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ABSTRACT

Motivation: Diseases and adverse drug reactions are frequently

caused by disruptions in gene functionality. Gaining insight into the

global system properties governing the relationships between geno-

type and phenotype is thus crucial to understand and interfere with

perturbations in complex organisms such as diseases states.

Results: We present a systematic analysis of phenotypic information

of 5047 perturbations of single genes in mice, 4766 human diseases

and 1666 drugs that examines the relationships between different

gene properties and the phenotypic impact at the organ system

level in mammalian organisms. We observe that while single gene

perturbations and alterations of nonessential, tissue-specific genes

or those with low betweenness centrality in protein–protein interaction

networks often show organ-specific effects, multiple gene alterations

resulting e.g. from complex disorders and drug treatments have a

more widespread impact. Interestingly, certain cellular localizations

are distinctly associated to systemic effects in monogenic disease

genes and mouse gene perturbations, such as the lumen of intracel-

lular organelles and transcription factor complexes, respectively. In

summary, we show that the broadness of the phenotypic effect is

clearly related to certain gene properties and is an indicator of the

severity of perturbations. This work contributes to the understanding

of gene properties influencing the systemic effects of diseases and

drugs.
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1 INTRODUCTION

Phenotypic traits are observable characteristic features of organ-

isms reflecting the architecture of their biological systems.

Deciphering genetic factors as well as system properties asso-

ciated to phenotypic traits is still a central problem in biology,

and enormous efforts have been devoted to solve it. This know-

ledge is fundamental for the understanding and interference with

a disturbed biological system state such as a disease.

The recent explosion of ‘omics’ data has accelerated the dis-

covery of novel relationships between genotypes and complex

phenotypes such as multifactorial disorders and drug-induced

perturbations where multiple and often unknown genes and

environmental factors are involved. For example, genome-wide

association studies in human populations are expanding the rep-

ertoire of genes linked to diseases (Visscher et al., 2012), and the

systematic analyses of adverse effects of drugs and their molecu-

lar targets are elucidating novel mechanisms of drug action

(Campillos, et al., 2008; Kuhn, et al., 2013).

Systematic single gene perturbation screenings in bacteria,

yeast and mice have illustrated that the phenotypic responses

occurring after single gene perturbations are greatly variable.

While perturbations of essential genes cause lethal effects,

other gene alterations show undetectable, subtle or environ-

ment-dependent phenotypes (Hillenmeyer et al., 2008; Nichols

et al., 2011; White et al., 2013). Despite this observed phenotypic

diversity, the majority of system-level analyses of perturbations

has centered on gene properties linked to lethal phenotypes.

For example, several topological properties of genes in pro-

tein–protein interaction networks such as betweenness centrality

(hereafter named betweenness) have been associated with lethal-

ity (Goh et al., 2007; Jeong et al., 2001). Moreover, tissue gene

expression and cellular localization of genes have also been

related to lethality of perturbations in multicellular organisms

(Goh et al., 2007; Liao and Zhang, 2008). In particular, genes

expressed in multiple tissues tend to be essential both in human

and mouse (Goh et al., 2007). In contrast, gene products loca-

lized in vacuoles have been found enriched among human essen-

tial genes whose orthologous genes are not essential in mouse

(Liao and Zhang, 2008). Although the knowledge about the as-

sociation of gene properties with lethality is relevant to under-

stand severe perturbations such as lethal monogenic disorders,

novel conceptual approaches are needed to analyze system prop-

erties of non-lethal perturbations frequently observed in humans

such as complex disorders or drug treatment. In this regard, the

number of side effects of a drug has been used as a measurement

of the severity of drug response and has been studied in relation

to the number of protein targets and to the essentiality and cen-

trality of drug targets in human protein–protein interaction net-

works. However, this measurement does not take into account

the diversity of impaired organ systems. For example, a drug

exhibiting many side effects related to the same organ system

would be considered as being as severe as a drug affecting
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many different organ systems with the same number of side ef-

fects. Consequently, a measurement that considers the damage

on the different organ systems will represent the impact of per-

turbations in the whole organism in a more realistic manner.

To quantify the broadness of phenotypic effects across mamma-

lian organ systems, we define the ‘organ system heterogeneity

[System Organ Class (SOC) heterogeneity]’ measurement to ana-

lyze the influence of gene properties on the heterogeneity of

organ system damage. For that, we performed a systematic ana-

lysis of the phenotypic impact of three perturbation scenarios,

namely human drug treatment, human diseases and functional

disruption of single genes in mice on 18 mammalian organ sys-

tems. For the three types of perturbations, we analyzed and

compared the influence of the number of altered genes, tissue

gene expression, betweenness and cellular localization of gene

products on the overall organ system damage. We observed an

expanded organ system heterogeneity for perturbations altering

multiple genes, for alterations of single genes expressed in mul-

tiple tissues and for genes with high betweenness. We also find

differences in the cellular localizations of proteins that are asso-

ciated to a broad organ system heterogeneity in perturbations of

mouse genes and human monogenic diseases, showing the vari-

ability in the molecular mechanisms leading to systemic effects

for these perturbations. This analysis contributes to the elucida-

tion of the gene properties influencing the organ system pheno-

typic effects of diseases and drugs.

2 MATERIAL AND METHODS

2.1 Phenotypic data

We compiled a phenotypic thesaurus from the Unified Medical Language

System (UMLS) Metathesaurus based on the widely applied medical

MedDRA ontology (Medical Dictionary for Regulatory Activities,

Version 13.0, 2010) in a similar fashion done for the COSTART-based

dictionary for the creation of the SIDER database (Kuhn et al., 2010a).

This thesaurus was then used to extract side effect data from documents

such as drug labels and monographs published by the U.S. Food and

Drug Administration (FDA), the Medicines and Healthcare products

Regulatory Agency (UK), BC Cancer Agency (Canada), MedEffect

(only clinical report data, Canada) and the European Medicines

Agency (EMA). In an analogous manner, disease signs and symptoms

were collected from the clinical synopses in Online Mendelian Inheritance

in Man (OMIM) as well as from disease-specific documents from

CureResearch.com, the Merck Manual (home and professional edition)

and the A.D.A.M. Medical Encyclopedia (content published in

MedlinePlus). To extract phenotypic information from single gene per-

turbations in mice, we used gene–phenotype annotations provided by

Mouse Genome Informatics (MGI; Blake et al., 2009), where the pheno-

typic descriptors are organized in the mammalian phenotype ontology

(MPO; Smith et al., 2005). The terms of the MPO (from the file

VOC_MammalianPhenotype.rpt, April 2012) were mapped to the

UMLS with the help of MetaMap (http://mmtx.nlm.nih.gov). This ap-

plication from the National Library of Medicine maps biomedical text to

the UMLS Metathesaurus using natural language processing. We manu-

ally curated the high scoring matches to ensure high-quality mappings

between MPO and the UMLS Metathesaurus. Finally, the most specific

MedDRA terms associated to the UMLS Metathesaurus concepts anno-

tated to each mouse gene, disease and drug comprise its final set of

phenotypic features. Having all phenotypic features annotated to

MedDRA enabled us to compare the three types of data sources system-

atically. Moreover, we could use the hierarchical structure of the ontology

and analyze the phenotypic annotations on different levels of specificity

like the most general level, the SOCs. Of the 26 SOCs present in

MedDRA, we manually selected a subset of 18 listed in Figure 1 that

can be directly linked to organ systems. In total, we collected phenotypic

information for 4766 diseases, 1666 drugs and 5047 mouse genes.

2.2 Disease thesaurus

We collected all UMLS Metathesaurus (US National Library of

Medicine, 2011) concepts classified as pathological function that were

linked to Medical Subject Headings (2011), OMIMVR (2011) or

International Classification of Diseases, Ninth Revision, Clinical

Modification (2010), and included all English synonyms provided by all

freely accessible vocabularies included in the Metathesaurus.

2.3 Drug thesaurus

Our drug thesaurus is based on chemical synonyms provided by STITCH

2 (Kuhn et al., 2010b) and has been extended with information from

Pubchem, RxNorm (U.S. National Library of Medicine, 2011) and

KEGG as well as with the active ingredient lists provided by the

Anatomical Therapeutic Chemical classification system, the electronic

Medicines Compendium (www.medicines.org.uk/emc/), EMA and FDA.

2.4 Disease genes and drug targets

Information on disease genes were taken from DisGeNET (Bauer-

Mehren, et al., 2010; Bauer-Mehren, et al., 2011). We only considered

data from following curated sources: UniProt (Apweiler et al., 2004),

Genetic Association Database (GAD; Becker et al., 2004), OMIM

(Hamosh et al., 2005) or Comparative Toxicogenomics Database

(CTD; Mattingly et al., 2006). Overall, we collected 9277 disease–gene

associations between 2807 diseases and 3376 genes, where 2096 diseases

are linked to only one gene. For 1266 of the diseases associated to only

one gene we have symptom and tissue expression information available.

For drugs, we extracted targets from the STITCH 3 database that have a

confidence score40.7. Moreover, we excluded indirect associations re-

sulting in 1654 different targets for 1636 drugs.

2.5 SOC heterogeneity

In this work, we analyzed phenotypic traits at the level of organ systems

as represented by MedDRA’s SOCs. As a measurement of the organ

system heterogeneity of a drug, mouse gene or disease, we calculated

the Shannon entropy from the corresponding annotation frequencies of

all SOCs and normalized by the maximum possible entropy:

HnormSOC
=�

Xn

i=1

p xið Þ log2 p xið Þ

log2 nð Þ
ð1Þ

Here, p (xi) refers to the relative annotation frequency of a SOC and n

equals the number of different SOCs. The SOC heterogeneity measure-

ment evaluates the broadness of the phenotypic effects across organ sys-

tems by accounting for the relative abundance, rather than for the

number, of phenotypic traits affecting each organ system. Low hetero-

geneity values correspond to perturbations influencing mainly few organ

systems (0 if only one organ system is affected), while high levels represent

effects in multiple organ systems to a similar extent (1 if all organs are

affected equally). We use the terms ‘organ system heterogeneity’ and

‘SOC heterogeneity’ synonymously.

To assess if potential annotation or study biases might alter the con-

clusion derived from this analysis, we repeated all the analyses presented

here with a newly defined SOC heterogeneity measurement that down-

weights frequently annotated classes by normalizing the counts for each

SOC across all entities belonging to the same perturbation scenario

(drugs, diseases, mouse genes) (Supplementary Figures S1–S4). This
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alternative SOC heterogeneity measurement corrects, for instance, for the

annotation biased toward SOCs of interest of the biomedical community

when reporting disease symptoms and drug side effects as well as for the

missing phenotypic terms arising from the annotation of phenotypic

sources.

2.6 Expression data

To evaluate correlations between SOC and tissue expression heterogen-

eity of mouse genes and human disease genes, we used the GeneAtlas

GNF1H/GNF1M (Su et al., 2004) dataset for human and mouse. If the

data provided multiple probe sets for one gene, we retained the one with

the highest mean expression across all tissues, that is, the one with the

strongest signal. We normalized the tissue expression of each gene by the

sum over all tissues, treating replicas independently.

2.7 Tissue expression heterogeneity

We calculate the tissue expression heterogeneity within each species for

genes analogously to the organ system heterogeneity, considering the

relative expression value of a gene in a particular tissue and normalizing

by the total number of tissues:

Hnormtissue
=�

Xn

i=1

p xið Þ log2p xið Þ

log2 nð Þ
ð2Þ

Here, p (xi) refers to the normalized expression value in a tissue and n

equals the number of different tissues.

2.8 Extraction of essential genes

We automatically scanned the phenotypic descriptions in the mammalian

phenotype vocabulary provided by MGI for terms containing ‘lethal’ or

‘death’ to classify a mouse gene as essential. Genes where mutation

phenotypes were available but not involved in a lethal phenotype were

classified as non-essential.

2.9 Betweenness centrality

As essential genes tend to have a high betweenness, we wondered if SOC

heterogeneity correlates with betweenness in the protein–protein inter-

action network from STRING (von Mering et al., 2007). To include

only high-confidence interactions, we applied a stringent cutoff of 0.7

and only kept associations resulting from experiments or extracted

from curated databases. Betweenness b of a node v is a measurement

for centrality in a network, which is defined as the sum over the number

of shortest paths between all nodes s and t in the network running

through the node v divided by the number of all shortest paths � between

s and t:

bðvÞ=
X

s 6¼v6¼t

�stðvÞ

�st
ð3Þ

2.10 Cellular localizations of gene products associated

with increased organ system heterogeneity

First, we obtained all Gene Ontology (GO) annotations for cellular com-

ponents for genes in human monogenic diseases and mouse genes from

ENSEMBL (release 73, for Homo sapiens and Mus musculus, respect-

ively). We then excluded all annotations with IEA evidence code that

identifies annotations depending directly on computation or automated

transfer, which are not reviewed by a curator.

We then annotated all parent terms provided in the current GO ver-

sion (http://www.geneontology.org/ontology/obo_format_1_2/gene_onto

logy_ext.obo, accessed November 2013) and removed ‘cellular_

component’ as well as any terms representing unspecific subclassifications

(‘cytosol part’, ‘membrane part’), which are not intended for annotation.

We thus collected 7891 annotations for 980 monogenic diseases genes

Fig. 1. SOC heterogeneity calculation. Phenotypic features of diseases, drugs and mouse genes are converted to SOC profiles, which are used to derive

the SOC heterogeneity (Equation 1). The SOC heterogeneity for the mouse gene Pemt, the disease ‘Cerebellar Ataxia, Mental Retardation and

dyseQuilibrium syndrome 3’ (CAMRQ3) and the drug Interleukin-3 is shown. For example, for Interleukin-3 the heterogeneity value is obtained as

follows: –((log2(1/6) � 1/6)) � 4+ log2(2/6) � 2/6)/log2(18))=0.54
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(average: �8) and 19 860 annotations for 2816 mouse genes (average:

�7). Then, for every GO cellular component term annotated to at least

20 genes in our data in a respective gene set (human or mouse), we con-

ducted a Mann–Whitney U-test with the alternative hypothesis that the

SOC heterogeneity distribution of genes annotated to that term is shifted

toward higher values compared with a negative set of genes not annotated

to that term. To construct the negative set, we randomly picked 1000

times a number of genes equivalent to the number of genes associated to

each GO term from all genes that are not annotated to that GO term and

calculated their SOC heterogeneity. Lastly, the resulting P-values were

corrected for multiple testing within each species with Benjamini–

Hochberg correction, and only terms with false discovery rate

(FDR)� 0.05 were considered significant (Fig. 6).

3 RESULTS

3.1 SOC profiles

To study the organ systems affected by molecular perturbations,

we used the MedDRA vocabulary to annotate phenotypes of

mouse models, disease signs and symptoms and drug adverse

effects from public sources (see Section 2 for details). These fea-

tures were then mapped to a set of 18 SOCs from the most

general level of the MedDRA ontology representing anatomical

organ systems (Fig. 1) to allow the assessment of phenotypes at

the organ system level. In total, we extracted 130 742 drug–side

effect pairs for 1666 drugs, 44 125 disease–symptom pairs for

4766 diseases and 21 150 gene–phenotypic feature pairs for

5047 single gene perturbations in mice.

We first compared how the organ systems are affected in gen-
eral in single gene perturbations in mice, diseases and by drugs
by determining the distribution of SOC annotations for the

phenotypes of the three perturbations types (Fig. 2). In all
three types, the nervous system appears to be most commonly

affected, whereas the hepatobiliary system and ear are the least
frequently impaired organ systems. While reproductive and preg-
nancy disorders often occur in mouse genes, these conditions are

rarely encountered as disease symptoms or drug side effects,
probably because of the high potential to exert lethal effects.
By contrast, effects on vascular, skin, respiratory and immune

system are more often reported as adverse drug reactions, par-
tially due to hypersensitivity reactions to medications that occur

in certain patients (Pichler et al., 2010).

3.2 Comparison of SOC heterogeneity between genes,

diseases and drugs

Next, we wondered whether the three types of mammalian per-
turbations also differ in the individual broadness of organ system

damage. To quantify the extent of organ system disruption, we
define the SOC heterogeneity, a measurement that accounts for

the relative abundance, rather than for the number, of pheno-
typic traits of a perturbation across the 18 different SOCs. The
SOC heterogeneity values range from 0 to 1, where low values

correspond to perturbations affecting mainly few organ systems
(0 if only one organ system is affected), while high levels repre-

sent effects in multiple organ systems to a similar extent (1 if all
organs are affected equally) (see Section 2 and Fig. 1).
The comparison of SOC heterogeneity distributions for drugs,

diseases and single gene perturbations in mice show a clear dis-
tinction among the global phenotypic impact of the three per-
turbation types (Fig. 3A). While perturbations of single genes in

mice exhibit the most homogeneous SOC distributions, followed
by diseases, drugs yield the most heterogeneous phenotypes, indi-

cating that drugs usually have a more widespread impact on the
entire organism.
We note that the differences in SOC heterogeneity for mouse

genes, diseases and drugs correlate with the number of genes
associated to the three types of perturbations (Fig. 3B), suggest-
ing that the number of genes perturbed could be an important

factor influencing the diversity of organ damage in mammalian
systems. To explore this hypothesis, we grouped diseases and

drugs into three categories based on the number of disease
genes and drug targets involved in each perturbation type and
compared the SOC heterogeneity within the groups. We

observed that the SOC heterogeneity increases significantly
with the number of genes perturbed both in diseases and drugs

(Fig. 3C), demonstrating that the number of genes altered in a
perturbation has a marked impact on the diversity of organ
damage.

3.3 SOC heterogeneity of single gene perturbations

The modulation of single genes in mice causes phenotypes of
varying severity ranging from the absence of an observable

phenotype to lethality for the organism for perturbations of es-
sential genes.
To investigate whether the SOC heterogeneity accounts for the

severity of a perturbation, we analyzed the SOC heterogeneity

Fig. 2. Percentage of SOCs affected in mouse models of genes, human

diseases and by drugs. The frequency of phenotypic annotations mapped

to the most general level of the MedDRA ontology within mouse genes,

diseases and drugs is shown. The nervous system appears to be most

commonly affected in all three mammalian perturbations, whereas, for

example, ‘Pregnancy, puerperium and perinatal conditions’ are more

often observed in mouse perturbations, and “Skin and subcutaneous

tissue disorders”, “Gastrointestinal disorders” and “Vascular disorders”

are more frequently seen as adverse effects of drugs
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distribution of mouse and human single gene disruptions in more

detail. For consistency and clarity of the analysis, we focused

here on monogenic diseases and mouse genes while not taking

drugs into account, where molecular causes are less well charac-

terized (Hunter, 2005; Mestres et al., 2008).

The comparison of the SOC heterogeneity distributions of

2557 essential and 2490 non-essential genes in mouse shows a

markedly higher SOC heterogeneity for essential genes (Fig. 4A,

P-value52.18E-198, Wilcoxon test). Interestingly, monogenic

diseases associated to the human orthologs of 735 essential

mouse genes also show a larger SOC heterogeneity than 343

human orthologs of non-essential mouse genes, albeit with less

remarkable differences (P50.007, Wilcoxon test, Supporting

Supplementary Fig. S1). The observed correlation between

gene essentiality and SOC heterogeneity indicates that SOC het-

erogeneity is able to give insights about the severity of

perturbations.

Essential genes tend to be expressed in multiple tissues, sug-

gesting that the broad organ system effects of these genes might

be caused by their activity across many tissues. We evaluated

this hypothesis by testing whether a broad tissue expression

distribution of mouse and human genes correlates with an ex-

panded organ system damage. Analogously to the SOC hetero-

geneity and similarly to a previous definition of overall gene

tissue specificity (Schug et al., 2005), we calculated the tissue

expression heterogeneity for 4060 mouse and 761 human genes.

For each gene, we considered its relative mRNA expression

across a panel of 78 mouse and 84 human tissues, respectively,

from the GeneAtlas GNF1M/H repository. The use of the rela-

tive mRNA expression levels across tissues avoids the application

of an arbitrary threshold to determine the expression of genes in

tissues and has the advantage of treating genes with a high or low

general expression level equally.

We then classified mouse genes and those linked to human

monogenic diseases in three equidistant levels of tissue expression

heterogeneity and analyzed the SOC heterogeneity distribution

observed within each group. Genes with low tissue expression

heterogeneity show lower SOC heterogeneity (Fig. 4B) than

genes expressed in many tissues, for both mouse and human

genes, indicating that perturbations of genes with a specific

tissue expression tend to produce damage in only few organ

systems.

In protein interaction networks, betweenness has been pro-

posed to be a significant indicator of essentiality (Yu et al.,

2007). Based on this, we tested whether betweenness correlates

with SOC heterogeneity values in single gene perturbations. In

perturbations of single genes in mice, we found that genes show-

ing a high betweenness (third quartile) are associated with a

markedly higher SOC heterogeneity (Fig. 5A). Interestingly, we

observed this association also for non-essential mouse genes

(Fig. 5C) and, although less striking, monogenic diseases

(Fig. 5D), demonstrating that betweenness is a gene property

affecting the organ system effects across mammalian organism.
We furthermore analyzed the relationship between the cellular

localization of gene products and organ system heterogeneity in

mouse and human single gene perturbations (Fig. 6). In mouse,

we found a significantly higher SOC heterogeneity linked to pro-

teins located in the extracellular space, membrane, plasma mem-

brane, nucleus and transcription factor complexes. Among

plasma membrane proteins associated with high SOC heterogen-

eity in mouse models we find transporters (SLC2A4, SLC4A2,

Fig. 3. SOC heterogeneity of drugs, diseases and mouse genes and the

relationship to the number of associated genes in each class. (A)

Distributions of SOC heterogeneity values for drugs, diseases and

mouse genes. Drugs show the highest SOC heterogeneity, followed by

diseases and then by genes. (B) Number of genes affected in each per-

turbation scenario. Drugs influence the largest number of genes, followed

by diseases, while mouse models consist of single gene perturbations. (C)

SOC heterogeneity values are plotted against the number of associated

genes and targets binned into three classes. The higher the number of

drug targets or disease genes the higher is also the heterogeneity of the

annotated SOCs. The asterisks denote the significance of the P-values of

the pairwise Mann–Whitney U-test (**P� 0.01, ***P� 0.001)

Fig. 4. Influence of perturbation severity and tissue gene expression on

SOC heterogeneity. (A) SOC heterogeneity of essential and nonessential

(in dark gray) genes in mouse. Essential genes show a significantly

broader organ system heterogeneity (P52.18E-198, Wilcoxon test). (B)

Relationship between tissue and SOC heterogeneity in mouse genes and

monogenic diseases. SOC heterogeneity values are plotted against equi-

distantly binned tissue expression heterogeneity values perturbed in 4060

mouse models and 958 monogenic disease genes. The asterisks denote the

significance of the P-values of the pairwise Mann–Whitney U-test

(*P� 0.05, ***P� 0.001)
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SLC34A1), neurotransmitters (NOS1) and receptors (CHRNG,

KIT). Genes annotated to extracellular space with broad pheno-

typic damage include growth factors (FGF10, IGF1, TGFB2,

VEGFA) and hormones (EPO, PTHLH).
A high SOC heterogeneity in mouse genes associated to the

nucleus and to transcription factor complex comprehends devel-

opmental genes such as transcription factors like ATF4, PITX2

and JUN and transcription coregulators (RB1/2, NCOR1).

In human monogenic diseases, we observe that intrinsic compo-

nents of the plasma membrane and gene products localized in the

endoplasmic reticulum membrane and in the lumen of intracel-

lular organelles (specifically lysosomes and mitochondria) pre-

sent a significantly higher SOC heterogeneity after

perturbation. Important functions of these subcellular compart-

ments include signaling, degradation and transport. Monogenic

disease genes contributing to these associations comprise for ex-

ample channels (KCNJ2, CYBB), transporters (SLC7A7,

SLC26A2, SLC17A5), receptors (IL2RG, MPL, NOTCH),

their ligands (JAG1) and genes involved in degradation (MUT,

GUSB, HEXB). In summary, a high SOC heterogeneity is dis-

tinctly linked to proteins localized in the nucleus and transcrip-

tion factor complexes for mouse genes and in the lumen of

different organelles for human monogenic disorders, whereas is

commonly related to intrinsic membrane proteins in both mam-

malian systems.
Taken together, we have shown that disruptions of gene func-

tionality resulting from mouse mutations, human diseases and

drug treatments lead to significantly different SOC heterogeneity

distributions influenced by the properties of the perturbed genes.

These findings are not affected by potential study biases toward

SOCs of interest of the biomedical community when reporting

disease symptoms and drug side effects, by missing phenotypic

information or by the quality of the gene–disease associations

included in the analysis (Supplementary Figures S1–S4 and S6).
We thus conclude that the diversity of the phenotypic impact

can be explained by the number of affected genes or gene char-

acteristics like tissue expression, cellular localization, essentiality

and betweenness.

4 DISCUSSION

In this work, we have performed a systematic analysis of system

properties of genes modulating the phenotypic impact in perturb-

ations of single genes in mice, human diseases and those caused

by drug treatment. We demonstrated the influence of the number

of disrupted genes, the role of tissue expression as well as topo-

logical and cellular localization gene properties on the organ

system heterogeneity observed in human and mouse after chem-

ical or gene perturbations.
Our analysis unveils a correlation between the broadness of

organ system damage and the number of perturbed genes. This

finding has important implications in the design of treatments for

complex disorders, as these diseases are caused by the combination

of the effects of multiple genes, environmental and life style factors

(Hunter, 2005). Thus, as it has been proposed for schizophrenia

(Roth et al., 2004) and Alzheimer’s disease (Espinoza-Fonseca,

Fig. 6. Cellular localizations of gene products associated with increased

organ system heterogeneity. To determine whether SOC heterogeneity

values of gene products associated to GO cellular component categories

are significantly higher than the rest of the genes, we performed Mann–

Whitney U-tests. Positive set refers to genes annotated to the given GO

term and Negative set to genes without that annotation extracted by

randomly picking 1000 times the number of genes annotated with the

GO term. The orthogonal lines represent median values for the corres-

ponding dataset. The asterisks denote the FDR threshold after

Benjamini–Hochberg correction for multiple testing applied within the

datasets of the two species (*FDR� 0.05, ***FDR� 0.001)

Fig. 5. SOC heterogeneity of mouse and genes of monogenic diseases in

relationship to their betweenness in the protein–protein interaction net-

work. (A) The organ system heterogeneity among 3302 gene perturb-

ations in mice increases with increasing betweenness, and this trend is

also observed in essential genes (B). (C) Non-essential mouse genes with a

high betweenness also show a high SOC heterogeneity. (D) Relationship

between betweenness and SOC heterogeneity for 761 genes associated

with monogenic diseases. The asterisks denote the significance of the P-

values of the pairwise Mann–Whitney U-test (*P� 0.05, **P� 0.01,

***P� 0.001)
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2006), the treatment might require drugs with polypharmacology
property, that is, the ability of binding to multiple targets, or alter-
natively, the controlled combination of drugs.

Although the relationship of drug polypharmacology to the
increased number of side effects has been observed before (Keiser
et al., 2007; Wang et al., 2013) and pointed out as the cause for

the failure during clinical development of drugs (Azzaoui et al.,
2007), we report here for the first time the broad effect of these
drugs at the organ system level. We estimate that on average a
drug binds to 6.7 targets, two times more than the average

number of genes linked to diseases (3.3). Consistent with this,
we detected a broader organ damage caused by drugs than by
diseases. However, the observed effect is much greater than

would be expected based on the number of known targets, as
indicated by the lower SOC heterogeneity values estimated for
the same number of randomly selected mouse genes

(Supplementary Fig. S5). This suggests that non-genetic factors
contribute to the widespread effects of drugs or that many other
off-targets with a phenotypic impact remain unknown.

We identified further gene factors with a strong phenotypic
influence, namely broad tissue expression, certain cellular local-
izations and betweenness centrality in protein networks. An ex-

ample of a gene with high betweenness whose perturbation
causes systemic effects in human diseases is GLB1 linked to
Mucopolysaccharidosis type IV. GLB1 is involved in the degrad-

ation of molecules in lysosomes and is also part of the elastin
receptor complex at the cell surface involved in cell proliferation
and elastic fiber assembly (Antonicelli et al., 2009; Duca et al.,

2007). These results suggest that the analyses of the phenotypic
impact of diseases, in particular rare disorders with a strong
genetic component, might aid in the determination of causative

genes and their functions.
Regarding the phenotypic impact of cellular localization of

gene products, we observed a significantly higher SOC hetero-

geneity for mouse proteins localized in the (plasma) membrane
or extracellular space, hinting to the multiorgan effect of genes
involved in signaling and transport. Likewise, disruption of pro-

teins embedded in the plasma membrane as well as the mem-
brane of the endoplasmic reticulum results in a significantly
higher SOC heterogeneity in human diseases. Interestingly,

human diseases connected to proteins localized in the lumen of
intracellular organelles such as vacuoles (lysosomes, peroxi-
somes) and mitochondria are also linked to higher SOC hetero-

geneity. This suggests that the breakdown of molecules for
recycling, waste disposal and detoxification in lysosomes and
peroxisomes as well as energy production in mitochondria are

cellular processes associated to organ system wide effects in
human diseases but not in mouse models. Furthermore, in per-
turbations of single genes in mice transcription factor complexes

and nucleus localization are associated with an increased SOC
heterogeneity likely due to the relevant role of replication and
transcription in early phases of development. We do not observe

this association in human diseases, probably because of non-
viable phenotypes caused by the disruption of transcription
factor complexes. Perturbations of mouse genes comprise

mainly knockout deletions (480% of the mouse phenotypes
are derived from knockouts), implying a complete absence of
functional protein, whereas monogenic disorders are caused by

a variety of point mutations, gene duplications and allelic gene

differences that ameliorate gene function or cause a gain of func-
tion but do not necessarily lead to complete loss of function
(Georgi et al., 2013). As a consequence, disease symptoms do

not fully reflect the strong phenotypic effect associated to the
essentiality, betweenness and tissue expression in perturbations
of single genes in mice. These findings are in agreement with the

proposition by Goh and collaborators of a selective pressure on
disease genes where only those mutations compatible with sur-
vival into the reproductive years are likely to be maintained in
the population. This is corroborated by the difference in subcel-

lular localizations related to high organ system heterogeneity
perturbations of single genes in mice and disease genes. The as-
sociations of human disease proteins localized in the lumen of

intracellular organelles such as lysosomes and mitochondria with
high SOC heterogeneity suggest that either the toxic accumula-
tion of unprocessed molecules or impaired function of various

organs due to ATP deficiency have most likely non-essential
functions during embryonic development but subtle yet cumula-
tive harmful effects over time.

The expression of a gene in multiple tissues as well as high
betweenness has been linked to essentiality in mammalian organ-
isms. We observed that the same gene properties correlate with

the SOC heterogeneity values indicating that this measurement
accounts for the severity of perturbations, and thus, for a high
probability to be essential. Interestingly, Liao et al. (2008) found

an enrichment of proteins localized in vacuoles among human
essential genes, which are non-essential in mouse models. We
have confirmed this association and extended the list of disease

genes producing systemic effects. SOC heterogeneity is thus a
measurement of the severity of the perturbations applicable to
the analysis of non-lethal phenotypes such as diseases.

These findings imply important consequences for drug design
in chronic diseases where treatments usually last over a long
period. In these cases the analysis of the potential to affect off-

targets expressed e.g. in lysosomes or mitochondria could help to
decrease the occurrence of adverse events resulting from long-
term treatment, which are difficult to detect in clinical trials.

Also, the association of betweenness, essentiality and tissue
expression to the organ system heterogeneity stresses the import-
ance of considering these characteristics for drug safety and em-
phasizes the crucial role of network pharmacology in rational

drug design (Hopkins and Groom, 2002).
Our results demonstrate that systematic analyses relating gene

attributes and associated organ system phenotypes help to eluci-

date the global system properties governing the relationships be-
tween genotype and phenotype. We investigated the differences
and commonalities in the phenotypic impact of different perturb-

ations in human and mouse using a new and fairly comprehen-
sive dataset of organ system phenotypes of mammalian
perturbations. Altogether, this approach contributes to the clari-

fication of the molecular causes and phenotypic consequences of
human diseases and drug treatment.
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