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Abstract: There is an in�nite exchangeable sequence of random variables {Xk}k∈N such that each �nite-
dimensional distribution follows a min-stable multivariate exponential law with Galambos survival copula,
named after [7]. A recent result of [15] implies the existence of a unique Bernstein function Ψ associated with
{Xk}k∈N via the relation Ψ(d) = exponential rate of the minimum of dmembers of {Xk}k∈N. The present note
provides the Lévy–Khinchin representation for this Bernstein function and explores some of its properties.
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1 Introduction
A d-dimensional random vector (X1, . . . , Xd) follows a min-stable multivariate exponential law (MSMVE)
if min{c1 Xi1 , . . . , ck Xik} has a (univariate) exponential law for all 1 ≤ i1 < . . . < ik ≤ d and constants
c1, . . . , ck > 0. This is the case if and only if its components have (univariate) exponential laws and its sur-
vival copula is of extreme–value kind, see [13, Theorem 6.2, p. 174]. A sequence of random variables {Xk}k∈N
on a probability space (Ω,F, P) is said to be MSMVE if min{c1 Xi1 , . . . , ck Xik} has a (univariate) exponen-
tial distribution for arbitrary c1, . . . , ck > 0 and i1 < i2 < . . . < ik, k ∈ N. Provided such a sequence is in
addition exchangeable, i.e. the law of {Xσ(k)}k∈N is invariant under bijections σ : N → N, the article [15] pro-
vides a canonical stochastic construction by means of non-decreasing stochastic processes which are strong
in�nitely divisible with respect to time (strong IDT), a notion that was introduced and investigated in [6, 9, 16].
A stochastic process {Ht}t≥0 is strong IDT if for each n ∈ N one has

{Ht}t≥0
d=
{ n∑

i=1

H(i)
t/n

}
t≥0
,

where d= denotes equality in law and {H(i)
t }t≥0 are independent copies of {Ht}t≥0, i ∈ N. Indeed, there is a one-

to-one relationship between exchangeable MSMVE sequences and right-continuous, non-decreasing strong
IDT processes starting from H0 = 0 and satisfying limt→∞ Ht = ∞, which is induced by the stochastic model

Xk := inf{t > 0 : Ht > ϵk}, k ∈ N, (1)

where {ϵk}k∈N is an iid sequence of unit mean exponential random variables, independent of {Ht}t≥0. One
well-studied subfamily of non-decreasing strong IDT processes is the family of (killed) Lévy subordinators.
However, there exist also proper increasing strong IDT processes that are not Lévy subordinators, and their
rigorous study is an interesting topic for further research. In particular, the present article studies an ex-
changeable MSMVE sequence which is associated with a non-Lévy strong IDT process, whose probability
law, however, is unknown.
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The present note contributes the following two points to the study of the law of this unknown strong IDT
process:

– Section 2 explains that for each θ > 0 there is an exchangeable MSMVE sequence such that the exponen-
tial rate of the minimummin{X1, . . . , Xd} is given by

λθ(d) := −
d∑
k=1

(
d
k

)
(−1)k k−θ , d ∈ N. (2)

These rates stem from an MSMVE distribution �rst introduced in [7].
– Given the �rst bullet point, it follows from [15] that there exists a unique Bernstein function Ψθ such that
Ψθ(d) = λθ(d) for all d ∈ N. A Bernstein function is de�ned on [0,∞), non-negative, starting at zero, and
is smooth on (0,∞)with completelymonotone �rst derivative. For background onBernstein functionswe
recommend [19]. Section 3 provides the Lévy–Khinchin representation of Ψθ and studies its properties.

2 The stochastic construction of the Galambos MSMVE sequence
For the sake of simpli�ed notation, we introduce the following de�nition.

De�nition 2.1 (Cumulative hazard process). A [0,∞]-valued stochastic process H = {Ht}t≥0 is called cumu-
lative hazard process if it satis�es H0 = 0, is right-continuous, non-decreasing, and limt→∞ Ht = ∞ almost
surely.

There is a one-to-one relationshipbetween cumulative hazardprocesses and in�nite exchangeable sequences
of random variables with support in [0,∞), induced by the canonical construction (1), which is an immedi-
ate consequence of De Finetti’s Theorem. The original references are [4, 5], popular generalizations to more
general state spaces are achieved in, e.g., [12, 17].

LetM1,M2, . . . be an iid sequence of positive randomvariableswith Laplace transformφ on a probability
space (Ω,F, P), where we assume that

θ := − lim
s↓0

s (φ−1)
′
(s)/φ−1(s) ∈ (0,∞)

exists. For instance, if φ(x) = (1 + x)−1/ϑ for ϑ ∈ (0,∞) (Laplace transform of a certain Gamma distribution),
then θ = ϑ exists. We apply the conventions − log(0) := ∞, φ−1(0) := ∞. For each n ∈ N we de�ne the
cumulative hazard process

H(n)
t :=

{
−
∑n

i=1 log
(
1 − e−Mi φ−1(t/n)

)
, 0 ≤ t < n

∞, t ≥ n
. (3)

Applying construction (1) with the processes H = H(n) for each n, we obtain sequences of random variables
{X(n)k }k∈N.

– For each k, n ∈ N the survival function of X(n)k is given by

P
(
X(n)k > t

)
= E
[
e−H

(n)
t
]
=
(
1 − tn

)n
, 0 ≤ t ≤ n. (4)

In particular, as n → ∞, the law of X(n)k converges weakly to a unit exponential law.
– If Cφ denotes the Archimedean copula (see, e.g., [3] for background on the latter) generated by φ, i.e.

Cφ(u1, . . . , ud) = φ
(
φ−1(u1) + . . . + φ−1(ud)

)
, u1, . . . , ud ∈ [0, 1], d ≥ 1,

 - 10.2478/demo-2014-0002
Downloaded from De Gruyter Online at 09/28/2016 08:49:00PM

via Technische Universität München



24 | Jan-Frederik Mai

we observe for 0 ≤ t1, . . . , td ≤ n that

P
(
X(n)1 > t1, . . . , X(n)d > td

)
= E
[
e−(H

(n)
t1
+...+H(n)

td
)
]
= E
[ d∏
k=1

(
1 − e−M1 φ−1(tk /n)

)]n
= E
[
1 +

d∑
k=1

(−1)k
∑

1≤i1<...<ik≤d

(
e−M1 φ−1(ti1 /n) + . . . + e−M1 φ−1(tik /n)

)]n
=
(
1 +

d∑
k=1

(−1)k
∑

1≤i1<...<ik≤d

Cφ
( ti1
n , . . . , tikn

))n

=
(
1 +

(−n)
∑d

k=1(−1)
k+1 ∑

1≤i1<...<ik≤d Cφ
(
ti1
n , . . . ,

tik
n

)
n

)n
.

By [3, Theorem 3.1], the sequence

an := n
d∑
k=1

(−1)k+1
∑

1≤i1<...<ik≤d

Cφ
( ti1
n , . . . , tikn

)
, n ∈ N,

converges to

`θ(t1, . . . , td) := t1 + . . . + td −
∑
I:|I|≥2

(−1)|I|
(∑
k∈I

t−θk
)−1/θ

. (5)

The function `θ in (5) is a so-called stable tail dependence function associated with an MSMVE in
the sense that exp(−`θ(t1, . . . , td)) is the survival function of an MSMVE distribution. Alternatively,
exp(−`θ(− log(u1), . . . , − log(ud))) is an extreme-value copula. More precisely, it corresponds to the so-
called Galambos copula, named after [7]. Since we have for arbitrary sequences {an}n∈N that

lim
n→∞

(
1 + ann

)n
= ea ⇔ lim

n→∞
an = a,

we conclude

lim
n→∞

P
(
X(n)1 > t1, . . . , X(n)d > td

)
= e−`θ(t1 ,...,td),

i.e. the distribution of (X(n)1 , . . . , X(n)d ) converges to the Galambos MSMVE as n → ∞, for arbitrary
d ∈ N. Concluding, we have a sequence of in�nite sequences of random variables, such that the �nite-
dimensional distributions of them converge weakly to Galambos MSMVEs.

– As a special case of the previous bullet point, we also get form1, . . . ,md ∈ N and t1, . . . , td ≥ 0 arbitrary
that

lim
n→∞

E
[
e−(m1 H(n)

t1
+...+md H(n)

td
)
]
= exp

(
− `θ(t1, . . . , t1︸ ︷︷ ︸

m1 times

, t2, . . . , t2︸ ︷︷ ︸
m2 times

, . . . . . . , td , . . . , td︸ ︷︷ ︸
md times

)
)
.

Since the (multivariate) Laplace transforms of �nite- (d-)dimensional distributions from {H(n)
t } are com-

pletely determined by their values onNd by the Theorem of Stone–Weierstrass, we can conclude that the
following statement holds true.

Lemma 2.2 (Existence of the Galambos strong IDT process). There is a strong IDT cumulative hazard process
H such that

E
[
e−(Ht1+...+Htd )

]
= e−`θ(t1 ,...,td), t1, . . . , td ≥ 0.

In particular, the exchangeable sequence {Xk}k∈N de�ned via (1) from the process H has Galambos MSMVEs
as �nite-dimensional distributions.
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Proof. The computations above imply that the cumulative hazard processes H(n) converge weakly to some
cumulative hazard process H, whose �nite-dimensional distributions are given as claimed in the statement.
Now H(n) is of the structural form

H(n)
t =

n∑
i=1

A(i)
t/n , A(i)

t := − log
(
1 − e−Mi φ−1(t)

)
, t ≥ 0,

where A(1), A(2), . . . are iid cumulative hazard processes. From this observation it is not di�cult to observe
that the limiting cumulative hazard process H must be strong IDT.

Lemma 2.2 rigorously veri�es a statement made in [15, Example 5.1] about the existence of H. Unfortunately,
the stochastic nature ofH is unknown. It is an interestingopenproblem todescribe it conveniently and, inpar-
ticular, �nd a simulation algorithm for paths of H, because this would imply an e�cient sampling algorithm
for the GalambosMSMVE (and associated Galambos copula) in arbitrary dimension along the stochastic con-
struction (1). Notice in particular that H cannot be a jump process, because its jumps would induce positive
probabilities for events such as {X1 = X2}, which is not the case for the Galambos MSMVE. As a �rst step into
studying the stochastic behavior of H the next section studies the in�nitely divisible law of Ht for �xed t > 0.

Figure 1 shows a bivariate scatter plot which should approximately resemble a scatter plot from the
Galambos copula (u1, u2) 7→ exp(−`θ(− log(u1), − log(u2))) for θ = 1. It is generated by simulating iid sam-
ples of the random vector (X(n)1 , X(n)2 ) from the canonical construction (1) with the approximating cumulative
hazardprocess (3), for n = 100, and then transforming touniformmarginals by applying the survival function
(4) to both components, i.e. visualized are samples of

(U(n)
1 , U(n)

2 ) :=
(
max

{
(1 − X(n)1 /n)n , 0

}
, max

{
(1 − X(n)2 /n)n , 0

})
.

The involved Laplace transform has been speci�ed as φ(x) = (1 + x)−1/θ with θ = 1, resulting in a unit expo-
nential distribution for the involved random variablesM1,M2, . . .. Furthermore, based on N := 1000000 iid
samples of (U(n)

1 , U(n)
2 ) for varying n, denoted (U(n)

1 (k), U(n)
2 (k)) for k = 1, . . . , N, we computed the empirical

Spearman’s Rho

ρ̂(n)N :=

N∑
k=1

(
U(n)
1 (k) − 1

N
∑N

l=1 U
(n)
1 (l)

)(
U(n)
2 (k) − 1

N
∑N

l=1 U
(n)
2 (l)

)
√

N∑
k=1

(
U(n)
1 (k) − 1

N
∑N

l=1 U
(n)
1 (l)

)2 N∑
k=1

(
U(n)
2 (k) − 1

N
∑N

l=1 U
(n)
2 (l)

)2
and compared it with the theoretical Spearman’s Rho of the limiting Galambos copula, which is given by

ρ = 12
1∫

0

(2 − (x−θ + (1 − x)−θ)−1/θ)−2 dx − 3 (θ=1)≈ 0.5874,

see, e.g., [8]. It is observed that the empirical value for Spearman’s Rho approximates the theoretical value
with increasing n, as implied by the theory.

3 The Galambos Bernstein function
In the previous paragraph we have constructed an exchangeable MSMVE sequence {Xk}k∈N and a non-
decreasing, strong IDT process H such that

P(X1 > x1, . . . , Xd > xd) = E
[
e−Hx1−...−Hxd

]
= e−`θ(x1 ,...,xd), x1, . . . , xd > 0.

It is known from [15] that there exists a Bernstein functionΨθ such that the law ofHt is in�nitely divisiblewith
Laplace transform exp(−t Ψθ), each t ≥ 0. However, according to [15] this Bernstein function is not known in
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n ρ̂(n)N
5 0.5642
10 0.5757
25 0.5827
50 0.5863
75 0.5850
100 0.5873

Fig. 1. Left: scatter plot from the survival copula of (X(n)1 , X(n)2 ) constructed with the cumulative hazard process (3), for n = 100
and φ(x) = (1 + x)−1 (5000 samples are visualized). Right: simulations of the empirical Spearman’s Rho ρ̂(n)N based on N =
1000000 iid samples and varying n.

closed formexcept for the case θ = 1. The only thing that is known is that the exponential rate of theminimum
min{X1, . . . , Xd} is given by

Ψθ(d) = `θ(1, . . . , 1︸ ︷︷ ︸
d times

) = −
d∑
k=1

(
d
k

)
(−1)k k−θ , d ∈ N. (6)

The followingpropositionderives theLévy–Khinchin representationof theBernstein functionΨθ for arbitrary
θ > 0. To this end, recall that any Bernstein function Ψ has a Lévy-Khinchin representation

Ψ(x) = b x +
∞∫
0

(
1 − e−x t

)
ν(dt) + ν({∞}) 1{x>0}, x ≥ 0,

with a constant b ≥ 0 and ameasure ν on (0,∞] satisfying
∫
(0,∞]min{t, 1} ν(dt) < ∞, called the Lévymeasure

associated with Ψ .

Proposition 3.1 (The Galambos Bernstein function). TheBernstein function Ψθ associatedwith theGalambos
MSMVE is given by the Lévy–Khinchin representation

Ψθ(x) =
∞∫
0

(
1 − e−t x

) e−t
1 − e−t

(
log
( 1
1 − e−t

))θ−1 dt
Γ(θ) , x ≥ 0.

Proof. Fix θ and consider the sequence ak := Ψθ(k + 1) − Ψθ(k), k ∈ N0. From (6) we conclude that

ak =
k∑
i=0

(
k
i

)
(−1)i (i + 1)−θ , k ∈ N0.

Let τ be a Γ-distributed random variable with density fτ(x) = xθ−1 e−x/Γ(θ), x > 0. From the knowledge about
the Laplace transform of the Γ-distribution it is observed that {(k + 1)−θ}k∈N0 is the moment sequence of
exp(−τ), i.e. (k + 1)−θ =

∫ ∞
0 exp(−k x) fτ(x) dx. Consequently,

ak =
k∑
i=0

(
k
i

)
(−1)i (i + 1)−θ =

∞∫
0

fτ(x)
k∑
i=0

(
k
i

)
(−1)i exp(−i x) dx =

∞∫
0

fτ(x)
(
1 − e−x

)k dx,
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implying that {ak}k∈N0 equals the moment sequence of the random variable X := 1 − exp(−τ). The density fX
of X is given by

fX(x) = fτ(− log(1 − x))/(1 − x) =
(
log
( 1
1 − x

))θ−1
/Γ(θ), x ∈ (0, 1).

An application of [14, Lemma 5.3] implies that the Lévy measure of Ψθ is given by

ν(dt) = e−t
1 − e−t fX

(
e−t
)
dt = e−t

1 − e−t
(
log
( 1
1 − e−t

))θ−1
/Γ(θ) dt,

which implies the claim.

Interestingly, (the in�nitely divisible law associated with) the Bernstein function of Proposition 3.1 seems to
be completely unstudied in the academic literature. The following corollary collects some properties of the
Bernstein function Ψθ and, hence, about the stochastic nature of H.

Corollary 3.2 (Properties of Ψθ). The following properties are satis�ed by Ψθ.

(a) The Lévy measure is not �nite.
(b) θ ∈ N ⇒ Ψθ is complete, i.e. the associated in�nitely divisible law is from the so-called Bondesson class.
(c) The associated in�nitely divisible law is self-decomposable if and only if θ ≥ 1.
(d) For x ≥ 0 arbitrary, limθ↓0 Ψθ(x) = 1{x>0} and limθ→∞ Ψθ(x) = x.

Notice that statement (d) is actually not obvious from the Lévy–Khinchin representation alone. Furthermore,
the Bondesson class is a large subclass of in�nitely divisible laws on the half-line which was introduced
in [2] under the name g.c.m.e.d. laws. These are characterized by those Bernstein functions whose Lévy
measure has a completely monotone density with respect to Lebesgue measure, called complete Bernstein
functions, cf. [19, Chapters 6 and 7]. Moreover, an in�nitely divisible law on the half-line (0,∞) is called
self-decomposable if its Laplace transform φ is such that x 7→ φ(x)/φ(c x) is completely monotone for all
c ∈ (0, 1), cf. [19, De�nition 5.12, p. 41].

Proof.(a) Observe that (− log(1−exp(−t)))
′
= − exp(−t)/(1−exp(−t)), which implies by substitution for arbitrary

θ > 0 that

ν((0,∞)) =
∞∫
0

e−t
1 − e−t

(
log
( 1
1 − e−t

))θ−1 dt
Γ(θ) =

∞∫
0

uθ−1 du
Γ(θ) = ∞.

(b) Clearly, t 7→ exp(−t) is completely monotone and t 7→ 1 − exp(−t) is a Bernstein function (associated Lévy
measure is Dirac measure at 1). Hence, the function t 7→ exp(−t)/(1 − exp(−t)) is completely monotone, since
(i) the reciprocal of a Bernstein function is completelymonotone and (ii) the product of two completelymono-
tone functions is again completely monotone. To see this, (ii) follows from [19, Corollary 1.6], and (i) is veri-
�ed from the fact that g(x) = 1/x is completely monotone (it is the Laplace transform of Lebesgue measure
on (0,∞), see [19, Thm. 1.4]) and hence g ◦ f is c.m. for an arbitrary Bernstein function f by [19, Thm. 3.6
(ii)]. So for θ = 1 we already observe that Ψ1 is complete. For θ ∈ {2, 3, 4, . . .}, we show that the function
t 7→ (− log(1−exp(−t)))θ−1 is completely monotone as well, which then implies the claim, as products of com-
pletely monotone functions are completely monotone again. If φ is completely monotone and β ∈ N, then φβ

is also completely monotone since the set of completely monotone functions is closed under multiplication,
which was used before. Moreover, the function t 7→ − log(1 − exp(−t)) is c.m., since its �rst derivative equals
t 7→ −exp(−t)/(1 − exp(−t)), and the latter function is the negative of a completely monotone function (as
was just explained). This ultimately proves that t 7→ (− log(1 − exp(−t)))θ−1 is completely monotone for all
θ ∈ {2, 3, 4, . . .}.

(c) Recall that an in�nitely divisible law is self-decomposable if and only if it has a Lévy measure of the form
k(t) dt with t 7→ t k(t) non-increasing, see [18, Chapter 3, Sections 16–17]. In the present situation we have
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k(t) = kθ(t) = exp(−t)/(1 − exp(−t)) (− log(1 − exp(−t)))θ−1/Γ(θ). Furthermore, we compute
d
dt
(
t kθ(t)

)
= (− log(1 − exp(−t)))θ−2

(et − 1)2 Γ(θ)

(
− θ t + t +

(
et (t − 1) + 1

)
log(1 − e−t)

)
,

which is strictly smaller than zero if and only if

θ > 1 + e
t (t − 1) + 1

t log(1 − e−t) =: h(t).

Now h(t) is a continuous function on (0,∞) with limt↓0 h(t) = 1, which can be observed by an application
of L’Hospital’s rule, and h(t) < 1, which follows from the fact that et (t − 1) + 1 > 0 and log(1 − e−t) < 0.
Consequently, for θ ≥ 1 the function t 7→ t kθ(t) has strictly negative derivative for all t > 0 and the law is self-
decomposable, as claimed. For θ < 1, however, we �nd anon-empty interval onwhich h(t) > θ. Consequently,
the function t 7→ t kθ(t) is increasing on that interval and the law not self-decomposable.

(d) De�ning the Bernstein functions Ψ0(x) := 1{x>0} and Ψ∞(x) := x, x ≥ 0 , it follows from (6) that

lim
θ↓0

Ψθ(d) = Ψ0(d), lim
θ→∞

Ψθ(d) = Ψ∞(d), d ∈ N0.

Now the claim follows from Lemma 4.1 in the Appendix.

4 Conclusion
It was shown that there exists a strong IDT process H based onwhich random vectors with Galambos survival
copula can be constructed via (1). The present note has further collected some stochastic properties of H and
its associated Bernstein function.

Acknowledgement: Helpful comments by three anonymous referees on earlier versions of this manuscript
are gratefully appreciated.

Appendix
Lemma 4.1 (Technical Lemma). Let Ψ0, Ψ1, Ψ2, . . . be Bernstein functions, such that limn→∞ Ψn(d) = Ψ0(d)
for all d ∈ N0. Then limn→∞ Ψn(x) = Ψ0(x) for all x ≥ 0.

Proof. For each n ∈ N0 there exists a unique probability law πn on [0,∞] such that exp(−Ψn) equals the
Laplace transform of πn. Now �x n ∈ N0. By Hausdor�’s moment problem, see [10, 11], we �nd a unique
probability law µn on the unit interval [0, 1] such that exp(−Ψn(d)) =

∫
[0,1] y

d µn(dy) for all d ∈ N0, since the
sequence {exp(−Ψn(d))}d∈N0 is completely monotone starting at one. The function fn(x) :=

∫
[0,1] y

x µn(dy)
is completely monotone by Bernstein’s Theorem, see [1] (if X ∼ µn, it equals the Laplace transform of the
random variable − log(X) taking values in [0,∞] with the convention − log(0) := ∞). Laplace transforms
are completely determined by their values on N0 due to the uniqueness in Hausdor�’s result, hence fn(x) =
exp(−Ψn(x)) for all x ≥ 0. By assumption, we observe for arbitrary d ∈ N0 that∫

[0,1]

yd µn(dy) = exp(−Ψn(d)) −→ exp(−Ψ0(d)) =
∫

[0,1]

yd µ0(dy), n → ∞.

Since the polynomials are dense in the set of continuous (and bounded) functions on the compact interval
[0, 1], it follows that µn tends weakly to µ0. This in turn implies the claim, since for arbitrary x ≥ 0 we observe

Ψn(x) = − log
( ∫
[0,1]

yx µn(dy)
)
−→ − log

( ∫
[0,1]

yx µ0(dy)
)
= Ψ0(x), n → ∞.
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