s denotes time ks before the estimate and the FIM
are updated. Following Bayes’ rule (Åström (2006)), the
estimate and the FIM at time ks are updated as

x̂k = x̂k− +Kk(yk −Hx̂k−), k = ks, (12)

Ik = Ik− +HTR−1H, k = ks, (13)

where Kk = I−1

k HTR−1 is the gain of the filter.

We write the discrete-time switched dynamics of the
estimate and the FIM in terms of the information control:

x̂k = F x̂k−1 +Kk

(

yk −HFx̂k−1

)

δk, (14)

Ik = (FI−1

k−1
FT +Q)−1 +HTR−1Hδk, (15)

which are shortly expressed by x̂k = ψk(x̂k−1, Ik−1, δk)
and Ik = φk(Ik−1, δk).

2.3 Estimation Criterion and Communication Price

We use mean square error (MSE) to measure the distortion
between the state of the system and its estimate at the
decoder over the time horizon N :

Je
π=E

[

N
∑

k=0

(xk−x̂k)
T (xk−x̂k)

]

. (16)

We assume that the communication price per measure-
ment λk is a random variable given by a Gaussian sequence
with mean µλ and variance σ2

λ. However, its value at the
current time is known to the encoder. Then, the commu-
nication cost over the time horizon N is

Jc
π = E

[

N
∑

k=1

λkδk

]

. (17)

We define the aggregate cost function as a convex com-
bination of the estimation and the communication cost
functions defined in (16), (17):

Jπ = E

[

N
∑

k=0

gk(x̂k, δk)
]

(18)

where the stage cost gk(x̂k, δk) at time k is

gk(x̂k, δk) = θeTk ek + (1 − θ)λkδk (19)

where θ ∈ [0, 1] and ek = xk− x̂k is the estimation error at
time k. Notice that the expectation in (18) is with respect
to xk, yk, λk, and δk for all k = 0, 1, . . . , N .

Problem 1. Given the dynamical system defined by (1),
(2), the information control defined by (3), and the filtra-
tion given by (14), (15), find the optimal closed-loop in-
formation control policy π⋆ = {δ⋆1 , . . . , δ

⋆
N} that minimizes

the aggregate cost function Jπ.

3. OPTIMAL INFORMATION CONTROL

3.1 Optimal Closed-Loop Policy

The optimal closed-loop information control policy π⋆

is the solution of the following finite horizon stochastic
optimization problem:

minimize E

[

N
∑

k=0

gk(x̂k, δk)
]

(20)

subject to xk = Fxk−1 + wk−1,

yk = Hxk + vk,

x̂k = ψk(x̂k−1, Ik−1, δk),

Ik = φk(Ik−1, δk),

with variables xk ∈ Rn, yk ∈ Rp, x̂k ∈ Rn, Ik ≻ 0,
and δk ∈ {0, 1} for all k = 1, 2, . . . , N , and with initial
conditions x0, x̂0, and I0.

Define the value function Vk(Jk) at time k as

Vk(Jk) = min
δk,...,δN

E

[

N
∑

l=k

gl(x̂l, δl)
∣

∣

∣
Jk

]

. (21)

Lemma 1. The optimal closed-loop information control
policy π⋆ in (20) is obtained by

δ⋆k(Jk) = argmin
δk

E

[

gk
(

ψk(x̂k−1, Ik−1, δk), δk
)

+ Vk+1

(

σ{Jk, yk+1, δk}
)

∣

∣

∣
Jk

]

, (22)

subject to (1), (2), (14), (15), for k = 1, 2, . . . , N with
condition VN+1 = 0.

Proof. From the definition of the value function and
expectation properties, we have

E
[

Vk(Jk)
]

= min
δk,...,δN

E

[

N
∑

l=k

gl(x̂l, δl)
]

= E

[

min
δk,...,δN

E

[

N
∑

l=k

gl(x̂l, δl)
∣

∣

∣
Jk

]

]

.

Besides, Jπ = E[V0]. Therefore, the policy minimizing
the value function is the optimal closed-loop information
control policy. Moreover, we can write the aggregate cost
function as

Jπ = E

[

k−1
∑

l=0

gl(x̂l, δl)
]

+ E

[

N
∑

l=k

gl(x̂l, δl)
]

where only the second term depends on the information
control δk. Following the principle of optimality for imper-
fect information, we have

Vk(Jk) = min
δk,...,δN

E

[

N
∑

l=k

gl(x̂l, δl)
∣

∣

∣
Jk

]

= min
δk

E

[

gk(x̂k, δk) + Vk+1(Jk+1)
∣

∣

∣
Jk

]

where x̂k = ψk(x̂k−1, Ik−1, δk) and Jk+1 = σ{Jk, yk+1, δk}.
Hence, the optimal information control δ⋆k(Jk) at time k
is the argument of the above minimum. �

Transmission of a measurement can decrease the estima-
tion error ek. However, there is a price λk associated with a
transmission. Therefore, the encoder should at each time k
decide whether it is worthwhile to transmit a measurement
or not. This leads us to the following definition.

Definition 4. (value of information). The value of infor-
mation (VOI) is the maximum value that the encoder
would be willing to pay for the transmission of a mea-
surement yk at time k, i.e.,



αk(Jk)=E

[

gk
(

ψk(x̂k−1,Ik−1,0), 0
)

−gk
(

ψk(x̂k−1,Ik−1,1), 0
)

+Vk+1
(

σ{Jk, yk+1, 0}
)

−Vk+1
(

σ{Jk, yk+1, 1}
)

∣

∣

∣
Jk

]

. (23)

Proposition 1. Let αk(Jk) be the value of information at
time k. The information control policy

δ⋆k(Jk) =

{

1, if αk(Jk) ≥ (1 − θ)λk,
0, otherwise,

(24)

is optimal and closed-loop.

Proof. In the view of Lemma 1, the optimal information
control δ⋆k(Jk) at time k is 1 if

E

[

gk
(

ψk(x̂k−1,Ik−1,0), 0
)

+Vk+1
(

σ{Jk,yk+1,0}
)

∣

∣

∣
Jk

]

−E

[

gk
(

ψk(x̂k−1,Ik−1,1), 1
)

+Vk+1
(

σ{Jk,yk+1,1}
)

∣

∣

∣
Jk

]

≥ 0,

and is 0 otherwise. We can write gk
(

ψk(x̂k−1, Ik−1, 1), 1
)

=

gk
(

ψk(x̂k−1, Ik−1, 1), 0
)

+(1−θ)λk. Substituting this in the
above equation, we obtain (24). �

In order to use the optimal closed-loop information control
policy π⋆ proposed in (24), we need to compute at time k
the expected value of the stage cost and the expected value
of the optimal cost-to-go conditioned on the encoder’s
information set Jk.

Let us define the innovation at the encoder at time k as

νk = yk −HFx̂k−1. (25)

We will show that the conditional expected value of the
stage cost at time k is a function of the FIM Ik−1, the
innovation νk, and the information control δk.

Theorem 1. Assume that the output matrix H has full
rank. The expected value of the stage cost at time k
conditioned on Jk is

E
[

g(x̂k, δk)
∣

∣Jk

]

(26)

= (1− θ)λkδk + θ
(

ν̄Tk H̄ν̄k − 2ν̄Tk H̄RΓ
−1

k νk

+ tr(H̄R− H̄RΓ−1

k R+ H̄RΓ−1

k νkν
T
k Γ

−1

k R)
)

where

ν̄k = (Ip −HKkδk)νk,

H̄ = H†TH†,

Γk = HTφ(Ik−1, 0)
−1H +R.

Proof. The expected value of the stage cost at time k
conditioned on Jk can be written as

E
[

g(x̂k, δk)
∣

∣Jk

]

= E
[

θeTk ek + (1 − θ)λkδk
∣

∣Jk

]

(27)

= θ E[eTk ek|Jk] + (1− θ)λkδk
where ek is a function of δk. For the error ek, we can write

Hek = Hxk −Hx̂k = yk −Hx̂k − vk (28)

= yk −HFx̂k−1 −HKk

(

yk −HFx̂k−1

)

δk − vk

= (Ip −HKkδk)νk − vk = ν̄k − vk.

Employing the Moore-Penrose inverse, we have

ek = H†(ν̄k − vk). (29)

Since H has full rank, H† exists. The inner product of the
error by itself using the definition of H̄ yields

eTk ek = (ν̄k − vk)
T H̄(ν̄k − vk) (30)

= ν̄Tk H̄ν̄k − 2ν̄Tk H̄vk + vTk H̄vk.

For the measurement noise vk and the measurement yk at
time k, it is easy to show that

E
[

vk, yk|Jk−1

]

=

[

0
HFx̂k−1

]

, (31)

Cov
[

vk, yk|Jk−1

]

=

[

R R

R HTφk(Ik−1, 0)
−1H +R

]

. (32)

Then, we can obtain the mean and the covariance
of the measurement noise vk conditioned on Jk =
σ{Jk−1, yk, δk−1}, i.e., we have

E[vk|Jk] = RΓ−1

k (yk −HFx̂k−1) (33)

= RΓ−1

k νk,

Cov[vk|Jk] = R−RΓ−1

k R. (34)

Furthermore, from trace and expectation properties, we
can write

E[vTk H̄vk|Jk] = E
[

tr(vTk H̄vk)
∣

∣Jk

]

(35)

= E
[

tr(H̄vkv
T
k )

∣

∣Jk

]

= tr
(

H̄ E[vkv
T
k |Jk]

)

= tr
(

H̄ Cov[vk|Jk] + H̄ E[vk|Jk]E[vk|Jk]
T
)

.

By taking the expectation of (30) conditioned on Jk

and using (33), (34), (35), and the fact that ν̄k is Jk-
measurable, we have

E[eTk ek
∣

∣Jk] (36)

= ν̄Tk H̄ν̄k−2ν̄Tk H̄ E[vk|Jk]+E[vTk H̄vk|Jk]

= ν̄Tk H̄ν̄k − 2ν̄Tk H̄ E[vk|Jk]

+tr
(

H̄Cov[vk|Jk]+H̄ E[vk|Jk]E[vk|Jk]
T
)

= ν̄Tk H̄ν̄k − 2ν̄Tk H̄RΓ
−1

k νk

+ tr(H̄R−H̄RΓ−1

k R+H̄RΓ−1

k νkν
T
k Γ

−1

k R).

This completes the proof. �

The expected value of the cost-to-go at time k is a
function of future measurements averaged out conditioned
on the information set Jk. Next, we will show that the
expected value of the optimal cost-to-go at each time can
be obtained by a deterministic optimization problem.

Theorem 2. Assume that past and present measurements
do not affect the cost-to-go in the future. The expected
value of the optimal cost-to-go starting from k + 1 con-
ditioned on Jk is

E
[

Vk+1(Jk+1)|Jk

]

(37)

= min
δk+1,...,δN

N
∑

l=k+1

θ trφ−1

l (Il−1, δl) + (1− θ)µλδl.

Proof. From the definition of the value function, expec-
tation properties, and assumption that past and present
measurements do not affect the cost-to-go, we have

E
[

Vk+1(Jk+1)|Jk

]

(38)

= E

[

min
δk+1,...,δN

E

[

N
∑

l=k+1

gl(x̂l, δl)
∣

∣

∣
Jk+1

]
∣

∣

∣
Jk

]

= E

[

min
δk+1,...,δN

E

[

N
∑

l=k+1

gl(x̂l, δl)
∣

∣

∣
Jk+1

]

]

= min
δk+1,...,δN

E

[

N
∑

l=k+1

gl(x̂l, δl)
]

.



Next, we will find the first term of the summation:

E
[

gk+1(x̂k+1, δk+1)
]

(39)

= E
[

θeTk+1ek+1 + (1 − θ)λk+1δk+1

]

= θE
[

eTk+1ek+1

]

+ (1− θ)µλδk+1.

However,

ek+1 = xk+1 − x̂k+1. (40)

Hence, the mean and the covariance of ek+1 are obtained
as

E[ek+1] = 0, (41)

Cov[ek+1] = φ−1

k+1
(Ik, δk+1). (42)

Therefore,

E
[

eTk+1ek+1

]

(43)

= tr
(

Cov[ek+1] + E[ek+1]E[ek+1]
T
)

= trφ−1

k+1
(Ik, δk+1).

The rest of the terms can be derived analogously. This
completes the proof. �

Remark 3. One can calculate the optimal cost-to-go in
(37) using a deterministic DP algorithm.

3.2 Suboptimal Closed-Loop Policy

The DP calculation becomes intractable when the time
space and the state space are large (known as curse of
dimensionality). However, we can make a trade-off between
the convenient implementation and adequate performance.
Let Lk+1(Ik−1, δk) be an approximation of the conditional
expected value of the optimal cost-to-go starting from
k + 1 which is in fact a function of the FIM Ik−1 and
the information control δk. The approximate value of
information is defined as

α̃k(Jk) = Lk+1(Ik−1, 0)−Lk+1(Ik−1, 1)

+E

[

gk
(

ψk(x̂k−1,Ik−1,0), 0
)

−gk
(

ψk(x̂k−1,Ik−1,1), 0
)

∣

∣

∣
Jk

]

.

(44)

Then, a suboptimal closed-loop information control policy
π+ = {δ+1 , . . . , δ

+

N} is obtained by using (44) in (24).

Now, consider the discrete-time switched dynamics of the
FIM using the Euler method (Soleymani et al. (2016b)):

Ik =− ln(F )T Ik−1 − Ik−1 ln(F ) + Ik−1

− ǫIk−1Q̄Ik−1 +HTR−1Hδk +O(ǫ2), (45)

where ln(F ) is the matrix logarithm of F , Q̄ is the
covariance of the continuous-time white noise process
calculable using the Van Loan method (Van Loan (1977)),
and ǫ is the time step-size. An approximation of the
FIM dynamics is Ik = φ̃k(Ik−1, δk) where φ̃k(Ik−1, δk) is
obtained when O(ǫ2) is discarded in (45).

In the following, we use a semi-definite programming
(SDP) relaxation (Vandenberghe and Boyd (1996)) to find
a lower bound which can be used as Lk+1(Ik−1, δk).

Theorem 3. A lower bound on

min
δk+1,...,δN

N
∑

l=k+1

θ tr I−1

l + (1− θ)µλδl (46)

subject to Il = φ̃l(Il−1, δl) is given by the optimal value of
the following SDP:

minimize
N−k
∑

l=1

θ tr I−1

l + (1− θ)µλδl (47)

subject to Il = − ln(F )T Il−1 − Il−1 ln(F ) + Il−1

− ǫDl−1 +HTR−1Hδl,
[

Dl Il
Il Q̄−1

]

� 0,

with variables Il ≻ 0, Dl ≻ 0, and δl ∈ [0, 1] for all
l = 1, 2, . . . , N − k, and with initial conditions I0 = Ik
and D0 = IkQ̄Ik.

Proof. First note that the functions tr I−1

l and µλδl
are convex in Il and δl given that Il ≻ 0. We relax
the integrality constraint to δl ∈ [0, 1]. Then, we aim
at relaxing the quadratic term in the approximate FIM
dynamics. Since this equality constraint does not influence
the set of admissible control δl, such a relaxation does
not violate the feasibility of the problem. By defining
Dl = IlQ̄Il, we have

Il =− ln(F )T Il−1 − Il−1 ln(F ) + Il−1 (48)

− ǫDl−1 +HTR−1Hδl

which is a linear equation. We substitute the new con-
straint Dl = IlQ̄Il with its convex relaxation, i.e., Dl −
IlQ̄Il � 0. This nonlinear convex inequality can be con-
verted into an LMI by using the Schur complement:

[

Dl Il
Il Q̄−1

]

� 0. (49)

Using the new constraints (48), (49), and δl ∈ [0, 1], and
following the convexity of the function in (46) we obtain
the relaxed problem (47) which yields a lower bound on
the function in (46). �

Remark 4. Our approach produces a tractable approxima-
tion. Evaluating how accurate it is is a problem we will
investigate elsewhere.

4. ILLUSTRATIVE EXAMPLES

In this section, we present numerical and simulation results
for a system with the following discrete-time dynamics:

xk = 0.99xk−1 + wk−1

yk = xk + vk

with initial conditions x0 = 0, x̂0 = 0, and I0 = 1, and
covariances Q = 0.0495, and R = 1. The time horizon
is N = 100, the communication price per measurement is
λk = 0.2, θ = 0.5, and ǫ = 0.1. We used the proposed VOI-
based policy together with the approximation algorithm,
and obtained a suboptimal closed-loop information control
policy. The state, the estimate, and the covariance trajec-
tories along with the sampling schedule for the VOI-based
policy are illustrated in Fig. 1 and Fig. 2 for a realization
of the system. The results are compared with a periodic
policy that transmits every other time step. For the VOI-
based and the periodic policies, the average stage costs are
0.1731 and 0.2718, and the total numbers of transmissions
are M = 51 and M = 50, respectively.

5. CONCLUSION

In this work, we developed a framework for optimal in-
formation control in cyber-physical systems. We obtained
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Fig. 1. Trajectories of the state and the estimates (periodic
and VOI-based), and the VOI-based schedule.
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Fig. 2. Trajectories of the covariances (periodic and VOI-
based), and the VOI-based schedule.

the optimal closed-loop policy, and showed that it can be
expressed directly in terms of the value of information.
Then, we showed that the value of information at each
time consists of a feedback term and a feedforward term.
The former is a function of the innovation, while the later
can be calculated via DP. In addition, we propose an
approximation algorithm based on an SDP relaxation that
yields a suboptimal closed-loop policy.
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between information and estimation measures. Founda-
tions and Trends in Signal Processing, 6(4), 243–429.

Kushner, H.J. (1964). On the optimum timing of obser-
vations for linear control systems with unknown initial
state. IEEE Trans. Automatic Control, 9(2), 144–150.

Lee, E.A. (2008). Cyber physical systems: Design chal-
lenges. In Proc. of the IEEE Int. Symp. on Object
Oriented Real-Time Distributed Computing, 363–369.

Marck, J.W. and Sijs, J. (2010). Relevant sampling
applied to event-based state-estimation. In Proc. of
the International Conf. on Sensor Technologies and
Applications, 618–624.

Mark, J. and Todd, T. (1981). A nonuniform sampling
approach to data compression. IEEE Trans. Communi-
cations, 29(1), 24–32.

Meier, L., Peschon, J., and Dressler, R.M. (1967). Opti-
mal control of measurement subsystems. IEEE Trans.
Automatic Control, 12(5), 528–536.

Miskowicz, M. (2006). Send-on-delta concept: an event-
based data reporting strategy. Sensors, 6(1), 49–63.

Molin, A. and Hirche, S. (2012). An iterative algorithm
for optimal event-triggered estimation. In Proc. of the
IFAC Conf. on Ana. and Design of Hybrid Sys., 64–69.

Otanez, P.G., Moyne, J.R., and Tilbury, D.M. (2002).
Using deadbands to reduce communication in networked
control systems. In Proc. of the IEEE American Control
Conf., 3015–3020.

Rabi, M., Moustakides, G.V., and Baras, J.S. (2012).
Adaptive sampling for linear state estimation. SIAM
Journal on Control and Optimization, 50(2), 672–702.

Sijs, J. and Lazar, M. (2012). Event based state estimation
with time synchronous updates. IEEE Trans. Automatic
Control, 57(10), 2650–2655.

Soleymani, T., Hirche, S., and Baras, J.S. (2016a). Maxi-
mization of information in energy-limited directed com-
munication. In Proc. of the European Control Conf.

Soleymani, T., Hirche, S., and Baras, J.S. (2016b). Opti-
mal self-driven sampling for estimation based on value of
information. In Proc. of the Int. Workshop on Discrete
Event Systems, 183–188.

Trimpe, S. and D’Andrea, R. (2014). Event-based state
estimation with variance-based triggering. IEEE Trans.
on Automatic Control, 59(12), 3266–3281.

Van Loan, C. (1977). Computing integrals involving the
matrix exponential. Technical report, Cornell Univ.

Vandenberghe, L. and Boyd, S. (1996). Semidefinite
programming. SIAM review, 38(1), 49–95.

Witsenhausen, H.S. (1971). Separation of estimation and
control for discrete time systems. Proc. of the IEEE,
59(11), 1557–1566.

Wu, J., Jia, Q.S., Johansson, K.H., and Shi, L. (2013).
Event-based sensor data scheduling: Trade-off between
communication rate and estimation quality. IEEE
Trans. on Automatic Control, 58(4), 1041–1046.


