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Future manufacturing systems need to be more flexible, to embrace tougher and constantly changing
market demands. They need to make better use of plant data, ideally utilizing all data from the en-
tire plant. Low-level data should be refined to real-time information for decision making, to facilitate
competitiveness through informed and timely decisions.

The Line Information System Architecture, LISA, is presented in this paper. It is an event-driven
architecture featuring loose coupling, a prototype-oriented information model, and formalized transfor-
mation services. LISA is designed to enable flexible factory integration and data utilization. The focus of
LISA is on integration of devices and services on all levels, simplifying hardware changes and integration
of new smart services as well as supporting continuous improvements on information visualization and
control. The architecture has been evaluated on both real industrial data and industrial demonstrators
and it is also being installed at a large automotive company.

This article is an extended and revised version of the paper presented at the 2015 IFAC Symposium
on Information Control in Manufacturing (INCOM 2015), (Theorin et al. 2015). The paper has been
restructured in regards to the order and title of the chapters, and additional information about the
integration between devices and services aspects have been added. The introduction and the general
structure of the paper now better highlight the contributions of the paper and the uniqueness of the
framework.

Keywords: automation, agile manufacturing, manufacturing information systems, service-oriented
manufacturing systems, event-driven architecture

1. Introduction

Future industrial manufacturing systems need to make better use of the data (Hill and Smith 2009;
Panetto and Molina 2008). Low-level data have to be transformed into useful information and smart
services need to be integrated to support decision making. In addition, future manufacturing systems
need to be productive, flexible, competitive, sustainable, secure, and safe. They have to be designed
to reduce waste of material, capital, energy, and media. Improved control, reconfigurability, optimiza-
tion, and human interaction in manufacturing processes is also important for future manufacturing
(Blanc, Demongodin, and Castagna 2008; Bi, Lang, and Wang 2008).

The challenge to manage data, transform it into knowledge, and make smart automated decisions,
has drawn a lot of attention during recent years. The main focus has been on the overall architecture,
for example in collaborations like Industry 4.0 (Industrie 4.0 Working Group 2013), Smart Manufac-
turing Leadership Coalition (Smart Manufacturing Leadership Coalition 2016), Internet of Things
(Atzori, Iera, and Morabito 2010), the Industrial Internet (Evans and Annunziata 2012), and cloud
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robotics and automation (Kehoe et al. 2015).
Industries and device manufacturers are, however, reluctant to implement these new technolo-

gies due to unclear possible benefits, lack of clear implementation details, and the seemingly large
investments required (Dawson 2014). An important driving force for adaptation may therefore be
the possibility to integrate a large variety of devices and new services into existing systems. Most
automotive companies already use advanced information systems (Dai et al. 2012). However, many
of them lack important aspects to simplify integration.

Plants often use a wide range of devices, based on different technologies from different eras.
Some devices originate from when the plant was built and devices have then been added as part
of continuous improvements. Retrofitting legacy devices is thus a particularly important aspect. It
must be possible to integrate them regardless of their capabilities or technology.

This paper presents the Line Information System Architecture, LISA, an innovative, yet simple
architecture and design pattern for rapid integration of smart services into existing factory infrastruc-
ture. LISA is an event- and service-based information system architecture that is used to integrate
devices and services, also called the Tweeting Factory (Lennartson et al. 2015). Simple messages
(tweets) from all kinds of devices are sent out and transformed into high-level knowledge that is
used by smart services for online monitoring, control, optimization, and reconfiguration (Theorin
et al. 2015).

Parts of the LISA architecture have been incorporated at one of our partners, an industrial auto-
motive industry, where thousands of devices like PLCs, robots, and scanners have been integrated
during the last five years at multiple plants. A large variety of services, from SMS messages for
Andon signals (process notifications) to the main MES system, have been connected. The architec-
ture has also been evaluated using historical data from another automotive industry partner. LISA
is able to handle layout and structural changes on the plant floor and allows a large diversity of
devices and applications. Furthermore, LISA simplifies changes and updates when calculating Key
Performance Indicators (KPIs), not only for new, but also for historical data. The importance of
using KPIs for manufacturing companies is pointed out in (Cao et al. 2015). Innovative services, like
energy optimization of robot motions, CNC-data aggregation, and Grafchart control have also been
implemented to prove the simplicity to integrate new services.

In Section 2, the concepts of some common architectures are introduced. In Section 3, LISA is
described, and in Section 4, selected sevices are explained. Finally, industrial use of LISA is described
in Section 5, and conclusions are presented in Section 6.

2. Architectures

Information and communication architectures have been proposed in various areas in manufacturing
research, for example, in planning (Umble, Haft, and Umble 2003), holonic manufacturing (Brussel
et al. 1998), control (Dai et al. 2012; Babiceanu, Chen, and Sturges 2004; McFarlanea et al. 2003),
service-oriented and cloud based architectures (Shena et al. 2007; Morariu, Borangiu, and Raileanu
2015), and agent systems (Leitao, Marik, and Vrba 2013).

These architectures require information about the real-time performance and behavior of the
manufacturing plant. However, few are focusing on how to connect the large variety of devices and
how to handle changes over time. Many companies have developed their own solutions, sometimes
based on international standards such as ISA95 (ISA 2009). The solutions are typically based on
Point-to-Point integration.

2.1 Point-to-Point Integration

When new functionality and systems are added, they need to be rapidly integrated with existing
systems. The traditional integration approach in manufacturing is to connect applications on a Point-

2



Level	4	 Business	Planning	&	Logis/cs	

Level	3	
Manufacturing	Opera/ons	Management	

Level	5	 Company	Management	

Level	1	

Level	2	
Batch	
Control	

Discrete	
Control	

Con/nuous	
Control	

Level	0	 The	actual	produc/on	process	

Figure 1. Functional hierarchy as defined by ISA95.

to-Point (PtP) basis using the client/server pattern. The pattern requires that the server and the
client know about each other. The number of connections in a fully connected network increases
quadratically with the number of applications. This is known as “spaghetti integration” and makes
the system rigid and hard to maintain (Boyd et al. 2008). Each time an application is added, all
other applications need to be updated to be able to interact with the new application.

It is common that applications can only communicate through proprietary or specific protocols,
and applications may require external message translators to communicate with each other. This is,
for example, the normal case for communication between Programmable Logic Controllers (PLCs)
from different vendors. Another challenge is communication between the different levels of ISA95,
see Fig. 1, known as vertical integration.

A common solution in industry is to use OPC to standardize how to access devices over a network.
The main problem with only using OPC is that it tends to become a PtP solution, where for example
the PLC variable structure must be known in many places. To handle this, many companies include
a lot of logic in the devices to aggregate and transform data that is accessed over OPC.

The PtP approach poorly supports business requirements (Ribeiro, Barata, and Mendes 2008).
Yet, industry has been slow to migrate to new approaches, mainly due to the cost of replacing
their established legacy systems based on PtP (Boyd et al. 2008). However, migration has been
significantly accelerated by the advent of Service-Oriented Architectures (SOAs) (He and Xu 2014).

2.2 Service-Oriented Architecture

SOA is a distributed software architecture where self-contained applications expose themselves as
services, which other applications can connect to and use. To reach its full potential, SOA applications
should be self-describing, discoverable, and platform- and language-independent. This leads to loose
coupling and high flexibility.

SOA has recently received much attention in both academia and industry. The adoption of SOA
in a company typically starts as an IT initiative to improve infrastructure efficiency and can then
mature into optimized use for business purposes (Welke, Hirschheim, and Schwarz 2011). SOA is
widely used on the business level and is expected to revolutionize manufacturing in a similar fashion
(Li and Madnick 2015; Mueller et al. 2010).

The further down the hierarchy in Fig. 1, the shorter the task time frame. On level 1 it is common
with hard real-time requirements, with deadlines in the order of milliseconds. The devices which
execute on level 1 often have strictly limited memory and computational power. There is a trade-
off between flexibility and real-time performance (Theiss, Vasyutynskyy, and Kabitzsch 2009) and
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thus, the further down SOA is wanted, the more performant (and hence less flexible) it needs to
be. Most SOA tools are tailored for business processes, which do not have strict timing or resource
requirements. Thus, these tools cannot be used for manufacturing processes. However, there have
been initiatives to bring SOA to level 1 and 2 by customizing the web service technology for resource
constrained devices (Cucinotta et al. 2009; Dai et al. 2014).

2.3 Event-Driven Architecture

Even though SOA conceptually offers loose coupling and is intended to be distributed, service or-
chestration is typically done centrally, with the orchestrator taking control of the involved services.
SOA 2.0, also known as advanced SOA or event-driven SOA, is the next generation of SOA that
focuses on events, inspired by Event-Driven Architecture (EDA). SOA 2.0 enables service choreog-
raphy, where each service reacts to published events on its own, rather than being requested to do
so by a central orchestrator.

EDA is extremely loosely coupled and highly distributed by design. An event creator only needs
to know that the event occurred, it does not need to know anything about who is interested in the
event or how it will be processed (Michelson 2006). Event data should be immutable since it is then
always (thread-)safe to send the events within and between applications. With EDA, applications
turn from synchronized and blocking to asynchronous and non-blocking (Kuhn and Allen 2016).

3. Line Information System Architecture

LISA is an EDA that provides loose coupling of applications and devices, as well as a flexible
message structure for integration. The core components of LISA are the message bus, the LISA
message format, and communication and service endpoints. They enable creation and transformation
of events into usable information in a loosely coupled way, and will be described in the following
sections.

3.1 LISA Events

A common approach for information systems is an object-oriented structure for event types and
events (Cheng et al. 1999). LISA on the other hand uses a prototype-based approach (Taivalsaari
and Moore 2001). Prototypal inheritance, unlike object-oriented inheritance, is achieved by cloning
and refining an object, here an event. This makes event creation, identification, and filtering less
rigid, as there is no strict class hierarchy enforcing class relations.

When something happens, for example, when a machine changes state, an event with information
about the change is sent. A LISA event is defined as e = 〈id, t, AV 〉, where id is a unique event
identifier, t is a timestamp, and AV = {attr1 : value1, . . . , attrk : valuek} is a set of ordered attribute–
value pairs describing the event.

Definition 1 (Attribute pattern). An attribute pattern ap = 〈AVap, Aap〉 is a tuple including a set
of ordered attribute–value pairs AVap and a set of attributes Aap. If e1 = 〈id1, t1, AV 1〉 such that
AV ap ⊆ AV 1 and Aap ⊆ A1, where A1 denotes all the attributes found in AV1, then e1 is matched
by ap. This is denoted e1 ↼ ap. �

An attribute pattern is used to match, identify, filter, and create events. In this article, a
pattern is denoted, for example, ap = {attr1 : value1, attr2 : value2, attr3 : _}, where AVap =
{attr1 : value1, attr2 : value2} and Aap = {attr3}. When the value is replaced with “_”, that at-
tribute can have any value. Values can also be a list of ordered attribute–value pairs or a list of
values. Hence, hierarchical data structures can be represented.
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Figure 2. An example workstation.

Table 1. Attribute patterns used for creating and matching the
example events.

O↓1 name: O↓1 O↑3 name: O↑3
location: [Line1, W S1] location: [Line1, W S1]
resources: [Op1, P os1] resources: [M1, P os1]
rfid: _ rfid: _

O↑2 name: O↑2 Ms
1 name: Ms

1
location: [Line1, W S1] location: [Line1, W S1]
resources: [M1, P os1] status:

{mode: _,
O↓2 name: O↓2 currentTool: _}

location: [Line1, W S1] consumption:
resources: [M1, P os1] {energy: _,
consumption: duration: _}
{energy: _,
duration: _}

Patterns can be defined freely by the user and are not enforced by LISA. However, the events
receivers will match events based on patterns, which makes the definitions important. These patterns
cannot be standardized for the lower levels of ISA95 since each plant has a unique system structure
with a large diversity of devices.

Example

Consider the workstation WS1 in Fig. 2. It consists of an operator Op1, a product instance P1
with product identifier p1, a position Pos1 and a machine M1. The workstation can perform three
operations: O1 – place a product at Pos1, O2 – use M1 to process the product at Pos1, and O3 –
move the product at Pos1 to the next workstation. Each operation is executed once per product
instance and can be traced by start and stop events. Often, there are events which are not observable.
Here, only O↓1pi

, O↑2pi
, O↓2pi

, and O↑3pi
are observable, where O↑kpi

and O↓kpi
denote the start and stop

events, respectively. These events are fired once per product instance Pi.
Events do not have to be related to the execution of an operation, for example, resource alarms,

running mode changes, or the start of a lunch break. Here, the machine fires an M s
1i event whenever

the machine has changed execution mode (operating, idle, or down) and the events are based on the
attribute patterns shown in Table 1. �

3.2 Message Bus

It is important with a standardized, structured, and generic concept to describe and implement
loosely coupled software applications that are heterogeneous, disparate, and deployed and run in-
dependently. Hence, LISA uses an Enterprise Service Bus (ESB), a component that takes care of
message routing between distributed applications. To avoid PtP connections and ensure loose cou-
pling, the ESB should support the following Enterprise Integration Patterns (EIPs) (Hohpe and
Woolf 2003):
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Figure 3. Overview of the LISA communication architecture.

• Message: The information or data are packaged into a message that can be transmitted on a
message bus.
• Messaging: Messages are transferred immediately, frequently, reliably, and asynchronously us-

ing customizable formats. Messaging is event-based: when there is a new message, it is sent to
the message bus.
• Publish-subscribe channel : When a message is sent on a publish-subscribe channel, a copy of

the message is delivered to each channel subscriber.
• Message filter : If the content of an incoming message does not match the criteria specified by

the message filter, the message is discarded. This pattern allows each application to further
filter incoming messages.

In the LISA prototype Apache ActiveMQ is used, but it could be replaced by any ESB supporting
these patterns.

Fig. 3 shows an overview of the communication architecture of LISA. The connection of applica-
tions (devices, services, external applications) to the ESB is through endpoints, which are responsible
for 1) adapting the events and information according to the LISA message format, 2) publishing LISA
messages on the corresponding channels on the ESB, and 3) filtering incoming LISA messages from
the ESB. If an application is modified (for example, due to hardware replacement, variable renaming,
or new measurements), only its endpoint needs to be changed. No other endpoints or applications
need to be updated.

3.3 LISA Message Format

The LISA message format is designed to be simple and to enforce as little structure as possible.
It consists of a header and a body. The header contains information related to message sending
and routing. The body is an ordered key–value map between attributes (the keys) and their values.
Values are usually of primitive data types, but can also be lists or maps. Hence, arbitrary hierarchical
structures can be built and sent in LISA messages. Two attributes are mandatory in the body, namely
an event id and an event timestamp, otherwise there are no constraints.

In the LISA prototype JSON is used as data format, but it could be replaced by any data format
where maps and lists can be expressed.

Each plant has a unique system structure with different types of devices and LISA should be able
integrate any device on level 1 and 2. LISA makes this possible by letting the users define the events.
This might be considered a drawback, but it means that it is easier to change or extend events,
which indeed makes LISA flexible.

LISA messages sent on the ESB are immutable. To refine a LISA message, a new LISA message
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Figure 4. Events fired during one work cycle. Note that the first and second Ms
1 are different events with the same name.

They have different id, t, and data.

is created and sent to the ESB. The new message will have the same id and timestamp, but the
content of the message may otherwise change arbitrarily.

3.4 Communication Endpoints

The connection between applications (communication devices, services, external applications) over
the ESB is done through communication endpoints. Many devices have limited capabilities and
knowledge and they communicate with different device specific protocols and interfaces. To replace
all production equipment with new devices which all support the same specific protocol and interface
is infeasible. Instead, the diversity of devices has been embraced and in LISA, devices are integrated
with communication endpoints.

A communication endpoint is an adapter between the ESB and a device. Device event data are
converted to the LISA message format and are published on ESB channels. Similarly, a commu-
nication endpoint filters events and converts and communicates event data to the device. With a
communication endpoint, practically any device can be integrated into LISA. If an application is
modified (for example, due to hardware replacement, variable renaming, or new sensors), only the
corresponding communication endpoint needs to be updated. Devices could also send data directly
on the ESB if they support that.

The messages from devices are usually low level, for example, a few bytes where each bit represents
some variable. These bytes should be converted to structured data by transformation services. A key
pattern in LISA is to perform data transformation logic outside the devices itself. If new data is
needed, considerably more work is required to update all PLCs and robots in a plant than to deploy
an updated service.

Example continued

There are three communication endpoints in the workstation: one connected to an RFID reader, one
to M1, and one to a PLC. The events fired during one work cycle are shown in Fig. 4. Event O↓1 is
fired by the RFID reader when it senses that a product is placed at Pos1. The first M s

1 event is fired
by M1 when changing from idle to operating mode. Then, the PLC fires the start of the processing
operation, O↑2. When the processing is completed, the PLC fires O↓2 and M1 fires another event, M s

1 ,
telling that it is in idle mode. The work cycle is completed with O↑3, which fires when the RFID
reader senses that the product is removed. �

3.5 Service Endpoints

When calculating KPIs and controlling a plant with an MES system, most industries have similar
structures. Hence, the low-level events should be transformed and updated to a more standardized
structure with attribute names and semantics based on international standards like ISO 22400 (ISO
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2014). This is managed by the service endpoints.
One challenge is to manage all the different devices. Many devices know little about the manufac-

turing. In the workstation example, only the RFID reader knows which product is at the workstation,
or rather which product identifier. To calculate various KPIs, it is therefore necessary to transform,
update, and aggregate events.

LISA classifies three basic types of transformations: Fill, Map, and Fold. Fill and Map add addi-
tional data to events and Fold transforms event sequences into new events.

Definition 2 (Fill). A Fill transformation transforms an event e = 〈id, t, AV 〉 by appending a set
of attribute–value pairs, that is, 〈id, t, AV ′〉 = Fill(e), where AV ⊂ AV ′. �

Fill transformations only use static data. If applied to the same event, the result is always the
same. A common use case is to add product identity and type based on an RFID tag, or to add
information about the original event sender.

Often, an event needs information which depend on the current system state. If we study a system
as a DES, a state can be identified based on an initial state and a sequence of events (Cassandras and
Lafortune 2008). This is also true in the LISA architecture. Let Σ∗ be the set of all finite sequences
of events over the set of all LISA events Σ. Then, given a finite sequence s ∈ Σ∗ ordered by the
timestamp, the state q ∈ Q of the system is defined by q = δ(q0, s), where q0 is the initial state of the
system and δ is the transition function of the system, defined as δ : Q×Σ∗ → Q : (q0, s) 7→ δ(q0, s).

The state of a specific part of the system R, such as a product or a resource, can also be identified
by an event sequence. If we define R using an attribute pattern apR, then the current state of R
is qR = δ(q0

R, sR), where only events that match apR are included in the sequence sR. The Map
transformation permits to refine an event according to the current system state.

Definition 3 (Map). A Map transformation transforms an event e = 〈id, t, AV 〉 by appending a
set of new attribute–value pairs based on the current state q, that is, 〈id, t, AV ′〉 = Map(e, q), where
AV ⊂ AV ′. �

Fill and Map can be used to transform events in multiple steps, to simplify the implementation
and to increase the flexibility. However, they do not change the unique identifier id or the timestamp
t of the event. The transformation history and the event version could be stored as attributes to
make it easier to trace the transformation chain.

Definition 4 (Fold). A Fold transformation is a function that transforms a finite sequence of events,
s ∈ Σ∗, into a single new event, e, that is, e = Fold(s). �

Fold can be used to bundle a set of events. It can also implement advanced event pattern iden-
tification languages like Complex Event Processing (CEP) (Luckham 2002) or real-time languages
(Perez et al. 2014). CEP formalizes how patterns and knowledge are identified from a flow of low-level
events, which results in high-level events (Cugola and Margara 2012).

Example continued

A Fill transformation updates RFID reader events with product identifier and product type at-
tributes, that is, O′↓1pi

= ProductF ill(O↓1pi
). A database that stores RFID tag numbers and their

corresponding product identifiers and product types is used.
A Map transformation adds information about which product instance is at the workstation. This

is known by listening to O′↓1pi
events.

One Fold transformation tracks when a product first enters the system and when it leaves, resulting
in an event with the lead time of each product instance. Another Fold transformation tracks all
operation events and combines start and stop events into an operation event which can, for example,
include durations and consumptions. There is also a Fold transformation that aggregates the machine
events, for each hour and for each day, to an event about operating behavior and energy consumption.
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In summary, the following transformations are used:

• e′ = ProductF ill(e). The product id and product type are added to events, where e ↼
{rfid, location} and e′ ↼ {rfid, location, productID, productType}.
• e′ = LastPositionF ill(e). If a location is the last position for this product, it is added to the

event. Here e ↼ {location, productID : plast, productType} and e′ ↼ {lastPosition : true}.
Observe that the transformation keeps all attributes, it is only the added key-value pair that
is shown.
• e′ = ProductMap(e, qL) is applied to events e ↼ {location, productID, productType}, that is,

each location is mapped to the product located there (stored in the qL states).
• productMessage = ProductFold({e ∈ s|e ↼ {productID : pi}}). Collects events related to

a specific product identifier pi and, after the last event, sends a product message. The mes-
sage includes the time of the first and last events, the sequence of visited positions, and the
aggregated operation energy consumption.
• operationMessage = OperationFold(ei ∈ {O↑i , O

↓
i }). Collects operation events, Oi, and sends

operation messages.
• resourceMessage = ResourceFold({∀e ∈ s|e ↼ {resource : rid}}). Collects events that

match a specific resource rid and sends a status message every hour and every 24 hours. �

3.6 LISA Flexibility

Example continued

The line is extended with two more identical workstations, WS2 and WS3. O3 now means moving
the product in WS1 to WS2 and after the processing in M2, the product is moved to WS3 (O5). The
complete line, Line1, includes four transport operations (O1, O3, O5, O7), three processing operations
(O2, O4, O6), and three machines that send events.

When the new workstations are connected to LISA, the messages will include the new layout
without changing the service endpoints. For example, productMessage will include events from the
added workstations, including information about the longer lead time and the new processing steps.
Also, ResourceFold will automatically detect the new machines and start to send resource messages
for them. Since these messages follow a structure understood by the upper level information receivers,
these upper services do not have to change either. �

Absence of PtP communication as well as a multitude of event structures and event generators
result in loose coupling between information levels. Using Fill, Map, and Fold transformations pro-
vides increased flexibility. The example may seem trivial, but this flexibility does typically not exist
for automotive manufacturers. Often, a PtP communication approach is used and the upper level
systems require detailed understanding about current layout, making the system layout rigid.

3.7 Persistence

When an application failure occurs, for example a random application crash, the application should
be able to recover gracefully and should behave the same as if it had not failed. Ideally, other
applications should not be able to tell if it had crashed or not. Of course, the timeliness will be
affected, but the events generated by the crashed application should not be affected.

If all events are persisted, they can be replayed in the restarted application to make it reach the
same state as when it crashed. The application can then proceed from there and produce the same
events as if it had not crashed. Replay performance can be improved by occasionally persisting a
state snapshot, which limits how much history has to be replayed. For practical reasons, there should
be logic to avoid event duplicates during replay.

To store the whole history of events with the purpose to persist an application’s state is called
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event sourcing (Kuhn and Allen 2016). Compared to persisting the state itself, there are some notable
differences. With event sourcing, the exact same application behavior can be replayed and analyzed
in detail. For example, if an application is found to be in an incorrect state it is possible to step
through the replay of events to find out which event processing introduced the error. It might even
be possible to go back and correct some such errors retroactively.

Another advantage of event sourcing is that it is possible to apply the event history to new
applications. For example, if an application that calculates a new KPI is added, it might be possible
to calculate that KPI retroactively for the whole history. Since LISA is based on event sourcing, with
all events stored in a journal (Kuc and Rogozinski 2013), it is possible to change and add services
and execute them on historical data.

4. Integration of Services Into LISA

Due to its distributed nature, it is simple to integrate new services into LISA. New data can be
identified in various devices and extracted via an endpoint. In many cases this can be done without
changing the low level device code. In this section, KPI calculation services, energy optimization
services, CNC machining data services, and control services are presented. These services have been
evaluated either in a demonstrator at a university or in a real industrial situation.

4.1 KPI Services

LISA does not enforce calculation of specific KPIs or require that the user follows a specific standard.
However, to allow the user of LISA to, in a flexible way, define and calculate KPIs on current and
historical data, it is important to use well-defined attributes and values.

Example continued

Product lead time, TC , is the time between the initiation of operating a product and its final delivery.
Here, TC is calculated for a product Pi with the product identifier pi using the time difference between
the first and the last event. This is the time between placing the product Pi at Pos1 and removing
it from WS3.

The lead time is calculated in a ProductFold and is then added to the product message that
the transformation sends out. The events have been transformed in a number of steps before the
ProductFold creates the product message.

The event O↓7 is part of the following transformations:

• O↓7prod ↼ {productID : pi} = ProductF ill(O↓7)
• O↓7last ↼ {lastPosition : true} = ProductF ill(O↓7prod)
• Producti ↼ {leadT ime, ...} = ProductFold(O7last)

Downtime, TD, is the time that a machine Mi is unavailable for operation and is defined as the
sum of times between event pairs M s

i that change mode to and from down. This is calculated in the
ResourceFold transformation. With the same approach, idle time and operation time are calculated,
and added to the resource messages.

The duration a particular product Pi stays at a certain position Posi is calculated as the time
difference between Pi being put on Posi and removed from it. Aggregating time durations of all
positions in the production line for a single product enables detailed visualization and analysis of
time intensive operations, see Fig. 5(b).

These KPIs are calculated by services and added to the messages. Some examples are shown in
Table 2. KPIs for product lead time, availability, and product position times are quantified and
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Table 2. KPI attributes for the example events.

O2 M1 status productMessage . . .

startTime operationTime productID . . .
stopTime downtime Operations: [. . . ]
productID idleTime Consumption: [. . . ]
resources Consumption: [. . . ] startTime
consumption Performance: [. . . ] stopTime
. . . . . . . . .

(a) Online KPIs for machine availability.

(b) Online KPIs for product lead time (top) and time spent at each position for a single product
(bottom).

Figure 5. KPI visualization

visualized continuously for the LISA demonstrator, see Fig. 5(a) and Fig. 5(b). �

4.2 Energy Optimization Services

The number of robots connected directly to a network is constantly increasing. They can send
detailed information about their status, motion trajectories, and operation timing. This enables new
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and innovative analysis and support.
Currently, a demonstrator is being developed that shows automatic visualization of time and

sequence diagrams of the robot work cycles, advanced monitoring of the welding process, error
detection and troubleshooting support, and online energy optimization and prediction services (Riazi
et al. 2015; Lennartson et al. 2015). The algorithm for energy optimization has been developed in
the EU-project AREUS (Pellicciari et al. 2015). The algorithm can reduce the energy consumption
of the robots by up to 30% (Vidarsson 2015). The input to the optimization is created by retrieving
and transforming events from the robots sent via LISA. The optimization is based on the notion of
hybrid operations. It is used as a common notion for activities in a factory, related to both products,
manufacturing processes, and automation solutions. The optimization of a robot station using LISA
is performed in the following steps:

• All devices send events during execution.
• The events are transformed and aggregated into hybrid operations.
• The hybrid operations are optimized.
• The new operations are sent to the robots and the PLC.
• As long as any of the robots’ path is not manually changed, the station runs the optimized

operations.

The framework for multi-robot scheduling and optimization focusing on energy consumption is
implemented in the tool Sequence Planner (Bengtsson and Lennartson 2014; Lennartson et al. 2010).
Sequence Planner is an operation and task-planning tool that enables innovative modeling and algo-
rithms for sequence planning and coordination. Sequence Planner gathers all the hybrid operations
from the message bus, identifies their sequential relations, and optimizes the robot trajectories. The
result is sent back to the robots via LISA. When minimizing the energy of a robot station, Sequence
Planner uses the nonlinear solver Ipopt (Wächter and Biegler 2006).

4.3 CNC Machining Services

Based on LISA as well as state-of-the-art technology, in for instance Industrie 4.0 (Industrie 4.0
Working Group 2013; Hermann, Pentek, and Otto 2015), and STEP-NC (ISO 2007; Lanab, Liua,
and Zhanga 2008), the new Tweeting machine project develops Internet of Things functionality to
provide rich information from CNC machining. The availability of such rich information will enable
increased productivity and flexibility by improved or new functionality for design, process planning,
tooling, operations, and quality control that can be realized and directly implemented in industrial
applications.

4.4 Control Services

Control using LISA has been implemented on a demonstrator system consisting of a real PLC
connected to a physical system, a CNC machine, JGrachart (described below), and an order system,
each connected through a separate communication endpoint. The PLC system is connected via OPC,
the CNC machine is connected via MTConnect, JGrafchart is connected via SocketIO, and the order
system is just a mockup.

Grafchart is a graphical programming language which extends Sequential Function Charts (SFC),
the IEC 61131-3 (IEC 2013) PLC standard language for sequential control (Johnsson 1999; Theorin
2014). SFC is supported by most industrial automation systems and is widely used in industrial
automation. Grafchart has the same graphical syntax as SFC, with steps and transitions, and adds
high-level features for hierarchical structuring, reusable procedures, and exception handling.

JGrafchart is a freely available Grafchart development environment, which supports service or-
chestration with web service technology (DPWS) (Theorin, Ollinger, and Johnsson 2013) and OPC
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Figure 6. The new Tweeting machine

Unified Architecture (Theorin, Hagsund, and Johnsson 2014). Unlike these technologies, event-driven
control does not provide any built-in error handling to detect, for example, invalid requests. Hence,
to know if a request was successful, an acknowledgment event is required. In the PLC communication
endpoint, all writable variables generate an event when they change, which ensures acknowledgments
for write requests.

Both JGrafchart applications and the IEC 61131-3 applications in the PLC are executed peri-
odically. If events are allowed to arrive at any rate to these applications, pulse events might be
missed. To avoid this, the JGrafchart and PLC communication endpoints throttle the delivery rate
of incoming messages according to the application execution rate.

An overview of production of an order in the demonstrator is shown in Fig. 7. A production
request from the order system spawns a procedure call in JGrafchart. The request also triggers the
CNC machine to start producing. When the CNCing completes, the product enters the physical
system controlled by the PLC. The product is then completed through a collaboration between the
PLC, which handles the real-time control, and JGrafchart, which handles high-level coordination
and control. JGrafchart reacts to variable change events, such as new sensor values, from the PLC
and sends control requests events to the PLC. When the production is completed, an event with the
production log is sent.

A discussion about manufacturing views in relation to LISA is available in (Theorin et al. 2015).

5. Industrial Use

The LISA architecture and patterns have been developed by industrial and academic partners with
the objective to be industrially applicable. It is inspired by international standards and established
off-the-shelf solutions. One core aim of LISA is that it should be usable for any device and application.

One automotive industry partner has partly implemented their own version of LISA and is using
it for both data acquisition and control in a new body-in-white plant. The LISA implmentation has
resulted in dramatic time savings when upgrading the production system or when introducing new
products. Most devices are now connected to the ESB and send out events when their state changes.
The main differences in this industrial implementation compared to LISA are that XML is applied
as a message format instead of JSON and that a commercial message bus is used instead of Apache
ActiveMQ. The robots are directly connected to LISA, which makes it possible to monitor cycle
times for robot stations and visualize the results in diagrams in real-time. Previously, a workstation
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sent predefined KPIs for each work cycle. With LISA, all communication is event-based on a finer
granularity, and devices like PLCs, robots, product carriers, and operators send and receive low-level
events which are then aggregated to get the desired KPIs.

The KPI calculation service has also been evaluated on historical data from another automotive
industry partner. A large database with production events has been played back into LISA to evaluate
services as well as performance. The data did not conform to the LISA message structure, but due
to the flexible nature of LISA, events could be identified and generated.

The energy optimization services are currently being evaluated at yet another automotive industry
company where a real robot station is being optimized.

Since LISA is programming language independent, it is straightforward to integrate, for example,
optimizers implemented in C with services implemented in Scala. This is a significant advantage for
software development and maintenance.

6. Conclusions

LISA has been shown to be applicable for discrete manufacturing, for example in the automotive
industry, where processes are running asynchronously and the product flow is non-linear. To val-
idate interoperability, various industrial devices, software, and programming languages have been
used. Several industrial partners have been involved and have provided valuable feedback on the
applicability of the research and permitted evaluation of the architecture. As a result, LISA is an
event-based service-oriented architecture which offers flexibility and scalability both for control of

Order CNC JGrafchartPLC ESB

new order

CNC started

CNC finished

variable changed

write variable

variable changed

production log

Figure 7. Production of an order in the demonstrator.
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low-level applications and aggregation of higher level information, such as KPIs.
For the demonstrator, integration with LISA was straightforward. The advantages of the extreme

loose coupling of EDA were also experienced. In particular, applications can be developed and tested
in isolation, as other applications are easy to replace by mockups which simply produce events.

Improved visualization for decision support and integration of online optimization are future work.
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