
Journal of Geodetic Science
• 2(4) • 2012 • 247-256 DOI: 10.2478/v10156-011-0049-0 •

Approximations of the GOCE error
variance-covariance matrix for least-squares
estimation of height datum offsets
Research Article
Ch. Gerlach1∗ and Th. Fecher2

1 Commission for Geodesy and Glaciology, Bavarian Academy of Sciences and Humanities, Alfons-Goppel-Strasse 11, 80539Munich, Germany
2 Institute of Astronomical and Physical Geodesy, Technische Universität München, Arcisstrasse 21, 80333Munich, Germany

Abstract:
One main geodetic objective of the European Space Agency’s satellite mission GOCE (gravity öeld and steady-state ocean circulation
explorer) is the contribution to global height system uniöcation. This can be achieved by applying the Geodetic Boundary Value Problem
(GBVP) approach. Thereby one estimates the unknown datum offsets between different height networks (datum zones) by comparing
the physical (e.g. orthometric) height values H of benchmarks in different datum zones to the corresponding values derived from the
difference between ellipsoidal heights h (e.g. determined by means of global navigation satellite systems) and geoid heights N . In the
ideal case, i.e. neglecting data errors, the misöt between H and (h−N) is constant inside one datum zone and represents the datum
offset. In practise, the accuracy of the offset estimationdepends on the accuracy of the threequantitiesH, h andN , where the latter canbe
computed from the combination of a GOCE-derivedGlobal Potential Model (GPM) for the long tomediumwavelength and terrestrial data
for the short wavelength content. Providing an optimumestimation of the datumoffsets alongwith realistic error estimates, theoretically,
requires propagation of the full error variance and covariance information of the GOCE spherical harmonic coefficients to geoid heights,
respectively geoid height differences. Fromanumerical point of view, this is a very demanding taskwhich cannot simply be run on a single
PC. Therefore it is worthwhile to investigate on different levels of approximation of the full variance-covariancematrix (VCM) with the aim
of minimizing the numerical effort. In this paper, we compare the estimation error based on three levels of approximation, namely (1)
using the full VCM, (2) using only elements of the dominant m-block structure of the VCM and (3) using only the main diagonal of the
VCM, i.e. neglecting all error covariances between the spherical harmonic coefficients. We show that the m-block approximation gives
almost the same result as provided by the full VCM. The diagonal approximation however over- or underestimates the geoid height error,
depending on the geographic location and therefore is not regarded to be a suitable approximation.
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1. Introduction

Traditionally, vertical reference frames are based on levelling net-
works. Thereby only height differences between benchmarks of
a network are observed. Determination of absolute height values
requires öxing the height of one or several datum points in the

∗E-mail: gerlach@keg.badw.de

network. A suitable selection is to tie the height values to mean
sea level as observed at a single or a set of tide gauge stations.
All benchmarks referring to one and the same set of tide gauge
stations belong to the same datum zone. Due to local and re-
gional variations in dynamic ocean topography, i.e. due to vary-
ing heights of the mean sea surface above a common equipo-
tential surface, there exist datum offsets between different ver-
tical reference frames referring to different tide gauges. For ex-
ample the height values in Germany historically are related to the
tide gauge in Amsterdam, while the French height system refers
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to a tide gauge in Marseille. Comparison of the height values in
both national systems with the common adjustment of the Eu-
ropean Vertical Reference Frame shows a datum offset of about
50 cm between the two systems (see Sacher et al. 1999). This
is caused by about a 50 cm difference of the mean dynamic to-
pography between the North Sea (in the vicinity of Amsterdam)
and the Mediterranean Sea (in the vicinity of Marseille). Such off-
sets can cause severe problems in engineering or scientiöc appli-
cations where height values from both systems need to be inte-
grated. Therefore it is desirable to refer all vertical frames to one
and the same datum, globally.

Basically there are three methods for height system uniöcation
(see, e.g., Rummel 2001). The örst one is connection of different
datums by spirit levelling. This corresponds to a common adjust-
ment of all networks as provided for Europe by the European Verti-
cal Reference Frame. Practically, however, this method is restricted
to individual continents and is not suitable for global height system
uniöcation. The second method is ocean levelling, where one de-
termines the mean dynamic ocean topography, i.e. the height of
the mean sea surface above a conventional equipotential surface.
This surface can be realised by a global geoid model, e.g. based
on the measurements of the GOCE mission. The third and last
method applies the same principle to continental areas. This is the
Geodetic Boundary Value Problem (GBVP) approach, where ortho-
metric (or normal) heights of different datum zones are compared
to the difference between ellipsoidal heights and geoid (or quasi-
geoid) heights. The ellipsoidal heights are determinedbymeans of
geometric methods like global navigation satellite system (GNSS)
or satellite laser ranging (SLR), while the geoid (or quasi-geoid)
heights are determined from the solution of a GBVP. In practise the
geoid (or quasi-geoid) heights are derived from a combination of a
Global Geopotential Model (GPM) and terrestrial data in the neigh-
bourhood of the computation point.

The GBVP-approach as described, e.g., by Rummel and Teunissen
(1988) or Xu and Rummel (1991) estimates the datum offsets in a
least-squares adjustment. In order to derive both, an optimum re-
sult as well as a realistic quality description of the offsets, proper
description of all error contributions is required. This comprises
all observations, i.e. orthometric (or normal) heights, ellipsoidal
heights and geoid (or quasi-geoid) heights.

The aim of the European Space Agency’s (ESA) satellite gravity
mission GOCE (gravity öeld and steady-state ocean circulation ex-
plorer) is to provide a precise, homogenous and high resolution
global geoid (ESA, 1999). This gives the main contribution to the
geoid (or quasi-geoid) height. Proper quality description there-
fore requires propagating the errors of the spherical harmonic co-
efficients of a GOCE-derived GPM to geoid (or quasi-geoid) height
differences. The full resolution of GOCE based GPMs can be ex-
pected to be in the range of around degree and order 200-250.
The number of coefficients of a model up to degree and order 250
is 63001 and therefore the size of the full variance-covariance ma-
trix (VCM) of such a GPM is 63001 x 63001 which requires about

32 GB of storage space. Obviously propagation of such a largema-
trix is a numerically demanding and time consuming task. There-
fore it is worthwhile to study approximations of the full VCM with
the aim of reducing considerably the numerical effort while at the
same time keeping the approximation error small. In this study we
compare the error propagation of height system uniöcation based
on three levels of approximation: (1) using the full VCM, (2) using
only the dominant block diagonal structure and (3) using the error
variances only. These approximations are well known in geodesy.
They are described for example in Haagmans and van Gelderen
(1991) where comparisons of different approximations are carried
out employing the global model GEM-T1 (March et al., 1988).

In Section 2, an overview is given on the GBVP-approach to height
system uniöcation which comprises the basic idea as well as the
formalism that needs to be applied. This leads to a least-squares
model for estimating datum offsets and to the corresponding er-
ror propagation. Section 3 focuses on error propagation of a GOCE
derived spherical harmonic GPM and gives a detailed description
of the three levels of approximation. In addition, geoid height er-
rors based on the three different approximations are presented for
a GOCE and, for comparison, for a GRACE-based GPM. These er-
rors are used in the synthetic example of height system uniöca-
tion given in Section 4. Thereby the error contribution of a spher-
ical harmonic GPM is determined for the case of 5 datum points
in Europe which shall be connected to the datum point in Amster-
dam. Section 5 summarises the results and presents the conclu-
sions. Finally it should be mentioned, that, in the sequel, we do
not differentiate between geoid and quasi-geoid heights respec-
tively between orthometric and normal heights. The basic princi-
ple is the same for both types of heights and geoids. For the long-
wavelength contribution which is derived from a GPM, the differ-
ence between geoid and quasi-geoid is related to the selection of
the proper location of the computation point (on the surface of the
ellipsoid or on the telluroid) and to the treatment of the masses
outside the geoid. Both aspects will not be considered here in de-
tail andwewill loosely talk aboutgeoidheights, whileweare aware
of the fact that also quasi-geoid heights exist and modiöcations
need to be applied in the practical evaluation of both quantities.

2. Height System Unification Using the GBVP-Approach

Least-squares estimation of datum offsets based on the solution
of the GBVP was developed by Rummel and Teunissen (1988) and
various test cases were simulated by Xu and Rummel (1991) and
Xu (1992). In the following we present the basic relations of this
approach. Accordingly, height system uniöcation is closely related
to GNSS-Levelling (also see Gruber et al., 2012). Thereby ortho-
metric heights Hk , derived from a combination of spirit levelling
and gravimetry and related to some datum k, are compared to
orthometric heights H=h-N, determined from the combination
of ellipsoidal heights h (derived from geodetic space techniques
like GPS) and geoid heights N. If a global geoid model is used to
provide a common height reference surface, the comparison of
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H and Hk directly reveals the datum offset of datum zone ∆Ωk

with respect to the global datum. Figure 1 shows the basic geo-
metric relations. Thereby Nk is derived from GNSS-Levelling, i.e.
Nk = h − Hk , and represents some kind of biased geoid, which
acts as height reference surface in datum zone k ; it is offset from
a global geoid by the unknown datum offset. The biased geoid is
only deöned inside the respective datumzone. Thedatumoffset of
a certain datum zonewith respect to a global geoid can be derived
according to

Nk −N = N0 +Nk0

(h−Hk ) −N = N0 +Nk0 (1)

where the biased geoid heightNk is derived fromGNSS-Levelling
and the datumoffset is split into the offsetN0 of an arbitrarily cho-
sen conventional global reference datum (k=0) and the relative
offset Nk0 of datum k with respect to the global reference datum.

Equation (1) is the linear model for estimation of datum offsets,
with the unknown offsets on the right hand side and the obser-
vations (ellipsoidal heights, leveled orthometric heights and geoid
heights) on the left hand side. The model can also be formulated
in relative sense to determine only datum differences between the
different datum zones. Then the global offset N0 drops out.

In the ideal case, the global geoid N is determined by means of
satellite techniques; thus it is independent on terrestrial data and
therefore also free fromanydatumdeönition. Given a set of spheri-

cal harmonic coefficients
{

∆C̄lm,∆S̄lm
}

of the disturbing gravity
öeld, e.g. from the GOCE mission, the geoid height can be com-

Figure 1. Geometric relations between a global geoid, ellipsoidal
heights (h), orthometric heights (Ha and Hb) and biased
geoid heights (Na and Nb). The latter two quantities refer
to two different datum zones ∆Ωa and ∆Ωb which are re-
lated to two different tide gauge stations (datum points) Oa
and Ob. The gray area marks the datum offset of a arbitrar-
ily chosen reference datum zone (here datum zone ∆Ωb)
and the global geoid; the yellow area marks the relative
offsets of any other datum zone (here datum zone ∆Ωa) to
this reference datum zone.

puted according to (see e.g. Heiskanen and Moritz, 1967)

NGOCE(P) =

R
L∑

l=2

l∑

m=0

(
∆C̄lm cosmλp + ∆S̄lm sinmλP

)
P̄lm (cosθP )

(2)

wherein R is Earth’s mean radius and P̄lm (cosθP ) are fully-
normalised associated Legendre functions of spherical harmonic
degree l and order m. Thereby we neglect the fact, that the geoid
is not directly connected to the outer gravity öeld and in practice
corrections for the topographic masses would have to be consid-
ered. As indicated in Eq. (2), the resolution of the satellite based
geoid model is limited by the maximum spherical harmonic de-
gree L and does, even in case of GOCE, not exceed 200-250, which
corresponds to a spatial resolution between 80 and 100 km. The
öner details of the gravity öeld are not represented in the GPM, but
can still account to residual geoid heights in the order of several
decimetres on global average (based, e.g., on the degree variance
model of Tscherning and Rapp, 1974) or even onemetre andmore
for individual points (see e.g.·Gruber et al., 2012). Therefore, the
residual geoid height Nres , which corresponds to the omission er-
ror of the satellite based geoid model, must be determined from
high resolution terrestrial data. Based on the well-known integral
formula of Stokes (see Heiskanen and Moritz, 1967), the residual
geoid height can be computed according to

Nres(P) = R
4πγ

∫

Ω
Sres(ψPQ)

(
∆gk + 2

R Ck0

)
dΩQ . (3)

In practice the integration is limited to some distance from the
computation point, thus avoiding the necessity to provide terres-
trial gravity anomalies ∆gk globally. Two important modiöcations
of the original Stokes equation are indicated in Eq. (3):

1. Stokes’ function S
(
ψPQ

)
is replaced by the modiöed ver-

sionSres (ψPQ
)
and

2. the (unbiased) gravity anomalies ∆g are expressed as the
sum of biased anomalies ∆gk (referring to vertical datum
zone k ) and the gravity anomaly effect of the correspond-
ing vertical datum offset (expressed in terms of the geopo-
tential difference Ck0).

Modiöcation (a) is introduced to ensure proper öltering of the long
wavelength of the anomaly signal, thus preventing long wave-
length terrestrial information to enter the residual geoid height.
One very simple such modiöcation is the one introduced byWong
and Gore (1969) which limits the Stokes kernel to spherical har-
monic degrees above the maximum degree L of the employed
global satellite model. Further modiöcations are possible to re-
duce the artiöcial effect caused by the sharp spectral cut-off of the
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Wong-and-Gore-modiöed kernel function at degree L, or to min-
imise the truncation error when limiting the integration radius to
some relatively small distance around the computation point. We
will however not discuss those, but only refer to the Wong and
Goremodiöcationwhich can be interpreted as a kind ofworst-case
modiöcation causing signiöcant oscillations in the residual geoid
height, cf. Gerlach and Rummel (2012).
Modiöcation (b) expresses the fact, that terrestrial gravity anoma-
lies are indirectly inøuenced by height datum offsets. This is be-
cause orthometric heights of the data points are required for the
computation of free-air gravity anomalies to reduce the surface
gravity values down to the geoid. Since the orthometric heights
refer to some local or regional datum and therefore are, in gen-
eral, biased with respect to some global conventional datum, also
the gravity anomalies are biased. Therefore the terrestrial anoma-
lies are denoted ∆gk , which indicates relation to datum k. For-
mally, the anomaly offset is corrected by adding, in Eq. (3), the sec-
ond term in parenthesis which is the datum offset Ck0 expressed
in terms of geopotential values and transferred to units of gravity
bymultiplication with 2/R. Because the datum offset is not known
beforehand, in practice, only biased anomalies can be used in the
evaluation of Stokes’s integral. Separating the integration into two
terms we can write

R
4π

∫

Φ
Sres (ψPQ

)(
∆gk + 2

R Ck0

)
dΩQ =

R
4π

∫

Ω
Sres (ψPQ

)
∆gkdΩQ + R

4π

∫

Φ
Sres (ψPQ

) 2
R Ck0dΩQ =

NStokes +N ind (4)

Theörst term takes care of the integrationof biased terrestrial grav-
ity anomalies, while the second is the indirect bias term which
contains the unknown datum offsets and therefore needs to be
moved to the right hand side of the least-squares model given in
Eq. (1). This computationally complicates the adjustment process,
because Stokes’s function needs to be integrated individually over
all datum zones, which requires knowledge of the segmentation
of the different height datum zones. However, when employing
a satellite model from GOCE, which implies all spherical harmonic
degrees below L being removed from the residual Stokes’s func-
tion Sres (ψPQ

)
, the amplitude of the indirect bias term can be

reduced signiöcantly. As shown by Gerlach and Rummel (2012)
the term can even be neglected for height system uniöcation with
GOCE as it can be expected not to exceed the level of 1 cm. There-
fore Eq. (1) reduces to

(h−Hk ) −
(
NGOCE +NStokes) = N0 +Nk0 (5)

Symbolically replacing the observations by vector y and the un-
knowns by vector x , we get the linear model

y = Ax (6)

with design matrix A and least-squares solution

x̂ =
(

ATQyy
−1A

)−1
ATQyy

−1y (7)

where Qyy is the error VCM of the observations. The estimated
error VCM of the unknowns is given by the inverse of the normal
equation matrix, i.e. by

Q x̂ x̂ =
(

ATQyy
−1A

)−1
(8)

Because ellipsoidal heights, orthometric heights andgeoidheights
from GOCE are all determined independent of each other employ-
ing different types of data it can be assumed that the correspond-
ing errors are uncorrelated. Neglecting as well possible correla-
tions between orthometric heights and geoid heights computed
from Stokes integration (where possibly the same terrestrial grav-
ity data enters), the VCM of the observation errors can be written
as

Qyy = Qhh + QHH + QNN + Qgg (9)

Thereby Qhhis the error-VCM of the ellipsoidal heights, QHH the
error-VCM of the orthometric heights, QNN is the VCM of geoid
height errorsderived fromtheglobal satellitemodel andQgg is the
VCM of the residual geoid height errors resulting from integration
of the errors of the terrestrial gravity anomalies. Proper description
of all error contributions is required for proper relative weighting
of the observations and to achieve the optimum estimate for the
unknowns as well as a realistic description of the error of the esti-
mated unknowns. In this paper we only focus on the error contri-
bution of the satellite based global geoid model, i.e. on QNN . All
other error contributions are not treated here.

3. Error Propagation from Global Potential Models

Asmentioned in Section2, quality assessment of height uniöcation
is basedonpropagationof error variances and covariances of all re-
quired quantities. In the context of height uniöcation with GOCE,
error variances and covariances of GOCE-derived geoid heights at
or betweendatumpoints (or an adequate set of connectionpoints)
in different datum zones must be known. This information can be
derived from the full error VCM of GOCE spherical harmonic coef-
öcients, e.g., provided by ESA through the GOCE Virtual Archive at
http://eo-virtual-archive1.esa.int. Based on the spherical harmonic
synthesis given in Eq. (2), error propagation yields for the error co-
variance of the geoid height between two stations P and Q (see,
e.g., Haagmans and van Gelderen, 1991)
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Cov(NP , NQ) = R2
L∑

m=0

L∑

k=0

[( L∑

l=m

L∑

n=k

Cov(C̄lm, C̄nk )P̄lm(cosθP )P̄nk (cosθQ)
)

cosmλP cos kλQ+

+
( L∑

l=m

L∑

n=k

Cov(S̄lm, C̄nk )P̄lm(cosθP )P̄nk (cosθQ)
)

sinmλP cos kλQ+

+
( L∑

l=m

L∑

n=k

Cov(C̄lm, S̄nk )P̄lm(cosθP )P̄nk (cosθQ)
)

cosmλP sin kλQ+

+
( L∑

l=m

L∑

n=k

Cov(S̄lm, S̄nk )P̄lm(cosθP )P̄nk (cosθQ)
)

sinmλP sin kλQ

]
(10)

where error covariances between twodifferent spherical harmonic
coefficients, e.g. a sine-coefficient and a cosine-coefficient) are de-
notedCov(S̄lm, C̄nk ); the spherical harmonic degree number is in-
dicated by letters l andn, the order number by lettersm and k and
{θ, λ} are the spherical coordinates latitude and longitude of the
computation points P and Q.
Since the full error VCM of GOCE has an expected size of 8·(L+1)4

which corresponds to roughly 13 GB (for L=200) respectively
32 GB (for L=250), error propagation is a computationally
demanding task, which cannot simply be run on an ordinary
personal computer in an efficient way. Therefore one has to either
make use of super computers or computer clusters or one has
to take into account certain approximations. In the following,
such approximations will be applied to the computation of geoid
height error covariances and it will be investigated if different
levels of approximation lead to signiöcantly different estimates of
height datum offsets.

Approximations
According to Sneeuw (2000), selection of a nominal circular orbit
with constant inclination leads to a linear system of observation
equation, where each individual spherical harmonic order m is de-
coupled from coefficients of all other orders. Therefore the normal
equationmatrix and the error VCMof the estimated potential coef-
öcients shows a block diagonal structure, provided that the matri-
ces are ordered with respect to spherical harmonic order m (here-
after called m-order). Because the orbit of GOCE is almost circular
and the inclination almost constant, one can expect, that the error
VCM is block-diagonal dominant.
Therefore, as a örst level of approximation, all covariances between
coefficients of different order m (m ̸=k ) will be neglected. This re-
sults in an enormous reduction of computational load. In this case,
the VCM is split into individual blocks, each with amaximum num-
ber of coefficients of (L+1)2. In addition, covariances between sine
and cosine coefficients are neglected. This leads to the following
formulation

Cov(NP , NQ) ≈ R2
L∑

m=0

[( L∑

l=m

L∑

n=m
Cov(C̄lm, C̄nm)P̄lm(cosθP )P̄nm(cosθQ)

)
cosmλP cosmλQ+

+
( L∑

l=m

L∑

n=m
Cov(S̄lm, S̄nm)P̄lm(cosθP )P̄nm(cosθQ)

)
sinmλP sinmλQ

]
(11)

This level of approximation is called the m-block approach.
In a second level of approximation all of the error covariances are neglected. This is called the diagonal approach because only the
elements along the main diagonal of the VCM, i.e. only the error variances Var(C̄lm) and Var(S̄lm), are used. Accordingly, Eq. (11) further
reduces to

Cov(NP , NQ) ≈ R2
L∑

m=0

[( L∑

l=m

Var(C̄lm)P̄lm(cosθP )P̄lm(cosθQ)
)

cosmλP cosmλQ+

+
( L∑

l=m

Var(S̄lm)P̄lm(cosθP )P̄lm(cosθQ)
)

sinmλP sinmλQ

]
(12)
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Figure 2. Error variance-covariance matrix of GOCE spherical har-
monic coefficients (TIM3 model up to maximum degree L
= 250) in m-order for the lowest orders m = {0,1,2,3}

Figure 2 illustrates the three levels of approximation for a small
section of the full error VCM of the GOCE model TIM3 (Pail et al.,
2010a). The magnitude of the covariances is indicated by the gray
scale value of the image with black representing large values and
white representing no correlation. Visual inspection proofs that
the GOCE error VCM indeed is block diagonal dominant. Using
the full matrix for error propagation (corresponding to Eq. (10)) is
represented by the orange boxwhich encloses all matrix elements.
The m-block approach described in Eq. (11) is represented by the
elements along the dark blocks inside the green boxes. The diag-
onal approach described in Eq. (12) is represented by the red line,
which actually only contains the main diagonal of the full VCM.

3.1. Geoid height error variances from GOCE

Based on the three levels of approximation discussed above, geoid
height error variances on a 30’ x 30’ geographic grid in Europewere
computed from the error VCM of a GOCE model (here we used the
combined öeld GOCO02s (Pail et al., 2010b), which would be the
model of choice in practical applications) up to spherical harmonic
degree and order 180. The results (in terms of error standard devi-
ations) are shown in Fig. 3. The left picture is based on the propa-
gation of the full VCM, the central picture is based on the m-block
approximation and the right picture is based on the diagonal ap-
proach. The full matrix and the m-block approach provide almost
identical results with only some minor small scale differences. In
contrast, the diagonal approach yields signiöcantly larger values.
The error is overestimated by a factor of about 1.2 to 1.5. Figure 4
shows the relativeerror of the twoapproximation schemas in terms
of standard deviations. The left panel in Fig. 4 reveals small error
correlations along the orbit tracks which are neglected in the m-
block result. They amount to maximum values of about 1% of the
total error standard deviation. The right panel in Fig. 4 shows the
corresponding relative errors of the diagonal approximationwhich
reveals a strong miscalling of up to 50% in the northern latitudes.

Figure 3. Geoid height error standard deviation on a 30’ x 30’ geo-
graphic grid in Europe from the GOCO02s spherical har-
monic model (up to maximum spherical harmonic degree
180) based on three levels of approximation: full variance-
covariance matrix (left), m-blocks approximation (middle)
and diagonal approximation (right).

This öts to the scaling factor of 1.5 described above. The computa-
tions were repeated for a global grid of computation points to give
an overview on the differences between the full and the diagonal
approach. Figure 5 shows the corresponding results, i.e. the geoid
height error standard deviation derived from the full VCM in the
top panel, the result based on the diagonal approach in the mid-
dle and in the lower panel the scaling factor between the two solu-
tions. As expected, the diagonal approach provides a solutionwith
no longitude dependence. The values are more homogenous as
compared to the full solution, i.e. the data distributionwith denser
orbit tracks in higher latitudes is not clearly represented in the di-
agonal solution. Evaluation of a location dependent scaling co-
efficient (lower panel) shows that the diagonal approach tends to
overestimate the error variance in the northern hemisphere, while
it underestimates the error in the southern hemisphere. Due to a
slight eccentricity of the GOCE orbit, the picture is not symmetric
(or anti-symmetric) with respect to the equator, but a small south-
ward shift is visible in the top and lower panels. Comparing the nu-
merical values of the European example in Fig. 3 with those of the
global example in Fig. 5, one must be aware, that the maximum
degree and order used for error propagation is limited to 180 for
the European example, while for the global case the full resolution
was used, i.e. degree and order 250. The global case is only shown
for illustration of the error behaviour and employs the full set of co-
efficients, while the European example will be used in a synthetic
example of height systemuniöcation in Section 4; therefore, as dis-
cussed in Gruber et al. (2012), the maximum degree is limited to
the signiöcant resolution of the model at around degree 180. Co-
efficients above this degree do not represent the full gravity öeld
signal anymore.

3.2. Geoid height error covariances from GOCE and GRACE

In addition to error variances, also error covariances have been
computed for the Europeanexample. The two-dimensional covari-
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Figure 4. Relative error of the standard deviations shown in Fig. 3.
Left: relative error of the m-block approximation. Right: rel-
ative error of the diagonal approximation. Both are given as
percentage numbers. Note the different colorbars in both
panels.

Figure 5. Global 30’ x 30’ grid of geoid height error standard de-
viations from the GOCO02s model (up to spherical har-
monic degree 250) using the full variance-covariance ma-
trix (upper panel), using the diagonal approximation (mid-
dle panel) and the scaling factor between the two (lower
panel).

ance functions are shown in Fig. 6; the origin of the functions is lo-
cated in the center of the area close to Amsterdam. The three pan-
els represent the full (left), the m-block (middle) and the diagonal
(right) approach. All of the three functions are quite similar, with
the diagonal approach being almost exactly isotropic while the

Figure 6. Geoid height error covariance function on a 30’ x 30’ ge-
ographic grid in Europe from the GOCO02s spherical har-
monic model (up to maximum spherical harmonic degree
180) based on three levels of approximation: full variance-
covariance matrix (left), m-blocks approximation (middle)
and diagonal approximation (right).

two other solutions show slightly un-isotropic features (compare
the function values along a North-South axis with those along an
East-West axis). Also the magnitude of the function values seems
to decay a bit faster in case of the full and the m-block solutions as
compared to the diagonal approach. Figure 7 shows the relative
errors of the two approximations computed by dividing the differ-
encebetween full andapproximate solution (left: m-block approxi-
mation; right: diagonal approximation)by thevalueof thevariance
at the origin of the full-approach solution. The ögure conörms that
there are only slight differences of below 1% between the full and
the m-block solutions. The diagonal approach however yields rel-
ative differences of up to 40% concentrated around the origin of
the function.

Due to the fact, that all of the solutions provide an almost isotropic
error behaviour, for reasons of comparison the same computations
have been repeated using the error VCM of the GRACE spherical
harmonic model ITG-GRACE2010s (see Mayer-Gürr, 2006 and
http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010)
up to degree and order 120. The results are shown in Fig. 8 in the
same order as in the GOCE case of Fig. 6. Again the full and the
m-block solutions show similar error behaviour while the diagonal
solution is signiöcantly different. The latter is not perfectly, but
at least close to being isotropic, while the full and the m-block
approaches result in the well-known striping pattern of GRACE
errors (see, e.g., Swenson and Wahr, 2006). The ögures show that
depending on the satellite technique used to derive the global
gravity öeld model, the error behavior can be quite different
and different levels of approximation of the full error VCM might
lead to either only slightly or signiöcantly different covariance
functions. The question of how signiöcant the differences are in
case of least-squares estimation of height datum offsets shall be
answered in the following section.
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Table 1. Geoid height difference (with respect to the datum point in Amsterdam) error standard deviation from the GOCO02s model (up to spherical
harmonic degree 180) based on three levels of approximation: full variance-covariance matrix (top row), m-blocks approximation (mid
row) and diagonal approximation (bottom row). Units are centimetre. In addition the relative error is provided in percentage.

Tredge Newlyn Trieste Marseille Cascais
GOCE full 3.1 (0.0%) 3.2 (0.0%) 3.3 (0.0%) 3.3 (0.0%) 3.5 (0.0%)
GOCE m-blocks 3.1 (0.1%) 3.2 (0.1%) 3.3 (0.1%) 3.4 (0.3%) 3.5 (0.2%)
GOCE diagonal 3.9 (26.1%) 3.8 (20.7%) 3.9 (18.4%) 3.9 (17.3%) 4.0 (15.4%)

Table 2. Geoid height difference (with respect to the datum point in Amsterdam) error standard deviation from ITG-GRACE2010s (up to spherical
harmonic degree 120) based on three levels of approximation: full variance-covariance matrix (top row), m-blocks approximation (mid
row) and diagonal approximation (bottom row). Units are centimetre. In addition the relative error is provided in percentage.

Tredge Newlyn Trieste Marseille Cascais
GRACE full 2.8 ( 0.0%) 2.3 (0.0%) 3.1 ( 0.0%) 3.1 ( 0.0%) 3.1 (0.0%)
GRACE m-blocks 3.0 ( 7.7%) 2.4 (6.5%) 3.3 ( 5.8%) 3.4 ( 7.9%) 3.4 (8.2%)
GRACE diagonal 2.2 (21.8%) 2.2 (5.9%) 2.5 (18.5%) 2.6 (16.1%) 2.8 (9.4%)

Figure 7. Relative error of the covariances shown in Fig. 6. Left:
relative error of the m-block approximation. Right: rela-
tive error of the diagonal approximation. Both are given as
percentage numbers. Note the different colorbars in both
panels.

Figure 8. Geoid height error covariance function on a 30’ x 30’ geo-
graphic grid in Europe from the spherical harmonic model
ITG-GRACE2010s (up to maximum spherical harmonic de-
gree 120) based on three levels of approximation: full
variance-covariance matrix (left), m-blocks approximation
(middle) and diagonal approximation (right).

4. GOCE Error Contribution to Datum Unification: a Synthetic Exam-
ple

The error covariance functions derived in the previous section shall
be used in a synthetic example of height system uniöcation in Eu-
rope. The geographic distribution of the 6 tide-gauge stations
acting as datum points of the related national vertical reference
frames is given in Fig. 9. In our example, thedatumpoints in Tredge
(Norway), Newlyn (United Kingdom), Cascais (Portugal), Marseille
(France) and Trieste (the tide gauge is located in Italy, but only the
former Austrian reference frame and some frames along the Adri-
atic sea are linked to Trieste, while the Italian datum refers to a tide
gauge in Geneva) shall be linked to the datumpoint in Amsterdam
(the Netherlands). Therefore only relative datum offsets are to be
determined and the observation equation reads (given here, e.g.,
for the datum offset between Amsterdam (A) and Trieste (T ))

(hA −HA −NA
GOCE−NA

Stokes)−
(
hT −HT −NT

GOCE −NT
Stokes) = NTA (13)

Therefore the error of the geoid height difference between Ams-
terdam and Trieste is required. Given the error variances Var(N) at
both locations (taken from Fig. 3) as well as the error covariances
Cov(NA ,NT ) between Amsterdam and Trieste (taken from Fig. 6)
the error of the geoid height difference can be computed from

Var(NA −NT ) = Var(NA) + Var(NT ) − 2Cov(NA, NT )
(14)

The error standard deviation of the geoid height difference, i.e. the
error contribution of the global satellite model to height system
uniöcation at all of the 5 datum points with respect to Amsterdam
are given in Table 1 (for the GOCE case) and for comparison also in
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Figure 9. Geographic distribution of 6 tide gauge stations which are
used as datum points for different vertical reference frames
in Europe. The datum points are used in the synthetic ex-
ample presented in Section 4.

Table 2 (for the GRACE case). For GOCE all errors are in the range
between 3 and 4 centimetre. There are only marginal differences
between the full and the m-block solution, while the diagonal ap-
proach overestimates the error by around20% (with amaximumof
26%). As shown in Section3.2, the amountof over- or underestima-
tion of the geoid height error depends on the geographic location.
Thus the numbers given here are only valid for the European test
scenario. In the Southern hemisphere, the diagonal approach will
underestimate the error variance.

It is also interesting to compare GOCE andGRACE. In the latter case
(see Table 2) the deviations between the full and the m-block so-
lution are larger as in case of GOCE. This means that the correla-
tions outside them-blocks are larger in case of GRACE. However, in
least-squares adjustment a relative error of the weights in the or-
der of some few percentages (6% to 8% in this example) might still
be acceptable. The result of the diagonal solution does not seem
to be too bad either, with relative errors in the order of 10-20% (the
maximum value of 22% is even smaller than in the GOCE case), but
referring to the strong striping pattern, the results are depending
on the relative location of the datum points involved. Therefore it
cannot be concluded in general that the diagonal approximation
works better in case of GRACE then in case of GOCE.

5. Summary and Conclusions

Global height system uniöcation is one of themain geodetic appli-
cations of ESA’s GOCEmission. GOCE provides a precise and global
vertical reference surface of medium resolution to which all verti-
cal datum zones could be linked. The corresponding datumoffsets
can be estimated in a least-squares adjustment. The observations
comprise levelled heights referring to the different datum zones,
ellipsoidal heights from space-geodetic techniques and GOCE de-
rived geoid (or quasi-geoid) heights (extendedwith terrestrial data
for thehigh frequencyportionof the signal). Thebest possible esti-
mate for the datum offsets (along with a realistic error description)

requires having available realistic measures of the error variances
and covariances at and between the observation stations. The full
error variance-covariance information of GOCE is available from
ESA. The correspondingmatrix, however, is too big to be efficiently
exploited on an ordinary personal computer. Therefore it is worth-
while to investigate suitable approximations of the full variance-
covariance matrix of GOCE. Besides the full matrix, we have used
two approaches: the örst takes only the elements of the domi-
nant block-diagonal structure (m-block approach) into account
(neglecting correlations between coefficients of different spherical
harmonic order m), while the second neglects all error correlations
and only takes the variances along themain diagonal into account
(diagonal approach). We önd that the m-block approach gives
only minor deviations from the full matrix solution, while the di-
agonal approach over- or underestimates the error variance by up
to 50%, depending on the geographic location. In a synthetic ex-
ample, the GOCE contribution to the quality of datum offsets, es-
timated between some selected regional datum points in Europe,
was investigated. We önd that the error estimates of datum offsets
changes for less than 0.3% in them-block approximation, while the
diagonal approach leads to an approximationerror of up to26%. In
conclusion, the m-block approach seems to be a suitable approxi-
mation of the full GOCE error variance-covariancematrix, while the
diagonal approach seems to be too coarse. Future investigations
comprising the propagation of all relevant error sources will show,
if the diagonal approach still can prove to provide reasonable da-
tum offset estimates. Indeed, it would be the numerically simplest
approach to apply.
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