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Abstract

Purpose – The purpose of this paper is to consider a detailed investigation of transversal magnetic (TM)
nonlinear magnetooptical integrated optical sensor. The sensitivities of two sensors are presented. The
first sensor composed of a dielectric thin film surrounded by a lossless, nonmagnetic, isotropic cladding
exhibiting a local Kerr-like dielectric nonlinearity, and a magnetic substrate chosen to be an iron garnet.
The second sensor is formed by exchanging the cladding and the substrate media of the first sensor. The
homogenous sensitivities of both sensors are calculated as a function of the waveguide thickness and the
effective refractive index. The effect of nonlinearity on the sensitivities for both sensors is investigated.

Design/methodology/approach – The homogenous sensitivities of both sensors are calculated as
a function of the waveguide thickness and the effective refractive index. The effect of nonlinearity on
the sensitivities for both sensors is investigated. Numerical calculations are performed using the Maple
program.

Findings – It was found that the sensitivity for the first sensor sensitivity increases with nonlinearity.
While the sensitivity for the second sensor is hardly affected by the change of nonlinearity. It was also
found that the thickness of the guiding layer is a critical parameter for the sensitivity of the optical
sensor with the optimum thickness being just above cut-off in case of the first structure and at the cut-off
in the case of the second structure.

Originality/value – A detailed investigation of TM nonlinear magnetooptical integrated optical
sensor is considered. The two proposed structures are used to investigate the parameters to get the
optimal sensitivity, which is an important issue is the sensor design.

Keywords Sensors, Magnetooptics, Nonlinear material, Sensitivity, Integrated optics,
Optical components, Sensitivity analysis, Optics

Paper type Research paper

1. Introduction
Integrated optical sensors are the only technology, which allows the direct detection of
biomolecular interactions; therefore, they can be used to detect water pollutants in
environmental control (Numata et al., 1989). The applications of nonlinear electromagnetic
waves in optoelectronic devices have been discussed in several papers (Segeman and
Seaton, 1985; Yasuamoto et al., 1996; Boardman and Egan, 1986; Mihalache, 1989).
Such sensors are designed for several purposes including biological, environmental,
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and other fields of applications (El-Khozondar et al., 2007; El-Khozondar, 2008).
Dötsch et al. (2005) have investigated the applications of magnetooptical waveguides.
The magnetooptical materials have several applications such as current transducers
(Massey et al., 1975; Nagatsuma et al., 1985), defect detection in steels (Numata et al., 1989),
recording readout heads (Nomura and Tokumaru, 1984), magnetooptic memories (Martens
and Voermans, 1984; Hartmann et al., 1984), isolators (Gniadek, 2005; El-Khozondar et al.,
2008; El-Khozondar et al., 2009), and sensors (Numata et al., 1991) among other devices.

Gniadek (2005) presented the concept of an integrated isolator based on
nonreciprocal cut-off of TM modes in magnetooptical planar structure, where one
layer is nonlinear. Alcantara et al. (2005) presented a new multifunctional optical device
operating simultaneously as an optical switch and an optical isolator. We made a
further step in this paper by introducing a study of a nonlinear magnetooptical sensor.

The main idea of sensors are based on evanescent field sensing: although light is
confined within the core of the waveguide, part of the guided light travels within the
medium surrounding the waveguide and therefore its field can interact with the
environment (Kooyman and Lechuga, 1997). Thus, a biomolecular interaction between a
receptor molecule, previously deposited on the waveguide surface, and its complementary
analyte, produces a change in the refractive index at the sensor surface that induces a
variation in the optical properties of the guided light via the evanescent field.

The principle measurement of the planar waveguide sensor is the homogeneous
sensitivity. The homogeneous sensitivity Sh is defined as the variation rate of effective
refractive index N of order m upon a variation of the cover’s refractive index (Brioude
and Parriaux, 2000).

The purpose of this paper is to study the homogeneous sensitivity for planar
waveguide sensors composed of a thin dielectric film surrounded by nonlinear and
magnetooptic layers. The sensitivity is first calculated for the sensor where the
substrate media is magentooptic material and the cover media is nonlinear material.
Then the sensitivity is measured for the sensor structure where the magnetooptic
material is covering the film and the nonlinear material is the substrate.

2. Theory
A schematic drawing of the sensor device is shown in Figure 1. The sensor consists of
a dielectric thin film surrounded by a nonlinear cladding and a magnetic substrate.
In this work, we will consider only p-polarized waves propagating in the z-direction.
The non-vanishing components of the fields are (Ex, Hy, Ez). The transverse electric

Figure 1.
Basic geometry

of the sensor

dFilm

Nonlinear cladding

Garnet Substrate M

x

z
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and magnetic modes are assumed to oscillate as exp[j(vt 2 bz)], where b ¼ Nk
denotes the propagation constant, N is the effective refractive index, and k ¼ 2p/l the
vacuum wave number with l being the vacuum wavelength, v ¼ ck the angular
frequency, and c the speed of light.

The film is linear dielectric with permittivity 1f and permeability mf. The cladding is
N-4-nitrophenyl-(L)-prolinol (NPP) (Ledoux et al., 1990) that is lossless, nonmagnetic,
isotropic and exhibits a local Kerr-like dielectric nonlinearity (Segeman and
Seaton, 1985; Yasuamoto et al., 1996; Boardman and Egan, 1986; Mihalache, 1989;
El-Khozondar et al., 2007; El-Khozondar, 2008):

1c ¼
1xx 0

0 1zz

 !
; ð1Þ

where 1xx¼1zz ¼ 1(I ) ¼ (1cL þ 1NL), where I denotes the dependency on the intensities
of the fields, 1cL is the linear term and 1NL is the nonlinear term which is proportional to
the fields intensities 1NL ¼ a(jExj

2 þ jEyj
2),where a is the nonlinearity coefficient. The

substrate consists of an iron garnet with dielectric tensor 1s which is defined by
(Gerhardt et al., 1993):

1s ¼

1xx 0 j1xz

0 1xx 0

2j1xz 0 1xx

0
BB@

1
CCA; ð2Þ

The magnetization
!
M is adjusted in the substrate plane perpendicular to the field

propagation. All numbers in the dielectric tensor are real. Gyrotropy, represented by the
off-diagonal components 1xz, is the result of magnetization and related to the specific
Faraday rotation uF by j1xzj < 2nsjuFj/k, where ns is the refractive index of the substrate.

Solving Maxwell’s equations to obtain the solutions for the transverse fields Hy and
Ez then applying the boundary conditions (continuity of Ez and Hy) results in the
transverse equation (Gniadek, 2005):

kgf d ¼ uc þ us þmp; ð3Þ

where:

uc ¼ tan21 1

gf

1f

1cLh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3h2 1ÞðN 2 2 hNLÞ

ðhþ 1Þ

s !
; ð4Þ

and:

us ¼ tan21 1

gf

1f

1vs
gs 2 N

1xz

1xx

� �� �
; ð5Þ

gf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
f 2N 2

q
; gs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1vs 2N 2

p
; 1vs ¼ 1xx 2

12
xz

1xx
; h¼

1ðI Þ

1cL
; hNL ¼

21cLh
2

3h2 1
;

and m is an integer representing the mode order.
In case of homogenous sensing, the analyst is homogeneously distributed in the

covering media. The sensitivity Sh is defined as the rate of change of the modal
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effective index N of order m upon a change of the cover’s index (nc). We will assume
that the changes will appear only on the linear part of the cladding
dielectric-parameter 1c. Since nc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1cL þ 1NL

p
, then:

›N

›nc
¼ 2nc

›N

›1cL
: ð6Þ

Differentiating equation (3) with respect to 1cL:

kd
›gf

›1cL
¼

› tan21uc
� �
›1cL

þ
› tan21us
� �
›1cL

ð7Þ

To extract ›N/›1cL, then using equation (6), the sensitivity will be:

ShðNLÞ ¼
›N

›nc
ð8Þ

The second sensor is modeled by exchanging the cladding and the substrate. The same
above procedure is followed. The dispersion equation then reads:

kgf d ¼ uc þ us þmp; ð9Þ

where:

us ¼ tan21 1

gf

1f

1sLh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3h2 1
� �

N 2 2 hNL
� �

ðhþ 1Þ

s0
@

1
A; ð10Þ

and:

uc ¼ tan21 1

gf

1f

1vc
gc 2 N

1xz

1xx

� �� �
; ð11Þ

gf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
f 2N 2

q
; gc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1vc 2N 2

p
; 1vc ¼ 1xx 2

12
xz

1xx
; h ¼

1ðI Þ

1sL
; hNL ¼

21sLh
2

3h2 1
;

and m is an integer representing the mode order.
The homogeneous sensitivity is calculated by differentiating equation (9) with

respect to 1vc:

kd
dgf
d1vs

¼
d tan21uc
� �

d1vs
þ

d tan21us
� �

d1vs
ð12Þ

Then using the fact that nvc ¼
ffiffiffiffiffiffi
1vc

p
, the sensitivity for the sensor with magnetic

cladding will be:

ShðMOÞ ¼
›N

›nvc
¼ 2nvc

›N

›1vc
ð13Þ

This sensitivity can be related very easily to the Faraday rotation which is impeded in
the value of 1vc.

Integrated
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3. Numerical calculations and discussion
The numerical calculations have been performed using typical magnetooptical material
parameters. These parameters are 1xx ¼ 5.1, 1xz¼0.08 (Doorman et al., 1984). The value
of 1xz depends on the wavelength in addition to the Faraday rotation as explained in the
introduction. The wavelength l ¼ 1.15mm is chosen such that it gives a reasonable
large value of 1xz (Gniadek, 2005). In addition, l is close to the absorption band of
the iron-garnets, which leads to higher sensitivity of the sensor (Antonov et al., 1969). We
also consider different wavelength to study the effect of the change of wavelength on the
performance of the sensor. The additional wavelengths are chosen to be 1.5mm and
1.3mm. For the nonlinear material, the linear part of the dielectric index (1L) is chosen to
be equal to 4. The film parameters are chosen to be 1f ¼ 5.5 and mf ¼ 1. Only the
fundamental mode TM0 will be considered since it leads to highest sensitivity (Brioude
and Parriaux, 2000). The field is assumed to have an amplitude of 106V/m.

The resulting homogeneous sensitivity curves for the sensor with first structure Sh(NL)

as function of the waveguide film thickness is shown in Figure 2. Several general
characteristic may be observed. At the cutoff thickness, Sh(NL) starts at small values. This
is because the refractive index of the cladding is lower than the refractive index of the
substrate. In this limit, almost all the power of the propagating mode goes to the substrate
due to the large penetration depth. Consequently, the sensor mainly probes the substrate
side. In the other limit, far beyond the cutoff point, the effective waveguide thickness
approaches the film thickness, which means that all the power propagates in the film. In
this case, the sensitivity approaches zero. Between these two limits, there is a maximum in
the sensitivity curve, representing an optimum where a relatively large part of the total
power propagates in the covering medium. In Figure 2, we plot the sensitivity at different
nonlinearity measures. We noticed that the sensitivity increases as the nonlinearity
increases and is larger than when the cladding is linear with a value of 1NL ¼ 0.

Figure 2.
Sensitivity of the sensor
with structure of nonlinear
cladding, linear film,
and MO substrate
measured as function of
film thickness (d ) at
different values of 1NL
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In Figure 3 the sensitivity Sh(NL) is plotted as a function of the effective index of
refraction N. The figure shows that the sensitivity starts with small value at N ¼ 2.26
(this value of N occurs at the cutoff since it is equal to nvs ¼

ffiffiffiffiffiffi
1vs

p
). The sensitivity

approaches zero at the other end at N ¼ 2.345 which is equal to the guiding layer
refractive index. The maximum occurs in between these two values just above the
cutoff and depends only on the values of the nonlinearity.

Figure 4 shows the resulting homogeneous sensitivity for the second sensor Sh. (MO)

as a function of the waveguide thickness. The refractive index of the cover is larger
than that of the substrate. As a result, the longer tail of the evanescent field will be in
the covering medium. The penetration depth of the evanescent field at the cutoff
film thickness is infinite in the cladding. At this point, the sensitivity takes its
maximum because all the power propagates in the covering media. It is also noticeable
from Figure 4 that the effect of the nonlinearity is negligible on the homogeneous
sensitivity of the sensor with magnetic cladding.

Figure 5 shows the sensitivity Sh(MO) as a function of the effective index of
refraction N. The figure shows that the sensitivity goes to zero at 2.34, which is about
the guiding layer’s refractive index. The sensitivity increase as the value of N
approaches the cutoff value (this value of N occurs at nvc ¼

ffiffiffiffiffiffi
1vc

p
). At this point,

the sensitivity takes its maximum because all the power propagates in the covering
media. The nonlinearity almost does not affect the performance of the sensor.

The effect of different wavelength on the performance of both sensors is shown in
Figures 6 and 7. The wavelengths are chosen arbitrary to be equals to 1.5, 1.3, and
1.15mm. The sensitivity Sh(MO) strength has not been affected by the wavelength.
Figures 6 and 7 show that the sensitivity curve is shifted to the right as the wavelength
increase. That is the maximum sensitivity appears at different film thickness as l
changes. As l increases, the film thickness increases.

Figure 3.
Sensitivity of the sensor

with structure consisting
of a nonlinear cladding,
a linear film, and a MO
substrate measured as

function of the effective
refractive index (N) at
different values of 1NL
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4. Conclusion
The concept of an integrated sensor, which combines the magnetooptic and nonlinear
effect, was presented. The homogeneous sensitivities of the zero TM modes propagating
in dielectric film sandwiched between a magnetooptical layer chosen to be of iron garnet

Figure 4.
Sensitivity of the sensor
with structure consisting
of a MO cladding, a linear
film, and a nonlinear
substrate measured as
function of film thickness
(d ) at different
values of 1NL
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Figure 5.
Sensitivity of the sensor
with structure consisting
of a MO cladding, a linear
film, and a nonlinear
substrate measured as
function of effective index
of refraction (N) at
different values of 1NL

Se
ns

iti
vi

ty
 S

h(
M

O
)

N

eNL = 0
eNL = 0.5

eNL = 1

0.6

0.5

0.4

0.3

0.2

0.0
2.27 2.28 2.29 2.30 2.33 2.342.31 2.32

0.1

MMMS
8,1

38

D
ow

nl
oa

de
d 

by
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
 o

f 
M

un
ic

h 
U

ni
ve

rs
ity

 L
ib

ra
ry

 A
t 0

4:
13

 2
2 

Se
pt

em
be

r 
20

16
 (

PT
)



and nonlinear Kerr-like behaving layer is extensively studied. In this study,
we calculated the homogeneous sensitivity when the nonlinear material is chosen to
be the cladding and the magnetooptic material is the substrate. In this case, which might
be useful for biological measurements like detecting growth rates of the bacteria,

Figure 6.
Sensitivity of the sensor

with structure of nonlinear
cladding, linear film, and

MO substrate measured as
function of film thickness

(d ) at different values of l
and at 1NL ¼ 0.5
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Figure 7.
Sensitivity of the sensor

with structure consisting
of a MO cladding, a linear

film, and a nonlinear
substrate measured as

function of film thickness
(d ) at different l and

1NL ¼ 0.5
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we noticed that the sensitivity of the sensor increases with nonlinearity. This means that
nonlinearity may be considered for enhancing such types of sensors. On the other hand,
when we calculated the sensitivity of the zero TM modes for the sensor where the
cladding is magnetooptic and the substrate is nonlinear, we found that the nonlinearity
has a minor effect on the performance of the sensor. Such sensors are useful for example
in measuring Faraday rotation.

The homogeneous sensitivities of both sensors are calculated as a function of the
thickness of the waveguide. It is shown that the thickness of the guiding layer is a
critical parameter for the sensitivity of the optical sensor with the optimum thickness
being just above cutoff in case of the first structure and at the cutoff in the case of the
second structure.
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