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ZENTRUM MATHEMATIK

Lehrstuhl für Mathematische Physik

Normal Forms and Squeezing in Continuous Variable

Quantum Information Theory

Martin Peter Idel
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1

Introduction

Normal forms are invariants under (group) operations, which help to simplify classification of

the objects they refer to. Classifications can reduce the number of cases to be considered in a

given problem and organise approaches, which allows to tackle hard and interesting problems.

Therefore they are ubiquitous in mathematics and mathematical physics and occur at any level,

from matrix diagonalisation to Dynkin diagram classification to graph canonisation.

This thesis is concerned with the introduction, extension, and application of normal forms

mostly in the context of squeezing in continuous variable (CV) quantum information theory.

Quantum information theory is concerned with the transmission and storage of information (for

instance classical information encoded into bitstrings) in quantum mechanical systems. Such

tasks arise naturally in real life, when two people who are spatially separated want to commu-

nicate with each other. In that case, they need to use a medium in order to communicate such

as telephones connected by cables. Since communication will be disturbed by problems such as

imperfections in the production process of the telephones or animals chewing on the cables, it

is important to consider robust encondings to transmit information nonetheless. In information

theory, such communication devices are modeled as “channels”, maps that transform an input

into a possibly randomised output based on some noise model. Trying to send information

despite the fact that these channels may transform the message seemingly beyond recognition

is called “coding”. In recent decades, it has transpired that quantum systems such as polarised

photons can also be used to transmit information. The study of “quantum channels” and

coding is interesting for several reasons, for instance: Quantum channels offer the advantage

that the information can be physically secured from eavesdroppers, whereas secure information

transmission over classical channels relies on unproven “hardness” results for number theoretic
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1. INTRODUCTION

problems (e.g. finding prime factorisations for very large numbers is next to impossible in short

time). Furthermore, smaller and smaller systems may require the study of quantum mechanics

just by the fact that they are too small to be sufficiently well-described by classical mechanics.

Since light is already one of the most useful information carriers in current technology it seems

natural to use quantum mechanical descriptions of light and try to encode information with

quantum optical devices. This is one of the applications of the subfield of continuous variable

quantum information that is most promising for applications - in fact, commercial applications

already exist (see the Swiss company ID Quantique).

Assume for a moment we wanted to build a quantum telephone. A very rough path towards

good quantum communication includes the following steps:

1. Identify physical systems and operations that can be used for coding and transmission

and model the systems including noise models.

2. Calculate information capacities (i.e achievable error-free transmission rates) of realistic

channels.

3. Create concrete coding schemes to implement communication protocols including poten-

tial error correction.

4. Prove the robustness of schemes. This is necessary to ensure that small differences in the

model will not completely alter information-transmission behaviour.

5. Implement them in a lab.

While the first and last step are purely physical, the other steps rely only on the underlying

mathematical model. The study of normal forms enters the picture at various points:

1. Calculating channel capacities turns out to be a hard task in quantum information theory.

No single letter formula is known to date for most channels and the lack of additivity

(cf. [SY08]) renders a computable formula which holds for all channels impossible. Recent

advances in calculating channel capacities in CV systems (see [GGPCH14]) relied on a

normal form for a large class of quantum channels showing that such channels are always

a concatenation of channels of a certain type.

2. Channels can be seen as states using the Choi-Jamiolkowski isomorphism; therefore it is

also beneficial to study normal forms for states. Instead of studying the channel directly,

normal forms of states can help to see how a channel acts. For instance, the minimum
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1.1 Summary

output entropy of a channel, which is connected to its capacity, relies only on eigenvalues

of the output.

3. Implementing coding schemes and error correcting codes requires the implementation of

large classes of (unitary) operations. Usually, these are implemented by using just a small

number of “gates” which can then be perfected in the lab and reused. Finding such gate

systems or decomposing unitaries into gates can benefit from the invention of normal

forms.

4. Robustness is usually implied by continuity of the normal forms.

1.1 Summary

In this dissertation I consider normal forms from several perspectives including proving new

normal forms, proving the stability of known normal forms, and applying normal forms to study

information theoretic problems. The main focus is twofold: The application of normal forms

to questions related to squeezing, and the development of normal forms for quantum channels

(mostly connected to squeezing).

Squeezing is a quantum optical operation which requires the use of nonlinear media and

is considered a very hard task, also because squeezed states decohere quickly. By studying

squeezing in various contexts I provide tools to answer questions about how much squeezing is

necessary to perform a given task such as the creation of a quantum state. Squeezing is also

closely related to entanglement, arguably the most important resource in quantum information

theory. In addition, squeezing can itself be seen as a resource with connections to general

resource theories.

In this section I will briefly sketch the results of each paper and how it relates to the

overarching theme of the thesis and the other articles written during my graduate studies.

An operational measure of squeezing The article studies squeezing in itself and as a

resource. The main goal is to answer the following question: If we only allow single-mode

squeezing or single-mode squeezed resource states, how much squeezing is needed to prepare

an arbitrary (Gaussian) state? As a preliminary result, we also cover the question how much

squeezing is necessary to implement an arbitrary Gaussian unitary.

The question of implementing arbitrary Gaussian unitaries is translated to a question of

decomposing symplectic matrices and we prove that the optimum is achieved by the Euler
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1. INTRODUCTION

decomposition, a well-known normal form of symplectic matrices. This was to be expected but

has never been formally proven. We prove the result also for arbitrary paths on the symplectic

group using results from ordinary differential equations in [Son98]. We then propose multi-

mode squeezing measures, which turn out to be convex and superadditive. The main technical

tool in this part is a matrix version of the Cayley transform from complex analysis.

Finally, we prove that the measure indeed answers the problem of minimising squeezing.

Unfortunately, we have not found a simple and analytically computable formula for the min-

imisation but instead provide a Matlab program which can compute the optimum approxi-

mately. The approximation was shown to be very precise in various numerical tests. To assess

the performance of this algorithm, we also provide lower and upper bounds for the measure.

These bounds are in part an application of spectral theory and Williamson’s normal form, a

symplectic diagonalisation of positive matrices.

To my knowledge, this is the first work which considers multi-mode squeezing measures and

not only the smallest eigenvalue of the covariance matrix as in [KGLC03]. It is not clear how

relevant the measures in the paper are for experimental purposes since single-mode squeezers

might not capture what is actually done in the lab. We give a short discussion of this question

and provide results about which modifications are possible without the need of new proofs. We

are confident that the tools of this paper can be used in subsequent developments of squeezing

measures and the resource theory of squeezing.

Perturbation Bounds for Williamson’s Symplectic Normal Form This article grew

out of the Bachelor thesis of Sebastián Soto Gaona, who proved that the symplectic spectrum,

the diagonal entries of Williamson’s normal form, are stable with respect to small perturbations.

A similar bound also appeared in [BJ15]. We extend these results to give a full discussion of

the perturbation theory of Williamson’s normal form.

We give bounds on the stability of the symplectic spectrum and prove that the scaling

of the constants, which depend on the condition number of the matrices involved, cannot

be improved very much. We prove that the diagonalising matrix is stable if the spectrum is

nondegenerate and give a counterexample otherwise. Finally, we prove that if S is a diagonlising

matrix, then S−TS−1 is stable. We mainly employ techniques from usual perturbation theory

(cf. [Bha96]) to prove our stability results.

This result is actually needed to prove termination of the algorithm in the previous article:

When giving the Matlab program, the starting point for the convex optimisation algorithm
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1.1 Summary

is exactly S−TS−1 for some matrices. If this combination were not stable, the starting point

could turn out to be an infeasible point in the constraint set of the algorithm and it is not clear

that the algorithm converges.

Furthermore, the normal form is very important in continuous variable (CV) quantum

information because the entropy can be expressed solely in terms of the symplectic spectrum.

Therefore, the stability of Williamson’s normal form will be interesting for the robustness of

certain protocols in CV quantum information.

On additive Gaussian quantum channels This paper studies so called additive Gaussian

channels, a class of channels consisting primarily of environment modes and beam splitters

which couple the environment to the system. We approach the subject from the angle of the

resource theory of squeezing: Which channels can be implemented using only passive (i.e. non-

squeezing) unitaries but squeezed environments?

We provide a classification of all the channels with squeezed and unsqueezed environment

and passive unitaries and in addition provide a normal form which identifies them as concate-

nations of beam splitters and Gaussian unitaries. Given our measures for squeezing from the

first article, we could now ask the question of which states can be prepared using how much

squeezed resources.

In addition, given the recent advances on computing channel capacities for covariant channels

(cf. [GGPCH14] and similar papers), additive Gaussian channels might be a natural class to

extend the results. They retain part of the properties of covariant channels which made them

attractive, while essentially only adding the beam splitter with a squeezed environment mode

(Efforts to extend the results of [GGPCH14] have however been futile so far).

Sinkhorn normal form for unitary matrices This article studies several new normal

forms for unitary matrices, proving a conjecture by [DVDB14a]. The main tool for the proof is

a deep result in symplectic geometry stating that a displacement of the so called Clifford torus

from itself using Hamiltonian symplectomorphisms is impossible. It transpired later that the

same proof had been used in a different context in [KJR14].

We use the normal form to derive a number of other decompositions of unitary matrices.

Such decompositions can be interesting for coding schemes, where one constructs unitaries out

of a limited number of gates. In our case, the normal form implies that it is enough to be

able to implement phase shifters and Fourier transforms on any number of modes in order to
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generate all (Gaussian) unitaries. In addition, the normal forms reveal structural properties

of the unitary group which might help to solve open questions concerning unbiased bases or

(un)certainty relations.

A review of matrix scaling and Sinkhorn’s normal form for matrices and positive

maps This review is a condensed version of everything I have come to know about Sinkhorn’s

normal form. Since it is a review, it contains hardly any new material. It closes a gap in the

literature because many results have been rediscovered several times and the general literature

covers at least 200 papers over almost 80 years. A full overview about different approaches

has never been achieved since the 70s. Despite the length and detail, it is focused on the

mathematical questions surrounding the problem and only skims applications to give pointers

to relevant literature. The article originated in the original research done in my Master’s thesis

and the paper on the Sinkhorn normal form for unitary matrices.

The topic of Sinkhorn normal forms touches upon quantum mechanics in several ways: We

already discussed the normal forms for unitary matrices that were developed in Article IV and

its connection to CV quantum information. The original Sinkhorn theorem for positive matrices

was used by Aaronson in [Aar05] to study certain hidden-variable models. Most importantly,

the extension of Sinkhorn’s theorem to positive maps provides new normal forms for arbitrary

quantum channels for finite dimensional systems. In this sense, the largest part of this paper

is rather different from the rest of the thesis, as it concerns mostly finite dimensional and

not continuous variable quantum information. However, it fits neatly into the discussion about

normal forms and their impact on the quest to quantum information processing. I was interested

in the problem in the hope to apply it to certain classes of quantum channels.

1.2 Outline

The next section introduces the mathematical framework underlying the papers. After intro-

ducing basic notation, I will review normal forms in symplectic geometry which are applied in

the articles. A second section gives an introduction to continuous variable quantum information,

in particular Gaussian states. I introduce resources and resource theories in a third section,

sketching the best known example of entanglement theory and its connection to squeezing.

This chapter is followed by the articles ordered according to the list preceding this intro-

duction. The list is ordered contextually to highlight connections between papers. Each article

6



1.2 Outline

is introduced by a short summary highlighting the technical advances of the paper as well as a

short description of my own contribution to the results.
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2

Mathematical foundations

This chapter explores the mathematical foundations underlying my work and the connections of

said work to the literature. As the title of the dissertation suggests, there are three main topics

to be explored: Normal forms, continuous variable (CV) quantum information, and squeezing

as a particular subproblem of CV quantum information. As normal forms are ubiquitous in

mathematics, we will not dedicate a complete chapter to them but rather treat them whenever

they appear.

Since all topics explored in my work use aspects of symplectic geometry, we will fix notation

and then start with a quick recapitulation of symplectic geometry. After that, we introduce

quantum mechanics and CV quantum information before discussing resources and resource

theories. Squeezing can be considered as a resource theory, which we do peripherally in Paper

I. Since the topic of resource theories has drawn a lot of interest in recent years, it is beneficial

to study squeezing from this perspective and connect it to the existing body of work in resource

theories.

Notation and remarks Throughout this introduction, we use the notation A ≥ B if A−B

is positive semidefinite. Furthermore, H will always be a separable Hilbert space and B(H) will

denote the bounded operators on that space, while S1(H) denotes the Schatten-1 or trace-class

operators. Furthermore, the Hermitian conjugate is denoted by †, while the adjoint map for

maps T : B(H)→ B(H) is marked with a ∗.

In addition, the identity operator will always be denoted by 1 or 1n, while the standard

symplectic form σ2n ∈ R2n×2n is given by

σ2n :=

(
0n 1n

−1n 0n

)
. (2.1)

9



2. MATHEMATICAL FOUNDATIONS

None of the material in this section is original and most of it is fairly basic. Nevertheless,

I tried to give references for most results which are not covered in standard undergraduate

courses in physics or mathematics.

2.1 Symplectic geometry with a focus on linear theory

Symplectic geometry arose from the study of Hamiltonian mechanics: Phase space with its

canonical variables (q, p) is a natural symplectic manifold equipped with the Poisson bracket.

Symplectic geometry therefore allows to study integrable systems of classical mechanics geo-

metrically.

2.1.1 Symplectic manifolds and applications to quantum mechanics

Given a differentiable manifold M , a symplectic form ω is a closed non-degenerate differential

2-form and the tuple (M,ω) is known as a symplectic manifold. If M = R2n×2n, then the

matrix σ2n from Equation (2.1) defines such a symplectic form (also called the standard form):

It is a nonsingular skew-symmetric matrix (i.e. a nondegenerate 2-form), which is closed as all

forms on R2n×2n are closed. The tuple (R2n×2n, σ2n) defines the linear symplectic space which

can be studied via linear symplectic geometry (for further information see [MS98, dG06]).

Given a symplectic manifold (M,ω), one can ask for diffeomorphisms φ : M → M whose

pullback (i.e. the natural map on differential forms derived from φ) leaves ω invariant. Such

maps are called symplectomorphisms. A symplectomorphism is Hamiltonian if it is derived as

the flow of an exterior derivative of a smooth (Hamiltonian) function. There are at least two

remarkable facts about symplectomorphisms:

1. Every symplectic form is locally diffeomorphic to the standard form (Darboux’ theorem

[Dar82]).

2. If B(r) is the Euclidean ball of radius r and Z(R) := {z = (x1, y1, x2, y2, . . .) ∈ R2n|x21 +

y21 ≤ R}, then any symplectic embedding B(r) ↪→ Z(R) implies r ≤ R (Nonsqueezing

theorem [Gro85]).

Aside from these two theorems, symplectic geometry was largely inspired by two broad conjec-

tures known as Arnold conjectures (cf. [MS98], Chapter 11):

Conjecture 2.1.1. Let (M,ω) be a symplectic manifold. Then every non-degenerate Hamilto-

nian symplectomorphism of M has at least as many fixed points as the number of critical poitns

of a Morse function.

10



2.1 Symplectic geometry with a focus on linear theory

This conjecture is interesting from the physical perspective because fixed points of Hamilto-

nian symplectomorphisms are stationary orbits of the associated Hamiltonian. It is interesting

from a mathematical perspective because it connects symplectic topology to Morse theory. The

second conjecture concerns so-called Lagrangian submanifolds. A submanifold L of a symplectic

manifold (M,ω) is called Lagrangian, if ω|L = 0 (the symplectic form vanishes on the submani-

fold), and dim(L) = dim(M)/2. These manifolds also appear as flow manifolds of Hamiltonian

functions in classical mechanics (cf. [hf11]).

Conjecture 2.1.2 ([MS98], Conjecture 11.17). Let L0, L1 ⊂M be compact Lagrangian mani-

folds of a symplectic manifold (M,ω). Suppose that ψt is an isotopy derived from a compactly

supported Hamiltonian function (precise definition in the reference) such that ψ0 = id and

ψ1(L0) = L1. Then L0 and L1 must have at least as many intersection points as a Morse

function on L0 has critical points.

This conjecture is also known as Arnold-Givental conjecture. Both conjectures have gener-

ated the invention of powerful tools such as Floer homology (see [Sal99]). While a weaker form

of the first conjecture has been proven (cf. [LT98, FO99]), the second conjecture remains open

in most interesting cases.

As a special case that [KJR14] and I independently used in applications, let CPn be the

complex projective space of n complex dimensions and Tn := {[x0, . . . , xn+1]|x0| = . . . = |xn|}

the Clifford torus. Then:

Theorem 2.1.3 ([BEP04], Theorem 1.3). The Clifford torus Tn ⊂ CPn cannot be displaced

from itself by a Hamiltonian isotopy (i.e. ψTn must intersect Tn for any Hamiltonian isotopy

ψ).

This is a special case of the Arnold conjecture because it states that two Clifford tori which

are related by a Hamiltonian isotopy must always intersect since the number of critical points

of the torus is always larger than zero (another proof is given in [Cho04]).

The theorem can be applied to the problem of finding mutually unbiased bases (cf. [AB15,

FR15]) and (un)certainty relations (cf. [KJR14, PRC+15]), as well as to find normal forms

of unitary matrices (cf. [DVDB14a, DVDB14b, DVDB16]). However, all these problems have

an intrinsically linear structure. The introduction of nonlinear symplectic geometry is only

necessary because a linear algebra proof of Theorem 2.1.3 for linear symplectomorphisms re-

mains elusive. For most other applications in this thesis, it suffices to consider linear symplectic

geometry, which we now review in slightly more detail.
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2. MATHEMATICAL FOUNDATIONS

2.1.2 The linear symplectic group

For the linear symplectic space, the linear symplectomorphisms form a matrix group called the

(real) symplectic group denoted by Sp(2n,R) ∈ R2n×2n. Its matrices are given by the property

STσ2nS = σ2n. The symplectic group has been studied extensively as one of the fundamental

Lie groups. A good overview for quantum physicists is given in [ADMS95a]. Since we are

particularly interested in normal forms, we want to study some normal forms involving the

symplectic group.

First, let O(2n,R) be the real orthogonal group, then we define the following subsets of

Sp(2n):

K(n) := Sp(2n,R) ∩O(2n,R)

Z(n) :=
{

diag(1i−1, s,1n−i−1,1i−1, s
−1,1n−i−1)|s ≥ 0, i = 1, . . . , n

}
Π(n) := {S ∈ Sp(2n,R)|S ≥ 0}

The first subset is an orthogonal-symplectic subgroup of Sp(2n), which is also the maximal

compact subgroup. The second set of matrices contains the single-mode squeezers, where the

name will be explained later. It generates a maximal abelian subgroup of Sp(2n). Finally, the

last set is the set of positive semidefinite symplectic matrices.

Since Sp(2n) is a Lie group, it has a Lie algebra sp(2n):

Proposition 2.1.4. The Lie algebras of Sp(2n), K(n) and the subset π(n) ⊂ sp(2n) corre-

sponding to the set Π(n) under the exponential maps are given by

1. sp(2n) := {T ∈ R2n×2n|σ2nT + Tσ2n = 0}, Lie algebra of Sp(2n),

2. k(n) := {A ∈ R2n×2n|A =

(
a b

−b a

)
, a = −aT , b = bT }, the Lie algebra of K(n),

3. π(n) := {A ∈ R2n×2n|A =

(
a b

b −a

)
, a = aT , b = bT }, the subspace of the Lie algebra

sp(2n) corresponding to Π(n),

where the Lie bracket is always given by the commutator.

Using standard arguments from Lie algebras, one can now derive a number of decompositions

of the Lie algebra, which in turn define decompositions of the Lie group (cf. [Hel01]). We only

list two, which are most important for us:

Proposition 2.1.5 (Polar decomposition [ADMS95a]). For every symplectic matrix S ∈ Sp(2n)

there exists a unique U ∈ K(n) and a unique P ∈ Π(n) such that S = UP .

12



2.2 Continuous variable quantum information

Proof. Since det(STσ2nS) = det(σ2n), we have det(S) = ±1 (in fact, det(S) = 1 as seen

in the proof of the Euler decomposition). In particular, S is invertible and we can write

S = S(STS)−1/2(STS)1/2. By construction, setting P := STS1/2, P ∈ Π(n) and U :=

S(STS)−1/2 ∈ Sp(2n). However, we also have U ∈ O(2n) since UUT = S(STS)−1ST = 1. The

uniqueness of this decomposition follows from the uniqueness of the (positive) square root of a

positive definite matrix.

Proposition 2.1.6 (Euler decomposition, Bloch-Messiah decomposition [ADMS95a]). Let S ∈
Sp(2n), then there exist K,K ′ ∈ K(n) and A = A1 · · ·An with Ai ∈ Z(n) for each i such that

S = KAK ′.

Proof. Using the polar decomposition, we can write S = UP with U ∈ K(n) and P ∈ Π(n).

Since P is positive semidefinite, we can diagonalise it. The eigenvalues come in pairs ±λi: For

every eigenvector v of P to eigenvalue λ, σ2nv is also an eigenvector of P to the eigenvalue

λ−1 as λPTσ2nv = σ2nv since P is symplectic. If {vi} is an orthonormal set of eigenvec-

tors for the positive eigenvalues of P , then K =
(
v1 . . . vn σ2nv1 . . . σ2nvn

)
satisfies

KTσ2nK = σ2n, hence K ∈ K(n). Furthermore, K diagonalises P where the resulting matrix

D = KTPK = diag(λ1, . . . , λn, λ
−1
1 , . . . , λ−1n ) is a product of matrices in Z(n). In total, we

have S = UKDKT and thus the Euler decomposition.

There exist many more normal forms, such as the Cartan decomposition or the Iwasawa

decomposition which we leave out here and refer the reader to [ADMS95a, Hel01].

2.2 Continuous variable quantum information

Classical information theory studies how to manipulate information, for instance in order to

store or transmit it. It is based on the concept of message (usually a bitstring) and channel

(usually a stochastic matrix transforming a bitstring into another bitstring probabilistically).

Following the seminal paper of Shannon [Sha48], the (classical) information content of a

message can be quantified using the Shannon entropy. The operational interpretation of this

measure is known as the Shannon Coding Theorem: The Shannon entropy of a message is the

least amount of space (mostly measured in bits) necessary to store a message with lossless

compression. For information transmission, the Noisy Channel Theorem of Shannon provides

a measure computing the maximal asymptotic capacity of a classical channel. Here, capacity

means information content per bit such that the message is transmitted without error in the

limit of many channel uses. These two theorems form the cornerstone of information theory

as they provide bounds for its most important tasks: Compression for storage and coding for

sending information (for an overview, see [CT06]).

13



2. MATHEMATICAL FOUNDATIONS

Quantum information extends this theory from classical to quantum systems, which are

modeled by so called quantum states (quantum messages) and CPTP-maps (quantum channels).

This is interesting for example as it allows physically secure information transmission (see

[NC00] for an introduction and [BB84, Eke91] for specifics on quantum cryptography). For

information content, the Shannon entropy is replaced by the von Neumann entropy and the

coding theorem becomes the Schumacher compression theorem (cf. [Sch95]), while the noisy

channel theorem is replaced by the HSW theorem (cf. [SW97, Hol98]) for classical and the LSD

theorem (cf. [Dev05]) for quantum information. However, many questions remain, such as how

to efficiently compute quantum capacities of channels or which coding schemes are simple but

achieve approximately optimal results.

Quantum information is an abstract framework which can be implemented in many ways.

For instance, atomic spins might be interesting for storage while laser light is already used for

classical communication although it also provides a perfectly quantum system. While spins can

be modeled in finite dimensional systems, light needs infinite dimensions. Continuous variable

quantum information is the subfield of quantum information which studies infinite dimensional

systems with finitely many degrees of freedoms such as modes of light in a cavity. The name

derives from the fact that the observables studied have a continuous spectrum.

There exist many good overviews of continuous variable quantum information such as

[BvL05, WPGP+12, ARL14]. Since the topic is huge, we will only review a selection of facts

and leave out many important results. The reader may wish to consult the cited overviews.

2.2.1 Quantum mechanics in infinite dimensions

As quantum mechanics is a physical theory, it must be founded in experiments. An experiment

can roughly be modelled in two steps: A system is set up and controlled (preparation) and

then some part of it or the complete system is measured (measurement), i.e. some numbers

are produced. Sometimes, it is beneficial to include a third step in between preparation and

measurement, where the system evolves (un)controlled (time evolution). The goal of a physical

theory is to predict the outcome given the preparation procedure.

In quantum information, the preparation procedure can roughly be seen as an encoding of

states, the time evolution could be a storage time or a signal transmission, and the measurement

is equal to the decoding scheme (maybe excluding postprocessing).
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2.2 Continuous variable quantum information

2.2.1.1 The foundations of quantum mechanics

We specify the mathematical model underlying quantum mechanics by specifying preparation,

time evolution, and measurement:

The preparation procedure is subsumed in the concept of a quantum state. Two quantum

states are the same if the predictions for any measurement one can perform on the two systems

are the same. Hence we can see quantum states as equivalence classes of preparation procedures

which capture the result of a real system preparation.

Postulate 2.2.1. A quantum state or density matrix ρ is an operator ρ ∈ S1(H) over a

separable Hilbert space H such that ρ ≥ 0 and tr(ρ) = 1. The Hilbert space H contains the

description of the system. If two systems H1, H2 are considered, the combined system is given

by H1 ⊗H2. Conversely, the restriction of a state ρ ∈ S1(H1 ⊗H2) to one of its subsystems is

given by the partial trace.

Furthermore, a pure quantum state is a normalised element v ∈ H or equivalently (modulo

phase) the rank one density matrix vv†.

Since any positive definite matrix can be decomposed as a weighted sum of rank one matrices,

the set of states is a convex set with pure states as extremal points.

Measurement procedures in quantum mechanics are intrinsically probabilistic. A measure-

ment of a state ρ is specified by a set of possible outcomes and a probability distribution over

the outcomes (depending on ρ). For quantum mechanics, such measurements turn out to be

positive operator valued measures (see for instance [Hol11], Prop. 1.6.1).

Postulate 2.2.2. A positive operator valued measure (POVM) is an index set I with a map

P : P(I) → B(H) from the Borel set of I to the bounded operators on H such that P (J) ≥ 0

for all J ⊆ I and P (I) = 1. The probability of measuring a value in J ⊆ I of state ρ is then

given by p(J) = tr(P (J)ρ).

A very easy way to obtain POVMs is to take a self-adjoint (not necessarily bounded) operator

A on H with the outcomes defined by the spectrum of A and the measure defined by the spectral

projections. Such measures are also called projection valued measures (PVM).

Finally, the time evolution of a system is governed by the most famous equation of quantum

mechanics, the Schrödinger equation (or von Neumann equation for density matrices):

Postulate 2.2.3. Every closed quantum mechanical system can be specified by a self-adjoint

linear operator H on H such that the time evolution of a quantum state ρ ∈ S1(H) is given by

i∂tρ = [H, ρ] (2.2)

where we use natural units with ~ = 1.
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2. MATHEMATICAL FOUNDATIONS

Very often, the Hamiltonian of a system can be guessed from the classical equations of the

same system (that is, if a classical description exists). The formal ideas behind this are known

as canonical quantisation. The basic idea is to start with the so called Hamiltonian function

of the Hamiltonian formalism of classical mechanics and upgrade variables (except the time

variable) to operators. To illustrate this procedure, the variables of position and momentum (q

and p) are upgraded to operators of position and momentum (Q and P ). Instead of the Poisson

bracket, position and momentum must now fulfil the commutator equation

[P,Q] =
i

2
1. (2.3)

This commutator equation is at the heart of what is known as Heisenberg’s uncertainty principle

and is necessary from the fact that P is the Fourier transform of Q. It turns out (cf. [BEH08],

Section 8.2) that this equation can only be fulfiled if both P and Q are unbounded operators,

thus H has to be an infinite dimensional Hilbert space.

2.2.1.2 Quantum mechanics in phase space

One of the most important systems for information carriage in quantum information is light.

To have a fully quantum theory of light, the electromagnetic field must be quantised. This

can be done using a collection of non-interacting quantum harmonic oscillators with different

frequencies. This is a standard second quantisation approach in quantum field theory (cf. [SZ97,

Lou00]). For our purposes, it is sufficient to consider a finite number of these frequencies (also

called “modes”) to avoid further mathematical complications. In reality, such a system can

arise as an electromagnetic field in a cavity.

Each oscillator/mode then defines annihilation and creation operators ak and a†k such that

the Hamiltonian of the full electromagnetic field is given by

H =

n∑
k=1

Hk, Hk = ωk

(
a†kak +

1

2

)
(2.4)

where ωk are the base frequencies of the oscillators (see for instance [ARL14]). As the force

carriers of the electromagnetic field - the photons - are bosons, the annihilation and creation

operators fulfil the CCR
[
ak, a

†
l

]
= δkl1 and [ak, al] =

[
a†k, a

†
l

]
= 0 (this follows directly from

the definition of ak, a
†
k via a standard computation).

In order to connect with the previous section, we can set

Qk :=
(ak + a†k)√

2
, Pk :=

(ak − a†k)

i
√

2
(2.5)
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2.2 Continuous variable quantum information

to obtain the so called quadratures, which behave just like position and momentum operators

(fulfiling for instance (2.3)). If we write (R2k−1, R2k) = (Qk, Pk) and R = (R1, . . . , R2n), then

we have

[Rk, Rl] = i(σ2n)kl
1

2
. (2.6)

Put together, (R, σ2n) define a symplectic structure similar to the standard symplectic structure

of classical Hamiltonian mechanics (cf. [Arn89]).

The standard quantum mechanical representation of the CCR is known as the Schrödinger

representation, where each mode consists of a Hilbert space H = L2(R), Qk is the usual position

multiplication operator and Pk = i∂/(∂Qk).

However, this representation has at least two problems:

• Since P,Q fulfil Equation (2.3), they must be unbounded operators on an infinite dimen-

sional Hilbert space and are therefore difficult to work with.

• The representation is not unique.

It is therefore useful to consider bounded representations of the operators. Such a representation

is the Weyl system

Wξ := exp(iξ · σ2nR), ξ ∈ R2n (2.7)

which fulfils the Weyl relations

WξWη = exp

(
− i

2
ξ · σ2nη

)
Wξ+η. (2.8)

The operators are also called displacement operators or Glauber operators. By the Stone-

von Neumann theorem (cf. [BEH08], Theorem 8.2.4), this definition is the unique strongly

continuous and irreducible representation of the CCR algebra defined through R up to unitary

equivalence (note that this statement only holds for finitely many modes).

Using the commutation relations, we can easily see that W corresponds to a translation in

phase space:

WξRkW
∗
ξ = Rk + ξk1 ∀ξ ∈ R2n. (2.9)

The Weyl system looks similar to the usual Fourier plane waves exp(ikx) and indeed, similar to

the (commutative) Fourier transform, we can define the (noncommutative) Weyl transform to
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2. MATHEMATICAL FOUNDATIONS

obtain phase space functions for quantum states. Given a quantum state ρ ∈ S1(H), we define

the characteristic function

χρ(ξ) := tr(Wξρ), ξ ∈ R2n. (2.10)

Many results for Fourier transforms have similar versions for the Weyl transform. For instance,

we have the following characterisation of quantum states:

Theorem 2.2.4 (Quantum Bochner-Khinchin, [Hol11] Theorem 5.4.1.). Let χ ∈ L2(R2n) be a

function, then it is the characteristic function of a quantum state if and only if

1. χ(0) = 1 and χ(ξ) is continuous at ξ = 0,

2. For every m ∈ N, ξ1, . . . , ξm ∈ R2n and c1, . . . , cm ∈ C we have

m∑
k,l=1

ckclχρ(ξk − ξl) exp

(
i

2
ξk · σ2nξl

)
≥ 0

The name derives from the classical Bochner-Khinchin theorem which characterises the

Fourier transform of positive finite Borel measures on R which can be seen as classical states.

Finally, using the characteristic function one can define the well-known Wigner function

(cf. [Wig32]) of a state ρ:

Wρ(ξ) := (2π)−2n
∫

exp(iξ · σ2nη)χρ(η)d2nη.

Necessary and sufficient conditions for a function to be the Wigner function of a state can be

computed from the Quantum Bochner-Khinchin theorem, but they are much more difficult to

state, so we omit them here and refer the readers to [NO86, CFZ14].

2.2.2 Gaussian states and covariance matrices

A very natural class of states are those where characteristic or Wigner function are Gaussian.

Those states are therefore called Gaussian states. They are especially important in quantum

optics as the coherent states of lasers are in particular Gaussian states. They are also important

in mathematical physics as the coherent states, a subset of Gaussian states, form an overcom-

plete set in Hilbert space. Furthermore, thermal states of quadratic Hamiltonians are mixtures

of coherent states and therefore Gaussian (cf. [Oli12]).

From classical probability theory, it is well-known that a Gaussian is characterised by its

first and second moments. The same is true for Gaussian states, where the first and second
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2.2 Continuous variable quantum information

moments are defined as

dk := tr(ρRk) (2.11)

γkl := tr(ρ{Rk − dk1, Rl − dl1}+) (2.12)

with the anticommutator {·, ·}+. Similarly to classical characteristic functions, they can also be

defined as the first and second partial derivatives of the (quantum) characteristic function. The

first moments are sometimes called displacement vector, the matrix of second moments is called

the covariance matrix. While a Gaussian state can have any displacement vector d ∈ R2n, the

covariance matrix is more limited by Heisenberg’s principle:

Theorem 2.2.5. For any γ ∈ R2n×2n there exists a quantum state ρ with covariance matrix γ

if and only if γ ≥ i
2σ2n.

Let us now study a number of normal forms of covariance matrices and Gaussian states.

Given a covariance matrix γ of a Gaussian state, since γ ≥ iσ2n/2 implies in particular that γ

is Hermitian we can of course study eigenvalues and eigenvalue decompositions. It turns out

that this leads to the notion of squeezed states: Assume γ = diag(λ1, . . . , λ2n) for some values

λi ∈ R. The inequality γ ≥ iσ2n/2 then leads to λiλn+i ≥ 1/4 for every i = 1, . . . , n. This is

just Heisenberg’s uncertainty (2.3) in disguise. If λi < 1/2 or λn+i < 1/2, this implies that the

uncertainty in this mode (Pi or Qi) is lower than possible if the variance of Pi and Qi were the

same. The corresponding state is said to be squeezed.

Note that this does not contradict the non-squeezing theorem: In fact, from a mathematical

perspective Heisenberg’s principle is nothing else than the assertion that a quantum state must

have a symplectic capacity, a notion made possible by the non-squeezing theorem (see [dGL09]).

Hence we define:

Definition 2.2.6. Let γ be the covariance matrix of a Gaussian state. Then γ is called squeezed

if it has an eigenvalue λ < 1/2.

Other definitions appear in the literature but are known to be equivalent (cf. [ADMS95b]).

An important normal form for covariance matrices is given by

Theorem 2.2.7 (Williamson’s theorem [Wil36]). Let M ∈ R2n×2n be a positive definite matrix.

Then there exists a nonnegative diagonal matrix D ∈ Rn×n and a symplectic matrix S ∈ Sp(2n)

such that

STMS = diag(D,D). (2.13)

The entries of D are often called symplectic eigenvalues of M and they are the positive eigen-

values of iσ2nM .
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2. MATHEMATICAL FOUNDATIONS

Proof. We sketch the proof of [SCS99] similar to the sketch in my own papers:

Let diag(D,D) =: D̃. Since D and M are positive definite, consider S = M−1/2KD̃1/2,

where K ∈ O(2n). By construction STMS = D̃. We need to choose K such that S is

symplectic: This is equivalent to

KT (M−1/2σ2nM
−1/2)K =

(
0 D−1

−D−1 0

)
.

Using that (M−1/2σ2nM
−1/2)T = −M−1/2σ2nM−1/2, we know that we can indeed find an or-

thogonal K achieving this construction since iM1/2σ2nM
1/2 is a Hermitian matrix and therefore

diagonalisable by a unitary U ∈ U(2n). Eigenvalues come in pairs ±λj with eigenvectors xj±ivj
for j = 1, . . . , n and xj , yj ∈ R2n and hence K = (x1, . . . , xn, y1, . . . , yn) using σ2nxj = yj and

σ2nyj = −xj .

Symplectic matrices, by definition, leave the CCR invariant and are therefore an interesting

set of physical operations (see also the discussion in Section 2.2.3). The symplectic spectrum is

invariant under symplectic conjugation (by construction) and is therefore more important than

the eigenvalue spectrum.

The Williamson normal form leads to a decomposition of Gaussian states known as normal

mode decomposition

Theorem 2.2.8 (see for instance [Oli12]). Let ρ be a density matrix of an n-mode Gaussian

state. Then there exists a canonical basis in phase space with corresponding annihilation and

creation operators a, a† such that ρ takes on the form

ρ =

n⊕
k=1

exp(−βωk(a†a+ 1/2))

tr(exp(−βωk(a†a+ 1/2)))
. (2.14)

In other words, ρ is a tensor product of thermal states of different temperature in this basis,

where βωk are given by 1 + 2(exp(−βωk)−1)−1 = 2sk with the symplectic eigenvalues sk of the

covariance matrix of ρ.

Proof. We first consider the thermal states of a one-mode quantum harmonic oscillator: For an

inverse temperature β, those are given by the Gibbs state

ρGibbs =
exp(−βH)

tr(exp(−βH))
=

exp(−βω(a†a+ 1/2))

tr(exp(−βω(a†a+ 1/2)))
.

We can now use

1. Wξ = exp(i/
√

2((ξ1 + iξ2)a† − (ξ1 − iξ2)a)),

2. the Fock states |n〉 = (a†)n/
√
n!|0〉 form a basis,

3. 〈n|Wξ|m〉 = δnm exp(−|ξ|2/4)Ln(|ξ|2/2) with the Laguerre polynomials Ln (cf. [Oli12]),
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2.2 Continuous variable quantum information

to obtain

χ(ξ) = tr(WξρGibbs) = c exp(−(ξ21 + ξ22)(1 + 2(exp(−βω)− 1)−1)/4)

with some constant c which does not depend on ξ and fixes the normalisation. Hence a thermal

one-mode state is a Gaussian state with covariance matrix γ = (1 + 2(exp(−βω)− 1)−1)11/2.

Given any ρ, Williamson’s normal form implies that there exists a basis where γρ =⊕n
k=1 sk12 with symplectic eigenvalues sk and without any displacement. But this implies

that ρ is of the form of Equation (2.14) with 1 + 2(exp(−βkω)− 1)−1 = 2sk.

Williamson’s normal form gives us an opportunity to describe all Gaussian pure states:

Corollary 2.2.9. A covariance matrix γ ∈ R2n×2n is a covariance matrix of a Gaussian pure

state if and only if det(2γ) = 1 or equivalently, 2γ ∈ Sp(2n).

Proof. Note that a state ρ is pure if and only if ρ2 = ρ. Using the basis where γ is diagonal

and d = 0, we have that ρ corresponding to γ is a tensor product of thermal states. A simple

calculation shows that a thermal state is pure if and only if βk →∞ (at zero temperature) or

else if and only if dk = 1/2 for all k = 1, . . . , n.

Note that the set of Gaussian pure states is also the set of extremal Gaussian states.

Williamson’s normal form is also useful to derive a simple function for entropy. Recall that

the von Neumann entropy of a quantum state is given by the Shannon entropy of its spectrum

(which immediately tells us that pure states have zero entropy). Similarly, on the level of

covariance matrices, we obtain:

Theorem 2.2.10 ([HSH99]). Let ρ ∈ B(H) be a Gaussian quantum state. Then its entropy is

described by

S(γ) =

n∑
k=1

(
g

(
dk +

1

2

)
− g

(
dk −

1

2

))
(2.15)

where g(x) = x log(x) and the dk are the symplectic eigenvalues of the covariance matrix γρ of

ρ.

Many other decompositions and normal forms can be described that might help in different

circumstances. For instance, the well-known singular value decomposition has a symplectic

analogue described in [Wol08].

2.2.3 Quantum Channels

We already stated that time evolution is governed by the Schrödinger equation. However, this

requires knowledge of the total Hamiltonian and the state of the system, something which is
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2. MATHEMATICAL FOUNDATIONS

infeasible in most experiments. To remedy this we introduce the idea of open quantum systems

and quantum channels. The idea is to divide the whole closed system into one part (called the

“system”) that is interesting in an experiment and can be manipulated and the rest (dubbed

the “environment”). Consequently, a quantum channel is a function which sends a state of the

system to a different state taking the environment into account.

Given a state of the system ρ and a state of the environment ρE and assuming that we know

the time evolution U = exp(iHt) of the whole system such a channel would be

T(ρ) = trE(U(ρ⊗ ρE)U†). (2.16)

Here, trE denotes the partial trace over the environment and ρE is the state of the environment.

Usually, the assumption is made that the system starts out in a product state, which can be

achieved by a careful state preparation, but we do not go into details here. It turns out that

these maps T : B(H)→ B(H) are completely positive, meaning that idn⊗T : Cn×n ⊗ B(H)→

Cn×n⊗B(H) is a positive map for any n ∈ N. In order to maintain normalisation of the state,

T must be trace-preserving, too.

Definition 2.2.11. A quantum channel T : S1(H) → S1(H′) is a completely positive trace

preserving linear map. A Gaussian channel is a quantum channel that sends Gaussian states

to Gaussian states.

We are particularly interested in Gaussian channels. An overview can be found in [EW07].

Since a Gaussian channel sends Gaussian states to Gaussian states and those are completely

specified by the displacement vector and the covariance matrix, we can consider Gaussian

channels on the level of covariance matrices:

Theorem 2.2.12. An n-mode Gaussian channel T is given by a triple (X,Y, v) with v ∈ R2n

and X,Y ∈ R2n×2n fulfiling

Y ≥ iσ2n − iXTσ2nX (2.17)

such that for any Gaussian state ρ with covariance matrix γ and displacement d we have

γ 7→ XT γX + Y d 7→ Xd+ v. (2.18)

For some applications, it can be beneficial to also study the set of completely positive maps

and not just the (subclass) of quantum channels. A complete description of Gaussian completely

positive maps and the yet bigger class of Gaussian positive maps is found in [GIC02, Fiu02].

The set is most commonly constructed using the Choi-Jamiolkowski isomorphism.
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2.2 Continuous variable quantum information

We have defined channels mostly as tracing out an environment. Clearly, it should be

possible to add a (potential) environment to get a unitary channel again. This is the physical

interpretation of what is known as Stinespring dilation theorem. For Gaussian channels, this

was studied in detail in [CEGH08, CEGH11]. One of the main results is:

Theorem 2.2.13 ([CEGH08], Theorem 1). For any Gaussian bosonic channel (X,Y, v) there

exists l ≤ 2n with S ∈ Sp(2n+ 2l) and γE ≥ iσ2l/2 such that

(S diag(γ, γE)ST )2n×2n = XT γX + Y ∀γ ≥ iσ2n, (2.19)

where (·)2n×2n denotes the restriction to the upper left 2n× 2n principal submatrix.

For some applications, it is interesting to study these dilations for subclasses of channels,

for instance those channels that have a pure or squeezed environment.

Many subclasses of quantum channels have been described in the literature, either because

they are physically interesting or because they have a mathematical structure that can be

exploited. Let us mention two such subclasses:

Gaussian unitary channels Closed system dynamics are always unitary following the fact

that a Hamiltonian is (by definition) a self-adjoint operator which generates a unitary one-

parameter time evolution via Stone’s theorem (cf. [BEH08], Section 5.9). Gaussian unitaries

are the subset of unitary channels that are Gaussian channels. We have the following charac-

terisation (cf. [DVV77]):

Proposition 2.2.14. A Gaussian unitary operator is completely specified by a tuple (S, v) with

S ∈ Sp(2n) and v ∈ R2n which acts on the Weyl operators as

Wξ 7→ exp(iξ · v)WSξ. (2.20)

In other words, a Gaussian unitary consists of a symplectic transformation of the modes

(which translates to a transformation γ 7→ ST γS of the covariance matrix and d 7→ Sd on the

displacement of a quantum state) and a displacement.

In quantum optics, there are several optical instruments which implement symplectic matri-

ces. Using the Euler decomposition Proposition 2.1.6, one can implement any Gaussian unitary

with the help of only single-mode squeezers (implementing operations in Z(n)), beam splitters

and phase shifters (implementing operations in K(n) using [RFP10]) and Weyl displacements.

Other implementations are given by different normal forms of unitary matrices such as the

Sinkhorn normal form [DVDB14b].
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Gauge-Covariant and Contravariant Gaussian channels Similar to other theories, one

can consider the transformation ak 7→ exp(iφ)ak on the creation (and annihilation) operators.

This gauge transformation (a global phase) is given by the group of symplectic transformations

{exp(iσ2nφ)|φ ∈ [0, 2π)} and can also be defined on the level of the Weyl system (cf. [GHGP15]):

W (exp(iσ2nφ)ξ) = U†φW (ξ)Uφ.

Using this transformation, one can define gauge invariant states or channels and study normal

forms for these states (as in [HSH99]). We want to study a slightly broader class:

Definition 2.2.15. Let T be an n-mode Gaussian quantum channel. Then T is called gauge

covariant (contravariant) if it fulfils the relation

T

(
exp

(
iφ

n∑
i=1

a†iai

)
ρ exp

(
−iφ

n∑
i=1

a†iai

))
= exp

(
±iφ

n∑
i=1

a†iai

)
T(ρ) exp

(
∓iφ

n∑
i=1

a†iai

)
.

(2.21)

Gauge covariant channels have a very simple description in terms of maps on covariance

matrices:

Proposition 2.2.16 (for instance [LGW13]). An n-mode Gaussian channel T is gauge-covariant

if and only if the corresponding triple (X,Y, z) fulfils [X,σ2n] = [Y, σ2n] = 0.

Proof. The proof rests on the observation that [X,σ2n] = 0 if and only if [X, exp(iφσ2n)] = 0,

which in turn implies that the channel commutes with the unitary group exp(iφa†a) if and only

if (X,Y ) commute with σ2n. But this is true if and only if the channel is covariant.

Any matrix A ∈ R2n×2n which commutes with σ2n is of the form

A =

(
B C
−C B

)
and can therefore be written as a matrix Â := B + iC ∈ Cn×n. The corresponding condition

for complete positivity of a channel then translates to (cf. [HHW10])

Ŷ ≥ ±(1n − X̂†X̂).

The channels are called quantum limited, if equality is attained. In particular:

1. The quantum limited attenuator is a map with X̂†X̂ ≤ 1 and Ŷ = (1n − X̂†X̂).

2. The quantum limited amplifier is a map with X̂†X̂ ≥ 1 and Ŷ = (1n − X̂†X̂).

3. The quantum limited gauge contravariant channels are maps with Ŷ = (1n + X̂†X̂)
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This characterisation paves the way to a normal form of gauge covariant (and contravariant)

channels, which states:

Theorem 2.2.17 (cf. [Hol15, GPNBL+12]). Any gauge covariant channel is a concatenation

of a quantum limited amplifier and a quantum limited attenuator.

Any gauge contravariant channel is a concatenation of a quantum limited amplifier and a

quantum limited contravariant channel.

With these two examples, let us return to one of the major questions in quantum information:

How well can one communicate with a given channel? The task is vaguely defined for the

reason that multiple communication tasks can be evaluated: For instance, we can consider

communication of bitstrings encoded into quantum states or communication of (instances of)

quantum states themselves.

One of the most important capacities is the classical capacity (sending classical information

over a quantum channel with asymptotically zero error) for which the following formula was

proved in [SW97, Hol98]

C(T) = lim
n→∞

sup
{pj ;ρj}

1

n

S
T⊗n

∑
j

pjρj

−∑
j

pjS(T⊗n(ρj))

 .

The maximisation over all ensembles is a serious problem when computing the capacity. Since

this is often the case in classical information theory, it was conjectured in [HW01] that the

minimisation can be restricted to Gaussian states only. It turns out that in many cases, this

reduces to the conjecture that Gaussian inputs minimise the entropy of the output. For those

channels, where the limit can be dropped because the maximum does not depend on the num-

ber of channel uses (so called additive channels) the capacity could then easily be computed

analytically.

This conjecture remained completely open for over a decade despite considerable effort

(see [GHGP15] and links in the introduction), but was recently solved in [GHGP15, GHM15,

MGH14] for gauge covariant and contravariant channels, which also led to capacity calculations

such as [GGPCH14] and a flurry of further activity. The proof heavily relies on the normal

form for gauge covariant and contravariant channels in Theorem 2.2.17 and the fact that the

conjecture was known to be true for quantum limited attenuators [GGL+04].

It is still open to extend these results to all channels, for example the channel defined by a

beam splitter and a squeezed environment. One approach could be to use similar normal forms

and reduce the effort to a specific type of channel.
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2.3 Resources and Resource Theories in quantum infor-

mation

Most of the basic tasks of quantum information theory such as quantum teleportation, en-

tanglement sharing, or channel coding require the preparation and transformation of specific

states. In principle, preparing a quantum state is always possible if one has full control over

the system, but in reality this is not always the case.

For example, if one wants to create an entangled state between two labs, implementing

operations which need access to both labs is impossible in many cases. As another example,

creating a state with a high amount of squeezing is difficult if not impossible. The goal must

therefore be to create certain states despite these problems and use them as resources. The

abstract mathematical framework of resources and state interconvertibility is then called a

resource theory.

Although they were only studied peripherally in the papers underlying this thesis, we will

study abstract mathematical frameworks for resource theories because they provide motivation,

context, and an interesting aspect of further study for my research about squeezing.

2.3.1 Basic concepts of resource theories

We will describe resource theories similar to the description in [BaG15].

Resource theories are defined by two sets:

1. A set Sfree ⊂ S1(H) of free states. Those are states which can easily be created. Free

states can for instance include the vacuum.

2. A set Oop ⊆ CP (S1(H)) of allowed operations. Usually, this set will contain a subset of

completely positive operations (CP (S1(H))) restricted by experimental realities.

In addition all states not in the set R := {T(ρ)|ρ ∈ Sfree,T ∈ Oop} are called resource states.

These are the states which cannot be prepared with free states and allowed operations only.

Usually the distinction between free states and resource states is given by a resource which is

quantified in some way.

Goals of a resource theory include the solution to the following problems:

1. Classify the set of resource states.
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2. For any given σ /∈ R find ρ ∈ Sfree, ρ
′ a resource state, and T ∈ Oop such that σ = T(ρ⊗ρ′)

and ρ′ is as cheap as possible.

3. Find a subset Sresource ⊂ R which has a simple description and still solves the second task

approximately. If not prespecified, find functions which describe the cost of the resource.

Clearly, the framework is extremely general and it is thus no surprise that it has been applied

to many different areas of quantum information and beyond. More recently, a general study of

resource theories was initiated from a mathematical perspective, for instance in [BaG15, Fri15,

CFS16].

The study of resource theories is a very active area of research. We will only study entangle-

ment and squeezing in more detail because they are relevant for the thesis. Many other resource

theories exist such as “thermal operations” in quantum thermodynamics [HO13, NGP15], com-

plexity [ICK+16], asymmetry [MS13], reference frames [GS08], coherence [CG16, SAP16], or

knowledge [dRKR15].

2.3.2 Entanglement

We start with a short discussion of the best known resource in quantum information: Entangle-

ment. For any number n of parties we consider quantum states ρ ∈ S1(H1 ⊗ . . . ,Hn) for some

Hilbert spaces Hj . A state is called separable if it is a convex linear combination of product

states ρ = ρ1 ⊗ . . . , ρn with ρj ∈ S1(Hj). Any other state is called entangled. The resource

theory of entanglement now consists of

1. The set of separable state SSEP as free states.

2. The set LOCC of local operations with classical communication. These are all operations

which can be implemented if we assume that every party sits in a lab spatially separated

from the others.

The resource states then correspond to the entangled states and functions measuring entan-

glement are usually called entanglement monotones (cf. [Vid00, VW02]). Multipartite en-

tanglement can be a very rich subject (cf. [DVC00, VDDMV02]), so we restrict to n = 2,

H1 = H2 =: H and pure states to give an idea of possible questions and results. The corre-

sponding entangled states are called bipartite entangled states. A good overview can be found

in [HHHH09].
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For pure states, it turns out that the class of entangled states is captured by one state alone,

the so called maximally entangled state |Φ〉 in the following sense:

Theorem 2.3.1 ([Nie99]). Let |ψ〉, |φ〉 ∈ H⊗H be two (normalised) quantum states, then there

exists an LOCC operation T such that T(|ψ〉〈ψ|) = |φ〉〉φ| if and only if for all k = 1, . . . ,dim(H)

k∑
j=1

λk(tr2(|φ〉〈φ|)) ≥
k∑
j=1

λk(tr2(|ψ〉〈ψ|)) (2.22)

where λk denotes the k-th largest eigenvalue.

The condition in Equation (2.22) is also known as majorisation (cf. [Bha96]) and the maxi-

mally entangled state is then naturally given by the state |Φ〉 where the reduced density matrix

is proportional to the identity.

Two other important questions concerning the theory are (see [BDSW96]):

1. Given a state ω⊗m where ω = |Φ〉〈Φ|, how many copies n of a given state |ψ〉 can

we produce using LOCC operations and additional separable states? The ratio n/m is

a different entanglement monotone called entanglement of formation. For qubits, the

entanglement of formation tends to S(tr2(ρ)).

2. Given any pure state ρ⊗m, how many copies n of the maximally entangled states of some

dimension d can we produce using only LOCC operations and additional separable states?

The ratio n/m is called distillable entanglement. For qubits, the distillable entanglement

tends to 1/S(tr2(ρ)).

For mixed states, not all states can be distilled to maximally entangled states. For systems

of dimension 3 ⊗ 3 or larger, the complete classification is still open which is known as the

NPT-bound entanglement problem [Cla06].

The entanglement of formation for mixed states is differently defined than for pure states,

since a mixed state can be created as a mixture of pure quantum states in many different ways.

The definition therefore amounts to a convex roof (cf. [BDSW96])

EF (ρ) = inf

{∑
i

riS(tr2(ρi)

∣∣∣∣∣∑
i

riρi = ρ

}
. (2.23)

Computing the entanglement of formation has been a major challenge. The seemingly simpler

problem whether for any states ρ = ρ(1) ⊗ ρ(2) we have EF (ρ) = EF (ρ(1)) + EF (ρ(2)) was an

open problem for a long time. It was settled in the negative in [Han09] although a concrete

example is still missing.
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For the class of Gaussian states, one is usually interested in the restriction of LOCC to

the class GLOCC of Gaussian local operations and classical communications. Remarkably,

distillation of entanglement is entirely impossible using GLOCC operations as shown by [GIC02,

ESP02]. In contrast to this the determination of the entanglement of formation is still open.

Similarly to the conjectures about channel capacities described in Section 2.2.3, it might a good

guess that the minimum is attained on Gaussian states. For the corresponding measure, the

Gaussian entanglement of formation, we have:

Theorem 2.3.2 ([WGK+04], Proposition 1). Given a Gaussian state ρ with covariance ma-

trix γ, the Gaussian entanglement of formation is given by

EG(ρ) = inf{S((γp)red)|γ ≥ γp = 2STS, S ∈ Sp(2n)}. (2.24)

γred denotes the covariance matrix of the reduced state of ρ and S is the entropy.

The measure is therefore a minimisation over all pure Gaussian states with covariance ma-

trices γp, similar to the squeezing measures we introduce in Paper I. It is only known to be

equal to the entanglement of formation for a certain class of Gaussian states [GWK+03].

2.3.3 Squeezing

For a Gaussian state, entanglement is linked to squeezing [WEP03, LGW13]. For instance, we

have the following theorem:

Theorem 2.3.3 ([WEP03], Proposition 2). Let γ 7→ KT γK be a passive transformation

(i.e. K ∈ Sp(2n) ∩ O(2n)) acting on a Gaussian state of n ≥ 2 modes with covariance ma-

trix γ. The maximum attainable amount of entanglement obtained for an arbitrary two-mode

subsystem of KT γK is then given by

EN = max{0,− log2(4λ1λ2)} (2.25)

where λ1, λ2 are the two smallest eigenvalues of γ. Here, EN denotes the logarithmic negativity,

which is an entanglement measure for mixed Gaussian states (cf. [VW02]).

Clearly, the state has zero entanglement if it is not squeezed.

The fact that squeezing can be considered a resource was first noted in [Bra05], where the

author proved that a state could not be squeezed without squeezers. Based on this approach,

the following resource theory seems natural:

1. The free states are given by all Gaussian states, which are unsqueezed, i.e. the covariance

matrix fulfils γ ≥ 1.
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2. The allowed operations include drawing unsqueezed ancillary states, making measure-

ments, adding noise, performing beam splitters and phase shifters as well as Weyl dis-

placements.

Resource states are all squeezed states. We now only need a measure for squeezing. A simple

measure, the smallest eigenvalue of the covariance matrix, was proposed in [KGLC03, Lee88].

Analogously to the Gaussian entanglement of formation one can now also consider “squeezing

of formation”, which leads us to postulate a measure similar to Theorem 2.3.2. Indeed, this is

one possible starting point for considering the measures in Paper I.

Studying squeezing as a resource is interesting not only because it is linked to entanglement,

but mostly because it is considered a hard task. The problem is twofold: Squeezed states deco-

here very quickly and single-mode squeezing becomes infeasible for large amount of squeezing.

Current upper limits are reported in [AGML15].
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An operational measure for squeezing

M. Idel, D. Lercher and M. M. Wolf February 12, 2017

A quantum state ρ is squeezed if its covariance matrix γρ has an eigenvalue λ < 1
(leaving out factors of 1/2). Squeezing is hard in practice and therefore a useful re-
source [1]. In order to study the resource, we need to have operational measures (as in
the case of entanglement). So far, the only measure of squeezing in the literature is the
minimum eigenvalue of the covariance matrix [2]. Clearly, this is not an operational
measure for most tasks such as preparation of a squeezed state, because the two quan-
tum states with covariance matrix γ1 = diag(s, 1, s−1, 1) and γ2 = diag(s, s, s−1, s−1)
have the same minimum eigenvalue, but the squeezing cost for the second should be
twice the amount of the first, as it is squeezed in both modes. We define measures
covering preparation costs for squeezed states.

1 Operational squeezing

Before considering the case of a squeezed state, we can ask: For any Gaussian unitary
operation given by the symplectic transformation S, what is the least amount of single-
mode squeezing necessary to implement it? If s↓i denotes the decreasingly ordered
singular values, we prove:

Theorem 1.1. Let S be a symplectic matrix. Then

F (S) =

n∑
i=1

log(s↓i )(S) (1)

is the minimal amount of single-mode squeezing required among

1. all products S = S1 · · ·Sn, where Si ∈ SO(2n) ∩ Sp(2n) or Si is a single-mode
squeezer with squeezing parameter s and associated cost log(s),

2. all rectifiable, almost everywhere differentiable paths γ : [0, 1] → Sp(2n) with
γ(0) = 1 and γ(1) = S, where the costs are quantified according to the coefficient
of the active generators.

In both cases, the minimum is given by the Euler decomposition.

The costs for paths on Sp(2n) are chosen such that they are consistent with the
choice for single-mode squeezers. A detailed construction is given in the paper. The
proof for paths on Lie groups relies on results from the theory of ordinary differential
equations. In particular it follows from perturbation theory of the propagator of the
ODE given by the path.



2 State preparation with minimal squeezing

In the main part of the paper, we answer the following question: If we can freely draw
any state with covariance matrix γ ≥ 1, freely add ancillas, add noise, create convex
combinations and perform passive operations, measurements and Weyl displacements,
what is the minimal amount of single-mode squeezing needed to create a given state
ρ?

Theorem 2.1. Let γ ∈ R2n×2n be the covariance matrix of a quantum state. If we
measure the amount of any single mode squeezer by log(s), where s is the squeezing
parameter, then the minimal amount of squeezing necessary in order to create the state
ρ using the free operations outlined above is given by

G(γ) = inf

{
n∑
i=1

log(s↓i )(S)

∣∣∣∣∣γ ≥ STS, S ∈ Sp(2n)

}
. (2)

The measure G is convex, lower semi-continuous and subadditive.

The proof of convexity uses the Cayley transform for matrices. On the basis of
the convexity of G, we provide a program to calculate G numerically. Moreover, we
provide upper and lower bounds. The proof that the measure is operational relies on
convexity as well as Cauchy’s interlacing theorem.

Finally, we give a short discussion on squeezing as a resource. We prove that our
measure remains the same if we consider single-mode squeezed states as “resource
states” similar to the entanglement of formation in entanglement theory. Consequently,
our measure could also be dubbed “squeezing of formation”.

3 Legal statement

The project was started by Daniel Lercher and Michael Wolf. I continued the project
when the first part of Theorem 1.1 as well as the definition, convexity and some
properties of G had already been sketched. Based on the idea to use propagators (by
Daniel Lercher), I worked out the proof of the second part of Theorem 1.1 and filled
in all gaps in the sketches of the first part. All other parts (especially Sections 5-7 in
the paper) are my work with guiding input by Michael Wolf.
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Copyright IOP Publishing. Reproduced with permission. All rights reserved.

References

[1] Samuel L. Braunstein and Peter van Loock. Quantum information with continuous
variables. Rev. Mod. Phys., 77:513–577, 06 2005.
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Abstract
We propose and analyse a mathematical measure for the amount of squeezing
contained in a continuous variable quantum state. We show that the proposed
measure operationally quantifies the minimal amount of squeezing needed to
prepare a given quantum state and that it can be regarded as a squeezing
analogue of the ‘entanglement of formation’. We prove that the measure is
convex and subadditive and we provide analytic bounds as well as a numerical
convex optimisation algorithm for its computation. By example, we then show
that the amount of squeezing needed for the preparation of certain multi-mode
quantum states can be significantly lower than naive state preparation
suggests.

Keywords: squeezing, continuous variable quantum information, operational
measure, Euler decomposition, bosonic systems

(Some figures may appear in colour only in the online journal)

1. Introduction

The interplay between quantum optics and the field of quantum information processing, in
particular via the subfield of continuous variable quantum information, has been developing
for several decades and is interesting also due to its experimental success (see [KL10] for a
thorough introduction).

Coherent bosonic states and the broader class of Gaussian bosonic states, quantum states
whose Wigner function is characterised by its first and second moments, are of particular
interest in the theory of continuous variable quantum information. Their interest is also due to
the fact that modes of light in optical experiments behave like Gaussian coherent states.

For any bosonic state, its matrix of second moments, the so called covariance matrix,
must fulfil Heisenbergʼs uncertainty principle in all modes. If the state possesses a mode,
where despite this inequality D Dx p 2 eitherDx orDp is strictly smaller than  2 , it
is called squeezed. The production of squeezed states is experimentally possible, but it
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requires the use of nonlinear optical elements [Bra05], which are more difficult to produce
and handle than the usual linear optics (i.e. beam splitters and phase shifters). Nevertheless,
squeezed states play a crucial role in many experiments in quantum information processing
and beyond. Therefore, it is natural both theoretically and practically to investigate the
amount of squeezing which is necessary to create an arbitrary quantum state.

As a qualitative answer, squeezing is known to be an irreducible resource with respect to
linear quantum optics [Bra05]. In the Gaussian case, it is also known to be closely related to
entanglement of states [WEP03] and the non-additivity of quantum channel capacities
[LGW13]. In addition, quantitative measures of squeezing have been provided on multiple
occasions [Kra+03, Lee88], yet none of these measures are operational for more than a single
mode in the sense that they do not measure the minimal amount of squeezing necessary to
prepare a given state.

The goal of this paper is therefore twofold: first, we define and study operational squeezing
measures, especially measures quantifying the amount of squeezing needed to prepare a given
state. Second, we reinvestigate in how far squeezing is a resource in a mathematically rigorous
manner and study the resulting resource theory by defining preparation measures.

In order to give a brief overview of the results, we assume the reader is familiar with
standard notation of the field, which is also gathered in section 2. In particular, let γ denote
covariance matrices. A squeezed state is a state where at least one of the eigenvalues of γ is
smaller than one.

To obtain operational squeezing measures, we first study operational squeezing in section 3:
suppose we want to implement an operation on our quantum state corresponding to some unitary
U. Any such unitary can be implemented as the time-evolution of Hamiltonians. Recall that any
quantum-optical Hamiltonian can be split into ‘passive’ and ‘active’ parts, where the passive
parts are implementable by linear optics and the active parts require nonlinear media. We assume
that the active transformations available are single-mode squeezers with Hamiltonian


= -H a ai

2
,j j jsqueeze,

2 2( )†

where the j denotes squeezing in the jth mode. We therefore consider any Hamiltonian of the
form

å= +H H t c t H , 1
k

k jpassive squeeze,( ) ( ) ( )

where ck are complex coefficients, which can be seen as the interaction strength of the
medium and Hpassive is an arbitrary passive Hamiltonian. Then, a natural measure of the
squeezing costs to implement this Hamiltonian would be given by

òå=f H c t td .
k

ksqueeze ( ) ∣ ( )∣

Our squeezing measure for the operation U is then defined as the mimimum of f Hsqueeze ( ) for
all Hamiltonians implementing the operation U of the form (1). With this definition, we have
an operational measure answering the question: given an operation U, what is the most
efficient way (in terms of squeezing) to implement it using passive operations and single-
mode squeezers?

Instead of working with the generators, which are unbounded operators and therefore
introduce a lot of analytic problems, we will work on the level of Wigner functions and
therefore with the symplectic group. The unitary U then corresponds to a symplectic matrix S
and we prove that the most efficient way to implement it is by using the Euler decomposition,
also known as Bloch–Messiah decomposition. We show this result first in the case where the
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functions ci are step functions and later on in the more general case of measurable c
(section 3.2). In particular, the result implies that the minimum amount of squeezing to
implement the symplectic matrix Î ´S n n2 2 is given by

å
=

F S s Slog , 2
i

n

i
1

( ) ≔ ( ) ( )

where si denotes the ith singular value of S ordered decreasingly.
With this in mind, we define a squeezing measure for preparation procedures where one

starts out with a covariance matrix of an unsqueezed state and then performs symplectic (and
possibly other) operations to obtain the state. More precisely, we define

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

åg g Î
=

G s S S S S Sp ninf log , 2 . 3
j

n

j
T

1

( ) ≔ ( ) ( ) ( )

One of the main results of this paper, which will be proven in section 5, is that this measure is
indeed operational in that it quantifies the minimal amount of single-mode squeezing
necessary to prepare a state with covariance matrix γ, using linear optics with single-mode
squeezers, ancillas, measurements, convex combinations and addition of classical noise.

We also define a second squeezing measure, which is a squeezing-analogue of the
entanglement of formation, the ‘squeezing of formation’, i.e.the amount of single-mode
squeezed resource states needed to prepare a given state using only passive operations and
adding of noise. This is done in section 5.3, where we also prove that this measure is equal
to G.

In addition, we prove several structural facts about G in section 4. In particular, G is
convex, lower semicontinuous everywhere, continuous on the interior and subadditive.
Moreover, we show

å l g g
l <

G
1

2
log

n

j
1j

( ( )) ( )

with the eigenvalues lj of γ. Equality in this lower bound is usually not achievable, albeit
numerical tests have shown that the bound is often very good.

The measure would lose a lot of its appeal, if it could not be computed. Although we
cannot give an efficient analytical formula for more than one mode, we provide a numerical
algorithm to obtain G for any state. To demonstrate that this works in principle, we calculate
G approximately for a state studied in [MK08] (section 6). The calculations also demonstrate
that the preparation procedure obtained from minimising G can greatly lower the squeezing
costs when compared to naive preparation procedures. Finally, we critically discuss the
flexibility and applicability of our measures in section 7. We believe that while we managed
to give reasonable measures and interesting tools to study the resource theory of squeezing
from a theoretical perspective, G might not reflect the experimental reality in all parts. In
particular, it becomes extraordinarily difficult to achieve high squeezing in a single mode
[And+15], which is not reflected by taking the logarithm of the squeezing parameter. We
show that this shortcoming can be easily corrected for a broad class of cost functions. In
addition, the form of the active part of the Hamiltonian (1) might not reflect the form of the
Hamiltonian in the lab. This cannot be corrected as easily but in any case, our measure will
give a lower bound.
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2. Preliminaries

In this section, we collect basic notions from continuous variable quantum information and
symplectic linear algebra that we need later on. For a broader overview, we refer to
[ARL14, BL05].

2.1. Phase space in quantum physics

Consider a bosonic system with n-modes, each of which is characterised by a pair of cano-
nical variables Q P,k k{ }. Setting = ¼R Q P Q P, , , ,n n

T
1 1( ) the canonical commutation relations

(CCRs) take on the form s=R R, ik l kl[ ] with the standard symplectic form

s =
-=

0 1
1 0

.
i

n

1
( )⨁

Since it will sometimes be convenient, we also introduce another basis of the canonical
variables: let = ¼ ¼R Q Q Q P P P, , , , , , ,n n

T
1 2 1 2˜ ( ) , then the symplectic CCRs take on the form

=R R J, ik l kl[ ˜ ˜ ] with the symplectic form

⎛
⎝⎜

⎞
⎠⎟=

-



J

0
0

.n

n

Clearly, J and σ differ only by a permutation, since R and R̃ differ only by a permutation.
From functional analysis, it is well-known that the operators Qk and Pk cannot be represented
by bounded operators on a Hilbert space. In order to avoid complications associated to
unbounded operators, it is usually easier to work with a representation of the CCR-relations
on some Hilbert space , instead. The standard representation is known as the Schrödinger
representation and defines the Weyl system, a family of unitaries xW with x Î n2 and

xs x ÎxW Rexp i , n2≔ ( )

fulfiling the Weyl relations =x h
xsh

x h
-

+W W Wexp i 2 for all x h, . Such a system is unique up to
isomorphism under further assumptions of continuity and irreducibility as obtained by the
Stone–von Neumann theorem. Given xW it is important to note that

* x x= + " Îx x W R W R . 4k k k
n2 ( )

In this paper, we will not use many properties of the Weyl system, since instead, we can work
with the much simpler moments of the state: given a quantum state  r Î L n

1
2 2( ( )) (trace-

class operators on L2), its first and second centred moments are given by

rd Rtr , 5k k≔ ( ) ( )

g r - - + R d R dtr , 6kl k k l l≔ ( { } ) ( )

with +,{· ·} the regular anticommutator. We will write Γ instead of γ for the covariance
matrix, if we work with R̃ instead of R. Again, a simple permutation relates the two.

An important question one can ask is when a matrix γ can occur as a covariance matrix of
a quantum state. The answer is given by Heisenberg’s principle, which here takes the form of
a matrix inequality:

Proposition 2.1. Let g Î ´n n2 2 , then there exists a quantum state r with covariance matrix
g if and only if

g si ,
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where  denotes the standard partial order on matrices (i.e. g si if g s- i is positive
semidefinite). Note that we leave out the usual factor of  2 to simplify notation.

Another question one might ask is when a covariance matrix belongs to a pure quantum
state. This question cannot be answered without more information about the higher order
terms If we however require the state to be uniquely determined by its first and second
moments, i.e.if we consider the so called Gaussian states, we have an answer (see [ASI04]):

Proposition 2.2. Let r be an n-mode Gaussian state (i.e. completely determined by its first
and second moments), then r is pure if and only if g =rdet 1( ) .

2.2. The linear symplectic group and squeezing

A very important set of operations on a quantum system are those, that leave the CCRs
invariant, i.e.linear transformations S such that s=SR SR, ik l kl[ ] . Such transformations are
called symplectic transformations.

Definition 2.3. Given a symplectic form σ on  ´n n2 2 , the set of matrices Ì ´S n n2 2 such
that s s=S ST is called the linear symplectic group and is denoted by  sSp n2 , ,( ).

We will usually drop both σ and  in the description of the symplectic group since this
will be clear from the context. The linear symplectic group is a Lie group and as such contains
a lot of structure. For more information on the linear symplectic group and its connection to
physics, we refer the reader to [Gos06, MS98] chapter 2. An overview for physicists is also
found in [Arv+95a]. All of the following can be found in that paper:

Definition 2.4. Let O n2 ,( ) be the real orthogonal group, Then we define the following
three subsets of Sp n2( ):

 


 

Ç
Å Å = ¼

P Î
-

-
- + 

K n Sp n O n

Z n s s s j n

n S Sp n S

2 , 2 , ,

diag , 0, 1, , ,

2 , 0 .
j i i n j2 1

1
2 1

( ) ≔ ( ) ( )
( ) ≔ { ( ) ∣ }
( ) ≔ { ( )∣ }

( ) ( ( ))

The first subset is the maximally compact subgroup of Sp n2( ), the second subset is the subset
of single-mode-squeezers. It generates the multiplicative subgroup  n2( ), a maximally
abelian subgroup of Sp n2( ). The third set is the set of positive definite symplectic matrices.

In addition, since Sp n2( ) is a Lie group, it possesses a Lie algebra. Let us collect a
number of relevant facts about the Lie algebra and some subsets:

Proposition 2.5. The Lie algebra sp n2( ) of Sp n2( ) is given by

sp  s sÎ + =´n T T T2 0n n2 2( ) ≔ { ∣ }
together with the commutator as Lie bracket. Certain other Lie algebras or subsets of Lie
algebras are of relevance to us:

(1) so Î + =´n A A A2 0n n T2 2( ) ≔ { ∣ } the Lie algebra of SO n2( ).

(2) ⎜ ⎟
⎛
⎝

⎞
⎠k Î =

-
= - =´n A A a b

b a
a a b b, ,n n T T2 2( ) ≔ { ∣ } the Lie algebra of K n( ).
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(3) ⎜ ⎟
⎛
⎝

⎞
⎠p Î =

-
= =´n A A a b

b a
a a b b, ,n n T T2 2( ) ≔ { ∣ } the subspace of the Lie algebra

sp n2( ) corresponding to P n( ).

Since the Lie algebra is a vector space, it is spanned by a set of vectors, the generators. A
standard decomposition is given by taking the generators of k n( ), the so called passive
transformations as one part and the generators of p n( ), the so called active transformations as
the other part. That these two sets together determine the Lie algebra completely can be seen
with the polar decomposition:

Proposition 2.6 (Polar decomposition [Arv+95a]). For every symplectic matrix
ÎS Sp n2( ) there exists a unique ÎU K n( ) and a unique Î PP n( ) such that =S UP.

A basis for the Lie algebras k n( ) and p n( ) therefore characterises the complete Lie
algebra sp n2( ). Elements of the Lie algebras are also called generators and a basis of
generators therefore fixes the Lie algebra. Via the polar decomposition, this implies that they
also generate the whole Lie group. We will need a set of generators kÎg nij

p ( )( ) and

pÎg nij
a ( )( ) later on, which we will fix via the metaplectic representation:

Proposition 2.7 (Metaplectic representation [Arv+95a]). Let xW be the continuous
irreducible Weyl system defined above and let ÎS Sp n2( ). Then there exists an up to a phase
unique unitary US with

x" =x xU W U W: .S S S
†

Since we have the liberty of a phase, this is not really a representation of the symplectic
group, but of its two-fold cover, the metaplectic group. We can also study the generators of
this representation, which are given by +R R1 2 ,k l{ } .

For the reader familiar with annihilation and creation operators, if we denote by a a,i i
† the

annihilation and creation operators of the n bosonic modes, the generators of the metaplectic
representation are given by

- +G a a a a G a a a ai , 7ij
p

j i i j ij
p

j j j i
1 2≔ ( ) ≔ ( )( ) † † ( ) † †

- +G a a a a G a a a ai , 8ij
a

j i j ij
a

i j i j
3

i
4≔ ( ) ≔ ( )( ) † † ( ) † †

where the p stands for ‘passive’ and the a for ‘active’. The passive generators are also
frequently called linear transformations in the literature (see [Kok+07]). We can now define
a set of generators of the symplectic group Sp n2( ) by using the set of metaplectic generators
Gij above and take corresponding generators gij in the Lie algebra sp n2( ) in a consistent way.
As one would expect from the name, the passive metaplectic generators correspond to a set of
passive generators of k n( ) and the set of active metaplectic generators corresponds to a set of
active generators of p n( ). The details of the correspondence are irrelevant (they are explicitly
spelled out in equation (6.6b) in [Arv+95a]), except for the fact that the set Gii

a 3( ), i = 1,K,n
corresponds to the generators gii

a 3( ) generating matrices in Zn.
Given a Hamiltonian, the associated time evolution corresponds to a path on the Lie

group: for a (sufficiently regular) path g  Sp n: 0, 1 2[ ] ( ) we can find a function
spÎA t n2( ) ( ) such that
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g g¢ =t A t t . 9( ) ( ) ( ) ( )

Instead of directly studying Hamiltonians with time-dependent coefficients as in equation (1),
it is equivalent to study functions spA n: 0, 1 2[ ] ( ).

There are a number of decompositions of the Lie group and its subgroup in addition to
the polar decomposition. We will mostly be concerned with the so called Euler decomposition
(sometimes called Bloch–Messiah decomposition) and Williamson’s decomposition:

Proposition 2.8 (Euler decomposition [Arv+95a]). Let ÎS Sp n2( ), then there exist
¢ ÎK K K n, ( ) and ÎA n( ) such that = ¢S KAK .

Proposition 2.9 (Williamson’s theorem [Wil36]). Let Î ´M n n2 2 be a positive definite
matrix, then there exists a symplectic matrix ÎS Sp n2 ,( ) and a diagonal matrix Î ´D n n

such that

=M S DS,T ˜

where =D D Ddiag ,˜ ( ) is diagonal. The entries of D are also called symplectic eigenvalues.

In particular, for Î PM n( ), this implies that M has a symplectic square root. Since
covariance matrices are always positive definite, this implies also that a Gaussian state is pure
if and only if its covariance matrix is symplectic. Heisenberg’s uncertainty principle has also a
Williamson version:

Corollary 2.10. A positive definite matrix M is a covariance matrix of a quantum state if
and only if all symplectic eigenvalues are larger or equal to one.

The proof is simple and therefore omitted.

2.3. Quantum optical operations and squeezing

We have already noted that an important class of operations are those, which leave the CCR-
relations invariant, namely the symplectic transformations. Given a quantum state ρ, the
action of the symplectic group on the canonical variables R descends to a subgroup of unitary
transformations on ρ via the metaplectic representation (see [Arv+95b]). Its action on the
covariance matrix gr of ρ is even easier: Given ÎS Sp n2( ),

g gr r S S. 10T ( )

In quantum optics, symplectic transformations can be implemented by the means of

(1) beam splitters and phase shifters, implementing operations in K(n) ([Rec+94])
(2) single-mode squeezers, implementing operations in Z(n).

Via the Euler decomposition, this implies that any symplectic transformation can be
implemented (approximately) by a combination of those three elements.

Definition 2.11. An n-mode bosonic state r is called squeezed, if its covariance matrix gr
possesses an eigenvalue l < 1.

Especially in the early literature, squeezing is usually defined differently: a state ρ is
squeezed if there exists a unitary transformation ÎK K n( ) such that grK KT has a diagonal
entry smaller than one. This again comes from the physical definition of squeezed states being
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states where the Heisenberg uncertainty relations are satisfied with equality for at least one
mode. These definitions however are well-known to be equivalent (see [SMD94]).

3. An operational squeezing measure for symplectic transformations

Throughout this section, we will always use σ as our standard symplectic form.

3.1. Definition and basic properties

We will now define a first operational squeezing measure for symplectic transformations,
which will later be used to define a measure for operational squeezing.

Definition 3.1. Define the function  ´F : n n2 2

å=
=

F A s Alog , 11
i

n

i
1

( ) ( ( )) ( )

where si are the decreasingly ordered singular values of A.

Note that we sum only over half of the singular values. Restricting this function to
symplectic matrices will yield an operational squeezing measure for symplectic transforma-
tions: recall that the symplectic group is generated by symplectic orthogonal matrices and
single-mode squeezers. The orthogonal matrices are easy to implement and therefore will be
considered a free resource. The squeezers have singular values s and -s 1 and they are
experimentally hard to implement and should therefore be assigned a cost that depends on the
squeezing parameter s. Using this, the amount of squeezing seems to be characterised by the
largest singular values. Here, we quantify the amount of squeezing by a cost slog( ), which
can be seen as the interaction strength of the Hamiltonian needed to implement the squeezing.

Let us make this more precise: define the map




È

D 

¼ = Î
Î

´

Î
 

Sp n Sp n

S S S S S S S K n Z n

: 2 2

, , , .
m

m

m
m m i1 1

( ) ⋃ ( )

⋃ {( )∣ ( ) ( )}

The image of Δ for a given symplectic matrix contains all possible ways to construct S as a
product of matrices from K(n) or Z(n). We define:

Definition 3.2. Let F Sp n: 2( ) be a map defined via

⎧⎨⎩
⎫⎬⎭ ¼ Î D

=

F S s S S S Slog inf , , . 12
i

m

i m
1

1 1( ) ≔ ( ) ∣ ( ) ( ) ( )

Proposition 3.3. If ÎS Sp n2( ) then =F S F S( ) ( ).

Proof. Let = ¢S KAK be the Euler decomposition of S with ¢ ÎK K K n, ( ) and ÎA n( ).
Assume without loss of generality that = ¼- -A a a a adiag , , , ,n n1 1

1 1( ) and
   ¼a a a 1n1 2 and define = ¼ ¼-A a adiag 1, ,1, , , 1, ,1i i i

1( ). By construction
= A A An1 and ÎA Z ni ( ). Since ¢ ÎK K K n, ( ), ¼ ¢ Î DK A A K S, , , ,n1( ) ( ). Using that

= ¢ = s K s K 1i i( ) ( ) and the fact that the Euler decomposition is actually equivalent to the
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singular value decomposition of S, we obtain:

⎛
⎝⎜

⎞
⎠⎟  ¢ = =

=

 

=

F S s K s A s K s S F Slog log .
i

n

i
i

n

i1
1

1 1
1

( ) ( ) ( ) ( ) ( ) ( )

Conversely, consider ¼ Î DS S S, , m1( ) ( ). Using that by definition for each ÈÎS K n Z nj ( ) ( )
we have  ==

 s S s Si
n

i j j1 1( ) ( ), we conclude:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟   =

*
=

=



= =



=

F S s S s S s Slog log log ,
i

n

i
j

m

i

n

i j
j

m

j
1 1 1 1

1( ) ( )
( )

( ) ( )

where in *( ) we used a special case of a theorem by Gel’fand and Naimark ([Bha96],
theorem III.4.5 and equation (III.19)). Taking the infimum on the right-hand side gives

F S F S( ) ( ). ,

Let us write the last observation in *( ) as a small lemma for later use:

Lemma 3.4. Let ¢ ÎS S Sp n, 2( ). Then ¢ + ¢F SS F S F S( ) ( ) ( ).

3.2. Lie algebraic definition

Up to now, we have only considered products of symplectic matrices, which would corre-
spond to a chain of beam splitters, phase shifters and single-mode squeezers. The goal of this
section is to prove that one cannot improve the results with arbitrary paths on Sp n2( ),
corresponding to general Hamiltonians of the form of equation (1) as described in section 2.

Let  Sr( ) be the set of absolutely continuous paths a  Sp n: 0, 1 2[ ] ( ) with a derivative
which is bounded almost everywhere such that a = 0( ) and a = S1( ) . Such paths seem to
capture most if not all physically relevant cases.

Recall the set of generators g of sp n2( ) defined in section 2 and order them in a single
vector. Usin equation (9), any a Î Sr( ) corresponds to a spÎ ¥A L n0, 1 , 2([ ] ( )). Since
the generators g form a basis, we can write = aA t c t g( ) ( ) · with a function

spÎa
¥c L n0, 1 , 2([ ] ( )). Both A or ac together with the condition a = 0( ) uniquely

define α.
The goal of this section is to prove that this does not give us any better way to avoid

squeezing:

Theorem 3.5. For any ÎS Sp n2( ), we have

⎧⎨⎩
⎫⎬⎭ò a a a a= Î =a a a   

F S c t t S t c t g t c t g tinf d , , ,

13

a r p p a a T

0

1

1( ) ( ) ( ) ˙ ( ) ( ( ) ( ( )) ( ) ( ( )))

( )

where we introduced the notation

c to clarify that gp a are actually vectors containing a set

of generators each, and the coefficients might differ for each of these generators.

The proof of this theorem is quite lengthy in details, thus we split it up into several
lemmata. The general idea is easy to relate: we first show that paths corresponding to products
of symplectic matrices of type Z(n) or K(n) produce the same outcome in (13) and (12). We
then use an approximation argument: given any path, we can approximate it by a path of
products of symplectic matrices to arbitrary precision.

To start, we prove the following lemma:
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Lemma 3.6. Let spÎA n2( ) and write = + + - ++ -A A A A A A A1 2 1 2T T( ) ( ) ≕ .
Then pÎ+A n2( ) and kÎ-A n( ) and we have  +F A F Aexp exp( ( )) ( ( )).

Proof. First note that F is continuous in S since the singular values are. Using the Trotter-
formula, we obtain:

*


=

+

= =

¥
+ -

¥
+ -

¥
+ +

F A F A n A n

nF A n nF A n

nF A n F A

exp lim exp exp

lim exp exp

lim exp exp ,

n

n

n

n

( ( )) ( ( ( ) ( )) )

( )
( ( ( )) ( ( )))

( ( )) ( ( ))

where we used that =-F Aexp 0( ( )) since kÎ-A n( ) and in *( ), we used a version of a
theorem by Gel’fand and Naimark again (see [Bha96], equation (III.20)). ,

Let us define yet another version of F which we call F̂ in the following way:

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭







å

¼ = + Î

Î

=

Î

      

  

C S c c c c S c g c g c

C S C S

F S c c C S

, , , , exp , ,

,

inf .

N a p
N
a

N
p

j

N

j
a a

j
p p

j
n

N

N

i
i
a

1 1
1

4

1

2( ) ≔ ( ) ( )

( ) ≔ ⋃ ( )

ˆ ( ) ≔ ( )

This definition is of course reminiscent of the definition of F in equation (12):

Lemma 3.7. For ÎS Sp n2( ), we have =F S F Sˆ ( ) ( ).

Proof. To prove F Fˆ , consider the Euler decomposition = ¼S K A A Kn1 1 2 with
ÎA Z ni ( ) and ÎK K Sp n, 21 2 ( ). Since K(n) is compact, the exponential map is surjective

and there exist

c p

1 and

c p

2 such that =

c g Kexp p p

1 1( ) and =

c g Kexp p p

2 2( ) . Recall that we
ordered the vector ga in such a way that the generators ga

i generate the matrices in Z(n) for
i = 1,K,n, hence we know that there exist = ¼ ¼

 
c c0, ,0, , 0, ,0i

a
i
a

i( ( ) )( ) for i = 1,K,n such
that

=
=

  
S c g c g c gexp exp exp .p p

i

n

i
a a p p

1
1

2( ) ( ) ( )

This implies

 å å å å= = = =   
F S c F c g F c g s A F Sexp exp log .

i
i
a

i
i
a a

i
i
a

i i
a

i
i1 1ˆ ( ) ( ( )) ( (( ) )) ( ) ( )( )

Here we used that

ci

a
i( )( ) is also the largest singular value of Î


c g Z nexp i

a
i i

a(( ) ) ( )( ) , as
=

 
F c g cexp i

a
i i

a
i
a

i( (( ) )) ( )( ) ( ) by normalisation of g.

For the other direction F Fˆ , let S be arbitrary. Let Îc C S( ) and consider each vector
ci separately. We drop the index i for readability, since we need to consider the entries of the
vector


ci. To make the distinction clear, we denote the jth entry of the vector


c by


c j( ). Recall

that the active generators are exactly those generating the positive matrices. Then:
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å å

=

= =

¥

  

   

F cg F c g F c g n

F c g c c

exp
Lemma 3.6

exp lim exp

exp ,

a a

n i
i
a

i
a n

i
i
a

i
a

i
i
a a

1

( ( )) ( ( )) (( ( )) )

( ( )) ∣ ∣

( )

( ) ( )

where we basically redid the calculations we used to prove lemma 3.6, using the continuity of
F and the Trotter formula from matrix analysis. Until now, we have considered only one


ci of

Îc C S( ). Now, if we define =


S c gexpi i( ), then we have  =S Si i and hence, using
lemma 3.4, we find:

  å å å " Î  F S F S F c g c c C S
Lemma 3.4

exp .
i

i
i

i
i

i
a

1( ) ( ) ( ( )) ( )

But this means F S F S( ) ˆ ( ), as we claimed. ,

We can now prove the first half of the theorem:

Lemma 3.8. For ÎS Sp n2( ) we have

⎧⎨⎩
⎫⎬⎭ ò a aÎa

  F S c t t S tinf d , .a r

0

1

1( ) ( ) ∣ ( ) ( )

Proof. Let ÎS Sp n2( ) and consider the Euler decomposition = S K S S Kn1 1 2. We can
define a function spA n: 0, 1 2[ ] ( ) via:

⎧
⎨⎪

⎩⎪

+ Î +
+ Î + + + = ¼

+ Î + +
+

+





A t

n c g t n

n c g t i n i n i n

n c g t n n

2 0, 1 2 ,

2 2 2 , 1 2 , 1, ,

2 1 2 , 1 ,

, 14

p p

i
a

i i
a

n
p p

1

1

2

( ) ≔
( ) · [ ( ))
( ) · ( ) [ ( ( )) ( ) ( ))
( ) · [( ) ( ) ]

( )( )

where ¼ + +
   
c c c c, 0, 0, , , 0, , , 0p a

n
a

n
p

1 2 1 2( ) denotes the element in +C Sn 2 ( ) for the Euler
decomposition and vector indices are denoted by a subscript i( ) as before. Let U s t,( ) be the
propagator corresponding to A, then for Î +t n0, 1 2[ ( )) according to proposition A.1,
since A does not depend on t on this interval, it is given by = -U t s t s A, exp( ) (( ) ). In
particular, + = =+


U n c g K1 2 , 0 exp n

p p
2 2( ( ) ) ( ) .

Iterating the procedure above, using = +U U n0, 1 0, 1 2( ) ( ( )) +U n 1(( )
+n 2 , 1( ) ), we can see that by construction, = =U K S S K S0, 1 n1 1 2( ) . Hence A defines

a continuous path on Sp n2( ) via U s t,( ). We can calculate:

ò òå

å

= +

= =

= +

+ +

+

=
+

  



c t t n c t

c F S

d 2 d

Lemma 3.7 ,

a

i

n

i n

i n

i
a

i

i

n

i
a

i

0

1

1
1 2

1 2

1

1
1

( ) ∣( ) · ( ) ∣

∣( ) ∣ ( )

( )

( ) ( )
( )

( )

where we used that the integral over the interval +n0, 1 2[ ( )) and + +n n1 2 , 1[( ) ( ) ] is
empty due to the fact that all active components are zero. In the last step, we used that for
the Euler decomposition, which takes the minimum in F̂ , this value is exactly
å = å+ +

  c ci i
a

i i i
a

1 1 1∣( ) ∣( ) , since =+

c 0i

a
j1( )( ) for ¹j i. Taking the infimum on the left-hand

side only decreases the value. ,
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For the other direction, we need some facts about ordinary differential equations that are
collected in appendix A.

Lemma 3.9. For ÎS Sp n2( ) we have

⎧⎨⎩
⎫⎬⎭ ò a aÎa

  F S c t t S tinf d , . 15a r

0

1

1( ) ( ) ∣ ( ) ( ) ( )

Proof. Let ÎS Sp n2( ) be arbitrary. Combining the proof of lemma 3.8 with proposition 3.3
and lemma 3.7 we have already proved:

⎧⎨⎩ ò a

a a a

= Î

=

a

a a

 

  

F S c t t S

t c t g t c t g t c

inf d ,

, , step fct. .

a r

p p a a T

0

1

1( ) ( ) ( )

˙ ( ) ( ( ) ( ( )) ( ) ( ( ))) }

The only thing left to prove is that we can drop the step-function assumption. This will be
done by a standard approximation argument: let F S˜( ) denote the right-hand side of
equation (15). Let e > 0 and consider an arbitrary Î ¥A L such that

ò e- <a
 c t t F Sd 16a

0

1

1( ) ˜( ) ( )

i.e.A corresponds to a path that is close to the infimum in the definition of F̃ . We can now
approximate ac by step-functions a¢c (corresponding to a function ¢A , see lemma A.2) such
that

ò e- <a a¢ c t c td . 17
0

1

1( ) ( )

Using the fact that the propagators ¢U U,A A are differentiable almost everywhere (proposition
A.1) and absolutely continuous when one entry is fixed, we can define a function

¢f s U s U s t0, ,A A( ) ≔ ( ) ( ), which is also differentiable almost everywhere. Furthermore, the
fundamental theorem of calculus holds for f (s) (see [Rud87], theorems 6.10 and 7.8).

= - + ¢¢ ¢
s

f s U s A s U s t U s A s U s t
d

d
0, , 0, ,A A A A( ) ( ) ( ) ( ) ( ) ( ) ( )

almost everywhere, which implies:

ò

ò

- = - =

= ¢ -

¢

¢

U t U t f t f
s

f s s

U s A s A s U s t s

0, 0, 0
d

d
d

0, , d .

A A

t

t

A A

0

0

( ) ( ) ( ) ( ) ( )

( )( ( ) ( )) ( )

Since U and g are bounded in ¥ · , we obtain

 ò e- -¢ a a¢   U t U t M c s c s s M0, 0, d . 18A A

t

1
0

1( ) ( ) ( ) ( ) ( )

M can explicitly be computed by the bounds given in proposition A.1.
Up to now, we have taken a path α to S close to the infimum and approximated it by a

path a¢. It is immediate by equations (16) and (17) that
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ò e- <a¢ c t t F Sd 2 . 19
0

1

1( ) ˜( ) ( )

Since Î ¢a¢c C SN ( ) for some ÎN and ¢ = ¢S U 0, 1A ( ), we would be done if ¢ =S S. To
remedy this, we want to extend a¢ to a path ã such that it ends at S. This is where
equation (18) enters: set ¢ -S U U0, 1 0, 1A A

1˜ ≔ ( ) ( ), then

 e- 
 

S
M

S
201

1

˜ ( )

hence » S̃ for ε small enough. Using the polar decomposition, we can write
= + +

 
S c cexp expN

p
N
a

1 2
˜ ( ) ( ). A quick calculation yields

⎛
⎝⎜

⎞
⎠⎟ e e e 

   
S n

M

S
n

M

S
Clog log . 211

1 1

˜ ≕ ( )

This lets us construct a new spA n: 0, 2 2˜ [ ] ( ):
⎧
⎨⎪

⎩⎪
¢ Î

Î
Î

+

+

 


t

A t t
c g t

c g t

0, 1 ,
2 1, 3 2

2 3 2, 2 .

,N
p p

N
a a

1

2

( ) [ ]
· ( )
· ( ]

By construction, for the corresponding propagator we have =U S0, 2A( )˜ and ã is a feasible
path for F S˜( ) (at least after reparameterisation) fulfiling:





ò ò ò

e

- - +

+
+

a a a     c t t F S c t t F S c t t

C

d d d

19 21
2 .

a a a

0

2

1
0

1

1
0

1

1( ) ˜( ) ( ) ˜( ) ( )

( ) ( )
( )

˜ ˜ ˜

Since, Îa
+c C SN 2 ( )˜ , ã is a valid path for F Sˆ ( ), which implies that for any  > 0, choosing

e + C2≔ ( ), we have seen:

< +F S F S . 22ˆ ( ) ˜( ) ( )

For   0, F S F Sˆ ( ) ˜( ), which implies the lemma via lemma 3.7. ,

4. A mathematical measure for squeezing of arbitrary states

Throughout this section, for convenience, we will switch to using J as symplectic form.
Having defined the measure F, we will now proceed to define a squeezing measure for
creating an arbitrary (mixed) state:

Definition 4.1. Let r be an n-mode bosonic quantum state with covariance matrix G. We
then define:

r º G G ÎG G F S S S S Sp ninf , 2 . 23T( ) ( ) ≔ { ( )∣ ( )} ( )

Note that G is always finite: for any given covariance matrix Γ, by Williamson’s theorem
and corollary 2.10, we can find ÎS Sp n2( ) and  D̃ such that G = S DS S ST T˜ . Fur-
thermore G is also non-negative since F is non-negative for symplectic S. We will prove in
section 5 that this is indeed an operational measure.
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4.1. Different reformulations of the measure

We will now give several reformulations of the squeezing measure and prove some of its
properties. In particular, G is convex and one of the crucial steps towards proving convexity
of G is given by a reformulation of G with the help of the Cayley transform. For the reader
unfamiliar with the Cayley transform, a definition and basic properties are provided in
appendix B.

Proposition 4.2. Let G Ji and G Î ´n n2 2 symmetric. Then:

 G = G G GG F Jinf i 240
1 2

0( ) { ( )∣ } ( )

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭ å=
+ +
- +

G Î
=

-s A B

s A B
H Hinf

1

2
log

1 i

1 i
, , 25

i

n
i

i1

1( )
( )

∣ ( ) ( )

where  is defined via:

 = =
-

Î = = Ì -´H A B
B A

A A B B H, , spec 1, 1 . 26m m T T2 2{ }( ) ∣ ( ) ( ) ( )

Proof. First note that the infimum in all three expressions is actually attained. We can see
this most easily in the definition (23): the matrix inequalities  G S S JiT ( ) imply that the set
of feasible S in the minimisation is compact, hence its minimum is attained. To see
(23) = (24), first note that (24) � (23) since any ÎS Sp n2( ) also fulfils S S JiT ,
hence  G S S JiT . For equality, note that for any  G G Ji0 , using Williamson’s
theorem we can find ÎS Sp n2( ) and a diagonal  D̃ (via corollary 2.10) such
that  G = S DS S S JiT T

0 . But since G =F F S S F ST
0
1 2 1 2( ) (( ) ) ( ) via the Weyl

monotonicity principle, the infimum is achieved on symplectic matrices.
Finally, let us prove equality with (25). First observe that we can replace Sp n2( ) by 

using proposition B.1(4).
Using the fact that l l= =  s S S S Hi i

T
i

1 2 1 2( ) ( ) ( ( )) and the fact that H is
diagonalised by the same unitary matrices as  = + - - H H H 1( ) ( ) · ( ) whence its
eigenvalues are

l
l
l

=
+

-




H
H

H

1

1
,i

i

i

( ( ))
( )
( )

we have:

⎧
⎨⎪
⎩⎪

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬⎪
⎭⎪

  
l
l

G Î =
+

-
G Î

=



F S S S S Sp n
H

H
H Hinf , 2 inf log

1

1
, .T

i

n
i

i1

1
2

{ ( )∣ ( )}
( )
( )

∣ ( )

Next we claim l = + H s A Bii i( ) ( ) for i = 1,K,n. To see this note:

⎜ ⎟
⎛
⎝

⎞
⎠- - -

= +
-

 
 

 
 

A B
B A

A B
A B

1

2
i

i i i
0 i

i 0
. 27( ) ( ) ( )· · ( )

The singular values of the matrix on the right-hand side of equation (27) are the eigenvalues
of + + + +A B A B A B A Bdiag i i , i i 1 2(( ) ( ) ( )( ) )† † , which are the singular values of A + iB
with double multiplicity. From the structure of H, it is immediate that the eigenvalues of the
right-hand side of equation (27) and thus of H come in pairs  +s A Bii ( ). Hence
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l = + H s A Bii i( ) ( ) for i = 1,K,n and we have:

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭ 



å

G Î

=
+ +
- +

G Î
=

F S S S S Sp n

s A B

s A B
H H

inf , 2

inf
1

2
log

1 i

1 i
, .

T

i

n
i

i1

{ ( )∣ ( )}

( )
( )

∣ ( )

To see that that the right-hand side equals (25), we only need to use the fact that
  G  G-H H1( ) ( ) for all ÎH and G Ji since the Cayley transform and its

inverse are operator monotone. ,

4.2. Convexity

The reformulation (25) will allow us to prove:

Theorem 4.3. G is convex on the set of covariance matrices  G Î G´ Jin n2 2{ ∣ }.

The crucial part of the proof is the following lemma:

Lemma 4.4. Consider the map   ´ ´ ´f : n n n n :

⎛
⎝⎜

⎞
⎠⎟å=

+ +
- +=

f A B
s A B

s A B
,

1

2
log

1 i

1 i
. 28

i

n
i

i1

( ) ( )
( )

( )

If we restrict f to symmetric matrices A and B such that + <s A Bi 1i ( ) for all = ¼i n f1, , ,
is jointly convex in A B, , i.e.

+ - ¢ + - ¢ + - ¢ ¢ " Îf tA t A tB t B tf A B t f A B t1 , 1 , 1 , 0, 1 .( ( ) ( ) ) ( ) ( ) ( ) [ ]

Proof. Let + - ¢A tA t A1˜ ≔ ( ) and + - ¢B tB t B1˜ ≔ ( ) . Note that Ã and B̃ are
also symmetric, and the largest singular value of +A Bi˜ ˜ fulfils

+ + + - ¢ + ¢  s A B ts A B t s A Bi i 1 i1 1 1( ˜ ˜) ( ) ( ) ( ). Therefore, the singular values of any
convex combination of A + iB and ¢ + ¢A Bi also lie in the interval 0, 1[ ). This makes our
restriction well-defined under convex combinations.

For any j = 1,K,n, by Thompson’s theorem (see [Tho76]), which states that for every
complex A B, , there exist unitary matrices U V, such that * *+ +A B U A U V B V∣ ∣ ∣ ∣ ∣ ∣ , we
have

* *l l+ = + + + - ¢ + ¢s A B A B U t A B U V t A B Vi i i 1 i .j j j( ˜ ˜) (∣ ˜ ˜∣) ( ∣ ( )∣ ∣( )( )∣ )

Using Lidskii’s theorem ([Bha96], chapter III with explicit formulation in exercise III.4.3),
we have

* *

*

 å

å

å

l l

l l

l l

+ + + - ¢ + ¢

= + + - ¢ + ¢

= + + - ¢ + ¢

p
p p

p
p p

p
p p

s A B U t A B U p V t A B V

t A B p t A B

t A B t p A B

i i 1 i

i 1 i

i 1 i 29

j j j

j j

j j

( ˜ ˜) ( ∣ ( )∣ ) ( ∣( )( )∣ )

( ) (∣ ( )∣) (∣( )( )∣)

(∣ ∣) ( ) (∣ ∣) ( )

( )

( )

( )

with pp 0 andå =p pp 1. In *( ), we used that unitaries do not change the spectrum. Now
each summand in equation (28) is the Cayley transform of a singular value. We can use the
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log-convexity of the Cayley-transform to prove the joint convexity of f:

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

**





 

 

 

 







å

å å

å å

å å å

å å å

å å

l l

l l

l l

l l

l l

= +

+ + - ¢ + ¢

+ + - ¢ + ¢

= + + - ¢ + ¢

+ + - ¢ + ¢

= + + - ¢ + ¢

= + - ¢ ¢

p
p p

p
p p

p
p p

p
p

p
p

=

=

=

= =

= =

= =

f A B s A B

t A B t p A B

t A B t p A B

t A B t p A B

t A B t p A B

t A B t A B

tf A B t f A B

, log i

log i 1 i

log i 1 log i

log i 1 log i

log i 1 max log i

log i 1 log i

, 1 , ,

i

n

i

i

n

i i

i

n

i i

i

n

i
i

n

i

i

n

i
i

n

i

i

n

i
i

n

i

1

1

1

1 1

1 1

1 1

( ˜ ˜) [ ( ˜ ˜)]

(∣ ∣) ( ) (∣ ∣)

[ (∣ ∣)] ( ) [ (∣ ∣)]

[ (∣ ∣)] ( ) [ (∣ ∣)]

[ (∣ ∣)] ( ) · [ (∣ ∣)]

( ) [ (∣ ∣)] ( ) [ (∣ ∣)]

( ) ( ) ( )

( )

( )

( )

( )

where in **( ) we use that the sum of all eigenvalues is of course not dependent on the order of
the eigenvalues. ,

This lemma will later allow us to calculate G as a convex programme.

Proof of theorem 4.3. We can now finish the proof of the convexity of G.
First note that using the definition of f in lemma 4.4 we can reformulate (25) to

 G = G Î-G f A B H Hinf , , . 301( ) { ( )∣ ( ) } ( )

Let  G G¢J Ji , i be two covariance matrices and let ¢ ÎH H, be the matrices that attain
the minimum of G G¢G G,( ) ( ) respectively. Then, in particular, + - ¢ ÎtH t H1( ) .
Furthermore, since  G- H1( ) and  G¢ ¢- H1( ) we have

*
   G + - G¢ G + - G¢ + - ¢- - -t t t t tH t H1 1 1 ,1 1 1( ( ) )

( )
( ) ( ) ( ) ( )

where we used the operator concavity of -1 in *( ). This means that + - ¢tH t H1( ) is a
feasible matrix for the minimisation in G, which implies using equation (30)

G + - G¢ + - ¢ + - ¢G t t f tA t A tB t B1 1 , 1 .( ( ) ) ( ( ) ( ) )

The convexity now follows directly from lemma 4.4 and the fact that we chose H and ¢H to
attain GG ( ) and G¢G ( ). ,

4.3. Continuity properties

From the convexity of G on the set of covariance matrices, it follows from general arguments
in convex analysis that G is continuous on the interior of the set of covariance matrices (see
[Roc97], theorem 10.1). What more can we say about the boundary?
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Theorem 4.5. G is lower semicontinuous on the set of covariance matrices
 G Î G´ Jin n2 2{ ∣ } and continuous on its interior. Moreover, eG +  GG G( ) ( ) for
e< 0 0 for any G Ji .

The ultimate goal is to extend continuity from the interior to the exterior, which we do
not know how to do at present. The proof will need a few notions from set-valued analysis
that we review in appendix C.

Proof of theorem 4.5. As already observed, G is continuous on the interior. Let G Ji0 be
arbitrary and suppose

  G G G - G G G 2 .0( ) ≔ { ˆ ∣( ) ˆ }

By definition,  is compact and convex for any Γ. Moreover, it defines a set-valued function
on the set of covariance matrices with non-empty values. Let e > 0, then for all G Ji with

eG - G < 0 , we have that for any G Î Gˆ ( ), G G + G - G Î G0 0
˜ ≔ ˆ ( ) ( ) and

eG - G < ˆ ˜ . This is the condition in lemma C.2 hence the set-valued function defined by
 is upper semicontinuous at G0, which implies that  ÇG X J Xi( ) { ∣ } is also upper
semicontinuous by proposition C.3. If ε is small enough (e.g. e < 1), this implies

   ÇG = G GX J X X J Xi i ,( ) { ∣ } { ∣ } ≕ ( )

hence this set is upper semicontinuous at G0.
Since F is continuous on positive definite matrices, it is absolutely continuous if we

restrict to a small neighbourhood of the covariance matrix G0. This means that for every e > 0
there exists an  > 0 such that

e eG - < G < G +F F F 31( ˜ ) ( ˆ ) ( ˜ ) ( )
for all G - G < ˜ ˆ and all G G Î GG-G < , 10

˜ ˆ ⋃ ( ).
Assuming without loss of generality that G - G <  10 , the set G( ) is exactly the set for

the minimisation in the definition of G. The upper semicontinuity of  G( ) implies by
lemma C.2 that for every  > 0 there exists a d > 0 such that for all dG - G < 0 we have:
for all G Î Gˆ ( ) there exists a G Î G0

˜ ( ) such that G - G < ˆ ˜ . In particular, this is true for

all minimisers Ĝ with G = GG F
1 2( ) ( ˆ ), where Ĝ and G Î GG-G <  10

˜ ⋃ ( ). Using
equation (31) we obtain: for every e > 0 there exists a d > 0 such that for all

dG - G < 0 , we have a pair G G,ˆ ˜ with G Î Gˆ ( ) minimising GG ( ) and G Î G0
˜ ( ) such that

eG - < G = GF F G .( ˜ ) ( ˆ ) ( )
This implies that for all e > 0 there exists a d > 0 such that

 eG G +G G0( ) ( )

for all dG - G < 0 .
Taking the limit inferior on both sides implies that G is lower semicontinuous at G0.

Upper semicontinuity would follow for instance if  G0( ) is also lower semicontinuous.
Finally, let us prove that eG + G 00( ) for e  0. To see this, consider the closed sets


 

xG +
x

Cn
n0 1

0≔ ⋃ ( )

for any În . It is easy to see that Í+C Cn n1 and that = GÎ¥ Cn n 0⋂ ( ). Moreover, C1 is
compact. Now let Gn be the sequence of minimisers for G + G n10( ), then G Î Cn n for all

În . By compactness, a subsequence will converge to
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G Î = G
Î¥

C .
n

n 0⋂ ( )

Therefore,  eG G +e G Glim0 0 0( ) ( ), but since  eG G + 0 0 for all e > 0 we also have
 eG G +e G Glim 0 0( ) ( ). ,

4.4. Additivity properties

Now we consider additivity properties of G. We switch our basis again and use γ and σ.

Proposition 4.6. For any covariance matrices g Î ´
A

n n2 21 1 and g Î ´
B

n n2 22 2, we have

 g g g g g g+ Å +G G G G G
1

2
.A B A B A B( ( ) ( )) ( ) ( ) ( )

In particular, G is subadditive.

Proof. For subadditivity, let  gS ST
A and  g¢ ¢S ST

B obtain the minimum in gG A( ) and
gG B( ) respectively. Then Å ¢S S is symplectic and  g gÅ ¢ Å ¢ ÅS S S ST

A B( ) ( )
hence, g gÅ +G G A G BA B( ) ( ) ( ).

To prove the lower bound, we need the following equation that we will only prove later
on (see equation (46)):

 g g Å a G G a1 : . 32A A n2( ) ( ) ( )

Assuming this inequality, let a 1 be such that  ga n B2
, then

g g gÅ ÅG a GA n A B2( ) ( )

hence g g gÅG GA A B( ) ( ) and since we can do the same reasoning for gB, we have
g g g g+ ÅG G G2A B A B( ) ( ) ( ). ,

We do not know whether G is also superadditive, which would make it additive. At
present, we can only prove:

Corollary 4.7. Let g Î ´
A

n n2 21 1 and g Î Sp n2B 2( ), be two covariance matrices (i.e. gB is a
covariance matrix of a pure state). Then G is additive.

Proof. Subadditivity has already been proven in the lemma. For superadditivity, we use the
second reformulation of the squeezing measure in equation (24): note that there is only one
matrix  g g siB , namely gB itself. Now write

⎛
⎝⎜

⎞
⎠⎟ g g sÅ A C

C B
iA B T

˜
˜

for Î ´A n n2 21 1˜ and Î ´B n n2 22 2˜ . Then in particular g - B 0B
˜ , but also  sB i˜ , hence

 g sB iB
˜ and therefore g=B B

˜ . But then

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟g g gÅ - = -A C

C B

A C

C 0
A B T

A
T

˜
˜

˜

hence also C = 0 and the matrix that takes the minimum in g gÅG A B( ) must be block-
diagonal. Then  g g gÅ ÅA 0A B B

˜ and Ã is in the feasible set of gG A( ). ,
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Corollary 4.8. For any covariance matrices g Î ´
A

n n2 21 1 and g Î ´
B

n n2 22 2,

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟g g

g

g
+G G G

C

C
2 .A B

A
T

B

( ) ( )

If G is superadditive, then this inequality holds without the factor of two.

Proof.

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

* **





g g
g

g
g

g

g

g

g

g

g

g

g

g

+ = +
-

-

+
-

-
=

G G G G
C

C

C

C

G
C

C
G

C

C
G

C

C

2
0

0
2

1

2

1

2

2 .

A B
A

B

A
T

B

A
T

B

A
T

B

A
T

B

A
T

B

( ) ( )

( ) ( )

Here we used proposition 4.6 and then convexity of G in *( ). Finally, in **( ) we used that
for every

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟g

g
Î +

C

C

S C

C S

S C

C S
Sp n n2 33A

T
B

A
T

B

A
T

B

T

1 2

˜
˜

˜
˜

( ( )) ( )

we also have:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟g

g

-

-
-

-

-

-
Î +

C

C

S C

C S

S C

C S
Sp n n2 34A

T
B

A
T

B

A
T

B

T

1 2

˜
˜

˜
˜

( ( )) ( )

and vice versa. Since the two matrices on the right-hand side of equations (33) and (34) have
equal spectrum, the two squeezing measures of the matrices on the left-hand side need to be
equal. ,

4.5. Bounds

Let us give a few simple bounds on G.

Proposition 4.9 (Spectral bounds). Let G Ji be a valid covariance matrix and l G ( ) be
the vector of eigenvalues in decreasing order. Then:

 å ål l- G G G = G
l G <



=





G F
1

2
log

1

2
log . 35i

i

n

i
1 1

1 2

i

( ( )) ( ) ( ) ( ) ( )
( )

Proof. According to the Euler decomposition, a symplectic positive definite matrix has
positive eigenvalues that come in pairs -s s, 1 and we can find ÎO SO n2( ) such that for any

 GS ST

G ¼ ¼- -O O s s s sdiag , , , , , .T
n n1 1

1 1( )

But then, l lG ¼ ¼  - -s s s sdiag , , , , ,k k n n1 1
1 1( ) ( ( )) via the Weyl inequalities l l A Bi i( ) ( )

for all i and -A B 0 (see [Bha96], theorem III.2.3). This implies:
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 å å lG G
=

-

=

G s slog max , log .
i

n

i i
i

n

i
1

1

1

1 2( ) ( { }) ( )

For the lower bound, given an optimal matrix S with eigenvalues si, we have

åG = -G s smax , .
i

i i
1( ) { }

If = ¼ ¼- -S S O s s s s Odiag , , , , ,T T
n n1

2 2
1

2 2( ) with ÎO SO n2( ) is the diagonalisation of S ST ,
we can write:

G ¼ ¼- - - - -O O s s s sdiag , , , , ,T
n n

1 1
1
2 2

1
2 2( )

and again by Weyl’s inequalites, we can find for all k n:

 å ål l- G ¼ ¼ G
= - +



=

 - -s s s s G
1

2
log

1

2
log diag , , , , , . 36

i n k

n

i
i

k

i n n
2 1

2

1
1
2 2

1
2 2( ( )) ( ( )) ( ) ( )

Now, l- å G= - +


i n k
n

i
1

2 2 1
2 ( ) can be upper bounded by restricting to eigenvalues l G < 1i ( ) .

This implies

å l- G G
l G <





G
1

2
log i

1i

( ( )) ( )
( )

using that the number of eigenvalues l G < 1i ( ) can at most be n (hence k n in the
inequality of equation (36)), since G S ST and STS has at least n eigenvalues bigger than
one. ,

Numerics suggest that the lower bound is often very good for low dimensions. In fact, it
can sometimes be achieved:

Proposition 4.10. Let G Ji be a covariance matrix, then G achieves the lower bound in
equation (35) if there exists an orthonormal eigenvector basis =vi i

n
1

2{ } of Γ with d= +v Jvi
T

j i n j, .
Conversely, if G achieves the lower bound, then =v Jv 0i

T
j for all normalised eigenvectors

v v,i j of G with l l <, 1i j .

Proof. Suppose that the lower bound in equation (35) is achieved. Via Weyl’s inequalities
(see [Bha96] theorem III.2.3), for all  GS ST in the definition of G we have

l l G S Si
T

i( ) ( ). For the particular S achieving G, this implies that for all l G < 1i ( ) we
havel l= G S Si

T
i( ) ( ). But then G S ST implies that STS and Γ share all eigenvectors to the

smallest eigenvalue. Iteratively, every eigenvector of Γ with l G < 1i ( ) must be an
eigenvector of STS with the same eigenvalue.

Since the matrix diagonalising STS also diagonalises - S ST1( ), the eigenvectors of the
two matrices are the same. Now, since  Î- S ST1( ) by reformulation (25), for any
eigenvector vi of any eigenvalue  l <- 0i

1( ) , Jvi is also an eigenvector of - S ST1( ) to the
eigenvalue  l- -

i
1( ), implying =v Jv 0i

T
j for all i j, . By definition, this means that v Jv,i j{ }

forms a symplectic basis. Above, we already saw that the eigenvectors of Γ for l G < 1i ( ) are
also eigenvalues of STS, hence =v Jv 0i

T
j for all i such that l G < 1i ( ) .

Conversely, suppose we have an orthonormal basis =vi i
n

1
2{ } such that d= +v Jvi

T
j i j n,

(modulo n2 if necessary) for all eigenvectors of Γ, i.e.Γ is diagonalisable by a symplectic
orthonormal matrix ÎO U n˜ ( ). Then
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l lG = ¼O O diag , , .T
n1 2˜ ˜ ( )

Since G Ji we have l l 1i i2 . Assume that l l +i n i for all i = 1,K,n and the l +n i are
ordered in decreasing order. Then l l<+ + -1n r n r 1 for some r n and

l l l l= ¼ ¼ ¼ ¼- -
+S S O Odiag 1, ,1, , , , 1, , 1, , ,T T

r n n r n
1 1

2˜ ( ) ˜

fulfils  GS ST and obviously achieves the lower bound in equation (35). ,

In contrast to this, the upper bound can be arbitrarily bad. For instance, consider the
thermal state G = + N2 1( ) · for increasing N. It can easily be seen that G =G 0( ) , since
G Î P n( ) and =F 0( ) , hence GG 0( ) . However, the upper bound in equation (35) is

+  ¥n N2 log 2 1( ) for  ¥N , therefore arbitrarily bad.
We can achieve better upper bounds by using Williamson’s normal form:

Proposition 4.11 (Williamson bounds). Let G Î ´n n2 2 be such that G Ji and consider
its Williamson normal form G = S DST . Then:

 - G GF S G F Slog det . 37( ) ( ( ) ) ( ) ( ) ( )

Proof. Since  D via G Ji , the upper bound follows directly from the definition. Also,
 GF S F 1 2( ) ( ), which makes this bound trivially better than the spectral upper bound in

equation (35).
The lower bound follows from:

⎛
⎝⎜

⎞
⎠⎟







l
l

l
G G =

G

G

= G - G - G

= - G

= +

 - =


=


G

F F S S

F S

36 1

2
log

1

2
log

log det log det

log det

i n

n

i
i

n
i

i

n
i

T

1

2
1 1

1

2

1 2 1 2 1 2

( )
( )

( )
( )

( )

( ) ( ( ) ) (( ) ) ( ( ) )
( ) ( ( ) )

using Weyl’s inequalities once again, implying that since  GS ST , we also have
= GF S F S S FT2( ) ( ) ( ). ,

The upper bound here can also be arbitrarily bad. One just has to consider
G S N ST≔ ( · ) with = - ¼ - - ¼ - Î- -S N N N N Sp ndiag 1, , 1, 1 , , 1 22 1 1( ( ) ( ) ) ( ).
Then G , i.e. G =G 0( ) , but  ¥F S( ) for  ¥N .

Proposition 4.12. Let G Ji be a covariance matrix. Then

 g g g pG G Î G n
1

4
inf log , , 380 1 0 0( ) { ∣ ( )} ( )

where p n( ) was defined in proposition 2.5 as the Lie algebra of the positive semidefinite
symplectic matrices. This infimum can be computed efficiently as a semidefinite programme.

Proof. Recall that the logarithm is operator monotone on positive definite matrices. Using
this, we have:
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⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭



 







å

å

å

l

l g g g p

l g g g p

g g g p

G = G

G Î

= G Î

= G Î

=



=



=



=



G S S S S

n

n

s n

log inf

inf log exp log ,

inf
1

2
log ,

inf
1

4
log , .

i

n

i
T T

i

n

i

i

n

i

i

n

i

1

1 2

1
0

1 2
0 0

1
0 0 0

1

2

0 0 0

( ) ( ) ∣

( ( )) ∣ ( )

( )∣ ( )

( )∣ ( )

The last step is valid, because the eigenvalues of matrices g pÎ n0 ( ) come in pairs l i. Since
the sum of all the singular values is just the trace-norm, we are done.

It remains to see that this can be computed by a semidefinite programme. First note that
since the matrices pÎH n( ) are those symmetric matrices with + =HJ JH 0, the constraints
are already linear semidefinite matrix inequalities. The trace norm is an SDP by standard
reasoning [RFP10, VB96]:

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭g
g

g
= +  A B

A

B
min

1

2
tr 00 1

0

0
( )

which is clearly a semidefinite programme. ,

Numerics for small dimensions suggest that this bound is mostly smaller than the spectral
lower bounds.

5. An operational definition of the squeezing measure

We claim that G answers the question: given a state, what is the minimal amount of single-
mode squeezers needed to prepare it? In other words, it quantifies the amount of squeezing
needed for the preparation of a state.

5.1. Operations for state preparation and an operational measure for squeezing

We first specify the preparation procedure. Since we want to quantify squeezing, it seems
natural that we allow to freely draw states from the vacuum or a thermal bath to start with.
Furthermore, we can perform an arbitrary number of the following operations for free:

(1) Add ancillary states also from a thermal bath or the vacuum.
(2) Add Gaussian noise.
(3) Implement any gate from linear optics.
(4) Perform Weyl-translations of the state.
(5) Perform selective or non-selective Gaussian measurements such as homodyne or

heterodyne detection.
(6) Forget part of the state.
(7) Create convex combinations of ensembles.

In addition, the following operation comes with an associated cost:
(8) Implement single-mode squeezers at a cost of slog( ), where s is the squeezing parameter.
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All these operations are standard operations in quantum optics and they should capture
all important Gaussian operations except for squeezing.

It is well-known that all of these operations are captured by the following set of
operations on the covariance matrix (for a justification, see appendix D):

(O0) We can always draw N-mode states with g Î ´N N2 2 for any dimension N from the
vacuum g =  or a bath fulfiling g .

(O1) We can always add ancillary modes from the vacuum g = anc or a bath g  and
consider g gÅ anc.

(O2) We can freely add noise with g 0noise to our state, which is simply added to the
covariance matrix of a state.

(O3) We can perform any beam splitter or phase shifter and in general any operation
ÎS K n( ), which translates to a map g g S ST on covariance matrices of states.

(O4) We can perform any single-mode squeezer = ¼ ¼-S s sdiag 1, ,1, , , 1 ,11( ) for
some Î +s .

(O5) We can perform any Weyl-translation leaving the covariance matrix invariant.
(O6) Given two states with covariance matrices g1 and g2, we can always take their convex

combination g g+ -p p11 2( ) for any Îp 0, 1[ ].
(O7) At any point, we can perform a selective measurement of the system corresponding to

a projection into a finitely or infinitely squeezed state. Given a state with covariance

matrix ⎜ ⎟⎛
⎝

⎞
⎠g = A B

B CT , this maps

g g- - A C B C ,G
TMP( )

where MP denotes the Moore–Penrose pseudoinverse.

Only operation (O4) comes at a cost of slog( ), all other operations are free.
We are now ready to state our main theorem, which states that the minimal squeezing

cost for any possible preparation procedure consisting of operations (1)–(8).is given by G.

Theorem 5.1. Let r be a quantum state with covariance matrix g . Consider arbitrary
sequences

g g g g    ,N N0 1≔

where g0 fulfils (O0) and every arrow corresponds to an arbitrary operation (O1)–(O5) or
(O7). Using (O6), we can merge two sequences gN1

and gN2
to one resulting tree with

g lg l g= + -+ + 1N N N N11 2 1 2
( ) for somel Î 0, 1( ). Iteratively, we can construct trees of any

depth and width using operations (O1)–(O7).
Let O gN ( ) be the set of such trees with N operations ending with γ (i.e. g g=N ).

Let O Og g= =
¥
N N1( ) ⋃ ( ).

Furthermore, for any tree Og gÎ Nˆ ( ), let = =

s si i

M
1{ } be the sequence of the largest

singular values of any single-mode squeezer (O4) implemented along the sequence (in
particular, M N ). Then

⎧⎨⎩
⎫⎬⎭Oåg g g= Î Î

G s s sinf log , . 39
i

i i( ) ∣ ˆ ( ) ( )

J. Phys. A: Math. Theor. 49 (2016) 445304 M Idel et al

23



5.2. Proof of the main theorem

Since we consider many different operations, the proof is rather lengthy, where the main
difficulties will be in showing that measurements do not squeeze. In order to increase
readability, the proof will be split into several lemmata.

Lemma 5.2. Let g Î ´n n2 2 be a covariance matrix, g 0 , let ÎN and

g g g g   = 40N0 1 ( )

be any sequence of actions (O1)–(O5) or (O7). If we denote the cost (sum of the logarithm of
the largest singular values of any symplectic matrix involved) of this sequence by c, then one
can replace this sequence by:



g g g g g g g g g

g g g

 Å  Å +  Å +

 Å +

O O O O
S S

O
S S

1 2 3 , 4

7
41

T

T

0 0 anc 0 anc noise 0 anc noise

0 anc noise

( ) ( ) ( ) ( )
( )

( )
( ( ) ) ( )

with g anc , g 0noise , ÎS Sp n2( ) and  a partial Gaussian measurement of type
specified in (O7). For this sequence, c F S( ).

Proof. We prove the proposition by proving that given any chain g g g g   = N0 1
as in (40), we can interchange all operations and obtain a chain as in equation (41). For
readability, we will not always specify the size of the matrices and we will assume that
g si , g anc , g 0noise , and S a symplectic matrix, whenever the symbols arise:

(1) We can combine any sequence g g g  + +i i i m1 for some Îm where each of
the arrows corresponds to a symplectic transformation Sj, j = 1,K,m as in (O3) or (O4),
into a single symplectic matrix ÎS Sp n2( ) such that g g=+ S Si m

T
i . Furthermore

lemma 3.4 implies  å F S s Si i1( ) ( ), hence this recombination of steps only lowers the
amount of squeezing.

(2) Any sequence g g g g  +S S S ST T
noise can be converted into a sequence

g g g +S ST
noise( ˜ ) with the same S and hence the same costs by set-

ting g g- -S S 0T
noise noise

1˜ ≔ .
(3) Any sequence g g g g  ÅS S S ST T

anc can be converted into a sequence

g g g g g Å  ÅS ST
anc anc

˜ ( ) ˜ by setting = Å S S˜ with  of the same dimension
as ganc. Since we only add the identity, we have = å =F S s S F Slogi i( ˜) ( ˜) ( ) and the
costs do not increase.

(4) Any sequence g g g g g g +  + Ånoise noise anc( ) can be converted into a sequence
g g g g g g Å  Å +anc anc noise˜ by setting g g= Å 0 0noise noise˜ , which is again a
valid noise matrix. As no operation of type (O4) is involved, the squeezing costs do not
change.

In a next step we consider measurements. We will only consider homodyne detection,
since the proof is exactly the same for arbitrary Gaussian measurements of type (O7). Given a
covariance matrix γ, we assume a decomposition

⎜ ⎟⎛
⎝

⎞
⎠ g g p p= = -A C

C B
A C B C;

T
TMP( ) ( )

as in the definition of (O7) with p = diag 1, 0( ).
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(5) Any sequence  g g g  S ST( ) ( ) can be converted into a sequence
g g g S S S ST T˜ ˜ ( ˜ ˜) by setting = Å S S 2˜ . To see this, write

 g p p= -S S S AS S C B C ST T T TMP( ) ( ) and

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟ 

p p

=

= -

 
S A C

C B
S S AS S C

C S B

S AS S C B C S

0
0

0
0

T

T

T T

T

T T TMP

( ) ( )
( )

hence the final covariance matrices are the same. By the same reasoning as in (3), the
costs are equivalent.

(6) Any sequence  g g g g  + noise( ) ( ) can be converted into a sequence
g g g g g +  +noise noise˜ ( ˜ ) by setting g g= Å 0noise noise˜ , with 0 on the last mode

being measured. Since no symplectic matrices are involved, the costs are equivalent.
(7) Any sequence  g g g g  Å anc( ) ( ) can be changed into a sequence

g g g g g Å  Åanc anc
˜ ( ), where the measurement ̃ measures the last mode of

γ, i.e.

⎛

⎝
⎜⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟⎟g

g p p= Å - Å ÅM
A C

C B A C B C
0
0

0 0
0 0 .T T

anc

anc
MP˜ ( ) ( )( ) ( )

Clearly, the resulting covariance matrices of the two sequences are the same and the costs
are equivalent.

We can now easily prove the lemma. Let g g  n0 be an arbitrary sequence with
operations of type (O1)–(O5) or (O7). We can first move all measurements to the right of the
sequence, i.e.we first perform all operations of type (O1)–(O5) and then all measurements.
This is done using the observations above. Note also that this step is similar to the quantum
circuit idea to ‘perform all measurements last’ (see [NC00], chapter 4).

Similarly, we can combine operations of type (O3) and (O4) and rearrange the other
operations to obtain a new sequence as in equation (41) with at most the costs of the sequence
g g  m1 we started with. ,

We can now slowly work towards theorem 5.1:

Lemma 5.3. Let g Î ´n n2 2 be a covariance matrix, then

 g g g g g g g g= = Å + Î Å G F S S S S Sp ninf , 2 , , 0 .

42

T
0 anc noise 0 anc noise( ) { ( )∣ ( ) ( ) }

( )

Proof. First note that for any g si , we can find ÎS Sp n2( ), g Î ´n n
0

2 2 with g 0 and
g Î ´n n

noise
2 2 with g 0noise such that g g g= +S ST

0 noise( ) by using Williamson’s
theorem, hence the feasible set is never empty. The lemma is immediate by observing that for
any g g g g= Å +S ST

0 anc noise( ) since g g gÅ + 0 anc noise( ) we have g S ST and
conversely, for any g S ST , defining g g- - S ST

0
1≔ , we have g g= S ST

0 . ,
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As an intermediate step we introduce the following notation:



 
g g g g g

g g g
= Å + Î

Å 

G F S S S S Sp ninf , 2 ,

, 0, measurement .
43

T

n

0 anc noise

0 anc 2 noise

˜( ) ≔ { ( )∣ ( ( ) ) ( )
}

( )

Then we have:

Lemma 5.4. For g Î ´n n2 2 a covariance matrix, we have

  g g g g g g s= =G Finf , i , measurement . 441 2˜( ) { ( ˆ )∣ ( ˜ ) ˜ ˆ } ( )

Proof. This follows from lemma 5.3:











 

g g g g g

g g g g g g s

g g g g s

g g g g g s

= = Å +

= = = Å +

= =

= =

G F S S S

F S S S

G

F

inf

inf , i

Lemma 5.3 inf , i
Prop. 4.2

inf , i 45

T

T
0 anc noise

0 anc noise

1 2

˜( ) { ( )∣ ( ( ) )}
{ ( )∣ ( ˜ ) ˜ ( ) }

{ ( ˜ )∣ ( ˜ ) ˜ }

{ ( ˆ )∣ ( ˜ ) ˜ ˆ } ( )

by taking the infimum over all measurements last. ,

Note here, that equation (45) together with the following proposition 5.5 finishes the
proof of proposition 4.6 via:

  g g g g g s g= = Å G G G ainf , i 46n2( ) { ( ˜ )∣ ( ˜ ) ˜ } ( ) ( )

for a 1, using that measuring the last modes we obtain g gÅ =a n2( ) and therefore,
g Å a n2 is in the feasible set of g g=G G˜ ( ) ( ).

Proposition 5.5. For g Î ´n n2 2 a covariance matrix we have

g g=G G .˜( ) ( )

This proposition shows that G is operational if we exclude convex combinations (and
therefore also non-selective measurements).

Proof. Using lemma 5.4, the proof of this proposition reduces to the question whether:

   g g g s g g g g g s= =F Finf i , inf i . 471 2 1 2{ ( ˆ )∣ ˜ ˆ ( ˜ ) } { ( )∣ } ( )
Since we do not need to use measurements, � is obvious.

Let  g g si˜ ˆ for some g g=( ˜ ) . Our first claim is that

 g g si 48( ˆ ) ( )
 g si( ˆ ) is clear from the fact that ĝ is a covariance matrix and a measurement takes states
to states. g g( ˆ ) is proved using Schur complements. Let be a Gaussian measurement
as in equation (68) with g = d ddiag , 1G ( ) with Î +d . It is well-known that

 g g= Å Å + Å  d d d ddiag 1 , diag 1 , 0 ,S
2( ) ( ( ) ( ( )) )
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where S denotes the Schur complement of the block in the lower-right corner of the matrix.
For homodyne measurements, we take the limit  ¥d . Since for any  g g 0˜ ˆ , the Schur
complements of the lower right block fulfil  g g 0S S˜ ˆ (see [Bha07], exercise 1.5.7), we
have g g( ˆ ) as claimed in equation (48).

Next, we claim

 g gF F . 491 2 1 2( ( ˆ ) ) ( ˆ ) ( )

To prove this claim, note that via the monotonicity of the exponential function on , it
suffices to prove

  g g
=



=

s s
j

m

j
j

n

j
1 1

( ( ˆ )) ( ˆ )

when we assume g Î ´n n2 2ˆ and g Î ´m m2 2( ˆ ) with m n. If we write

⎛
⎝⎜

⎞
⎠⎟g = A C

C B
T

ˆ
ˆ ˆ

ˆ ˆ

then the state after measurement is given by g = - + -A C B d d Cdiag , 1
T1( ˆ ) ˆ ˆ ( ˆ ( )) ˆ or the

limit  ¥d for homodyne measurements. In any case + -C B d d Cdiag , 1 0
T1ˆ ( ˆ ( )) ˆ and

 g A( ˆ ) ˆ and therefore, by Weyl’s inequalities, also

  g
=



=

s s A .
j

m

j
j

m

j
1 1

( ( ˆ )) ( ˆ )

Now we use Cauchy’s interlacing theorem (see [Bha96], corollary III.1.5): as Â is a submatrix
of ĝ , we have l l g Ai i( ˆ ) ( ˆ ) for all = ¼i m1, ,2 . Since at least m eigenvalues of Â are
bigger or equal one and at least n eigenvalues of ĝ are bigger or equal one, this implies

     l l g l g g= =
=



=



=



=



=

s A A s . 50
j

m

j
j

m

j
j

m

j
j

n

j
j

n

j
1 1 1 1 1

( ˆ ) ( ˆ ) ( ˆ ) ( ˆ ) ( ˆ ) ( )

In particular, this proves equation (49).
We can then complete the proof: let  g g si˜ ˆ for some g g=( ˜ ) in equation (47).

We have just seen that this implies  g g si( ˆ ) via equation (48) and furthermore that
g gF F1 2 1 2( ˆ ) ( ( ˆ ) ) via equation (49). But this means that we have found g g≔ ( ˆ )

such that  g g si . Hence g is in the feasible set of the right-hand side of (47) and
g gF F1 2 1 2( ˜ ) ( ), which implies � in equation (47). ,

Finally, we can prove theorem 5.1 by also covering convex combinations:

Proof. Let g Î ´n n2 2 be a covariance matrix. First consider only sequences g : we replace
any sequence by the special type of sequence of lemma 5.3. For these sequences, we have
seen that the minimum cost is given by gG ( ) in proposition 5.5.

However, we explicitly excluded convex combinations (O6) by considering only
sequences and not trees ĝ : consider a tree of operations (O1)–(O7) which has γ at its root and
g = 0 as leaves. Let us consider any node closest to the leaves. At such a node, we start with
two covariance matrices g1 and g2 that were previously constructed without using convex
combinations and with costs gG 1( ) and gG 2( ). The combined matrix would be
g lg l g+ -11 2˜ ≔ ( ) for some l Î 0, 1( ) and the costs would be l g l g+ -G G11 2( ) ( ) ( ).
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By convexity of G (see theorem 4.3):

lg l g l g l g+ - + -G G G1 11 2 1 2( ( ) ) ( ) ( ) ( )

which means that we can find a sequence (without any convex combinations) producing
lg l g+ -11 2( ) which is cheaper than first producing g1 and g2 and then taking a convex
combination. Iteratively, this means we can eliminate every node from the tree and replace the
tree by a sequence of operations (O1)–(O5) and (O7), which is cheaper than the tree and trees
do not matter. ,

5.3. The squeezing measure as a resource measure

We have now seen that the measure G can be interpreted as a measure of the amount of
single-mode squeezing needed to create a state ρ. Let us now take a different perspective,
which is the analogue of the entanglement of formation for squeezing: consider covariance
matrices of the form

⎜ ⎟⎛
⎝

⎞
⎠g -

s
s
0

0
. 51s 1

≔ ( )

These are single-mode squeezed states with squeezing parameter s 1. We will now allow
these states as resources and ask the question: given a (Gaussian) state ρ with covariance
matrix γ, what is the minimal amount of these resources needed to construct γ, if we can
freely transform the state by the same operations as before excluding squeezing ((O1)–(O7)
excluding (O4)).

The corresponding measure is once again G:

Theorem 5.6. Let r be an n-mode state with covariance matrix g Î ´n n2 2 . Then

⎧⎨⎩
⎞
⎠⎟

⎫⎬⎭åg g g= =
= =

G sinf
1

2
log , 52

i

m

m
i

m

s
1 1

i
( ) ( )∣ (⨁ ( )

where   ´ ´: m m n n2 2 2 2 is a combination of the operations (1)–(6) above.

Proof. �: Note that for any feasible ÎS Sp n2( ) in gG ( ), i.e.any S with  gS ST , we can
find ÇÎO Sp n O n2 2( ) ( ) and g= =D i

n
s1 i

⨁ with =S S O DOT T via the Euler
decomposition. Using that the Euler decomposition minimises F, we have

= = å =F S F D slogi
n

i
1

2 1
1

2
( ) ( ) ( ). But then, since we can find g 0noise such that

g g g= +=O OT
i
n

s1 noisei
⨁ , we have that D is a feasible resource state to produce γ. This

implies g gG Gresource ( ) ( ).
�: For the other direction, the proof proceeds exactly as the proof of theorem 5.1. First,

we exclude convex combinations. Then, we realise that we can change the order of the
different operations (even if we include adding resource states during any stage of the
preparation process) according to lemma 5.2, making sure that any preparation procedure can
be implemented via:

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟g g g= Å +¢

=
O O ,

i

m

s m
T

1
2 noisei

⨁

where ÇÎ + ¢ + ¢O Sp m m O m m2 2 2 2( ) ( ), g Î + ¢´ + ¢m m m m
noise

2 2 2 2 with g 0noise and
a measurement. Now the only difference to proof of 5.1 is that we had the vacuum  instead of

g Å= ¢i
m

s m1 2i
⨁ and an arbitrary symplectic matrix S instead of O, but the two ways of writing
the maps are completely interchangeable, so that the proof proceeds as in theorem 5.1. ,
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We could call this measure the ‘(Gaussian) squeezing of formation’, as it is the analogue
to the Gaussian entanglement of formation. Note also that the measure is similar to the
Gaussian entanglement of formation as defined in [Wol+04]. One natural further question
would be whether ‘distillation of squeezing’ is possible with Gaussian operations. It is
impossible in some sense for the minimal eigenvalue via [Kra+03], while it is possible and
has been investigated for non-Gaussian states in many papers (see [Fil13, Hee+06] and
references therein). In our case, it is not immediately clear whether extraction of single-mode
squeezed states with less squeezing is possible or not. This could be investigated in
future work.

6. Calculating the squeezing measure

We have seen that the measure G is operational. However, to be useful, we need a way to
compute it.

6.1. Analytical solutions

Proposition 6.1. Let =n 1, then lG = - GG min logi i
1

2
( ) ( ( )) for all G Î ´n n2 2 .

Proof. Note that this is the lower bound in proposition 4.9, hence
l- G GGmin logi i

1

2
( ( )) ( ). Now consider the diagonalisation l lG = O Odiag , T

1 2( )
with ÎO SO 2( ) and assume l l1 2. Then, l l-

2
1

1 since otherwise, G Ji .
Consider l l - -O S SOdiag , T T

1 2
1( ) for some ÎS Sp 2( ) with eigenvalues s 1 and

-s 1. Since l l - -O S SOdiag , T T
1 2

1( ) , this implies in particular that  l-s 1
2 by Weyl’s

inequality. Since =F S S slogT( ) , in order to minimise F (S) over  GS ST , we need to
maximize -s 1. Setting l=-s 1

2 we obtain l l= -s 2
1

1 and l l -s sdiag , diag ,1 2
1( ) ( ).

Since =SO K2 1( ) ( ), l l GS S O Odiag ,T T
1 2≔ ( ) is the minimising matrix in G and

lG = = -G F S log1

2 2
1( ) ( ) . ,

Proposition 6.2. Let r be a pure, Gaussian state with covariance matrix G Î ´n n2 2 .
Then G = GG F 1 2( ) ( ).

Proof. From proposition 2.2, we know that G =det 1( ) in particular. Therefore, the bounds
in proposition 4.11 are tight and G = GG F 1 2( ) ( ). ,

6.2. Numerical calculations using Matlab

The crucial observation to numerically find the optimal squeezing measure is given in
lemma 4.4: if we use G in the form of equation (25), we know that the function to be
minimised is convex on . In general, convex optimisation with convex constraints is
efficiently implementable and there is a huge literature on the topic (see [BV04] for an
overview).

In our case, a certain number of problems occur when performing convex optimisation:

(1) The function f in equation (28) is highly nonlinear. It is also not differentiable at
eigenvalue crossings of A + iB or ÎH . In particular, it is not differentiable when one
of the eigenvalues becomes zero, which is to be expected at the minimum.
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(2) While the constraints  g- H1( ) and > > - H are linear in matrices, they are
nonlinear in simple parameterisations of matrices.

(3) For γ on the boundary of the set of allowed density operators, the set of feasible solutions
might not have an inner point.

The first and second problem imply that most optimisation methods are unsuitable, as
they are either gradient-based or need more problem structure. It also means that there is no
guarantee for good stability of the solutions. The third problem implies that interior point
methods become unsuitable on the boundary, which limits applications. For instance, our
example of the next section (see equation (53)) lies on the boundary. As a proof of principle
implementation, we used the MATLAB-based solver SOLVOPT (for details see the manual
[KK97]). We believe our implementation could be made more efficient and more stable, but it
seems to work well in most cases for less than ten modes. More information on the pro-
gramme is provided in appendix E.

6.3. Squeezing-optimal preparation for certain three-mode separable states

Let us now work with a particular example that has been studied in the quantum information
literature. In [MK08], Mišta Jrand Korolkova define the following three-parameter group of
three-mode states where the modes are labelled A B C, , :

g g= Å + + x q q q q 53AB C
T T

1 1 2 2( ) ( )

with

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
g

f f

f f

=

-

-

= -

=

- -

- -

e a e c
e a e c

e c e a
e c e a

q

q

0 0
0 0

0 0
0 0

,

0, sin , 0, sin , 2 , 2 ,

cos , 0, cos , 0 2 , 2 ,

AB

d d

d d

d d

d d

T

T

2 2

2 2

2 2

2 2

1

2

( )
( )

where =a rcosh 2( ), =c rsinh 2( ), f = + +- -e d e dtan sinh 2 1 sinh 2r r2 4 2( ) ( ) . The
remaining parameters are  >d r 0 and x 0. For


f f

=
+ -

x x
r

e e

2 sinh 2

sin cosd dsep 2 2 2 2

( )

the state becomes fully separable [MK08]. The state as such is a special case of a bigger
family described in [Gie+01]. In [MK08], it was used to entangle two systems at distant
locations using fully separable mediating ancillas (here the system labelled C). Therefore,
Mišta Jr and Korolkova considered also an LOCC procedure to prepare the state characterised
by (53). For our purposes, this is less relevant and we allow for arbitrary preparations of the
state. This was also done in [MK08] by first preparing modes A and B each in a pure
squeezed-state with position quadratures -e d r2( ) and +e d r2( ). A vacuum mode in C was added
and +x q q q qT T

1 1 2 2( ) was added as random noise. Therefore, the squeezing needed to produce
this state in this protocol is given by

= =- +c e e d
1

2
log 2 . 54d r d r2 2( · ) ( )( ) ( )

We numerically approximated the squeezing measure for gABC, choosing =x xsep, which
leaves a two-parameter family of states. We chose parameters d and r according to
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= + = +r j d r i0.1 0.05, 0.03 55· · ( )
with Î ¼i j, 1, , 30{ } for a total of 900 data points. Since the algorithm is not an interior point
algorithm as described above, to check the result, we reprepared the state in the
following way:

(1) Let S be the symplectic matrix at the value optimum found by SOLVOPT for a covariance
matrix gABC.

(2) Calculate g- -S ST
ABC

1 and calculate its lowest eigenvalue l n2 .

Figure 1. Results of numerical calculations (formulas for d and r in equation (55)). On
the upper figure, the lower range of points (green in the online version) are the best
lower bound, the middle points (blue) denote the value of the objective function at
the minimum found by SOLVOPT and the upper points (red) denote the squeezing
costs of the preparation protocol of [MK08] (equation (54)). The lower figure shows the
preparation error. It is mostly below 10−6.
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(3) Define g g l+ -- -  S S 1 min 1,T
ABC n

1
2˜ ≔ ( { }) . Calculate the largest singular value

of g g-S ST ˜ .

If S was a feasible point, then g g=S ST ˜ . Since it is obvious how to prepare g̃ with
operations specified in section 5, the largest singular value of g g-S ST ˜ is an indicator of how
well we can approximate the state we want to prepare by a state with comparably low
squeezing costs.

The results of the numerical computation are shown in figure 1. We computed the
minimum both with the help of numerical and analytical subgradients and took the value with
a better approximation error. At rare occasions, one algorithm failed to obtain a minimum.
Possible reasons for this are discussed in appendix E. The optimal values computed by the
algorithm are close to the lower bound and a lot better than the upper bound and the costs
obtained by equation (54). One can easily see that gABC cannot achieve the spectral lower
bound as the assumptions of lemma 4.10 are not met.

7. Discussion of modifications to allowed operations

In experiments, squeezing of a state is most commonly measured by the logarithm of the
smallest eigenvalue (up to a constant) and the unit is usually referred to as decibel (dB)
[Lvo15]. We know of no operational interpretation for this measure that is similar to the
interpretation given in section 5 and the measure is not natural for multimode states.

In contrast, G is a natural measure for multimode states. However, squeezing is not just
experimentally challenging, it gets much harder if we want to achieve a larger amount of
single-mode squeezing. Currently, the highest amount of squeezing obtained in quantum
optical systems seems to be about13 dB (see [And+15]). In other words, the two states ρ and
r¢ with covariance matrices

g g= ¢ =- - -s s s s s sdiag , , , , diag , , 1, 1 561 1 2 2( ) ( ) ( )

will not be equally hard to prepare although g g= ¢G G( ) ( ). This is due to the fact that we
quantified the cost of a single-mode squeezer by slog .

To amend this, one could propose an easy modification to the definition of F in
equation (11):

åg =
=

F g s Slog 57g
i

n

i
1

( ) ( ( ( ))) ( )

by inserting another function  g : to make sure that for the corresponding measure
r gºG Gg g( ) ( ), we have g g¹ ¢G Gg g( ) ( ) in equation (56). We pose the following natural

restrictions on g:

• We need =g 1 1( ) since rGg ( ) should be zero for unsqueezed states.
• Squeezing should get harder with larger parameter, hence g should be monotonously
increasing.

• For simplicity, we assume g to be differentiable.

Let us first consider squeezing operations and the measure Fg. We proved in proposition
3.3 and theorem 3.5 that F is minimised by the Euler decomposition. A crucial part was given
by lemma 3.4. In order to be useful for applications, we must require the same to be true for
Fg, i.e.
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å å¢ + ¢
=



=

 g s SS g s S g s Slog log log .
i

n

i
i

n

i i
1 1

( ( ( ))) [ ( ( ( ))) ( ( ( )))]

This puts quite strong restraints on g: considering n = 1 and assuming that S and ¢S are
diagonal with ordered singular values, this implies that g must fulfill g xy g x g y( ) ( ) ( ) for

x y, 1. This submultiplicativity restraint rules out all interesting classes of functions:
Assume for instance that =g c2( ) , then g c2n n( ) , where equality is attained if

=g x c x( ) · . Therefore, all submultiplicative functions g(x) for x 1 must lie below
=g x c x( ) · at least periodically. Hence, lemma 3.4 does not hold if we consider increasingly

growing functions g. This implies that one could make the measure arbitrarily small by
splitting the single-mode squeezer into many successive single-mode squeezers with smaller
squeezing parameter, which does not reflect experimental reality.

A way to circumvent the failure of lemma 3.4 would be to work with the ‘squeezing of
formation’ measure. Likewise, one could require that there was only one operation of type
(O4) as specified in section 5 in any preparation procedure. In that case we have:

Proposition 7.1. If  g : fulfils

(1) glog ◦ ◦ is convex on ¥1,( ),
(2) g tlog exp( ( ( ))) is convex and monotone increasing in t ,

then the squeezing of formation measure Gg is still operational, i.e.theorem 5.1 still
holds.

Proof. The first condition replaces the log-convexity of the Cayley transform in the proof of
theorem 4.3, making the measure convex. Using [Bha96], II.3.5 (v), the second condition
makes sure that equation (50) still holds. The second condition can probably be relaxed while
the proof of theorem 5.1 is still applicable. A function g fulfilling these prerequisites is

=g x xexp( ) ( ), which would correspond to a squeezing cost increasing linearly in the
squeezing parameter. One could even introduce a cutoff after which g would be infinite. ,

A simpler way to reflect the problems of equation (56) would be to consider the measures
G and GminEig together (calculating GminEig of both the state and the minimal preparation
procedure in G).

Another problem is associated with the form of the Hamiltonian (1). In the lab, the
Hamiltonians that can be implemented might not be single-mode squeezers, but other
operations such as symmetric two-mode squeezers (e.g. [SZ97], chapter 2.8). It is clear how
to define a measure ¢G for these kinds of squeezers. Using the Euler decomposition, G is a
lower bound to ¢G , but we did not investigate this any further.
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Appendix A. Preliminaries for the proof of theorem 3.5

Let us collect facts about ordinary differential equations needed in the proof:
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Proposition A.1. Consider the following system of differential equations for
x : 0, 1 n2[ ] :


= " Î
= Î Î

x t x t A t t

x s x x s

0, 1 ,

for some , 0, 1 ,
58

T T

s s
n2

( ) ( ) ( ) [ ]
( ) [ ]

( )

where spÎ ¥A L n0, 1 , 2([ ] ( )). Then this system has a unique solution, which is linear in xs

and defined on all of 0, 1[ ] such that we can define a map

 " Î Îs t s t U s t, 0, 1 : , , n2[ ] ( ) ( ) ( )
via =x t x U s t,T

s
T( ) ( ) called the propagator of (58) that fulfils:

(1) U is continuous and differentiable almost everywhere.
(2) U s,( ·) is absolutely continuous in t.
(3) = U t t,( ) and =U s r U r t U s t, , ,( ) ( ) ( ) for all Îs t, 0, 1[ ].
(4) =-U s t U t s, ,1( ) ( ) for all Îs t, 0, 1[ ].
(5) U is the unique generalised (i.e. almost everywhere) solution to the initial value problem

¶ - =
= 

U s t U s t A t
U s s

, , 0
, 59

t ( ) ( ) ( )
( ) ( )

on  ´C 0, 1 , n n2 2 2([ ] ).
(6) If =A t A( ) does not depend on t, then =S r rAexp( ) ( ) solves equation (59)

with -U s t S t s,( ) ≔ ( ).
(7) for all Îs t, 0, 1[ ]:

⎜ ⎟⎛
⎝

⎞
⎠ ò t t¥   U s t A, exp d .

s

t

1( ) ( )

(8) ÎU s t Sp n, 2( ) ( ) for all Ît s, 0, 1[ ] and g =t U t0,( ) ( ) fulfills equation (9)
with g = 0( ) .

Proof. The proof of this (except for the part about ÎU s t Sp n, 2( ) ( )) can be found in
[Son98] (theorem 55 and lemma C.4.1) for the transposed differential
equation =x t A t x t˙ ( ) ( ) ( ).

For the last part, note that since = ÎU s s Sp n, 2( ) ( ), we have =U s s JU s s J, ,T( ) ( ) .
We can now calculate almost everywhere:

¶ = - - =U t s JU t s U t s A t J JA t U t s, , , , 0t
T T T( ( ) ( )) ( ) ( ( ) ( )) ( )

since spÎA t n2( ) ( ) and therefore - =A t J JA t 0T ( ) ( ) .
But this implies =U t s JU t s J, ,T( ) ( ) , hence U is symplectic. Obviously,U t0,( ) solves

equation (9). ,

We will also need another well-known lemma from functional analysis:

Lemma A.2. Let spA n: 0, 1 2[ ] ( ), Î ¥ ´A L 0, 1 , n n2 2([ ] ). Then A can be
approximated in  1· -norm by step-functions, which we can assume to map to sp n2( )
without loss of generality.

The approximation by step-function can be found e.g. in [Rud87] (chapter 2, exer-
cise 24).
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Appendix B. The Cayley trick for matrices

In this appendix, we give an introduction to the Cayley-transform. The definition and
properties needed in the main text are summarised by the following proposition:

Proposition B.1. Define the Cayley transform and its inverse via:

  ÇÎ + = Æ 
+
-

´ ´

 



H H

H
H

H

: spec 1

,
60

n n n n{ ∣ ( ) { } }
( )

  ÇÎ - = Æ 
-
+

- ´ ´

 



S H

S
S

S

spec 1

61

n n n n1{ ∣ ( ) { } }

( )

 is a diffeomorphism onto its image with inverse -1. Furthermore, it has the following
properties:

(1)  is operator monotone and operator convex on matrices A with Ì -Aspec 1, 1( ) ( ).
(2) -1 is operator monotone and operator concave on matrices A with Ì - ¥Aspec 1,( ) ( ).
(3)   : with  = + -x x x1 1( ) ( ) ( ) is log-convex on 0, 1[ ).
(4) For =n m2 even, Î ´H m m2 2 and ÎH if and only if  ÎH Sp m2 ,( ) ( )

and  H Ji( ) .

where  is defined via:

⎧⎨⎩
⎫⎬⎭ = =

-
Î = = Ì -´H A B

B A
A A B B H, , spec 1, 1 , .m m T T2 2( ) ( ) ( )

The definition and the fact that this maps the upper half plane of positive definite matrices
to matrices inside the unit circle is present in [AG88] (I.4.2) and [MS98] (proposition 2.51,
proof 2). Since no proof is given in the references and they do not cover the whole propo-
sition, we provide them here.

We start with well-definedness:

Lemma B.2.  and -1 are well-defined and inverses of each other. Moreover,  is a
diffeomorphism onto its image -dom 1( ).

Proof. If Ç + = ÆHspec 1( ) { } , then - H is invertible and + -  H H H( ) ( ) is
well-defined, as + - = H H, 0[ ] . Now let Î ´H m m be such that

Ç + = ÆHspec 1( ) { } . We will show that  H( ) contains no eigenvalue −1. To see this, let

l= -H T J n T, 62
i

i i
1⨁ ( ) ( )

be the Jordan normal form with block sizes ni and eigenvalues li. Let us here consider the
complex Jordan decomposition, i.e.li are allowed to be complex. Then:

l l+ = + - = -- - H T J n T H T J n T, 1 , , 1 63
i

i i
i

i i
1 1⨁ ( ) ⨁ ( ) ( )
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and thus

 l l= + - - -H T J n J n T, 1 , 1 .
i

i i i i
1 1( ) ⨁ ( ) · ( )

For the inverse of the Jordan blocks, we can use the well-known formula:

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

l
l

l

- ¼
- ¼

¼ -

=

¼

¼

¼

l l l

l l

l

- -
-
-

-
-

-
-
-

-

-

-

-

       

1 1 0
0 1 0

0 0 1

0

0 0

.

i

i

i

1
1

1
1

1
1

1

1
1

1
1

1
1

i i

ni

i
ni

i

ni

i
ni

i

2

1

2

1

( )
( )
( )
( )

( )

In particular, this is still upper triangular. Then l l+ - -J n J n, 1 , 1i i i i
1( ) ( ) is still upper

triangular with diagonal entries l l+ -1 1i i( ) ( ). Since l l+ - ¹ -1 1 1i i( ) ( ) for all
l Îi , we find that l l+ - -J n J n, 1 , 1i i i i

1( ) ( ) cannot have eigenvalue −1 for any i,
hence  Ç - ¹ ÆHspec 1( ( )) { } .

Finally, we observe:

  =
-

+
=

+ - +
+ + -

=-

+
-
+
-





 

 








H
H H

H H
H.

H

H
H

H

1 ( )

Moreover, set = - - f A A21 ( ) for all matrices Î ´A m m, = -f A A2
1( ) for all invertible

matrices Î ´A m m and = - f A A3 ( ) for all matrices Î ´A m m. Then we have

⎜ ⎟⎛
⎝

⎞
⎠ = - =

-
= -

-
- =

 
f f f H f f H f

H H
H

1 2
. 641 2 3 1 2 1◦ ◦ ( ) ◦ ( ) ( ) ( )

Since fi are differentiable for all =i 1, 2, 3, we have that  is invertible.
The same considerations with a few signs reversed also lead us to conclude that -1 is

well-defined and indeed the inverse of  . We can similarly decompose -1 to show that it is
differentiable, making  a diffeomorphism. Here, we define = + g A A21( ) for all

Î ´A m m, = -g A A2
1( ) for all invertible Î ´A m m and = + g A A3 ( ) for all

Î ´A m m. A quick calculation shows

= -g g g S S . 651 2 3
1◦ ◦ ( ) ( ) ( )

,

Denote by  the set

⎧⎨⎩
⎫⎬⎭ =

-
Î = = - < <´  H A B

B A
A A A B B H, , 66n n T T2 2( )≔ ( )

where < H means that - H is positive definite (not just positive semidefinite). We can
then prove the Cayley trick:

Proposition B.3. Let Î ´H n n2 2 . Then    Î  Î H H Sp n H J2 i( ( ) ( ) ( ) ).

Proof. Note that for ÎH , Ï H1 spec( ), hence  H( ) is always well-defined.
 = + - - H H H 01( ) ( )( ) , since + H 0 and - - H 01( ) as - < < H .
Observe:
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=
- -

= - = -
- -

= -





HJ A B
B A

B A
A B

A B
B A

JH0
0

0
0

.( ) ( )( ) ( ) ( )
Then we can calculate:

+ - =- + - = - + +
= + + = - +

- - -

- -

     

   

H H J H J H H H J

H J H J H H ,

1 1 1

1 1

( ) · ( ) ( ) · ( ( )) ( ) · (( ) )
( ) ( ) ( ) · ( )

hence  = -H J J H 1( ) ( ) and as  H( ) is Hermitian, we have   =H J H JT( ) ( ) and  H( ) is
symplectic. Via corollary 2.10, as  H( ) is symplectic and positive definite, we can conclude
that  H Ji( ) .

Conversely, let ÎS Sp n2( ) and S Ji . Then S�−iJ by complex conjugation and
S 0 after averaging the two inequalities. Since any element of Sp n2( ) is invertible, this

implies >S 0. From this we obtain:

-
+

> - + >

-
+

<




  






S

S
S

S

S

as ,

always.

Write - + =- S S A B
C D

1 ( )( ) · ( ) . As S is Hermitian, =A AT and =C BT , =D DT .

We have on the one hand

-
+

= - - - = - - +

= - + = - +

=-
-
+

- - - - -

- - - - - -




  

  





S

S
J S S J J S J S

SJ J S J S S S S

J
S

S

T T

T T T T T

1 1 1

1 1

( ) · ( ) ( )( ) ( )

( ) · ( ) ( ) ( )

and on the other hand

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= -
-

- = - -

A B
B D

J B A
D B

J A B
B D

B D
A B

,

.

T T

T

T

Put together this implies =B BT and = -D A, hence  Î- S1( ) , which is what we
claimed. ,

Proposition B.4. The Cayley transform  is operator monotone and operator convex on the
set of = Î ´A AT m m with Ì -Aspec 1, 1( ) ( ). -1 is operator monotone and operator
concave on the set of = Î ´A AT m m with Ì - ¥Aspec 1,( ) ( ).

Proof. Recall equation (64) and the definition of f f f, ,1 2 3. f1 and f3 are affine and thus for all
X Y : f X f Y3 3( ) ( ) and f X f Y1 1( ) ( ). For  X Y 0, we also have f Y2 ( )

f X 02 ( ) since matrix inversion is antimonotone. Now let   - Y X 1, then
  -  f Y f X2 03 3( ) ( ) and   -  f f Y f f X1 2 02 3 2 3◦ ( ) ◦ ( ) and finally  X( )

 Y 0( ) , proving monotonicity of  . Similarly, one can prove that -1 is monotonous using
equation (65).

For the convexity of  , we note that since f f,1 3 are affine they are both convex and
concave. It is well-known that x1 is operator convex for positive definite and operator
concave for negative definite matrices (to prove this, consider convexity/concavity of the
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functions y y-X, 1⟨ ⟩ for all ψ). It follows that for  - H we have f x 03 ( ) , hence
f f2 3◦ is operator concave on  - H . As = - - f A A21 ( ) , this implies that
 = f f f1 2 3◦ ◦ is operator convex.

For the concavity of -1, recall equation (65) and the definitions of g g g, ,1 2 3. Then, given
- X , we have g X3 ( ) is positive definite and concave as an affine map. g2 is concave on

positive definite matrices, as x1 is convex and -1( ) is order-reversing, hence - x1 is
concave on positive definite matrices. Since g1 is concave as an affine map, = -g g g1 2 3

1◦ ◦
is operator concave for all - X . ,

Lemma B.5.   : is log-convex on 0, 1[ ).

Proof. We need to see that the function = +
-

h x log x

x

1

1
( ) is convex for Îx 0, 1[ ). Since h is

differentiable on 0, 1[ ), this is true iff the second derivative is non-negative:

 =
-

h x
x

x

4

1 2 2
( )

( )
is clearly positive on 0, 1[ ) and h is therefore log-convex. ,

Appendix C. Continuity of set-valued functions

Here, we provide some definitions and lemmata from set-valued analysis for the reader’s
convenience. This branch of mathematics deals with functions f X: 2Y where X and Y are
topological spaces and 2Y denotes the power set of Y.

In order to state the results interesting to us we define:

Definition C.1. Let Í ´X Y, n m and f X: 2Y be a set-valued function. Then we say
that a function is upper semicontinuous (often also called upper hemicontinuous to
distinguish it from other notions of continuity) at Îx X0 if for all open neighbourhoods Q of
f x0( ) there exists an open neighbourhood W of x0 such that Í Î ÌW x X f x Q{ ∣ ( ) }.
Likewise, we call it lower semicontinuous (often called lower hemicontinuous) at a point x0 if
for any open set V intersecting f x0( ), we can find a neighbourhood U of x0 such that

Ç ¹ Æf x V( ) for all Îx U .

Note that the definitions are valid in all topological spaces, but we only need the case of
finite dimensional normed vector spaces. Using the metric, we can give the following
characterisation of upper semicontinuity:

Lemma C.2. Let Í ´X Y, n m and f X: 2Y be a set-valued function such that f x( ) is
compact for all x. Then f is upper semicontinuous at x0 if and only if for all e > 0 there
exists a d > 0 such that for all Îx X with d- < x x0 we have: for all Îy f x( ) there
exists a Îy f x0˜ ( ) such that e- < y ỹ .

Proof. : Let f be lower semicontinuous at x0. For any e > 0 the set

e eÎ - <
Î

 B f x y Y y y, 67
y f x

0
0

( ( )) ⋃ {ˆ ∣ ˆ } ( )
( )
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is an open neighbourhood of f x0( ). Hence there exists an open neighbourhood W of x0,
which contains a ball of radius d > 0 such that eÍ Í Î ÌdB x W x X f x B f x,0 0( ) { ∣ ( ) ( ( ))}.
Clearly this implies the statement.

⇐: Let Q be a neighbourhood of f x0( ). Since f x0( ) is compact this implies that there is a
e > 0 such that e ÍB f x Q, 0( ( )) where this set is defined as in equation (67). If this were not
the case, for every În there must be a Îy Y Qn ⧹ such that - <Î  y y ninf 1y f x n0

ˆˆ ( ) .
Since by construction this implies that Îy B f x1,n 0( ( )), which is compact, a subsequence of
these yn must converge to y. As Y Q⧹ is closed as Q is open, Îy Y Q⧹ . However,

- =Î  y yinf 0y f x0
ˆˆ ( ) by construction and since f x0( ) is compact, the infimum is attained,

which implies Îy f x0( ). This contradicts the fact that Q is a neighbourhood of f x0( ).
Hence we know that for any open Q containing f x0( ) there exists a e > 0 such that

e ÍB f x Q, 0( ( )) . By assumption, this implies that there exists a d > 0 such that
eÍ Î ÌdB x x X f x B f x,0 0( ) { ∣ ( ) ( ( ))}. Since clearly eÎ Ì Íx X f x B f x, 0{ ∣ ( ) ( ( ))}

Î Ìx X f x Q{ ∣ ( ) } we can choose dW B x0≔ ( ) to finish the proof. ,

This second characterisation is sometimes called upper Hausdorff semicontinuity and it
can equally be defined in any metric space. Clearly, the notions can differ for set-valued
functions with non-compact values or in spaces which are not finite dimensional. With these
two definitions, we can state the following classic result:

Proposition C.3 ([DR79]). Let Y be a complete metric space, X a topological space and
f X: 2Y a compact-valued set-valued function. The following statements are equivalent:

• f is upper semicontinuous at x0.
• for each closed ÍK X , ÇK f x0( ) is upper semicontinuous at x0.

An interesting question would be whether the converse is also true. Even if f (x) is always
convex, this need not be the case if ÇK f x0( ) has empty interior as simple counterexamples
can show. In case the interior is non-empty, another classic results guarantees a converse in
many cases:

Proposition C.4 ([Mor75]). Let X be a compact interval and Y a normed space. Let
f X: 2Y and g X: 2Y be two convex-valued set-valued functions. Suppose that

Ç < ¥f t g tdiam( ( ) ( )) and Ç ¹ Æf t g tint( ) ( ( )) for all t. Then if f g, are continuous (in
the sense above) so is Çf g.

Appendix D. Reduction of the set of necessary operations for state preparation

In this section, we give a justification of why the operations (O0)–(O7) are enough to
implement all operations described in section 5. All of this is known albeit scattered
throughout the literature, hence we collect it here.

In order to prepare a state, we could start with the vacuum g =  or alternatively a
thermal state for some bath (g = + N1 2( ) with photon number N, see e.g. [Oli12]). Of
course, we should be able to draw arbitrary ancillary modes of this system, too. The effect of
Gaussian noise on the covariance matrix is given in [Lin00]. Since for any g  we can
decompose it as g g= + noise, this implies that the operations (O0)–(O2) are enough to
implement all operations 1.and 2.
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As with other squeezing measures, passive transformations should not change the
squeezing measure, while single-mode-squeezers are not free. The effect of symplectic
transformations on the covariance matrix has already been observed in equation (10), hence
(O3) and (O4) implement operations (3) and (8).

Since we have the Weyl-system at our disposal, we can also consider its action on a
quantum state (translation in phase space). Direct computation shows that it does not affect
the covariance matrix. Including it as operation (O5) is beneficial if we consider a convex
combination of states. In an experiment, this can be done by creating ensembles of the states
of the convex combination and creating another ensemble where the ratio of the different
states is that of the convex combination. On the level of covariance matrices, we have the
following lemma:

Lemma D.1. Let r and r¢ be two states with displacement rd and r¢d and (centred)
covariance matrices gr and gr¢. For l Î 0, 1( ), the covariance matrix of
r lr l r+ - ¢1˜ ≔ ( ) is given by:

g lg l g l l= + - + - - -r r r r r r r¢ ¢ ¢d d d d1 2 1 T( ) ( )( )( )˜

A proof of this statement can be found in [WW01] (in the proof of proposition 1). Note
that for centralised states with =rd 0 and =r¢d 0, a convex combination of states translates
to a convex combination of covariance matrices. Since in particular,

l l- - -r r r r¢ ¢d d d d2 1 0T( )( )( ) , any convex combination of ρ and r¢ is on the level of
covariance matrices equivalent to

• centring the states (no change in the covariance matrices),
• taking a convex combination of the states (resulting in a convex combination of
covariance matrices),

• performing a Weyl translation to undo the centralization in the first step (no change in the
covariance matrix).

• Adding noise l l- - -r r r r¢ ¢d d d d2 1 0T( )( )( ) .

This implies that the effect of any convex combination of states (operation 4) on the
covariance matrix can equivalently be obtained from operations (O2), (O5) and (O6). Finally,
we consider measurements. Homodyne detection is the measurement of Q or P in one of the
modes, which corresponds to the measurement of an infinitely squeezed pure state in
lemma D.2. A broader class of measurements known as heterodyne detection measures
arbitrary coherent states [Wee+12]. Let us focus our attention on the even broader class of
projections onto Gaussian pure states.

Lemma D.2. Let r be an +n 1( )-mode quantum state with covariance matrix g and
g gd d, ,G G∣ ⟩⟨ ∣ be a pure single-mode Gaussian state with covariance matrix g Î ´

G
2 2 and

displacement d . Let

⎜ ⎟⎛
⎝

⎞
⎠ g = Î ´A C

C B
B,

T
2 2

then the selective measurement of g d,G∣ ⟩ in the last mode results in a change of the
covariance matrix of r according to:

g g¢ = - -A C B C , 68G
TMP( ) ( )
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where MP denotes the Moore–Penrose pseudoinverse. Homodyne detection corresponds to
the case where gG is an infinitely squeezed state.

This can most easily be seen on the level of Wigner functions, as demonstrated in
[ESP02, GIC02]. The generalisation to multiple modes is straightforward.

Since the covariance matrix of a Gaussian pure state is a symplectic matrix (see pro-
position 2.2), using the Euler decomposition we can implement a selective Gaussian mea-
surement by

(1) a passive symplectic transformation Î +S K n 1( ),
(2) a measurement in the Gaussian state d ddiag , 1( ) for some Î +d according to

lemma D.2.

A non-selective measurement (forgetting the information obtained from measurement)
would then be a convex combination of such projected states. A measurement of a multi-
mode state can be seen as successive measurements of single-mode states since the Gaussian
states we measure are diagonal.

For homodyne detection, since an infinitely squeezed single-mode state is given by the
covariance matrix ¥ d dlim diag 1 ,d ( ), we have

g p p¢ = - - = -
¥

-A C B d d C A C B Clim diag 1 , , 69
d

T T1 MP( ( ( )) ) ( ) ( )

where p = diag 1, 0( ) is a projection and MP denotes the Moore–Penrose-pseudoinverse. It
has been shown (see [Wee+12] E.2 and E.3 as well as [ESP02, GIC02]) that any (partial or
total) Gaussian measurement is a combination of passive transformations, discarding
subsystems, projection onto Gaussian states and homodyne detection.

Therefore, we should also allow to discard part of the system, i.e.taking the partial trace.
However, this can be expressed as a combination of operations (O1)–(O6) and homodyne
detection:

Lemma D.3. Given a covariance matrix ⎜ ⎟⎛
⎝

⎞
⎠g = A C

C BT a partial trace on the second system

translates to a map g  A. The partial trace can then be implemented by measurements and
adding noise.

Proof. When measuring the modes B, we note that since p pC B C 0TMP( ) in
equation (69), a partial trace is equivalent to first performing a homodyne detection on the
B-modes of the system and then adding noise. ,

Given the discussion above, lemmas D.2 and D.3 put together imply: on the level of
covariance matrices, in order to allow for general Gaussian measurements, it suffices to
consider Gaussian measurements of the state g g, 0 , 0d d∣ ⟩⟨ ∣ with covariance matrix
g = d ddiag 1 ,d ( ) for  ÈÎ +¥+d { }. All Gaussian measurements are then just combi-
nations of these special measurements and operations (O1)–(O6).

Appendix E. Numerical implementation and documentation

Here, we provide a short documentation to the programme written in MATLAB, Version
R2014a, and used for the numerical computations in section 6. The source Code can be found
at GitHub https://github.com/Martin-Idel/operationalsqueezing.
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The programme tries to minimise the function f defined in equation (28) over the set .
Throughout, suppose we are given a covariance matrix γ.

Let us first describe the implementation of f: as parameterisation of , we choose the
simplest parameterisation such that for matrices with symplectic eigenvalues larger than one,
the set of feasible points has non-empty interior: we parameterise A B, via matrix units E E,i jk

with Î ¼i n1, ,{ }, Î ¼ -k n1, , 1{ } and <j k, where d d=Ei jk ij ik( ) and
d d d d= +E jmjk lm jl km kl( ) . This parameterisation might not be very robust, but it is good

enough for our purpose. Instead of working with complex parameters, we compute
+s A Bii ( ) as l Hi ( ) for the matrix

=
-

H A B
B A

. 70( ) ( )

The evaluation of f is done in function OBJECTIVE.M. Since f is not convex for (A, B) with the
corresponding H having eigenvalues 1 or -1, the function first checks, whether this
constraint is satisfied and outputs a value that is 107-times larger than the value of the
objective function at the starting point otherwise.

The constraints are implemented in function MAXRESIDUAL.M. Via symmetry, it is
enough to check that for any H tested, l H 1n2 ( ) . The second constraint is given by
 g- H1( ) and this is tested by computing the smallest eigenvalue of the difference.

The function which is most important for users is MINIMUM.M, which takes a covariance
matrix G Ji , its dimensions n and a number of options as arguments and outputs the
minimum. Note that the programme checks whether the covariance matrix is valid. For the
minimisation, we use the MATLAB-based solver SOLVOPT ([KK97], latest version 1.1).
SOLVOPT uses a subgradient based method and the method of exact penalization to compute
(local) minima. For convex programming, any minimum found by the solver is therefore an
absolute minimum. In order to work, the objective function may not be differentiable on a set
of measure zero and it is allowed to be non-differentiable at the minimum. Since f is dif-
ferentiable for all H with non-degenerate eigenvalues, this condition is met. In addition,
SOLVOPT needs f to be defined everywhere, as it is not an interior point method. Since f is
well-defined but not convex for ÏH and È = ÆHspec 1( ) { } , we remedy this by
changing the output of OBJECTIVE.M to be very large when ÏH as described above.
Constraints are handled via the method of exact penalisation. We used SOLVOPTʼs algorithm
to compute the penalisation functions on its own.

It is possible (and for speed purposes advisable) to implement analytical gradients of both
the objective and the constraint functions. Following [Mag85], for diagonalisable matrices A
with no eigenvalue multiplicities, the derivative of an eigenvalue l Ai ( ) is given by:

l¶ = ¶A v A Av A , 71E i i
T

E i( ) ( ) ( ) ( )
where vi(A) is the eigenvector corresponding to l Ai ( ) and ¶ = + -A A hE Alimv h 0( ) ( )
=h E . Luckily, if A is not differentiable, this provides at least one subgradient. An easy

calculation shows that a subgradient of the objective function f for matrices H with
- < < H in the parameterisation of the matrix units Eij is given by
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with F being the matrices corresponding to the chosen parameterisation. The gradient of the
constraint function is very similar and given by equation (71) for g= -A H or = -A H2
depending on which constraint is violated. This is implemented in functions OBJECTIVEGRAD.
M and MAXRESIDUALGRAD.M.
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SOLVOPT needs a starting point. Given Γ, via Williamson’s theorem, G = S DS S ST T ,
hence STS provides a good starting point. The function WILLIAMSON.M computes the Wil-
liamson normal form for γ and returns S, D and STS, the latter of which is used as starting
point. It computes S and D essentially by computing the Schur decomposition of G G- -J1 2 1 2

(in the σ-basis instead of the J-basis). S is then given by g= -S KDT
1 2

1 2 (see the proof of
[SCS99]), where K is the Schur transformation matrix.

A number of comments are in order:

(1) All functions use global variables instead of function handles. This is required by the fact
that SOLVOPT has not been adapted to the use of function handles. The user should
therefore always reset all variables before running the programme.

(2) SOLVOPT is not an interior point method, i.e.the results can at times violate constraints.
We use the default value for the accuracy of constraints, which is 10−8 and can be
modified by option six. The preparation error should be of the same order than the
accuracy of constraints as long as the largest eigenvalue of the minimising symplectic
matrix is of order one.

(3) For our numerical tests, we used bounds on the minimal step-size and the minimal error
in f (SOLVOPT options two and three) of the order 10−6 and 10−8, which seemed
sufficient.

(4) All functions called by SOLVOPT (the functions OBJECTIVE.M, OBJECTIVEGRAD.M,
MAXRESIDUAL,M, MAXRESIDUALGRAD.M and XTOH.M) are properly vectorised to
ensure maximal speed.

Finally, BOUNDS.M contains all lower- and upper bounds described in section 4.5. The
semidefinite programme was solved using CVX (version SDPT3 4.0), a toolbox developed in
MATLAB for disciplined convex programming including semidefinite programming [GB08],
[GB14]. The third bound is not described in section 4.5—it is an iteration of corollary 4.8
assuming superadditivity, hence in principle it could be violated. If it were violated, this
would immediately disprove superadditivity, which has never been observed in our tests.

Issues and further suggestions: It occurs sometimes that the algorithm does not
converge to a minimum inside or near the feasible set. We believe that this is due to
instabilities in the parameterisation and implementation. The behaviour can occur while using
numerical as well as analytical subgradients, although it occurs more often with analytical
ones. For every example where we could observe a failure with either numerical or analytical
subgradients, one other method (using numerical subgradients, using analytical subgradients
or a mixture thereof) worked fine. In cases of failure, the routine issued several warnings and
the result usually lies below the lower bound. A different type of implementation might lead
to an algorithm that is more stable, but we did not pursue this any further. It might also be
worth to consider trying to compute the penalty function analytically.

In terms of performance times, the algorithm is generally fast for small numbers of
modes. When analytical subgradients are not implemented, the performance bottleneck is
given by the functions XTOH.M, which is called most often. When analytical subgradients are
provided, the performance is naturally much faster. This is particularly important when the
number of modes increases. While for five modes, the calculation is done within seconds,
already for ten modes and depending on the matrix, it can take a minute on a usual laptop (the
algorithm now takes the most amount of time for eigenvalue computations, which seems
unavoidable). For even larger matrices, it might be advisable to switch from using the Matlab
function EIG to EIGF, but for our examples this did not lead to a time gain.
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Perturbation Bounds for Williamson’s Symplectic Normal
Form

M. Idel, S. Soto Gaona and M. M. Wolf September 26, 2016

Williamson’s normal form defines a diagonalisation of positive semidefinte matrices
via symplectic conjugation. The corresponding diagonal entries are therefore also
called the “symplectic spectrum”. The normal form and the symplectic spectrum is
very important in continuous variable quantum information as symplectic conjugation
corresponds to the implementation of Gaussian unitaries which include many impor-
tant operations like beam-splitters and phase shifters on light packets. Moreover, the
symplectic spectrum can be interpreted as “mixedness” of the quantum state and com-
pletely determines its entropy in the case of Gaussian states. Therefore it is interesting
to consider perturbation bounds for the normal form. Such bounds have recently been
published in [2, 3].

1 Stability of symplectic eigenvalues

Based on the usual perturbation theory, we provide the following bound:

Theorem 1.1. Let M,M ′ ∈ R2n×2n be two positive definite matrices and D̃, D̃′ their
Williamson diagonalisations. Then

‖D̃ − D̃′‖ ≤ (κ(M)κ(M ′))1/2‖M −M ′‖ (1)

for every unitarily invariant norm ‖ · ‖, where κ(M) is the condition number of M .

Clearly, the constant can become arbitrarily bad. We also investigate whether this
can be amended and provide a counterexample, stating that the constant must some-
how depend on the norms of the matrices involved.

2 Stability of the diagonalising matrix

Similar to usual matrix theory we then consider the stability of the diagonalising
matrix S ∈ Sp(2n), where STMS is diagonal. This corresponds to the stability of
eigenvectors. Using results from classical perturbation theory of Hermitian matrices,
we can show that S is only stable if the symplectic spectrum is nondegenerate as in the
case of the usual spectrum. In addtion, we prove that the stability of the eigenspaces
leads to the following theorem:

Theorem 2.1. Let M ∈ R2n×2n be a positive definite matrix with Williamson decom-
position M = S−T D̃S−1.



Let E be any symmetric matrix with ‖E‖ = 1. Assume that ε > 0 is small enough
such that Mε := M + εE is still positive definite and let Mε = S−Tε D̃εS

−1
ε be its

Williamson decomposition.
Then for any ε such that Mε is positive definite and

0 < ε < min

{
‖M‖

(6κ(M))4/3
,

1

2‖M‖
, ‖M‖

}
(2)

with the condition number κ, then

‖S−TS−1 − S−Tε S−1ε ‖ ≤ 9πn3κ(M)2‖M−1‖1/4ε1/4. (3)

The proof is technically involved, but easy to relate: The idea is to divide the spec-
trum into parts that are close by (signifying “eigenspaces” of the symplectic spectrum)
and then use results from eigenvalue perturbation theory on the question of the sta-
bility of eigenspaces (see for instance [1], Chapters IX and X) to prove the stability
of S−TS−1. The tricky part is to choose the correct scaling: The estimates for the
stability of eigenspaces behave like 1/δ, where δ is the spectral gap. Naive choices of
dividing the spectrum blow up if δ becomes too small.

3 Applications

We apply the results to provide perturbation bounds for the entropy of a Gaussian
state and we also note that Theorem 2.1 is needed to ensure that the algorithm in the
paper “An operational measure for squeezing” works as planned.

4 Legal statement

The project was proposed by Michael M. Wolf for the Bachelor thesis of Sebastián
Soto Gaona whom I advised during his writing process. The result of the thesis was
a weaker version of Theorem 1.1. All other results have primarily been my work with
advice by Michael Wolf and proofreading by Sebastián Soto Gaona.
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Abstract

Given a real-valued positive semidefinite matrix, Williamson proved that it can be di-
agonalised using symplectic matrices. The corresponding diagonal values are known
as the symplectic spectrum. This paper is concerned with the stability of Williamson’s
decomposition under perturbations. We provide norm bounds for the stability of
the symplectic eigenvalues and prove that if S diagonalises a given matrix M to
Williamson form, then S is stable if the symplectic spectrum is nondegenerate and
STS is always stable. Finally, we sketch a few applications of the results in quantum
information theory.

1. Introduction

It is well-known that the eigenvalues of a Hermitian matrix are stable under small per-
turbations. This lies at the heart of perturbation theory, which in turn is important in
numerical analysis as well as most areas of theoretical physics. Many classic books have
been fully devoted to (spectral) perturbation theory in finite [Wil65] or infinite [Kat95]
dimensions and the results are well-known today.
Next to the general notion of eigenvalues of a linear operator, in symplectic linear algebra
there exists the notion of symplectic eigenvalues: Given a positive semidefinite matrix
M ∈ R2n×2n, Williamson [Wil36] showed that there exists a symplectic basis such that
M is diagonal. The diagonal entries form the symplectic spectrum. The symplectic
spectrum plays an important role in continuous variable quantum information, since
for Gaussian states, the spectrum of the density matrix (which defines for instance the
von Neumann entropy) can be obtained from the symplectic spectrum [HSH99]. The
literature on symplectic eigenvalue perturbation is not as rich as for the usual eigenvalue
problem. First results concerning perturbations for matrices in Williamson normal form
can be found in [SEW05]. A more general approach was published in [Kön15], and a
bound similar to usual matrix perturbation bounds in the literature for matrix analysis
has appeared recently in [BJ15]. The bounds in the present paper improve on the last
result and also consider the Williamson analoga of eigenvectors and eigenspaces.
To summarise the results, let M = STDS be the Williamson decomposition of a pos-
itive definite matrix. Since the symplectic spectrum is ultimately defined through the

1



usual eigenvalue spectrum of a diagonalisable matrix, the immediate intuition is that
the spectrum should be stable, while the diagonalising matrix S will not be stable when
symplectic eigenvalues are degenerate. Likewise, there is a chance that STS is stable, be-
cause this would encode the information about “symplectic eigenspaces” and eigenspaces
are generally stable [Bha96]. In accordance with this intuition, we find:

• The symplectic spectrum is stable and we derive norm bounds for all unitarily
invariant norms, improving the bounds in [BJ15].

• The diagonalising matrix S is stable as long as no eigenvalue crossings occur and
we derive a norm bound depending on the smallest gap in the spectrum. We also
give a counterexample for the stability of matrices with degenerate eigenvalues.

• STS is stable and we derive norm bounds for the operator norm.

These results can be useful for proving continuity and approximation results at least in
the context of continuous variable quantum information. We sketch a few applications
in the last section. For the reader’s convenience, we recall the most important theorems
and a number of small lemmata with simple calculations in Appendix A.

2. Notation and Williamson’s normal form

Throughout this paper, let σ ∈ R2n×2n be the standard symplectic form defined as

σ =

(
0 1n

−1n 0

)
. (1)

Furthermore, denote by Sp(2n) the group of 2n×2n real symplectic matrices, by O(n) ⊆
Rn×n the group of real orthogonal matrices, and by U(n) ⊆ Cn×n the group of unitary
matrices. Let us now define the symplectic spectrum through Williamson’s theorem:

Theorem 2.1 (Williamson [Wil36]). Let M ∈ R2n×2n be a positive definite matrix.
Then there exists a nonnegative diagonal matrix D ∈ Rn×n and a symplectic matrix
S ∈ Sp(2n) such that

STMS = diag(D,D). (2)

We can assume without loss of generality that D11 ≥ D22 ≥ . . . ≥ Dnn > 0. The entries
of D are sometimes called the symplectic eigenvalues of M and they are the positive
eigenvalues of iσM .

The theorem can be extended to the case of positive semidefinite matrices M . In this
case, STMS = diag(D1, D2) where D1 and D2 contain zeroes.

Proof. One proof that covers also the case of semidefinite matrices can be found in
[Gos06]. We sketch the proof of [SCS99] and [SG15]:

2



Let diag(D,D) =: D̃. Using that D and M are positive definite, consider an ansatz of
the form S = M−1/2KD̃1/2, where K ∈ O(2n). By construction STMS = D̃ and we
only need to check that K can be chosen such that S is symplectic. This is equivalent
to

KT (M−1/2σM−1/2)K =

(
0 D−1

−D−1 0

)
.

Using that (M−1/2σM−1/2)T = −M−1/2σM−1/2, we know that we can indeed find an
orthogonal K achieving this construction. The idea is that iM1/2σM1/2 is a Hermitian
matrix and therefore diagonalisable by a unitary matrix U ∈ U(2n). It is easy to see
that the eigenvalues come in pairs ±λj with eigenvectors xj ± ivj for j = 1, . . . , n and
xj , yj ∈ R2n. One can then show that K is given by (x1, . . . , xn, y1, . . . , yn) using that
σxj = yj and σyj = −xj .

The goal of the main part of this paper is to consider the stability of the symplectic
eigenvalues, the diagonalising matrix S and the matrix STS.

3. Stability of the symplectic eigenvalues

Let us first consider the stability of D:

Theorem 3.1. Let M,M ′ ∈ R2n×2n be two positive definite matrices and D̃, D̃′ their
Williamson diagonalisations as in Theorem 2.1. Then

‖D̃ − D̃′‖ ≤ (κ(M)κ(M ′))1/2‖M −M ′‖ (3)

for every unitarily invariant norm ‖ · ‖, where κ(M) is the condition number of M .

Proof. First note that by Williamson’s theorem, iσM is diagonalisable. This can be
seen via S−1(iσM)S = iσSTMS = iσ diag(D,D) and the fact that the latter has
eigenvalues ±Djj with eigenvectors (0, . . . , 0, 1, 0, . . . , 0,±i, 0, . . . , 0)T , where 1 and ±i
are at positions j and n + j. Let T be the matrix diagonalising iσ diag(D,D). Hence
iσM is diagonalisable by ST with real eigenvalues and the eigenvalues are given by ±Dii

for i = 1, . . . n.
Using Lemma A.2 ([Bha96] (Theorem VIII.3.9)), we obtain directly:

‖D̃ − D̃′‖ ≤ (κ(ST )κ(S′T ′))1/2‖iσM − iσM ′‖ (4)

= (κ(ST )κ(S′T ′))1/2‖M −M ′‖ (5)

for all unitarily invariant norms. We also used ‖iσN‖ = ‖N‖ for all Hermitian N and
all unitarily invariant norms, since iσ is a unitary matrix.
Since iσ diag(D,D) is Hermitian, its eigenvectors are orthogonal and we can choose T ∈
U(2n). Therefore, since κ(A) = ‖A−1‖∞‖A‖∞ for all invertible matrices, κ(ST ) = κ(S)
as the operator norm ‖ · ‖∞ is unitarily invariant.
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Let us now proceed as in [SG15]: We can write S = M−1/2KD̃1/2 with an orthogonal
matrix K ∈ O(2n) using the proof of Williamson’s theorem. Then

κ(S) = ‖S‖∞‖S−1‖∞ = ‖M−1/2KD̃1/2‖∞‖D̃−1/2KTM1/2‖∞
≤ ‖M−1/2‖∞‖D̃1/2‖∞‖D̃−1/2‖∞‖M1/2‖∞ = κ(M1/2)κ(D̃1/2)

Furthermore,

‖D̃‖∞ ≤ max{s(iσM)} = ‖iσM‖∞ = ‖M‖∞ (6)

‖D̃−1‖∞ ≤ max{s(iσM−1)} = ‖iσM−1‖∞ = ‖M−1‖∞ (7)

where s(A) denotes the vector of singular values of A. Using the C∗-property of the
operator norm we obtain ‖(D̃1/2)2‖∞ = ‖D̃1/2‖2∞ and hence

κ(S) ≤ κ(M1/2)κ(D̃1/2) ≤ κ(M1/2)κ(M1/2) = κ(M).

Since the same is true for M ′ this completes the proof.

In [BJ15], the authors provide a different bound of this type, which for the operator
norm reads

‖D̃ − D̃′‖∞ ≤ (‖M‖1/2∞ + ‖M ′‖1/2∞ )‖M −M ′‖1/2∞ . (8)

Note that the scaling in ‖M −M ′‖∞ is better in Theorem 3.1 than in Bhatia and Jain’s
bound [BJ15].
One natural question is, whether there is hope to improve a lot on this inequality. In
particular, let us ask the question whether an inequality of the type

‖D̃ − D̃′‖ ≤ c‖M −M ′‖ (9)

holds for some constant c ∈ R independent of M,M ′ and some unitarily invariant norm.
The answer is “no”:

Proposition 3.2. Consider the following matrices:

M = diag (x, 1) E =

(
2 −5
−5 −2

)
(10)

Let Mε := M + ε ·E for ε > 0. Then, for all 0 < ε < 1/10 and for all c > 0 there exists
an x0 ≥ 1 such that for all x ≥ x0 we have

‖D̃ − D̃ε‖ > c‖M −Mε‖ (11)

for all unitarily invariant norms, thereby showing that c must depend on M and M ′ in
equation (9).
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Proof. First note that Mε > 0 for x ≥ 1 and ε < 1/10, since trace and determinant are
both positive. Note that ‖M −Mε‖ = ε‖E‖. Now, since tr(E) = 0, the singular values
of E are both the same and given by s(E) =

√
29.

Since D̃ is two-dimensional and M,Mε are invertible, D̃ and D̃ε are multiples of the
identity. Any unitarily invariant norm is a so called gauge function of the singular
values (see [Bha96], chapter IV). Since the matrices D̃ and D̃ε have only one singular
value (excluding multiplicities), this implies that we can prove the statement for all
unitarily invariant norm by proving it for the operator norm only.
Now we need to calculate the singular value of D̃ and D̃ε, which is the positive eigenvalue
of iσM and iσMε respectively. The characteristic polynomials are

χ(iσM) = λ2 − x (12)

χ(iσMε) = λ2 + 52ε2 − (1− 2ε) (x+ 2ε) (13)

Note that for x ≥ 1 and ε small enough (ε < 1/10 is sufficient), we have λ1(iσM) =√
x ≥

√
x− 2ε(x− 1)− 29ε2 = λ1(iσMε). Therefore, we have:

c‖M −Mε‖∞ − ‖D̃ − D̃ε‖∞ < 0 (14)

⇔
√

29cε− |
√
x−

√
x− 2ε(x− 1)− 29ε2| ≤ 0 (15)

⇔ 2
√

29xcε ≤ 29ε2(1 + c2) + 2ε(x− 1) (16)

if we assume x ≥ 1 and ε < 1/10. For c = 1, if x ≥ 33, we have
√

29x < (x − 1) and
therefore (independent of ε) ‖D̃− D̃ε‖∞ ≥ ‖M −Mε‖∞. Similarly, for any c > 0 we can
find x0 ≥ 0, such that for all x ≥ x0 equation (16) is satisfied, since 2(x− 1)−

√
29xc→

+∞.

A further evaluation shows that if one sets c = κ(M)1/2κ(Mε)
1/2 ≈ x then c‖M −Mε‖∞

scales as xε to lowest order in ε (for x ≥ 1), while ‖D−Dε‖∞ scales as
√
xε. Therefore,

the example above does not attain the bound. Whether the bound c = κ(M)1/2κ(Mε)
1/2

is optimal can therefore not be determined by this counterexample. However, the scaling
of c in x = ‖M‖∞ can only be improved by at most a square root.

4. Stability of the diagonalising matrix S

Next, we will analyse stability of the matrix S. General wisdom from usual diagonali-
sation of Hermitian matrices tells us that this should hold at least when the eigenvalues
are simple:

Proposition 4.1. Let M ∈ R2n×2n be a positive definite matrix such that all eigen-
values of iσM are nondegenerate and let S ∈ Sp(2n) be the matrix diagonalising M in
Williamson’s theorem. Let E be a symmetric matrix with ‖E‖∞ = 1, ε > 0 such that
Mε := M + εE is positive definite. Then we have:

5



For ε > 0 small enough, the diagonalising matrix Sε ∈ Sp(2n) of Mε can be chosen in
such a way that

‖S − Sε‖∞ < 4

(√
κ(M) +

√
n3‖M‖∞/‖M−1‖∞

2δ

)
‖M−1/2‖∞

√
ε. (17)

where δ := mini 6=j |λi(iσM)− λj(iσM)| and κ(M) is the condition number.

Proof. First observe that ‖S − Sε‖∞ = O(
√
ε) cannot be true for all choices of S and

Sε if those matrices are not unique, which occurs whenever there exists a matrix O ∈
Sp(2n) ∩O(2n) that commutes with M or M ′.
We consider the construction of S in the proof of Theorem 2.1 as S = M−1/2KD̃1/2

where D̃ = diag(D,D). The stability of S depends thus on the stability of K. Since
the eigenvalues are simple, it is known that the eigenvectors are analytic functions in ε
([Wil65], chapter 2, section 5). Let xi(ε) denote the normalised eigenvectors of i(M +
εE)−1/2σ(M + εE)−1/2. Then, using Lemma A.1, there exists some constant cvec such
that for all ε < cvec and all i we have

‖xi − xi(ε)‖2 ≤
2n

mini 6=j |λi(iσM)− λj(iσM)|
ε. (18)

Note that λj(iM
1/2σM1/2) = λj(iσM), iM1/2σM1/2 is Hermitian and ‖E‖∞ ≤ 1 fulfil-

ing assumptions of Lemma A.1.
We know that the parallelogram law holds for the vector norm ‖ · ‖2:

‖<(xi) + i=(xi)−<(xi(ε))− i=(xi(ε))‖22 + ‖<(xi)− i=(xi)−<(xi(ε)) + i=(xi(ε))‖22
= 2‖<(xi)−<(xi(ε))‖22 + 2‖=(xi)−=(xi(ε))‖22

Furthermore, we know that K consists of the real and imaginary parts of eigenvectors
of M−1/2σM−1/2 and that when xi = <(xi) + i=(xi) is an eigenvector to the eigenvalue
λi, then x′i = <(xi)− i=(xi) is the eigenvector to the eigenvalue −λi. Thus we can find
Kε such that:

‖K −Kε‖∞ ≤

(
2n∑
i=1

‖Ki − (Kε)i‖22

)1/2

=

(
n∑

i=1

‖<(xi)−<(xi(ε))‖22 +
n∑

i=1

‖=(xi)−=(xi(ε))‖22

)1/2

=

(
1

2

n∑
i=1

‖xi − xi(ε)‖22 +
1

2

n∑
i=1

‖x′i − x′i(ε)‖22

)1/2

Lemma A.1
≤

(
n∑

i=1

4n2

mini 6=j |λi(iσM)− λj(iσM)|2
ε2

)1/2
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≤ 2n3/2

mini 6=j |λi(iσM)− λj(iσM)|
ε

where Ki denotes the i-th column of K. Here, we used the fact that ‖A‖∞ ≤ ‖A‖F for
the Frobenius norm, which is equivalent to the right hand side of the first inequality.
But then, using equation (6), Lemma A.4, A.5 and our stability result Theorem 3.1 we
obtain:

‖S − Sε‖∞ = ‖M−1/2KD̃1/2 −M−1/2ε KεD̃
1/2
ε ‖∞

≤ ‖M−1/2 −M−1/2ε ‖∞‖D̃1/2‖∞ + ‖M−1/2ε ‖∞‖K −Kε‖∞‖D̃1/2‖∞
+ ‖M−1/2ε ‖∞‖D̃1/2 − D̃1/2

ε ‖∞
≤ ‖M1/2‖∞‖M−1/2‖∞‖M−1/2ε ‖∞ε1/2 (19)

+ ‖M−1/2ε ‖∞(κ(M)κ(Mε))
1/4ε1/2 (20)

+ ‖M−1/2ε ‖∞‖M1/2‖∞
2n3/2

mini 6=j |λi(iσM)− λj(iσM)|
ε. (21)

We can now use Lemma A.6 and A.7 to obtain for ε < 1/(2‖M−1‖∞) and ε < ‖M‖∞:

‖M−1/2ε ‖∞ ≤ 2‖M−1/2‖∞, κ(Mε) ≤ 4κ(M).

By assumption

min
i 6=j
|λi(iσM)− λj(iσM)| ≥ δ.

Hence we have for the summands in (19) - (21)

‖M1/2‖∞‖M−1/2‖∞‖M−1/2ε ‖∞ε1/2 ≤
√

2κ(M)1/2‖M−1/2‖∞ε1/2 (22)

‖M−1/2ε ‖∞(κ(M)κ(Mε))
1/4ε1/2 ≤

√
2‖M−1/2‖∞(4κ(M)2)1/4ε1/2 (23)

‖M−1/2ε ‖∞‖M1/2‖∞
2n3/2

mini 6=j |λi − λj |
ε ≤ (2‖M−1‖∞ε)1/2‖M1/2‖∞

2n3/2

δ
ε1/2

≤ ‖M1/2‖∞
2n3/2

δ
ε1/2 (24)

where we used ‖M−1‖∞ε < 1/2 by assumption on ε.
Put together, this implies that for all 0 < ε < min{1/(2‖M−1‖∞), ‖M‖∞, cvec}, we can
find Sε diagonalising Mε:

‖S − Sε‖∞ < 2

(
(1 + 1/

√
2)κ(M)1/2 +

n3/2‖M‖1/2∞
δ‖M−1‖1/2∞

)
‖M−1/2‖∞ε1/2. (25)

The constant is probably not optimal.
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However, this will not be true in general if we have eigenvalue crossings. To see this,
consider the following counterexample:

M =


1 ε 0 0
ε 1 0 0
0 0 1 ε
0 0 ε 1

 M ′ = diag(1 + ε, 1− ε, 1 + ε, 1− ε) (26)

By Williamson’s theorem, for two matrices S1, S2 diagonalising M , we have S−11 S2 ∈
Sp(2n) ∩ O(2n) and [S−11 S2,M ] = 0. Hence we need to consider the commutants of M
and M ′. For ε > 0, an easy computation shows that [M,O] = 0 or [M ′, O] = 0 if and
only if

O =

(
A B
C D

)
, A,B,C,D ∈ R2×2, [A,E] = [B,E] = [C,E] = [D,E] = 0,

where E ∈ R2×2 denotes the upper left block in M or M ′. This reduces the problem to
finding the commutant of the upper left blocks in M . A simple computation shows that
these are independent of ε. More precisely,

[A,diag(1 + ε, 1− ε)] = 0 ⇔ A = diag(a, b), a, b ∈ R

[A,

(
1 ε
ε 1

)
] = 0 ⇔ A =

(
a b
b a

)
, a, b ∈ R.

But then, the commutant of M and M ′ are independent of ε > 0 and so is the in-
tersection of the commutant with Sp(2n) ∩ O(2n). Since this intersection is a closed
set (commutants are closed), this implies that any matrix S diagonalising iσM with
‖S‖∞ = 1 and any matrix S′ diagonalising iσM ′ either fulfil ‖S − S′‖∞ > C for some
fixed constant C > 0 independent of ε, or there is a matrix S diagonalising both iσM and
iσM ′. Since [iσM, iσM ′] 6= 0, the two matrices cannot be diagonalised simultaneously,
whence ‖S − S′‖∞ cannot become arbitrarily close to zero.

5. Stability of the matrix S−TS−1

We have seen that S need not be stable when eigenvalue crossings occur, because eigen-
vectors need not be stable. However, it turns out that S−TS−1 is still stable because
it contains only the (real parts of) projections onto the eigenspaces, which are stable
according to general wisdom. In this section, ‖ · ‖ will always denote the norm ‖ · ‖∞ in
order not to clutter the text with notation.

Theorem 5.1. Let M ∈ R2n×2n be a positive definite matrix with Williamson decom-
position M = S−T D̃S−1.
Let E be any symmetric matrix with ‖E‖ = 1. Assume that ε > 0 is small enough such
that Mε := M + εE is still positive definite and let Mε = S−Tε D̃εS

−1
ε be its Williamson

decomposition.
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Then for any ε such that Mε is positive definite and

0 < ε < min

{
‖M‖

(6κ(M))4/3
,

1

2‖M‖
, ‖M‖

}
(27)

with the condition number κ, then

‖S−TS−1 − S−Tε S−1ε ‖ ≤ 9πn3κ(M)2‖M−1‖1/4ε1/4. (28)

The inequality can be improved by a more careful analysis of the prefactors.

Proof. From the proof of Theorem 2.1 we know S = M−1/2KD̃1/2 and therefore

S−TS−1 = M1/2KD̃−1KTM1/2,

where D̃ = diag(d1, . . . , dn, d1, . . . , dn) with di > 0 and K ∈ O(2n) is given by

K = (v<1 , . . . , v
<
n , v

=
1 , . . . , v

=
n ). (29)

Here, vi = v<i + iv=i are the eigenvectors of iM1/2σM1/2 corresponding to di. We have

‖S−TS−1−S−Tε S−1ε ‖
= ‖M1/2KD̃−1KTM1/2 −M1/2

ε KεD̃
−1
ε KT

ε M
1/2
ε ‖

≤ ‖M1/2KD̃−1KTM1/2 −M1/2
ε KD̃−1KTM1/2‖

+ ‖M1/2
ε KD̃−1KTM1/2 −M1/2

ε KεD̃
−1
ε KT

ε M
1/2‖

+ ‖M1/2
ε KεD̃

−1
ε KT

ε M
1/2 −M1/2

ε KεD̃
−1
ε KT

ε M
1/2
ε ‖

≤ ‖M1/2 −M1/2
ε ‖‖M1/2‖‖D̃−1‖+ ‖M1/2 −M1/2

ε ‖‖M1/2
ε ‖‖D̃−1ε ‖

+ ‖M1/2
ε ‖‖M1/2‖‖KD̃−1KT −KεD̃

−1
ε KT

ε ‖
≤ (‖M1/2‖‖D̃−1‖+ ‖M1/2

ε ‖‖D̃−1ε ‖)‖M1/2 −M1/2
ε ‖ (30)

+ ‖M1/2
ε ‖‖M1/2‖‖D̃−1 − D̃−1ε ‖ (31)

+ ‖M1/2
ε ‖‖M1/2‖‖KD̃−1KT −KεD̃

−1KT
ε ‖ (32)

We deal with each term separately, where the hardest term is the last.
Term (30): Using (7) we have ‖D̃−1‖ ≤ ‖M−1‖. For ‖M−1‖ε < 1/2 and ε < ‖M‖,
Lemma A.4 and A.6 imply

(‖M1/2‖‖D̃−1‖+‖M1/2
ε ‖‖D̃−1ε ‖)‖M1/2 −M1/2

ε ‖
≤ (‖M1/2‖‖M−1‖+ 4‖M1/2‖‖M̃−1‖)ε1/2 (33)

≤ 5κ(M)1/2‖M−1‖1/2ε1/2.

Term (31): Since S̃−1 diagonalises M−1 ≥ 0, Theorem 3.1 implies

‖D̃−1 − D̃−1ε ‖ ≤ (κ(M)κ(Mε))
1/2‖M−1 −M−1ε ‖
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Lemma A.5,A.7
≤ 4κ(M)‖M−1‖2ε

for ‖M−1‖ε < 1/2 and with ‖Mε‖ ≤ ‖M‖ + ε ≤ 2‖M‖. Plugging this into (31) and
using ε < ‖M‖ we obtain

‖M1/2
ε ‖‖M1/2‖‖D̃−1 − D̃−1ε ‖ ≤ 4κ(M)3/2‖M−1‖ε (34)

Term (32): The interesting part is ‖KD̃−1KT −KεD̃
−1KT

ε ‖. We start by observing:

KD̃−1KT =
n∑

i=1

d−1i v<i v
<T
i +

n∑
i=1

d−1i v=i v
=T
i =

n∑
i=1

d−1i

∑
j∈{k|dk=di,k=1,...,n}

(v<j v
<T
j + v=j v

=T
j ).

(35)

Furthermore,∑
j∈{k|dk=di,k=1,...,n}

(v<j v
<T
j + v=j v

=T
j ) = <

∑
j∈{k|dk=di,k=1,...,n}

(v<j + iv=j )(v<j + iv=j )∗ = <(PM (di)) (36)

where < denotes the real part of the expression and PM (di) denotes the spectral pro-
jection onto the eigenvalue subspace of the eigenvalue di of iM1/2σM1/2. We wish to
apply general knowledge about the stability of eigenspaces. For convenience, the relevant
theorem ([Bha96] Theorem VII.3.2) is stated in Lemma A.3.

In order to apply it, we need to consider the spectrum of iM
1/2
ε σM

1/2
ε : By construction,

spec(iM1/2σM1/2) = {±d1, . . . ,±dn}. Denote the positive eigenvalues as spec+, then

we can write spec+(iM1/2σM1/2) =
⋃k

j=1 Sj where all Sj contain di with multiplicities,

fulfil dist(Sj , Sk) := min{|d− e| | d ∈ Sj , e ∈ Sk} > ‖M‖3/4ε1/4 and k is maximal.
The stability of the symplectic spectrum implies:

‖D̃ − D̃ε‖
Theorem 3.1

< (κ(M)κ(Mε))
1/2ε

Lemma A.7
≤ 2κ(M)ε =

6κ(M)

‖M‖3/4
ε3/4
‖M‖3/4ε1/4

3

Assumption (27)
< ‖M‖3/4ε1/4/3 (37)

hence if we set di := D̃ii and ei := (D̃ε)ii, then we have

|di − ei| < ‖M‖3/4ε1/4/3 ∀i = 1, . . . , n. (38)

We can now define the multisets Rj := {ei|di ∈ Sj} for every Sj and make the following
observations:

1. The diameter of Sj does not exceed ‖M‖3/4ε1/4|Sj |.

2. |Rj | = |Sj | for every j = 1, . . . , k.

3. dist(Ri, Rj) > 1/3‖M‖3/4ε1/4 for i 6= j.

10



Observation 1 follows from the maximal number of Sj : If the diameter was larger, by
the pidgeon-hole principle we could divide Sj into two sets with distance larger than
‖M‖3/4ε1/4.
Observation 2 follows, since any ei ∈ Rj is at most 1/3‖M‖3/4ε1/4 away from some
di ∈ Sj and since the distance of Sj and Sk is at least ‖M‖3/4ε1/4, |ei−dk| > 2/3‖M‖3/4
for any dk ∈ Sk with k 6= j. Incidentally, this also proves Observation 3.
Now let ei be as defined with equation (38). Using equation (36), we see

‖KD̃−1KT −KεD̃
−1KT

ε ‖ =

∥∥∥∥∥∥
k∑

j=1

∑
di∈Sj

d−1i (<(PM (di))−<(PMε(ei)))

∥∥∥∥∥∥
For every set Sj , pick a value dSj ∈ Sj and we have:

‖KD̃−1KT−KεD̃
−1KT

ε ‖ =

∥∥∥∥∥∥
k∑

j=1

d−1Sj
(<(PM (Sj))−<(PMε(Rj)))

+
k∑

j=1

∑
di∈Sk

(d−1i − d
−1
Sj

)
∑
di∈Sj

(<(PM (di))−<(PMε(ei)))

∥∥∥∥∥∥
≤

k∑
j=1

d−1Sj
‖<(PM (Sj))−<(PMε(Rj))‖ (39)

+
k∑

j=1

∑
di∈Sj

|di − dSj |
didSj

‖<(PM (di))−<(PMε(ei))‖ (40)

Recall that the real part of an operator T is defined as <(T ) := (T + T ∗)/2. Since it
is clearly linear for all matrices T , using that ‖T + T ∗‖ ≤ 2‖T‖ and the fact that every
unitarily invariant norm fulfils ‖T ∗‖ = ‖T‖ implies

‖<(PM (Si))−<(PMε(Rj))‖ ≤ ‖PM (Si)− PMε(Rj)‖ ∀i, j.

Now we can apply Lemma A.3 to the term (39): Let P c
M (Sj) and P c

Mε
(Ri) be comple-

mentary orthogonal projections such that in particular PM (Sj) +P c
M (Sj) = 1. Then we

have for every j = 1, . . . , k:

‖PM (Sj)− PMε(Rj)‖ = ‖PM (Sj)(PMε(Rj) + P c
Mε

(Rj))− (PM (Sj) + P c
M (Sj))PMε(Rj)‖

= ‖PM (Sj)P
c
Mε

(Rj)− P c
M (Sj)PMε(Rj)‖

≤ 3π

2ε1/4‖M‖3/4
‖iM1/2σM1/2 − iM1/2

ε σM1/2
ε ‖

≤ 3π

2ε1/4‖M‖3/4
(‖M1/2‖+ ‖M1/2

ε ‖)‖M1/2 −M1/2
ε ‖.

Here, we used Observation 3 of the decomposition, which gives a lower bound on
dist(Sj , Ri) for i 6= j.

11



For the term (40) we use that the norm of the difference of two projections never exceeds
one:

k∑
j=1

∑
di∈Sj

|di − dSj |
didSj

‖<(PM (di))−<(PMε(ei))‖ ≤
k∑

j=1

∑
di∈Sj

|di − dSj |
didSj

. (41)

We can now use the Observation 1 and the fact that for any Sj , |Sj | ≤ n. This gives an
upper bound to |di − dSj |. Furthermore, |didSj | ≥ |dmin|2 = 1/‖D̃−1‖2 and hence,

k∑
j=1

∑
di∈Sj

|di − dSj |
didSj

≤
k∑

j=1

n2‖D̃−1‖2‖M‖3/4ε1/4 ≤ n3‖D̃−1‖2‖M‖3/4ε1/4. (42)

In total, we obtain

‖KD̃−1KT −KεD̃
−1KT

ε ‖ ≤
k∑

j=1

d−1i

3π

2ε1/4‖M‖3/4
(‖M1/2‖+ ‖M1/2

ε ‖)‖M1/2 −M1/2
ε ‖

+ n3‖D̃−1‖2‖M‖3/4ε1/4. (43)

Now, we know that
∑k

i=1 d
−1
i ≤ ‖D̃−1‖1 ≤ n‖M−1‖ by equation (7) and the fact that

‖1‖1 = n. Using Lemmata A.4, A.6 and A.7, we can now fully evaluate the term (32):

‖M1/2
ε ‖‖M1/2‖‖KD̃−1KT −KεD̃

−1KT
ε ‖

≤ 2‖M‖
(
n‖M−1‖ 9π

2ε1/4‖M‖3/4
· ‖M‖1/2ε1/2 + n3‖M−1‖2‖M‖3/4ε1/4

)
≤ 9πnκ(M)3/4‖M−1‖1/4ε1/4 + n3κ(M)7/4‖M−1‖1/4ε1/4. (44)

Finally, we can put everything together by substitution (33), (34) and (44) into (30)-(32).
Using ‖M−1‖ε < ‖M−1‖1/4ε1/4 < 1/2, we obtain:

‖S−TS−1−S−Tε S−1ε ‖ ≤ 9πn3κ(M)2‖M−1‖1/4ε1/4. (45)

The constant is not optimal.

6. Applications

Let us now sketch a few applications of the theorems to quantum information theory
(an overview can be found in [ARL14]). The basic object in quantum mechanics are the
quantum state of a system. In the case of systems consisting of n bosonic modes (such
systems are considered especially in quantum optics), an important set of states are the
so called Gaussian states. They can be characterised by their first and second moments,
which correspond to a vector d ∈ R2n and a covariance matrix γ ∈ R2n×2n. Necessary
and sufficient conditions for γ to be the covariance matrix of a quantum state are given
as γ ≥ iσ by Heisenberg’s inequality. Pure states then correspond to symplectic positive
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definite matrices. Given two systems of n-modes and a state on two systems given by
γAB ∈ R4n×4n, one can consider the reduced state of the quantum system, which is given
by the upper left 2n× 2n-submatrix of γAB.
An important quantity in quantum information is the entropy of entanglement. As
proven in [HSH99], the entanglement entropy for Gaussian states is a continuous function
of the symplectic spectrum of the reduced state of a system. Given a Gaussian quantum
state with covariance matrix γ, it is given by

H(γ) =
n∑

k=1

(
g

(
dk + 1

2

)
− g

(
dk − 1

2

))
(46)

where g(x) = x log(x) and the dk are the symplectic eigenvalues.
An easy corollary of Theorem 3.1 is the following norm bound on the entropy difference:

Corollary 6.1. For Gaussian states characterised by (γAB, d), the entropy of entangle-
ment is continuous in γAB. Furthermore, for two states γ and γ̃ in the interior of the
set of covariance matrices, the entropy difference is bounded by

|H(γ)−H(γ̃)| ≤ (κ(γ)κ(γ̃)1/2)(1 + log(max(‖γ‖∞, (‖γ−1‖−1∞ − 1)/2)))‖γ − γ̃‖1

Proof. The entropy is continuous, since g is continuous and the symplectic eigenvalues
are continuous.
Let dk be the entries of D, the Williamson diagonalisation of γ (likewise d̃k), which
implies that dk+1

2 ≥ 1 always and dk−1
2 ≥ 0. For x > 0 we have

|x log(x)− y log(y)| = |x log(x)− y log(x) + y log(x)− y log(y)|
= |(x− y) log(x) + y log(1 + (x− y)/y)| ≤ | log(x)||x− y|+ |x− y|

For x = 0, the upper bound is clearly also true, since x log(x) = 0. Using that log((dk +
1)/2) ≤ log(dk), we obtain∣∣∣∣∣

(
g

(
dk + 1

2

)
− g

(
dk − 1

2

))
−

(
g

(
d̃k − 1

2

)
− g

(
d̃k − 1

2

))∣∣∣∣∣
≤ (1 + log(dk))|dk − d̃k|+ (1 + log((dk − 1)/2))|dk − d̃k|

Taking the sum and noting that dk ≤ ‖D‖∞ by assumption and mink dk ≤ ‖D−1‖−1∞ ,
we have

|H(γ)−H(γ̃)| ≤ (1 + log(‖D‖∞))‖D − D̃‖1 + (1 + log((1/‖D−1‖∞ − 1)/2))‖D − D̃‖1.

The rest then follows by using Theorem 3.1.

Note that the bound becomes arbitrarily bad if D has eigenvalues close to one. This is
to be expected, since the function x log(x) is not uniformly continuous at 0 and hence
cannot be norm bounded with a constant independent of x.
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Another interesting measure in quantum information is the Gaussian entanglement of
formation. This is a measure to quantify the amount of entanglement needed to prepare
a state of two systems under so-called LOCC operations (local quantum operations on
each part of the systems and classical communication between the parts). It was shown
in [Wol+04] that this measure can be written as

Eform(γAB) = min{H(γp)|γAB ≥ STS, S ∈ Sp(2n)}

where γp is the reduced state of STS and H(·) denotes the entropy of entanglement.
Using the methods of [ILW16] and the stability results of this paper, one can now prove:

Proposition 6.2. The Gaussian entanglement of formation is continuous on the inte-
rior of the set of covariance matrices.

Sketch of the proof. This can be proven in two ways. For γAB in the interior of the set
of covariance matrices, one can either use set-valued analysis as in the proof of Theorem
4.4 in [ILW16] to prove that the set {γAB ≥ γ0 ≥ iσ} is convex and varies continuously
with γAB. Then the result follows from Corollary 6.1.
Equivalently, one can use Theorem 5.1 to show that for any ε > 0 and any symmetric E
small enough, for any STS ≤ γAB there exists ST

ε Sε ≤ γAB + εE, such that their norm
difference is small and then apply Corollary 6.1.

As a last application, let us mention that the stability of STS as in Theorem 5.1 is
implicitly useful in [ILW16]: There, we provide a program to compute an operational
measure for squeezing. Given a covariance matrix γ of a state to be constructed, the
program first computes Williamson’s normal form and takes STS as a starting point. If
STS was not continuous in the covariance matrix, this would imply that rounding errors
in γ could result in the corresponding STS not being a feasible point for the program.
Theorem 5.1 asserts that this problem cannot occur.
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A. Some useful lemmata

In this appendix, we will first review the main nontrivial theorems we use in the main
text to establish our results. In addition, we give a number of small lemmata that include
calculations that are frequently used in the main text to eliminate ε-dependencies of the
constants. Since these are not very important for the gist of the argument, they are
collected here in order not to further clutter the main text.

Lemma A.1 ([Wil65] Chapter 2 Section 10). Let A be a Hermitian matrix with nonde-
generate spectrum and B be a perturbation with ‖B‖∞ ≤ 1. Then there exists a number
cvec > 0 such that for all cvec > ε > 0 we have

‖xi − xi(ε)‖2 ≤
2n

mini 6=j |λi − λj |
ε (47)

where xi denotes the i-th eigenvector of A and xi(ε) the i-th eigenvalue of A+ εB.

Proof. Since this is not the exact formulation of the section in [Wil65], a few words
on how this theorem is related to what is written there: The section computes the
first order term in the perturbative expansion of an eigenvector xi(ε). Since Hermitian
eigenvectors are orthogonal the first order term of the eigenvector expansion of x1 as in
(10.2) of [Wil65] reads

≤ ε
(
β21x2
λ1 − λ2

+ . . .+
βn1xn
λn − λ2

)
,
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where |β21| ≤ ‖B‖∞ ≤ 1 are some numbers and λi are the eigenvalues of A. Hence for
ε small enough, we have

‖xi − xi(ε)‖2 ≤
(
‖x2‖2
λ1 − λ2

+ . . .+
‖xn‖2
λn − λ2

)
ε+O(ε2)

≤ n

mini 6=j |λi − λj |
ε+O(ε2).

For ε small enough, this then implies the bound in the theorem.

Lemma A.2 ([Bha96] Theorem VIII.3.9). Let A, B be any two matrices such that
A = SD1S

−1, B = TD2T
−1, where S, T are invertible matrices and D1, D2 are real

diagonal matrices. Then

‖Eig↓(A)− Eig↓(B)‖ ≤ (κ(S)κ(T ))1/2‖A−B‖ (48)

for every unitarily invariant norm. Here, κ is the condition number and Eig↓ denotes
the (ordered) set of eigenvalues.

Lemma A.3 ([Bha96] Theorem VII.3.2). Let A,B ∈ Cn×n be Hermitian operators and
let S1, S2 be any two subsets of R such that dist(S1, S2) = δ > 0. Let E = PA(S1)
(F = PB(S2)) be the spectral projection onto the space spanned by the eigenvectors of A
(B) corresponding to eigenvalues in S1. Then, for every unitarily invariant norm,

‖EF‖ ≤ π

2δ
‖A−B‖ (49)

Lemma A.4. Let A,B ∈ Cn×n be positive semidefinite operators. Then, for every
unitarily invariant norm,

‖A1/2 −B1/2‖ ≤ ‖A−B‖1/2∞ ‖1‖ (50)

Proof. This follows directly from the proof of Theorem X.1.1 in [Bha96] using that
the square root function is operator monotone on positive semidefinite matrices and
01/2 = 0.

Lemma A.5. Let A,B ∈ Cn×n be positive definite operators. Then for every unitarily
invariant norm,

‖A−1 −B−1‖ ≤ ‖A−1‖‖B−1‖‖A−B‖ (51)

Proof. Calculate:

‖A−1 −B−1‖ = ‖A−1(1−AB−1)BB−1‖ ≤ ‖A−1‖‖B−1‖‖(1−AB−1)B‖
≤ ‖A−1‖‖B−1‖‖A−B‖
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Lemma A.6. Let M be an invertible matrix, E a matrix with ‖E‖∞ = 1 and ‖M−1‖∞ ≤
1
2ε , then

‖(M + εE)−1‖∞ ≤ 2‖M−1‖∞ (52)

Proof. Using the Woodbury formula (which was not found by Woodbury [Hag89]), we
have:

(M + εE)−1 = M−1 −M−1(I + εEM−1)−1εEM−1.

Since ‖M−1‖∞ ≤ 1
2ε , the Neuman series of (I + εEM−1)−1 converges and we have (I +

εEM−1)−1 =
∑∞

n=0 ε
n(EM−1)n, and hence ‖(I + εEM−1)−1‖∞ ≤

∑∞
n=0 ε

n‖M−1‖n∞ ≤
2, which implies:

‖(M + εE)−1‖∞ ≤ ‖M−1‖∞ + ‖M−1‖∞ · 2ε‖EM−1‖∞.

Finally, since ε‖M−1‖∞ ≤ 1/2 by assumption, we have ‖M−1‖∞ · 2ε‖EM−1‖∞ ≤
‖M−1‖∞ · 2ε‖M−1‖∞ ≤ ‖M−1‖∞.

Lemma A.7. Let M,E ∈ Rn×n, M ≥ 0 and ‖E‖∞ = 1. If ‖M−1‖∞ ≤ 1
2ε and

ε < ‖M‖∞, we have

κ(M + εE) ≤ 4κ(M). (53)

Proof. We use κ(M+εE) = ‖M+εE‖∞‖(M+εE)−1‖∞ by definition and apply Lemma
A.6 to obtain:

κ(M + εE) ≤ 2‖M + εE‖∞‖M−1‖∞

Using ‖M + εE‖∞ ≤ ‖M‖+ ε ≤ 2‖M‖ finishes the proof.
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On additive Gaussian quantum channels

M. Idel, R. König September 26, 2016

Quantum channels, i.e. completely positive trace preserving maps, provide the abstract
framework to study information transmission. Since the set of channels is too big to
be useful it is natural to study subclasses of channels. One such subclass is given by
the set of additive channels, channels of the form

E(ρ) = trE (Uλ(ρ⊗ ρE)U∗
λ) , (1)

where U is a beam splitter with some transmissivity. Such channels arise naturally
when the environment is considered a “resource”. We study the set of additive quan-
tum channels from the viewpoint of squeezing. It is then natural to consider the
broader class of channels with squeezed environment and a unitary U which cannot
squeeze but is not necessarily a beam splitter. We provide a classification of all such
channels and connect it to other classes of channels such as covariant channels.

1 Dilation theorem

Given a Gaussian channel (X,Y ) which transforms the covariance matrix γ of a Gaus-
sian state as γ 7→ XT γX + Y , we first ask the question which of those channels can
be implemented in the form of Equation (1) with passive unitary U . We call those
channels passively dilatable:

Theorem 1.1. Let ΦX,Y be an n-mode Gaussian channel and suppose Y and X have
full rank. The following conditions are equivalent:

(i) There exists a passive dilation with l environment modes and S ∈ Sp(2(n+ l))∩
O(2(n+ l)).

(ii) The matrices X,Y satisfy 12n −XXT > 0, [X,σ2n] = 0 and l ≥ n.

We can leave out the condition that X,Y have full rank by introducing some fur-
ther technicalities. The proof of this theorem (in the full version) heavily relies on
properties of the Moore-Penrose pseudoinverse and the structure of matrices in the
group Sp(2n∩O(2n). Some methods are similar to methods in earlier papers studying
general dilations in [1, 2].

We also prove uniqueness up to a passive rotation for minimal dilations, i.e. those
dilations where l is as small as possible. This is in line with the usual uniqueness
statements of Stinespring’s theorem. In addition, we can also classify channels where
the environment is not squeezed. Those are channels that fulfil [Y, σ2n] = 0 in addition
to all other properties of the equivalence.



2 Normal form

Given the dilation result and using the singular value decomposition we obtain the
following characterisation of all passively dilatable channels:

Theorem 2.1. Let Φ : B(A1 . . . An) → B(A1 · · ·An) be a passively dilatable n-mode
Gaussian channel. Then there is an n-mode Gaussian state ρE = ρE1···En , n-mode
Gaussian unitaries V , W and transmissivities λ = (λ1, . . . , λn) ∈ [0, 1]n such that for
the multi-mode beam splitter Uλ = UA1E1

λ1
⊗ · · · ⊗ UAnEn

λn
, we have

Φ(ρ) = V (trE Uλ(WρW ∗ ⊗ ρE)U∗
λ)V ∗ for all states ρ. (2)

The theorem tells us that passively dilatable channels and additive channels are the
same (modulo Gaussian unitaries).

3 Open questions and connections to other work

Passively dilatable or additive Gaussian channels are interesting for the resource the-
ory of squeezing. One could for instance quantify the amount of squeezing in the
environment by one of the available squeezing measures and ask for the maximum
output squeezing provided that the input is not squeezed. This could then provide
bounds on the output entanglement and maybe relate to channel capacities. Another
possible application and one of the primary motivations was to quantify the amount
of squeezing necessary for superactivation, which is known to be nonzero [3]. So far
however we have no nontrivial new results.

4 Legal statement

The initial idea was proposed by Robert König. In all parts of this work I was signifi-
cantly involved.
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Abstract

We give necessary and sufficient conditions for a Gaussian quantum channel
to have a dilation involving a passive, i.e., number-preserving unitary. We then
establish a normal form of such channels: any passively dilatable channel is the
result of applying passive unitaries to the input and output of a Gaussian additive
channel. The latter combine the state of the system with that of the environment
by means of a multi-mode beamsplitter.

1 Introduction

It is a fortunate fact of nature that many physical systems are well-described by a
quadratic approximation. Harmonic oscillators are ubiquitous in physics, and are the
basis for our understanding of a variety of phenomena in the domain of classical me-
chanics, electrodynamics, solid state physics, quantum field theory and gravity. Gaussian
processes are also essential in probability theory and information theory as a source of
non-trivial yet exactly solvable scenarios of interest. Arguably one of the most promiment
examples is Shannon’s capacity formula for the additive white Gaussian noise (AWGN)
channel [10]. The latter constitutes a realistic model for fiberoptic communication. It
transforms an analog input signal X (modeled by a random variable on Rn) into the
output Y = X + Z by adding an independent centered unit-variance Gaussian random
variable Z representing the noise. More generally, Z may be replaced by an arbitrary
random variable Z, in which case we refer to this as an additive noise channel.

In quantum mechanics, Gaussian states arise naturally as thermal states of Hamilto-
nians which are quadratic in the mode operators of a bosonic system. The latter provide

∗martin.idel@tum.de
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an accurate description of many systems of interest. Restricting to such Hamiltonians,
Gaussian channels result whenever a system interacts with an environment in a Gaussian
state. A typical example is a channel of the form

E(ρ) = trE (Uλ(ρ⊗ ρE)U∗λ) , (1)

where Uλ is a beamsplitter with transmissivity λ ∈ [0, 1], and ρE is a Gaussian state of
the environment (see Example 3.2 below). This channel constitutes a natural quantum
counterpart of the classical additive noise channel, and, correspondingly, we refer to it
as a (quantum) additive Gaussian noise channel. In the special case where ρE is the
thermal state of the harmonic oscillator Hamiltonian, it is also called a thermal noise
channel (and is the counterpart of the AWGN channel).

The channel (1) also arises naturally from the viewpoint of resources in e.g., quantum
optics. The unitary Uλ obeys a special property: it cannot generate squeezing. More
generally, a unitary U acting jointly on n modes of a system and l environment modes
is called passive if it commutes with the total number operator N̂ =

∑n+l
k=1 a

∗
kak. Here

ak = (Qk + iPk)/
√

2 is the usual annihilation operator associated with the k-th mode.
The unitary Uλ describing the beamsplitter is an example of such a passive unitary. In
fact, a Gaussian unitary is passive if and only if it is the composition of beamsplitters
and phase shifters [9]. Thus passive Gaussian unitary operations are experimentally easy
to implement.

Considering squeezing as a resource, it is natural to try to separate preexisting squeez-
ing (in the form of a potentially squeezed state of the environment) from evolutions gen-
erating squeezing. One is then led to consider the class of passively dilatable channels:
these are channels possessing a dilation with a passive unitary. Motivated by the decom-
position [9] of passive Gaussian unitaries, we ask if passively dilatable channels also have
a special structure. The main result of our paper is such a normal form: we establish a
close connection between additive channels and the class of passively dilatable channels.
That is, any passively dilatable channel is the composition of (i) a passive unitary applied
to the input, (ii) an additive Gaussian noise channel and (iii) a passive unitary applied
to the output.

Our result thus provides an alternative characterization of quantum additive channels
as canonical examples of non-unitary channels which do not generate squeezing. It is
a further manifestation, but in a non-unitary context, of the well-known fact that non-
linear optical elements are generally required for the generation of squeezed states [1].
We refer to [6] for a recent study of the operational quantification of squeezing, and a
more detailed discussion of its role in quantum optics.

Our work also establishes simple necessary and sufficient criteria for deciding when a
given passively dilatable channel has a dilation with l environment modes. Our consid-
erations cover all cases, including rank-deficient ones. Using these criteria, we compute
the minimal number of required environment modes for a passive dilation to exist. These
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results are similar, in spirit, to those of [2, 3], but in contrast to the latter, geared towards
characterizing non-squeezing resources. Specifically, [2] constructs a unitary dilation of
an arbitrary Gaussian quantum channel, and presents a number of applications to weak
degradability. In [3], the minimal number of environment modes required to provide a
unitary Gaussian dilation with pure state environment is identified, and bounds for the
case of mixed state enviroments are given (see Remarks 3.2 and 3.3 below).

2 Preliminaries

We begin by introducing some of the basic relevant terminology associated with con-
tinuous variable quantum information (for longer reviews of the material see for in-
stance [4, 11]). This will also serve to introduce our notation.

2.1 Gaussian states and operations

We consider n-mode bosonic systems with n pairs of quadratures (or modes) given by R =
(Q1, P1, Q2, P2, . . . , Qn, Pn), or, equivalently, the annihilation and creation operators

ak =
1√
2

(Qk + iPk) and a∗k =
1√
2

(Qk − iPk)

for k = 1, . . . , n. The commutators

[Rj, Rk] = iσjkid (2)

are given by the standard symplectic form

σ :=
n⊕
i=1

(
0 1
−1 0

)
.

To simplify notation, it is often convenient to work in the permuted basis (Q1, . . . , Qm, P1,
. . . , Pm, Qm+1, . . . , Qm+l, Pm+1, . . . , Pm+l), where σ takes the form σ = σ2m ⊕ σ2l with

σ2k :=

(
0k×k 1k

−1k 0k×k

)
.

For concreteness, we will henceforth assume that the CCR-relations (2) are realized by
unbounded operators acting on the tensor product H⊗n where H ∼= L2(R) is the Hilbert
space associated with a single mode. When convenient, we will also use the notation
HA1···An = H⊗n to denote multipartite Hilbert spaces.

An important subset of states is given by the Gaussian states: such a state ρ is fully
characterised by its first and second moments

dk = tr(ρRk) and γk` = tr(ρ{Rk − dkid, R` − d`id}) ,
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where {A,B} = AB+BA denotes the anticommutator. Here d ∈ R2n is the displacement
vector, whereas the symmetric matrix γ = γT ∈ R2n×2n is referred to as the covariance
matrix. By Heisenberg’s uncertainty principle, the covariance matrix of any state satisfies
the operator inequality

γ ≥ iσ2n . (3)

Conversely, any pair (d, γ) with d ∈ R2n and γ = γT ∈ R2n×2n satisfying (3) uniquely
defines a Gaussian n-mode state. As a consequence, we may identify the set of Gaussian
states with the set of such pairs.

2.2 Gaussian operations

A quantum operation (or channel) acting on an n-mode system is described by a com-
pletely positive trace-preserving map Φ : B(H⊗n) → B(H⊗n). Here B(H⊗n) is the set
of bounded linear operators on H⊗n. Again, the subset of Gaussian channels is distin-
guished by the property that such channels map Gaussian states to Gaussian states. Such
a channel is completely characterized by its action on Gaussian states, and the latter has a
convenient description: for a Gaussian state ρ with displacement vector d and covariance
matrix γ, the Gaussian state Φ(ρ) resulting from application of the channel is described
by the pair (d′, γ′) obtained from the map

γ 7→ XγXT + Y

d 7→ Xd+ v ,

where the matrices X, Y ∈ R2n×2n and the vector v ∈ R2n determine the action of the
channel. Clearly, Y = Y T has to be symmetric for this to map covariance matrices to
covariance matrices. The map is completely positive if and only if1 (cf. [4])

Y ≥ iσ2n − iXσ2nX
T . (4)

Conversely, and similarly as for Gaussian states, any triple (X, Y, v) with Y = Y T sym-
metric, (X, Y ) satisfying (4) and v ∈ R2n arbitrary uniquely determines a Gaussian
n-mode channel. We will thus identify the set of Gaussian channels with the set of such
triples.

In fact, the displacement vector v ∈ R2n has no influence on operational proper-
ties of the channel such as capacities since it can be changed arbitrarily by applying a
displacement operator (a Gaussian unitary) to the output of the channel (see e.g., [4]).
In contrast, the matrices (X, Y ) determine all important characteristics of the chan-
nel. As a consequence, we will henceforth assume that v = 0 (as in [2, 3]), and write
ΦX,Y : B(H⊗n)→ B(H⊗n) for the Gaussian channel determined by the pair (X, Y ).

1Note that in [4], the condition is stated with a minus sign, but since σT = −σ and Y is symmetric,
this conditions is equivalent.
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2.3 Gaussian unitaries and passive unitaries

A Gaussian unitary channel is one of the form ΦX,0 (i.e., Y = 0). For such channels, the
constraint (4) implies that X preserves the symplectic form (i.e., Xσ2nX

T = σ2n), i.e.,
X is an element of

Sp(2n) = {S ∈ R2n×2n | Sσ2nS
T = σ2n} ,

the group of real symplectic matrices. It can be shown that any element S ∈ Sp(2n)
defines a unitary US on H⊗n such that

ΦS,0(ρ) = USρU
∗
S .

Furthermore, S 7→ US defines a representation called the metaplectic representation
of Sp(2n).

In more physical terms, a Gaussian unitary describes the evolution (for a fixed amount
of time) generated by a Hamiltonian H which is quadratic in the creation- and annihila-
tion operations, i.e., one that has the form

H =
n∑

j,k=1

hj,ka
∗
jak + h.c. (5)

A Hamiltonian of the form (5) which commutes with the total number operator, i.e.,
satisfies

[H,
n∑
j=1

a∗jaj] = 0

is called passive. A passive Hamiltonian generates Gaussian unitaries which are associated
with orthogonal symplectic matrices S ∈ Sp(2n) ∩O(2n), where

O(2n) = {O ∈ R2n×2n | OOT = 12n} .

We call such Gaussian unitaries passive. It can be shown that passive Gaussian unitaries
can be realized using beamsplitters and phase shifters only [9].

2.4 On the orthogonal symplectic group

Let us collect a few facts about the group Sp(2n)∩O(2n). Crucially, there is an isomor-
phism U(n) ∼= Sp(2n) ∩O(2n) between this group and the group

U(n) = {U ∈ Cn×n | U †U = 1n}

of unitary n × n matrices. For our purposes, it will be convenient to write out this
isomorphism for the case of n+ l modes (associated with a system and its environment),
as follows:
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Lemma 2.1. The map

φ : U(n+ l) → Sp(2(n+ l)) ∩O(2(n+ l))

U =

(
u1 u2

u3 u4

)
7→ φ(U) = S =

(
s1 s2

s3 s4

)
where si =

(
Re(ui) Im(ui)
− Im(ui) Re(ui)

)

and where u1 ∈ Cn×n, u2 ∈ Cn×l, u3 ∈ Cl×n, u4 ∈ Cl×l is an isomorphism.

Proof. The existence of the isomorphism is well-known (see [8]). We need to show that
S is symplectic:

Sσ2(n+l)S
T =

(
s1σ2ns

T
1 + s2σ2ls

T
2 s1σ2ns

T
3 + s2σ2ls

T
4

s3σ2ns
T
1 + s4σ2ls

T
2 s3σ2ns

T
3 + s4σ2ls

T
4

)
Note that

siσ2ns
T
j =

(
Re(ui) Im(uj)

T − Im(ui) Re(uj)
T Re(ui) Re(uj)

T + Im(ui) Re(uj)
T

−(Re(ui) Re(uj)
T + Im(ui) Re(uj)

T ) Re(ui) Im(uj)
T − Im(ui) Re(uj)

T

)
and that

Re(ui) Re(uj)
T + Im(ui) Re(uj)

T = Re(uiu
†
j)

Re(ui) Im(uj)
T − Im(ui) Re(uj)

T = Im(uiu
†
j).

Therefore, since U is unitary, it follows that Sσ2(n+l)S
T = σ2(n+l). Similarly,

SST =

(
s1s

T
1 + s2s

T
2 s1s

T
3 + s2s

T
4

s3s
T
1 + s4s

T
2 s3s

T
3 + s4s

T
4

)
= 12n

using the unitarity of U . To prove that this is an isomorphism, one then has to consider
the inverse map. This is well-defined because any matrix S ∈ Sp(2n) ∩ O(2n) is of the
form of the image of the map φ in (2.1) (see [8]).

The following lemma will be an important tool in what follows.

Lemma 2.2. For any matrix X ∈ R2n×2n, [X, σ2n] = 0 if and only if X has the form

X =

(
A B
−B A

)
for some matrices A,B ∈ Rn×n. In particular, any matrix X ∈ Sp(2n)∩O(2n) commutes
with σ2n.

Furthermore, any eigenvalue of a matrix of form (2.2) has even multiplicity.

6



In fact, it can be shown (see [8]) that any two of the three properties Xσ2nX
T = σ,

[X, σ2n] = 0 and XXT = 12n implies the third, a feature known as the 2-out-of-3 property.

Proof. The proof is straightforward. The fact that this holds for X ∈ Sp(2n) ∩O(2n) is
clear from Lemma 2.1 (specialized to l = 0).

For the eigenvalue multiplicity, note that if v ≡ (v1, v2)T with v1, v2 ∈ Rn is an
eigenvector to the eigenvalue λ of X, then σ2nv = (v2,−v1)T is an eigenvector to the same
eigenvalue and σ2nv ⊥ v. Now, if {v, σ2nv}⊥ contains another eigenvalue w ∈ R2n with
eigenvalue λ, then σ2nw is again an eigenvector of X with eigenvalue λ. We claim that
{v, σ2nv, w, σ2nw} is an orthonormal set of eigenvectors to eigenvalue λ. By construction,
we have w ⊥ {v, σ2nv} and σ2nw ⊥ w. Finally, σ2nw ⊥ v as 〈σ2nw, v〉 = −〈w, σ2nv〉 =
0. Iteratively, we can construct an orthonormal basis of every eigenspace, which will
necessarily have even multiplicity.

The next lemma is an extension theorem for orthogonal symplectic matrices:

Lemma 2.3. Assume that s1 ∈ R2n×2n and s2 ∈ R2n×2l satisfy

s1σ2ns
T
1 + s2σ2ls

T
2 = σ2n

s1s
T
1 + s2s

T
2 = 12n .

(6)

Then there are s3 ∈ R2l×2n and s4 ∈ R2l×2l such that

S =

(
s1 s2

s3 s4

)
∈ Sp(2(n+ l)) ∩O(2(n+ l)) . (7)

Furthermore, if S is of the form (7) and

S ′ =

(
s1 s2

s′3 s′4

)
∈ Sp(2(n+ l)) ∩O(2(n+ l)) ,

then there is an orthogonal symplectic matrix o ∈ Sp(2l) ∩O(2l) such that

S ′ =

(
12n 02n×2l

02l×2n o

)
S . (8)

Proof. This is essentially saying that one can always extend suitable matrices to orthog-
onal symplectic matrices. It is clear by symplectic Gram-Schmidt (see [8]) that it is
always possible to find s3, s4 to construct a symplectic matrix S, which however is not
necessarily orthogonal. Therefore, we take the isomorphism to unitary matrices: Since s1

and s2 satisfy the relations (6), we can choose u1, u2 from the isomorphism in Lemma 2.1.
In particular, the matrix V :=

(
u1 u2

)
fulfills V V † = 12n, hence we can extend it to a

unitary matrix U and use the isomorphism again to find s3 and s4. The corresponding S
is now orthogonal symplectic by construction.
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For the second statement, let S, S ′ ∈ Sp(2(n+l))∩O(2(n+l)) be given by (7) and (8),
respectively. Then

S ′ST =

(
12n s1s

T
3 + s2s

T
4

s′3s
T
1 + s′4s

T
2 s′3s

T
3 + s′4s

T
4

)
(9)

by the orthogonality relation (6). But S ′ST ∈ Sp(2(n+ l))∩O(2(n+ l)), hence it follows
that

S ′ST =

(
12n 02n×2l

02l×2n o

)
=: O

for some o ∈ Sp(2l) ∩ O(2l). Combining this with (9) immediately gives OTS ′ST =
12(n+l). The claim follows by left- and right-multiplying the latter identity with O and S,
respectively.

2.5 Dilations of Gaussian channels

Consider the Gaussian n-mode channel ΦX,Y as defined in Section 2.1. It is well-known
(see [2]) that one can find a Gaussian state ρE of l ≤ n environment modes and a Gaussian
unitary matrix U acting on n+ l modes such that ΦX,Y can be written as

Φ(ρ) = trE(U(ρ⊗ ρE)U∗) . (10)

Note that we do not demand ρE to be a pure state (if it is, this is referred to as the
Stinespring representation, see Remark 3.3 below). In Eq. (10), U = US is the image
under the metaplectic representation of a symplectic matrix S ∈ Sp(2(n+ l)).

The relationship between S and (X, Y ) is obtained by analyzing the action on co-
variance matrices: if the l-mode Gaussian state ρE has covariance matrix γE, then the
channel’s action is given by

γ 7→ (S(γ ⊕ γE)ST )2n×2n = XγXT + Y

where (·)2n×2n means that we restrict to the upper left block of the size 2n × 2n. More
precisely, writing

S =

(
s1 s2

s3 s4

)
with s1 ∈ R2n×2n and s4 ∈ R2l×2l, we have(

s1 s2

s3 s4

)(
γ 02n×2l

02l×2n γE

)(
s1 s2

s3 s4

)T
=

(
s1γs

T
1 + s2γEs

T
2 ∗

∗ ∗

)
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and therefore

XγXT + Y = s1γs
T
1 + s2γEs

T
2 (11)

for all covariance matrices γ. Thus the pair (X, Y ) and (s1, s2, γE) are related by

X = s1 and Y = s2γEs
T
2 . (12)

3 Passively dilatable Gaussian channels

Given a Gaussian channel ΦX,Y , we ask if there is passive unitary associated with an
element S ∈ Sp(2n)∩O(2n) and an (arbitrary) state ρE of the environment constituting
a dilation of the channel. We shall call any channel with this property passively dilatable.
Our main result is the following.

Theorem 3.1. Let ΦX,Y be an n-mode Gaussian channel. The following conditions are
equivalent:

(i) There exists a passive dilation with l environment modes and S ∈ Sp(2(n + l)) ∩
O(2(n+ l)).

(ii) The matrices X, Y satisfy 12n−XXT ≥ 0, [X, σ2n] = 0, ker(Y ) = ker(12n−XXT )
and 2l ≥ rank(12n −XXT ).

We defer the proof of this theorem to Section 3.2, and first discuss some examples.

Remark 3.1. Note that if [X, σ2n] = 0, then rank(12n−XXT ) is even (see Lemma 2.2)
and therefore also rank(Y ).

Example 3.1. Consider the classical noise channel given by X = 1 and Y ≥ 0, Y 6= 0.
According to Theorem 3.1, this channel is not passively dilatable because the condition
ker(Y ) = ker(1 − XXT ) is not met. A dilation of this channel with two environment
modes is given in [5].

Example 3.2. Let Uλ be the two-mode beamsplitter with transmissivity λ ∈ [0, 1], i.e.,
the Gaussian unitary given by the symplectic matrix

Sλ =

( √
λI2

√
1− λI2√

1− λI2 −
√
λI2

)
with respect to the ordering (Q1, P1, Q2, P2) of the modes. Let ρE be a one-mode Gaussian
state with covariance matrix γE. Consider a channel of the form

Φ(ρ) = trE Uλ(ρ⊗ ρE)U∗λ . (13)
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We call this an additive Gaussian channel.
Since Uλ is passive, Φ is clearly passively dilatable. To see that the conditions of the

theorem are satisfied, observe that

X =
√
λ12 and Y = (1− λ)γE .

Assume that λ ∈]0, 1[. Then it is easily verified (using the fact that covariance matrices
are positive definite) that the conditions of (ii) are satisfied for any l ≥ 1. In particular,
the theorem implies that there is a dilation with l modes for all l ≥ 1. This is consistent
with expression (13). The theorem also implies that at least one environment mode is
necessary.

On the other hand, assume that λ = 1. Then the conditions of (ii) are satified for
any l ≥ 0, implying the existence of a dilation with no environment modes. Indeed, in
this case, the channel is simply the identity channel, with trivial dilation Φ(ρ) = ρ for all
states ρ.

Finally, consider the case where λ = 0. Here the conditions (ii) apply with l ≥ 1,
which is also consistent with (13).

In most cases, the theorem can be stated in a simpler fashion.

Corollary 3.2. Let ΦX,Y be an n-mode Gaussian channel such that X, Y and 12n −
XXT have full rank. Then there exists a passive dilation with n modes if and only if
12n −XXT ≥ 0 and [X, σ2n] = 0.

In fact, we remark that this Corollary can be shown directly by constructing an
orthogonal symplectic unitary from s1 = X, s2 = (12n−XXT )1/2 and using the covariance
matrix γE = s−1

2 Y (s−1
2 )T .

3.1 General observations about dilations

We can now make a first step towards proving the theorem:

Lemma 3.3. Let ΦX,Y be an n-mode Gaussian channel. Using the notation of equation
(10), such a Gaussian channel can be passively dilated with l environment modes if and
only if there exists a tuple (s2, γE) with s2 ∈ R2n×2l, γE ∈ R2l×2l and γE ≥ iσ2l such that

s2σ2ls
T
2 = σ2n −Xσ2nX

T =: Σ

s2s
T
2 = 12n −XXT =: Σ̂

s2γEs
T
2 = Y

(14)

There is a dilation with s1 = X.
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Proof. Given a passive dilation of the channel with a matrix S ∈ Sp(2(n+l))∩O(2(n+l)),
we know that XγXT + Y = s1γs

T
1 + s2γEs

T
2 by equation (11). Therefore, it must hold

that s1 = X and s2γEs
T
2 = Y , which is the third equation of (14). In addition, we need

that S is symplectic and orthogonal, which means that the following conditions must
always hold:

s1σ2ns
T
1 + s2σ2ls

T
2 = σ2n

s1s
T
1 + s2s

T
2 = 12n

s1σ2ns
T
3 + s2σ2ls

T
4 = 0

s1s
T
3 + s2s

T
4 = 0

s3σ2ns3 + s4σ2ls
T
4 = σ2l

s3s
T
3 + s4s

T
4 = 12n

If we plug in s1 = X, the first two conditions are exactly equations (6) so that it is
necessary to satisfy system (14) in order to have a passive dilation.

Conversely, using Lemma 2.3, having a solution to (14), we can always choose s3 and
s4 to extend S to an orthogonal symplectic matrix.

This lemma implies that proving Theorem 3.1 is equivalent to characterizing the
solvability of the system of equations (14). From the fact that s2s

T
2 is positive semidefinite,

it is immediately clear that the system can only be solvable if Σ̂ ≥ 0, which is one of the
conditions stated in Theorem 3.1. To recover the other conditions, we will need the next
lemma:

Lemma 3.4. In the notation of Lemma 3.3, for any passive dilation of an n-mode pas-
sively dilatable Gaussian channel ΦX,Y we have Σ = σ2nΣ̂ and both Σ and Σ̂ commute
with σ2n.

Proof. By definition, we need s2σ2ls
T
2 = Σ and s2s

T
2 = Σ̂. Since s2 is derived from an

orthogonal symplectic matrix, it is of the form (see Lemma 2.1)

s2 =

(
Re(u2) Im(u2)
− Im(u2) Re(u2)

)
.

Setting

µ := Re(u2) Re(u2)T + Im(u2) Im(u2)T

ν := Im(u2) Re(u2)T − Re(u2) Im(u2)T ,

we obtain:

s2s
T
2 =

(
µ ν
−ν µ

)
!

= Σ̂

s2σ2ls
T
2 =

(
− ν µ
−µ −ν

)
!

= Σ
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Since Σ and Σ̂ are of the form specified in Lemma 2.2, they commute with σ2n.

3.2 Proof of Theorem 3.1

3.2.1 Characterization of passively dilatable channels ((i)⇒(ii))

We begin by proving the first part of Theorem 3.1, namely that the stated conditions are
necessary:

Lemma 3.5. Let ΦX,Y be an n-mode Gaussian channel. The conditions 12n−XXT ≥ 0,
[X, σ2n] = 0 and 2l ≥ rank(12n − XXT ) are necessary for the existence of a passive
dilation of the channel with 2l environment modes.

Proof. By Lemma 3.3, in order for a dilation to exist, the system of equations (14) must
be satisfied. In particular, s2s

T
2 = 12n − XXT . Due to the fact that s2s

T
2 is positive

semidefinite, 12n −XXT must be positive semidefinite. In addition, if s2 ∈ R2n×2l, then
rank(s2s

T
2 ) ≤ 2l, which implies that s2s

T
2 = 12n − XXT can only have a solution if

rank(12n − XXT ) ≤ 2l. Finally, for a passive dilation we have S ∈ Sp(2n) ∩ O(2n)
by definition. The 2-out-of-3 property of the unitary group (Lemma 2.2) then implies
[S, σ2(n+l)] = 0 and therefore [s1, σ2n] = 0. Hence [X, σ2n] = 0 is a necessary condition as
X = s1.

Lemma 3.6. Let ΦX,Y be a Gaussian channel. The condition ker(12n−XXT ) = ker(Y )
is necessary for the existence of a passive dilation of the channel.

Proof. We suppose that we have found (s2, γE) such that s2s
T
2 = 12n−XXT and γE ≥ iσ2l

such that s2γEs
T
2 = Y . First note that for every y ∈ ker(sT2 ) we have s2γEs

T
2 y = 0, hence

y ∈ ker(Y ) or ker(sT2 ) ⊆ ker(Y ). Now, on the other hand

rank(sT2 ) ≥ rank(s2γEs
T
2 ) ≥ rank(s+

2 s2γEs
T
2 s

+T
2 )

with the pseudoinverse s+
2 (see Appendix A for definition and basic properties), using

that the rank of a product of matrices is always smaller than the rank of its factors. Now
note that s+

2 s2 = Q is the orthogonal projection onto the range of sT2 . Since γE ≥ iσ2l,
one can easily see that γE ≥ 0 has full rank, which means that there is ε > 0 such that
γE ≥ ε12l. Then we have that QγEQ ≥ εQ2 = εQ, hence

rank(s+
2 s2γEs

T
2 s

+T
2 ) ≥ rank(Q) = rank(sT2 )

But then, rank(Y ) = rank(s2γEs
T
2 ) = rank(sT2 ) and therefore ker(Y ) = ker(sT2 ). Finally,

since ker(s2) = im(sT2 )⊥, ker(s2s
T
2 ) = ker(sT2 ) and hence ker(12n − XXT ) = ker(Y ) is a

necessary condition.

Lemmas 3.5 and 3.6 show that the conditions stated in Theorem 3.1 are necessary for
a passive dilation to exist. This proves the implication (i)⇒(ii).
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3.2.2 Existence of unitary dilations ((ii)⇒(i))

We now consider the converse direction, i.e., we assume that (X, Y ) satisfy the conditions
stated in (ii) of Theorem 3.1 and show that these are sufficient to imply the existence of
a passive dilation (as in (i)).

Lemma 3.7. Let ΦX,Y be an n-mode Gaussian channel satisfying 2l ≥ rank(1−XXT ),
12n − XXT ≥ 0, ker(12n − XXT ) = ker(Y ) and [σ2n, X] = 0. Then there is a passive
dilation with l environment modes.

Proof. From the spectral theorem, it is known that if [A,B] = 0 and A is normal, then
also [Pλ(A), B] = 0 for any spectral projection Pλ(A) of A and therefore [A1/2, B] = 0,

where A1/2 denotes the unique positive square root of A. Define Σ̂ = 1−XXT ≥ 0 and
Σ = σ2n − Xσ2nX

T . Using [σ2n, X] = 0, we have σ2nΣ̂ = Σ and σ2nΣ̂ = Σ̂σ2n, i.e. Σ̂
commutes with σ2n. Therefore

[Σ̂1/2, σ2n] = 0 (15)

and thus (see Lemma 2.2) the matrix Σ̂1/2 is of the form

Σ̂1/2 =

(
µ ν
−ν µ

)
(16)

and

Σ = Σ̂1/2σ2nΣ̂1/2 . (17)

Furthermore, by definition of the square root (and since Σ̂ is symmetric), we have

(Σ̂1/2)T = Σ̂1/2 . (18)

We divide the proof into three cases:

1. Consider the case where l = n. We proceed by constructing a pair (s2, γE) satisfying
the conditions of Lemma 3.3, implying the existence of a passive dilation of (X, Y ).

Setting s2 = Σ̂1/2 we have s2s
T
2 = Σ̂ and s2σ2ns

T
2 = Σ. Thus the first two conditions

of (14) (Lemma 3.3) are satisfied, and it remains to construct a covariance matrix γE
satisfying s2γEs

T
2 = Y . Let s+

2 be the Moore-Penrose pseudoinverse of s2. We set

γE = s+
2 Y s

+T
2 + Pker(s2) , (19)

where Pker(s2) is the projection onto ker(s2). Then

s2γEs
T
2 = s2s

+
2 Y s

+T
2 sT2 = Pim(s2)Y P

T
im(s2) (20)

13



where we used the fact that s2Pker(s2) = 0 in the first identity and the properties of
the Moore-Penrose-pseudoinverse (Lemma A.1) in the second step, and where we
denoted the projection onto the range im(s2) of s2 by Pim(s2).

Since im(Y ) = im(Σ̂) by assumption and im(Σ̂) = im(s2s
T
2 ) ⊂ im(s2), we have

Pim(s2)Y = Y and since Y = Y T is symmetric, it follows that

Pim(s2)Y P
T
im(s2) = Y .

Inserting this into (20) yields s2γEs
T
2 = Y , as claimed (cf. (14)).

We next verify that γE is a valid covariance matrix. This is done using equation (4):
we have

s+
2 Y s

+T
2 + Pker(s2) ≥ (Σ̂1/2)+(iσ2n − iXσ2nX

T )(Σ̂1/2)+T + Pker(s2)

= i(Σ̂1/2)+Σ(Σ̂1/2)+T + Pker(s2)

= i(Σ̂1/2)+Σ̂1/2σ2n(Σ̂1/2)T (Σ̂1/2)+T + Pker(s2)

= iPim(sT2 )σ2nP
T
im(sT2 ) + Pker(s2)

where we used (17) in the third step and introduced the projection Pim(Σ̂1/2) onto

the range of the symmetric matrix sT2 = (Σ̂1/2)T in the fourth step. Since s2 is
symmetric we have

Pker(s2) = 12n − Pker(s2)⊥ = 12n − Pim(s2) = 12n − Pim(sT2 ) .

Using 12n ≥ iσ2n, we thus obtain

s+
2 Y s

+T
2 + Pker(s2) ≥ iPim(s2)σ2nP

T
im(s2) + i(1− Pim(s2))σ2n(1− P T

im(s2)) = iσ2n.

Here we used that Pim(s2) commutes with σ2n as a consequence of (15) and the fact

that it is the projection onto the range of Σ̂1/2. This concludes the proof that (19)
defines a valid covariance matrix.

2. The claim for l > n then follows immediately by using the established claim for
l = n: since 2n ≥ rank(1 − XXT ), there is a dilation Φ(ρ) = trE(U(ρ ⊗ ρE)U∗)
involving n environment modes. For an arbitrary (l − n)-mode state ρẼ, we then
have

Φ(ρ) = trEẼ((U ⊗ 1Ẽ)(ρ⊗ (ρE ⊗ ρẼ))(U ⊗ 1Ẽ)∗) ,

providing us with a passive dilation using l modes.
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3. Finally, consider the case l < n. Then we have rank(Σ̂) ≤ 2l by assumption. We
can assume that rank(Σ̂) = 2l without loss of generality (cf. Remark 3.1), since
otherwise we can proceed as in step (2) to increase the number of environment
modes.

We exploit the form (16) of Σ̂1/2. Because Σ̂1/2 is symmetric (cf. (18)), we have

µT = µ and νT = −ν, hence the complex matrix Σ̂
1/2
C := µ + iν is Hermitian. We

can thus diagonalise Σ̂
1/2
C with a unitary u ∈ U(n), which corresponds (see Lemma

2.1) to a matrix o ∈ Sp(2n) ∩O(2n) such that uΣ̂
1/2
C u† corresponds to oΣ̂1/2oT . In

particular,

oΣ̂1/2oT = diag(d1, . . . , dl, 0, . . . , 0︸ ︷︷ ︸
n−l

, d1, . . . , dl, 0, . . . , 0︸ ︷︷ ︸
n−l

)

This implies that Σ̂1/2oT has the form

Σ̂1/2oT =
(
A 02n×(n−l) B 02n×(n−l)

)
for two matrices A,B ∈ R2n×l. We now define s2 to be the matrix where we erase
the 2(n− l) zero columns, i.e. we choose

s2 =
(
A B

)
∈ R2n×2l .

By construction, this implies that s2s
T
2 = Σ̂ as before, and since oT commutes

with σ2n (Lemma 2.2), we also have s2σ2ls
T
2 = σ2ns2s

T
2 . Again, γE is defined as in

the case l = n by (19) and we have a solution to the system (14) with γE ≥ iσ2l by
the same argument as in case 1.

3.3 Minimal dilations

In the following, we show that under the assumptions of Corollary 3.2, any pair of dilations
are related by orthogonal symplectic matrices acting on the environment. More generally,
let us define a minimal dilation as one with the least number of environment modes. We
then have the following uniqueness property of minimal dilations.

Theorem 3.8. Let ΦX,Y be a passively dilatable n-mode Gaussian channel. Then

(i) A dilation is minimal if and only if l = 1
2

rank(Y ). There is a minimal dilation
given by the construction of Theorem 3.1.
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(ii) Let

S =

(
s1 s2

s3 s4

)
(21)

be the orthogonal symplectic matrix describing the passive Gaussian unitary as-
sociated with a minimal dilation. Then rank(s2) = 2l = rankY . In particular,
s2 ∈ R2n×2l is injective.

(iii) Consider two minimal dilations

ΦX,Y (ρ) = trE U(ρ⊗ ρE)U∗ = trE U
′(ρ⊗ ρ′E)U ′

∗
,

of ΦX,Y , where U,U ′ are passive Gaussian unitaries on H⊗(n+l). Then there are two
passive Gaussian unitaries Ṽ , V on H⊗l such that

U ′ = (1H⊗n ⊗ Ṽ )U(1H⊗n ⊗ V ) and ρ′E = V ∗ρEV .

Note that a statement analogous to (iii) was given in [2, Appendix D] for general (non-
passive) dilations.

Remark 3.2. Let us compare these statements to the results of [2, 3]. For a channel ΦX,Y ,
let lmixed

min (ΦX,Y ) denote the minimal number of environment modes such that a dilation
with a (potentially mixed) state of the environment exists. By explicit construction, it
was shown in [2] (see also [3, Section 2]) that lmixed

min (ΦX,Y ) ≤ 2n− rank(Σ)/2, where Σ is
defined by (14). This result was later improved to

lmixed
min (ΦX,Y ) ≤ rank(Y )− rank(Σ)/2 (22)

in [3], and this is conjectured to be optimal (a matching lower bound is not known, but
see Remark 3.3). To compare to our results, assume that ΦX,Y is passively dilatable. Let
lmixed
min,passive(ΦX,Y ) denote the minimal number of environment modes such that a dilation

with a passive unitary exists. By definition, we clearly have

lmixed
min (ΦX,Y ) ≤ lmixed

min,passive(ΦX,Y ) .

According to Theorem 3.8, we have

lmixed
min,passive(ΦX,Y ) =

1

2
rankY . (23)

But since rank(Y ) ≥ rank(Σ) (see e.g., [3, Eq. (10)] – this follows immediately from the
positivity condition (4)), this means that

lmixed
min,passive(ΦX,Y ) = rankY − 1

2
rankY ≤ rank(Y )− rank(Σ)/2 .

Thus our result is consistent with (22). We emphasize that in contrast to the case where
passivity is not imposed on the dilating unitary, the exact minimal number lmixed

min,passive(ΦX,Y )
of environment modes is known, i.e., given by expression (23).
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Remark 3.3. The authors of [2, 3] also consider dilations where the state ρE is pure.
These are referred to as Stinespring dilations. Correspondingly, they consider the min-
imal number lpuremin (ΦX,Y ) of environment modes for a Stinespring dilation with a pure
Gaussian environment state ρE to exist. Imposing Gaussianity here is crucial to get a
non-trivial problem, since any mixed state can be purified with only a single additional
mode otherwise. By definition, we clearly have lmixed

min (ΦX,Y ) ≤ lpuremin (ΦX,Y ). Improving an
upper bound of [2], and by providing a new lower bound, the identity

lpuremin (ΦX,Y ) = rank(Y − iΣ)

was shown in [3]. We have not considered the analogous question for passive dilations,
since our focus is on establishing an equivalence with additive Gaussian channels (see
Theorem 4.1). At least in one direction, the analysis of [3, Appendix B] should be useful:
here the minimal number of modes needed to find a Gaussian purification of a generic
multimode Gaussian state is computed.

Proof of Theorem 3.8. Statement (ii) of Theorem 3.1 implies that there is a dilation with
l = 1

2
rank(Y ) environment, and this number is minimal. This proves statement (i).

To prove statement (ii), fix a minimal dilation with orthogonal symplectic matrix S
and covariance matrix γE. By (i), the number of environment modes is ` = 1

2
rankY ,

i.e., s2 ∈ R2n×rank(Y ) and γE ∈ RrankY×rankY . By the minimality and (12), we have 2l =
rank(Y ) = rank(s2γEs

T
2 ), but since γE ≥ iσ2l, the covariance matrix γE is full rank and

it follows that rank(s2) = 2l. In particular, this implies that s2 ∈ R2n×2l is injective.
Finally, we can prove statement (iii): Consider two minimal dilations of ΦX,Y with

orthogonal symplectic matrices

S =

(
s1 s2

s3 s4

)
and S ′ =

(
s′1 s′2
s′3 s′4

)
and covariance matrices γE and γ′E, respectively. In particular, s2, s

′
2 ∈ R2n×2l and

s1 = s′1 = X (24)

by (12). Using the orthogonality of S and S ′ (in the form (6)) therefore gives

s2s
T
2 = s′2s

′T
2 . (25)

Since s2 is injective, s+
2 s2 = 12l by the properties of the pseudoinverse. Multiplying (25)

from the left by s+
2 therefore gives sT2 = s+

2 s
′
2s
′T
2 and multiplying this from the right with

s+T
2 yields sT2 s

+T
2 = s+

2 s
′
2s
′T
2 s+T

2 which is equivalent to

s+
2 s
′
2(s+

2 s
′
2)T = 12l .

17



Hence

s+
2 s
′
2 =: o ∈ O(2l) (26)

is orthogonal. Multiplying Eq. (26) from the left by s2 and using that s2s
+
2 = Prange(s2) is

the projection onto the range of s2 we obtain Prange(s2)s
′
2 = s2o, hence

s′2 = s2o (27)

because Prange(s2)s
′
2 = s′2. The latter identity follows from the fact that the images of s2

and s′2 coincide as a consequence of the assumption s2s
T
2 = s′2s

′T
2 and the fact that sT2

and s′T2 are surjective (since s2, s
′
2 are injective, as argued above).

Furthermore, using the symplecticity condition (6), we have

s2σ2ls
T
2 = s′2σ2ls

′T
2 = s2oσ2lo

T sT2 (28)

Since s2 is minimal it is injective and hence sT2 is surjective. Because of the injectivity
of s2 and the surjectivity of sT2 , Eq. (28) implies

σ2l = oσ2lo
T ,

i.e., o is orthogonal symplectic, o ∈ O(2l) ∩ Sp(2l). Similarly, Y = s2γEs
T
2 = s′2γ

′
Es
′T
2 by

assumption, we have

γ′E = oTγEo . (29)

using once again the injectivity of s2 and s′2 (and correspondingly, the surjectivity of sT2
and sT2 ).

Finally, we claim that S and S ′ only differ by an orthogonal symplectic matrix applied
to the environment modes. Indeed, it follows from (24) and (27) that

S

(
12n 02n×2l

02l×2n o

)
=

(
s′1 s′2
s′′3 s′′4

)
for some matrices s′′3 ∈ R2l×2n and s′′4 ∈ R2l×2l. The second part of Lemma 2.3 thus
implies that there is an orthogonal symplectic matrix o′ ∈ Sp(2l) ∩ O(2l) acting on the
l environment modes such that(

12n 02n×2l

02l×2n o′

)
S

(
12n 02n×2l

02l×2n o

)
= S ′ . (30)

Combining (30) with (29) yields the claim.
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3.4 Passive channels

To conclude this section, we combine Theorem 3.1 and Theorem 3.8 to characterize
passive channels. The latter are defined by having a dilation with a passive unitary U
and an environment state ρE which is also passive. Here passivity of a state ρE is defined
physically by the condition that ρE is the Gibbs state of a passive Hamiltonian H at
some inverse temperature β, i.e., ρE = e−βH/ tr(e−βH). Mathematically, passivity of a
state ρE is equivalent to the statement that its covariance matrix γE satisfies

[γE, σ2l] = 0 (31)

as argued in [7]. In other words, a passive channel is one which has no “hidden” squeezing:
both the system-environment interaction and the state of the environment are associated
with passive Hamiltonians. We have the following simple characterization of such chan-
nels:

Corollary 3.9. Let ΦX,Y be a passively dilatable Gaussian channel. Then the following
are equivalent:

(i) [Y, σ2n] = 0.

(ii) ΦX,Y is passive.

Proof. Suppose ΦX,Y is passively dilatable. We first remark that any orthogonal sym-
plectic matrix S as in (21) satisfies

s2σ2l = σ2ns2 . (32)

Indeed, this follows immediately using the block structure of S and σ2(n+l) = σ2n ⊕ σ2l

by taking the upper right block matrix of the identity [S, σ2(n+l)] = 0.
We prove the two implications: (i)⇒(ii): Assume that [Y, σ2n] = 0. Consider the min-

imal dilation constructed in Theorem 3.8, with orthogonal symplectic matrix S as in (21)
and an environment state of ` modes with covariance matrix γE given by expression (19).
According to Theorem 3.8, s2 is injective, hence ker(s2) = {0} and thus γE = s+

2 Y s
+T
2 .

We will show that γE satisfies (31), which implies that ΦX,Y can be passively dilated with
a passive environment state ρE.

We use (32) to establish the identity

σ2ls
+
2 = s+

2 σ2nPrange(s2) . (33)

Indeed, we have

s+
2 σ2nPrange(s2) − σ2ls

+
2 = s+

2 σ2ns2s
+
2 − σ2ls

+
2 s2s

+
2
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where we used the fact that s2s
+
2 = Prange(s2) and (s+

2 s2)s+
2 = Prange(sT2 )s

+
2 = s+

2 by the

properties of the pseudoinverse and the fact that sT2 is surjective (as s2 is injective). That
is,

s+
2 σ2nPrange(s2) − σ2ls

+
2 = (s+

2 σ2ns2 − σ2ls
+
2 s2)s+

2

= (s+
2 s2σ2l − σ2ls

+
2 s2)s+

2

= (Prange(sT2 )σ2l − σ2lPrange(sT2 ))s
+
2 = 0

where we used (32) in the second step and the fact that sT2 is surjective (and thus
Prange(sT2 ) = 12l) in the last step. This establishes (33).

We will also need the transpose of (33), which reads

s+T
2 σ2l = Pker(sT2 )⊥σ2ns

+T
2 (34)

because P T
range(s2) = Pker(sT2 )⊥ . We can then compute

σ2lγE = σ2ls
+
2 Y s

+T
2

= s+
2 σ2nPrange(s2)Y s

+T
2 by (33)

= s+
2 σ2nY s

+T
2 because Y = s2γEs

T
2

= s+
2 Y σ2ns

+T
2 by the assumption [Y, σ2n] = 0

= s+
2 Y Pker(sT2 )⊥σ2ns

+T
2 since Y = s2γEs

T
2

= s+
2 Y s

+T
2 σ2l by (34)

= γEσ2l .

Thus [γE, σ2l] = 0, as claimed.
(ii)⇒(i): Suppose ΦX,Y is passive. Assume S is an orthogonal symplectic matrix and

γE a covariance matrix of a passive state such that S and γE define a dilation of the
channel ΦX,Y . Then Y = s2γEs

T
2 and thus

σ2nY = s2σ2lγEs
T
2 by (32)

= s2γEσ2ls
T
2 because ρE is passive, that is, (31)

= s2γEs
T
2 σ2n by the transpose of (32)

= Y σ2n ,

hence [Y, σ2n] = 0 as claimed.

4 Passively dilatable channels are additive channels

Consider a (one-mode) channel of the form

Φ(ρ) = V (trE Uλ(WρW ∗ ⊗ ρE)U∗λ)V ∗ ,
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A1...
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E1...
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Φ

ρE

W V

Figure 1: This figure shows how a general passively dilatable channel can be understood
as an additive Gaussian channel composed with passive unitaries (two modes are drawn
completely). This defines a normal form of passively dilatable channels.

where Uλ is the beamsplitter of transmissivity λ (see Example 3.2) and V,W are passive
Gaussian (one-mode) unitaries. That is, Φ is obtained by applying passive unitaries to
the input and output of an additive Gaussian channel. Since Φ(ρ) = trE(U(ρ ⊗ ρE)U∗)
for U = (V ⊗ 1E)Uλ(W ⊗ 1E), this channel is passively dilatable. Here we show the
converse: any passively dilatable is equivalent (up to passive unitaries) to a (multi-mode)
additive Gaussian channel. The following result is illustrated in Fig. 1.

Theorem 4.1. Let Φ : B(A1 . . . An) → B(A1 · · ·An) be a passively dilatable n-mode
Gaussian channel. Then there is an n-mode Gaussian state ρE = ρE1···En, n-mode Gaus-
sian unitaries V , W and transmissivities λ = (λ1, . . . , λn) ∈ [0, 1]n such that for the
multi-mode beamsplitter Uλ = UA1E1

λ1
⊗ · · · ⊗ UAnEn

λn
, we have

Φ(ρ) = V (trE Uλ(WρW ∗ ⊗ ρE)U∗λ)V ∗ for all states ρ .

Proof. Assume that Φ = ΦX,Y is specified by the pair (X, Y ) of matrices. As in the proof
of Theorem 3.1, consider l = n. Let (S, γE) be the dilation constructed in case 1 of the

proof of the theorem, i.e., S =

(
s1 s2

s3 s4

)
satisfies

s1 = X and s2 = Σ̂1/2 = (1−XXT )1/2 (35)

and the covariance matrix γE is given by the expression (19). Since [X, σ2n] = 0, we can
decompose X as in Lemma 2.2. Let D = (G1 + iG2)(X1 + iX2)(F1 + iF2) be the singular
value decomposition of the complex matrix X1 + iX2. The matrix D is nonnegative
but not necessarily full rank. By definiton and the isomorphism of Lemma 2.1, the
unitaries G1 +iG2 and F1 +iF2 define passive symplectic elements F,G ∈ Sp(2n)∩O(2n).
Define

S̃ =

(
G 0
0 12n

)
S

(
F 0
0 GT

)
=

(
Gs1F Gs2G

T

s3F s4G
T

)
=:

(
s̃1 s̃2

s̃3 s̃4 .

)
(36)
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With (35) we obtain

s̃1 = GXF = D ⊕D
s̃2 = G(12n −XXT )1/2GT = (12n −D2 ⊕D2)1/2 .

(37)

Here we exploited that XXT is equivalent to (X1+iX2)(X1+iX2)† = (G1+iG2)†D2(G1+
iG2) under the isomorphism and hence 12n −XXT = GT (12n −D2 ⊕D2)G. Since G is
orthogonal we have (12n −XXT )1/2 = GT (12n −D2 ⊕D2)1/2G.

We conclude from (36) that

s1 = GT s̃1F
T and s2 = GT s̃2G ,

i.e., the action of the channel on a covariance matrice γ is given by (cf. (11))

XγXT + Y = GT s̃1F
TγF s̃T1G+GT s̃2GγEG

T s̃T2G .

Clearly, this means that the channel can be written as the composition

Φ = Φs1,s2γEs
T
2

= ΦGT ,0 ◦ Φs̃1,s̃2γ̃E s̃
T
2
◦ ΦFT ,0 ,

where γ̃E = GγEG
T is a valid covariance matrix. It is clear from (37) and the fact

that (S̃, γ̃E) give a dilation that Φs̃1,s̃2γ̃E s̃
T
2

is an additive noise channel, hence the claim
follows.

A The Moore-Penrose pseudoinverse

In this appendix, we collect a few well-known facts about the Moore-Penrose pseudoin-
verse. Let A ∈ Rk×m be a not necessarily invertible matrix. Using the singular value de-
composition, we can find unitaries U ∈ U(k), V ∈ U(m) and a diagonal matrix D ∈ Rk×m

with A = UDV . Define A+ = V †D+U † with D+ ∈ Rm×k and D+
ii = 1

Dii
for all Dii 6= 0

and zero otherwise. Then A+ is called the Moore-Penrose pseudoinverse.

Lemma A.1. Let A ∈ Rk×m and let A+ be its pseudoinverse. Then:

1. P = AA+ is the orthogonal projection onto the range of A.

2. Q = A+A is the orthogonal projection onto the range of AT .

A proof can be found in any introductory book on linear algebra.
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Sinkhorn normal form for unitary matrices

M. Idel, M. Wolf September 26, 2016

Sinkhorn’s theorem states that for any matrix A ∈ Rn×m with positive entries there
exist diagonal matrices D1, D2 such that D1AD2 is doubly stochastic [5]. Recently,
the question was posed whether a similar theorem can exist for unitary matrices [3]:
For any unitary U , do there exist positive diagonal unitaries L,R such that LUR has
row and column sums 1? We answer that question in the positive and also provide
applications.

1 Sinkhorn for unitaries

The basic result is the following theorem:

Theorem 1.1. For every unitary matrix U ∈ U(n) there exist diagonal unitary ma-
trices L,R such that LUR has unit row and column sums. The matrices L,R are not
unique.

The proof relies on the observation that the theorem is equivalent to the ques-
tion whether there exists a vector v = (eiφ1 , . . . , eiφn) with φi ∈ [0, 2π) such that
Uv = (eiψ1 , . . . , eiψn) or in other words, whether there exists a vector in the Clifford
torus CPn−1 which is mapped to a vector in the Clifford torus by U . This in turn
is immediately equivalent to a question in symplectic topology which was answered
(among others) in [2].

2 Applications

One interesting consequence of this theorem is the following decomposition of unitary
matrices:

Corollary 2.1. Let U ∈ U(n), then there exist diagonal unitary matrices D1, . . . , Dn

and D̃1, . . . , D̃n−1 and a ϕ ∈ [0, 2π) such that the first i− 1 entries in each Di, D̃i are
equal to one and

U = D1FnD2(11 ⊕ Fn−1)D3(12 ⊕ Fn−2) · · ·

Dn−1(1n−2 ⊕ F2)Dn(1n−2 ⊕ F †2 )D̃n−1 · · · (11 ⊕ F †n−1)D̃2F
†
nD̃1e

iϕ.

In other words, any unitary can be decomposed into a product of diagonal unitaries
and Fourier transforms on submatrices. This decomposition therefore also provides a
simple design to implement Gaussian unitaries: If we know how to perform Fourier
transforms on arbitrary many modes, we only need to add phase shifters to implement
all unitary transformations.
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tiports described by Fourier transformations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

For every n ×n matrix A with positive entries there exist two diagonal matrices L, R
such that LAR is doubly stochastic, i.e. the entries of each column and row sum up to 
one. This result was first obtained by Sinkhorn [8], who also gave an algorithm of how
to compute L and R by iterated left and right multiplication of diagonal matrices.

Recently, De Vos and De Baerdemacker studied the same problem for unitary matri-
ces [3]. They conjectured that for every n ×n unitary U there exist two unitary diagonal 
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matrices L, R such that LUR has all row and column sums equal to one. To support their 
conjecture, they construct an algorithm similar to the iteration procedure for matrices 
with positive entries from [8,9]. They also provide numerical evidence that the algorithm 
always converges to a unitary matrix with row and column sums equal to one.

The goal of this paper is to prove the conjecture of De Vos and De Baerdemacker that 
such a normal form always exists by reformulating the problem in terms of symplectic 
topology. It turns out that the reformulated problem is a special case of the Arnold (some-
times Arnold–Givental) conjecture on the intersection of Lagrangian submanifolds [6], 
which was solved for this case in [1,2]. More precisely, in Section 2 we show:

Theorem 2. For every unitary matrix U ∈ U(n) there exist two diagonal unitary matrices 
L, R ∈ U(n) such that A := LUR satisfies 

∑
j Aji =

∑
j Aij = 1 for all i = 1, . . . , n.

For a given unitary U ∈ U(n) the triple (L, R, A) is certainly not unique, since multi-
plying L by a global phase and R by its inverse does not change LAR. Hence, it makes 
sense to consider the decomposition U = eiϕL′AR′, where L′, R′ are unitary diagonal 
such that L′

11 = R′
11 = 1 and ϕ ∈ [0, 2π). In particular, for U(2), a simple complete 

solution was given in [3] from which one can see that for every non-diagonal matrix, 
there are only two different A such that eiϕLAR = U . For n > 2 the picture is less clear 
and the reformulation in terms of symplectic topology appears to give further insight 
into the freedom of the decomposition.

In addition to the Sinkhorn-type normal form above, in Section 3 we give several 
reformulations that might be interesting for applications, for instance regarding the de-
composition of general 2n-port linear optics devices into canonical multiports and phase 
shifters.

2. Sinkhorn-type normal form

In order to prove the decomposition theorem, we reformulate the problem of rescaling 
a unitary matrix into a problem in symplectic topology. For the reader’s convenience, 
necessary results including elementary calculations and definitions are included in Ap-
pendix A. We only repeat the most important definitions for our reformulation. Recall 
that the complex projective space CPn consists of all equivalence classes of Cn+1\{0}
w.r.t. x ∼ y ⇔ x = λy with λ ∈ C\{0}.

Definition 1. The Clifford Torus is the n-dimensional torus embedded in CPn, i.e. the 
set of points

Tn :=
{
[w0, . . . , wn] ∈ CPn

∣∣ |w0| = |w1| = . . . = |wn|
}
. (1)

This torus, as shown in the appendix in Proposition 4, is a Lagrangian submanifold of 
the symplectic manifold CPn. We obtain the following connection to our normal form:
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Lemma 1. For any unitary U ∈ U(n), there exist diagonal unitaries L and R such that 
A := LUR has row and column sums equal to one if and only if the Clifford torus 
Tn−1 ⊂ CPn−1 fulfills Tn−1 ∩ UTn−1 �= ∅.

Proof. Let U ∈ U(n) be arbitrary but fixed. We first consider the usual torus Tn ⊂ C
n, 

i.e. the set of all vectors for which each component has modulus one:

T
n :=

{(
eiφ1 , . . . , eiφn

)
⊂ C

n
∣∣ φj ∈ R

}

Let us first show that the existence of a normal form is equivalent to Tn ∩UT
n �= ∅. For 

one direction, let ϕ ∈ T
n such that Uϕ ∈ T

n, i.e. ϕ ∈ T
n∩UT

n. Define the two diagonal 
matrices R−1 := diag(ϕ1, . . . , ϕn) ∈ U(n) and L−1 := diag((Uϕ)−1

i ) = diag((Uϕ)i) ∈
U(n). With A := L−1UR−1 and e := (1, . . . , 1)T we obtain:

Ae = L−1Uϕ = e

Likewise, since Ae = Ae and A is unitary, we obtain

AT e = ATAe = e

so that columns and rows of A sum up to one.
For the other direction, suppose U = LAR is a decomposition as proposed. Then 

ϕ := R−1e ∈ T
n and

Uϕ = LARϕ = LAe = Le ∈ T
n

hence Uϕ ∈ T
n ∩ UT

n.
The next step is to reformulate the problem using the Clifford torus. Clearly, Tn−1 ∩

UTn−1 �= ∅ iff (λTn) ∩ UT
n �= ∅ for some λ ∈ C \ {0}. Since U is norm preserving, any 

intersection requires |λ| = 1 so that

Tn−1 ∩ UTn−1 �= ∅ ⇔ T
n ∩ UT

n �= ∅. �
One of the main conjectures in symplectic topology, the Arnold or Arnold–Givental 

conjecture, states that a Lagrangian submanifold and its image under a Hamiltonian 
isotopy intersect at least as often as the sum of the Z2-Betti-numbers. For Tn, this sum 
is not zero, thus, using Proposition 5, Arnold’s conjecture states in particular that Tn

should intersect with UTn at least once. While the Arnold conjecture is wrong in all 
generality and most cases are unknown, there is a positive result to the weaker question 
whether the torus intersects with its displaced version (cf. [1,2]). In order to formulate 
this result, we need the following:
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Definition 2. Let (M, ω) be a closed symplectic manifold with Hamiltonian symplec-
tomorphisms Ham(M). A Lagrangian submanifold L ⊂ M is called displaceable by a 
Hamiltonian diffeomorphism, if there exists a ψ ∈ Ham(M) such that

L ∩ ψL = ∅.

The definition is slightly different from the one in [1], where the authors only consider 
nonempty open sets such that the restriction of ω to these sets is exact. However, they 
prove that the torus Tn is displaceable in the above definition, if and only if there exists 
an open neighborhood V ⊃ Tn such that ω|V is exact and V is displaceable. With this 
we can state the final and crucial ingredient in the proof of the normal form:

Theorem 1. (See [1, Theorem 1.3].) The Clifford torus Tn ⊂ CPn cannot be displaced 
from itself by a Hamiltonian isotopy.

Because every unitary matrix defines a Hamiltonian isotopy (see Proposition 5 in the 
appendix), the theorem tells us in particular Tn ∩ UTn �= ∅ for all unitaries U ∈ U(n)
so that together with Lemma 1 this proves the sought normal form:

Theorem 2. For every unitary matrix U ∈ U(n) there exist two diagonal unitary matrices 
L, R ∈ U(n) such that A := LUR fulfills 

∑
j Aji =

∑
j Aij = 1 for all i = 1, . . . , n.

3. Equivalent normal forms for unitary matrices

To obtain equivalent normal forms, consider the n × n dimensional complex matrix 
Fn with entries (Fn)kl := 1√

n
exp(2πi

n kl) with k, l ∈ {0, . . . , n − 1}, which is known as 
the discrete Fourier transformation. It is easy to see that F−1

n = F †, hence Fn ∈ U(n). 
If we denote the standard basis of Cn by {ei}n−1

i=0 and e := (1, . . . , 1)T , then

Fne0 = F †
ne0 = e√

n
.

Now let A ∈ U(n) be such that Ae = AT e = e. Then F †
nAFne0 = e0 and similarly, 

(F †
nAFn)T e0 = FnA

TF †
ne0 = e0, which shows that

F †
nAFn =

(
1 0Tn−1

0n−1 Ũ

)

where 0n−1 := 0 ∈ C
n−1 and Ũ ∈ U(n − 1). Thus, given a unitary U ∈ U(n), we know 

that there exists a decomposition

U = LFn

(
1 0Tn−1

0n−1 Ũ

)
F †
nR (2)
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Fig. 1. In quantum optics, passive transformations on n modes are in one-to-one correspondence with n × n
unitaries. Up to an overall phase, each unitary U admits a decomposition into 2(n −1) canonical multiports 
(which are independent of U and described by discrete Fourier transformations [hatched]) surrounded by 
2n − 1 layers of single-mode phase shifters [grey]. Here, this is exemplified for n = 4.

with Ũ ∈ U(n − 1) and diagonal L, R ∈ U(n). We can now iterate the procedure by 
applying it to the (n − 1) × (n − 1)-dimensional submatrix Ũ and obtain the corollary:

Corollary 1. Let U ∈ U(n), then there exist diagonal unitaries D1, . . . , Dn and D̃1, . . . ,
D̃n−1 and a ϕ ∈ [0, 2π) such that the first i − 1 entries in each Di, D̃i are equal to one 
and

U = D1FnD2(11 ⊕ Fn−1)D3(12 ⊕ Fn−2)

· · ·Dn−1(1n−2 ⊕ F2)Dn

(
1n−2 ⊕ F †

2
)
D̃n−1 · · ·

(
11 ⊕ F †

n−1
)
D̃2F

†
nD̃1e

iϕ. (3)

In other words any unitary can be decomposed into diagonal unitaries and discrete 
Fourier transformations in this way. This has an immediate application in quantum 
optics, where any n × n unitary corresponds to a passive transformation on n modes or 
a 2n-multiport. In this scenario a diagonal unitary corresponds to a set of phase shifters, 
which are applied to the modes individually and the discrete Fourier transformation 
is known as canonical 2n-multiport [5], which may be implemented by a symmetric 
fibre coupler. The structure of the corresponding decomposition is graphically depicted 
in Fig. 1.

Another version of the normal form is found by using that D is a diagonal matrix iff 
FDF † is a circulant matrix, i.e. (FDF †)i,j =: αi−j ∈ C. Since the diagonal matrices 
form a group, so do the circulant matrices and we denote the group of n × n circulant 
matrices by Circ(n). Then:

Corollary 2. Let U ∈ U(n), then there exist C1, C2 ∈ Circ(n) and Ũ ∈ U(n − 1) such 
that

U = C1 diag(1, Ũ)C2. (4)

Let us finally discuss the question of uniqueness of these decompositions and to this 
end come back to the original normal form

U = eiϕD1AD2, (5)
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where D1, D2 are unitary diagonal with (Di)11 = 1 and A has row and column sums 
equal to 1. Counting parameters, using that the matrices A are isomorphic to U(n − 1)
as proven above, we have:

1 + (n− 1) + (n− 1)2 + (n− 1) = n2

parameters (cf. [3]). Hence, the number of parameters matches exactly the dimension of 
U(n). Given a unitary U = eiϕD1AD2 as above, this means that it might be reasonable 
to expect only a discrete set of different decompositions or at least a discrete set of A
that U can be scaled to. The exact number of different A can easily be seen to be two 
for the case n = 2 (cf. [3]), but already for n = 3 and n = 4, there is only a conjectured 
bound (6 and 20, cf. [7]).

In [2] it is proven that if Tn and UTn intersect transversally, their number of distinct 
intersection points must be at least 2n, which follows from general results in Floer-
homology theory when applied to Lagrangian intersection theory. Since transversality 
is a generic property for intersections, one might therefore conjecture that for a generic 
unitary U ∈ U(n) [2] implies a lower bound 2n−1 on the number of different normal 
forms. However, it is not true that we always have a discrete number of decompositions 
or (in contrast to the 2 ×2 case) at least a discrete number of A such that A has row and 
column-sums equal to one and eiϕLAR = U . A counterexample is given by the Fourier 
transform in 4 × 4 dimensions, where we have for any ϕ ∈ [0, 2π)1:

1
2

⎛
⎜⎜⎝

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 eiϕ 0 0
0 0 1 0
0 0 0 −e−iϕ

⎞
⎟⎟⎠

· 1
2

⎛
⎜⎜⎝

1 −ieiϕ 1 ieiϕ

e−iϕ 1 −e−iϕ 1
1 ieiϕ 1 −ieiϕ

−e−iϕ 1 eiϕ 1

⎞
⎟⎟⎠

·

⎛
⎜⎜⎝

1 0 0 0
0 ie−iϕ 0 0
0 0 1 0
0 0 0 −ieiϕ

⎞
⎟⎟⎠ (6)

After completion of this document, we learned that part of this section, in particular 
Corollary 1 were independently found in [4].

4. Conclusion

We have studied a variant of a Sinkhorn type normal form for unitary matrices. Its 
existence was conjectured in [3] and we give a nonconstructive proof. This means in 

1 We thank the anonymous referee for providing this counterexample.
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particular that the question, whether the algorithm presented in [3] always converges 
for any set of starting conditions, remains open. Also, it would be nice to have an 
elementary proof of the fact that for any unitary matrix U we have Tn ∩ UTn �= ∅. 
The decomposition is in not unique: We provided an example where, contrary to the 
2 ×2-case, there is a one-parameter set of A as well as L and R, such that LAR = U . We 
suggested an argument that the number of different decompositions, if it is discrete, might 
grow exponentially. However this lower bound relies on a lower bound on Lagrangian 
intersections which holds only for transversal intersections.
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Appendix A. Symplectic preliminaries

This section introduces the definitions and results from symplectic topology beyond 
the first chapters of [6] needed to understand the basic reductions of the proof of Theo-
rem 1 in [1].

A.1. Notation and basic definitions

To fix notation, a symplectic manifold will always be denoted by M and its symplec-
tic form will be called ω. The group of symplectomorphisms of a symplectic manifold 
(M, ω) will be denoted by Symp(M) and its Hamiltonian symplectomorphisms (i.e. all 
symplectomorphisms which are elements of the flow of a Hamiltonian vector field) will 
be denoted by Ham(M). We have the following characterization [6, Chapter 10]:

Proposition 3. Let (M, ω) be a closed symplectic manifold. If the manifold is simply 
connected (i.e. every loop is contractible)

Ham(M) = Symp0(M)

where Symp0(M) denotes the connected component of the identity of the whole group of 
symplectomorphisms.

In principle, the result also holds for arbitrary symplectic manifolds. One has to be 
more careful with non-compactly supported functions, but we can safely ignore these 
subtleties, since our manifold of interest will be closed.

Furthermore, let us recall that a Lagrangian submanifold L of a 2n-dimensional sym-
plectic manifold (M, ω) is a smooth n-dimensional submanifold of M such that

TpLε :=
{
X ∈ TpM

∣∣ ω(X,Y ) = 0 ∀Y ∈ TpL
}

= TpL ∀p ∈ L
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A.2. The Clifford-torus as a Lagrangian submanifold

We now study the Clifford torus as a special case of the Lagrangian submanifold of 
interest for our result.

Before proving that the Clifford torus is a Lagrangian submanifold, we need to specify 
the symplectic structure on CPn: Consider the map Φ : Cn+1 \ {0} → S

n+1 ⊂ C
n+1 via 

z �→ z/|z|. We will show that the pullback Φ∗ω of the standard symplectic structure ω
on Cn+1 descends to a symplectic form ωFB on CPn, the standard symplectic structure
or Fubini–Study form of the complex projective space.

Proposition 4. CPn, equipped with the Fubini–Study form is a 2n-dimensional symplectic 
manifold and the Clifford torus is a Lagrangian submanifold thereof.

Proof. Let us go through the construction in more detail and see, how it defines a 
symplectic form, e.g. a non-degenerate and closed 2-form on CPn. Throughout, we will 
consider the natural projection π : Cn+1 \ {0} → CPn.

Note that if (x0, y0, . . . , xn, yn) are the real coordinates of R2n+2 ∼= C
n+1, we can use 

(z0, z0, . . . , zn, zn) as coordinates for any point (z0, . . . , zn) ∈ C
n+1 as well. Then the 

standard symplectic form reads

ω =
∑
j

dxj ∧ dyj = i

2
∑
j

dzj ∧ dzj

Considering the action of C∗ on Cn+1, we obtain ωλ·z = i
2
∑

j d(λ · zj) ∧ d(λ · zj) =
|λ|2 i

2
∑

j dz
j ∧ dzj = |λ|2ωz. Hence, if Φ : Cn+1 \ {0} → S

2n+1 is given by z �→ z/|z|, 
then Φ∗ω will be invariant under the action of C∗. This shows that Φ∗ω descends to a 
well-defined 2-form ωFS on CPn, by defining:

(ωFS)π(p)(dπXπ(p), dπYπ(p)) =
(
Φ∗ω

)
p
(X,Y )

The next step is to show non-degeneracy. For this, note that Φ∗ω(X, Y ) = 0 ∀Y if and 
only if dΦX = 0 pointwise, since ω is non-degenerate. But dΦX = 0 implies in particular 
dπX = 0 and hence, ωFS as defined above is a non-degenerate 2-form.

Finally, we need to prove closedness. This can either be computed directly by con-
sidering coordinates, or by considering local sections of the projection π. Let {Ui}i be a 
cover of CPn such that there exists a local section σi : Ui → C

n+1 \ {0}. On each Ui we 
have ωFS = σ∗

i Φ
∗ω. But then

dωFS = d
(
σ∗
i Φ

∗ω
)

= (σiΦ)∗dω = 0

since d commutes with pullbacks and ω is closed. Since this holds on any patch Ui, 
dωFS = 0 globally.



84 M. Idel, M.M. Wolf / Linear Algebra and its Applications 471 (2015) 76–84

In addition, we need to see that the Clifford torus is a Lagrangian submanifold. It is 
easy to see that the Clifford torus is a submanifold of (real) dimension n, hence we only 
need to prove (TpT

n)ε = TpT
n ∀p ∈ Tn. Given the canonical projection π : Cn+1\{0} →

CPn, Tn is the image of π of the torus

T
n :=

{
(z0, . . . , zn)

∣∣ |z0| = |z1| = . . . = |zn| = 1
}

By inspection, we obtain for p = (p0, . . . , pn) ∈ C
n+1 \ {0}:

TpT
n = span{pi∂pi

− pi∂pi
| i = 0, . . . , n} =: span

{
Xi

p

∣∣ i = 0, . . . , n
}

Then Tπ(p)T
n will be spanned by dπXi

π(p).
Now, since already on the level of ω, we have ωp(Xi

p, X
j
p) = 0 for all i, j ∈ {0, . . . , n}

and all p ∈ C
n+1 \ {0}, it is immediate that (ωFS)π(p)(π∗Xi

p, π∗Xj
p) = 0 for all i, j and 

for all π(p) ∈ CPn. Hence we have that (TpT
n)ε ⊇ TpT

n ∀p ∈ Tn. Since equality then 
has to hold by dimensional analysis, we have Tn is a Lagrangian submanifold. �

Now consider the standard action of U ∈ U(n + 1) on Cn+1. Note that U leaves ω
invariant, since 

∑
i d(Uz)i ∧ dUzi =

∑
ijk UijU ikdz

j ∧ dzk =
∑

i dz
i ∧ dzi. Furthermore, 

since U leaves the norm invariant by definition, we have that U∗ωFS = ωFS , where U∗

is the pullback associated with the map U . This means that any unitary U ∈ U(n + 1)
corresponds to a symplectomorphism of CPn. Since it is well-known that the complex 
projective space is simply connected and closed, its Hamiltonian symplectomorphism 
corresponds to its symplectomorphism. Hence:

Proposition 5. We have U(n +1) ⊂ Ham(CPn, ωFS), where the identification is achieved 
by considering the standard action of U on Cn+1.
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Sinkhorn review

M. Idel September 26, 2016

Since its first proofs in the 1960s, Sinkhorn’s theorem has become a cornerstone in sev-
eral areas of applied mathematics, ranging from transportation science and economics
to biology. My own interest began during my Master’s studies, where I proved a gen-
eralisation to positive maps. It later transpired that the theorem had already been
proved in [2] albeit with a very different proof that seemed unrelated to my approach.
We found this paper only shortly before we wanted to publish the results. Later in
the same year, another paper appeared that did publish the results [1]. Learning from
this experience, I started to write a review about the problem of matrix scaling, ma-
trix balancing and equivalence scaling and its generalisations, in particular to positive
maps.

1 Scope

The review gathers everything I could find about the mathematics concerning Sink-
horn’s theorem. It starts with a historical section describing the origins of the question,
before investigating many different approaches to prove the theorem in its original
form. The fourth section gives an organised overview about maximal results achieved
over the years. In the following two section, I first analyse related questions of DAD
and DAD−1 scalings as well as other scalings (such as unitary scaling or complex
matrix scalings) before discussing generalised approaches that cover multiple scalings.
Two short sections are focused on complexity theoretic results for algorithms and
applications. Finally, a large section is devoted to the problem of positive matrix
scaling. It also contains a full proof of Gurvits’ results, since I found the proofs
difficult to follow.

2 Legal statement

This paper is a review and contains little to no nontrivial original results. I tried to
give due credit wherever a section is inspired by existing partial reviews. The project
developed over the years from my own interest. The original problem of finding a
Sinkhorn analogue for positive maps was given to me by Michael Wolf for my Master’s
thesis [3], however the review project did not emerge before 2014.
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A review of matrix scaling and
Sinkhorn’s normal form for matrices and

positive maps
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Abstract

Given a nonnegative matrix A, can you find diagonal matrices D1, D2 such that
D1 AD2 is doubly stochastic? The answer to this question is known as Sinkhorn’s theorem.
It has been proved with a wide variety of methods, each presenting a variety of possible
generalisations. Recently, generalisations such as to positive maps between matrix algebras
have become more and more interesting for applications. This text gives a review of over
70 years of matrix scaling. The focus lies on the mathematical landscape surrounding the
problem and its solution as well as the generalisation to positive maps and contains hardly
any nontrivial unpublished results.
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1. Introduction

It is very common for important and accessible results in mathematics to be discovered
several times. Different communities adhere to different notations and rarely read
papers in other communities also because the reward does not justify the effort. In
addition, even within the same community, people might not be aware of important
results - either because they are published in obscure journals, they are poorly presented
in written or oral form or simply because the mathematician did not notice them in
the surrounding sea of information. This is a problem not unique to mathematics but
instead inherent in all disciplines with epistemological goals.

The scaling of matrices is such a problem that has constantly attracted attention
in various fields of pure and applied mathematics1. Recently, generalisations have
been studied also in physics to explore possibilities in quantum mechanics where it
turns out that a good knowledge of the vast literature on the problem can help a lot
in formulating approaches. This review tries to tell the mathematical story of matrix
scaling, including algorithms and pointers to applications.

As a motivation, consider the following problem: Imagine you take a poll, where
you ask a subset of the population of your country what version (if any) of a certain
product they buy. You distinguish several groups in the population (for instance by
age, gender, etc.) and you distinguish several types of product (for instance different
brands of toothbrushs). From the sales statistics, you know the number of each product
sold in the country and from the country statistics you know the number of people in
different groups. Given the answers of a random sample of the population, how can
you extrapolate results?

Central to a solution is the following innocuous theorem:

Theorem 1.1 (Sinkhorn’s theorem, weak form Sinkhorn 1964). Given a matrix A with
positive entries, one can find matrices D1, D2 such that D1AD2 is doubly stochastic.

The literature on Sinkhorn’s theorem and its generalisations is vast. As we will see,
there are some natural ways to attack this problem, which further explains why the
different communities were often not aware of the efforts of their peers in other fields.

One of the main motivations for this review was a generalisation of Sinkhorn’s
theorem to the noncommutative setting of positive maps on matrix algebras:

1The term “Babylonian confusion” to describe the history of this problem was first used in Krupp 1979
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Theorem 1.2 (Weak form of Gurvits 2003’s generalisation to positive maps). Given a
map E : Cn×n → Cn×n which maps positive semidefinite matrices to positive definite matrices
one can find invertible matrices X, Y such that the map E ′(·) := YE(X · X†)Y† is doubly
stochastic, i.e.

E ′(1) = 1, E ′ ∗(1) = 1

with the adjoint matrices X† and the adjoint map E∗.

Some results and approaches can be translated to this noncommutative setting, but
many questions remain open and the noncommutativity of the problem makes progress
difficult.

Very recently, a new generalisation of Sinkhorn’s theorem to a noncommutative
setting has appeared in Benoist and Nechita 2016.

The goal of this review is therefore threefold:

• Trace the historical developments of the problem and give credit to the many
people who contributed to the problem.

• Illuminate the many approaches and connections between the approaches to
prove Sinkhorn’s theorem and its generalisations.

• Sketch the generalisation to positive maps and its history and highlight the
questions that are yet unanswered and might be attacked using the knowledge
from the classical version.

In addition, I will try to give a sketch of the algorithmic developments and pointers to
the literature for applications. I will probably have forgotten and/or misrepresented
contributions; comments to improve the review are therefore very welcome.

2. Notation and Preliminaries

Most of the concepts and notations discussed in this short section are well-known and
can be found in many books. I encourage the reader to refer to this section only if some
notation seems unclear.

We will mostly consider matrices A ∈ Rn×m. Such matrices are called nonnegative
(positive) if they have only nonnegative (positive) entries. We denote by Rn

+ (Rn
+0)

all vectors with only positive entries (nonnegative entries) and for any such x ∈ Rn
+,

diag(x) defines the diagonal matrix with x on its main diagonal, while 1/x ∈ Rn
+

defines the vector with entries 1/xi for all i.
An important concept for nonnegative matrices is the pattern. The support or pattern

of a matrix A is the set of entries where Aij > 0. A subpattern of the pattern of A
is then a pattern with fewer entries than the pattern of A. We write B ≺ A if B is a
subpattern of A, i.e. for every Bij > 0 we have Aij > 0.
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Finally, let us introduce irreducibility and decomposability. Details and connections to
other notions for nonnegative matrices are explained in Appendix A. If A is nonnegative,
then A is fully indecomposable if and only if there do not exist permutations P, Q such
that

PAQ =

(
A1 0
A3 A2

)
(1)

where neither A1 nor A2 contain a zero row or column and A3 6= 0. The matrix is
irreducible, if no permutation P can be found such that already PAPT is of form (1). In
particular, this implies that all fully indecomposable matrices are at least irreducible.

For positive vectors, we will not use the notation x > 0 to avoid confusion with the
positive definite case: Especially in the second part of this review, we will be dealing
mostly with positive (semi)definite matrices A ∈ Rn×n, which are symmetric matrices
with only positive (nonnegative) eigenvalues and should not be confused with positive
matrices. We also introduce the partial order ≥ for positive semidefinite matrices,
where A ≥ B if and only if A− B is positive semidefinite and A > B if A− B is positive
definite.

When talking about positive maps, we will also adopt the notation thatMn,m denotes
the complex n×m matrices, while the shorterMn is used for complex n× n square
matrices.

3. Different approaches to equivalence scaling

This section explores the historical development and current form of the mathematical
landscape surrounding the following extension to Theorem 1.1:

Theorem 3.1. Let A ∈ Rm×n be a matrix with nonnegative entries. Then for any vectors
r ∈ Rm and c ∈ Rn with nonnegative numbers there exist diagonal matrices D1 and D2 such
that

D1AD2e = r

D2ATD1e = c

if and only if there exists a matrix B with Be = r and BTe = c and the same pattern as A. Here,
e = (1, . . . , 1)T which means that r contains the row sums of the scaled matrix and c contains
the column sums.

Furthermore, if the matrix has only positive entries, D1 and D2 are unique up to a constant
factor.

In Section 4, we give maximal formulations of this theorem. Some immediate
questions emerge, such as: How to compute D1, D2 and the scaled matrix? Can this be
generalised to arrays of higher dimension? All of these questions and many more have
been answered in the literature.
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Given a matrix A ∈ Rn×n with positive entries and the task to scale A to given row
sums r and column sums c, one is very naturally lead to the following approximation
algorithm:

Algorithm 3.2 (RAS method). Given A ∈ Rm×n, do:

• Multiply each row j of A with rj/
(
∑i Aij

)
to obtain A(1) with row sums r.

• Multiply each column j of A(1) with cj/
(
∑i Aji

)
to obtain A(2) with column sums

c.

• If the row sums of A(2) are very far from r, repeat steps one and two.

If the algorithm converges, the limit B will be the scaled matrix. However, there is
a priori no guarantee that D1, D2 exist, in which case we can only ask for approximate
scaling, i.e. matrices D1, D2 such that D1AD2 ≈ B.

3.1. Historical remarks

The iterative algorithm 3.2 is extremely natural and it is therefore not surprising that
it was rediscovered several times. It is at least known as Kruithof’s projection method
(Krupp 1979) or Kruithof double-factor model (especially in the transportation community;
Visick et al. 1980), the Furness (iteration) procedure (Robillard and Stewart 1974), iterative
proportional fitting procedure (IPFP) (Ruschendorf 1995), the Sinkhorn-Knopp algorithm
(Knight 2008), the biproportional fitting procedure (in the case of r = c = e; Bacharach
1970) or the RAS method (especially in economics and accounting; Fofana, Lemelin, and
Cockburn 2002). Sometimes, it is also referred to simply as matrix scaling (Rote and
Zachariasen 2007), which is mostly used as the term for scalings of the form DAD−1,
or matrix balancing, which is mostly used for scalings to equal row and column sums.
The algorithm is a special case of a number of other algorithms such as Bregman’s
balancing method (cf. Lamond and Stewart 1981) as we will see later on.

When was interest sparked in the RAS method and diagonal equivalence? The
earliest claimed appearance of the model dates back to at least the 30s and Kruithof’s
use of the method in telephone forecasting (Kruithof 1937). At a similar time, according
to Bregman 1967, the Soviet architect Sheleikhovskii considered the method. Sinkhorn
1964 claims that when he started to evaluate the method, it had already been proposed
and in use. His example is the unpublished report Welch unknown. Bacharach 1970
acknowledges Deming and Stephan 1940 in transportation science, who popularised
the RAS method in the English speaking communities.

None of these approaches seem to have been thoroughly justified. Bacharach notes
that Deming and Stephan only propose an ad-hoc justification for using their method
to study their problem, which turned out to be wrong (cf. Stephan 1942). He further
claims that the first well-founded approach to use the RAS - this time in economics -
was given by Richard Stone, who also coined the name “RAS model” (Bacharach cites
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Stone 1962, although the name RAS must have occurred earlier as it already occurs in
Thionet 1961 without attribution and explanation). However, one can argue that the
first justified approach occurred earlier: Schrödinger 1931 had already posed a question
regarding models of Brownian motion when given a priori estimates, which led to a
similar problem. His approach was justified, albeit the ultimate justification in terms
of large deviation theory needed to wait for the development of modern probability
theory (cf. Georgiou and Pavon 2015). The problem boils down to solving a continuous
analogue of Sinkhorn’s theorem, which leads to the matrix problem using discrete
distributions (essentially similar to Hobby and Pyke 1965) and was first attacked in
Fortet 1940 using a fixed point approach similar to Algorithm 3.13.

However, none of the original papers provided a convergence proof with the possible
exception of Fortet 19402. As noted by Fienberg 1970, after Deming and Stephan
provided their account, their community started to develop the ideas, but a proof was
still lacking (Smith 1947; El-Badry and Stephan 1955; Friedlander 1961).

Summarising the last paragraphs, the RAS method was discovered independently
for different reasons in the 30s to 40s, although none of the authors provided a proof
(with the possible exception of Fortet). A more theoretical analysis developed in the
60s after Stone’s results in economics (e.g. Stone 1962) and Sinkhorn 1964 in statistics
and algebra. Since then, a large number of papers has been published analysing or
applying Theorem 3.1. Every decade since the sixties contains papers where proving
the theorem or an extension thereof is among the main results (examples are Sinkhorn
1964; Macgill 1977; Pretzel 1980; Borobia and Cantó 1998; Pukelsheim and Simeone
2009; Georgiou and Pavon 2015).

Many authors are aware of at least some other attempts, but only a few try to give an
overview.3 The situation is further complicated by a the fact that the technical answer
to the question of scalability is tightly linked with the question of patterns, which has a
rich history in itself, probably starting with Fréchet (overview of a long line of work in
Fréchet 1960).

The last point is particularly interesting: In fact, one could summarise matrix scaling
matrix scaling as follows: Given a nonnegative matrix A it is scalable to a matrix B
fulfiling some constraints (mostly linear but some nonlinear constraints are allowed), a
matrix is scalable with diagonal matrices (in different ways, mostly D1AD2 where D1

and D2 need not be independent) if and only if there exists a matrix C with the same
pattern as A fulfiling the constraints.

2The notation and writing is very difficult to read today, so I am not entirely sure whether the proof is
correct and captures the case we are interested in.

3This suggests once again that the problem had a very complicated history which also makes it difficult
to find out whether a problem has already been solved in the past. Several authors have attempted
more complete historical overviews such as Fienberg 1970; Macgill 1977; Schneider and Zenios 1990;
Brown, Chase, and Pittenger 1993; Kalantari and Khachiyan 1996; Kalantari et al. 2008; Pukelsheim
and Simeone 2009. In Rothblum and Schneider 1989, the authors claims that a colleague collected
more than 400 papers on the topic of matrix scaling.
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Today, proofs and generalisations of Theorem 3.1 and similar questions about scaling
matrices in the form DAD or DAD−1 form a knot of largely interconnected techniques.
We will now try to give an overview of these results and highlight their connections. A
graphical overview is presented in Figure 3.1.

Potential optimisation

Convex
optimisation

Fixed point
approaches

Entropy

log-barrier function
coordinate descent

logarithmic single-
variable potential

single-variable
potential

homogeneous
potential
total gradient

relative entropy
iterative

I-projection

log-linear models
Nonlinear Perron-
Frobenius Theory
f.p. iteration

combined

Kakutani
fixed point
theorem

Kronecker
index theorem

convex opt.
convex log-barrier
coordinate ascent

single-variable
convex potential

3.15
3.11

3.10

3.8

3.20

3.25

3.22

3.10

3.25
3.19

6.3 applies to

3.14

3.17

3.18

similar

Figure 1: Connected approaches to prove Theorem 3.1 and their relationships. Red
arrows and text denote natural algorithms and their connections.

3.2. The logarithmic barrier function

Potentials and barrier functions have been important in the study of matrix scaling
since at least the unpublished results of Gorman 1963. Here, we largely follow Kalantari
and Khachiyan 1996, who give a very lucid account about the interconnections between
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different barrier function formulations for g.
Let A ∈ Rn×n be a matrix with nonnegative entries and r, c ∈ Rn

+. Define the
logarithmic barrier function

g(x, y) = yT Ax−
n

∑
i=1

ci ln xi −
n

∑
i=1

ri ln yi (2)

If we take partial derivatives, we obtain

∂yi g(x, y) = Ax− ri/yi

∂xi g(x, y) = yT A− ci/xi
(3)

which implies that for any stationary point we have

∑
j

Aijxjyi = ri ∑
j

Ajixiyj = ci

and setting D1 = diag(y) and D2 = diag(x) solves the scaling problem. Conversely,
any scaling gives a stationary point of the logarithmic barrier function. In summary:

Lemma 3.3. Given A ∈ Rn×n nonnegative and two vectors r, c ∈ Rn
+, then the matrix can

be diagonally scaled to a matrix B with row sums r and column sums c if and only if the
corresponding logarithmic barrier function (2) has a stationary point.

According to Macgill 1977, this observation was first made by Gorman 1963 who
also gave the first complete and correct proof. However, the paper only circulated
privately. Gorman apparently did not consider this scaling function directly but used
an approach similar or identical to the ones considered in convex geometry described
in Section 3.5.

The potential barrier function can also be seen from the perspective of Lagrangian
multipliers:

Lemma 3.4 (Marshall and Olkin 1968). Given A ∈ Rn×n nonnegative and two vectors
r, c ∈ Rn

+, then the matrix can be diagonally scaled to a matrix B with row sums r and column
sums c if and only if on the region

Ω :=

{
(x, y)

∣∣∣∣∣ m

∏
i=1

xci
i =

m

∏
i=1

yri
i = 1, xi > 0, yi > 0

}
(4)

the function yT Ax is bounded away from zero and is unbounded whenever ‖x‖∞ + ‖y‖∞ → ∞.
The function yT Ax then attains a minimum defining D1 and D2.

This was used to prove our Theorem 3.1 in Marshall and Olkin 1968. We observe:

Observation 3.5. Lemma 3.4 and 3.3 are equivalent: The logarithmic barrier function
is the Lagrange function of the optimisation problem in Lemma 3.4.
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Now consider g(x, y) for a fixed x. Since (− ln) is a convex function and xT Ay
is linear in y, g is convex in y. The same holds for a fixed y, i.e. g is convex in
both direction. It is then natural to consider the coordinate descent algorithm (for an
introduction and overview see Wright 2015):

Algorithm 3.6. Given a nonnegative matrix A, take a starting point for g, e.g. x0 =

y0 = e and iterate:

1. For fixed yn, find xn+1 by searching for the minimum of g(x, yn).

2. For fixed xn+1, find yn+1 by searching for the minimum of g(xn+1, y).

3. Repeat until convergence.

It is possible to solve minx g(x, y) or miny g(x, y) analytically:

xn+1 = p/(Ayn), yn+1 = q/(Axn+1).

This leads to the following observation:

Observation 3.7 (Kalantari and Khachiyan 1996). Algorithm 3.6 and 3.2 are the same.

Proof. Define D(1)
n := diag(yn) and D(2)

n := diag(xn). Then we have D(1)
n+1AD(2)

n e = r

and eTD(1)
n AD(2)

n = cT, which implies that we perform successive row- and column
normalisations as in the RAS method.

Using the fact that the algorithm is a coordinate descend method, one can obtain a
convergence proof including a discussion of convergence speed of this algorithm and
a dual algorithm (Luo and Tseng 1992). See also Observation 3.17 for a discussion of
coordinate ascent methods.

However, g is not jointly convex. For a purely (jointly) convex reformulation, consider
the minimum for t along any line g(tx, ty), where g is convex. If we define

k(x, y) := min
t>0

g(tx, ty) (5)

minimising k(x, y) is still equivalent to minimising g(x, y). The corresponding k will be
homogeneous and the domain for minimisation will in fact be compact.

Observation 3.8 (Kalantari and Khachiyan 1996). We obtain:

k(x, y) = min
t>0

(
t2yT Ax− 2n ln t−

n

∑
i=1

ci ln xi −
n

∑
i=1

ri ln yi

)
(6)

= ln

 (yT Ax)n

∏n
i=1 xci

i ∏n
j=1 y

rj
j

+ n− n ln(n) (7)

hence minimising g is equivalent to minimising k.
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This proves the following lemma:

Lemma 3.9. Given a nonnegative matrix A ∈ Rn×m, it can be scaled to a matrix with row
sums r and column sums c if and only if the minimum of k(x, y) exists and is positive. The
corresponding minima (x, y) define the diagonal matrices to achieve the scaling.

The function k is also similar to Karmakar’s potential function for linear programming
and Algorithm 3.2 is the coordinate descent method for this function (Kalantari and
Khachiyan 1996; Kalantari 1996).

Setting y(x) = (Ax)−1, we arrive at another formulation of the problem. In the
doubly stochastic case, this formulation is due to Djoković 1970; London 1971 and was
later adapted to arbitrary column and row sums in Sinkhorn 19744:

Lemma 3.10. Let A ∈ Rn×n be a nonnegative matrix. There exists a scaling to a matrix with
row sums r and column sums c iff the infimum

inf

{
n

∏
i=1

(
n

∑
j=1

Aijxj

)ri
∣∣∣∣∣ n

∏
i=1

xci
i = 1

}
(8)

is attained on x, y ∈ R+.

Observation 3.11. Note that the infimum is attained iff the infimum

inf

{
n

∑
i=1

ri ln

(
n

∑
j=1

Aijxj

)∣∣∣∣∣ n

∑
i=1

ci ln xi = 0

}

is attained. This is the formulation in Lemma 3.4.

Finally, let us sketch a proof using potential methods.

Sketch of proof of Theorem 3.1 (Potential version). We sketch a proof for arbitrary row and
column sums based on the short proof of Djoković 1970 for doubly stochastic scaling:
First assume that A ∈ Rm×n is a positive matrix. Starting with equation (8) we define
the function

f (x1, . . . , xn) :=
∏m

i=1

(
∑n

j=1 Aijxj

)ri

∏n
i=1 xci

i

on the set of xi with xi > 0 and ∑i xi = 1. Consider an arbitrary point b on the boundary
(i.e. bi = 0 for at least one i ∈ 1, . . . n). For xi → bi, since ∏i xi = 0 and ∑j Aijxj 6= 0

4later studied in Krupp 1979, who used an entropic approach for the generalised problem and in Berger
and Kelley 1979, who used a direct convergence approach reminiscent of Sinkhorn and others.
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always, we have that f (x1, . . . , xn)→ ∞. Hence the function takes its minimum in the
interior. At the minimum, the partial derivatives must vanish and we obtain:

0 !
= ∂xl f =

m

∏
i=1


(

∑n
j=1 Aijxj

)ri

xci
i


 m

∑
k=1

 xck
k(

∑n
p=1 Akjxj

)rk

 ·
 rk

(
∑n

p=1 Akjxj

)rk−1
Akl

xck
k

−
cl

(
∑n

p=1 Akjxj

)rk

xcl+1
l

δkl




=
m

∏
i=1


(

∑n
j=1 Aijxj

)ri

xci
i


 m

∑
k=1

Aklrk

(
n

∑
p=1

Akjxj

)−1

−
m

∑
k=1

clx
ck
k

xcl+1
l

δkl

 .

If we take all conditions for l = 1, . . . n, then this is equivalent to the condition

AT(r/(Ax)) = c/x

which boils down to equations (3).
The more technical part for nonnegative matrices is a more careful analysis of what

happens for nonnegative matrices that are not positive. For doubly stochastic matrices,
we can use the fact that fully indecomposable matrices have a positive diagonal, which
implies once again that ∏i ∑j Aijbj 6= 0. A similar argument can be made for arbitrary
patterns, but we leave it out in this sketch.

3.3. Nonlinear Perron-Frobenius theory

Another early approach uses nonlinear Perron-Frobenius theory which is essentially a
very general approach to tackle fixed point problems for (sub)homogeneous maps on
cones. A short overview is given in appendix B. The basic idea is given by:

Lemma 3.12 (Brualdi, Parter, and Schneider 1966). Given a nonnegative matrix A ∈ Rn×n,
there exists a scaling of A to a matrix with row sums r and column sums c if and only if the
following map has a fixed point x > 0:

T : Rn → Rn

T(x) = c/(AT(r/(Ax)))
(9)

This also suggests another simple algorithm:

Algorithm 3.13. Given a nonnegative matrix A. Let x0 = e. Iterate until convergence:

xn+1 = T(xn). (10)
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The development of this idea that started with Menon 1967 and was used to provide
a full proof of Theorem 3.1 in Brualdi, Parter, and Schneider 1966 for doubly stochastic
matrices. Menon and Schneider 1969 consider arbitrary row- and column sums and give
a complete study of the spectrum of the Menon-operator. Some contraction properties
were used to give a direct proof of convergence of the RAS algorithm in Berger and
Kelley 1979. The connection to Hilbert’s projective metric, and therefore to “Nonlinear
Perron-Frobenius theory” (cf. Lemmens and Nussbaum 2012), became clear later on
and allowed to give upper bounds on the covergence speed of the RAS (Franklin and
Lorenz 1989; Georgiou and Pavon 2015).

However, Menon was not the first to define the operator T: Looking closely at the
arguments given in Fortet 1940, one can see the continuous version of T, which lead to
an independent rediscovery of T and its connection to the Hilbert metric in Georgiou
and Pavon 2015. Probably, Menon was not even the first to define the discrete version
of the operator and to note that the existence of a fixed point can be seen by invoking
Brouwer’s fixed point theorem. This dates back to Thionet 1963; Thionet 1964, building
on work about matrix patterns (Thionet 1961). According to Caussinus 1965, Thionet
1964 was also the first paper to conjecture the necessary and sufficient conditions for
scalability5. The ideas where rediscovered another time in Balinski and Demange 1989b,
where the authors used the fixed point argument to prove that a scaling exists and
fulfils their axiomatic approach.

Let us connect the approach to Section 3.2. First note that the algorithm is nothing
else but a slight variation of the RAS method:

Observation 3.14. Setting yn+1 := r/(Axn) and xn+1 := c/(ATyn+1) we can immedi-
ately see that one iteration of Algorithm 3.13 is one complete iteration of the RAS
method 3.2.

The connection with the logarithmic barrier method is also very close:

Observation 3.15. Any fixed point of the Menon operator defines a stationary point of
the logarithmic barrier function (2) and vice versa.

Proof. Let A be a nonnegative matrix. The derivative conditions for the stationary
points of (2) are given in equation (3), which are equivalent to:

Ax = r/y yT A = c/x (11)

This implies immediately that x = p/(AT(q/Ax)), hence x is a fixed point of T.
Similarly, any positive fixed point immediately gives a scaling as a minimum of the
logarithmic barrier function.

This also proves Lemma 3.12.

5He also notes that the early history around Deming and Stephan 1940 is a little bit curious, since the
authors claim to have a convergence proof but never publish it.
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Sketch of proof of Theorem 3.1 (Nonlinear Perron-Frobenius theory version). Let us first as-
sume A has only positive entries. Then T sends all vectors x ∈ Rn

+ 0 to Rn
+ hence using

Brouwer’s fixed point theorem T has a positive fixed point. Note that in order to apply
Brouwer’s fixed point theorem, we need to have a compact set. To achieve this, consider
the operator T̃(x) = T(x)/ ∑n

i=1 T(x)i.
For general nonnegative matrices A, one can extend T to be a map from x ∈ Rn

+ 0
into itself (see also Appendix B) either by a general argument (see Theorem B.8) or by
defining ∞ · 0 = 0 and ∞ · c = ∞ for all positive c. One can easily see that T will not
send any entry to ∞.

However, it is not immediately clear when the fixed point is positive if A contains
zero-entries. This is the main technical difficulty for a complete proof. Brualdi, Parter,
and Schneider 1966 show that if A is fully indecomposable, T(x) has at least k+ 1 entries
which are nonzero if x has exactly k entries which are nonzero, which immediately
proves that the fixed point must be positive.

Upon closer observation, the map is contractive under Hilbert’s metric and Banach’s
fixed point theorem immediately provides existence and uniqueness of the scaled
matrix. The fixed point itself provides the diagonal of D2.

3.4. Entropy optimisation

Another approach, which underlies many justifications for applications, considers
entropy minimisations under linear constraints. An overview of entropy minimisation
and its relation to diagonal equivalence can be found in Brown, Chase, and Pittenger
1993, a broader overview about the relation of the RAS algorithm to entropy scaling
with a focus on economic settings can be found in McDougall 1999.

To formulate the problem, we define the Kullback-Leibler divergence, I-divergence or
relative entropy, which was first described in Kullback and Leibler 1951 (see also Kullback
1959) for two vectors x, y ∈ Rn

+ 0:

D(x‖y) :=
n

∑
j=1

xj ln
(

xj

yj

)
(12)

where we use the convention that the summand is zero if xj = yj = 0 and infinity if
xj > 0, yj = 0. The relative entropy is nonnegative and zero if and only if x = y and it
is therefore similar to a distance measure. Given a set, what is the smallest “distance”
of a point to this set in relative entropy? This is known as I-projection (cf. Csiszár 1975).

Let A be a nonnegative matrix and define

Π1 := {B|Be = r}
Π2 := {B|eTB = cT}.

We ask for the I-projection of A onto the set Π1 ∩Π2, i.e. we want to find A∗ such that

D(A∗‖A) = inf
B∈Π1∩Π2

D(B‖A). (13)
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The connection to scaling was probably first used in Brown 1959, where the RAS method
is used to improve an estimate for positive probability distributions of dimensions
2× 2× . . .× 2 in the relative entropy measure (Brown cites Lewis 1959 as a justification
for his approach, where the relative entropy is justified as a “closeness” measure).
According to Fienberg 1970, this approach was later generalised to all multidimensional
tables in Bishop 1967 based on some duality of optimisation by Good 19656. Another
early use of relative entropy occurs in Uribe, Leeuw, and Theil 1966 (see also Theil
1967), where it was noted without proof that the results were the same as the RAS.

A very natural approach to obtain A∗ would be to try an iterative I-projection:

Algorithm 3.16. Let A be nonnegative.

• Let A(0) = A.

• If n is even, find A(n+1) such that

D(A(n+1)‖A(n)) := inf
B∈Π1

D(B‖A).

• If n is odd, find A(n+1) such that

D(A(n+1)‖A(n)) := inf
B∈Π2

D(B‖A)

• Repeat the steps until convergence.

Observation 3.17 (cf. Csiszár 1975; Csiszár 1989). The algorithms 3.16 and 3.2 are the
same.

Proof. This was first shown in Ireland and Kullback 1968. We give a short argument
based on Lagrangian multipliers restricted to column normalisation. Given A ∈ Rn×n,
the Lagrangian for the problem is

L(B, λ) := D(B‖A) + λj

(
∑

i
Aij − qj

)
.

Partial derivatives ∂Bij L = 0 and ∂λj L = 0 lead to the system of equations:

ln
(

Bij

Aij

)
+ 1 + λj = 0 i, j = 1, . . . , n

∑
i

Aij − cj = 0 j = 1, . . . , n.

A solution is easily seen to be

Bij = Aij
cj

∑k Akj
i, j = 1, . . . , n

The latter is the column renormalisation as in the RAS (Alg. 3.2).
6Both references were not available to me.
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This implies that if the iterated I-projection converges to the I-projection of (13), then
matrix scalability solves equation (13). This was supposedly proved in Ireland and
Kullback 19687 and Kullback 1968, but the proofs contain an error as pointed out in
Csiszár 1975 (see also Brown, Chase, and Pittenger 1993). A corrected proof appeared
in Csiszár 1975, however for some of the theorems it is not immediately clear whether
more assumptions are needed as noted in Borwein, Lewis, and Nussbaum 1994.

In addition, the proof in Aaronson 2005 for positive matrices proves that the RAS
converges using relative entropy as a “progress measure”. He shows that it decreases
under RAS steps to a unique stationary point. Another direct proof appeared in
Franklin and Lorenz 1989.

At this point, let us make the following observation:

Observation 3.18 (Cottle, Duvall, and Zikan 1986). The RAS method can also be seen
as the coordinate ascent method to the dual problem of entropy minimisation.

This is justified as follows: When deriving the I-projections of each step of the
algorithm, we set up the Lagrangian

L(B, λ) := D(B‖A) + λj

(
∑

i
Aij − cj

)

and calculate its solution. This consists in explicitly solving the resulting equations
for the Lagrangian multipliers λj. In this sense, the algorithm is not really a primal
problem. This is also consistent with the nomenclature above: In Section 3.5 we see that
the dual problem of entropy minimisation is a convex program that is basically just the
(negative) logarithmic barrier function above. Since the RAS is the coordinate descent
algorithm of this problem, it is the coordinate ascent method of the dual problem of
entropy minimisation.

In other word, the justification of this observation is due to:

Observation 3.19 (Georgiou and Pavon 2015; Gurvits 2004). Given a matrix A ∈ Rn×n

with nonnegative entries. Suppose there exist positive diagonal matrices such that
D1 AD2 has row sums r and column sums c, then

− ln

(
inf

{
(

n

∏
i=1

ri

n

∑
j=1

Aijxj)

∣∣∣∣∣ n

∏
i=1

xci
i = 1

})
= inf{D(B‖A)|Be = r, BTe = c} (14)

and in particular, the minimum is the scaled matrix.

The proof of this observation will essentially follow from the results in Section 3.5.
Let us finish this section by giving another proof sketch of Sinkhorn’s theorem:

7In Fienberg 1970, it is pointed out that a simplified version of this proof appeared in Dempster 1969,
which however is unavailable to me.
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Sketch of proof of Theorem 3.1 (Entropic version). We sketch the proof given in Csiszár
1975 restricted to our scenario, which is similar to the proof in Darroch and Ratcliff
1972 (see also Csiszár 1989 for a comment on the connection). We prove convergence
of Algorithm 3.16, essentially by showing that the relative entropy of two successive
iterations decreases to zero.

Given a nonnegative matrix A, assume that there exists a matrix B ≺ A with required
row- and column sums. Otherwise, the relative entropy will always be infinite and the
problem has no solution.

The crucial observation is that if A′ is the I-projection of A onto Π, then for any
B ∈ Π we have

D(B‖A) = D(B‖A′) + D(A′‖A). (15)

This “Pythagorean identity” usually only holds with ≥. The equality case is a special
case of the “minimum discrimination principle” (Kullback 1959; Kullback and Khairat
1966) and it is proven for constraints Πi in Csiszár 1975. This equality leads to a
very useful transitivity result (see also Ku and Kullback 1968) stating that if A has
I-projection B on Πi for some i and I-projection B′ on Π, then B has I-projection B′ on
Π. This is not necessarily true in the general case.

Let A′ be the I-projection of A onto Π. Denoting by A(n) the repeated I-projection as
defined in Algorithm 3.16, repeated application of equation (15) shows

D(A′‖A) = D(A′‖A(n)) +
n

∑
i=1

D(A(n)‖A(n−1))

Therefore, the sequence A(n) lies in a bounded set and hence contains a convergent
subsequence by compactness. However, we also have that D(A(n)‖A(n−1)) → 0 for
n→ ∞, which implies ‖A(n) − A(n−1)‖∞ → 0 for n→ ∞, hence A(n) converges to some
matrix A′′. Clearly, A′′ ∈ Π, since A(2n) ∈ Π1 and A(2n+1) ∈ Π2 for every n ∈N. Using
the transitivity of the I-projection, A′′ is the I-projection of A(n) for all n and equation
(15) holds in the form

D(A′′‖A(n)) = D(A′′‖A′) + D(A′‖A(n))

Since the first and last term converge to zero, D(A′′‖A′) = 0 and the I-projection A′ is
indeed the limit of Algorithm 3.16.

A similar proof can be found in Brown, Chase, and Pittenger 1993.

3.5. Convex programming and dual problems

Recall the logarithmic barrier function g in equation (2) and that it is not jointly convex.
However, it is very beneficial to make g convex for several reasons:
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1. Convex programming is efficient in the complexity theoretic sense (Boyd and
Vandenberghe 2004).

2. The duality theory for convex programming is very well developed and can lead
to new algorithms (see littleO 2014 for a heuristic introduction and Rockafellar
1997; Boyd and Vandenberghe 2004 for a more careful analysis).

3. Uniqueness proofs can become simpler: A convex function has a unique minimum
iff it is strictly convex at the minimum.

To obtain a convex program, one simply needs to substitute x = (eξ1 , eξ2 , . . . , eξn) and
y = (eη1 , eη2 , . . . eηn) into g to obtain (Macgill 1977; Kalantari and Khachiyan 1996):

Lemma 3.20. Given a nonnegative matrix A ∈ Rn×n, one can find diagonal matrices to scale
A to a matrix with row-sum r and column sum c if and only if the function

f (ξ, η) :=
n

∑
ij=1

Aijeηi+ξ j −
n

∑
i=1

riξi −
n

∑
j=1

cjηj (16)

attains its minimum on ξ, η ∈ Rn
− 0.

A proof based on this approach can be found in Bachem and Korte 1979.8 We have
already seen:

Observation 3.21. The convex programming formulation in Lemma 3.20 is equivalent
to the logarithmic barrier function approach in Lemma 3.3.

Likewise, it can be shown:

Observation 3.22. The convex programming formulation 3.20 is the Wolfe dual (Macgill
1977; Krupp 1979) or Lagrangian dual (Balakrishnan, Hwang, and Tomlin 2004) of the
entropy minimisation approach.

Proof. The entropy minimisation problem was given as:

inf
Bij

∑
ij

Bij ln(Bij/Aij)

s.t. ∑
i

Bij = pj ∑
j

Bij = qi

This implies that the Wolfe dual is given by

sup
Bij

∑
ij

Bij ln(Bij/Aij) + ∑
j

uj

(
∑

i
Bij − pj

)
+ ∑

i
vi

(
∑

j
Bij − qi

)
8In Bacharach 1970 it is also noted that the function is used in the approach by Gorman 1963 later to be

simplified by Bingen 1965. Both papers are unavailable to me.
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s.t. ln(Aij/Bij) + 1 + uj + vi = 0 ∀i, j

u, v ≥ 0

The constrained can be rewritten as

Bij = Aij exp(−1− uj − vi)

and inserting this into the Wolfe dual function (see e.g. Bot and Grad 2010) we obtain:

sup
Bij

∑
ij

Bij ln(Bij/Aij) + ∑
j

uj

(
∑

i
Bij − pj

)
+ ∑

i
vi

(
∑

j
Bij − qi

)

= sup
u,v
−
(

∑
ij

Aij exp(−1− uj − vi)−∑
j

uj pj −∑
i

viqi

)
which is (up to the constant ∑ij Aij/e) the optimisation problem in 3.20. The calculation
for the Lagrangian dual is similar (see Balakrishnan, Hwang, and Tomlin 2004).

Another connection to the barrier function is to use geometric programming:

Observation 3.23. Minimisation of the logarithmic barrier function g is equivalent to

min yT Ax

s.t.
n

∏
i=1

xci
i = 1,

n

∏
i=1

yri
i = 1

This is in standard form of a geometric program, which implies that a substitution
ξ = ln(x), η = ln(y) gives a convex program (Boyd and Vandenberghe 2004, Section
4.5.3).

This observation was made in Rothblum and Schneider 1989, which also gives
necessary and sufficient conditions for a matrix to be scalable or approximately scalable.

As described in Kalantari and Khachiyan 1996, one can also reduce the problem to an
unconstrained optimisation problem for only a single variable by taking the formulation
of Lemma 3.10 and substituting x = exp(ξ) as above to obtain the minimising function

Lemma 3.24. Given a nonnegative matrix A ∈ Rn×n, one can find diagonal matrices to scale
A to a matrix with row sums r and column sums c if and only if the function

f (ξ) =
n

∑
j=1

rj ln

(
n

∑
i=1

Aijeξi

)
−

n

∑
i=1

ciξi. (17)

attains its minimum on ξ ∈ Rn
− 0.

Finally, let us return to entropy minimisation: Relative entropy is jointly convex and
therefore a convex program. In fact, relative entropy is a special case of a broader class
of functions called Bregman divergences which we will sketch in Section 6.5.

A proof of Theorem 3.1 using convex programming is often similar to the approach
in Section 3.2. The advantage is that any critical point is automatically a minimum and
one does not need to consider the boundary.
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3.6. Topological (non-constructive) approaches

In the proof of Theorem 3.1 in Section 3.3, the result was achieved by Brouwer’s fixed
point theorem, but it is only one of many topological proofs.

For every nonnegative matrix A with a given pattern, we want to decide whether a
scaling with prespecified row- and column sums exists. Assume that we also know the
set of possible row- and column sums for a given pattern. In a sense, we therefore just
have to prove that the map φ : Rn ×Rn → Rn×n defined via (D1, D2) 7→ D1AD2 hits
all row- and column sums, or else: we need to see that the map

φ′ :Rn
+ ×Rn

+ → Rn
+ ×Rn

+

(D1, D2) 7→ (p, q) : pi = ∑
j
(D1AD2)ij, qj = ∑

i
(D1AD2)ij

(18)

is onto. This is somewhat problematic, because the spaces involved are not compact, but
by normalising both diagonal matrices and row- and column-sums, one can consider
the map as a map from a compact space into itself. This approach was taken in Bapat
1982 for positive matrices (based on his thesis) and the map was shown to be surjective
using a topological theorem, which Bapat claims is sometimes known as Kronecker’s
index theorem.9 The case for general nonnegative matrices could only be covered by
combining the approach with Raghavan 1984 (see Bapat and Raghavan 1989).

Raghavan 1984 uses yet another fixed point theorem (Kakutani’s fixed point theorem
of set-valued maps). Defining the set K of all matrices in Rn×m with prescribed
marginals and zero (sub)pattern of the a priori matrix A, he considers the map

φ(H) = {Z|Z ∈ K, max
Z′
〈C(H), Z′〉 = 〈C(H), Z〉 (19)

where C(H)ij = log(Aij/Hij) (if Aij > 0, and 0 else), we take all matrices as vectors
in Rnm and the usual scalar product. The fixed point theorem then implies that there
exists H such that

max
Z′∈K
〈C(H), Z〉 = 〈C(H), H〉

and using the dual of this maximisation, one can show that it scales the matrix.

Observation 3.25. There is a simple connection to entropy minimalization, since
〈C(H), H〉 = D(H‖A).

However, we can also take the converse road: Instead of exploring the possibilites for
every A, we can start with the set of matrices with prescribed row- and column sums

9I could not find any other instance of where the theorem is given that name. The theorem simply states
that for any map f : Dn+1 → Dn+1, if f maps ∂Dn+1 into itself and is of nonzero degree, then it must
be surjective.
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and matrix pattern X (call the setM(p, q,X )) and map it to the set of all nonnegative
matrices of pattern X (call itM(X )) by diagonal equivalence, i.e. consider the map:

ψ :Rn
+ ×Rn

+ ×M(p, q,X )→M(X )

(D1, D2, B) 7→ D1BD2
(20)

Again, it would be enough to show surjectivity. As such, it cannot be injective, because
we can obviously shift a scalar from D1 to D2, hence we would at least have to restrict
the first coordinate of D1 to be 1. The resulting map ψ′ is indeed a homeomorphism as
shown in an overlooked paper of Tverberg 1976.

Another topological proof has recently been proposed in Friedland 2016. To describe
the approach, note that the following two statements are equivalent:

1. There exist D1, D2 such that D1AD2 has row sums r and column sums c.

2. There exist D′1, D′2 such that D′1AD′2 is a stochastic matrix with D′1AD′2c = r.

The proof is trivial, in fact D′1 = D1 and D′2 = D2 diag(1/c). In Friedland 2016, the
author therefore restricts to stochastic matrices. To do this, he defines the following
map:

ΦA :Rn
+ → Rn×n

+ ; ΦA(x) = diag(x)A/ diag(ATx) (21)

A quick calculation shows that ΦT
Ae = e, hence the matrix is always stochastic. Hence

given a nonnegative matrix A and row sums r and columns sums c, the question
of scalability is equivalent to the question whether there exists an x ∈ Rn such that
ΦA(x)c = r.

For positive matrices A and any c ∈ Rn
+, Friedland 2016 now proves scalability by

proving that the map ΦA,c : x → ΦA(x)c is continuous as a set from Rn
+ 0 ∩ {v|∑i vi =

1} onto itself and a diffeomorphism from Rn
+ ∩ {v|∑i vi = 1} onto itself. The result is

achieved using degree theory similar to Bapat and Raghavan 1989.

3.7. Other ideas

A very general approach to prove Theorem 3.1 was provided in Letac 1974, where
matrix theorems are derived as a consequence of the following theorem:

Theorem 3.26 (Letac 1974). Let X be a finite set, (µ(x))x∈X strictly positive numbers and
H a fixed linear subspace of RX. Then there exists a unique (nonlinear) map from RX → H
denoted f 7→ h f such that

∑
x∈X

[exp( f (x))− exp(h f (x))]g(x)µ(x) = 0

for all g in H.
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Sinkhorn’s theorem follows as an easy corollary:

Sketch of proof of Theorem 3.1, Letac 1974. First, let X ⊂ {1, . . . , m} × {1, . . . n}, then we
first define the following maps:

a : (Rm, Rn)→ Rm×n, (ξ, η)→ (ξi + ηj)ij

π : (Rm×n)→ RX, (Aij)
i=m,j=n
i=1,j=1 → (Aij)(i,j)∈X

The second is just the natural projection from Rm×n to RX.
Now let A ∈ Rm×n be a nonnegative matrix and let X := {(i, j)|Aij > 0} be its

pattern. We already know that the pattern is a necessary condition for scalability, hence
we know that there exists a B ∈ Rm×n with row sums r and column sums c. Given the
pattern, we define H = ran(π ◦ a) the range of the composition of π and a.

Now let F ∈ RX be the matrix with entries Fij := log(Bij/Aij) and apply the theorem
to F, i.e. there exists a unique matrix H ∈ H such that

∑
ij

exp(Fij)AijGij = ∑
ij

exp(Hij)AijGij ∀G ∈ H

But since exp(Fij)Aij = Bij and Hij = ξi + ηj for some ξ ∈ Rm, η ∈ Rn by definition of
H, we have

∑
ij

BijGij = ∑
ij

exp(ξi)Aij exp(ηj)Gij ∀G ∈ H

which implies that exp(ξi)Aij exp(ηj) has row sums r by taking G = π ◦ a(ei, 0) and
column sums c by taking G = π ◦ a(0, ej) for the unit vectors ei ∈ Rm, ej ∈ Rn.

Clearly, the choice of (ξ, η) is unique up to ker(π ◦ a), which can be made explicit
and leads to the usual conditions.

3.7.1. Geometric proofs

In principle, we have already two geometric interpretations of the RAS: First, the RAS
is akin to iterated I-projections and second, the RAS is the application of a contractive
mapping on a cone with a projective metric. Two other “geometric” proofs are known:

Fienberg 1970 shows that the RAS is a contractive mapping in the Euclidean metric
using that the RAS preserves cross-ratios of a matrix. Given a matrix, the products

αijkl :=
Aij Akl

Ail Akj
(22)

remain invariant. This was first observed in Mosteller 1968, where it was used to justify
the use of the RAS in statistical settings (see Section 8). Fienberg then follows that if
one associates any positive matrix to a point of the simplex

Src = {(A11, . . . , A1c, . . . , Ar1, . . . , Arc)|∑
ij

Aij = 1}
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by normalising the matrix, then any point reachable by diagonal equivalence scaling
lies on a certain type of manifold inside the simplex. Using some structural knowledge
of these manifolds he then shows that each full cycle of the RAS corresponds to a
contraction mapping with respect to the Euclidean metric. The result is general enough
to cover multidimensional tables, but in this simplicity handles only positive matrices.

There is an interesting connection: While the cross-ratios within the matrix remain
constant, Hilbert’s metric is also closely connected to cross-ratios. In fact, the contraction
ratio is connected to the largest cross-ratio within the matrix and it is not finite if the
matrix contains zeros. In that case, the matrix does not easily define a contraction in
Hilbert’s metric. The same holds true for Fienberg’s proof.

Borobia and Cantó 1998 consider the column space of scaled matrices AS and notes
that RAS is doubly stochastic if the columns are included in the convex hull of the
columns of R−1 and the barycentre of the sets of the two columns coincide. The
observation of the barycentre then leads them to a proof involving Brouwer’s fixed
point theorem once again. By some continuity argument, the proof can be extended to
nonnegative matrices.

3.7.2. Other direct convergence proofs

Many papers contain direct convergence proofs, not least the original approach in
Sinkhorn 1964 and the proof of the full result Sinkhorn and Knopp 1967 (another
proof based on this approach is given in Pretzel 1980). The idea is to show that some
seemingly unrelated quantity always converges. Often, this quantity turns out to be
very much related to some potential barrier function or entropy and we already cited
the approach in the corresponding section.

One different proof is the short convergence proof of Macgill 1977 establishing that

∑j A(n)
ij / ∑j A(n−1)

ij → 1 and similarly ∑i A(n)
ij / ∑i A(n−1)

ij → 1 for every i, j. This proof
is in some sense derived from Bacharach’s approach (Bacharach 1965; Bacharach 1970,
see also Seneta 2006) and is very straightforward.10 In parallel to Bacharach’s earlier
work Bacharach 1965 but not cited in his later Bacharach 1970, Caussinus 1965 proved
the convergence of the RAS method in the general case of multidimensional matrices
via the same idea which he attributes to Thionet 1964 (see the appendix of Caussinus
1965).

A second direct proof of convergence in Sinkhorn 1967, uses a norm difference as
convergence measure. More precisely, he considers the map

φ(x, y) = max
i

(
r−1

i ∑
j

xi Aijyj

)
−min

i

(
r−1

i ∑
j

xi Aijyj

)

10Macgill also mentions yet another work that contains a proof of Theorem 3.1, namely Herrmann 1973,
however no details are given beyond the fact that it contains also approximate scaling.
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on the set of all (x, y) ∈ Rn
+ ×Rn

+ with some boundedness condition on their entries
and proves that φ(x, y) = 0 is achieved by two positive vectors.

A third proof of direct and approximate scaling is given in Pukelsheim and Simeone
2009 by combining the approach of Bacharach with a simple L1-error function borrowed
from Balinski and Demange 1989b.

4. Equivalence scaling

Let us now collect maximal results. A similar but scarcely referenced collection of
results was provided in Krupp 1979. We follow the cleaner presentation style of
Rothblum and Schneider 1989. Starting with equivalence scaling, we have:

Theorem 4.1. Let A ∈ Rn×m be a nonnegative matrix and r ∈ Rn
+, c ∈ Rm

+. Then the
following are equivalent:

1. There exist positive diagonal matrices D1, D2 such that D1AD2 has row sums r and
column sums c.

2. There exists a matrix B with row sums r and column sums c with the same pattern as A
(Menon 1968; Brualdi 1968).

3. There exists no pair of vectors (u, v) ∈ Rn ×Rm such that (Rothblum and Schneider
1989)

ui + vj ≥ 0 ∀(i, j) ∈ supp(A)

rTu + cTv ≤ 0

either ui + vj > 0 for some (i, j) ∈ supp(A) or rTu + cTv < 0

4. For every I ⊂ {1, . . . , m}, J ⊂ {1, . . . , n} such that AIc J = 0 we have that

∑
i∈I

ri ≥∑
j∈J

cj

and equality holds if and only if AI Jc = 0 (Menon and Schneider 1969).

5. The RAS method converges and the product of the diagonal matrices of the iteration also
converges to positive diagonal matrices (Sinkhorn and Knopp 1967).

The equivalence of the first two items was essentially established in the proof sketches
in section (3). The equivalence to the fourth item follows from the characterisation of
matrix patterns (see appendix A) and the third follows from studying the geometric
program 3.23.

For doubly stochastic scaling, using the classification of doubly stochastic patterns,
we then know that scalability is equivalent to having total support (cf. Csima and Datta
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1972). The scaling matrices D1, D2 are unique up to scalar multiplication if and only if
A is fully indecomposable.

For approximate equivalence scaling, the results are similar. The only difference is
that certain elements of A can become zero in the limit (which implies that elements of
Di must become zero and others infinite, hence the diagonal matrices cannot exist):

Theorem 4.2. Let A ∈ Rn×m be a nonnegative matrix and r ∈ Rn
+, c ∈ Rm

+. Then the
following are equivalent:

1. For every ε > 0 there exist diagonal matrices D1, D2 such that B = D1AD2 satisfies

‖Be− r‖ < ε, ‖BTe− c‖ < ε

2. There exists a matrix A′ ≺ A such that A′ is scalable to a matrix B with row sums r and
column sums c.

3. There exists a matrix B ≺ A with row sums r and column sums c (Schneider and
Saunders 1980).

4. There exists no pair of vectors (u, v) ∈ Rn×m such that (Rothblum and Schneider 1989)

ui + vj ≥ 0 ∀(i, j) ∈ supp(A)

rTu + cTv < 0

5. For every I ⊂ {1, . . . , m}, J ⊂ {1, . . . , n} such that AIc J = 0 we have that

∑
i∈I

ri ≥∑
j∈J

cj

6. The RAS method converges (Sinkhorn and Knopp 1967 for the d.s. case).

For doubly stochastic scaling, using the classification of doubly stochastic patterns, we
have that approximate scalability is equivalent to A having support. Using Schneider
and Saunders 1980, this is a trivial consequence of the fact that a matrix has total
support if and only if it has doubly stochastic pattern and Proposition A.511.

The uniqueness conditions are also simple enough to state:

Theorem 4.3. Let A ∈ Rn×m be a nonnegative matrix and r ∈ Rm
+, c ∈ Rn

+. Then, A has at
most one scaling.

Furthermore, if there exist no permutations P, Q such that PAQ is a direct sum of block
matrices, then D1, D2 are unique up to scalar multiples. Otherwise, the scaled matrices D1, D2

are only unique up to a scalar multiple in each block.

11One recent observation of this is in Bradley 2010. The observation has however already been made
before such as in Achilles 1993
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For doubly-stochastic scaling, this result already appears in Brualdi, Parter, and
Schneider 1966. For the case of general marginals, it occurs in Menon 1968 and for
general matrices and marginals in Hershkowitz, Rothblum, and Schneider 1988; Menon
and Schneider 1969. The tools can also be applied to prove that the approximately
scaled matrix is unique.

Let us now have a closer look at the difference between approximate scaling and
equivalence scaling. What can be said about the convergence of the RAS?

Theorem 4.4 (Pretzel 1980, Theorem 1). Let A ∈ Rn×n be a matrix that is approximately
scalable to a matrix with row sums r and column sums c. Let B be a matrix with row sums r
and column sums c with maximal subpattern of A (i.e. the number of entries (i, j) such that
Bij = 0 and Aij > 0 is minimal).

Then A converges to a matrix C ≺ B and the same result holds for A′ with A′ij = Aij if
Bij > 0 and A′ij = 0 else.

The continuity of the scaling can also be studied:

Theorem 4.5. Let A be nonnegative and r, c be prescribed row- and column sums. Then the
limit of the Sinkhorn iteration procedure is a continuous function of A on the space of matrices
with r, c-pattern.

When the scaling matrices are unique up to a scalar multiple, this also implies that the scaling
is continuous in D1, D2.

The first proof of this result limited to the doubly-stochastic case was given in
Sinkhorn 1972. The full result follows directly from the homeomorphism properties
of the map (20) from Tverberg 1976. A discussion is also presented in Krupp 1979.
Furthermore, the continuity can be achieved using arguments of Section 9.3.

Finally, let us mention another characterisation of equivalence scaling using trans-
portation graphs.

Following Schneider and Zenios 1990, let A ∈ Rm×n be a nonnegative matrix. Let
M = {1, . . . , m}, N = {1, . . . , n} and consider the bipartite graph with the bipartition
given by the vertices M and N and the edges defined via E = {(i, j) : Aij > 0}, directed
from i ∈ M to j ∈ N. Now we define a source S1 that connects to each vertex in M,
where the edges have capacity ri (corresponding to the edge from S1 to i ∈ M) and
we define a sink S2 that is connected from every vertex in N, where the edges have
capacities cj (see Fig. 2 for an example).

Then it is easy to see that the matrix is approximately scalable if and only if the
maximum flow of this network is equal to ∑i ri. The flows along the edges E then
define a matrix with the wanted pattern. The matrix is exactly scalable if and only if
the maximum flow of this network is equal to ∑i ri and every edge contains flow.
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A =

0 3 4 1
2 1 0 0
2 0 0 1

 S1 S2

r1

r2

r3

c1

c2

c3

c4

Figure 2: An easy example of the transportation graph for row sums r and column
sums c corresponding to the pattern of the matrix A. This example is similar
to an example in Schneider and Zenios 1990

5. Other scalings

The problem of equivalence scaling is closely connected to different forms of scalings,
the most prominent ones asking for a diagonal matrix D such that DAD is row-
stochastic or such that DAD−1 has equal row and column-sums.

Many modern approaches to matrix equivalence scaling are general enough to cover
most of those different scalings (see Section 6).

5.1. Matrix balancing

Given a matrix A, does there exist a matrix D such that DAD−1 has equal column-
and row sums? Clearly, this is a special case of D1AD2 scaling with a different set of
constraints. We have the following characterisation:

Theorem 5.1. Let A ∈ Rn×n be a nonnegative matrix. Then the following are equivalent:

1. There exists a diagonal matrix D such that B = DAD−1 fulfills ∑n
i=1 Bij = ∑n

i=1 Bji.

2. A is completely reducible or equivalently, a direct sum of irreducible matrices (Hartfiel
1971).

3. There exists B with the same pattern as A and ∑n
i=1 Bij = ∑n

i=1 Bji (Letac 1974).

The scaling of A is unique and D is unique up to scalars for each irreducible block of A.

The problem was first considered in Osborne 1960 in the context of preconditioning
matrices (see Section 8) by proposing an algorithm and proving its convergence (and
uniqueness). Grad 1971, building on Osborne’s results, considers the matrix balancing
method and provides an algorithm and convergence proof for completely reducible
matrices. Unaware of the effort of Osborne and Grad, but considering “the analogue
of [Sinkhorn’s] result in terms of irreducible matrices” Hartfiel 1971 proves essentially
the same result. His approach is based on a progress measure which is basically
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the maximum difference of the row- and column sums. Letac 1974 provided an
interpretation in terms of patterns. The same was later proved in Schneider and
Saunders 1980; Golitschek, Rothblum, and Schneider 1983; Eaves et al. 1985 by yet
different means.

Similar to the RAS method, one can propose a simple iterative approximation
algorithm:

Algorithm 5.2 (Schneider and Zenios 1990). Let A ∈ Rn×n be nonnegative. Let A0 := A.
For k = 0, 1, . . . we define the steps

1. For i = 1, . . . , n, let ui = ∑n
j=1 Ak

ij be the row sum and similarly vi be the column
sum. Then define p as the minimum index such that |up − vp| is maximal among
|ui − vi|.

2. Define αk such that αkup = 1/αkvp.

3. Let D = diag(1, . . . , 1, αk, 1, . . . , 1) with αk at the p-th position. Then define
Ak+1 = DA+D−1 and iterate.

According to Schneider and Zenios 1990, this algorithm is also similar to the proposed
scheme in Osborne 1960. At any step, the p-th row is already correctly scaled, while all
other rows change their scaling a bit. Note that unlike in the RAS method, the selection
of the row and column to be scaled are done using norm differences. Given the results
of Brown, Chase, and Pittenger 1993 that the RAS converges regardless of the order of
column and row sum normalisations, a similar condition might also accelerate RAS
convergence.

We have the following observation:

Proposition 5.3 (e.g. Schneider and Zenios 1990). The algorithm converges to a balanced
matrix B. This matrix is also the unique minimiser of the function

n

∑
i,j=1

(
Bij ln

(
Bij

Aij

)
− Bij

)
(23)

subject to the balancing conditions.

Sketch of proof. The fact that the balanced matrix minimises the entropy functional can
be seen by direct calculation (the minimiser must be a scaling of the original matrix
and the balancing conditions ensure that the scaling is of the form DAD−1).

A proof is similar to observation 3.17: Each step of the algorithm is an I-projection
onto the set of matrices with only one row/column balancing constraint. Since the
conditions are linear, the repeated projection will converge.

It remains to see that the order of the projections does not matter as long as all
directions are chosen arbitrarily often.
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As with equivalence scaling, a graph version of this problem exists, this time using
transshipment graphs. A nice description can be found in Schneider and Zenios 1990 (see
also Figure 3): Given a nonnegative matrix A ∈ Rn×n, let V = {1, . . . , n} and define the
set of edges of the transshipment graph (V, E) by E = {(i, j)|Aij > 0, i 6= j}. We can
then add weights Aij to any edge (i, j). A matrix is then balanced, if and only if the
incoming flow at each vertex equals the outgoing flow.

A =


0 3 4 1
2 0 0 0
2 0 0 1
1 1 4 0


1 2

34

Figure 3: An easy example of the transshipment graph corresponding to the pattern of
the matrix A similar to the example in Schneider and Zenios 1990.

5.2. DAD scaling

Another closely related problem is the question, whether given a nonnegative matrix A,
there exists a single diagonal matrix D such that DAD has prespecified row- or column
sums. A short but quite good overview is given in Johnson and Reams 2009.

Symmetric nonnegative matrices Let us first focus on the case where A is symmetric.
It seems natural that this follows directly from Sinkhorn’s theorem: If D1AD2 has equal
row-sums and A is symmetric, so does D2AD1. By uniqueness of Di up to scaling, this
implies that one can choose D1 = D2. This was noted for example in Sinkhorn 1964.

The first discussion of the case of symmetric A can be traced back to the announce-
ments Marcus and Newman 1961; Maxfield and Minc 196212. A first proof for the case
of positive matrices and doubly stochastic scaling was given in Sinkhorn 1964. Shortly
later, Brualdi, Parter, and Schneider 1966 consider the case of doubly stochastic scaling
for nonnegative matrices with positive main diagonal, while Csima and Datta 1972
shows that a doubly stochastic scaling exists if and only if there exists a symmetric
doubly stochastic matrix with the same zero pattern if and only if the matrix has total
support. This was extended in Brualdi 1974 to cover the case of arbitrary row sums
giving the following theorem:

Theorem 5.4 (Brualdi 1974). Let A ∈ Rn×n be a symmetric nonnegative matrix. Then the
following are equivalent:

12This is covered in many papers, for instance Marshall and Olkin 1968.
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1. There exists a diagonal matrix D with positive entries such that DAD has row sums
given by r ∈ Rn

+.

2. There exists a symmetric nonnegative matrix B with the same pattern as A and row sums
r.

3. For all partitions {I, J, K} of {1, . . . , n} such that A(J ∪ K, K) = 0, ∑i∈I ri ≥ ∑i∈K ri
with equality if and only if A(I, I ∪ J) = 0.

Furthermore, the scaling is unique.

The equivalence of 2. and 3. is given in Brualdi 1968. 1. follows from 2. using
Sinkhorn’s theorem and the reverse direction is proved via contradiction. Using the
uniqueness in Sinkhorn’s theorem then provides uniqueness for the scaling.

Note that the following observation gives a very simple proof of Theorem 3.1:

Observation 5.5. Let A ∈ Rm×n be a matrix and r ∈ Rm
+, c ∈ Rn

+ be two prescribed
vectors. Then A has an equivalence scaling if and only if the following symmetric
matrix A′

A′ =
(

0 A
AT 0

)
(24)

has a row-sum symmetric scaling to (r′)T = (rT, cT).

Proof. First assume that there exist D1, D2 positive diagonal such that D1AD2 fulfills

D1AD2e = r, D2ATD1e = c.

Then setting D′ := diag(D1, D2) we have

D′A′D′ =
(

0 D1AD2

D2ATD1 0

)
and clearly D′A′D′e = (rT, cT)T.

Conversely, if A′ has a row-sum symmetric scaling D′, by an analogous argument A
will have an equivalence scaling with row sums r and column sums c.

This was already known in the 70s, maybe even earlier; explicit formulations include
Rothblum, Schneider, and Schneider 1994; Knight 2008; Knight and Ruiz 2012. Note
that the observation can easily be extended to not just row- and column sums, but
all p-norms for 0 < p ≤ ∞ as considered in Section 6.7. It can also be extended to
approximate scalings with the same proof. This implies:

Observation 5.6. Results from symmetric scaling for symmetric nonnegative matrices
A can always be translated to cover equivalence scaling for arbitrary nonnegative
matrices.

The other direction is not true, since clearly not all symmetric matrices are of the
special form (24). However, it can still be beneficial to study equivalence scaling on its
own, as many algorithms (e.g. the RAS) do not preserve symmetry.
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Arbitrary symmetric matrices Theorem 5.4 can be generalised to cover matrices that
are not necessarily nonnegative:

Theorem 5.7. Let A ∈ Rn×n be symmetric and λ ∈ Rn
+ prescribed column sums. Then:

1. If A is positive semidefinite, then A is scalable if and only if A is strictly copositive
(Kalantari 1990; Kalantari 1996).

2. Any principal submatrix of A (including A) is scalable if and only if A is strictly
copositive (Johnson and Reams 2009).

In general, at least one of the following two propositions is true (Kalantari 1996):

1. The following set is not empty:

{x ∈ Rn|xT Ax = 0, x ≥ 0, x 6= 0} (25)

2. For all λ ∈ Rn
+ with λ > 0 there exists a positive diagonal matrix D such that

DADe = λ. In other words, for any set of prescribed row sums, there exists a scaling.

More general conditions for scalability of arbitrary symmetric A can be found in
Johnson and Reams 2009. We make a number of remarks concerning the results:

1. Another necessary condition for scalability (the matrix must be diluted) is provided
in Livne and Golub 2004.

2. The question of equivalent conditions for the scalability of matrices remains
open. However, these conditions might not have a very useful description, since
scalability of arbitrary symmetric matrices is NP-hard (Khachiyan 199613).

3. The second result implies in particular that if a matrix is strictly copositive, it is
scalable, which was first proved in Marshall and Olkin 1968. Note that positive
definite matrices are in particular strictly copositive, which means that this result
encompasses the claimed proofs of scalability of completely positive matrices in
Maxfield and Minc 1962. An elementary proof for matrices with strictly positive
entries has recently appeared in Johnson and Reams 2009 based on an iterative
procedure.

4. For doubly stochastic scaling, the alternative conditions of Kalantari 1996 can also
be derived using linear programming duality and/or the hyperplane separation
theorem using extremely general methods of duality in self-concordant cones
(Kalantari 1998; Kalantari 1999; Kalantari 2005).

13This was conjectured also in Johnson and Reams 2009, who noted that deciding whether a matrix
is (strictly) copositive is NP-complete according to Murty and Kabadi 1987. The authors seemed
to have been unaware of the paper by Khachiyan. The alternative in Theorem 5.7 is also not very
useful computationally, because deciding the emptiness of the set (25) is also NP-hard (Kalantari 1990,
according to Kalantari 1996).
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5. Scaling of the special class of Euclidean predistance matrices has been considered
in Johnson, Masson, and Trosset 2005. It turns out that all such matrices are
scalable.

6. Note that the equivalence conditions for positive semidefinite matrices can be
strengthened. If a matrix is scalable and positive semidefinite,

µ := min{xT Ax|x ≥ 0, ‖x‖2 = 1}

can be bounded in terms of the matrix dimension (cf. Khachiyan and Kalan-
tari 1992, where it is also noted that the scaling problem is related to linear
programming).

Uniqueness of matrix scaling has also been studied:

Proposition 5.8. Let A ∈ Rn×n be symmetric and λ ∈ Rn
+ prescribed row sums. Then

1. If A has two or more distinct scalings, then there exists a matrix D such that DAD has
eigenvalues +1 and −1 (Johnson and Reams 2009).

2. For scalable positive definite matrices A there exist 2n diagonal matrices D such that
DADe = λ, one for each sign pattern of D (O’Leary 2003). In particular, scaling by
positive diagonal matrices is unique.

3. If A is positive semidefinite, then if A is scalable to row sums r, the positive diagonal
matrix is unique (Marshall and Olkin 1968).

For the scaling of positive semidefinite matrices, upper and lower bounds on ‖D‖ were derived
in Khachiyan and Kalantari 1992; O’Leary 2003.

Johnson and Reams 2009 also note that for nonnegative matrices uniqueness holds in
particular if A is primitive (including the case of positive matrices already covered in
Sinkhorn 1964) or if A is irreducible and there does not exist a permutation P such that

PAPT =

(
0 B

BT 0

)
.

It is also very simple to give an algorithm of RAS type for this problem, using the
observation that a DAD scaling to row sums λ exists if and only if ADe = r/(De).
This implies that any scaling is a fixed point of the map Tsym : Rn → Rn with
Tsym(x) = r/(Ax).

Algorithm 5.9 (Knight 2008). Let A ∈ Rn×n be nonnegative and symmetric. For the
algorithm, set x0 = e and iterate

xn+1 = Tsym(xn) (26)
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Nonsymmetric matrices If we do not restrict to symmetric matrices we can only hope
to scale A to a matrix with given row-sums. The only notable result seems to be:

Proposition 5.10. (Sinkhorn 1966) Let A ∈ Rn×n be a positive matrix. Then there exists D
such that DAD is stochastic.

The theorem can be extended to cover arbitrary row sums. The first proof occurred in
Sinkhorn 1966. Likewise, the proof in Johnson and Reams 2009 does not need symmetry
of A.

5.3. Matrix Apportionment

Another scaling problem which is interesting particularly for its applications, is asking
for an equivalence scaling, but with the added constraint that the resulting matrix
have integer entries. This is important for instance when attributing votes to seats in
a parliament and has been applied as early as 1997 (Balinski and González 1997, see
also Pukelsheim and Schuhmacher 2004 for one of many explicit accounts for actual
changes).

This problem, which is often called matrix apportionment has first been studied in
Balinski and Demange 1989a; Balinski and Demange 1989b. Algorithms akin to the
RAS method exist and others based on network flows can be obtained from Rote and
Zachariasen 2007; an overview and many references can be found in Pukelsheim and
Simeone 2009.

5.4. More general matrix scalings

This review has so far largely been concerned with nonnegative matrix scaling, with
the exception of symmetric DAD scaling. This is understandable, as most of the
applications concern nonnegative matrices. However, in view of completeness, let us
mention a few of the (mostly quite recent) other cases of matrix scaling.

Arbitrary equivalence scaling While arbitrary D1AD2 scaling is interesting for real
symmetric matrices, scalings of general real matrices have never sparked a similar
amount of interest. It is merely known that the question whether or not a matrix
is scalable is NP-hard (Khachiyan 1996) - a question that has also been considered
for matrices over the algebraic numbers in Kalantari and Emamy-K 1997. Since the
problem of nonnegative matrix scaling turns out to be equivalent to the existence
of matrices with given pattern, it seems natural to ask whether the (+,−, 0)-pattern
of matrices with prescribed row- and column sums play a similar role. For positive
diagonal scaling the sign pattern of the matrix cannot change and it is a necessary
condition for scalability, which is not sufficient as shown in Johnson, Lewis, and Yau
2001. Nevertheless, the authors achieve a characterisation of general matrix patterns
(generalising Brualdi 1968, see also Johnson and Stanford 2000; Eischen et al. 2002).

33



Complex matrices Let us first start with the definition

Definition 5.11. Let A ∈ Cn×m be a complex matrix, then A is doubly quasistochastic if
all sums and columns sum to one.

Note that in case all entries are nonnegative the matrix is doubly stochastic. For the
rest of this section, let us restrict to square matrices. Quasistochasticity is interesting,
because if A is quasistochastic, then F∗n AFne1 = e1, where e1 = (1, 0, . . . , 0)T and Fn

is the n× n discrete Fourier transformation. This is true since Fne1 = e and e is an
eigenvector of A by quasistochasticity. A doubly quasistochastic matrix A therefore
satisfies that F∗n AFn has e1 as its first row and column. Repeating diagonal scalings and
Fourier transform can then lead to new matrix decompositions.

The natural generalisation of DAD scaling would be D∗AD-scalings for positive
semidefinite matrices. These were first studied in Pereira 2003 and later in Pereira and
Boneng 2014. Observing that the proof of Marshall and Olkin 1968 extends to complex
entries, the authors obtain already part of the following partial results:

Theorem 5.12 (Pereira and Boneng 2014). Let A ∈ Cn×n be positive definite. Then there
exist diagonal matrices D1, D2 such that D1AD2 is doubly quasistochastic.

Neither D1, D2 nor the scaled matrices are necessarily unique. However, there exists at most
one scaling with positive matrices D1, D2.

The authors suggested that such scalings can be applied to generate highly entangled
symmetric states. They furthermore conjectured that the number of such scalings
would be upper-bounded, but this was disproved recently in Hutchinson 2016 by
giving counterexamples for n ≥ 4, which have infinitely many scalings. For n = 3,
there exist at most four scalings. An RAS type algorithm can be obtained from the fact
that an equivalent version of Observation 3.14 also holds in the complex case.

Unitary matrices For the subclass of unitaries, we proved the following theorem:

Theorem 5.13 (Idel and Wolf 2015). For every unitary matrix U ∈ U(n) there exist diagonal
unitary matrices D1, D2 such that D1UD2 is doubly quasistochastic. Neither D1, D2 nor
D1UD2 are generally unique, in fact in some cases there may even be a continuous group of
scalings.

An algorithm how to obtain D1, D2 similar to the RAS method is given and studied
in De Vos and De Baerdemacker 2014a, however its convergence is unknown.

The theorem was conjectured in De Vos and De Baerdemacker 2014a and used
later (De Vos and De Baerdemacker 2014b; Idel and Wolf 2015) to prove that any
unitary matrix can be considered as a product of diagonal unitary matrices and Fourier
transforms on principal submatrices. Recently, it has also been applied to prove an
analogue of the famous Birkhoff theorem for doubly-stochastic matrices (De Vos and
De Baerdemacker 2016).
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The proof of Theorem (5.13) boils down to noticing that a scaling exists if and only
if there exists a vector x with Ux = y and |xi| = |yi| = 1 for all i = 1, . . . , n. This is
a problem of symplectic topology in disguise and can be solved using a theorem in
Biran, Entov, and Polterovich 2004. When we published the theorem in Idel and Wolf
2015 we were unaware of the fact that this proof had in principle already been found,
since the equation Ux = y with |xi| = |yi| = 1, which defines so called biunimodular
vectors (see for instance Führ and Rzeszotnik 2015), also pops up in several other places.
In this context, essentially the same proof was described in Lisi 2011. A first formal
publication containing this proof was probably Korzekwa, Jennings, and Rudolph 2014
applying it to error-disturbance relations in quantum mechanics.

6. Generalised approaches

All of the approaches above can be generalised to some extend. Many can then
incorporate also different scalings. With an eye towards matrix equivalence, we will
attempt to see the different ways of generalisations and what can be gained. A quick
summary can be found in Table 6.2.

6.1. Direct multidimensional scaling

Especially in transportation planning, equivalence scaling of arrays with three indices
has been important from the beginning. Except for nonlinear Perron-Frobenius theory,
the approaches can be readily generalised to this case. As already pointed out, Brown
1959 was the first to consider multidimensional scaling. According to Evans and Kirby
1974 (see also Evans 1970), Furness pointed out iterative scaling as a possible solution
to certain transportation planning problems in the unpublished paper Furness 1962.
Evans and Kirby themselves proved convergence in a limited scenario by extending
the convex programming approach of equation (16) and proofs have been provided
or pointed out in several other papers such as Fienberg 1970; Krupp 1979. The case
of approximate multidimensional scaling is discussed in Brown, Chase, and Pittenger
1993.

For multidimensional exact or approximate scaling, the convergence results of Pretzel
1980 reflected in Theorem 4.4 still hold. In addition, the order in which we normalise
any of the indices of the multidimensional array is irrelevant:

Theorem 6.1 (Brown, Chase, and Pittenger 1993 and comment in Brown 1959). Let A be
an array with m indices (or dimensions) and let ik be the dimension of the array that is scaled in
the k-th step. If each element of {1, . . . , m} appears in the sequence {i1, i2, . . .} infinitely often,
then the scaling converges to the limit of the cyclic RAS method, the I-projection of A.
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Type Base case D1AD2 DAD DAD−1 multi-
dim.

conti-
nuous

additional generalisation

Algorithmic
approaches

RAS-type algorithms with row or column
norm constraints
(also max-sum)

X X - - -

Axiomatic
approach

D1AD2 scaling with
inequality constraints

X - - - - -

Convex op-
timisation

D1AD2, DAD scaling X X - - - also copositive matrices,
complex scaling

Entropies minimising relative en-
tropy minimisation +
(non)linear constraints

X (X) (X) X X special case of Bregman di-
vergences; cross entropies;
justifications

Letac’s ap-
proach

no scaling: existence
of some function

X X X - - completely different appli-
cations

Log linear
models

scaling of prob. distri-
butions wi = xi ∏j d

Cij
j

given C, x with con-
straints Cw = b

X X X X - Different scalings defined
via C

N-L Perron-
Frobenius
Theory

fixed points of ho-
mogeneous maps on
cones

X X - - X Maps in different vector
spaces (such as positive
maps); infinite matrices

Truncated
matrix
scaling

X = ΛDAD−1 balanc-
ing with L ≤ X ≤ U
entrywise

also inequalities X X - - -

Table 1: This table gives an overview about possible approaches to matrix scaling, their application to various different
scalings discussed in Section 6 and additional possible applications.
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6.2. Log-linear models and matrices as vectors

Most of the ideas above use matrices as matrices, as sets of numbers with two indices.
One can likewise consider just vectors of numbers and define columns and rows by
defining partitions of the vectors. This approach has the advantage that the generalisa-
tion to multidimensional matrices is immediate. It was probably pioneered by Darroch
and Ratcliff 1972, although Lamond and Stewart 1981 credit Murchland, who circulated
his results later (Murchland 1977; Murchland 197814). The approach was then taken
on in Bapat and Raghavan 1989 (see also Bapat and Raghavan 1997, Chapter 6 for an
overview and a more lucid presentation of their ideas). While Darroch and Ratcliff
1972 used an entropic approach, Bapat and Raghavan 1989 is based on a combination
of optimisation and topological approaches as discussed in Section 3.6. The same
theorem is also proved in Franklin and Lorenz 1989 in a very elementary fashion and
in Rothblum 1989 using optimisation techniques.

The original goal of Darroch and Ratcliff 1972 was not to study matrix scaling but
rather obtaining probability distributions using so called log-linear models. Given a
positive (sub)probability distribution π over some finite index set I, a log-linear model
is a probability distribution p such that

pi = πiD
d

∏
s=1

DCsi
s (27)

which satisfies some constraints ∑i∈I Csi pi = ks. Here, D and Ds have to be determined
while C is given from the problem. The name derives from the fact that the solution is
an exponential family of probability distributions.

Depending on the choice of C, one can write matrix balancing, equivalence scaling
or DAD scaling as finding a log-linear model.

To achieve equivalence scaling with row-sums r and column sums s, consider for
simplicity the case of a 2× 3 matrix. Then C and b are given by

C =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 , b =


r1

r2

s1

s2

s3


and we define y1 = A11, y2 = A12, . . . , y5 = A22, y6 = A23 (example from Bapat and
Raghavan 1989; Rothblum 1989).

To achieve matrix balancing with row-sums equaling column sums, consider for
simplicity the case 3× 3, then C is given by

C =

0 1 1 −1 0 0 −1 0 0
0 −1 0 1 0 1 0 −1 0
0 0 −1 0 0 −1 1 1 0

 (28)

14The papers were not available to me
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and b = 0 and we order x, y again as before (example from Rothblum 1989).
We have the following theorem:

Theorem 6.2 (Bapat and Raghavan 1989). Let C ∈ Rm×n and b ∈ Rm
+ 0. Let K = {v|Cv =

b, v ≥ 0} be bounded. Let x ∈ Rn
+ 0. Then there exists a w ∈ K such that for some D ∈ Rn

+ we
have

wj = xj

m

∏
i=1

DCij , j = 1, . . . , n

if and only if there exists a vector y ∈ Rn
+ 0 with y ∈ K and the same zero pattern as x.

Note that this is a major generalisation of scaling as the matrix C can contain any
real numbers.

The limiting factor of the theorem is the boundedness of K. While the constraints in
the case of matrix equivalence are bounded, the constraint set defined by (28) is not
necessarily bounded. Rothblum 1989 applies a completely different proof which only
works for positive matrices. However we can still apply Theorem 6.2: K is unbounded,
because the matrix entries can become unbounded since we only want equal row and
column sums but do not specify them further. We fix that by using

C̃ =


0 1 1 −1 0 0 −1 0 0
0 −1 0 1 0 1 0 −1 0
0 0 −1 0 0 −1 1 1 0
1 1 1 1 1 1 1 1 1


and b4 = 1. The last row just implies that the sum of all matrix entries should be one
which makes K a bounded set. A simple calculation then shows that this is equivalent
to searching for a diagonal matrix D and a scalar d such that dDAD−1 has equal row-
and column sums and the sum of all matrix entries is one. Clearly, this is equivalent to
matrix balancing and we can apply Theorem 6.2.

The connection to entropy minimisation is simple:

Lemma 6.3 (Darroch and Ratcliff 1972, Lemma 2). Given a positive (sub)probability
distribution π, if a positive probability distribution p satisfying (27) and the linear constraints
exists, then it minimises relative entropy ∑i pi log(pi/πi) subject to the linear constraints.

Proof. The proof in Darroch and Ratcliff 1972 is a straightforward calculation and
follows directly from Kullback and Khairat 1966. If q is a probability distribution
satisfying the linear constraints, then

D(p||π) = ∑
i∈I

pi(log ξ +
d

∑
s=1

Csi log ξs)

= log ξ

(
∑
i∈I

pi

)
+

d

∑
s=1

log ξs

(
∑
i∈I

Csi pi

)
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= log ξ

(
∑
i∈I

qi

)
+

d

∑
s=1

log ξs

(
∑
i∈I

Csiqi

)
= ∑

i∈I
qi log(pi/πi)

= D(q||π)− D(q||p)

which implies the lemma by the nonnegativity of relative entropy.

6.3. Continuous Approaches

Nonnegative matrices were always tied to joint probability distributions. Obviously,
there is no reason to only study discrete probability distributions. The first such
generalisation was obtained in Hobby and Pyke 1965. Also the basic theorems of
Kullback 1968 and Csiszár 1975 are more general than counting measures (although
both have problems with parts of their arguments, see Borwein, Lewis, and Nussbaum
1994).

As pointed out in Borwein, Lewis, and Nussbaum 1994, there are essentially two
approaches to continuous versions, the entropy maximisation approach studied by
Kullback and later Csiszár, and the approach via fixed point theorems or contractive
ratios (one can see this as a precursor to nonlinear Perron-Frobenius theory) studied
in, for instance, Fortet 1940; Nussbaum 1987; Nussbaum 1993. The natural continuous
extension of the DAD theorem for symmetric matrices was studied in Nowosad 1966;
Karlin and Nirenberg 1967 (via fixed points or iterative contractions). The most general
results in Borwein, Lewis, and Nussbaum 1994 combine these two approaches. To give
a flavour of their results, we cite

Theorem 6.4 (Borwein, Lewis, and Nussbaum 1994 Theorem 3.1). Given a finite measure
spaces µ(s, t) = k(s, t) ds dt and marginal distributions α(s), β(t) ∈ L1(dt/ds), consider the
following minimisation problem:

min
∫

S×T
[u(x, y) log(u(x, y))− u(x, y)]k(s, t) ds dt

s.t.
∫

T
u(s, t)k(s, t) dt = α(s) a.e.∫

S
u(s, t)k(s, t) ds = β(t) a.e.

(29)

where u ∈ L1(dt, ds). Furthermore, we require
∫

S α(s) ds =
∫

T β(t) dt. Then the minimisation
problem has a unique optimal solution. If there exists a u0 which fulfils the constraints and
there exist x0 ∈ L∞ and y0 ∈ L∞ such that log u0(s, t) = x(s) + y(t) almost everywhere, then
u0 is the unique solution. Conversely, if there exists a feasible solution u with u > 0 almost
everywhere, then the unique optimal solution satisfies u0 > 0 almost everywhere and there exist
sequences xn ∈ L∞ and yn ∈ L∞ such that

lim
n→∞

(xn(s) + yn(t)) = log u0(s, t) a.e.
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This in fact also covers the approximate scaling case. Note that the results also extend
to more than two marginals.

6.4. Infinite matrices

Instead of continuous functions, we can also consider infinite matrices. Results usually
posit that row and column sums should be finite in some norm.

The first such result was obtained in Netanyahu and Reichaw 1969, which proves
Theorem 3.1 in the case where the column and row sums are uniformly bounded in
the l1-norm and the matrix entries are uniformly bounded. The proof is reminiscent of
Brualdi, Parter, and Schneider 1966 and Nonlinear Perron-Frobenius theory, using a
fixed point argument involving Schauder’s fixed point theorem.

Another approach was presented in Berger and Kelley 1979, where matrices that
are infinite in one direction are studied (rows or columns are finite in a lp-norm).
Once again, the matrix entries must be bounded uniformly (in this case, in a lp-norm)
and convergence of the iterative algorithm to a unique solution is proved in certain
topologies.

6.5. Generalised entropy approaches

As we saw in Section 3.4, we can write matrix scaling as the problem

min
P

D(P‖Q) s.t. P ∈ Π

where Π is an intersection of linear constraints. This approach can be generalised in
two ways: First, one could consider other functions than relative entropy but related to
it or second, one can consider more general sets Π.

Telative entropy is a special case of Bregman divergences. These were originally
introduced in Bregman 1967 and later named in Censor and Lent 1981. The idea is to
study distance measures derived from functions φ : S ∈ Rn → R, which are defined on
a closed convex set S, continuously differentiable and strictly convex. Then

∆φ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉

behaves similarly to a metric, although it is not necessarily symmetric and obeys no
triangle inequality. If one takes φ(x) = ∑i(xi log(xi)− xi) (negative entropy modulo
the linear term), then ∆φ(x, y) = ∑i(xi ln(xi/yi)− xi + yi). This example was already
studied in Bregman 1967 giving in addition an iterative algorithm to find the projections
onto the minimum Bregman distance given linear constraints, which is a variant of the
RAS method (see also Lamond and Stewart 1981).

Another way to generalise D is the basic observation underlying McDougall 1999:
Relative entropy for matrices is equivalent to the sum of cross-entropies between
matrix columns, where a cross-entropy of the column j of the matrices A, B is just
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Dj(A‖B) := ∑i Bij log(Bij/Aij). Instead of taking the sum of all cross-entropies, it
might be justified to take weighted sums of cross-entropies. This is relevant in economic
settings and, aside from McDougall 1999, was studied in e.g. Golan and Judge 1996;
Golan, Judge, and Miller 199715.

On the other hand, we can work with relaxed constraints. This was covered in Brown,
Chase, and Pittenger 1993: The extension of linear families of probability distributions
is still covered by Csiszár 1975, while finding the I-projection for closed, convex but
nonlinear constraints requires different means such as Dykstra’s iterative fitting procedure
(cf. Dykstra 1985).

6.6. Row and column sum inequalities scaling

Instead of wishing for matrices to have prespecified row and column sums, it might
be interesting to consider cases where only lower and upper bounds on the row and
column sums and the matrix entries are considered.

If we denote the set of all nonnegative matrices with row sums between r− ∈ Rn
+ and

r+ ∈ Rn
+ and column sums between c− ∈ Rn

+ and c+ ∈ Rn
+ and total sum of its entries

h by R(r−, r+, c−, c+, h), then we can ask the question, whether for a given nonnegative
A ∈ Rn×n, there exists δ > 0 and D1, D2 diagonal matrices such that

B := δD1AD2 ∈ R(r−, r+, c−, c+, h)

such that if (D1)ii > 1, then ∑j Bij = r− and (D1)ii < 1, then ∑j Bij = r+ and the same
conditions for D2 and c. This problem was studied in Balinski and Demange 1989a;
Balinski and Demange 1989b, where they call such a matrix a fair share matrix. The
main purpose of the approach is described in Section 8.2. Using the arguments from
nonlinear Perron-Frobenius theory (Section 3.3), they prove

Theorem 6.5 (Balinski and Demange 1989a). Let A be a nonnegative matrix. There exists a
unique fair share matrix for A if and only if there exists a matrix B ∈ R(r−, r+, c−, c+, h) with
the same pattern as A.

A different generalisation is called truncated matrix scaling. It is studied in Schneider
1989; Schneider 1990 and can also account for equivalence scaling. While the proofsuse
a combination of optimisation techniques for an optimisation problem defined via
entropy functionals, the motivation and interpretation uses graphs and transportation
problems for graphs.

The problem considers matrix balancing and not equivalence scaling as its basic
problem and then explains the connection. A problem consists of an ordered triple
(A, L, U) of nonnegative matrices in Rn×n satisfying

1. 0 ≤ L ≤ U ≤ ∞,

15References corrected but taken from McDougall 1999 as they were unavailable to me
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2. There is a matrix X whose pattern is a subpattern of A such that X is balanced
and L ≤ X ≤ U,

3. Uij > 0 whenever Aij > 0.

and asks for a diagonal matrix D and a nonnegative matrix Λ such that

1. X = ΛDAD−1 is balanced and L ≤ X ≤ U,

2. X and Λ satisfy {
Λij > 1 ⇒ Xij = Lij

Λij < 1 ⇒ Xij = Uij

The conditions above are consistency conditions which are trivially necessary for the
existence of D, Λ. One can easily see that for L = 0 and U = ∞ the problem is
equivalent to matrix scaling, because Λ = 1. Note the similarity of the treatment of
inequalities to the ideas of Balinski and Demange.

The connection to equivalence scaling is simple (cf. Schneider 1989): Given a
nonnegative matrix A and row and column sums r, c, we start with the graph of Figure
2: we join the two vertices S1 and S2 into one vertex (call it S), keeping everything else
fixed. We label the edges between the nodes with the corresponding matrix entries Aij.
A′ is now the matrix corresponding to the graph.

Now we copy the graph twice and erase the weights of the edges and instead label
the first graph by l(i,j) and the second by u(i,j) where

l(i,j) :=


0 if Aij > 0

ri if j = 0

cj if i = 0

u(i,j) :=


∞ if Aij > 0

ri if j = 0

cj if i = 0

.

Now L′ (U′) is the matrix corresponding to the graph with labels l(i,j) (u(i,j)). Finally,
(A′, L′, U′) is the triple for truncated matrix scaling.

The main result of the paper then includes:

Theorem 6.6 (Schneider 1989 Theorem 14 (part of it)). Let (A, L, U) be a triple in Rn×n

fulfilling the consistency conditions 1.-3. above. Then the truncated matrix scaling has a
solution satisfying the conditions 1. and 2. above if and only if there exists a balanced matrix X
such that

• L ≤ X ≤ U,

• Xij > 0 iff Aij > 0 always.

Once again, the answer is dominated by the pattern of the matrix and the conditions
boil down to the usual conditions for similarity scaling. In a sense, this gives another
explanation as to why both problems, equivalence scaling and matrix similarity, need
pattern conditions for feasibility: They are both similar graph-related problems.
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6.7. Row and column norm scaling

Instead of asking the question whether one can scale a matrix to prescribed row- and
column sums, one can ask for a scaling to prescribed row- and column norms.

For the ∞-norm, this is discussed in Rothblum, Schneider, and Schneider 1994. Their
proof relies on an algorithm for symmetric DAD scaling using Observation 5.5. In fact,
an algorithm for the problem had already been studied for the symmetric case in Bunch
197116.

Theorem 6.7 (Rothblum, Schneider, and Schneider 1994). Let A ∈ Rm×n be a nonnegative
matrix and r ∈ Rm

+, c ∈ Rn
+ be prescribed row and column maxima. Then the following are

equivalent:

1. There exist diagonal matrices D1 and D2 such that D1AD2 has prescribed row and
column maxima r and c.

2. There exists a matrix B with row and column maxima r and c with the same pattern as A.

3. There exists a matrix B with row and column maxima r and c with some subpattern of A.

4. The vectors r and c fulfil

max
i=1,...m

ri = max
j=1,...n

cj (30)

max
i∈I

ri ≤ max
j∈Jc

cj (31)

max
j∈J

cj ≤ max
i∈Jc

ri (32)

for every subsets I ⊂ {1, . . . , m} and J ⊂ {1, . . . , n} such that AI J = 0.

There are two further technical conditions given in Rothblum, Schneider, and Schnei-
der 1994 as well as an algorithm that converges to the solution.

The usual equivalence scaling now corresponds to 1-norm scaling. For p-norms of
row and columns with 0 < p < ∞, it is shown that this problem reduces to 1-norm
scaling in Rothblum, Schneider, and Schneider 1994. If A(p) denotes the entrywise
power, we have:

Theorem 6.8 (Rothblum, Schneider, and Schneider 1994). Let A ∈ Rm×n be a nonnegative
matrix and r ∈ Rm, c ∈ Rn. Then the following are equivalent:

1. There exist matrices D1 and D2 such that D1AD2 = B has prescribed row and column
p-norms r and c.

2. There exist matrices D1 and D2 such that D(p)
1 A(p)D(p)

2 has prescribed row and column
sums r(p) and c(p).

16Reference from Knight 2008 among others. I could not obtain the reference.
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3. There exists a matrix B with the same pattern as A and row and column sums given by
r(p) and c(p).

Hence the answer again reduces to a question of patterns. Likewise, the ε-scalability
can immediately be transferred. Much weaker results were obtained in Livne and Golub
2004, where the problem of 2-norm scaling was studied for arbitrary (not necessarily
nonnegative) matrices. A (fast) algorithm is also derived in Knight and Ruiz 2012.

6.8. Row and column product scaling

At this point, one might wonder what happens when replacing the row- and column
sums by row- and column products. This has been treated in Rothblum and Zenios
1992, however it is not connected to entropy or maximum likelihood estimation, but
instead to least square estimations, which is why we will not discuss the techniques
here. However, this is interesting in light of the original justification of the RAS method
in transportation planning by Deming and Stephan 1940. The results are simple:

Theorem 6.9 (Rothblum and Zenios 1992). Let A be a nonnegative matrix. Then the
following are equivalent:

1. There exist positive diagonal matrices D1 and D2 such that D1AD2 has row and column
products rp and cp.

2. There exists a matrix B with the same zero pattern as A and row and column products rp

and cp.

The scalded matrix D1AD2 is unique.
Furthermore, if A has no zero rows or columns, there always exists a matrix D such that

DAD−1 has equal row and column products.

Note that in the case of matrix balancing to equal row and column products, the
result is also the same: This is possible if and only if a balanced matrix with the same
pattern exists which is always the case (cf. Rothblum and Zenios 1992, Theorem 5.2).

7. Algorithms and Convergence complexity

After the basic existence problems of matrix scaling were solved in the 60s to 80s, the
focus shifted to algorithms and complexity theory in the 90s. The story is equally
convoluted, not least because algorithmic complexity is difficult and not always well-
defined in itself: One can decide to study worst case or average convergence speed,
count algorithm steps or computational operations. Given the RAS method and the
fact that it is a coordinate descent method for an intrinsically convex optimisation
problem, which is amenable to a host of other techniques, the choice of a relevant class
of algorithms is already not unique.
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Since this review is geared more towards the mathematical aspects of the problem,
our focus will lie on exact complexity results instead of proofs by example. Papers
focussed on numerical aspects appeared as early as the late 70s, early 80s with Robillard
and Stewart 1974 average convergence considerations, Bachem and Korte 1979 and
Parlett and Landis 1982. A small overview about many of the recent developments can
be found in Knight and Ruiz 2012.

7.1. Scalability tests

Most algorithms explicitly require that the matrix A be scalable (or positive). This
means that we first need to check for scalability.

Proposition 7.1. Let r ∈ Rm
+, c ∈ Rn

+ be two positive vectors with ∑i ri = ∑j cj. Let A be a
nonnegative matrix, then one can check whether A is approximately scalable in polynomial time
O(pq log(q2/p)) with q = min{m, n} and p the number of nonzero elements in A.

If r ∈ Qm
+, c ∈ Qn

+, then one can check for exact scalability in polynomial time of the same
order.

The fact that approximate scalability can be efficiently checked was probably first
seen in Linial, Samorodnitsky, and Wigderson 2000. A complete and well-readable
proof giving explicit bounds appeared in Balakrishnan, Hwang, and Tomlin 2004, exact
scalability can be found in Kalantari et al. 2008.

Sketch of Proof. We first follow the proof in Balakrishnan, Hwang, and Tomlin 2004,
which uses the transportation graph described in Figure 2.

The matrix is approximately scalable iff the maximum flow of this network is equal to
∑i ri. The flows along the edges E then define a matrix with the wanted pattern. Such a
network flow problem can be solved in time O(pq log(q2/p)) with q = min{m, n} and
p the number of nonzero elements in A (Ahuja et al. 1994).

In order to check for exact scalability, one has to check whether there exists a solution
where each edge has a positive amount of flow (otherwise the entry would have to
be reduced to zero). We can check for a solution to the maximum flow problem with
minimum flow through each edge bigger than a prespecified value ε with the same
costs as solving a maximum flow problem twice. Clearly, this does not help as, we
would have to check scalability for any ε > 0.

However (following Kalantari et al. 2008) if r, c have only rational entries, we can
find a number h such that hr, hc have only integer values. In this case, the flow problem
has a solution iff there exists a matrix B with column sum hc and row sum hr where
each positive entry fulfils B ≥ 1/|E|, where |E| denotes the number of edges in E.

This implies that it suffices to check for a solution with capacities hr, hc and minimum
flow through each edge having prespecified value 1/(2|E|).

For positive semidefinite matrices, scalability can also be checked easily:
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Proposition 7.2 (Khachiyan 1996). Let A ∈ Rn×n be positive semidefinite. Then A is scalable
if and only if Ax = 0 and eTx = 1 has no solution x ≥ 0. This can be tested by a linear
program.

Proof. The formulation is already nearly in canonical form. We maximize eTx subject to
the equality constraints Ax = 0 and x ≥ 0.

For arbitrary matrices scalability is mostly NP-hard (see Section 5.4).

7.2. The RAS algorithm

The RAS algorithm, being the natural algorithm to compute approximate scaling, is
also the most studied algorithm. For the case of doubly stochastic matrices, it has
long been known (cf. Sinkhorn 1967) that for positive matrices, the RAS converges
linearly (sometimes called geometrically) in the l∞ norm. Krupp 1979 gave a simple
argument that the iteration will get better at any step. This can also be inferred from the
fact that the RAS method is iterated I-projection onto a convex set using Csiszár 1975.
Later, Franklin and Lorenz 1989 showed that the convergence is also linear in Hilbert’s
projective metric, while Soules 1991 showed linear convergence for all exactly scalable
matrices basically in arbitrary vector norms, albeit without explicit bounds. Conversely,
it was shown that only scalable matrices can have linear convergence meaning that the
RAS converges sublinear for matrices with support that is not total (Achilles 1993). We
have the following best bounds:

Theorem 7.3 (Knight 2008, Theorem 4.5). Let A ∈ Rn×n be a fully indecomposable matrix
and denote by D1, D2 the diagonal matrices such that D1AD2 is doubly stochastic. Let Di

1 and
Di

2 be the diagonal matrices after the k-th step of the Sinkhorn iteration, there exists a K ∈N

such that for all k ≥ K, in an appropriate matrix norm

‖Di+1
1 ⊕ Di+1

2 − D1 ⊕ D2‖ ≤ σ2
2‖Di

1 ⊕ Di
2 − D1 ⊕ D2‖ (33)

where σ2 is the second largest singular value of D1AD2.

The proof of this theorem crucially relies on the fact that matrices with a doubly
stochastic pattern are direct sums of primitive matrices (modulo row and column
permutations). Hence it cannot easily be extended to matrices with arbitrary row and
column sums if those matrix patterns allow for non-primitive matrices. The approach
in Franklin and Lorenz 1989 for positive matrices can also be extended to arbitrary row
and column sums.

We observe that the occurrence of the second singular value should not come as
a big surprise: Given a stochastic matrix A, Ak converges to a fixed matrix and the
convergence is dominated also by the gap between the largest singular value 1 and the
second largest singular value of A.

For practical purposes, one then needs to work out how many operations are needed
to obtain a given accuracy of the solution. The first such bounds can be derived from
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the bounds in Franklin and Lorenz 1989. The main study of these questions was
conducted in the early 90s and 2000s, starting with Kalantari and Khachiyan 1993. Let
A ∈ Rn×n×...×n with d copies of Rn be a positive multidimensional matrix which can
be scaled to doubly stochastic form, then they proved that the RAS takes at most

O
((

1
ε
+

ln(n)√
d

)
d3/2√n ln

V
ν

)
(34)

steps, where all matrix entries are in the interval (ν, V] and the maximal error is upper-
bounded by ε. (Kalantari and Khachiyan 1993, Theorem 1). They also derive a bound
for a randomised version of the RAS, where at each step, the direction of descent is
selected randomly and once in a while, the whole error function is computed randomly.
The expected runtime is then slightly lower.

In the case of positive matrix scaling, Kalantari et al. 2008 give better bounds covering
also the case of inequality constraints as in Balinski and Demange 1989a. In particular,
let A ∈ Rn×m be a positive matrix with ν ≤ Aij ≤ V, let N = max{n, m}, let ρ =

max{ri, cj} and h = ∑ij Aij. Then the number of iterations needed to scale A to
accuracy ε is of order

O
((

1
ε
+ ln(hN)

)
ρ
√

N
(

ln(ρ) + ln
(

V
ν

)))
.

The two results (specific bounds and asymptotic linear behaviour for convergence
speed) imply that the RAS method has generally good convergence properties if the
matrix is positive.

A fully polynomial time algorithm (i.e. without a factor involving the size of the ma-
trix entries) for general marginals was given in Linial, Samorodnitsky, and Wigderson
2000 based on the RAS method with preprocessing. However, the algorithm scales with
O(n7 log(1/ε)) for the general (r, c)-scaling and (using a different algorithm closer to
the RAS) with O((n/ε)2) for doubly-stochastic scaling.

In summary, the RAS method, while not fully polynomial by itself, can be tweaked in
various ways to allow for fully polynomial algorithms. In addition, it has the advantage
of being parallelisable as demonstrated in Zenios and Iu 1990; Zenios 1990. However,
the scaling behaviour is not particularly fast in specific examples (see for instance
Balakrishnan, Hwang, and Tomlin 2004; Knight and Ruiz 2012), in particular it doesn’t
seem to be very good at handling sparse matrices.

7.3. Newton methods

One of the first alternative algorithms to the RAS methods was provided in Marshall and
Olkin 1968 as a minimisation of xT Ay using a modified Newton method as described in
Goldstein and Price 1967 (it is not related how the equality constraints are introduced
into the problem. This can be done using a C2-penalty function).
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Newton methods were also developed to solve the scaling problem for positive
semidefinite matrices. They can either be seen as Newton’s method applied to xT Ax
for symmetric A (cf. Khachiyan and Kalantari 1992) or as Newton’s method applied
to the Sinkhorn iteration equation xk+1 := e/(Axk) (cf. Knight and Ruiz 2012). Yet a
different method was considered in Fürer 2004.

Kalantari 2005 shows that their algorithm converges in O(
√

n ln(n/(µε))) Newton
iteration steps, where µ := inf{xT Ax|x ≥ 0}, if the matrix is scalable.

7.4. Convex programming

As noted in section 3.5, the convex programming formulation of the problem makes it
amenable to a host of (polynomial time) techniques such as the ellipsoid method or
interior point algorithms.

In the case of nonnegative matrices A ∈ Rn×n with doubly stochastic marginals, a
good bound was found in Kalantari and Khachiyan 1996, with operations of order

O(n4 ln(n/ε) ln(1/ν)).

The bound uses ellipsoid methods. Later, the bounds were extended to cover gener-
alised marginals in Nemirovski and Rothblum 1999 (also including the generalisation
discussed in Rothblum 1989) specifically using ellipsoid methods for the convex opti-
misation formulation of equation (16). The first instance of an interior point algorithm
was probably formulated in Balakrishnan, Hwang, and Tomlin 2004 applied to the
entropy formulation. The authors find a strongly polynomial algorithm which scales
better than Linial, Samorodnitsky, and Wigderson 2000 with O(n6 log(n/ε))17.

A different ansatz for an algorithm was used in Schneider 1990, where the author
uses the duality in convex programming and a coordinate ascent algorithm for the
dual problem of his truncated matrix scaling. This algorithm will then be some form of
generalisation of the RAS method.

7.5. Other ideas

We give a short primer of other algorithms considered in the literature:

1. The first paper to develop new algorithms with a focus on speed and not only
concepts was Parlett and Landis 1982, where a bunch of slightly different and
optimised algorithms is derived.

2. An algorithm which is somewhat related to convex algorithms is considered in
Kalantari 1996. It is a total gradient based, steepest descent algorithm for the
homogeneous log-barrier potential.

17It seems that the authors were unaware of Kalantari et al. and Nemirovski and Rothblum 1999.
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3. In Rote and Zachariasen 2007, using an algorithm for the matrix apportionment
problem involving network flows and using ideas of Karzanov and McCormick
1997, they provide an algorithm where the number of iterations scales with

O(n3 log n(log(1/ε) + log(n) + log log(V/ν))). (35)

Once again, Aij ∈ [ν, V] for all i, j.

4. With ever larger matrices, it is sometimes infeasible to access each element of
the matrix on its own, because the matrix is not stored in that form or processed
somewhere else. This makes it interesting to consider algorithms that do not
need access to all elements, such as the RAS method for nonnegative matrices.
Algorithms that are “matrix free” in this sense were developed in Bradley 2010;
Bradley and Murray 2011 for doubly stochastic scaling of positive semidefinte
matrices.

5. Finally, let us mention that algorithms were also developed for infinity norm
scaling (cf. Bunch 1971; Ruiz 2001; Knight, Ruiz, and Uçar 2014) and other norm
scaling (cf. Ruiz 2001).

7.6. Comparison of the algorithms

A first comparison of several algorithms was performed in Schneider and Zenios 1990,
however, the comparison is not really in terms of speed (for instance, all algorithms
were implemented on different programming platforms), but in terms of useability.

While there have been many papers claiming superior convergence speed for their
algorithm, the most comprehensive analysis has probably been achieved in Knight and
Ruiz 2012, which is limited to doubly-stochastic scalings. In the paper, the authors
compare the RAS method, a Gauss-Seidel implementation of the ideas of Livne and
Golub 2004, and the fastest algorithm in Parlett and Landis 1982 with their own
Newton-method algorithm. The test matrices are mostly large sparse matrices and
the new algorithm is usually the fastest and most robust algorithm. The authors also
claim that their Newton-based implementation is superior to Khachiyan and Kalantari
1992 and Fürer 2004. They also suggest that the algorithm should outperform the
convex optimisation based algorithms, albeit a direct comparison to the most recent
algorithm in Balakrishnan, Hwang, and Tomlin 2004 is missing, who only showed that
their algorithm clearly outperforms the RAS method. Bradley and Murray 2011 also
mention that their purely matrix free algorithm will outperform explicit methods such
as those in Knight and Ruiz 2012 if accessing single elements in the matrix is actually
slow.

In general, matrix scaling can today be done on a routine basis even for very large
matrices.
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8. Applications of Sinkhorn’s theorem

The following problem can be encountered in many areas of applied mathematics (see
also Schneider and Zenios 1990):

Problem 1. Let A ∈ Rm×n be a nonnegative matrix. Find a matrix B which is close to
A and which fulfills a set of linear inequalities, for instance

n

∑
j=1

Aij = ri,
m

∑
i=1

Aij = cj.

We could also ask for balanced marginals or any other type of marginals. The problem
is certainly not well-posed. What does “close” mean? This part of the review will try
to give an overview why “close” means equivalence scaling in many applications. We
will limit our attention mostly to the mathematical justification of matrix scalings, but I
will try to give pointers to other literature.

This implies that we only consider “nearness” leading to equivalence scaling or
matrix balancing as the result. In the literature, other nearest matrices have also been
considered such as addition of small matrices (e.g. Bachem and Korte 1980). Schneider
and Zenios 1990 describe network flow algorithms that allow for a wider variety of
applications.

Matrix scaling has many different real world applications, which implies that it also
needs different justifications. While statistical justifications exist, many applications
argue with the simplicity of the method and the fact that it performs well in practice.
These are valid arguments, but they are unsatisfactory from a mathematical point of
view. In the two following subsections we collect mathematically rigorous (or partly
rigorous) justifications and their history.

8.1. Statistical justifications

As seen, matrix scaling solves entropy minimisation with marginal constraints. This is
one of the most powerful entries for justifications of equivalence scaling as the right
model, since relative entropy has strong statistical justifications, mostly in the form of
maximum entropy or minimum discrimination information - see Jaynes 1957 or later in
Kullback and Khairat 1966 for a justification in physics, or Kullback 1959 and Gokhale
and Kullback 1978 for a justification in statistics.

Another justification closely connected to entropy minimisation is maximum likelihood
models. For instance, if given a set of distributions Q and an empirical i.i.d. sample
P, then the maximum likelihood for P being a sample of Q is given by the minimal
relative entropy (Csiszár 1989; Darroch and Ratcliff 1972). Max-Likelihood justifications
for applications in contingency tables are given in Fienberg 1970; Good 1963.

A different class of justifications for the validity of the matrix scaling approach are
arguments showing that matrix scaling conserves certain form of interactions within
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the matrix. For instance, matrix scaling conserves cross products (Mosteller 1968) and
so-called k-cycles (Berger and Kelley 1979, k-cycles are certain products of matrix and
inverse matrix entries). Both can be desirable for modeling reasons.

Finally, let us mention that the original justification (matrix scaling is a least-square
type optimisation) made in Deming and Stephan 1940 turned out to be wrong very
quickly and was superseded by real least-square methods in Stephan 1942 and later in
Friedlander 1961 or Carey, Hendrickson, and Siddharthan 1981. Those however are not
the same as equivalence scaling (see Section 6.8).

8.2. Axiomatic justification

Another justification for matrix scaling, which is particularly useful for application
in elections is given in Balinski and Demange 1989b. Instead of considering just any
matrix “close” to the original estimate, we want this matrix to fulfil a set of axioms.

Let A be a nonnegative matrix, r+, c+ (r−, c−) be upper (lower) bounds to the row
and column sums and h > 0 be a scalar. As in Section 6.6, we denote the set of all
matrices B fulfiling the bounds q := (r−, r+, c−, c+, h) with h = ∑ij Bij by R(q). For any
matrix A and any set of bounds q, we search for a method F(A, q) to allocate one out
of potentially many matrices A′ fulfiling q and the following axioms:

Axiom 1 Excactness: If r− = c− = 0 and r+ = c+ = ∞ then A′ = (h/ ∑ij Aij)A

Axiom 2 Relevance: If q′ is another set of bounds such that R(q′) ⊂ R(q) and there exists
a possible A′ ∈ R(q′), then F(A, q′) ⊂ F(A, q) ∩ R(q′).

Axiom 3 Uniformity: For any matrix A′ with bounds q, if we construct a new matrix A′,′

by exchanging any submatrix A′I×J by another submatrix BI×J which fulfils
the same row and column sums minus the part of these bound allocated in
A′(I×J)c , then A′′ ∈ F(A, q).

Axiom 4 Monotonicity: If we have two matrices A, B with Aij ≤ Bij for all (i, j), then it
also holds that A′ij ≤ B′ij for all possible allocations.

Axiom 5 Homogeneity: Suppose r− = r+ and c− = c+. Then, if two rows of A are
proportional and are constrained to the same row sum, then the corresponding
rows in A′ are always equal.

Then Balinski and Demange 1989b show that equivalence scaling (the fair share
matrix of Section 6.6) is the unique allocation method F(A, q) for all nonnegative
matrices A where R(q) contains a matrix with the same pattern as A.

8.3. A primer on applications

We will only sketch applications here since a complete list and discussion is probably
infeasible.
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Transportation planning A natural problem in geography is connected to predicting
flows in a traffic network. If one considers for example a network of streets in a city at
rush hour and a number of workers that want to get home, it is important to know how
the traffic will be routed through the network. This is to a large degree a problem of
physical modeling and a number of methods have been developed in the last century
(for a recent introduction and overview see Ortúzar and Willumsen 201118).

For our purposes, the most interesting question results from estimating trip distribu-
tion patterns from prior or incomplete data. In a simplified model, one could consider
only origin and destination nodes (e.g. home quarters and work areas), given by a
nonnegative matrix A. While the matrix is known for one year, it might be necessary to
predict the changes given that the amount of trips to and from one destination change.

Several papers have treated a justification of the RAS method in this case. For
instance, Evans 1970 argues that the method provides a unique outcome and it is
easier to handle and to compute than other methods (Detroit method, growth factor
method,...). A discussion of trip distribution with respect to Problem 1 can be found in
Schneider and Zenios 1990.

Contingency table analysis In many situations ranging from biology to economics,
contingency tables need to be estimated from sample data. Contingency tables list the
frequency distributions of events in surveys, experiments, etc. They are highly useful
to map several variables and study their relations.

As a specific example, suppose a small census in Germany tries to estimate migration
between the states. While the number of citizens is recorded, which means that the
total net migration is known, it is not known where each individual migrant came from.
From a small survey among migrants, how can one estimate the true table with correct
marginals in the best possible way? If one does a maximum likelihood estimation, the
result is once again matrix scaling (cf. Fienberg 1970; Plane 1982).

Social accounting matrices Social accounting matrices, or SAMs, are an old tool
developed in Stone 1962 and later popularised in Pyatt and Thorbecke 1976 to represent
the national account of a country. To date, it is an important aspect of national and
international accounting (as a random example see Klose, Opitz, and Schwarz 2004
from the German national institute of statistics. An introduction to social accounting
can also be found in Pyatt and Round 1985 and, from a short mathematical perspective,
in Schneider and Zenios 1990).

The idea is to represent income and outcome of a national economy in a matrix.
Often, good growth estimates are known for the row and column sums and certain
estimates are known for individual cells. The account estimates are then often not

18The authors also discuss the RAS method in chapter 5. I am however not convinced by their claim that
Bregman provided the best analysis of the mathematics of the problem.
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balanced, which can be achieved using matrix balancing or matrix scaling. Justifications
can be imported from statistics, most notably maximum likelihood.

Schrödinger bridges In Schrödinger 1931, the author considered the following setup:
Suppose we have a Brownian motion and a model which we are very confident about.
In an experiment we observe its density at two times t0, t1. Now suppose they differ
significantly from the model predictions. How can we reconcile these observations by
updating our model without discarding it completely?

This problem has been studied in a whole line of papers since then from Fortet 1940
to Georgiou and Pavon 2015. The minimum relative entropy approach can be justified
using large deviations (see Ruschendorf 1995).

Decreasing condition numbers Given a system of linear equations Ax = b with
nonsingular A, solving it relies on the Gaussian elimination procedure, which is
known to be numerically unstable for matrices with bad condition number κ(A) :=
‖A‖∞‖A−1‖∞. In order to increase the stability, we have to modify A, for example
by multiplying with diagonal matrices D1, D2 and considering D1AD2. Given that
linear systems are ubiquitous in numerical analysis, it is of paramount importance
to know how best to precondition a matrix in order to minimise calculation errors
(see for instance the survey Benzi 2002). The answer to this question is problem
dependent. Particular problems, where equivalence scaling is helpful to go include
integral controllability tests based on steady-state information and the selection of
sensors and actuators using dynamic information (see Braatz and Morari 1994).

One of the first papers to consider minimisation of κ using diagonal scaling was
Osborne 1960, who focused on matrix balancing instead of equivalence scaling (see
also Livne and Golub 2004 and Chen and Demmel 2000 for sparse matrices). Since the
condition number contains the maximum norm, it might be best to require balanced
maximum rows and columns instead of balanced row sums as observed in Bauer 1963;
Curtis and Reid 1972. This works particularly well for sparse matrices. Equivalence
scaling has been studied as early as Householder 200619 and later in Olschowka and
Neumaier 1996. If we use other p-norms in the definition of κ, a convex programming
solution for minimising κ using equivalence scaling is provided in Braatz and Morari
1994.

Note that unlike in all applications studied so far, preconditioning a matrix is useful
not only for nonnegative matrices. This is one reason why matrix balancing was
studied for copositive and not simply nonnegative matrices. A very different measure
of the “goodness” of scaling which might also be of numerical relevance was studied
in Rothblum and Schneider 1980, where the authors solved the problem of matrix
balancing of a matrix such that the ratio between the biggest and smallest element of
the scaled matrix becomes minimial.

19Reference from Braatz and Morari 1994
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Elections A very important application of equivalence scaling can be found in Voting:
Given election results in a federal election, how can one best distribute the seats among
the parties within the states such that each party and each state is represented according
to the outcome of the election? Note that here, we need to adjust for natural numbers,
which requires rounding (cf. Maier, Zachariassen, and Zachariasen 2010).

Early methods based on a discretised RAS method were developed in Balinski and
Demange 1989a. The problem is very intricate in itself, because the justifications rely
on what is perceived as “fair” and any method that is fair in some instances is unfair
in others (see for instance the discussions in Balinski and González 1997; Pukelsheim
and Schuhmacher 2004; for an overview, see Niemeyer and Niemeyer 2008).

Other applications Various other applications of equivalence scaling and matrix
balancing exist such as:

1. A Sudoku Solver based on a stochastic algorithm based on the RAS was developed
in Moon, Gunther, and Kupin 2009.

2. An algorithm to rank web-pages was developed in Knight 2008. The RAS allows
to derive an algorithm similar in scope to the HITS algorithm (Kleinberg 1999).

3. The RAS method is analysed as a relaxed clustering algorithm in data mining
(Wang, Li, and König 2010). However, it turns out that methods based on other
Bregman-divergences are more favourable.

4. Given a (discretised) quantum mechanical time evolution, can we construct a local
hidden variable model of its evolution corresponding to a deterministic stochastic
transition matrix (Aaronson 2005)?

5. Given a Markov chain with a doubly stochastic transition matrix and given an
estimate of the transition matrix, the best estimate of the real transition matrix is
given by a scaled matrix (Sinkhorn 1964).

6. Regularising optimal transportation by an entropy penalty term such that it can
be computed using the RAS, which is already much faster than optimal transport
algorithms Cuturi 2013.

9. Scalings for positive maps

We have already seen that Sinkhorn scaling is interesting for classical Schrödinger
bridges as well as for scaling transition maps of Markov processes, etc. From a physics
perspective, all these applications are classical physics, transforming classical states
(probability distributions) to classical states.

In quantum mechanics, the basic objects are quantum states. For finite dimensional
systems (such as spin systems), these quantum states are positive semidefinite matrices
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with unit trace. A quantum operation then maps states to states, i.e. it needs to be
positive: If A ≥ 0, then T (A) ≥ 0. In fact, this is not all that is required for quantum
operations, but one actually needs T to be completely positive (for an overview about
quantum operations and quantum channels, see Nielsen and Chuang 2000; Wolf 2012).
(Completely) Positive trace-preserving maps are then the natural generalisation of
stochastic matrices. This raises the question whether concepts as irreducibility and
a Perron-Frobenius theorem exist also for quantum channels and indeed they do. A
Perron-Frobenius analogue was probably first described in Schrader 2000, while the
analogue for full indecomposability was first used in Gurvits 2004.

Let us define the concepts:

Definition 9.1. A positive map E : Md → Md with Md = Cd×d is called irreducible
(as in Evans and Høegh-Krohn 1978; Farenick 1996) if for any nonzero orthogonal
projection P such that

E(PMdP) ⊆ PMdP (36)

we have P = 1.
Likewise, it is called fully indecomposable if for any two nonzero orthogonal projections

P, Q with the same rank such that

E(PMdP) ⊆ QMdQ (37)

we have P = Q = 1.
Finally, a map is called positivity improving (the analogue to positive matrices) if for

all A ≥ 0, E(A) > 0.

A lot of different characterisations have been found (see Appendix C).
Furthermore, let us define:

Definition 9.2. Let E : Md → Md be a positive map. Then E is called rank non-
decreasing if for all A ≥ 0

rank(E(A)) ≥ rank(A). (38)

It is called rank increasing, if the ≥ sign in equation (38) is replaced by a >.

The connections of Definitions 9.1 and 9.2 are explained in Appendix C.
Let us now define what we mean by scaling a positive map:

Definition 9.3. Let E :Mn →Mn be a positive, linear map. We say that E is scalable
to a doubly stochastic map, if there exist X, Y ∈ Md such that

E ′(·) := Y†E(X · X†)Y (39)
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is doubly stochastic (i.e. E ′(1) = E ′∗(1) = 1).
We call a positive map ε-doubly stochastic, if

DS(E) := tr((E(1)− 1)2) + tr((E∗(1)− 1)2) ≤ ε2 (40)

We call E ε-scalable if there exists a scaling as in equation (39) to an ε-doubly-stochastic
map E ′.

The error function DS, which is similar to an L2-error function for matrices, will serve
twofold: first, it defines approximate scalability (which can alternatively be defined by
convergence of the RAS) and second, it defines a progress measure for convergence
similar to error functions as considered in Balinski and Demange 1989b.

We can now state the full analogue of equivalence scaling to doubly stochastic form:

Theorem 9.4. Given a positive map E : Md → Md, it is scalable to a doubly stochastic
map iff there exist some matrices X and Y such that YE(X · X†)Y† is a direct sum of fully
indecomposable maps.

The scaling matrices are unique iff E is fully indecomposable.

The fact that fully indecomposable matrices are uniquely scalable was first proved
in Gurvits 2003. His work built on earlier work in Gurvits and Samorodnitsky 2002;
Gurvits 2002 (see also Gurvits 2004), based on a generalisation of the convex approach
in equation (16) and the London-Djokovic approach in equation (8).

Recently, the problem was considered with the hope to apply it for unital quantum
channels in Idel 2013 (which has never been formally published) and shortly afterwards
in Georgiou and Pavon 2015 while trying to define and study “quantum” Schrödinger
bridges. Both approaches use nonlinear Perron-Frobenius theory and thereby a gener-
alisation of equation (11) to get a result. The approaches derived from classical results
are discussed in Section 9.1.

Even earlier than Gurvits, a very limited version of the theorem was proven in Kent,
Linden, and Massar 1999 (with subsequent generalisations) using an approach that does
not derive from any of the classical approaches but instead uses the Choi-Jamiolkowski
isomorphism. This is described in Section 9.2.

The extension of the theorem to necessary and sufficient conditions has as far as I
know not been formally published20.

Furthermore, we can state an analogue of approximate scaling, which to date has
only been considered in Gurvits 2004:

Theorem 9.5. Let E :Mn →Mn be a positive, linear map. Then E is approximately scalable
(i.e. ε-scalable for any ε > 0) if and only if E is rank non-increasing.

An overview about different approaches and how they derive from existing ap-
proaches can be found in Figure 9.

20Gurvits actually claims a proof for the fact that a positive map is uniquely scalable iff it is fully
indecomposable, but I did not understand how the only if part follows.
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Figure 4: Approaches to positive map scalings and their connections. The classical
approaches of Figure 3.1 are depicted in grey, while positive map approaches
derived from classical approaches are overlayed in black.
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9.1. Operator Sinkhorn theorem from classical approaches

We will now study how the theorems above were derived extending classical approaches
to positive maps starting with an analogue of the RAS method for positive maps:

Algorithm 9.6. Let E :Mn →Mn be a positive, linear map.

1. Start with E0 := E .

2. For each i = 0, . . . , n define:

E2i+1(·) := E2i(1)
1/2E2i(·)E2i(1)

1/2 (41)

E2i+2(·) := E2i+1(E∗2i+1(1)
1/2 · E∗2i+1(1)

1/2) (42)

3. Iterate till convergence

By construction, we iterate between trace-preserving (even) and unital (odd) maps.

9.1.1. Potential Theory and Convex programming

As stated, an approach along the lines of the London-Djokovic approach of equation
(8) is found in Gurvits 2003; Gurvits 2004 (with methods of Gurvits 2002; Gurvits and
Samorodnitsky 2000; Gurvits and Samorodnitsky 2002). Since the complete proofs are
lengthy and scattered over several papers, we provide full proofs in Appendix D for
the benefit of the reader. In this section, we only sketch the path of the proofs.

Recall that a matrix scaling exists iff the following is positive and the minimum is
attained:

c(A) := inf

{
n

∏
i=1

n

∑
j=1

Aijxj

∣∣∣∣∣ n

∏
i=1

xi = 1

}
(43)

Exchanging products with determinants and sums with traces, we obtain the following
definition:

Definition 9.7. Let E :Mn →Mn be a positive, linear map. Then define the capacity
via

Cap(E) := inf{det(E(X))|X > 0, det(X) = 1} (44)

We will start with covering approximate scaling:

Approximate scalability The capacity is the right functional to study scaling:

Lemma 9.8 (Gurvits 2004). Let E :Md →Md be a positive map. If Cap(E) > 0 then the
RAS method of Algorithm 9.6 converges and E is ε-scalable for any ε > 0.
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The proof of this lemma uses the following observation: For any C1, C2 > 0 we have

Cap(C1E(C†
2 · C2)C†

1) = det(C1C†
1)det(C2C†

2)Cap(E).

Then, a quick calculation shows that Algorithm 9.6 only decreases Cap using this
equality. If Cap(E) 6= 0, one can then show that DS(Ei)→ 0 for i→ ∞.

Next, we need to see when the capacity is actually positive. To do this, for every
unitary U we need to define the tuple

AE ,U := (E(u1u†
1), . . . , E(unu†

n)), (45)

where ui is the i-th column of U. This is done to connect the capacity with so called
mixed discriminants (see also C), which are needed for the proof. In fact, we have:

Lemma 9.9. Let E : Mn → Mn be a positive, linear map and U ∈ U(n) a fixed unitary.
Then defining

Cap(AE ,U) := inf

{
det

(
∑

i
E(uiu†

i )γi

)
|γi > 0,

n

∏
i=1

γi = 1

}

where ui are once again the rows of U, we have the following properties:

1. Using the mixed discriminant M defined in Appendix C, we have

M(AE ,U) ≤ Cap(AE ,U) ≤
nn

n!
M(AE ,U)

2. inf
U∈U(n)

Cap(AE ,U) = Cap(E)

Most of the proof is very technical and found in Gurvits and Samorodnitsky 2002.
Some parts are explained in Appendix D.

Finally, this proves most of Theorem 9.5: We know that E is rank non-decreasing
if and only if Cap(E) is positive. In that case, the RAS algorithm converges in which
case the map is approximately scalable. For the other direction, one can use a simple
contradiction argument: Any map close to a doubly stochastic map must be rank non-
decreasing and as scaling does not change this property of a map, any approximately
scalable map must be rank non-decreasing.

Exact scalability The capacity is also the correct generalisation for exact scaling:

Lemma 9.10 (Gurvits 2004). Let E :Md →Md be a positive map. Then E is scalable to a
doubly-stochastic map if and only if Cap(E) > 0 and the capacity can be achieved.
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The proof of this Lemma following Gurvits 2004 is given in Appendix D. The direction
“Capacity is achieved⇒ the map is scalable”, is proved by taking the Lagrangian and
showing that at the minimum we have that

∇ ln(det(E(X))) = E∗(E(C)−1)

which implies scalability by Lemma 9.14. The converse direction is given by a direct
calculation.

In order to prove that a map can be scaled to doubly stochastic form, one then needs
to connect this lemma to full indecomposability of matrices. The proof is done using
an argument involving strict convexity. Like the original London-Djokovic potential
(8), the capacity is not a convex function, but one can make a substitution similar to
Formulation (16) by considering the following function for any tuple (Ai)i of positive
definite matrices:

fA(ξ1, . . . , ξn) := ln det(eξ1 Ai + . . . + eξn An). (46)

Then we have:

Lemma 9.11. Let E : Mn → Mn be a positive, linear map and given U ∈ U(n), let
A = AE ,U . Then

1. fA is convex on Rn.

2. If E is fully indecomposable, then fA is strictly convex on {ξ = (ξ1, . . . , ξn) ∈
Rn|∑i ξi = 0}.

The proof is technical and uses mixed discriminants as well as results about them
from Bapat 1989, which is why we only discuss it in the appendices. This is then used
to prove

Lemma 9.12. Let E :Mn →Mn be a positive, linear map. If E is fully indecomposable, there
exists a unique scaling of E to a doubly stochastic map.

The idea is somewhat similar to the approximate Sinkhorn theorem: Since fully
indecomposable maps are in particular rank non-decreasing, we know that the capacity
is positive. For any X > 0, which is diagonalised by U, using the tuple AE ,U , one
can then see that det(E(X)) = fA(log λ) with the eigenvalues λ of X. Showing that
the infimum must lie inside a compact set then finishes the proof, since Lemma 9.11
implies existence and uniqueness of the minimum as fA is strictly convex.

Using Lemma C.7, we can see then see that up to a unitary, every doubly stochastic
map is a direct sum of fully indecomposable maps (much like doubly stochastic matrices
are up to permutations a direct sum of fully indecomposable matrices, see Proposition
A.5). Hence, any map which is a direct sum of fully indecomposable maps up to some
scaling is clearly scalable to doubly stochastic maps. Sadly, the condition seems not
very useful and the question remains open, whether one can simplify this condition.
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However, that does in fact answer the question of unique scaling: Since the scaling for
direct sums is not unique (we can always interchange summands), a map is uniquely
scalable if and only if it is fully indecomposable.

9.1.2. Nonlinear Perron-Frobenius theory

The main idea of the alternative proofs in my Master’s Thesis (Idel 2013) and the paper
Georgiou and Pavon 2015 is to extend the Menon operator to positive semidefinite
matrices:

Definition 9.13. Let E :Mn →Mn be a positive map, such that E(A), E∗(A) > 0 for
all A > 0. Let D denote matrix inversion, then we define the following nonlinear map:

Tpos : {A ∈ Mn|A > 0} → {A ∈ Mn|A > 0}
Tpos(·) := D ◦ E∗ ◦ D ◦ E(·)

This map is well-defined and after normalisation, it sends positive definite matrices of
trace one onto itself.

We can then reformulate the existence problem into a fixed point problem:

Lemma 9.14. Let E : Mn → Mn be a positive map such that E(A), E∗(A) > 0 for all
A > 0. Then there exist invertible X, Y ∈ Mn such that Y−1E(X(·)X†)Y−† is a doubly
stochastic map if and only if Tpos has an eigenvector (a fixed point after normalisation) in the
set of positive definite trace one matrices. Furthermore, X, Y can be chosen such that X, Y > 0.

Proof. Let ρ > 0 be the positive definite eigenvector of G. Then define 0 < σ :=
E(ρ). Since ρ is an eigenvector, one immediately sees that E∗(σ−1) = λρ−1 with
λ = tr(E∗(σ−1))

−1. Now define X :=
√

ρ and Y :=
√

σ (i.e. XX† = ρ and YY† = σ),
then X, Y are positive definite and if we define the map:

E ′ :Mn →Mn

E ′(·) := Y−1E(X(·)X†)Y−†

then a quick calculation shows E ′(1) = 1 and E ′∗(1) = 1:

E ′(1) = Y−1E(X(1)X†)Y−† = Y−1E(ρ)Y−†

= Y−1σY−† = Y−1YY†Y−† = 1

On the other hand, a similar calculation shows

E ′∗(1) = X†E∗(Y−†
1Y−1)X = λ1

but since E ′ was shown to be unital, E ′∗ is trace-preserving and λ = 1 to begin with.
Conversely, given X, Y as in the lemma, XX† would be a fixed point of the Menon-
operator.
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Note that this completes the proof of Lemma 9.10. We only have to see that the
conditions at the minimum are met if and only if the Menon operator has a fixed point.
This also provides the connection between the Menon operator and Gurvits’ approach:
As in the classical case, the conditions for a fixed point of the Menon operator are given
by the Lagrange conditions of the London-Djokovic potential.

We observe that the Menon-operator, if it is defined, is a continuous, homogeneous
positive map. This lets us give a proof of a weak form of the Operator Sinkhorn
Theorem:

Proposition 9.15 (Idel 2013). Given a positive trace-preserving map E : Mn →Mn such
that there exists an ε > 0 such that for all matrices ρ ≥ ε1 with unit trace it holds that
E(ρ) ≥ nε

1+(n−1)nε
1, then we can find X, Y > 0 such that Y−1E(X(·)X†)Y−† is a doubly

stochastic map.

Proof. Let Tnormpos(·) := Tpos(·)/ tr(Tpos(·)) is the normalised operator. Now assume
that for all ρ ≥ ε1 with tr(ρ) = 1, it holds E(ρ) ≥ δ1. In particular, if we call λmax the
maximal eigenvalue of E(ρ), then λmax ≤ 1− (n− 1)δ. Hence we have:

δ1 ≤ E(ρ) ≤ (1− (n− 1)δ)1

⇒ 1
δ
1 ≥ D(E(ρ)) ≥ 1

1− (n− 1)δ
1

⇒ 1
δ
1 ≥ E∗(D(E(ρ))) ≥ 1

1− (n− 1)δ
1

⇒ δ1 ≤ D(E∗(D(E(ρ)))) ≤ (1− (n− 1)δ)1

where we used the unitality of E∗ in the third step. This implies

Tnormpos(ρ) ≥
δ

1− (n− 1)δ
1/n

Now we want δ
1−(n−1)δ ≥ εn, in which case the compact set of matrices {ρ > 0| tr(ρ) =

1, ρ ≥ ε1/n} is mapped into itself, hence by Brouwer’s fixed point theorem, we
obtain a positive definite fixed point of G. A quick calculation shows that this implies
δ > nε/(1 + (n− 1)nε).

Since a positive map E :Mn →Mn can always be converted into a trace-preserving
map E ′ by setting ρ := E∗(1) and E ′(·) := E(

√
ρ−1 ·

√
ρ−1), the assumption that E be

trace-preserving is not really necessary. As a direct corollary, we obtain a similar result,
which might be easier to use:

Corollary 9.16 (Idel 2013; Georgiou and Pavon 2015). Let E : Mn → Mn be a
trace-preserving and positivity improving map, then there exist maps X, Y > 0 such that
Y−1E(X(·)X†)Y−† is a doubly stochastic map.
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As in the classical matrix case in Brualdi, Parter, and Schneider 1966, one idea
to obtain necessary and sufficient criteria is to extend the map Tnormpos to positive
semidefinite matrices for all cases and then prove that there is a fixed point of the map
inside the cone of positive definite matrices. However, we run into additional problems,
since the cone of positive semidefinite matrices is not polyhedral (cf. Lemmens and
Nussbaum 2012: there is no and cannot exist an equivalent version of theorem B.8;
this does not preclude that an extension exists, but such a result must depend on the
operator in question). Moreover, even if a continuous extension may be possible by
using perturbation theory (for instance), the hardest part is to prove the existence of a
fixed point inside the cone.

9.1.3. Other approaches and generalised scaling

We have seen that at least two classical approaches for proving that a matrix can be
scaled to a doubly stochastic matrix can be extended to the quantum case without
too much trouble (the proofs however might be more difficult): nonlinear Perron-
Frobenius theory and the barrier function approach. In a sense, we have also seen
convex programming approaches. An immediate question is whether one can extend
the entropy approach. This was also asked in Gurvits 2004 and it is a major open
question in Georgiou and Pavon 2015, since the motivation of Schrödinger bridges
heavily relies on relative entropy minimisation. The answer is not clear since something
like a quantum relative entropy is only used only on the level of matrices and a
justification via the Choi-Jamiolkowski isomorphism is not immediate (see Section 9.2):

D(ρ‖σ) = tr(ρ log ρ− ρ log σ). (47)

Another question is how to extend the theorems from the doubly-stochastic map to
cover arbitrary marginals, i.e. we want to scale a positive map E such that

E(ρ) = σ, E∗(1) = 1 (48)

with some prespecified ρ, σ. For Gurvits’ approach based on equation (8) this is not
really straightforward, since it is unclear how to take appropriate powers of P, Q. For
the approach via nonlinear Perron-Frobenius theory, this can be done to some degree:

Theorem 9.17 (Georgiou and Pavon 2015). Given a positivity improving map E :Md →
Md and two matrices V, W > 0 with tr(V) = tr(W), there exist matrices X, Y ∈ Md and a
constant λ > 0 such that E ′(·) := YE(X · X†)Y† fulfills

E ′(V) = W

E ′∗(1) = 1

Sketch of proof. The proof is a variation of the methods for the case V = W = 1. We
consider the following Menon-type operator, which was essentially defined in Georgiou
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and Pavon 2015:

TE ,V,W := D1 ◦ E∗ ◦D2 ◦ E

where

D1(ρ) = ρ−1/2V−1ρ−1/2

D2(ρ) = (W1/2(W−1/2ρ−1W−1/2)1/2W1/2)2

Step 1: Let E be positivity improving, then TE ,V,W : Cd → Cd is a well-defined,
continuous, and homogeneous map. It is well-defined, since E maps Cd → Cd and
D1 and D2 send Cd → Cd if V, W ∈ Cd. It is homogeneous, because E is linear and
Di(λρ) = λ−1Di(ρ) for i = 1, 2. Finally, D1 is continuous as taking the square root
of a positive definite matrix is continuous and matrix multiplication and inversion of
positive definite matrices is continuous. Likewise, D2 is continuous and thus TE ,V,W as
composition of continuous maps.

Step 2: We now claim that a scaling of E with as in the theorem with X, Y > 0 exists
iff TE ,V,W has an eigenvector. This was observed in Georgiou and Pavon 2015 and is a
straightforward but lengthy calculation.

Step 3: Finally, we can prove the existence of X, Y > 0 such that a scaling exists by
invoking Brouwer’s fixed point theorem. The map

T̃(·) : Cd
1 → C

d
1 T̃(·) := TE ,V,W(·)/ tr(TE ,V,W(·))

is a continuous, well-defined map, hence it has a fixed point. This is necessarily an
eigenvector of TE ,V,W , hence defines a scaling.

The problem with this proof is that this Menon operator is no longer clearly a
contraction mapping, hence uniqueness and convergence speed of the algorithm are
not clear. Also, the obvious algorithm derived from this proof differs from the usual
RAS algorithm. It is not clear how to remedy this or extend one of the other approaches.
Also, this map has even worse prospect of being generalised to positive and not
necessarily positivity improving maps. In any case, it is not immediately clear what
the right necessary and sufficient conditions are. In the case of matrices, patterns were
the important concept, but what is a pattern supposed to be for positive maps? One
can always choose a basis and represent the map as matrix, but this is very much
map-dependent and it is not clear what the correct interpretation will be.

Nevertheless, partial results for uniqueness have been achieved in Friedland 2016: The
author proves that for positivity preserving maps E , there exists a ball around 1 such
that if V, W lie inside this ball, there exists a unique scaling of E to a trace-preserving
positive map with E(V) = W.
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9.2. Operator Sinkhorn theorem via state-channel duality

Another formulation of the operator Sinkhorn theorem is given by the Choi-Jamiolkow-
ski isomorphism. It states that given any positive map E : Mn → Mn, we have
that

τE := (id⊗E)(ω) (49)

is a block-positive matrix (i.e. 〈φ1|〈φ2|τE |φ1〉|φ2〉 ≥ 0 for all |φ1〉, |φ2〉 ∈ Mn). Here
ω := 1/d ∑n

i,j=1 |ii〉〈jj| ∈ Mn2 is the so-called maximally entangled state. If E is completely
positive, i.e. E ⊗ idn is a positive map, then τE is a positive semi-definite matrix. Now
consider X1, X2 ≥ 0 and E ′ := X†

2E(X1 · X†
1)X2. We have

τE ′ = (Xtr
1 ⊗ X†

2)τE (Xtr
1 ⊗ X†

2)
† (50)

where we use (1⊗ X1)∑i |ii〉 = (Xtr
1 ⊗ 1)∑i |ii〉 and therefore

τE ′ = (1⊗ X†
2)(id⊗E)((1⊗ X1)ω(1⊗ X1)

†)(1⊗ X2) (51)

= (Xtr
1 ⊗ X†

2)(id⊗E)(ω)(Xtr†
1 ⊗ X2) (52)

Therefore, the task can be reformulated: Given a block positive matrix τ, find X1, X2 ∈
Md such that

τ′ := (X1 ⊗ X2)τ(X1 ⊗ X2)
†

fulfils tr2(τ) = tr1(τ) = 1/d, where tri denotes the partial trace over the i-th system in
Md ⊗Md ≡Md2 . For τ ≥ 0 these operations are called (local) filtering operations. Often
(c.f. Gittsovich et al. 2008; Wolf 2012), one asks for X1, X2 ∈ SL(d) and the resulting
trace being merely proportional to the identity, but this is of course just a normalisation.

We can then state an equivalent version of Sinkhorn scaling for positive map:

Proposition 9.18 (Kent, Linden, and Massar 1999; Leinaas, Myrheim, and Ovrum 2006;
Verstraete, Dehaene, and De Moor 2001). Let ρ ∈ Md ⊗Md be a positive definite density
matrix. Then there exist matrices X1, X2 ∈ Md such that

(X1 ⊗ X2)ρ(X1 ⊗ X2)
† =

1
d21+

k2−1

∑
k=1

ξk J1
k ⊗ J2

k (53)

where {J1
k}k ⊂Md and {J2

k}k ⊂Md form a basis of the traceless complex matrices and ξ ∈ C

for the first and second tensor factor inMd ⊗Md respectively.

Proof. Note that a positive definite ρ corresponds to a completely positive map, which
maps positive semidefinite matrices to positive definite ones. In particular, the corre-
sponding map is fully indecomposable. Hence by Theorem 9.4, there exists a scaling to
a doubly stochastic map, which again corresponds to a positive definite ρ̃ ∈ Md ⊗Md
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such that tr1(ρ̃) = tr2(ρ̃) = 1/d. By construction, {1/d, J1
k}k and {1/d, J2

k} form an
orthonormal basis ofMd, hence we can express ρ̃ as

ρ̃ =
1
d21+

k2−1

∑
k=1

ξk J1
k ⊗ J2

k +
k2−1

∑
k=1

χ1
k
1

d
⊗ J1

k + χ2
k J2

k ⊗
1

d

with ξk, χ1
k , χ2

k ∈ C for all k. Then

tr1(ρ̃) =
1
d
1+

k2−1

∑
k=1

ξk tr(J1
k )⊗ J2

k +
k2−1

∑
k=1

(
χ1

k tr
(
1

d

)
⊗ J1

k + χ2
k tr(J2

k )⊗
1

d

)

=
1
d
1+

k2−1

∑
k=1

χ1
k J1

k
!
=

1
d
1

But then, since the J1
k are linearly independent, χ1

k = 0 for all k. Likewise, χ2
k = 0 for all

k and we have the required normal form.

The proposition has direct proofs and extensions to more than two parties (see for
instance Verstraete, Dehaene, and De Moor 2002; Verstraete, Dehaene, and De Moor
2003; Wolf 2012). Here, it only uses the sufficient part of the criterion for scalability of
positive maps, hence we can strengthen it to include parts of all block-positive matrices.
Since, however, not all completely positive maps are fully indecomposable (e.g. the
map E : ρ→ |ψ〉〈ψ| for some vector |ψ〉 ∈ Cd is not), it certainly does not extend to all
states.

9.3. Convergence speed and stability results

Gurvits’ proof already gives an estimate for the convergence speed of the scheme
(see Theorem 4.7.3. in Gurvits 2004). Let us give an alternative proof using Hilbert’s
metric which is equivalent to the classical proof in Franklin and Lorenz 1989 and
reminiscent of the convergence proof in Georgiou and Pavon 2015. Throughout the
proof, we use several results from Appendix B, in particular the definition of Hilbert’s
projective metric dH on the cone of positive semidefinite matrices and the definition of
the contraction ratio γ in equation (68). To proceed, we define a metric on the space of
positive maps that are scalable:

Definition 9.19. Let E , T :Mn →Mn be two positive maps such that T (·) = YE(X ·
X†)Y† for some positive matrices X, Y. Then

∆(E , T ) = dH(X,1) + dH(Y,1) (54)

defines a metric on the space of positive maps (two maps that cannot be scaled to each
other have infinite distance).
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A proof that this constitutes a metric may be found in Lemmens and Nussbaum
2012, Chapter 2. Recall the Sinkhorn iteration as defined in equations (41)-(42). For
convenience we use a slightly different notation:

E (i) := E2i i > 0

E (i)′ := E2i+1 i ≥ 0

ρ(i) := E (i−1)(1) i > 0

σ(i) := E (i)′†(1)
E (0) := E .

Then:

Proposition 9.20. Let E :Mn →Mn be a positivity improving, trace preserving map. Let
T := Y−1E(X · X†)Y be the unique doubly stochastic scaling limit.

∆(E (k), T ) ≤ γk

1− γ
(dH(ρ

(1), e) + dH(σ
(1), e)) (55)

∆(E (k)′, T ) ≤ γk

1− γ
(dH(ρ

(1), e) + dH(σ
(1), e)) (56)

where γ1/2 = γ1/2(E) is the contraction ratio of equation (68). In particular, this implies via
proposition B.6 (implying that here, γ < 1) that the convergence is geometric.

Proof. The proof is similar to the classical one in Franklin and Lorenz 1989. First recall
the definition of ∆ from Appendix B:

∆(E) := sup{dH(E(ρ), E(σ))|ρ, σ ≥ 0}

Then ∆ > 0 but finite, since E is a positivity improving map and the maximum is
attained. This is true, because it suffices to consider dH(E(ρ), E(σ)) on the compact set
{A ≥ 0|‖A‖∞ = 1} using Proposition B.6 (iii).

We first make the following observations:

dH(ρ, σ) = dH(σ
−1/2ρσ−1/2,1) ∀ρ, σ > 0 (57)

dH(E(ρ), E(σ)) ≤ γ1/2(E)dH(E(ρ), E(σ)) ∀ρ, σ > 0, E :Mn →Mn (58)

Equation (58) follows from the definition of γ1/2. Equation (57) follows from the
definition of M and m in the definition of the Hilbert metric and the fact that taking
noncommutative inverses does not change positivity.

Let us now focus on γ(E). Let X, Y ∈ Mn be invertible, then

∆ = sup{dH(Y†E(XρX†)Y, Y†E(XσX†)Y)|ρ, σ ≥ 0}
= sup{dH(E(XρX†), E(XσX†))|ρ, σ ≥ 0}
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= sup{dH(E(ρ̃), E(σ̃))|ρ̃, σ̃ ≥ 0}

using observation (58) and then X being invertible. In particular, this implies that for
every γ1/2(E (i)) we have a universal upper bound

γ1/2(E (i)) < tanh(∆/4). (59)

Since ∆ > 0 but finite, this implies that we can upper bound each γ(E (i)) and γ(E ′ (i))
by some γ < 1. The rest is basically an iteration.

Consider dH(ρ
(2),1). By definition, ρ(2) = E (1)(1) = E (1)′((σ(1))−1), and since all

E (i)′ are unital:

dH(ρ
(2),1) = dH(E (1)′((σ(1))−1), E (1)′(1)) ≤ γ1/2(E (1)′)dH(1, σ(1)) (60)

where we used (58) and then (57). Similarly, since σ(1) = E (0)′∗(1) = E (0)∗((ρ(1))−1)

and E (0)∗(1) = 1 by construction, we obtain:

dH(1, σ(1)) = dH(E (0)∗(1), E (0)∗((ρ(1))−1) ≤ γ1/2(E (0)∗)dH(ρ
(1),1) (61)

Combining (60) and (61) we obtain:

dH(ρ
(2),1) ≤ γdH(ρ

(1),1) (62)

Similarly,

dH(σ
(2),1) ≤ γdH(σ

(1),1) (63)

These are the key observations. Now using the definition of ∆(·, ·) we obtain:

∆(E (k), E (k+1)) = dH((ρ
(k))−1,1) + dH((σ

(k))−1,1)

≤ γk−1(dH(ρ
(1),1) + dH(σ

(1),1))

Hence we have by the triangle inequality

∆(E (0), E (k+1)) ≤
k−1

∑
l=0

γl(dH(ρ
(1),1) + dH(σ

(1),1))

and therefore, if T denotes the limit of the Sinkhorn iteration, using the geometric
series

∆(E (0), T ) ≤ 1
1− γ

(dH(ρ
(1),1) + dH(σ

(1),1)) (64)

∆(E (k), T ) ≤ γk

1− γ
(dH(ρ

(1),1) + dH(σ
(1),1)) (65)

The other inequality for the maps E ′ follows from symmetric arguments.
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Note that in contrast to the classical case in Franklin and Lorenz 1989, because of
the noncommutativity in equation (57), a simple extension to the general scaling of
positivity improving maps seems not possible.

Next, we wish to generalise also the stability results. It seems natural that this should
follow from the contraction results above:

Corollary 9.21. Let E :Mn →Mn be positivity improving, then the scaling is continuous
in E .

Proof. Let E be a positivity improving map and E ′ = E + δT be a perturbation which
is again positivity preserving, where T is a positive map with ‖T ‖ = 1 (for instance in
the operator norm).

Then let X, Y be such that they scale E to a doubly stochastic map. This implies that

YE ′(XX†)Y† = 1+ δYT (XX†)Y†

X†E ′ ∗(Y†Y)X = 1+ δX†T ∗(Y†Y)X

and the marginals are also close to 1. In fact, for any ε > 0 we can find δ > 0 such that

dH(YE ′(XX†)Y†,1) + dH(X†E ′ ∗(Y†Y)X,1),< ε

But then, by equation (64), we have that if E ′,′ is the scaling of YE ′(XX†)Y† to a doubly
stochastic map, then

∆(YE ′(XX†)Y†, E ′,′) ≤ 1
1− γ

(dH(ρ
(1),1) + dH(σ

(1),1)) <
1

1− γ
ε

Using the triangle inequality and the fact that ∆(E , E ′) < Cε for some constant C
finishes the proof.

As noted, both theorems can be extended to cover all exactly scalable positive maps
using Gurvits’ Theorem 4.7.3. of Gurvits 2004. Given the result for classical matrices,
it seems natural that the convergence speed for rank non-decreasing but not exactly
scalable matrices should not be geometric.

9.4. Applications of the Operator Sinkhorn Theorem

Let us finally mention applications of the operator version of Sinkhorn’s theorem. The
state-version of the theorem, since it can be seen as a normal form for states under local
operations, has been applied in the study of states under LOCC operations (see for
instance Kent, Linden, and Massar 1999; Leinaas, Myrheim, and Ovrum 2006).

The approximate operator version was developed to obtain polynomial-time algo-
rithms (Sinkhorn scaling) for a problem known as “Edmond’s problem”. It asks the
following question (Gurvits 2004): Given a linear subspace A ofMn, does there exist a
nonsingular matrix in V? The question can be asked also over different number fields
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and in different contexts. It is particularly interesting, because it is related to rational
identity testing over non-commutative variables as studied in Garg et al. 2015; Ivanyos,
Qiao, and Subrahmanyam 2015. For further input we refer the reader to the extended
and well-written review of the applications in Garg et al. 2015.

Finally, the exact scalability of fully indecomposable positive maps provided bounds
on the mixed discriminant of matrix tuples, which is interesting to provide permanent
bounds (Gurvits and Samorodnitsky 2000).
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A. Preliminaries on matrices

Sinkhorn’s theorem is closely related to irreducibility and notions connected to it.
Therefore, we first recall the following charactersation of irreducible matrices.

Proposition A.1. Let A ∈ Rn×n be nonnegative. The following are equivalent:

1. A is irreducible.

2. The digraph associated to A is strongly connected.

3. For each i and j there exists a k such that (Ak)ij > 0.

4. For any partition I ∪ J of {1, . . . , n}, there exists a j ∈ J and an i ∈ I such that Aij 6= 0.

An overview about these and similar properties can be found in Schneider 1977.
Graph related properties are proven in Brualdi 1968.

Let us now describe a graph for any matrix: Given a nonnegative matrix A ∈ Rn×n

and any partition I ∪ J = {1, . . . , 2n}, let I ∪ J = V and E = {(i, j)|Aij > 0} ⊂ I × J be
the vertices and edges of the (bipartite) Graph GA := (V, E).
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Definition A.2. A bipartite graph G = (V, E) has a perfect matching, if it contains a
subgraph where the degree of any vertex is exactly one, i.e. any vertex is matched with
exactly one other vertex.

Note that this definition is not dependent on the size of the entries of A, it only
depends on whether an entry is positive or zero.

Proposition A.3 (Brualdi, Parter, and Schneider 1966 Lemma 2.3). Let A ∈ Rm×n be
nonnegative. The following are equivalent:

1. A is fully indecomposable,

2. PAQ is fully indecomposable for all permutations P, Q,

3. There exist permutations P, Q such that PAQ is irreducible and has a positive main
diagonal.

4. For any (i, j) ∈ E the edge set of the bipartite graph GA for A, there exists a perfect
matching in GA containing this edge.

Sketch of proof. The equivalence (1)⇔ (2) is obvious and (1)⇔ (3) is done in Brualdi,
Parter, and Schneider 1966. The direction⇒ follows from the Frobenius-König theorem
(cf. Bhatia 1996, Chapter 2). The converse direction follows from a short contradiction
proof.

Finally, (1) ⇔ (4) follows essentially from Theorem 4.1.1 in Lovász and Plummer
2009, which was first observed in Hetyei 196421.

Since multiplication of positive diagonal matrices from the right and from the left
does not change the pattern of a matrix, having a matrix that has the required row and
column sums is an easy necessary condition for scalability.

Let us now consider the special case of doubly stochastic matrices in more detail. We
define:

Definition A.4. Let A ∈ Rn×n be a nonnegative matrix. Then A has total support if it
is nonzero and for every Aij > 0 there exists a permutation σ such that σ(i) = j and
∏n

k=1 Aσ(k)k 6= 0. In other words, A has total support if any nonzero element lies on a
positive diagonal (Sinkhorn 1967).

Furthermore, A has support, if there exists a positive diagonal, i.e. there exists an Aij
such that for some permutation σ with σ(i) = j we have ∏n

k=1 Aσ(k)k 6= 0.

Proposition A.5. Let A ∈ Rn×n be a nonnegative matrix. The following are equivalent:

1. After independent permutations of rows and columns, A is a direct sum of fully indecom-
posable matrices.

21In Hungarian. Reference taken from Lovász and Plummer 2009
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2. A has a doubly-stochastic pattern.

3. A has total support

Furthermore, A has support if and only if there exists a matrix B with a subpattern of A with
total support.

Sketch of Proof. For 1⇔ 2 we follow the proof in Brualdi, Parter, and Schneider 1966.
Let A be doubly stochastic. Since we can permute rows and columns independently,

we can assume that A is of the form

A :=


A1 0 . . . 0
A21 A2 . . . 0

...
...

Ak1 Ak2 . . . Ak


for some k ∈N. All Ai are either 1× 1 zero-matrices or fully indecomposable (otherwise
iterate). Since A is doubly stochastic one can quickly see that Aij = 0 for all i < j.
Furthermore, no Ai can be zero, because this would then result in a zero-row. Hence,
A can be decomposed as a direct sum of fully indecomposable maps.

For 2⇔ 3 see Sinkhorn 1967.
Finally, consider a matrix B with total support. Clearly, if it is a submatrix of some

other matrix A, then A will have support, since any element Aij > 0 which is contained
in B will lie on a nonzero diagonal. Conversely, if A has support, setting any element
Aij which does not lie on a positive diagonal to zero produces a matrix that has total
support.

B. Introduction to Nonlinear Perron-Frobenius theory

The basic result underlying Perron-Frobenius theory is an old theorem from Perron
1907 and Frobenius 1912 stating:

Theorem B.1. Let A ∈ Rn×n be a nonnegative, irreducible matrix with spectral radius ρ(A).
Then ρ(A) > 0 is a nondegenerate positive eigenvalue of A with a one-dimensional eigenspace
consisting of a vector x with only positive components.

The theorem was later interpreted geometrically in Birkhoff 1957; Samelson 1957,
where the authors noted that it follows using Hilbert’s projective metric and contraction
principles. From then on, it was slowly extended to (not necessarily linear) operators,
which lies at the heart of nonlinear Perron-Frobenius theory. The connection to matrix
scaling became clear int the 60s to 80s and parts of each theory have developed
alongside each other since. Probably the best current reference on the topic is Lemmens
and Nussbaum 2012. In the following, we sketch some of the most important ideas
surrounding the theory:
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Recall that given a topological vector space V , a cone is a set C ⊂ V such that for
all v ∈ C, αv ∈ C for all α > 0. A convex cone is a cone that contains all convex
combinations. By definition, it is equivalent to say that C is a convex cone if and only
if αv + βw ∈ C for all v, w ∈ C and all α, β > 0. A cone is called solid, if it contains
an interior point in the topology of the vector space and closed if it is closed in the
given topology. It is called polyhedral, if it is the intersection of finitely many closed
half-spaces (cf. Rockafellar 1997).

An easy way to construct a convex, solid cone is by using a partial order ≥. Then
the set C defined via v ∈ C ⇔ v ≥ 0 is a closed convex cone (see Rockafellar 1997 for
the connection between ordered vector spaces and convex cones). Given two cones
C,K which are defined by a partial order, we call a map T : C → K order-preserving
or monotonic, if for v ≥ w we have T(v) ≥ T(w). We call it strongly order-preserving,
if for every v ≥ w ∈ V we have T(v)− T(w) ∈ V ′ > 0. Last but not least, we call T
homogeneous, if T(αv) = αT(v) for all α ∈ R.

As is the case with classical Perron-Frobenius theory, the spectral radius is the crucial
notion. For general maps between cones, there are several definitions, which turn out
to be the same for most purposes, hence we restrict to one such notion:

Definition B.2 (Lemmens and Nussbaum 2012, Chapter 5.2). Let K be a solid closed
cone in a finite dimensional vector space with a fixed norm ‖ · ‖ and f : K → K a
continuous homogeneous map. Define the cone spectral radius as

rK( f ) := sup{lim sup
m→∞

‖ f m(x)‖1/m|0 6= x ∈ K}

The first crucial observation is that the spectral radius is actually attained for homo-
geneous order-preserving maps (which is not the case for general maps):

Theorem B.3 (Lemmens and Nussbaum 2012, Cor. 5.4.2). Let K be a solid closed cone in a
finite dimensional vector space V . If f : K → K is a continuous, homogeneous, order-preserving
map, then there exists x ∈ K \ {0} with f (x) = rK( f )x

Note that the theorem does not tell us whether the eigenvector lies inside the cone or
on its boundary. The next and very powerful theorem does also not settle existence,
but if existence is known, then it assures uniqueness and convergence:

Theorem B.4 (Lemmens and Nussbaum 2012, Thm. 6.5.1). Let K be a solid closed cone in
a finite dimensional vector space V and let ϕ ∈ K∗ the dual cone. If f : int(K)→ int(K) is a
homogeneous strongly order-preserving map and there exists a u ∈ int(K) with ϕ(u) = 1 such
that f (u) = ru, then

lim
k→∞

f k(x)
ϕ( f k(x))

= u (66)

for all x ∈ int(K).
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This theorem is essentially due to the fact that the map is contractive in what is
known as Hilbert’s projective metric of the cones. Once the attractiveness is established,
uniqueness follows immediately, since if we had another fixed point v ∈ int(K), then
f k(v) = v would imply a contradiction to equation 66. Since the attractiveness can be
used to estimate convergence speeds (see Franklin and Lorenz 1989), we include the
relevant proposition due to Birkhoff (Birkhoff 1957).

Definition B.5 (Lemmens and Nussbaum 2012, Chapter 2.1). Let K ⊂ V be a closed,
convex, solid cone in some vector space, then for any x, y ∈ K such that x ≤ αy and
y ≤ βx for some α, β > 0, define

M(x/y;K) := inf{β > 0|x ≤ βy}
m(x/y;K) := sup{α > 0|αy ≤ x}

Then we can define Hilbert’s projective metric as

dH(x, y,K) := ln
(

M(x/y)
m(x/y)

)
(67)

We will leave out K, when it is clear from the context. Furthermore, we set dH(0, 0) = 0
and dH(x, y) = ∞ if dH is otherwise not well-defined.

We have the following properties:

Proposition B.6 (Lemmens and Nussbaum 2012 Proposition 2.1.1). Let K ⊂ V be a
closed, convex, solid cone in some vector space V. Then dH satisfies:

(i) dH(x, y) ≥ 0 and dH(x, y) = dH(y, x) for all x, y ∈ K.

(ii) dH(x, z) ≤ dH(x, y) + dH(y, z) for all x, y, z ∈ K such that the quantities are well-
defined.

(iii) dH(αx, βy) = dH(x, y) for all x, y ∈ K and α, β > 0.

Note that the first two properties show that dH is indeed a metric and the third
property shows why it is called a projective metric.

Proposition B.7 (Birkhoff 1957). Let K ⊂ V be a bounded, closed, convex and solid cone in
some vector space V. Let E : K → K be a linear map, then

γ1/2(E) := sup
{

dH(E(x), E(y))
dH(x, y)

∣∣∣∣x, y ∈ K
}
≤ tanh(∆/4) (68)

where ∆ := max {dH(E(x), E(y))|x, y ∈ K}.
Furthermore, γ1/2(E ◦ F ) ≤ γ2(E)γ2(F ) and γ1/2(E∗) = γ2(E).
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A proof can be found in Birkhoff 1957; Bauer 1965. The result can be extended to
much more general scenarios, see also Eveson and Nussbaum 1995 and references
therein. One can actually show that equality holds, i.e. tanh(∆/4) is also attained, but
this is not important here.

With all this machinery, we still need to prove existence of a fixed point in the interior
of P . The general theory for proving that a fixed point lies in the interior is weak and
we generally have to prove it “by hand”.

For, the Menon operator we have an additional problem: It is at first only well-defined
on the interior of the cone of positive semidefinite matrices. A natural question is
whether it can be extended to cover the closed cone as well. For matrices, this is covered
by the following theorem:

Theorem B.8 (Lemmens and Nussbaum 2012, theorem 5.1.5). Let C,K be cones and
S : C → K be an order-preserving, homogeneous map. If C is solid and polyhedral, then there
exists a continuous, order-preserving, homogeneous extension S : C → K.

C. Preliminaries on Positive Maps

In this section, let Cn ⊂ Mn be the cone of positive definite matrices (elements will
also be written as A > 0) with its closure Cn, the cone of positive semidefinite matrices
(elements will also be written as A ≥ 0). Likewise, a subscript 1 at any of the cones
denotes the bounded subset of unit trace matrices. Positive maps on cones are elements
form a cone themselves, the dual cone, which will be denoted by (Cn)∗ and (Cn)∗.

Let us start with irreducible maps. Many different characterizations exist, which we
recall for the reader’s convenience:

Proposition C.1. For a positive, linear map T : Md → Md the following properties are
equivalent:

1. T is irreducible,

2. if P ∈ Md is a Hermitian projector such that T(PMdP) ⊂ PMdP then P ∈ {0,1},

3. for every nonzero A ≥ 0 we have (id + T)d−1(A) > 0,

4. for every nonzero A ≥ 0 and every strictly positive t ∈ R we have exp(tT)(A) > 0,

5. There does not exist a nontrivial orthogonal projection P s.th. tr(T(P)(1− P)) = 0.

Most of these properties are well-known. A proof can be found in Wolf 2012.
As with matrices in the original Sinkhorn theorem, irreducibility is not the right

characterization to work with, since given an irreducible map E and two X, Y > 0,
YE(X.X†)Y† is not necessarily irreducible. Before giving a characterization of fully
indecomposable maps, we will study rank non-decreasing maps.
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Definition C.2 (Gurvits 2004). To every positive map E :Mn →Mn and any unitary
U ∈ U(n), we associate the decoherence operator EU via:

EU(X) := ∑
i
E(uiu†

i ) tr(Xuiu†
i ) (69)

where ui is the i-th row of U. Furthermore, we associate to every decoherence operator
the tuple

AE ,U := (E(u1u†
1), . . . , E(unu†

n)) (70)

This will be important during the proof of the Sinkhorn scaling, because every map
E will be associated to the mixed discriminants of its decoherence operators:

Definition C.3. Let (Ai)i be an n-tuple with Ai ∈ Mn, then

M(A1, . . . , An) :=
∂n

∂x1 . . . ∂xn
det(x1A1 + . . . + xn An)|x1,...,xn=0 (71)

is called the mixed discriminant.

Then we have the following characterization of rank non-decreasing maps, which is
essentially due to Gurvits 2004:

Proposition C.4. Let E :Mn →Mn be a positive, linear map. Then the following expressions
are equivalent:

(i) E is rank non-decreasing.

(ii) EU is rank non-decreasing for any unitary U ∈ U(n).

(iii) For any U ∈ U(n), if (Ai)i := AE ,U , then

rank

(
∑
i∈S

Ai

)
≥ |S| ∀S ⊆ {1, . . . , n}

(iv) For any U ∈ U(n), M(AE ,U) > 0.

(v) E ′(·) := Y†E(X · X†)Y is rank non-decreasing for any X, Y of full rank.

The proofs that (i), (ii), (iii) and (v) are equivalent are essentially the same as for the
fully indecomposable case in C.6. It remains to show the equivalence of (v) with (i).
This was done in Panov 1985.

We can define what will turn out as a measure of being indecomposable for a tuple
of matrices:
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Definition C.5. Let A := (Ai)i be an n-tuple of matrices Ai ∈ Mn and denote by Aij

the tuple where Ai is substituted by Aj. Then define:

M(A) := min
i 6=j

M(Aij) (72)

the minimal mixed discriminant.

For fully decomposable maps, we have the following characterization (part of which
is already present in Gurvits 2004):

Proposition C.6. Let E :Mn →Mn be a positive, linear map. Then the following expressions
are equivalent:

(i) E is fully indecomposable

(ii) E∗ is fully indecomposable

(iii) For all singular, but nonzero A ≥ 0, rank(E(A)) > rank A.

(iv) Property (iii) holds for YE(X · X†)Y† for every X, Y > 0.

(v) There do not exist nontrivial orthogonal projections P, Q of the same rank such that
tr(E(P)(1−Q)) = 0.

(vi) EU is fully indecomposable for all U ∈ U(n).

(vii) For any U ∈ U(n), if (Ai)i := AE ,U , then

rank

(
∑
i∈S

Ai

)
> |S| ∀S ⊂ {1, . . . , n}, 0 < |S| < n

(viii) M(AE ,U) > 0 for all U ∈ U(n).

Furthermore, when this is satisfied, E and via (v) also E∗ map the open cone Cn into itself.
Note also that the properties (vi) to (viii) are also equivalent for any fixed unitary.

Proof. (i)→ (iii): let E be fully indecomposable and assume there was a nonzero A ≥ 0,
with rank(E(A)) ≤ rank A. Since the kernels are vector spaces, this implies we can
find a unitary matrix U transforming the basis such that ker(E(A)) ⊇ U · ker A. Thus:

ker(E(A)) ⊇ U · ker A

⇔ ker(E(A)) ⊇ ker UAU†

⇔ ker(U†E(A)U) ⊇ ker A

The latter implies supp(U†E(A)U) ⊆ supp A. Let P be the projection onto the support
of A. By assumption, P 6= {0,1} since A is nonzero and singular. For any positive
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matrix B with BP = B, we have supp B ⊆ supp A. Hence, there exists a constant
r > 0 such that A ≥ rB. Then E(A) ≥ rE(B) and supp(E(B)) ⊆ supp(E(A)). But
this implies via linearity supp(QE(Mn)Q) ⊆ supp(PMnP), where Q := UPU† is an
orthogonal projection.
(iii)↔ (iv): Given (iii), the claim follows immediately from the fact that since X, Y > 0,
the matrix ranks are not changed. For any nonzero and singular A we have rank(A) =

rank(XAX†). By assumption, for any nonzero, singular A ≥ 0 we have rank(E(A)) >

rank(A), rank(E(XAX†)) > rank(XAX†) and hence

rank(YE(XAX†)Y†) > rank(A)

(iii)→ (i): Note that given P, Q of the same rank such that E(PMnP) ⊆ QMnQ, we
have in particular E(P) = QAQ for some A ∈ Mn. Since Q is of the same rank as P,
rank(E(P)) = rank(QAQ) ≤ rank P, which is a contradiction.

(v)→ (i): Note that if E(PMnP) ⊆ QMnQ, then in particular tr(E(P)(1−Q)) = 0
since (1−Q) is the orthogonal complement of Q.

(i)→ (v): Let A ≥ 0. By positivity of E , we have

0 ≤ tr(E(PAP)(1−Q)) = tr(APE∗(1−Q)P)

≤ ‖A‖∞ tr(P1PE∗(1−Q)) = ‖A‖∞ tr(E(P)(1−Q)) = 0

Hence in particular supp(E(PAP)) ⊆ supp(Q) and E(PMnP) ⊆ QMnQ.
(i)↔ (ii): This equivalence follows directly from (iv) by expressing Q and P in terms

of the projections onto the orthogonal complements.
The remaining equivalences (i)↔ (vi),(vii),(viii) can be found in Gurvits 2004 (with

proofs scattered throughout the earlier papers by the same author). We just repeat them
here using our notation for the reader’s convenience.

(iii) → (vi): By definition, EU = E ◦ U where U (X) = ∑i tr(Xuiu†
i ). Obviously, U is

doubly stochastic, hence rank non-decreasing. Therefore, if (iii) holds for E , it must
also hold for E ◦ U .

(vi) → (iii): Let EU be fully indecomposable for all unitaries U and assume that
rank(E(X)) ≤ rank(X) for some X ≥ 0 with 0 < rank(X) < n. Let U be the unitary
that diagonalizes X, then EU(X) = E(X), hence EU is not fully indecomposable. This is
a contradiction.

(vi)⇔ (vii): Let TU be fully indecomposable. Then

rank(X) < rank(EU(X))

= rank

(
n

∑
i=1
E(uiu†

i ) tr(Xuiu†
i )

)

= rank

 ∑
1≤i≤n

tr(Xuiu†
i ) 6=0

E(uiu†
i )
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Note that if S := {i| tr(Xuiu†
i )}, then rank(X) ≤ |S| and hence follows the claim. For

the other direction, we can use the same idea.
(vii) ↔ (viii): Let A := AE ,U for all unitary U fulfill (vii). Define Aij as the tuple

where the i-th element is replaced by the j-th. Note that

rank

(
∑
k∈S

Aij
k

)
≥ rank

 ∑
k∈S\{j}

Ak

 ≥ |S|
for any S ⊂ {1, . . . , n}, where the last inequality follows from the fact that E is fully
indecomposable by assumption. Hence, from the proposition C.4 we know that the
mixed discriminant of Aij cannot vanish, i.e. M(Aij) > 0. Minimizing over i 6= j and
the compact U(n) gives M̃(AE ,U) > 0.

Conversely, let A := AE ,U not fulfill (vii) for some unitary U, i.e. for some S ⊂
{1, . . . , n} with 0 < S < n we have rank (∑k∈S Ak) ≤ |S|. Let i ∈ S , j /∈ S , then for the
tuple A(ij) as before, we have:

rank

 ∑
k∈S∪{j}

Aij
k

 = rank

(
∑
k∈S

Ak

)
< |S|+ 1 = |S ∪ {j}|

But then, by proposition C.4, M(Aij) = 0 and hence also M = 0.

This proposition shows in particular that any fully indecomposable map is primitive:
For any unit trace ρ ≥ 0, E d(ρ) > 0. Note that the converse might not be true. By the
characterization of primitive maps (Sanz et al. 2010, Theorem 6.7), this implies that
each fully indecomposable map has only one fixed point.

Lemma C.7. If T is a doubly-stochastic positive linear map, then there exists a unitary matrix
U such that UT (·)U† admits a set of orthogonal projections {Pi}i such that ∑i Pi = 1,
PiPj = δijPi and UT (PiMdPi)U† ⊆ PiMdPi. Furthermore, the restriction of UT (·)U† to
PiMdPi is fully indecomposable for every i.

Proof. Note that for an arbitrary unitary U > 0 the maps T (U(·)U†) and UT (·)U† are
still doubly-stochastic. Let P, Q be a nontrivial Hermitian projector decomposing T ,
i.e. tr(T (P)(1−Q)) = 0 by proposition C.6 (if no such projector exists, we are finished).
Then we have:

0 = tr(T (P)(1−Q)) = tr(PT ∗(1−Q))

= tr(P)− tr(PT ∗(Q)) = tr(Q)− tr(QT (P))

= tr(QT (1− P))

where we used that T is doubly-stochastic in the second and last equality and in
between we only used the cyclicity and linearity of the trace as well as the fact that P
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and Q have equal rank and thus their traces equal. This means that if P reduces T ,
then also 1−Q reduces T , i.e.

T (PMnP) ⊂ QMnQ

⇒ T ((1− P)Mn(1− P)) ⊂ (1−Q)Mn(1−Q)

Since the two projections P, Q are of the same rank, there exists a unitary matrix U such
that Q = UPU†. This implies that T ′(·) = UT (·)U† is reducible by P and (1− P),
which implies that T ′ is a direct sum of maps defined on PMnP and (1− P)Mn(1− P).

We obtain these maps by setting

T ′1 := T ′(P · P)|PMnP

T ′2 := T ((1− P) · (1− P))|(1−P)Mn(1−P).

By construction, P, (1− P) are the identities on the respective subspaces and the maps
are therefore doubly stochastic, i.e. T ′1 (1PMnP) = T (P) = P = 1PMnP (and for T ′2
equivalently).

If the restricted maps are not fully indecomposable, we can iterate the procedure,
thereby going over to T ′′(·) = (U1 ⊕ U2)T ′(·)(U1 ⊕ U2) and so forth, which will
terminate after finitely many steps, since the ranks of the projections involved have to
decrease, thus giving a map T̃ (·) = ŨT (·)Ũ†, which admits the stated decomposition.

D. Gurvits’ proof of scaling and approximate scaling

This appendix provides the details of Gurvits’ approach, hence it does not contain
original material. For easier readability, we repeat all Lemmata.

D.1. Approximate scalability

We need a way to study scalability:

Definition D.1. Let C1, C2 ∈ Mn and E :Mn →Mn a positive, linear map. Then we
define a locally scalable functional to be a map ϕ ∈ Cd∗ such that

ϕ(C1E(C†
2 · C2)C†

1) = det(C1C†
1)det(C2C†

2)ϕ(E) (73)

A locally scalable functional will be called bounded, if |ϕ(E)| ≤ f (tr(E(1))) for some
function f .

Locally bounded functionals are the right tools to study scalability:

Proposition D.2. Let E : Mn → Mn be a positive, linear map. Given a bounded locally
scalable functional ϕ such that ϕ(E) 6= 0, the Sinkhorn-iteration procedure converges:

DS(En)→ 0 n→ ∞ (74)
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Proof. We follow Gurvits 2004. Recall the definitions of the Sinkhorn iteration in
equations (41)-(42). Because of property (73), we have

ϕ(Ei+1) = a(i)ϕ(Ei)

a(i) =

{
det(E∗i (1))−1 if i odd

det(Ei(1))
−1 if i even

Let i be even. Note that Ei is trace-preserving for i even, hence tr(Ei(1)) = n. Let s(i)j be
the singular values of Ei(1) and observe:

|det(Ei(1))| =
n

∏
j=1

s(i)j ≤
1
n

n

∑
j=1

s(i)j =
1
n

tr(Ei(1)) = 1 (75)

using the arithmetic-geometric mean inequality (AGM). Similarly, for i odd, Ei is unital,
hence tr(E∗i (1)) = n and we can use the AGM inequality again to obtain that a(i) ≥ 0
for all i ≥ 0 and therefore

|ϕ(Ei+1)| ≥ |ϕ(Ei)|

and thus, as ϕ was assumed to be bounded, |ϕ(Ei)| converges to some value c ≤
f (tr(E(1))).

It remains to prove that for |ϕ(E)| 6= 0, DS(Ei) converges to zero for i→ ∞. The idea
is of course that if |ϕ(E)| 6= 0, then |a(i)| converges to one and thus Ei(1) and E∗i (1)
converge to 1.

To make this more formal, since |ϕ(E)| converges, for all ε > 0 there exists N ∈ N

such that for all d ≥ N:

||ϕ(Ed)| − |ϕ(Ed+1)| ≤ ε

⇔
∣∣∣∣|ϕ(Ed)| −

1
|a(i)| |ϕ(Ed)|

∣∣∣∣ ≤ ε

⇔ |ai| ≥
1

1 + ε|ϕ(Ed)|−1 ≥
1

1 + ε|ϕ(E)|−1

where we used that |ϕ(Ed)| increases monotonically in the last inequality.
Let us now only consider i even. Then we have just seen that

1
1 + ε|ϕ(E)|−1 ≤ det(Ti(1)) ≤ 1

hence, for i ≥ N even, we have:

DS(Ei) = tr((Ei(1)− 1)2) =
n

∑
j=1

(s(i)j − 1)2
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where the s(i)j are the singular values of Ei(1). If we can upper bound the last quantity
by ε̃(ε), we are done. This is an exercise in using logarithms:

Since Ei is trace-preserving as i is even, s(i)j ≤ d for all i. If we set α := (n−1)−ln(n)
(n−1)2 ,

then by strict concavity of the logarithm,

ln(x) ≤ (x− 1)− α(x− 1)2 x ≤ d

since ln(d) = (x− 1)− α(x− 1)2 and ln(1) = 0. But then:

0 ≤
n

∑
j=1

(s(i)j − 1)2 ≤
n

∑
j=1

 s(i)j − 1

α
−

ln(s(i)j )

α


= −

n

∑
i=1

ln(s(i)j )

α

= −1
α

ln(
n

∏
i=1

s(i)j ) ≤ −1
α

ln(1− ε)

≤ ε

α

where we used that ∑n
j=1 s(i)j = tr(Ei(1)) = n. But ε

α → 0 for i→ ∞.
Exchanging Ei with E∗i gives the same reasoning for odd i. In total, we get that for

any ε > 0 exists an N ∈N such that for all d ≥ n

0 ≤ DS(Ed) ≤
ε

α

hence DS(Ei)→ 0 for i→ ∞.

Lemma D.3. Cap is a bounded locally scalable functional.

Proof. Note that for

inf{det(C†
2E(C1XC†

1)C2)|X > 0, det(X) = 1}
= inf{det(C†

2)det(C2)det(E(C1XC†
1))|X > 0, det(X) = 1}

= det(C†
2C2) inf{det(E(C1XC†

1))|X > 0, det(X) = 1}
= det(C†

2C2) inf{det(E(X̃))|X > 0, det(X̃) = det(C1)det(C†
1)det(X), det(X) = 1}

= det(C†
2C2)det(C†

1C1) inf{det(E(X̃))|X̃ > 0, det(X̃) = 1}

hence Cap is a locally scalable functional. Via the AGM inequality, we have

0 ≤ Cap(E) ≤ det(E(1)) ≤
(

tr(E(1))
n

) 1
n

hence Cap is bounded.
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This gives a proof of Lemma 9.8.

Lemma D.4 (Lemma 9.9 of the main text). Let E : Mn →Mn be a positive, linear map
and U ∈ U(n) a fixed unitary. Then defining

Cap(AE ,U) := inf

{
det

(
∑

i
E(uiu†

i )γi

)
|γi > 0,

n

∏
i=1

γi = 1

}
where ui are once again the rows of U, we have the following properties:

1. Using the mixed discriminant M, we have

M(AE ,U) ≤ Cap(AE ,U) ≤
nn

n!
M(AE ,U)

2. inf
U∈U(n)

Cap(AE ,U) = Cap(E)

Proof. The first part of the lemma is one of the main results of Gurvits and Samorodnit-
sky 2002. Since the proof is long due to many technicalities, we leave it out here.

The second part gives the relation between the two capacities. Let {Xd}d with
det(Xd) = 1 and Xd > 0 be such that det(E(Xd)) → Cap(E), d → ∞. Then there
exist unitaries Ud ∈ U(n) such that UdXnU†

d is diagonal with diagonal entries λ
(d)
i . By

construction,

det( ∑
1≤i≤n

E((ud)i(ud)
†
i )λ

(d)
i ) = det(E(Xd))

where (ud) are again the columns of Ud. Hence

inf
U∈U(n)

Cap(AE ,U) ≤ Cap(E)

Likewise, we can construct a sequence of Ud such that Cap(AE ,Ud) converges to the
infimum and we can construct a sequence (γ

(d)
(k))k with (γ

(d)
(k))i > 0 for each Ud such that

det

(
n

∑
i=1
E((ud)i(ud)

†
i )(γ

(d)
(k))i

)
→ Cap(AE ,Ud) for k→ ∞

Taking the diagonal sequence γ
(d)
(d) we obtain a sequence converging to inf Cap(AE ,U).

Finally, define Xk = Uk diag(γ(k)
(k))U

†
k , then Xk > 0 and

det(E(Xk)) = det

(
n

∑
i=1
E((ud)i(ud)

†
i )(γ

(d)
(k))i

)
and hence

Cap(E) ≤ inf
U∈U(n)

Cap(AE ,U)

after taking the limit k→ ∞.

95



Finally, we can write down the Operator Sinkhorn theorem (Theorem 9.5 in the main
text):

Theorem D.5 (Approximate Operator Sinkhorn Theorem, Gurvits 2004 Theorem 4.6).
Let E : Mn →Mn be a positive, linear map. Then E is ε-scalable for all ε > 0 iff E is rank
non-decreasing.

Proof. We mostly need to combine the lemmas. By lemma D.3, the capacity is a
bounded, locally scalable functional, which implies by proposition D.2 that DS(Ei)

converges, if Cap(E) > 0. Now, by lemma 9.9,

Cap(E) = inf{Cap(AE ,U)|U ∈ U(n)}

Since U(n) is compact, it suffices to show that for every U, Cap(AE ,U) > 0. Again, by
lemma 9.9,

Cap(AE ,U) ≥ M(AE ,U)

but M(AE ,U) > 0 for every U if and only if E is rank non-decreasing by proposition
C.4. Hence, DS(Ei) converges for rank non-decreasing maps.

Now suppose that E is a positive map such that in the Sinkhorn iteration, DS(Ei)

converges. Then, for some i ∈ N, DS(Ei) < 1
n . We claim that then Ei is rank non-

decreasing and by consequence, also E is rank non-decreasing via proposition C.4.
To see this, assume E(1) = 1 and E∗(1) = 1 + E, where E is Hermitian and

tr(E2) ≤ 1/n. We can do this, because this is exactly what Ei looks like for i big enough
such that DS(Ei) <

1
n and i is odd. Given a matrix U ∈ U(n) and the corresponding

A := AE ,U , we have that

n

∑
i=1

Ai = E(1) = 1

Likewise, for every i:

tr(Ai) = tr(Ai1) = tr(uiu†
i T∗(1)) = 1 + tr(uiu†

i E) =: 1 + δi (76)

But by assumption,

n

∑
i=1
|δi|2 ≤

n

∑
i,j=1
| tr(uiu†

j E)|2

=
n

∑
i,j=1
〈ui|E|uj〉〈uj|E†|ui〉

= tr(E2) ≤ 1
n

(77)
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Now, suppose that E is not rank non-decreasing. Then, by proposition A.5 (vii), there
is a U such that AE ,U fulfills

rank

(
k

∑
i=1

Ai

)
< k

for some 0 < k < n. Note that, since E is positive, Ai ≥ 0, hence H := ∑k
i=1 Ai fulfills

0 ≤ H ≤ 1. As rank(H) ≤ k− 1, we have tr(H) ≤ k− 1. From equation (76), we obtain

tr(H) =
k

∑
i=1

Ai = k + ∑
i=1

kδi

Using equation (77), by the Cauchy Schwarz inequality,

k

∑
i=1
|δi| ≤

√
k/n < 1

which contradicts tr(H) ≤ k− 1, hence E must be rank non-decreasing.

D.2. Exact scalability

Lemma D.6 (Lemma 9.10 of the main text). Let E :Md →Md be a positive map. Then
E is scalable to a doubly-stochastic map if and only if Cap(E) > 0 and the capacity can be
achieved.

Proof. Suppose there exists C > 0 with det(E(C)) = Cap(E). The Lagrangian of the
capacity is

L(X) := ln(det(E(X))) + λ ln(det(X))

with the Lagrangian multiplier λ ∈ R. Therefore, the minimum fulfills

∇ ln(det(E(X)))|X=C = (−λ)∇ ln(det(X))|X=C (78)

We claim that the conditions are equivalent to

E∗((E(C))−1)−1 = C−1 (79)

Let Eij be the usual matrix unit, then

(∇ ln(det(E(X)))|X=C)jk =
∂

∂Ejk
ln

(
∑

σ∈Sn

sgn(σ)
n

∏
i=1
E(C)iσ(i)

)

=
1

det(E(C)) ∑
σ∈Sn

sgn(σ)
∂

∂Ejk

n

∏
i=1
E(C)iσ(i).
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Noting that

∂EjkE(C)iσ(i) = tr(Eσ(i)i
∂E(C)
∂Ejk

) = tr(E∗(Eσ(i)i)Ejk) = E∗(Eσ(i)i)jk

we have

(∇ ln(det(E(X)))|X=C)jk =
1

det(E(C)) ∑
σ∈Sn

sgn(σ)
n

∑
l=1
E∗(Eσ(l)l)jk ∏

i 6=l
E(C)iσ(i)

= E∗
(

1
det(E(C)) ∑

σ∈Sn

sgn(σ)
n

∑
l=1

Eσ(l)l ∏
i 6=l
E(C)iσ(i)

)
jk

= E∗
(

1
det(E(C))

n

∑
m,n=1

(
∑

σ(m)=n∈Sn

sgn(σ)(−1)n−m ∏
i 6=m
E(C)iσ(i)

)
Emn

)
jk

= E∗(E(C)−1)jk

where in the last step we use Cramer’s rule. For E = id we obtain the right hand side of
equation (79) from equation (78), hence follows the claim. It now follows from Lemma
9.14 that any C fulfilling Equation (79) defines a scaling.

Conversely, suppose Ẽ(·) = C1E(C†
2C2)C†

1 is a doubly stochastic map. Since Ẽ is
unital, the eigenvalues of Ẽ(X) are majorized by the eigenvalues of X (cf. Wolf 2012
Theorem 8.8). Majorization stays invariant under strictly increasing functions (cf. Bhatia
1996, Chapter 1), hence we have (λi being the eigenvalues of X and λẼi the eigenvalues
of Ẽ(X)):

∑
i
− ln(λẼi ) ≤∑

i
− ln(λi)

which is equivalent to det(Ẽ(X)) ≥ det(X). Hence, a doubly stochastic map is in
particular determinant increasing. Obviously, equality is attained at X = 1. But then:

det(E(X)) = |det(C1)|−2|det(C2)|−2 det(Ẽ(X)) (80)

≥ |det(C1)|−2|det(C2)|−2 det(X). (81)

A quick calculation shows that X = C†
2C2/ det(C†

2C2)1/n attains equality in Equation
(81). This then necessarily minimises the capacity.

Lemma D.7 (Lemma 9.11 of the main text). Let E :Mn →Mn be a positive, linear map
and given U ∈ U(n), let A = AE ,U . Then

1. fA is convex on Rn.

2. If E is fully indecomposable, then fA is strictly convex on {ξ = (ξ1, . . . , ξn) ∈
Rn|∑i ξi = 0}.
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Proof. We follow the proof of Gurvits and Samorodnitsky 2002. Given a tuple A of
positive definite matrices, one can show (Bapat 1989):

det(eξ1 A1 + . . . + eξn An) = ∑
r∈Pn

tre(ξ,r) (82)

where (·, ·) denotes the general inner product, Pn is the set of n-tuples of integers ri ≥ 0
such that ∑i ri = n and

tr :=
1

r1! . . . rn!
M(

r1︷ ︸︸ ︷
A1, . . . , A1, . . . ,

rn︷ ︸︸ ︷
An, . . . , An) (83)

This implies that we can rewrite fA:

fA(ξ1, . . . , ξn) = ln det(eξ1 A1 + . . . + eξn) = ln

(
∑

r∈Pn

tre(ξ,r)

)
It is well known that for positive matrices this is a convex function, but let us follow
the proof of Gurvits and Samorodnitsky 2002 here.

Let f =: ln g. We need to prove that ∇2 f , the Hessian, is positive (semi)definite.
By definition, ∇2 f = 1

g2 (g(∇2g)− (∇g)(∇g)tr), hence it is sufficient that g(∇2g) ≥
(∇g)(∇g)tr.

Note that for any v ∈ Rn we have ∇e(ξ,v) = e(ξ,v) · v and ∇2e(ξ,v) = e(ξ,v)vvtr, where
vvtr is positive definite. Therefore:

g(∇2g)− (∇g)(∇g)tr = ∑
r∈Pn

tre(ξ,r) · ∑
s∈Pn

tre(ξ,s)sstr − ∑
r,s∈Pn

trtse(ξ,r+s)rstr

=
1
2 ∑

r,s∈Pn

trtse(ξ,r+s)(r− s)(r− s)tr ≥ 0

hence the Hessian of f is positive semi-definite and therefore f is convex.
Now, assume that E is fully indecomposable, hence the tuple A := AE ,U fulfills

proposition A.5 (vii) and (viii) for all U ∈ U(n). In particular, if Aij is the tuple A with
the j-th entry being replaced by the i-th. entry. Then M(Aij) > 0 in particular. Note
that M(Aij) = 2trij by equation (83), where

(rij)k :=


2 k = i

0 k = j

1

else

.

Then,

∇2 f ≥ 1
g2 ∑

r,s∈Pn

trtse(ξ,r+s)(r− s)(r− s)tr
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≥ 1
8g2 ∑

i 6=j,k 6=l
M(Aij)M(Akl)e(ξ,rij+skl)(rij − rkl)(rij − rkl)

tr

≥ cM2

8g2 ∑
i 6=j,k 6=l

(rij − rkl)(rij − rkl)
tr

where c := mini 6=j 6=k 6=l e(ξ,rij−rkl) and M := mini 6=j M(Aij) > 0 by proposition A.5 (viii).
We only need to consider ∑i 6=j,k 6=l(rij − rkl)(rij − rkl)

tr =: S and show that this is a
positive definite matrix on the hyperplane H. Using the usual matrix units Emn we can
write:

S := ∑
i 6=j 6=k 6=l

(Eii + Ejj + Ekk + Ell + 2(Eil + Ejk − Eik − Ejl − Ekl))

We find that Sii = (n− 1)(n− 2)(n− 3), since only the first four summands contribute to
the diagonal terms. For the off-diagonal terms, note that in 2(Eil + Ejk − Eik − Ejl − Ekl),
all unordererd combinations of i, j, k, l occur, twice with a positive sign and four times
with a negative. Hence we obtain (n− 2) · (n− 3) terms with either Eij or Eji that are
not cancelled by other terms and therefore Sij = −(n− 2)(n− 3). In short:

S = (n− 1)(n− 2)(n− 3)


1 1

n−1 . . . 1
n−1

1
n−1 1 . . . 1

n−1
...

. . .
...

1
n−1

1
n−1 . . . 1


Note that the image of S is just the hyperplane H and it is easy to see that S is a
multiple of the projection onto the hyperplane S. Therefore, ∇2 f is strictly convex on
H.

Finally, we obtain the theorem:

Lemma D.8 (Lemma 9.12 of the main text). Let E :Mn →Mn be a positive, linear map.
If E is fully indecomposable, there exists a unique scaling of E to a doubly stochastic map.

Proof. Recall that one can show (Bapat 1989):

det(eξ1 A1 + . . . + eξn An) = ∑
r∈Pn

tre(ξ,r) (84)

where (·, ·) denotes the general inner product, Pn is the set of n-tuples of integers ri ≥ 0

such that ∑i ri = n and tr := 1
r1!...rn ! M(

r1︷ ︸︸ ︷
A1, . . . , A1, . . . ,

rn︷ ︸︸ ︷
An, . . . , An).

Suppose X ≥ 0, det(X) = 1 and E is fully indecomposable. Let U ∈ U(n) diagonalize
X with eigenvalues γi = eξi . Assume the eigenvalues are ordered γ1 ≥ . . . ≥ γn.
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Observe that then det(E(X)) ≤ det(E(1)) is equivalent to say that fA(ξ) ≤ fA(0),
where A = AE ,U . We know:

det(A1 + . . . + An) ≥ det(γ1A1 + . . . + γn An)

= ∑
r∈Pn

tre(ξ,r) ≥ 1
2 ∑

i 6=j
Mije(ξ,rij)

where we use that certainly for all i 6= j ∈ {1, . . . , n}, rij := with rk = 1 for all k 6= i, j
and ri = 2, rj = 0 is a valid n-tuple where the coefficient tr =

1
2 Mij. Since all the terms

in the sum of equation 84 are positive, we can just leave out all other r. By definition,
M(E) ≤ Mij for every A, hence:

det(A1 + . . . + An) ≥
1
2

M(E)∑
i 6=j

e(ξ,rij)

≥ 1
2

M(E)emaxi 6=j(ξi−ξ j)

≥ 1
2

M
γ1

γN

where we used that (ξ, rij) = ∑k 6=j ξk + ξi = ξi − ξ j since ∑i ξi = 0. Since det(A1 + . . . +
. . .) = det(E(1)), we have

γ1

γn
≤ 2 det(T(1))

M(A)
≤ 2 det(E(1))

M
< ∞

from the lemma above. But then, the infimum must be attained on the compact subset
{det(X) = 1|γ1 ≤ 2 det(E(X))

M
}. Therefore, also for the capacity Cap(E) the infimum can

be considered on a compact subset of {det(X) = 1} and is then attained. Uniqueness
is ensured by the strict convexity of fA.
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