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Prüfer der Dissertation: 1. Prof. Dr. Hans-Joachim Bungartz

2. Prof. Dr. Markus Hegland

Die Dissertation wurde am 12.07.2016 bei der Technischen Universität München ein-
gereicht und durch die Fakultät für Informatik am 07.11.2016 angenommen.





Abstract

High-dimensional data analysis becomes ubiquitous in both science and in-
dustry. An important tool for data analysis is supervised learning with non-
parametric models, which estimates the dependency between target and input
variables without imposing explicit assumptions on the data. This generality,
however, comes at a price of computational costs that grow exponentially with
the dimensionality of the input. In general, nonparametric models cannot evade
this curse of dimensionality unless the problem exhibits certain properties.

Hence, to facilitate large-scale supervised learning, this thesis focuses on two
such properties: the existence of a low-dimensional manifold in the data and
the discounting importance of high-order interactions between input variables.
Often a problem would exhibit both these properties to a certain degree. To
identify and exploit these properties, this work extends the notion of parsimony
for hierarchical sparse grid models. It develops learning algorithms that simul-
taneously optimise the model parameters and the model structure to befit the
problem at hand.

The new algorithms for adaptive sparse grids increase the range of computa-
tionally feasible supervised learning problems. They decrease the computation
costs for training sparse grid models and the memory footprint of the resulting
models. Hence, the algorithms can be used for classification and regression on
high-dimensional data. Furthermore, they improve the interpretability of the
sparse grid model and are suitable for learning the structure of the underlying
data distribution.
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1. Introduction

The idea of a learning machine may appear paradoxical to
some readers. How can the rules of operation of the machine
change? They should describe completely how the machine will
react whatever its history might be, whatever changes it might
undergo. The rules are thus quite time-invariant. This is quite
true. The explanation of the paradox is that the rules which get
changed in the learning process are of a rather less pretentious
kind, claiming only an ephemeral validity. [...]
An important feature of a learning machine is that its teacher
will often be very largely ignorant of quite what is going on
inside, although he may still be able to some extent to predict
his pupil’s behavior.

— Alan Turing, Computing Machinery and Intelligence

In this day and age the importance of data analysis can hardly be overrated.
Between Harvard Business Review calling data scientist “the sexiest job of the
21st century” (Davenport & Patil, 2012) and the German Chancellor Angela
Merkel calling data “the commodity of the 21st century” (Merkel, 2015), for
somebody in the business of gathering, storing, and processing large amounts
of information this century could not have started better. This dissertation
presents novel methods for data mining with sparse grids to accommodate for
the growing demand in large-scale data analysis.

At the dawn of computer science in the middle of the 20th century, statistics
and computer science walked hand in hand. The founding father of computer
science, Alan Turing, developed new statistical techniques to revolutionise cryp-
toanalysis in the 40s, while Sir Ronald A. Fisher wrote the first computer appli-
cation for biology in the 50s. Unfortunately, soon afterwards the communities
of statisticians and computer scientists diverged developing new data analysis
techniques independently from each other.

In the beginning of the 21st century the rapid growth of computational power
and the diminishing costs for collecting and storing information resulted in the
increasing interest in large-scale data analysis by science and industry (and
funding agencies). The emerging need for data analysis algorithms that can
efficiently run on computational clusters on the one side, while giving theoret-
ical performance guarantees on the other, compelled computer scientists and
statisticians to unite their forces.

This rapprochement, while still ongoing, already produced some fruitful re-
sults. Sparse gird techniques is a paragon of this exchange.
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1. Introduction

Sparse grid techniques have their beginning in the finite element methods—a
traditional technique for function discretisation in numerics. A function is repre-
sented as a linear combination of basis functions with compact supports located
on a regular grid. The theory of the finite element methods is thoroughly studied
in numerics and includes error bound estimates for different classes of functions.
Unfortunately, to maintain the discretisation accuracy as the dimensionality of
the input space grows, the number of basis functions has to grow exponentially
with it. This curse of dimensionality drives the finite element methods to the
limits of computational feasibility even for four- or five-dimensional problems.

An important step to solve this problem was the move from nodal basis func-
tions to hierarchical ones. This gave a granular control of the frequencies of
the approximant in different dimensions. It turns out that, if the function is
sufficiently smooth, many high-frequency basis functions of the full grid dis-
cretisation can be removed with a negligible loss of accuracy. This observation
gave rise to the sparse grid representation that was successfully used to delay
the onset of the curse of dimensionality for numerical problems such as solving
PDEs and estimating the quadrature of functions.1

The second important step was the transition of the sparse grid techniques
from a class of finite element models in the realm of numerics into the class
of nonparametric models in the realm of machine learning and data mining.
This allowed one to solve high-dimensional statistical problems using rigorously
studied numerical methods.

For supervised learning problems the goal is to approximate a function that
generated the observed data. Provided that this function is sufficiently smooth,
the use of sparse grid models delays the onset of the curse of dimensionality. If
the function possesses some irregularities in a certain area or dimension of the
input space then spatially-adaptive or dimension-adaptive sparse grid techniques
can provide additional resolution where it is needed.

Compared to established machine learning techniques like artificial neural
networks or support vector machines, sparse grids provide an approximant that
is easier to analyse and to interpret. More importantly, they are based on a high-
dimensional discretisation of the feature space, and thus less data-dependent
than conventional approaches, scale only linearly in the number of data points
and are well-suited to handle large-scale problems with vast amounts of data.

However, there is no free lunch in machine learning. As Wolpert (1996) showed
in his famous “No Free Lunch” Theorem, for a general supervised learning
problem the different machine learning algorithms are a-priori indistinguish-
able. This means that in order to successfully apply an algorithm to a high-
dimensional data mining problem we are bound to exploit special properties

1The concept of sparse grids should not be confused with the concept of adaptive grids.
These concepts are orthogonal. Similar to the full grid representation, the location of the
sparse grid basis functions is problem independent. Additionally, adaptivity to the structure
in a particular problem can be integrated into the sparse grid methods similar to the adaptivity
in full grids.
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of this problem. We consider three such properties: 1) the approximant has a
high degree of smoothness, 2) the data lie on a low-dimensional manifold em-
bedded in a high-dimensional ambient space, and 3) the approximant can be
represented as a sum of lower-dimensional functions. Besides the exploitation of
these properties, an algorithm for large-scale data analysis should benefit from
the current trend of growing computational performance in emerging multi-core
and multi-CPU computer architectures. Hence, it should be efficiently paral-
lelisable.

Fortunately, sparse grids with regular structure have already been shown as
an appropriate method for fitting functions where the first property is satisfied
(Garcke, 2004). This dissertation begins with the introduction of sparse grid
techniques in Chapter 2 providing the notation, definitions, and theoretical
foundations for later chapters. Moreover, this chapter includes a discussion of
the relationship between the sparse grids and other machine learning techniques.
It establishes the common vocabulary for readers coming from machine learning
and numerical analysis backgrounds. We assume the Bayesian perspective on
the sparse grid models and reinterpret the regularisation as a prior assumption
of the parameter distribution. Besides Bayesian linear regression, we consider
the use of sparse grid models as kernel machines, deriving a new efficient kernel
trick algorithm based on the divide-and-conquer paradigm. Finally, we consider
the sparse grid regression as a linear smoother gaining new insights into the
sparse grid approximation space.

The second property is discussed in Chapter 3. Generally, the low-dimensio-
nal manifold is unknown and estimated from data. Some of the estimation
methods were relying on multi-resolution analysis (Szlam et al., 2005). We follow
the similar intuition and develop refinement heuristics for spatially-dimension-
adaptive sparse grid methods that discover the manifold during the learning
phase. We review the methods for optimal subset selection and the sparsity-
inducing norms focusing on their applicability to the sparse grid models. In a
series of numerical experiments we compare the different methods and show how
new spatially-dimension-adaptive sparse grid methods can be used to further
delay the onset of the curse of dimensionality.

The third property is satisfied with a rapid decrease of importance of high-
order interaction terms of a functional ANOVA decomposition of the underlying
function. In this case we can relate the ANOVA structure with the structure
of the sparse grid model, using an established mathematical theory to estimate
the importance of different sparse grid components. In Chapter 4 we describe
a number of methods that can exploit the additive structure. These methods
range from an ensemble of low-dimensional sparse grid models over generalised
sparse grids with arbitrary “thinness” to the ANOVA extension of the sparsity-
inducing regularisation norms introduced in the previous chapter. A series of
numerical experiments evaluates the efficacy of the presented methods.

Finally, the methods derived in Chapters 3 and 4 require new optimisation
algorithms to train the sparse grid models. Parallelisation of these optimisation

3



1. Introduction

algorithms requires new paradigms that exceed a simple parallel sparse grid
evaluation. Therefore, Chapter 5 focuses on the description and analysis of
parallel optimisation algorithms. We derive two new methods based on the
BiCGStab procedure and the Alternating Directions Method of Multipliers. We
analyse the numerical properties and discuss the parallelisation of these methods
using synchronous and asynchronous communication patterns.

In corporate jargon, the term Big Data is often used to describe datasets that
exhibit one or several of the five V ’s: variability, variety, velocity, veracity, and
volume. In this dissertation we focus on the last V. For data analysis, the vol-
ume is equal to the number of measurements times the number of attributes or
dimensions. Sparse grid methods exhibit linear complexity with respect to the
number of measurements, which is already optimal. This dissertation, there-
fore, aims to improve the effectiveness of handling dimensionality, posing the
question: How can we keep building tractable sparse grid models even as the
dimensionality of the problems we consider keeps growing? And the answer I
give in this dissertation is: By being economical and identifying only those parts
of the model that are crucial for solving the problem.

So without further ado, let us embark into the dense forest of sparse grid
methods!

4



2. Sparse Grids for Statistical
Learning

PSYCHOHISTORY–...Gaal Dornick, using nonmathematical
concepts, has defined psychohistory to be that branch of
mathematics which deals with the reactions of human
conglomerates to fixed social and economic stimuli....
... Implicit in all these definitions is the assumption that the
human conglomerate being dealt with is sufficiently large for
valid statistical treatment. The necessary size of such a
conglomerate may be determined by Seldon’s First Theorem
which ... A further necessary assumption is that the human
conglomerate be itself unaware of psychohistoric analysis in
order that its reactions be truly random ...
The basis of all valid psychohistory lies in the development of
the Seldon Plan. Functions which exhibit properties congruent
to those of such social and economic forces as ...
ENCYCLOPEDIA GALACTICA

— Isaac Asimov, Foundation

This chapter lays the foundations for the advanced learning algorithms discussed
in the next chapters. It starts with a discussion of supervised learning from a
statistical perspective. For sparse grid novices, Section 2.2 offers an introduction
focused on the properties and methods we will need later. A sparse grid veteran
should still skim through this section to get familiar with the notation. Section
2.3 describes the algorithm for supervised learning with adaptive sparse grids,
which we will build upon in the later chapters. We conclude this chapter with a
discussion of the relationship between sparse grids and other machine learning
methods. Hopefully, this discussion can assist in understanding of sparse grids
for people with an intimate knowledge of particular machine learning techniques
and inspires new machine learning applications in the sparse grids community.

2.1. Supervised Learning

Supervised learning aims to predict new data from past observations. Let the
finite dataset S = {(xi1, . . . , xiD, yi)}Ni=1 ⊂ [0, 1]D ×Y} be drawn from a proba-
bility distribution with some “nature’s” probability density function p. We call
xi = (xi1, . . . , xiD)T the input variables and yi the dependent or target variable.

5



2. Sparse Grids for Statistical Learning

In general, xi may take any value in RD. However, for any finite dataset we can
normalise the input variables to [0, 1]D.

We are concerned with the prediction of observable targets y using input
variables x. In the terms of frequentist statistics, we are looking for a hypothesis
function f of the form [0, 1]D → Y that minimises the risk

R(f ; p) :=

∫
L(f(x), y)p(x, y) dx dy (2.1)

for a certain loss function L : Y × Y → R.

Certainly, the density function p is usually unknown and the common ap-
proach approximates p using the empirical distribution

pemp(x, y|S) := 1
N

N∑
i=1

δxi
(x)δyi(y), (2.2)

with the Kronecker delta function

δa(b) :=

{
1 if a = b,
0 else.

(2.3)

This approximation of the density function yields the approximation of the risk
function (2.1) called empirical risk:

Remp(f ;S) := R(f ; pemp(·|S)) = 1
N

N∑
i=1

L(f(xi), yi). (2.4)

Now, in order to make predictions for the new input vectors, we first need to
find the function from a hypothesis space V that minimises the empirical risk:

fERM = arg min
f∈V

Remp(f ;S). (2.5)

What happens if the empirical distribution does not approximate “nature’s”
distribution sufficiently well? In this case the minimisation of the empirical risk
can lead to overfitting and the prediction accuracy of fERM deteriorates. To
prevent overfitting we equip the objective function with a regularisation term
obtaining a regularised empirical risk functional

RΩ(f ;S) = Remp(f ;S) + λΩ(f). (2.6)

The functional Ω(f) measures the model complexity, while the regularisation
parameter λ controls the trade-off between the approximation error and the
function smoothness.

6



2.2. Grid-Based Prediction Models

Regression

If Y is a set of real numbers, like in prediction of the temperature or housing
prices, we speak of regression. In this case, we use the squared loss function
L(f(x), y) = (f(x) − y)2, and the empirical risk becomes the mean squared
error.

Classification

If Y is a discrete and non-metric space, we speak of classification. For example,
for Y = {“sweet”, “bitter”, “sour”} we cannot measure the distance between the
individual elements. If there are only two classes, we speak of binary classifica-
tion, map these classes to {0, 1}, and use the 0-1 loss L(f(x), y) = I(f(x) 6= y),
with the indicator function I. Alternatively, we map the classes to {−1, 1} and
use the hinge loss function L(f(x), y) = |1−f(x) ·y|+. Here the expression | · |+
denotes the positive part of its subject:

|x|+ = max{0, x}.

Yet another way is to relax the problem, assuming Y = [−1, 1] instead of
{−1, 1}. Now we can solve a regression problem with squared loss and classify
new targets using sgn(f(x)).

Minimisation of the empirical risk functional and minimisation the regularised
empirical risk functional are the key ideas common for most supervised learning
approaches. On several occasions in this dissertation we will come back to these
ideas deriving new learning algorithms and models.

2.2. Grid-Based Prediction Models

To find a model that minimises the regularised empirical risk (2.6), we need
a way to represent the hypothesis space and its elements. We use a nonpara-
metric representation, which avoids any strong assumptions about the form of
the model, representing it as a weighted sum of simple basis functions instead.
Initially, we disconnect from a particular data distribution, ensuring a uniform
resolution in the complete input domain. Hence the name of grid-based predic-
tion models. Later, we extend the model construction methods to account for
non-uniform distributions and irregularities.

Following a long tradition, we consider a space of piecewise d-linear functions
as our hypothesis space V (Zenger, 1990). The basis functions of this space are
constructed using the following principles:

1 We start by defining the mother hat function φ:

φ : [−1, 1]→ [0, 1] (2.7)

7



2. Sparse Grids for Statistical Learning

x 7→ |1− |x||+ .

2a The one-dimensional linear basis functions are obtained from φ by scaling
and shifting. The scaling coefficient 2l is determined by a level l ∈ N and
the corresponding shifting coefficient i · 2−l is additionally determined by
an odd index i ∈ {1, 3, · · · , 2l − 1}:

φl,i(x) := φ

(
x− 2−li

2−l

)
= φ(2lx− i). (2.8)

The linear basis functions for levels 1, 2, and 3 are depicted in Fig. 2.1a.
We use this construction if it can be safely assumed that the model has
the values 0 on the boundaries.

2b If the boundary values of the model are different from 0, we use the fol-
lowing construction:

φl,i(x) :=



1 if l = 1 ∧ i = 1,{
2− 2l · x if x ∈ [0, 21−l]

0 else
if l > 1 ∧ i = 1,{

2l · x+ 1− i if x ∈ [1− 21−l, 1]

0 else
if l > 1 ∧ i = 2l − 1,

φ(x · 2l − i) else.

(2.9)

Pflüger (2010) called it the modified linear basis and so will we. The
modified linear basis functions up to the level 3 are depicted in Fig. 2.1b.

3 Finally, we use the tensor-product scheme to combine the one-dimensional
basis functions into D-dimensional. Let us assemble the level parameters lt
in the dimension t into the vector l = (l1, . . . , lD) and the index parameters
it into the vector i = (i1, . . . , iD). Then we can write the D-dimensional
basis function as

φl,i(x) :=
D∏
t=1

φlt,it(xt). (2.10)

See Fig. 2.2 for illustration of two-dimensional multi-linear basis functions.

Full Grid

We combine all multi-indices associated with the level vector l into an index-set

Gl := {(l, i) ∈ ND × ND | 1 ≤ it ≤ 2lt − 1, it odd, 1 ≤ t ≤ D}. (2.11)

8



2.2. Grid-Based Prediction Models

(a) Linear basis (b) Modified linear basis

Figure 2.1.: Illustration of one-dimensional hierarchical basis functions up to
level 3. All basis functions at the level l span a hierarchical subspace
Wl. The hierarchical subspaces combined together construct the
function space Vl. One-dimensional function spaces for full and
sparse grids are indistinguishable.

The basis functions generated using the level and index vectors from Gl span
a function space

Wl := span{φl,i | (l, i) ∈ Gl}. (2.12)

Figure 2.2 illustrates the two-dimensional basis functions of different spaces
Wl. Notice how the tips of the basis functions build a regular grid, with grid
points corresponding to individual multi-indices. If a basis function has an
index it and level lt in a particular dimension t, then the coordinate of the
corresponding tip is 2−lt · it. Hence, we use the tip “points” to visually identify
the basis functions.

The combination of the spaces Wl with levels up to ` forms the function space
V`:

G` :=
⋃
|l|∞≤`

Gl, (2.13)

V` :=
⊕
|l|∞≤`

Wl.

The function space Wl is called a hierarchical subspace. The space Vl is the space
of D-dimensional piecewise linear functions with the mesh width h` = 2−` in
each dimension (see Fig. 2.3). Since the basis function “points” build a regular
grid, we call this scheme (2.13) a full grid.

Let RG be a set of real numbers, indexed by the elements of the index-set G:

RG := {(wg)g∈G | wg ∈ R} . (2.14)

9



2. Sparse Grids for Statistical Learning

Clearly, the cardinality |RG| is the same as |R|G|| and an element of this set,
w ∈ RG can be viewed as a vector from R|G| where the components are accessed
not by their sequential number, but by the corresponding multi-index.

Every w represents a function u ∈ V` defining a linear combinations of the
basis vectors

u(x) =
∑
g∈G`

wgφg(x). (2.15)

How useful is V` for supervised learning? Assume, that our “nature” is suffi-
ciently smooth. Mathematically speaking, we take the differential operator

Dlf :=
∂|l|1

∂xl11 ∂x
l2
2 · · · ∂xlDD

f

and consider the space of functions where the weak mixed derivatives up to the
order two are bounded:

H2
mix :=

{
f : [0, 1]D → R | Dlf <∞, |l|∞ ≤ 2, f |δ[0,1]D = 0

}
.

For f ∈ H2
mix the “benefit”—the interpolation error of f` ∈ V`—is bounded as

‖f − f`‖2 ≤ D
9D
· 2−2` · ‖f‖H2

mix
∈ O(2−2`)

(see Bungartz, 1998, Lemma 3.1).
The “cost”—the number of basis functions required to represent V`—is (2` −

1)D ∈ O(2`D). Hence, to achieve the approximation accuracy of ε, we need to
pay O(ε−D/r) in terms of memory and time, with r > 0. This holds even when
the functions are sufficiently smooth. Bellman (1961) coined the term curse of
dimensionality to describe this exponential dependency between accuracy and
costs.

10



2.2. Grid-Based Prediction Models
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Figure 2.2.: Tableau of two-dimensional piecewise linear basis functions that
build different hierarchical subspaces Wl. Each two-dimensional
“tent” function is a result of tensor product of two one-dimensional
“hat” functions. The placement of the functions resembles a regular
grid.
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2. Sparse Grids for Statistical Learning

Figure 2.3.: Construction of full grid spaces from hierarchical subspaces. The
scheme illustrates the construction of full grid function spaces for
maximum levels 1, 2 and 3 (all points) as well as sparse grid function
spaces (bold coloured points only).
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2.2. Grid-Based Prediction Models

Sparse Grids

Due to their high storage and computational costs, full grid models in V` can
be prohibitively expensive even for problems with moderate dimensionality of,
say, four or five. However, we can significantly reduce these costs to the price
of a slightly lower accuracy. Given a fixed budget of M basis functions, we are
looking for the index-set G1

` such that

G1
` := arg min

G⊂G`
|G|=M

max
f∈H2

mix

min
fG∈VG

‖f − fG‖2. (2.16)

We call (2.16) an a priori optimisation problem, as it identifies the optimal
index-set for an approximation of a whole problem class and not for a particu-
lar learning problem and a given dataset. This a priori optimisation problem,
although seemingly complicated, can be solved analytically. If the cardinality
constraint M is selected accordingly, the solution is

G1
` =

⋃
|l|1≤`+D−1

Gl, V 1
` = span{φg|g ∈ G1

`} (2.17)

and

∣∣G1
`

∣∣ = M =
`−1∑
i=0

2i ·
(
D − 1 + i

D − 1

)
∈ O(2``D−1) (2.18)

(see Bungartz, 1998, Lemma 3.2).
Notice, this is a dramatic reduction from O(2`D) for the full grids! The

interpolation error now is bounded from above by an element from O(2−2` ·
`D−1)—somewhat worse than O(2−2`) previously. We refer the reader to the
paper by Bungartz and Griebel (2004) for the derivation of these results. In
contrast to the full grid scheme (2.13), we call (2.17) a sparse grid scheme. In
Fig. 2.3 the sparse grid “points” are larger and depicted in colour.

The idea of sparse grids was originally discussed by Smolyak (1963) and then
rediscovered by Zenger (1990) years later. Sparse grids have been successfully
used for different data mining and machine learning applications including re-
gression, classification, clustering, and density estimation (e.g., O. M. Nielsen,
2000; Garcke et al., 2001, 2003; O. Nielsen et al., 2004; Garcke, 2004; Bungartz
et al., 2008; Pflüger, 2010; Peherstorfer et al., 2011; Peherstorfer, 2013).

In practice, the use of a sparse grid approximation instead of a full grid allows
a substantial reduction in time complexity with just slightly lower accuracy,
consequently delaying the onset of the curse of dimensionality. As the result,
Garcke (2004) and Pflüger (2010) could approach high-dimensional data mining
problems including the 18-dimensional Data-Mining-Cup, the 22-dimensional
mushroom classification, the 64-dimensional optical digits recognition, and the
166-dimensional Musk-1 benchmark.
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2. Sparse Grids for Statistical Learning

Adaptivity

The sparse grid construction scheme is optimal for a general class of problems.
However, it can be further improved for many given concrete problems, for
example, if the function we want to approximate is not sufficiently smooth in
some areas of the domain. In such cases we can further optimise the sparse
grid scheme taking into account the specifics of the prediction problem at hand.
The a priori optimisation problem (2.16) becomes an a posteriori optimisation
problem

G̃` = arg min
G⊂G`
|G|=M

min
f∈VG

RΩ(f ;S). (2.19)

In practice, finding G̃` would require solving a combinatorial optimisa-
tion problem, which is computationally infeasible. Hence, a forward greedy
algorithm—a sparse grid refinement procedure—is employed instead. This pro-
cedure identifies a sequence of incrementally growing sparse grid index-sets
G(0) ⊂ G(1) ⊂ · · · where each increment maximises the marginal gain

G(k+1) := arg max
G⊃G(k)

|G|−|G(k)|=m

(
min

f∈V
G(k)

RΩ(f ;S)− min
g∈VG

RΩ(g;S)

)
(2.20)

from adding m new indices to the set.

We keep the rigorous discussion of Problem (2.19) for the next chapter and
focus rather on an intuitive explanation of sparse grids adaptivity here. Since
basis functions have local support, by adding new basis functions we are able
to refine the model in the areas with high data density or some function irreg-
ularities while keeping the rest of the model unchanged. This leads to higher
resolution in the areas where it is really needed.

A formal definition of refinement requires the notion of hierarchical ancestry
and descendancy between indices. Let Ω be a set of all possible indices

Ω := {(l, i) | (l, i) ∈ ND × ND, it odd for each 1 ≤ t ≤ D}

and let desc be the function that computes the hierarchical descendants of a
level-index pair (l, i) in the dimension t:

desc : ND × ND × {1, . . . , D} → P(Ω) (2.21)

l, i, t 7→ {(l + et, i + (it + r)et) | r ∈ {−1,+1}} .

Here, et is a vector containing 1 in the t-th component and 0 everywhere else and
r signifies if the left or the right hierarchical descendant is created. The reverse
function anc computes all hierarchical ancestors of a level-index pair (l, i):

anc : ND × ND → P(Ω) (2.22)
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2.2. Grid-Based Prediction Models

(a) Initial sparse grid (b) One grid point refine-
ment in all dimen-
sions

(c) Two grid points re-
fined in one dimension
each

Figure 2.4.: Illustration of “spatially-adaptive” and “spatially-dimension-
adaptive” refinement schemes. The sparse grid points with indices
to be refined are depicted as black squares, the new children points
are white circles, the new ancestor grid points are white squares.

l, i 7→ {(l− et, bi− it−((it+1) mod 4)
2

etc) | 1 ≤ t ≤ D}.

Let G(k) denote the sparse grid index-set after the k’th refinement. The set
G(k) is extended from the admissible set of candidates

AG(k) :=
{

(l, i) | anc(l, i) ∩G(k) 6= ∅
}
. (2.23)

We can either refine a point in a particular dimension:

G(k+1) = G(k) ∪ (desc(l, i, t) ∩ AG(k)) , (2.24)

or in all dimensions:

G(k+1) = G(k) ∪ (alldesc(l, i) ∩ AG(k)) (2.25)

with

alldesc(l, i) :=
D⋃
t=1

desc(l, i, t). (2.26)

In the second case we speak of spatially-adaptive (Fig. 2.4b) and in the first case
of spatially-dimension-adaptive refinement (Fig. 2.4c).

Alternatively, the dimension-adaptive refinement strategy takes all refinable
indices and creates all children indices along one direction t (Hegland, 2003;
Gerstner & Griebel, 2003):

G(k+1) = G(k) ∪
⋃

(l,i)∈Gl

desc(l, i, t). (2.27)
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2. Sparse Grids for Statistical Learning

The hierarchical relationship between the grid indices in a sparse grid can be
specified in a directed acyclic graph (DAG). We illustrate such DAG in Fig. 2.5.

Definition 2.1 (Sparse grid graph). A sparse grid index set G induces a directed
acyclic (weakly) connected graph, an ordered pair G = (G,E) with the set of
edges

E = {(u, v) | u, v ∈ G, u ∈ anc(v)}.
This graph contains only one node without any incoming edges, which is called
the root node. Every connected subgraph of G that contains the root node also
corresponds to a sparse grid. The graph G is said to obey strong hierarchy if
for every node g in G all ancestors of g are also in G. Otherwise, G is said to
obey weak hierarchy.

This definition allows for configurations of sparse grids invalid in other litera-
ture. The so-called up-down algorithms for efficient operations on a sparse grid
(Balder, 1994; Balder & Zenger, 1996) require every non-root node to be acces-
sible from all directions. However, since supervised learning does not rely on the
up-down algorithms, we do not make strong hierarchy a necessary condition.

Adaptive sparse grids offer flexible nonparametric models for supervised learn-
ing problems. Because of adaptivity, these models do not require any specific
assumptions about the problem at hand besides the choice of the suitable ba-
sis functions family. The hierarchical relationship between the basis functions
can be a blessing or a curse depending on the situation. When designing a
new algorithm for sparse grids, these dependencies should be taken into careful
consideration.

2.3. Training Sparse Grid Models

Speaking of “training a sparse grid model”, we mean the identification of the
combination coefficients w ∈ RG and the evaluation of the model as

f(x) =
∑
g∈G

wgφg(x).

Figure 2.6 illustrates how a set of hierarchical piecewise linear functions from
Fig. 2.1a is used to fit the data points. Figuratively speaking, the basis functions
on higher levels compensate for the prediction errors on lower levels. That is why
some of the function on level 3 are negative, even though the optimal prediction
is positive everywhere (Fig. 2.6a). Added up, these functions recreate the correct
result (Fig. 2.6b).

Let us discuss how the combination of sparse grid models and the regularised
empirical risk minimisation leads to a learning algorithm. Altogether, regression
with adaptive sparse grids is performed in a succession of fitting and refinement
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2.3. Training Sparse Grid Models

Figure 2.5.: Hierarchical dependencies between sparse grid indices depicted as a
directed acyclic graph. Graph nodes signify the sparse grid indices,
an edge denotes the existence of an ancestor-descendant relationship
between the indices.
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2. Sparse Grids for Statistical Learning
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(a) Basis functions plotted next to
each other
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(b) Basis functions stacked on top of
each other

Figure 2.6.: Example of regression with a hierarchical basis. The basis functions
on higher levels compensate for the prediction errors on lower levels.
That is why some of the function on level 3 are negative, even
though the optimal prediction is positive everywhere.

steps as illustrated in Alg. 1. These steps alternate until some global convergence
criterion is satisfied, for example, until the generalisation error on a validation
dataset is sufficiently small or until the computational limit is reached. A prac-
tical implementation of these steps is often a compromise between mathematical
correctness and pragmatism.

Algorithm 1: Regression with Adaptive Sparse Grids.

1 start with some initial G(0), k ← 0
2 for k = 0, 1, . . . do
3 Fit-Step: Compute f ∈ VG(k) that minimises the regularised

empirical risk function (2.6)
4 if global convergence criterion satisfied then
5 break

6 Refine-Step: Refine the sparse grid structure to G(k+1) that
maximises the marginal gain (2.20)

Fit-Step

To use the functional (2.6), we need to specify two components: the loss function
and the regularisation term. Hereafter, we need to figure out, how to find a
sparse grid model that minimises the risk function. Regression requires the
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2.3. Training Sparse Grid Models

squared loss for the cost function. As the result of the sparse grid discretisation,
the regularisation operator Ω(f) becomes ‖Dw‖2

2 for a suitable choice of D.

Let I : {1, . . . , |G|} → G be a bijective mapping that enumerates the elements
of G. Garcke et al. (2001) suggested a differential operator that takes the form
of the discrete Laplacian

(D)jk := (∇φI(j),∇φI(k))L2 , (2.28)

while Pflüger (2012) argued that a simple identity matrix

(D)jk := δj(k) (2.29)

leads to similar results. The identity matrix is inexpensive, works well in practice
and has a probabilistic interpretation as we will see in Sec. 2.4.2. Therefore, we
will primarily use this regularisation operator throughout this thesis.

Since every function f ∈ VG is uniquely identified via its coefficients w ∈
RG, the regularised expected risk functional (2.6) for finite-dimensional function
spaces can be rewritten in terms of w and G:

J(w;G) :=
N∑
i=1

(∑
g∈G

wgφg(x)− yi
)2

+ λN
∑
g∈G

w2
g . (2.30)

Here we also multiplied the expression by N , which simplifies the notation and
does not change the minimiser of J .

Hence, in the fit-Step of Alg. 1 we are looking for the minimiser

w? := arg min
w∈RG

J(w;G). (2.31)

Note that if we denote by Jpoint the cost at an individual data point

Jpoint(w,x, y;G) :=

(∑
g∈G

wgϕg(x)− y
)2

+ λ
∑
g∈G

w2
g , (2.32)

we can further split J(w;G) into the sum of Jpoint(w,x, y;G):

J(w;G) =
N∑
i=1

(∑
g∈G

wgϕg(xi)− yi
)2

+ λN
∑
g∈G

w2
g

=
N∑
i=1

(∑
g∈G

wgϕg(xi)− yi
)2

+ λ
∑
g∈G

w2
g


=

N∑
i=1

Jpoint(w,xi, y;G).
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2. Sparse Grids for Statistical Learning

One way to minimise the cost function (2.30) with respect to w is by solving
the corresponding normal equation(

ΦTΦ + λN · I
)

w = ΦTy, (2.33)

where Φ is a rectangular N ×M matrix with entries (Φ)i,j = φI(j)(xi) and I
is an identity matrix. Conjugate gradients (CG) is often used to deal with this
system of equations (Pflüger, 2012).

The more general approach follows the gradient descent:

wt+1 = wt − γt∇wJ(wt;G). (2.34)

Depending on the particular choice of γt, the update step (2.34) leads to a num-
ber of different methods, such as Newton-Raphson, BFGS, etc. Borrowing a
term from neural network literature, we call this class of algorithms the optimi-
sation in batch mode, since the information from the whole “batch” S is taken
into account at every update step (Bottou, 1998).

The complexity of these descent methods is dominated by function evalu-
ations. And since the intermediate results are rarely stored explicitly, every
gradient descent iteration would have the time complexity of O(NM). For k
update steps the algorithms also perform k passes through the data points. This
results in the time complexity of O(k ·NM).

For some problems the batch gradient descent method is infeasible, for ex-
ample, when the dataset is to large to fit into the main memory at once. For
some problems it is impractical, for example, when the training patterns arrive
continually in a data stream. To overcome these limitations, one can consider a
stochastic approximation of the gradient term in (2.34) by the gradient at one
(random) point (Bottou, 1998), which yields an update of the form

wt+1 = wt − γt∇wJpoint(w
t,xt, yt;G). (2.35)

In practice, additional measures are taken to obtain robust results and faster
convergence (Bach & Moulines, 2013; Polyak & Juditsky, 1992; Schaul, Zhang,
& LeCun, 2013).

Refine-Step

Let J̃(G) be a set function over the sparse grid index-set G that estimates
optimal parameters w:

J̃(G) := min
w∈RG

J(w;G). (2.36)

The refinement procedure aims to find the best multi-indices to maximise the
marginal gain among all candidates. In general, marginal gain is defined as
follows.
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2.3. Training Sparse Grid Models

Definition 2.2. Let Γ be a set, P(Γ) its powerset, and h : P(Γ) → R a set
function. The marginal gain with respect to the function h is defined as

h(x|X) := h(X ∪ {x})− h(X), (2.37)

where x ∈ Γ is an element of the set and X ⊂ Γ its subset.

Hence, putting it formally, the refinement identifies the best m multi-indices
I? among all candidates AG that maximises the marginal gain associated with
J̃ :

I? = arg max
I⊂AG
|I|=m

−J̃(I|G). (2.38)

This view was first suggested by Hegland (2003) and Garcke (2004) in the con-
text of generalised sparse grids and the dimension-adaptive refinement. They
considered subsets of multi-indices that belong to the same hierarchical sub-
spaces. As the result, the authors derived a greedy method, which yields op-
timality bounds under certain conditions as discussed in Chapter 3. However,
their method bears large computational costs at every step and becomes infea-
sible for large problems. Furthermore, the need to include complete hierarchical
subspaces limits the desired ability to refine only some parts of the domain
important for a regression problem at hand.

Pflüger (2010) suggested a heuristic indicator for marginal gain and local
adaptivity in order to overcome these limitations. Assuming that the errors are
normally distributed around 0, one can improve marginal return by adding new
multi-indices that correspond to the area with high local error variation. This
variation is weighted by potential influence of the basis functions. To capture
this influence, Pflüger used the absolute value of the basis functions evaluated
at the data points. Altogether, he suggested to refine the indices that have the
highest reduction indicator:

s∗ := arg max{ξ(s) | s ∈ G(k), alldesc(s) ∩ AG(k) 6= ∅},
G(k+1) := G(k) ∪ alldesc(s∗) ∪ anc(s∗) (2.39)

with

ξ(s) :=
N∑
i=1

(yi − f(xi; w))2 · |ws|φs(xi). (2.40)

As there is no way of telling how the new indices would contribute to the results,
the refinement occurs in all directions. Adding all ancestor anc(s∗) ensures the
preservation of strong hierarchy after the refinement. The computation of this
indicator is inexpensive even for large data sets. However, even though the
intuition behind the indicator is clear, its optimality is difficult to analyse. It
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2. Sparse Grids for Statistical Learning

also fails to indicate the importance of the individual dimensions that will be
refined.

A training procedure for sparse grid models always alternates between two
step: fitting and refining. Particular choice for these two steps lead to different
algorithms and properties of the training procedure. A good fitting procedure
can accelerate the training, but, more importantly, a good refining criterion is
crucial for a sparse grid model to achieve a desired result. In Chapter 3 we
come back to this idea, deriving a refinement method that combines efficiency,
flexibility, and optimality guarantees.
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2.4. Sparse Grid and other Machine Learning Techniques

2.4. Sparse Grid and other Machine Learning
Techniques

We just learned one way to find sparse grid models that solve supervised learning
problems. However, the supervised learning with sparse grids relates to a web
of other models and representations. Understanding those, yields to a discovery
of new properties and algorithms that can extend the sparse grid methods.

The discussion of the relationship to other machine learning methods helps
the researchers and practitioners well acquainted with other, more customary
methods, to grasp the inherited characteristics and behaviour of sparse grid
models.

2.4.1. Feature Transformation

A simple way to view sparse grid discretisation is through the notion of feature
maps. A feature map φ transforms the elements of the original input space
[0, 1]D into the feature space [0, 1]M

φ : [0, 1]D → [0, 1]M ,

x 7→ (φ1(x), . . . , φM(x))T (2.41)

where usually M � D.

Feature maps or feature transformations are a popular machine learning tech-
nique. Some problems, i.e. clustering, benefit from a new similarity measure
in the measurable feature space. Other problems, i.e. classification, can be
separable in higher-dimensional feature spaces and non-separable in the original
low-dimensional input space.

Consider the following classification problem: We have data points sampled
uniformly on [0, 1]2 as show in Fig. 2.7a. The points inside the circle are of one
class (red), the points outside are of other (blue). There is no hyperplane that
would be able to separate the points of one class from another. If, however,
we transform the points into a 5-dimensional feature space of a level 2 sparse
grid, the problem becomes easily separable. Figure 2.7b shows two-dimensional
projections of the first basis function (level 1) with other four (level 2). We can
easily imagine a separating hyperplane in each of the projections.

In fact, if we forget for a moment the complexity of sparse grid space discreti-
sation, we can consider many sparse grid learning algorithms as linear models
in the corresponding feature space! With refinement we can expand the feature
space on the fly to fit our needs, which gives us the property only a few other
adaptive basis function methods have. So let us now discuss the implications of
looking on the machine learning methods through the sparse grid feature map
spectacles.
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Figure 2.7.: Sparse grid basis function evaluation as feature transformation.
Left: red and blue points belong to different classes and cannot
be separated by a hyperplane. Right: the same points transformed
into a 5-dimensional feature space of a level 2 sparse grid, the prob-
lem is separable.

2.4.2. Bayesian Linear Regression

In this section we are going to show that the sparse grid approximation via pe-
nalised least squares leads to the MAP estimator. This embeds the sparse grids
approximation into the more general framework of Bayesian linear regressors,
which uses a probabilistic interpretation to describe the underlying model.

We start, as before, with a dataset composed of inputs X = (x1, . . . ,xN) and
corresponding target values y = (y1, . . . , yN)T . We assume that targets were
generated from inputs using a function f(x; w) and distorted by some additive
Gaussian noise ε ∼ N (0, σ2

ε). Such noise can come, for example, from calibrated
measurement instruments, which do no show absolutely exact results, but are
not biased in a particular direction and the amplitude of the measurement does
not depend on the target value. A counter-example would be the information
about the persons height, age, or income on a dating website, which tend to be
systematically over- or underestimated.

Stochasticity of the noise makes the measurement to a random variable:

y = f(x; w) + ε, (2.42)

p(y|x; w, σ2
ε) = N (y|f(x; w), σ2

ε). (2.43)
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2.4. Sparse Grid and other Machine Learning Techniques

It is normally distributed with the same standard deviation as the noise and the
expected value of f(x; w), since the noise is expectedly 0.

As we assume that the dataset samples are drawn iid, the likelihood of the
observations y for the inputs X becomes

p(y|X,w, σ2
ε) =

N∏
i=1

N (yn|wTφ(xi), σ
2
ε) = N (Φw, σ2

εI), (2.44)

where wTφ(xi) stands for the evaluation of the sparse grid approximant f(xi).

We follow (Bishop, 2006) and choose a conjugate prior, also a Gaussian dis-
tribution, of the form

p(w) = N (w|w0,S0) (2.45)

with the mean vector w0 and covariance matrix S0. And so the corresponding
posterior distribution assumes the form

p(w|y) = N (w|wN ,SN) (2.46)

where

SN =
(
S−1

0 + σ−2
ε ΦTΦ

)−1
(2.47)

wN = SN(S−1
0 w0 + σ−2

ε ΦTy). (2.48)

The mode and the mean of the posterior distribution coincide, and hence the
maximum posterior weight vector wMAP is the same as wN .

In the context of online learning, where data arrive sequentially, the posterior
at any time acts as the prior for the subsequently arriving data point and hence
the posterior distribution has again the form (2.46).

The marginal distribution of the dataset is given by

p(y|X, σ2
ε ,S0) =

∫
p(y|X,w, σ2

ε) · p(w|S0)dw, (2.49)

where the first term in the integral is defined in (2.44) and the second in (2.45).
Using the result (A.7) from the appendix, we can analytically compute the
marginal distribution as

p(y|X, σ2
ε ,S0) = N (y|Φ · 0, σ2

εI + ΦS0Φ
T ) (2.50)

= N (y|0,Σ) (2.51)

= (2π)−
N
2 · |Σ|−

1
2 exp

(
−1

2
yTΣ−1y

)
(2.52)

with Σ defined as σ2
εI + ΦS0Φ

T .

The regularisation operator (2.29) corresponds to a particular choice of Gaus-
sian prior—a zero-mean isotropic Gaussian governed by a single parameter σ2

w:

p(w|σ2
w) = N (w|0, σ2

wI). (2.53)
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The corresponding posterior distribution over w is then given by (2.46) with

SN =
(
σ−2
w I + σ−2

ε ΦTΦ
)−1

(2.54)

wN = σ−2
ε SNΦTy. (2.55)

The logarithm of the posterior distribution is the sum of the log-likelihood and
the logarithm of the prior and, as the function of w, assumes the form

ln p(w|y) = −1
2
σ−2
ε

N∑
i=1

(
yi −wTφ(xN)

)2 − 1
2
σ−2
w wTw + const

∼ −
N∑
i=1

(
yi −wTφ(xN)

)2 − σ2
ε

σ2
w

wTw. (2.56)

We have already seen this form in (2.30). Maximisation of this posterior distri-
bution with respect to w is, hence, equivalent to the minimisation of the sum-
of-squares loss function with a quadratic regularisation term and λ = σ2

ε/σ
2
w.

If we chose an infinitely broad prior, i.e. σw →∞, the posterior distribution
becomes the likelihood distribution and as λ→ 0 the impact of the regularisa-
tion diminishes.

Estimation of the optimal (continuous) hyperparameters σ2
ε and σ2

w as well
as of the optimal (discrete) sparse grid size and structure is a subject of the
model selection problem. We discuss the choice of the hyperparameters now
and return to the search of the optimal grid structure in the following chapters.

A tractable form of the hyperparameter optimisation maximises the type-2
likelihood function (2.52). We assemble the hyperparameters in the vector θ
and so the marginal log-likelihood has the form

ln p(y|X,θ) = −1
2
yTΣ−1y − 1

2
ln |Σ| − N

2
log 2π. (2.57)

The gradient of the log-likelihood is required for many minimisation algorithms
can be computed as (Bishop, 2006)

∂

∂θj
log p(y|X,θ) = 1

2

(
yTΣ−1∂Σ

∂θj
Σ−1y − tr

[
Σ−1∂Σ

∂θj

])
(2.58)

= 1
2

tr

[
(ααT −Σ−1)

∂Σ

∂θj

]
with α = Σ−1y, (2.59)

∂Σ

∂σ2
ε

= I, (2.60)

∂Σ

∂σ2
w

= ΦΦT . (2.61)

The prediction of new targets may be done using wN . However, we are often
interested not only in the point estimation but in the complete distribution. In
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this case, again using (A.7) from Appendix A, the prediction of a new target
value y for new input values x is obtained by evaluating the predictive distribu-
tion (Bishop, 2006)

p(y|x,y,X, σ2
w, σ

2
ε) =

∫
p(y|w,x, σ2

ε)p(w|y,X, σ2
w, σ

2
ε)dw (2.62)

= N (y|wT
Nφ(x), σ2

N(x)), (2.63)

where the variance is given by

σ2
N(x) = σ2

ε + φ(x)TSNφ(x)︸ ︷︷ ︸
=:σ2

mod

= σ2
ε + σ2

mod. (2.64)

The two summands in (2.64) represent the noise in the data and the uncer-
tainty of the parameters w. We illustrate the form and the behaviour of this
uncertainties in Figures 2.8 and 2.9. A sparse grid interpolant generates data
distorted by the additive white noise with the standard deviation 0.3.

Figures 2.8b–2.8d illustrate the true and predicted functions as well as the
95% confidence intervals (roughly twice the standard deviation) of the posterior
and data distributions. Three regular sparse grids with different maximum levels
were used to construct the models, while the hyperparameters were estimated
using the equations described in this section.

Models with lower level grids show higher overall variance σ2
N , although one

can see that even in this case most (roughly 95%) of observations fall within the
confidence interval. As the complexity of the predictive model starts to resemble
the complexity of the generating model (Fig. 2.8d) the agreement between the
distributions becomes almost perfect.

We also illustrate the behaviour of the hyperparameters and variance compo-
nents in Fig. 2.9. If the grid level is fixed and N grows, σ2

mod vanishes and the
additive data noise σ2

ε dominates the variance of the predictive distribution. If
we fix the dataset size and increase the gird level (Fig. 2.9b), we observe the
decrease of the optimal hyperparameters—and effect that can result in over-
fitting eventually. However, we also see the strong rise of variance component
associated with model complexity. For large high-dimensional models with high
complexity and insufficient data this term may exceed the noise in data and
dominate the uncertainty.

Regarding sparse grid models as Bayesian linear regressors immediately re-
wards us with a well-developed and applicable theory. We can now not only
predict a new value using a sparse grid model, but also to assign a confidence
to this prediction. Moreover, it becomes possible to interpret the regularisation
term as a belief of the prior probability distribution of w. This interpretation,
in turn, explicates the need to adapt the regularisation function if the problem
assumptions change.
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(b) Grid level 2
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(c) Grid level 3
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(d) Grid level 4

Figure 2.8.: Sparse grid as a Bayesian linear regressor with depicted uncertainty.
Figures show the true and predicted functions as well as the 95%
confidence intervals of the posterior and data distributions. Lower
grid level corresponds to higher overall variance. Level 4 of the
esimtated model matches the level of the true model, in this case
the agreement between the distributions becomes almost perfect.
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(a) Sample size (b) Levels

Figure 2.9.: Dependence of variance components from level and sample size.
Left: for the fixed grid level as the sample size grows the model
variance σ2

mod vanishes and the additive data noise σ2
ε dominates

the variance of the predictive distribution. Right: for the fixed
dataset size as the grid level increases the optimal hyperparameters
decrease while the model variance increases.

2.4.3. Automatic Relevance Determination

Bayesian interpretation of sparse grids in form (2.46)–(2.48) gives us a tool for
understanding and identification of the optimal regularisation parameter. It also
explicates the choice of the prior covariance matrix S0. The interpretation of
the Tykhonov regularisation term as the prior covariance matrix σ2

wI can make
one wonder about its ubiquitous applicability. Can we really assume that all
weights have the same prior variance?

The hierarchical basis functions approximate different frequencies and we
want to avoid learning noise that usually has high frequencies. Hence, we may
want to constrain the fluctuations of the basis functions on higher levels by as-
suming lower prior variance. For example, we can reduce the variance by the
factor 4 as the level sum of the grid basis functions increases:

S0 := diag((2−2(|lj |1−D+1)σ2
w)Mj=1).

This covariance matrix is based on the expected decrease of coefficients for
functions from H2

mix (Bungartz & Griebel, 2004, Lemma 3.3). However, if we
cannot make such a strict assumption or if the function exhibits some local
irregularities, this prior is ill-suited.

Instead, we consider a more general form

S0 := diag(ς), with ς = (ς1, . . . , ςM)T . (2.65)
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and we maximise the type-2 marginal likelihood (2.57) with respect to the hy-
perparameter vector θ := (ς, σ2

ε)
T . We can now simply compute the derivatives

with respect to hyperparameters ς and σ2
ε and set them equal to zero. This

leads to the re-estimation equations (Tipping, 2001)

γj =1− ςi(SN)jj, (2.66)

ςnew
j =

γj
w2
j

, (2.67)

(σ2
ε)

new =
‖y −Φw‖2

N −∑M
j=1 γj

, (2.68)

where (SN)jj is the j-th diagonal element of SN from (2.47), wj denotes the
j-th element of wN defined in (2.48), and γj reflects how well the parameter wj
is determined by the data.

In the optimisation procedure, we initialise ς and σ2
ε and estimate the poste-

rior mean and the posterior covariance matrix using (2.47) and (2.48). Then we
alternate between re-estimating of the hyperparameters using (2.67) and (2.68)
and the posterior statistics using (2.47) and (2.48).

Figure 2.10 illustrates the components of the hyperparameter vectors ς, as
well as of the vectors γ and wN for the automatic relevance selection algorithm
for the problem in Fig. 2.8 and 5 000 data samples. Optimisation procedure
forces some of the hyperparameters ςj to large values, effectively leading the
prior variance of this components to zero. Those are exactly the components of
a regular level 4 sparse grid that the generating function is missing.

Automatic relevance determination algorithm allows us to identify the optimal
structure of the sparse grid model. Unfortunately, the required computational
costs are substantial. In the example above it took just a few iterations to
identify the irrelevant basis functions, but in a general case the procedure can
be expensive due to the need of computing the diagonal of the inverse matrix
(SN)jj. The procedure can be improved, which leads to a much more efficient
Sequential Sparse Bayesian Learning Algorithm (Tipping & Faul, 2003). The
required amount of computation, however, still scales as O(M3). Moreover,
Wipf and Nagarajan (2008) have shown that the relevance detection problem
can also be approached as an iteratively reweighted `1 minimisation problem

wt+1 = arg min
w

‖y −Φw‖2
2 +

M∑
j=1

λ
(t)
j |wj|. (2.69)

We will discuss the approach of `1-regularisation in the following chapter.
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(a) ς

(b) wN

(c) γ

Figure 2.10.: Relevance components estimation. Optimisation procedure
(2.66)–(2.68) increases ςj of the unimportant components, effec-
tively leading the prior variance of this components to zero.
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2.4.4. Kernel Machines

The feature map (2.41) together with the dot product on the underlying vector
space yields a kernel function (Scholkopf & Smola, 2001)

k : [0, 1]D × [0, 1]D → R, (x,x′) 7→ 〈φ(x),φ(x′)〉. (2.70)

This kernel function leads to a symmetric positive definite Gram matrix K
with elements Kij := (k(xi,xj))ij. One can easily validate this, since for all
ci ∈ R, xi ∈ [0, 1]D, i = 1, . . . , N , we have:

cTKc =
∑
i

ci
∑
j

cj〈φ(xi),φ(xj)〉 =
∑
i

ci

〈
φ(xi),

∑
j

cjφ(xj)

〉

=

〈∑
i

ciφ(xi),
∑
j

cjφ(xj)

〉
=

∥∥∥∥∥∑
i

ciφ(xi)

∥∥∥∥∥
2

≥ 0.

Let f and g be two functions defined as linear combinations of kernels

f(·) =
N∑
i=1

αik(·,xi), g(·) =
N ′∑
j=1

βjk(·,x′j) (2.71)

with arbitrary N,N ′ ∈ N, αi, βj ∈ R and xi,x
′
j ∈ [0, 1]D. Let us now define a

dot product between f and g as

〈f, g〉 :=
N∑
i=1

N ′∑
j=1

αiβjk(xi,x
′
j). (2.72)

One can show that the space of function (2.71) with the dot product (2.72)
completes a Hilbert spaceH (a complete vector space with a dot product), called
the reproducing kernel Hilbert space (RKHS) associated with kernel k, called
a reproducing kernel (Scholkopf & Smola, 2001). The Representer theorem
warrants us an ability to solve machine learning problems in the kernel form.

Theorem 2.1 (Representer theorem (Kimeldorf & Wahba, 1971; Scholkopf &
Smola, 2001)). Let Ω : [0,∞] → R be a strictly monotonic increasing function,
let X be the input set and L : (X × R2)N → R ∪ {∞} be a loss function. Each
minimiser f ∈ H of the regularised risk functional

L((x1, y1, f(x1)), . . . , (xN , yN , f(xN))) + Ω(‖f‖H) (2.73)

can be represented as

f(x) =
N∑
i=1

αik(xi,x).
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The use of a regularisation operator Γ in (2.73) modifies the dot product and
hence the RKHS:

〈f, g〉H = 〈Γf,Γg〉L2 =

∫
X

Γf(x)Γg(x)dx.

We hence can think the regularisation operators as of ways to enforce certain
function properties such as smoothness, bounded derivatives, etc. Note that
this is an alternative interpretation to the one given in Sec. 2.4.2.

The corresponding reproducing kernel has the form

k(x,x′) := 〈φ(x),φ(x′)〉M = 〈φ(x),Mφ(x′)〉 (2.74)

with a positive definite matrix M, which is more general than the one defined in
(2.70). What is M for the sparse grid ridge regression from Sec. 2.3? Following
proposition gives the answer.

Proposition 2.2. Let xi ∈ [0, 1]D be an input vector, φj(x) : [0, 1]D → [0, 1]
the sparse grid basis functions, Φ be the N ×M feature matrix

Φ =
[
φ(x1) φ(x2) · · · φ(xN)

]T
=

φ1(x1) · · · φM(x1)
...

. . .
...

φ1(xN) · · · φM(xN)

 , (2.75)

and Γ ∈ RM×L with M ≤ L such that D := ΓTΓ, D ∈ RM×M non-singular.
Then minimisation of

min
w∈RM

(y −Φw)T (y −Φw) + λ‖Γw‖2
2 (2.76)

corresponds to the solution of the kernel equation

(K + λI)α = y, (2.77)

where K is defined by

k(x,x′) :=
〈
φ(x),D−1φ(x′)

〉
. (2.78)

Proof. The solution of the minimisation problem (2.76) leads to

w =
(
ΦTΦ + λD

)−1
ΦTy. (2.79)

Assuming that D is invertible, we can use the result (A.4) to obtain

w = D−1ΦT
(
ΦD−1ΦT + λI

)−1
y. (2.80)
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Notice that from (2.78) the Gram matrix can be calculated as

K = ΦD−1ΦT . (2.81)

Hence, by solving the kernel equations (2.77), we can obtain the representation
of the function

f = Φw = K(K + λI)−1y = Kα (2.82)

and in general we have

f(x) =
N∑
i=1

αik(x,xi) =
N∑
i=1

αi〈φ(x),D−1φ(xi)〉. (2.83)

From (2.80) it also follows that if we find the kernel coefficients α := (K +
λI)−1y, we can obtain w = D−1ΦTα. This is especially easy if D = I. In this
case, we get

w = ΦTα.

Kernel k described in (2.83) is the regularised sparse grid kernel associated
with the regularisation matrix D. Note that the inverse matrix D−1 is usually
full even if D is sparse. An exception is D = I = D−1.

Sparse Grid Kernel Trick

The advantage of using a kernel as a similarity measure is that it allows us to
create algorithms in dot product spaces. Some of the kernels can be evaluated
efficiently even though they correspond to dot products in infinite dimensional
dot product spaces. In such cases, evaluation of k(x,x′) without the explicit
evaluation of 〈φ(x),φ(x′)〉 is crucial. In the machine learning community this
substitution is called kernel trick. Given an efficient way to compute k, it can
be more efficient than feature maps especially when N �M .

Exploiting the structure of hierarchical subspaces significantly accelerates the
evaluation of the sparse grid kernel (2.78). We use the idea that every grid point
lies on the support of only one function in every hierarchical subspace. Buse
(2015, Sec. 4.3.2) exploits this scheme for evaluation of dimensional adaptive
sparse grids. Depending on the size and dimensionality of the grid, he achieves
a speedup of up to 7.4 compared to the naive subspace-wise evaluation of basis
functions.

As for the kernel evaluation the points are considered pairwise, we can limit
the evaluation to only those basis functions that support both points. For the
fast identification of these functions we make use of the binary representation
of real numbers as

∑
i=1 b · 2−i, b ∈ {0, 1}. This representation can be computed

explicitly using a simple Alg. 2 or it is given implicitly, e.g. as elements of the
IEEE 754 format for the floating-point number representation.
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(a) Representation of a floating-point number using single-precision IEEE 754-1985
format
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(b) Binary search using representation in IEEE 754 format

Figure 2.11.: Usage of binary representation of a floating point number for effi-
cient grid search. In this example the point coordinate is 0.68.

The use of binary encoding is illustrated in Fig. 2.11. In order to fix the
exponent for all numbers, we add 1.0 to the coordinate. It is safe to do this, if
we know that all coordinates are between 0 and 1 (Fig. 2.11a).1

To determine the hierarchical basis functions supporting the point, we use the
binary pattern of the mantissa. We start with the highest bit and hierarchically
descend to the left descendant basis function if the bit is 0 or to the right
function if the bit is 1 (Fig. 2.11b).

We can also use the bit operations on the representations of two coordinates
to estimate the finest most basis function that covers both points.

We can also estimate the finest basis function that covers both points from
the overlap of the two bit patterns. Alternatively, for every pair of coordinates
x and x′ we can estimate the maximum level p such that a sparse grid function
at this level contains both points:

p = d− log2(|x− x′|)e. (2.84)

Sometimes, p will indicate the level where the points already lie on different
supports and the effective maximal level is smaller. Having calculated the max-
imum level, we can determine the binary search path that identifies hierarchical
descendent functions that are nonzero at the coordinate. As shown in Alg. 2, we
successively divide the coordinates by the powers of 2 to determine the binary
representation.

1We need to exclude the coordinate 1.0 for simplicity of presentation. This trivial case
can be handled explicitly.
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Figure 2.12.: Illustration of the recursive fast kernel evaluation scheme using
distributive law. The algorithm starts with iteration through the
dimension 0 and then continues the recursive descent into other
dimensions for all function levels that still cover both points.

Having established the binary form (it is enough to establish it for only one
of two points), we recursively evaluate the basis functions in both points and
accumulate the products as described in Alg. 3.

We illustrate the recursive path of Alg. 3 and the underlying mathematical
evaluation form in Fig. 2.12. We start by iterating through the dimension 0 and
then continue the recursive descent into other dimensions for all function levels
that still cover both points. Mathematically, this is equivalent to applying the
distributive law.

What is the complexity of Alg. 3? The recursive function considers every
hierarchical subspace where both input points rest on the same support. Hence,
the complexity of the algorithm is proportional to the number of these subspaces.

Since every hierarchical subspace is identified by a level vector l and the sparse
grids are defined such that the sum of levels may not exceed `+D−1, we know
that the total number of hierarchical subspaces of a sparse grid is (Bungartz &
Griebel, 2004)

|{Wl | |l|1 ≤ `+D − 1}| =
`−1∑
i=0

(
D − 1 + i

D − 1

)
=

(
`+D − 1

D

)
∈ O

(
(`+D)D

D!

)
.
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Algorithm 2: GetBinaryForm: Compute the common binary form of the
coordinates

input : Point coordinates x, x′ ∈ [0, 1], grid maximum level lmax

output: Binary path p
1 initialise p← (0), l ← 2−1

2 while x > 0 ∧ l > 2lmax do
3 b← bx/lc; b′ ← bx′/lc
4 if b 6= b′ then
5 break

6 p← (pT , b)T

7 x← x− b · l
8 l← l/2

Algorithm 3: EvalKernelRec(x,x′,d,lmax) Recursive kernel evaluation

input : Points x,x′ ∈ [0, 1]D, current dimension d, grid maximum level
lmax,

output: Value of the sparse grid kernel k
1 initialise k ← 0, i← 1
2 compute 1d search path p←GetBinaryForm(x[d],x′[d], lmax)
3 Let pd be the length of path p: pd = dim(p)
4 for l← 0 to pd − 1 do
5 compute the next index on the path: i← 2i− (−1)p[l]

6 κ← φ(x[d], l + 1, i) · φ(x′[d], l + 1, i)
7 if d < D − 1 then
8 k ← k + κ·EvalKernelRec (x,x′, d+ 1, lmax − l)
9 else

10 k ← κ
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However, as in every dimension d the level can only vary between 1 and pd,
the number of actually considered subspaces is smaller. Calculating the number
of such subspaces reduces to a combinatorial counting problem of restricted
compositions as the following proposition suggests.

Proposition 2.3. Let p1, . . . , pD be the lengths of the binary representations as
returned by GetBinaryForm for the dimensions 1, . . . , D. Then Alg. 3 evaluates

`+D−1∑
l=D

F (l, D; p1, . . . , pD) (2.85)

hierarchical subspaces with

F (l, D; p1, . . . , pD) =

(
l − 1

D − 1

)
+

D∑
j=1

(−1)j
∑∗

(
l − 1− pi1 − pi2 − · · · − pij

D − 1

)
,

(2.86)
and the summation

∑∗ taken over all j-combinations i1 < i2 < · · · < ij of D.

Proof. Let F (l, D; p1, . . . , pD) be the number of hierarchical subspaces where
the components of the level vector l = (l1, . . . , lD)T such that

1. the components sum up to l:

D∑
d=1

ld = l;

2. the components are restricted:

1 ≤ ld ≤ pd, for each 1 ≤ d ≤ D.

In combinatorical sense, F (l, D; p1, . . . , pD) calculates the number of restricted
compositions (ordered partitions) of l. Then Equation (2.86) follows directly
from (Abramson, 1976, Example (B)).

Since the sum of the level vector components l can take any value between
D and ` + D − 1, the total number of hierarchical subspaces equals the sum
(2.85).

Proposition 2.3 gives the recipe for calculating the exact numer of function
evaluations in Alg. 3 by establishing the connection to a standard combinato-
rial problem and applying the known results from combinatorial mathematics.
Unfortunately, it is not straightforward to bound (2.85) tightly from above to
obtain the complexity class of the Alg. 3. The summation in (2.85) over the first
binomial coefficient in (2.86) suggests exponential dependency on D. The same
is evident from Fig. 2.13, which shows the growth of the number of subspaces

38



2.4. Sparse Grid and other Machine Learning Techniques

1 3 5 7 9 11 13 15

Dimensionality

100

101

102

103

104

105

106

E
va

lu
at

ed
su

bs
pa

ce
s

EvalKernelRec max.
EvalKernelRec avg.
EvalKernelDnC max.
EvalKernelDnC avg.

Figure 2.13.: Number of evaluated subspaces for Algorithms 3 and 4. For the
function EvalKernelRec of Alg. 3 the number of evaluated sub-
spaces depends exponentially on the dimensionality, while for the
function EvalKernelDnC of Alg. 4 this dependency is quadratic.
Here we see an empirical estimation of the number of evaluated
subspaces obtained for 2 000 randomly sampled point pairs with
the dimensionality between 1 and 15. The maximum and the av-
erage number of subspaces is shown.

obtained using Formula (2.85) for 2 000 randomly sampled values of (p1, . . . , pD)
with different dimensionality.

The exponential dependency on D brings us back to the curse of dimen-
sionality. This dependency, however, is characteristic for many algorithms for
grid evaluation, where every hierarchical subspace is visited at least once. Our
analysis yields two further conclusions:

1. Let us imagine a sparse grid with an arbitrary large maximal level ` such
that

∑D
d=1 pd < ` + D − 1 and we are only limited by the distance be-

tween two points and not by the maximum level of the particular sparse
structure.2 Then we can apply the distributive law: estimate the sums
of one-dimensional basis function evaluations and multiply these sums to
obtain the kernel value (as Fig. 2.12 (right) suggests). This leads to a
linear dependency in D. We discuss this result in detail in Proposition
2.4.

2. The recursive path of the algorithm repeatedly runs into evaluation of
the same branches. We hence can store the intermediate results from

2This construction is equivalent to a full grid.
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those branches dramatically reducing the amount of required computa-
tions. This idea leads to Alg. 4.

Proposition 2.4. For a sparse grid with arbitrary large maximum level `→∞
the averaged complexity of kernel evaluation is bounded by (1.5/ ln 2 + 1) · D
evaluations.

Proof. It is easy to see, and Fig. 2.12 demonstrates this explicitly, that for
an arbitrarily deep sparse grid we can use the distributive law, summing up
the evaluations in individual dimensions and multiplying the sums. Hence, the
expected number of pairwise evaluations of functions is equal to

E

[
D∑
d=1

pd

]
=

D∑
d=1

E [d− log2(|xd − x′d|)e] ≤
D∑
d=1

E [− log2(|xd − x′d|) + 1]

= D ·
(
−
∫ 1

0

∫ 1

0

log2(|x− x′|)dx dx′ + 1

)
. (2.87)

In the last transformation we used the assumption that the variables in individ-
ual dimensions are sampled i.i.d. and uniformly.

Now, let us consider the integral above. We first transform the logarithm into
a natural one and omit absolute values by considering only the positive part of
(symmetrical) difference and then evaluate the internal and external integrals:∫ 1

0

∫ 1

0

log2(|x− x′|)dx dx′ =
2

ln 2

∫ 1

0

∫ 1

x

ln(y − x)dy dx

=
2

ln 2

∫ 1

0

[(y − x) ln(y − x)− y]1x dx

=
2

ln 2

∫ 1

0

(1− x) ln(1− x)− 1 + x dx = − 2

ln 2
· 3

4
.

Substituting this result into (2.87) leads directly to the upper bound.

In practice we observed that the average number of evaluations increases
rather as (1.5/ ln 2 + 0.5) ·D but we do not have a formal proof for this observa-
tion. Hence, for a sparse grid without the limiting ` the use of the distributive
law leads to an average complexity that is linear in the number of dimensions!
And for a large portion of point pairs and a sparse grid with higher maximum
level this is what effectively happens.

For the other pairs, the number of evaluations in the same dimension varies
with ` and hence changes in every call of EvalKernelRec for the same dimensions
d.

The path of the recursive algorithm resembles a tree and many branches of
this tree (calls to EvalKernelRec with the same parameters) would give the
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same results. Hence, we derive a new divide-and-conquer Algorithm 4 for fast
kernel evaluation where we store the intermediate results of evaluated branches.

To further accelerate the evaluation we reverse the for-loop evaluating the
functions with the larger level l first. This way we can identify the largest-most
branch of the tree right away. Algorithm 4 illustrates the resulting procedure.
We store the intermediate results in the dictionary cache hashed using a key—
a tuple with the current dimension, the level, and the remaining possible level
sum for a regular sparse grid.

The formula for computation of the index in Line 6 may not be obvious at
first glance. In fact, it is obtained from estimating the index from the path same
as in Alg. 3. Let p be the vector with binary forms obtained from Alg. 2. Then
we have

2pd −
pd−1∑
j=0

(−1)p[j]2pd−j−1 = 2pd −
pd−1∑
j=0

(−2p[j] + 1) · 2pd−1−j =

2pd −
pd−1∑
j=0

(−p[j]) · 2pd−j −
pd−1∑
j=0

2pd−1−j = 2pd −
pd−1∑
j=0

2j +

pd−1∑
j=0

2pd−j · p[j] =

2− 1− 2pd

1− 2
+

pd−1∑
j=0

2pd−j · p[j] = 2pd − 2pd + 1 + 2pd
∑

p[j]2−j =

1 + 2pd
(
x− (x mod 2pd−1)

)
= 1 + 2 · b2pd−1xc.

Lemma 2.5. Let p1, . . . , pD be the maximum number of possible evaluations in
the respective dimensions. The size of the intermediate result table cache and
hence the number of evaluations of Alg. 4 is

D−1∑
d=1

p:d−1−(d−1)∑
t=0

bmin{pd, `− t}c+ + pd (2.88)

with p:d−1 :=
∑d−1

i=0 pi.

Proof. The proof is constructive. The number of different keys for the dimension
d is limited by the sum of levels of the basis function of the previous d − 1
dimensions. This sum of levels is at least d − 1 and at most p:d−1. For a
particular sum of levels so far, let us call it λ, the level of the basis function in
the dimension d can vary between 1 and min{lmax +D−1−λ− (D−d), `}. The
subtraction of (D−d) is due to the fact that the basis functions in the following
D − d dimensions need to have at least level 1. In the final dimension we do
not worry about the sum of levels (we set it to -1 anyway). So the number of
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2. Sparse Grids for Statistical Learning

Algorithm 4: EvalKernelDnC Fast divide-and-conquer kernel evaluation.

input : Points x,x′ ∈ [0, 1]D, current dimension d, grid maximum level
lmax,

output: Value of the sparse grid kernel k
1 initialise k ← 0, i← 1, r ← 1
2 compute lmax from x[d] and x′[d] using (2.84)
3 lmax = min{lmax, lmax} − 1
4 compute 1d search path p←GetBinaryForm(x[d],x′[d], lmax)
5 Let pd be the length of path p: pd ← dim(p)
6 compute the last index i = 2b2pd−1x[d]c+ 1
7 for l← pd − 1 to 0 do

8 key =

{
(d, l, lmax +D − 1− l) d < D

(d, l,−1) else

9 if cache[key] is already precomputed then
10 k ← k + cache[key]
11 break

12 else
13 if d < D then
14 r ← EvalKernelDnC(x, x′, d+ 1, lmax − l)
15 κ← φ(x[d], l + 1, i) · φ(x′[d], l + 1, i)
16 backward update: add the result from smaller levels, if available

17 keynext =

{
(d, l − 1, lmax +D − 1− (l − 1)) d < D

(d, l − 1,−1) else

18 if cache[keynext] is already precomputed then
19 cache[key]+ = cache[keynext], k+ = cache[keynext]
20 break

21 else
22 forward update: add the result to large levels if those were

precomputed before

23 keyprev =

{
(d, l + 1, lmax +D − 1− (l + 1)) d < D

(d, l + 1,−1) else

24 while cache[keyprev] is already precomputed do
25 cache[keyprev]+ = cache[key]

26 keyprev =

{
(d, keyprev[2] + 1, keyprev[3]− 1) d < D

(d, keyprev[2] + 1,−1) else

27 k ← k + cache[key]

28 compute the next index on the path i← (i+ (−1)p[l])/2
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different cache entries is pD. Altogether we have:

D∑
d=1

L:d−1∑
λ=d−1

|min{pd, `+D − 1− λ− (D − d)}|+ + L[D] =

D∑
d=1

L:d−1∑
λ=d−1

|min{pd, `− (λ− (d− 1))}|+ + L[D] =

D−1∑
d=1

L:d−1−(d−1)∑
t=0

|min{pd, `− t}|+ + L[D].

From Lemma 2.5 it follows directly that the complexity of Alg. 4 is in O(D2`)
in the worst case. Figure 2.13 provides an empirical evidence that the divide-
and-conquer Algorithm 4 scales well with the number of dimensions.

The kernel trick algorithm combines the sparse grid models and the kernel
machines. As the complexity of our kernel trick is only quadratic in the num-
ber of attributes, it effectively breaks the curse of dimensionality making the
combination of sparse grids and kernel machines especially attractive for high-
dimensional problems with few data points.

2.4.5. Linear Smoothers

If the dependence of the target variable y and the input x is assumed to be
smooth, the underlying nonparametric regression method is called a scatterplot
smoother (Buja et al., 1989). The linear smoother’s estimate f can be expressed
as a linear transformation of the observed target values y with the so-called
smoother matrix S ∈ RN×N :

f = S · y.
Examples of linear smoothers are running means, locally weighted running lines,
kernel smoothers, and smoothing splines (Hastie et al., 2011).

With (2.79) and (2.82) we can express sparse grid model as a linear smoother
with estimates

f = Sy := Φ
(
ΦTΦ + λD

)−1
ΦTy.

Hence, the sparse grid smoother matrix is defined as

S := Φ
(
ΦTΦ + λD

)−1
ΦT . (2.89)

An analysis of the eigenvalues and eigenvectors of the smoother matrix gives
us an alternative view of the data transformation for a sparse grids approxima-
tion.
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Proposition 2.6. The eigenvalues of the smoother matrix S defined in (2.89)
lies in the interval [0,1).

Proof. Let D be an arbitrary symmetric positive definite matrix. From (2.89)
we can write the eigenvalue problem as

Φ(ΦTΦ + λD)−1ΦTw = γw, (2.90)

where γ is an eigenvalue and w is an eigenvector. After multiplying both sides
of the equation by ΦT from left we obtain

ΦTΦ(ΦTΦ + λD)−1ΦTw = γ(ΦTΦ + λD)(ΦTΦ + λD)−1ΦTw.

Hence, with z := (ΦTΦ + λD)−1ΦTw we arrive at the generalised eigenvalue
problem

ΦTΦz = γ(ΦTΦ + λD)z (2.91)

with the same eigenvalue γ as that of S.

The Rayleigh quotient associated with (2.91) satisfies

0 ≤ zTΦTΦz

zT (ΦTΦ + λD)z
=

a

a+ λb
< 1.

The inequality holds since both ΦTΦ and D are positive definite and hence a
and b are positive. It follows that the spectrum of S lies in the interval [0,1).

As the matrix S explains the transformation of target values to the predic-
tions, let us look at the eigenvalues and eigenvectors of this matrix to gain a
better insight into the sparse grid regression.

Since the image of S is the same as of Φ, it is clear that S would have at
most rank(Φ) nonzero eigenvalues. Figure 2.14 plots these eigenvalues for the
one-dimensional sparse grid with the maximum level 3, computed using 2 000
points uniformly distributed at [0, 1]. It is surprising that for even large values
of the regularisation parameter λ of 0.1 and 0.01 the nonzero eigenvalues are
almost 1. We made the same observations for higher dimensions as well.

Figure 2.15 shows the eigenvectors of S against the respective coordinates
in x dimension. Regularisation does not change the forms of the eigenvectors.
In fact, the eigenvectors correspond to the different frequencies m of the sinus
function

a · sin(mxπ).

This becomes evident from the results of the discrete sinus transformation de-
picted to the right of the respective eigenvectors. The form of eigenvalues and
eigenvectors leads us to the conclusion that our one-dimensional sparse grid
works as a low-pass filter.
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Figure 2.14.: Eigenvalues for one-dimensional sparse grid with different regular-
isation parameters λ. As regularisation matrix we used identity
matrix. The nonzero eigenvalues are very close to 1 even for rela-
tively high λ of 0.1 and 0.01.

As illustrated in Figures 2.16 – 2.18, for higher dimensions the eigenvectors
correspond to the mixed frequencies

a1 · sin(mx1π) sin(nx2π) + a2 · sin(nx1π) sin(mx2π)

of the hyperbolic cross (see (Hallatschek, 1992) for the relationship to sparse
grids). Despite the mixed frequencies, the eigenspace of the two-dimensional
sparse grid is the same as if those were the pure frequencies and hence it is also
a low-pass filter.

Consider a particular case of D = I as we have in (2.31). Let Φ = UΣVT

the singular value decomposition of the feature matrix.

Following (Hastie et al., 2011), we consider the prediction

f = Φŵ = Φ(ΦTΦ + λI)−1ΦTy

= UΣ(Σ2 + λI)−1ΣUTy

=

p∑
j=1

uj
σ2
j

σ2
j + λ

uTj y, (2.92)

where the uj are the columns of U. Note that since λ ≥ 0, we have σ2
j/(σ

2
j +λ) ≤

1 as in Prop. 2.6. Ridge regression computes the coordinates of y with respect
to the orthonormal basis U. It then shrinks these coordinates by the factors
σ2
j/(σ

2
j + λ). This means that a greater amount of shrinkage is applied to
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Figure 2.15.: Eigenvectors of a one-dimensional sparse grid smoother. One-
dimensional eigenvectors correspond to the different sinus frequen-
cies.
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Figure 2.16.: Eigenvalues and eigenvectors 1 through 6 of a two-dimensional
sparse grid smoother. The eigenvectors correspond to the mixed
frequencies a1 · sin(mx1π) sin(nx2π) + a2 · sin(nx1π) sin(mx2π) of
the hyperbolic cross.
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Figure 2.17.: Eigenvalues and eigenvectors 7 through 12 of the two-dimensional
sparse grid smoother. The eigenvectors correspond to the mixed
frequencies a1 · sin(mx1π) sin(nx2π) + a2 · sin(nx1π) sin(mx2π) of
the hyperbolic cross.
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Figure 2.18.: Eigenvalues and eigenvectors 13 through 17 of the two-dimensional
sparse grid smoother. The eigenvectors correspond to the mixed
frequencies a1 · sin(mx1π) sin(nx2π) + a2 · sin(nx1π) sin(mx2π) of
the hyperbolic cross.
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the coordinates of basis vectors with smaller σ2
j . The small singular values σj

correspond to directions in the column space of Φ having small variance.
We define a quantity called effective degrees of freedom of the ridge regression

fit

df(λ) = tr[Sλ] = tr[Φ(ΦTΦ + λI)−1ΦT ]

=
M∑
j=1

σ2
j

σ2
j + λ

. (2.93)

This is a monotone decreasing function of λ. Usually in a linear regression
fit with M variables, the degrees of freedom of the fit is M , the number of free
parameters. Although all M coefficients in a sparse grid model will not be zero,
they are fit in a restricted way controlled by λ. We have df(λ) = M when λ = 0
(no regularisation) and df(λ)→ 0 as λ→∞.

Despite their numerous advantages as universal nonparametric models for su-
pervised learning, adaptive sparse grids are more often used in computaional
science and engineering or uncertainty quantification than in machine learning.
Nonetheless, there are strong ties between sparse grids and other popular meth-
ods from statistics and machine learning, which provide new insights into sparse
grids theory and motivate the creation of new algorithms and applications.
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Manifolds

This is the Death whose particular sphere of operations is, well,
not a sphere at all, but the Discworld, which is flat and rides
on the back of four giant elephants who stand on the shell of
the enormous star turtle Great A’Tuin, and which is bounded
by a waterfall that cascades endlessly into space. Scientists
have calculated that the chance of anything so patently absurd
actually existing are millions to one. But magicians have
calculated that million-to-one chances crop up nine times out of
ten.

— Terry Pratchett, Mort

He who guards his sparse grid points and his sample size, guards his prediction
model from trouble.1 Sparse grids allow to postpone the onset of the curse of
dimensionality, typical for other grid-based nonparametric models. However,
as the dimensionality of problems grows, this advantage becomes insufficient.
Besides exploding computational costs we face the problem of sample size: the
number of required training samples also grows exponentially with the dimen-
sionality. This, in turn, further increases the computational costs.

Given certain regularity assumptions, Stone (1982) showed that the optimal
rate of convergence2 for nonparametric regression grows asO(N−p/(2p+D)), where
N is the sample size, D is the dimensionality of the input variables, and the
regression function is assumed to be p times differentiable.

Consider the following example: we want to approximate a regression func-
tion with p = 2 from a dataset with D = 5 and N = 1 000, which results in
the optimal convergence rate of approximately 0.22. Suppose that D is now

1Interpretation of Proverbs 21:23 NASB after four years in the PhD program.
2The optimal rate of convergence defined by Stone (1982) is unusual for a computer

scientist and a little complicated. We provide it here for completeness, however, the reader
is not required to understand the definition in order to follow the main exposition of the
chapter. Stone defines the optimal rate of convergence as a sequence {bN} indexed by the
sample size. Let Θ be a collection of functions, θ ∈ Θ the unknown regression function, and
T̂N the estimator of θ using N samples. The sequence {bN} is called lower rate of convergence,
if there is a constant c > 0 such that limN inf T̂N

supΘ p(‖T̂N − θ‖ ≥ cbN ) = 1, where inf T̂N

is over all possible estimators. If there is a sequence of estimators {T̂N} and c > 0 such that
limN supΘ p(‖T̂N − θ‖ ≥ cbN ) = 0 then {bN} is called achievable rate of convergence. The
sequence if called an optimal rate of convergence if it is both lower and achievable.
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increased to 15. Then, in order obtain the same optimal convergence rate, we
need to increase the number of samples to roughly 2 000 000!

Thus high-dimensional problems require tailored solutions. In particular, if
the data points lie on a low-dimensional manifold instead of filling the complete
high-dimensional space, we can exploit this property to produce simpler models
with the same prediction qualities at the fraction of computational costs. Even
if the existence of a low-dimensional manifold is not known a priori, it may
be a necessary assumption, which makes high-dimensional supervised learning
problems computationally feasible.

We begin with a review of the literature related to manifold learning and
sparse grids. We explain how the manifold identification can be intergrated
into the supervised learning with adaptive sparse grids if it is formulated as
a constrained optimisation problem. This problem can be approached either
in its original constrained non-convex formulation using specific heuristics, as
described in Sec. 3.2, or in a relaxed unconstrained convex formulation, as de-
scribed in Sec. 3.3. The latter class of problems can be efficiently solved using
the specialised algorithms presented in Sec. 3.4. Finally, Section 3.5 concludes
this chapter with an empirical study of the presented methods for adaptive
sparse grid learning on a series of synthetic and real-world problems.

3.1. Learning and Manifolds

Traditionally, supervised learning of problems with low-dimensional manifolds
is a two-stage process: first, estimate a low-dimensional manifold, then use
standard regression or classification algorithms on the transformed data. A large
body of research in the machine learning community is focused on identification
and estimation of latent manifolds in data as well as on nonlinear dimensionality
reduction (see (Burges, 2009; Lee & Verleysen, 2007) and references therein).
For example, sparse grids were used for dimensionality reduction and manifold
learning with generative topographic mapping (Griebel & Hullmann, 2014a,
2014b), principal manifold learning (Feuersänger & Griebel, 2009; Bohn et al.,
2016), and Laplacian eigenmaps (Peherstorfer et al., 2011).

However, identifying a manifold is far from being trivial and by itself can
pose a significant computational burden. For instance, the principal manifold
learning method described by Feuersänger and Griebel (2009) by itself requires
the solution of a large number of convex and non-convex regression problems.

An alternative approach is to perform regression and classification tasks di-
rectly adapting the model to the manifold. Let us illustrate this principle in con-
nection with sparse grid classification. Figure 3.1 depicts a rectangular decision
boundary in the hierarchical subspaces of a sparse grid. Inside the rectangular
the data points have one class and outside they have another. We can prune the
basis functions that support only the points of the same class (depicted white)
without loss of accuracy. Hence, adapting to a manifold in a classification prob-
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3.1. Learning and Manifolds

Figure 3.1.: Adaptive sparse grid for decision boundary identification. In order
to adapt the model to the manifold, we need to identify only those
basis functions which intersect the decision boundaries in every hi-
erarchical subspace.

lem boils down to the identification of decision boundaries that differentiate one
class from another. As shown in Fig. 3.1, in every hierarchical subspace we need
to identify only those basis functions which intersect the decision boundaries.

This principle is not unique to sparse grids. Scott and Nowak (2005) showed
that the decision trees with dyadic partitioning can focus on lower-dimensional
manifolds, adapting to the conditions around decision boundaries and eliminat-
ing irrelevant features. The authors suggested that their bounding techniques
can be applied to other families of trees using the Vapnik-Chervonenkis theory.
Kpotufe (2009) and Kpotufe and Dasgupta (2012) used random projections to
partition the ambient space and tree-based regressors to construct estimators
on these partitions. Adaptive sparse grid models for classification relate to the
dyadic decision trees and, intuitively, should inherit some of their properties.
However, to the best of our knowledge this inheritance has not been shown
formally.

Binev et al. (2005) and Binev et al. (2007) studied partition-based piecewise-
constant and piecewise-linear estimators, establishing a general framework that
includes the case of low-dimensional manifolds. The optimal convergence in
their framework does not depend directly on the ambient dimension, but rather
on how well the true function can be approximate by its class of estimators.
The adaptive dyadic partitioning and the refinement of the tree-like structures
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3. Exploiting Low-dimensional Manifolds

described by the authors resembles the principles behind the adaptive sparse
grids.

More recently, Kpotufe and Garg (2013) presented a kernel regression pro-
cedure that adapts to the local smoothness and intrinsic dimensionality of the
problem. Y. Yang and Dunson (2016) analysed the regression with Gaussian
Processes and used rescaling to adapt the models to a low-dimensional manifold.

Assuming the view of sparse grid basis functions as feature maps (Sec. 2.4.1),
we can see the adaptivity as a process of identifying the best features for a
particular prediction task. Since the basis functions are locally constrained, the
“best” features correspond to the “important” neighbourhoods in the ambient
space as shown in Fig. 3.1.

To put it formally, we extend the minimisation of the empirical risk functional
(2.5) with a cardinality constraint, limiting the number of nonzero components
by k:

min
w∈RM

1
N

N∑
i=1

L (f(xi; w), yi) (3.1)

subject to ‖w‖0 ≤ k.

We define the `0 regularisation term3 as ‖w‖0 := |{j | wj 6= 0}| underlining the
similarities to `1- and `2-norm.

In the context of regression, the problem (3.1) relates to the best subset se-
lection method, which identifies k features that yield the lowest residual sum of
squares. Furnival and Wilson (1974) suggested a branch-and-bounds algorithm
(which they called “leaps and bounds”) for an efficient search in the feature
space. The appropriate choice of k involves a trade-off between bias and vari-
ance and hence relies on statistical techniques to identify the number of features
that lead to the lowest expected prediction error (Hastie et al., 2011).

Despite its efficiency, the leaps-and-bounds method still becomes prohibitively
expensive for more than 30 or 40 features, which is not much for a sparse
grid in a high-dimensional space. Moreover, the direct application of the best
subset selection method to choose the sparse grid basis functions is problematic.
For instance, the best subset in Fig. 3.1 consists in the 6 basis functions of
the subspace W(3,3) in the bottom right corner. But neglecting the large-scale
functions of hierarchical ancestors can lead to overfitting. As we have seen
in Sec. 2.4.5, the hierarchical ancestors are important to represent the lower
frequencies, while the noise usually hides in the higher frequencies. Hence, we
are required to look for another methods of feature selection that preferably can
take the hierarchical structure of sparse grids into account.

The minimisation with cardinality constraints (3.1) is known to be an NP-
hard problem (Natarajan, 1995) and hence is intractable for large solution

3The term ‖ · ‖0 is not a proper norm.
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spaces. The multitude of methods to overcome this obstacle can be assigned to
one of two categories:

1. Greedy algorithms approximate the optimal solution by sequentially select-
ing the most promising features. This method is very popular in signal
processing where it is known under the name “matching pursuit” (Tropp
& Gilbert, 2007; Wang et al., 2009; Donoho et al., 2012). We discuss the
greedy algorithms in Sec. 3.2

2. Alternatively, one can substitute the non-convex constraint in (3.1) by its
convex relaxation or, in more general case, one can regularise the min-
imisation problem using sparsity-inducing penalties. While being known
for some time, recently these techniques experienced a renaissance in the
machine learning community and are currently a subject of active re-
search (Tibshirani, 1996; Efron et al., 2004; Bach et al., 2011; Bach, 2013).
We discuss the application of the sparsity-inducing penalties to sparse grid
learning in Sections 3.3 and 3.4.

3.2. Algorithms for Greedy Optimisation

Exhaustive search in the feature space becomes prohibitively expensive even
for comparably small grid index-sets of, say, 40 features. Greedy algorithms
generate a global solution performing a sequence of locally-optimal decisions.
Depending on the direction of this decision path, the solution can either grow,
shrink, or alternate between those two operations. This results in forward,
backward, and forward-backward algorithms for subset selection.

The solution space of a sparse grid model has to obey weak hierarchy: the
induced sparse grid graph has to be connected and contain the “root” feature.
Fortunately, this significantly limits the space of feasible solutions. Besides
computational efficiency, greedy selection methods have the ability to “grow” a
solution that always satisfies the property of weak hierarchy.

We start by examining the standard greedy selection methods: backward and
forward selection. This provide us the necessary building blocks. We discuss
why forward selection makes sense for sparse grid models and how we can use the
properties of hierarchical basis functions to design an efficient greedy algorithm
for sparse grids. These building blocks for backward and forward selection can be
combined to the superior adaptive greedy algorithm described at the conclusion
of this section.

3.2.1. Backward Greedy Selection

The backward greedy selection algorithm, illustrated in Alg. 5, trains the full
model with all features first and then sequentially removes the features with
the smallest impact on the loss function. The method can produce optimal
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results, as shown by Hastie et al. (2011), but it is computationally expensive.
In addition, if the full model has more features than training examples then it
will run into overfitting. In the context of the dimension-adaptive sparse grids,
backward greedy selection is used to identify the important sparse grids ANOVA
components (Bohn & Griebel, 2013). We come back to this topic in Sec. 4.2.1.

Algorithm 5: Backward Greedy Selection.

input : Set of all possible grid indices G and target vector y ∈ RN

output: G(k) and w(k)

1 Let M := |G| and G(M) = G
2 for k = M,M − 1, . . . do
3 Estimate wk := arg min

w∈RG(k) J(w;G(k)) as in (2.31)

4 Estimate s(k) = arg mins∈G(k) J̃(G(k) \ {s})
5 Let G(k−1) = G(k) \ {s(k)}

3.2.2. Forward Greedy Selection

The forward greedy selection algorithm, illustrated in Alg. 6, starts with root
node G(0) and generates a sequence G(0) ⊂ G(1) ⊂ · · · ⊂ G(k) ⊂ · · · adding new
basis functions to maximise the negative marginal gain:

G(k) := G(k−1) ∪ arg max
s∈A(k−1)

G

−J̃(s|G(k−1)). (3.2)

In statistics and signal processing this algorithm is widely used and referred to
as boosting or matching pursuit. With some modifications, this is also the most
commonly used method for adaptive sparse grids (Pflüger, 2010, 2012; Jakeman
& Roberts, 2011; Hegland, 2003; Garcke, 2004; Gerstner & Griebel, 2003).

How efficient is the forward greedy selection algorithm? We can show that
Alg. 6 produces a result that is no more than (1−1/e) times worse than optimum.
The key to this theoretical bound is the observation that the negative marginal
gain for sparse grids has the property of diminishing returns as we will explain
in the following.

Let J−(G) be the difference between the sum of squared target values and

J̃(G):

J−(G) :=
N∑
i=1

y2
i − J̃(G). (3.3)

The function J−(G) is a submodular function.
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Algorithm 6: Forward Greedy Selection.

input : y ∈ RN and ε > 0
output: G(k) and wk

1 Let G(0) = {((1, . . . , 1), (1, . . . , 1))} contain the root node and

w(0) = (1/N1Ty)
2 for k = 1, 2, . . . do

3 Find s(k) := arg maxs∈A
G(k)
−J̃(s|G(k−1))

4 Let G(k) = G(k−1) ∪ {s(k)}
5 Estimate wk := arg min

w∈RG(k) J(w;G(k)) as in (2.31)

6 if −J̃(s|G(k−1)) ≤ ε then
7 break

Definition 3.1. Let Γ be a set, P(Γ) its powerset, and h : P(Γ)→ R a set func-
tion. Then h is said to be submodular if it satisfies the property of diminishing
returns

h(x|X) ≥ h(x|Y ) (3.4)

for all sets X ⊆ Y ⊆ Γ and all elements x ∈ Γ \ Y . The submodular function h
is monotone non-decreasing if h(x|X) ≥ 0 for each element x ∈ Γ \X and
each set X ⊆ Γ.

Theorem 3.1. The function J− defined in (3.3) is a monotone non-decreasing
submodular function. The submodular optimisation problem with cardinality
constraint

max
G⊂Γ,|G|≤m

J−(G) (3.5)

is NP-hard. It can be solved with a greedy algorithm such that, if Ĝ is the greedy
solutions and G∗ is the optimal solution, we have

J−(Ĝ)

J−(G∗)
≥ 1−

(
m− 1

m

)m
≥
(

1− 1

e

)
≈ 0.632. (3.6)

This boundary is tight unless P=NP.

Proof. To simplify the exposition of the chapter, we discuss the proof in Ap-
pendix B.1.

Albeit using the marginal gain for the forward greedy algorithm leads to
near-optimal results, computation of the marginal gain can be expensive, since
adding a new grid index to the index-set requires re-estimation of all sparse grid
coefficients in the model. To make it more practical, the following lemma offers
an inexpensive lower bound approximation.
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Lemma 3.2. The negative marginal gain of J̃ can be bounded from below as

−J̃(s|G) = J−(s|G) ≥ ρ(0)(s,G), with ρ(0)(s,G) =

(∑N
i=1 riφs(xi)

)2

∑N
i=1 φ

2
s(xi) + λN

. (3.7)

Proof. Let ŵG ∈ RG be the minimiser of (2.36), with ŵG = (ŵg)g∈G, and
let ri :=

∑
g∈G ŵgφg(xi) − yi be the residual at the point (xi, yi). Then with

definitions (2.36), (3.3), and (2.37) the marginal gain function J−(s|G) satisfies

J−(s|G) =− min
w∈RG∪{s}

 N∑
i=1

(∑
g∈G

wgφg(xi)−yi+wsφs(xi)
)2

+λN
∑
g∈G

w2
g+λNw

2
s

+

N∑
i=1

(∑
g∈G

ŵgφg(xi)− yi
)2

+ λN
∑
g∈G

ŵ2
g

≥− min
ws∈R

(
N∑
i=1

(ri+wsφs(xi))
2+λN

∑
g∈G

ŵ2
g+λNw

2
s

)
+

N∑
i=1

r2
i+λN

∑
g∈G

ŵ2
g

= − min
ws∈R

N∑
i=1

(
2wsriφs(xi) + w2

sφ
2
s(xi)

)
+ λNw2

s =: ρ(0)(s,G). (3.8)

We can determine the minimising weight ŵs of ρ(0)(s,G):

2
N∑
i=1

φs(xi) (ri + ŵsφs(xi)) + 2λNŵs
!

= 0,

N∑
i=1

ŵsφ
2
s(xi) + λNŵs = −

N∑
i=1

riφs(xi),

ŵs = −
∑N

i=1 riφs(xi)∑N
i=1 φ

2
s(xi) + λN

. (3.9)

We then evaluate ρ(0)(s,G) explicitly by substituting ws = ŵs in (3.8):

ρ(0)(s,G) = − min
ws∈R

N∑
i=1

(
2wsriφs(xi) + w2

sφ
2
s(xi)

)
+ λNw2

s

= −
(

2ŵs

N∑
i=1

riφs(xi) + ŵ2
s

N∑
i=1

(φs(xi))
2 + λNŵ2

s

)

= 2

∑N
i=1 riφs(xi)∑N

i=1 φ
2
s(xi) + λN

N∑
i=1

riφs(xi)−
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(∑N
i=1 riφs(xi)

)2

(∑N
i=1 φ

2
s(xi) + λN

)2

N∑
i=1

(φs(xi) + λN)2

= 2

(∑N
i=1 riφs(xi)

)2

∑N
i=1 φ

2
s(xi) + λN

−

(∑N
i=1 riφs(xi)

)2

∑N
i=1 φ

2
s(xi) + λN

=

(∑N
i=1 riφs(xi)

)2

∑N
i=1 φ

2
s(xi) + λN

. (3.10)

This establishes Formula (3.7) and proves the lemma.

Lemma 3.2 implies that instead of maximising the more expensive marginal
gain of J− with respect to the candidate indices s (as required in Line 2 of Alg. 6),
we can maximise its lower bound ρ(0)(s,G). The computation of ρ(0)(s,G) is no
more expensive than the computation of the refinement indicator (2.40). The
resulting refinement procedure selects the grid index s with the highest indicator
ρ(0)(s,G) among all indices in the candidate set.

In practice, it is advisable to add multiple new grid indices in every refinement
step instead of one. However, it may be insufficient to choose the indices based
on the size of the indicators. For example, taking two basis functions with a
large support overlap may be less expedient than taking functions with disjoint
support. Hence, selecting a grid index may reduce the refinement indicators
(potential benefit) of the other candidate indices in the admissible set.

Based on the idea of lazy-greedy selection for submodular optimisation (Mi-
noux, 1978; Leskovec et al., 2007; Wei et al., 2014) we present Alg. 7 for the
selection of several basis functions for refinement at once. The algorithm makes
use of a priority queue with refinement indicators ρ. At the step j of the
refinement procedure the algorithm retrieves the largest grid index v from the
queue and updates its refinement indicator ρ(j)(v,G). If the updated indicator
is still greater than the upper bound of the following grid index u in the queue,
v is accepted for refinement, otherwise v is put back into the queue and the
procedure repeats.

What is an efficient way to update the refinement indicators? The following
lemma gives us a formula.

Lemma 3.3. Suppose that I(j) contains j grid indices already selected from the
candidate set, and that at the step j Alg. 7 selected the grid index u. Then for
every v ∈ A \ I(j) the refinement indicator is updated as

ρ(j)(v,G) =

√ρ(j−1)(v,G) +

∑N
i=1 ŵuφu(xi)φv(xi)√∑N

i=1 φ
2
v(xi) + λN

2

. (3.11)
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Algorithm 7: Fast Greedy Refinement.

input : Old grid G(k), admissible index set A, number of new indices n
output: New grid G(k+1)

1 compute the error indicators ρ(0)(g,G(k)) for all candidates using (3.7)
2 store the grid indices in a priority queue Q such that

ρ(0)(Q[0], G(k)) ≥ ρ(0)(Q[1], G(k)) ≥ . . . ≥ ρ(0)(Q[|A| − 1], G(k))

3 select the index with largest error indicator I(1) ← {Q.pop()}
4 j ← 2
5 repeat
6 select the largest element v ← Q.pop()
7 update the indicator refinement indicator of v using (3.14)

8 if ρ(j)(v,G(k)) is greater or equal to the refinement indicator stored
for the next index in the queue then

9 add the index to the sparse grid index-set I(j) ← I(j−1) ∪ {v}
10 increment j ← j + 1

11 else
12 sort v back into the queue Q.push(v)

13 until j = n

14 G(k+1) ← G(k) ∪ I(j)

Proof. If every g ∈ I(j) has the optimal coefficient ŵg computed as in (3.9), the
error terms become

r
(j)
i = ri +

∑
g∈I(j)

ŵgφg(xi) = r
(j−1)
i + ŵuφu(xi), such that u ∈ I(j) \ I(j−1).

For every v ∈ A \ I(j) the refinement indicator is updated as

ρ(j)(v,G) =

(∑N
i=1 r

(j)
i φs(xi)

)2

∑N
i=1 φ

2
s(xi) + λN

=

 ∑N
i=1 riφv(xi)√∑N

i=1 φ
2
v(xi) + λN

+

∑N
i=1 φv(xi)

∑
g∈I(j) ŵgφg(xi)√∑N

i=1 φ
2
v(xi) + λN

2

(3.12)

=

 ∑N
i=1 r

(j−1)
i φv(xi)√∑N

i=1 φ
2
v(xi) + λN

+

∑N
i=1 ŵuφu(xi)φv(xi)√∑N

i=1 φ
2
v(xi) + λN

2

, s.t. u ∈ I(j) \ I(j−1).

(3.13)
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Equation (3.12) implies that the updated refinement indicator can be obtained
from the original one using the formula

ρ(j)(v,G) =

√ρ(0)(v,G) +

∑N
i=1 φv(xi)

∑
g∈I(j) ŵgφg(xi)√∑N

i=1 φ
2
v(xi) + λN

2

. (3.14)

Similarly, Equation (3.13) implies that it can also be obtained from a previously
updated indicator as

ρ(j)(v,G) =

√ρ(j−1)(v,G) +

∑N
i=1 ŵuφu(xi)φv(xi)√∑N

i=1 φ
2
v(xi) + λN

2

.

What happens if more than one index is taken in the greedy procedure? While
the theoretical guarantees for this case are missing, the idea was successfully ap-
plied in a number of algorithms for large sparse inverse problems using matching
pursuit methods (Kambadur & Lozano, 2013; Blumensath & Davies, 2009).

By posing sparse grid refinement as a discrete optimisation problem we gained
an access to the theory of submodular functions. This allowed us to derive a re-
finement indicators that, combined with some specific properties of submodular
functions, guarantee that our choice of grid points to refine is not too far from
the optimal. We derived an algorithm that allowed us to add new basis func-
tions without recomputing all refinement indicators, which should significantly
accelerate the process. If this is still not sufficient, we can add more than one
new basis function at once. While the optimality bounds of the latter strategy
are unknown, the procedure still works well in practice.

3.2.3. Adaptive Forward-Backward Greedy Selection

The forward selection algorithm can be further improved significantly if the
features are not nearly orthogonal. Since the algorithm cannot correct the
mistakes made in earlier steps, it has a significant drawback if the features
are correlated. Unfortunately, this is the case for the features that correspond
to the hierarchically related sparse grid basis functions.

Figure 3.2 illustrates an example where simple forward selection fails to obtain
the sparsest solution: The target vector y can be perfectly represented as an
affine combination4 of the feature vectors φ2 and φ3. However, since φ1 is closer

4We restrict the example to affine combinations instead of linear combinations. This
means that, although the combination coefficients may be positive or negative, its sum is
always one. Otherwise, in a two-dimensional plane the vector y could be represented as a
linear combination of any two linear independent features in the example.
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Figure 3.2.: Failure of the forward greedy selection algorithm. The target vector
y can be represented using the feature vectors φ2 and φ3. Never-
theless, the superfluous vector φ1 is closer to y and is selected first,
followed by φ2 and φ3. Adapted from T. Zhang (2011).

to y, it is selected first, followed by φ2 and φ3. Now, since φ2 and φ3 would be
sufficient, we would like to remove φ1 in order to obtain the optimal solution,
which is not allowed by the forward selection algorithm.

A natural extension of the forward and backward greedy selection methods
is the combination of these two. Feuersänger (2010, Sec. 2.2.1) presented an
adaptive sparse grid algorithm that can either refine or compress the sparse
grid for function interpolation. However, his backward greedy selection step is
sensitive to the choice threshold parameter ε′, which controls the features to
delete. Choose it too small and the algorithm fails to delete spurious features,
choose it too large and important features will be lost.

T. Zhang (2009) introduced an adaptive forward-backward greedy selection
algorithm for the least squares loss function. This work was extended by Liu
et al. (2014) to accommodate general convex smooth functions. We adjust the
method for sparse grid regression as shown in Alg. 8. It represents a combination
of the Forward Greedy Algorithm 6 in Lines 7–11 and of the Backward Greed
Algorithm 5 in Lines 14–21. The algorithm adaptively decides when to take
the backward step ensuring that the gain of the previous forward steps is not
voided. In fact, a backward step is carried out only if the squared error increase
d− is no more than a half of the squared error decrease d+ from the previous
forward step. This means that after t iterations the squared error is reduced by
at least tε/2 independent of the number of the backward steps.

T. Zhang (2011) showed that the adaptive forward-backward selection al-
gorithm can efficiently solve regression problems given the restricted isometry
condition. This condition states that the smallest eigenvalue of the k × k prin-
cipal submatrices of the M ×M design matrix ΦTΦ as used in (2.33) can be
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Algorithm 8: Adaptive Forward-Backward Greedy Selection, adapted
from T. Zhang (2011)

input : y ∈ RN and ε > 0
output: G(k) and w(k)

1 Let η = 0.5 // it can also be any number in (0, 1)
2

3 Let G(0) = ∅ and w(0) = (1/N1Ty)
4 Let k = 0
5 while true do
6 // forward greedy selection step

7 Find s(k) := arg maxs∈A
G(k)
−J̃(s|G(k−1))

8 Let δ(k+1) = −J̃(s|G(k−1))

9 Let G(k) = G(k−1) ∪ {s(k)}
10 if δ(k+1) ≤ ε then
11 break

12 Let k = k + 1

13 // backward greedy selection step

14 while true do

15 Estimate s(k) = arg mins∈G((k) J̃(G(k) \ {s})
16 Let d− = −J̃(s(k)|G(k) \ {s(k)})
17 Let d+ = δ(k)

18 if d− > η · d+ then
19 break

20 Let G(k−1) = G(k) \ {s(k)}
21 Let k = k − 1
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bounded away from zero. This assumption is satisfied for the sparse grid mod-
els due to the linear independence of the hierarchical basis as long as there are
training points on the support of every basis function (no zero feature vectors).

For the optimal performance, one should decrease the refinement threshold ε
as O(σ2 lnD/N) with σ2 being the noise variance. This means that, at least in
theory, adaptive forward-backward greedy selection needs more iterations if N
grows.

The adaptive forward-backward algorithm is natural extensions of the adap-
tive sparse grid learning algorithms. By alternating between the forward and
the backward step—between refining and coarsening of a sparse grid model—it
adds only the most promising and removes obsolete basis functions. However,
this is not the only way to increase parsimony. In the next section we consider
a number of convex penalties to facilitate sparsity.

3.3. Convex Problem Formulations with
Sparsity-Inducing Penalties

The subset selection methods described in the previous section produce inter-
pretable models by retaining a subset of predicting features and discarding the
rest. However, these discrete optimisation methods often exhibit high variance
of the results. Due to this high variance, the performance of the resulting models
can be far from optimal. Optimisation with sparsity-inducing penalties , some-
times called shrinkage methods , offers a continuous alternative to the discrete
selection methods that does not suffer from high variability.

The idea is to transform the optimisation problem (3.1) with a discrete `0

constraint into an optimisation problem

min
w∈RM

1
N

N∑
i=1

L(f(xi; w), yi) + λΩ(w) (3.15)

with a continuous penalty Ω (Bertsekas & Rheinboldt, 1982). The `1-norm
of a vector in a unit cube is the tightest convex hull over the level set of `0

and hence is well suited as a penalty. Under weak assumptions on L and Ω
from Lagrangian multiplier theory, one can show that the solutions for these
optimisation problems for certain λ ≥ 0 and k ≥ 0 are equivalent (see Borwein
& Lewis, 2006, Sec. 4.3). Hence, we can move from the realm of constrained
discrete optimisation into unconstrained convex optimisation.

Although the sets of solutions where λ and k vary—the regularisation paths—
are equivalent, the correspondence between particular λ and k is usually un-
known. Hence, we cannot select the regularisation parameter λ that corresponds
to a particular number of features k. In practice, however, it is rarely a problem
as the hyperparameters λ or k are estimated in a validation procedure.
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(a) `22 penalty norm (b) `1 penalty norm

Figure 3.3.: Parameter estimation for lasso and ridge regression. The ball of
the penalisation term B is depicted in blue and the level-set of L is
depicted in red. At the optimal point the level-set is tangential to
B.

Besides `1-norm there are a number of other regularisation functions that
aim to increase the sparsity and sometimes to enforce a special structure of the
minimiser w. We discuss the functions applicable to sparse grid learning in the
following. This list, however, is by no means exhaustive. For a comprehensive
exposition we refer to the monography by Bach et al. (2011), which we build
upon in this section.

3.3.1. `q-Norms

We consider the family Ωq(w) := ‖w‖qq of regularisers by an `qq-norm. For q = 0
we have the best subset selection problem (3.1), for q = 2 the ridge regression
problem (2.31).

Consider the level-set of the loss function L—the set of parameters w where
the value of L is the same. If ŵ is the optimal solution of (3.15) then the
gradient of L evaluated at ŵ belongs to the normal cone of B = {w ∈ RM |
Ω(w) ≤ k} (Borwein & Lewis, 2006). For instance, if k is sufficiently small and
the constraint is active then the level-set is tangential to B.

This observation relates the properties of the solution ŵ to the geometry of
the ball B. We illustrate this relationship in Fig. 3.3. If Ω is the `2

2-norm then
B is “round” as depicted in Fig. 3.3a and does not favour any specific direction
in space. If Ω is the `1-norm then B has singular points along the axis in RM

as depicted in Fig. 3.3b. The sparse solutions appear when the level-set of L is
tangential at one of these singular points.

Figure 3.4 illustrates the level-sets of Ωq(w) for different values of q. For
q ≥ 1 these level-sets are convex. One can see that the level-set for q = 1 is the
convex superset of the level-set for q = 0. In fact, one can prove that it is the
tightest convex superset (e.g., Bach, 2013). The minimisation problem (3.15)
with the least squares loss function and `1 regularising is well known under the
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3. Exploiting Low-dimensional Manifolds

Figure 3.4.: The ball B of Ωq(w) for different values of q. In every graph the
shape illustrates the set of coordinates with the same value Ωq(w).
Adapted from (Hastie et al., 2011).

name lasso in the statistical literature (Tibshirani, 1996) and under the name
basis pursuit in signal processing (Chen et al., 1998).

Lasso has the Lagrangian form

min
w

1
N

(yi − f(xi; w))2 + λ
M∑
j=1

|wj|. (3.16)

The quadratic programming problem (3.16) is convex but non-differentiable.
Hence it requires specialised optimisation methods. In recent years we observed
the emergence of many efficient methods for optimisation with `1-penalties (e.g.,
M. R. Osborne, 2000; Efron et al., 2004; Nesterov, 2007; Beck & Teboulle, 2009;
G.-X. Yuan, Chang, Hsieh, & Lin, 2010).

3.3.2. `1/`q-Norms

Zou and Hastie (2005) suggested to combine the `1 and `2
2 regularisers together

as
Ωα(w) = α‖w‖2

2 + (1− α)‖w‖1, (3.17)

calling the result an elastic-net . It supposes to select features as `1-norm and
shrink the coefficients of correlated predictors as `2

2-norm, at the same time
being computationally advantageous. The last two level-sets in Fig. 3.4 show
the Ωq regulariser with q = 1.2 and the Ωα regulariser with α = 0.2. Although
they look similar, elastic-net has non-differentiable edges while Ωq has not.

Another way to combine different `q norms in a penalty arises when the com-
ponents of w can be naturally partitioned into groups such that all components
in a group are added or removed simultaneously. Such `1 group norms can im-
prove the prediction performance and the interpretability of the learned models
(Turlach et al., 2005; M. Yuan & Lin, 2006; Roth & Fischer, 2008; Huang &
Zhang, 2010). Think of all coefficients of basis functions that belong to the same
hierarchical space as a group. Such `1 group norms can be useful to decide if
the complete group of coefficients—the hierarchical subspace—should be added
or removed.
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3.3. Convex Problem Formulations with Sparsity-Inducing Penalties

In its general form an `1/`q-norm penalty has the form

Ω(w) :=
∑
g∈P

γg‖wg‖q =
∑
g∈P

γg

(∑
j∈g

|wj|q
)1/q

, (3.18)

where P is a partition of {1, . . . ,M}, γg ≥ 0 for the subset g ∈ P are some
weights, and wg ∈ Rg is the vector with components from w indexed by g.
Note that Ω defined in (3.18) behaves as `1-norm in the values (‖wg‖q)g∈P and
hence causes group sparsity.

The most commonly used regularisation term of this class is the `1/`2-norm
of the form

Ω(w) :=
∑
g∈P

γg‖wg‖2. (3.19)

Combined with the square loss, it is referred to as group lasso (Turlach et al.,
2005; M. Yuan & Lin, 2006).

3.3.3. Penalties for Overlapping Groups

Besides parsimony of the solution, we want to preserve the hierarchical depen-
dency between the selected sparse grid basis functions. This dependency can be
encoded into groups of features that are allowed to overlap. These overlapping
groups can be handled in different ways as suggested by Jacob et al. (2009),
Zhao et al. (2009), and Lim and Hastie (2015).

Zhao et al. (2009) introduced the composite absolute penalty (CAP) to handle
grouped and hierarchical feature selection using explicit formulation of overlap-
ping groups. This formulation goes as follows: Let I1 and I2 be two sets of grid
indices such that I1 should be added into the model before I2. Then we define
the groups as g1 = I1 and g2 = I1 ∪ I2 and use the CAP

Ω(w) := ‖wg1‖q1 + ‖wg2‖q2

with the values of q1 and q2 greater than 1. In the simplest case, if the compo-
nent w2 has to appear in the model only after the component w1, the CAP is
‖(w1, w2)‖2 + ‖w2‖2.

This idea can be generalised to an arbitrary hierarchical dependency encoded
in a directed acyclic graph: the nodes correspond to groups of features5 gn and
its descendants are the groups of features that should be added to the model
after gn. Then the CAP has the form

Ω(w) :=
∑
n

γn‖(wgn ,wall descendants of gn)‖qn . (3.20)

5Of course, a group can also consist of only one feature.
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3. Exploiting Low-dimensional Manifolds

The positive weights γn in this case are important to prevent over-penalisation of
features that appear in many groups. To solve the problem (3.15) with Penalty
(3.20), Zhao et al. (2009) proposed a modification of the least angle regression
(LARS) algorithm discussed in Sec. 3.4.2.

Jacob et al. (2009) proposed to encode the overlapping groups through latent
variables. Every time a feature that corresponds to the weight vector component
wj is included in a new group g, it receives a new coefficient vgj . For instance,
if a feature appears in four different groups it also has four different coefficients
to be estimated. The final coefficient of the feature is the sum of the four. The
resulting latent group lasso penalty has the form

Ωunion(w) := min
v∈RM×|P|

∑
g∈P

γg‖vg‖q (3.21)

such that ∑
g∈P

vg = w

vgj = 0 if j /∈ g for every g ∈ P .

While both penalties (3.20) and (3.21) are referred to as “group lasso with
overlapping groups”, the semantics of the penalties are different. As pointed
out by Mairal and Yu (2013), Penalty (3.20) prefers sparsity patterns that are
intersections of the groups, while Penalty (3.21) prefers those sparsity patterns
that are unions of the groups.

The definition of the groups suggested by Zhao et al. (2009) and described
in Penalty (3.20) encourages the strong hierarchy. While it is unclear how to
promote weak hierarchy with CAP, for the latent group lasso penalty (3.21) we
could define groups that consist of the root node edges in DAG. In the next
subsection we will see how this idea leads to an efficient algorithm for solving
the minimisation problem in (3.21).

3.3.4. Path Coding Penalties and Network Flows

Mairal and Yu (2013) suggested a penalty framework that extends and gener-
alises the notion of overlapping groups. They introduced a notion of groups
as paths in a DAG. The path coding penalties they defined encourage sparsity
patterns of subgraphs that can be covered by a small number of path. Even
though the number of paths in a graph grows exponentially with the number of
nodes, reduction of penalty computation to a min-cost-flow problem allows to
make use of algorithms with polynomial time complexity.

Let G ′ = (G′, E ′) be a directed acyclic graph obtained from a sparse grid
DAG G = (G,E) (see Def. 2.1) as follows: G′ = Ḡ ∪ {t} a union of the sparse
grid index-set and the auxiliary node t and E ′ describes the set of hierarchical
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3.3. Convex Problem Formulations with Sparsity-Inducing Penalties

connections in the sparse grid

E ′ := E ∪ {(u, t) | u ∈ G}.

The flow problems on graphs usually require a source node s, which in our case
is the root node with the grid index ((1, . . . , 1), (1, . . . , 1)). It also requires a
sink node t which is not present in the sparse grid and so we added it to the
DAG representation, connecting it to all normal nodes in the graph.

Every set g in the graph corresponds to a path from s to t, i.e. a collection
of vertices (v1, . . . , vk) such that v1 = s, vk = t and (vi, vi+1) ∈ E ′ for 1 ≤ i < k.

Maybe your lectures on graph theory have been a while ago. So let us re-
capitulate the definition of a graph flow. It will also allow us to point out the
important properties of a flow that we use.

Definition 3.2. Let G ′ = (G′, E ′) be a directed graph with the source node s and
the sink node t. A flow f on the graph G ′ is a non-negative function defined on
edges, denoted as [fuv](u,v)∈E′. The value fuv lies between luv and δuv—its lower
and upper capacities (capacity constraint). For all vertices, except of s and
t, the sum of their incoming flows is equal to the sum of their outgoing flows
(conservation constraint).

Let P be the set of all paths in G ′, F the set of all flows in G ′, and sj(f) the
amount of flow going through the node j ∈ G:

sj(f) :=
∑

u∈G′:(u,j)∈E′
fuj.

Mairal and Yu (2013) define two path coding penalties

φP(w) := min
f∈F

 ∑
(u,v)∈E′

fuvcuv

∣∣∣∣∣∣ sj(f) ≥ 1,∀j : wj 6= 0

 (3.22)

and

ψP(w) := min
f∈F

 ∑
(u,v)∈E′

fuvcuv

∣∣∣∣∣∣ sj(f) ≥ |wj|,∀j ∈ {1, . . . ,M}

 . (3.23)

To illustrate these definitions, let us consider two simple examples depicted
in Fig. 3.5. The cost cuv of all edges is 1. We consider two different instances of
the weight vectors w:

1. The entries 1, 3, 4, 7 of the weight vector w have the value 0.5, others are
0. Hierarchy of the solution is preserved.

2. The entries 6, 7, 8, 9 of the weight vector w have the value 0.5, others are
0. Hierarchy of the solution is not preserved.
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3. Exploiting Low-dimensional Manifolds

(a) Hierarchy (b) No hierarchy

Figure 3.5.: Example of minimal flows in a sparse grid DAG. Every graph illus-
trates a subset of nodes of a two-dimensional sparse grid of level 3.
The weight parameters corresponding to the filled nodes have value
0.5, others are 0. Black arrows identify the edges with nonzero
flow. Path coding formulations favour the solutions that preserve
hierarchy.

In order to calculate Penalty (3.22), we first set the lower bound for the
amount of flow through the nodes corresponding to nonzero weight parameters

s3(f) ≥ 1, s4(f) ≥ 1, s7(f) ≥ 1. (3.24)

It is now easy to see that the minimum flow will be achieved when the values
of sj(f) from Inequalities (3.24) are close to 1, while the capacity constraint is
still satisfied. In this particular case the minimum flow is

f1,3 = f1,4 = f4,7 = f3,7 = 1, f7,t = 2.

The total path coding penalty φP(w) is 6.

Similarly, for Penalty (3.23) we have

s3(f) ≥ 0.5, s4(f) ≥ 0.5, s7(f) ≥ 0.5,

f1,3 = f1,4 = f4,7 = f3,7 = 0.5, f7,t = 1.

The total path coding penalty φP(w) is 3.

The second example can be calculated analogously. On Fig. 3.5 we show the
edges with nonzero flow in black and the edges with zero flow in grey and leave
the calculation of the numerical values as an exercise. Table 3.1 summarises the
penalties for both examples. It shows that both path coding penalties favour
solutions with preserved hierarchical dependencies.
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Besides the traditional `2
2 regularisation function, traditionally used for train-

ing sparse grid models, there exist a number of sparsity-inducing norms with
different properties that can be advantageous, for example, by promoting strong
sparsity or weak hierarchy in the structure of the sparse grid models. Unfor-
tunately, the standard conjugate gradient method will not work with the most
of this penalties. In the next section we review the specialised optimisation
algorithms that can be used instead.

3.4. Algorithms for Convex Optimisation with
Sparsity-Inducing Penalties

The structure and complexity of the regularisation terms presented in the pre-
vious section as well as the tremendous size of the solution space makes simple
optimisation methods, i.e. Newton method or conjugate gradients, insufficient.
Therefore, in this section we review the state-of-the-art optimisation procedures
applicable for training of sparse grid models with proposed regularisers. Later
in Sec. 3.5, we compare these methods in a series of numerical experiments.

3.4.1. Proximal Methods

Consider the problem (3.15) where the loss function L is differentiable and the
regularisation term Ω is not. In this case minimisation is often carried out
using proximal methods, i.e. proximal gradient, forward-backward splitting,
alternating direction method of multipliers, etc (Boyd et al., 2010; Bach et al.,
2011). We discuss several popular proximal methods later in this section.

In every iteration t the loss function L is linearised around the current estimate
wt:

wt+1 := arg min
w∈RM

L(wt) +∇L(wt)T (w −wt)︸ ︷︷ ︸
linear approximation of L

+ ρ
2
‖w −wt‖2

2︸ ︷︷ ︸
proximal term

+ λΩ(w),︸ ︷︷ ︸
non-smooth part

(3.25)
where ρ > 0 is an upper bound of ∇L. The quadratic term, called proximal
term, keeps the update in the neighbourhood of wt where L is close to its
linearised approximation.

Since adding constants to the objective function in (3.25) or dividing it by a
constant does not change the minimiser, we can add 1/(2ρ)‖∇L(wt)‖2

2−L(wt)

Example φP(w) ψP(w)
Strong hierarchy 6 3
No hierarchy 12 6

Table 3.1.: Path coding penalties.
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3. Exploiting Low-dimensional Manifolds

Penalty Ω Operator proxλΩ Source
`1-norm [proxλ‖·‖1(w)]j = sgn(wj) ||wj | − λ|+ (Bach et al., 2011)
`2

2 ridge regression proxλ/2‖·‖22(w) = (1 + λ)−1w (Bach et al., 2011)

`1 + `2
2 elastic-net

proxλ(‖·‖1+γ/2‖·‖22)() = proxλγ/2‖·‖22 ◦ proxλ‖·‖1

= (λγ + 1)−1 proxλ‖·‖1
(Bach et al., 2011)

`1/`q “group lasso” [proxλΩ(w)]g = |1− λ/‖wg‖2|+ wg, g ∈ G (Bach et al., 2011)

φP penalty (3.22)

[proxφP
(v)]j =

{
vj if sf (f?) > 0

0 otherwise
with

f? ∈ arg min
f∈F

∑
(u,v)∈E

fuvcuv+

M∑
j=1

1
2

∣∣v2
j (1−sj(f))

∣∣
+

(Mairal & Yu, 2013)

ψP penalty (3.23)

[proxψP
(v)]j = sgn(vj) min{|vj |, sj(f?)} with

f? ∈ arg min
f∈F

∑
(u,v)∈E

fuvcuv+

M∑
j=1

1
2 ||vj |−sj(f)|2+

(Mairal & Yu, 2013)

Table 3.2.: Proximal operators for penalties from Sec. 3.3.

and divide the objective function by ρ obtaining the following form:

wt+1 := arg min
w∈RM

1
2
‖1
ρ
∇L(wt)‖2

2 + 1
ρ
∇L(wt)T (w −wt) + 1

2
‖w −wt‖2

2 + λ
ρ
Ω(w)

= arg min
w∈RM

1
2
‖w −

(
wt − 1

ρ
∇L(wt)

)
‖2

2 + λ
ρ
Ω(w). (3.26)

This allows us to define the proximal operator associated with a particular
regularisation term λΩ.

Definition 3.3. The proximal operator associated with the regularisation
term λΩ is the map

proxλΩ : RM → RM

v 7→ arg min
w∈RM

1
2
‖v −w‖2

2 + λΩ(w). (3.27)

Using the definition above we can compute the update (3.26) as

wt+1 := proxλ
ρ

Ω
(wt − 1

ρ
∇L(wt)).

Understandably, the definition of efficient proximal operators for different penal-
ties Ω is of great importance and was the focus of active research in the recent
years. The proximal operators for the regularisation terms from Sec. 3.3 are
summarised in Tab. 3.2 along with the references.
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Algorithm 9: ISTA with Backtracking, adapted from (Beck & Teboulle,
2009)

1 Initialise ρ0 > 0, η > 1,w0 ∈ Rn

2 for t = 1, . . . do
3 Find the smallest non-negative it such that for ρ∗ := ηitρt−1

F (prox λ
ρ∗

Ω
(wt−1)) ≤ Qρ∗(prox λ

ρ∗
Ω

(wt−1),wt−1). (3.30)

4 Set ρt = ρ∗ and compute

wt = prox λ
ρt

Ω
(wt−1). (3.31)

Choice of ρ and acceleration

In general, the upper bound ρ is unknown and has to be estimated in a line-
search procedure. Beck and Teboulle (2009) suggested a backtracking procedure
called iterative shrinkage-thresholding algorithm (ISTA) and presented in Alg. 9.
Let F (w) be the objective function of the minimisation problem (3.15)

F (w) := 1
N

N∑
i=1

L(yi, f(xi; w)) + λΩ(w) (3.28)

and Q(v,w) the objective function of the minimisation problem (3.25):

Qρ(v,w) := L(w) +∇L(w)T (v −w) + ρ
2
‖v −w‖2

2 + λΩ(v). (3.29)

ISTA produces a sequence of positive non-increasing values {F (wt)}t such that

F (wt) ≤ Qρt(w
t,wt−1) ≤ Qρt(w

t−1,wt−1) = F (wt−1).

Beck and Teboulle (2009) also suggested an accelerated version called fast
iterative shrinkage-thresholding algorithm (FISTA) and presented in Alg. 10.
FISTA maintains two additional variables and combines them with the infor-
mation from the previous step to achieve faster convergence at marginal com-
putational overhead.

If L is Lipschitz-continuous, like the square loss function, ISTA has the global
convergence rate in O(1/t), while FISTA has the convergence rate in O(1/t2),
which is optimal for this class of techniques (Nesterov, 2004).
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Algorithm 10: FISTA with backtracking, adapted from (Beck &
Teboulle, 2009)

1 Initialise ρ0 > 0, η > 1,w0 ∈ RM

2 Set v1 = w0, γ1 = 1
3 for t = 1, . . . do
4 Find the smallest non-negative it such that for ρ∗ := ηitρt−1

F (prox λ
ρ∗

Ω
(vt)) ≤ Qρ∗(prox λ

ρ∗
Ω

(vt),vt). (3.32)

5 Set ρt = ρ∗ and compute

wt = prox λ
ρt

Ω
(vt), (3.33)

γt+1 =
1 +

√
1 + 4γ2

t

2
, (3.34)

vt+1 = wt +
γt − 1

γt+1

(wt −wt−1). (3.35)

3.4.2. Active-Set Methods and Least Angle Regression

Active-set methods explicitly take into account the sparse structure of the solu-
tion allowing it to grow incrementally (Nocedal & Wright, 2006). This increases
the size of tractable problems and makes active-set methods especially well-
suited for training sparse grid models.

An active-set algorithm minimises the overall problem by solving a sequence
of subproblems. It strongly resembles the method for training adaptive sparse
grid models presented in Sec. 2.3 and, in fact, it generalises Alg. 1. Therefore,
Alg. 11 presents the active-set method in a slightly unconventional form to
underline these similarities.

An active-set method requires the definition of three components:

Inner-loop solver: At each iteration step we solve Problem (3.15) considering
only the grid indices from G(k). Hence, we automatically guarantee that
wg = 0 for g /∈ G(k). The solution of the subproblem can be done, for
example, using FISTA from the previous subsection. Further acceleration
is achieved using the solution from the previous iteration as warm-start.

Optimality condition: Conventionally, the global convergence of the active-set
algorithm is verified using the duality gap. Let R∗emp be the Fenchel con-
jugate of the empirical risk functional defined in (2.4) and Ω∗ the dual
of the sparsity-inducing regularisation term. If wk is the solution from
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Algorithm 11: Active-set optimisation

input : G(0)

output: G(k) and wk

1 for k = 0, 1, . . . do
2 Fit-Step: solve (3.15) on G(k) to obtain wk

3 if optimality condition satisfied then
4 break

5 Adjust-Step:

• identify the set of new features I and extend the active set

• identify the set of elements J from G(k) with zero components in w and
remove them from the active set

G(k+1) =
(
G(k) \ J

)
∪ I

inner-loop solver then it follows (Bach et al., 2011)

L(wk) + λΩ(wk) +R∗emp(∇Remp(wk)) = 0 (3.36)

and wk is the solution of the full problem if and only if

Ω∗(∇Remp(wk)) ≤ λ. (3.37)

Unfortunately, the closed form of the dual function Ω∗ is not always avail-
able or the computation cannot be done efficiently. In this case we can
recourse to other convergence criteria such as MSE threshold, failure to
improve, or time restrictions.

Feature selection strategy: A natural way to select the new features is to look
at the violators of Condition (3.37). If this is unfeasible, one can try to
maximise the negative marginal gain as discussed in Sec. 3.2.2. In this case
the refinement indicators for the regularisation terms from Sec. 3.3 can be
derived similarly to the one for `2

2-norm in Lemma 3.2. The question of
whether to select a single variable or a group depends on the structure of
Ω and computational considerations.

Least angle regression (LARS) is an efficient algorithm for computing the
regularisation path for lasso (Efron et al., 2004). Similar to the forward greedy
selection method, LARS sequentially identifies the important features taking
only “as much as need” of each. It starts by identifying the feature that is most
correlated with the target vector. But instead of fitting the feature completely
to the target, LARS moves the coefficient of the feature continuously towards its
optimal value, which decreases the correlation with the residual vector. At some

75



3. Exploiting Low-dimensional Manifolds

point the second feature becomes the same correlation coefficient as the first one
and joins the active set. Now two coefficients are moved together, which causes
the correlation to further decrease. And so forth.

The change of coefficients in LARS is piecewise linear, which enables one to
calculate the exact step size at the beginning of each step. To obtain the entire
lasso path, LARS drops the variables from active set when the corresponding
coefficient becomes zero and recomputes the direction.

Even though the LARS algorithm computes the complete regularisation path,
it is as efficient a single least squares regression. In the model with M features
LARS takes exactly M steps to obtain the full least squares estimates (Hastie
et al., 2011, Sec. 3.4.4).

3.4.3. Coordinate Descent

Friedman et al. (2010) showed empirically that the regularisation path can be
computed using the coordinate descent algorithm (CD) with active set much
faster than using LARS. At the same time, Bach et al. (2011) showed that a
block coordinate descent algorithm (BCD) with active set outperformed ISTA,
FISTA, and subgradient descent on medium- and large-scale problems with `1/`2

and `1/`∞ regularisation penalties. Hence, CD with active set is a promising
method for adaptive sparse grid learning.

The principle behind CD is fairly simple: it cycles through the variables
optimising only one at a time. In the context of linear equation solvers it
is known as the Gauss-Seidel procedure. While not necessarily convergent in
general, CD converges for problems with square loss and separable regularisation
terms (Tseng, 2001).

Following Friedman et al. (2010), we consider CD for the elastic-net penalty

Ωα(w) = (1− α)1
2
‖w‖2

2 + α‖w‖1

that combines `1- and `2
2-norm penalties (see Sec. 3.3.2). Suppose that we

already optimised (3.15) with respect to w̃h for h 6= j and now we want to
partially optimise it with respect to wj. In order to do this, we need to compute
the gradient at w̃j from the previous estimation. This is only possible if w̃j 6= 0.
For example for w̃j > 0 we have

∂RΩ

∂wj

∣∣∣∣
wj=w̃j

= − 1
N

N∑
i=1

φj(xi)(yi − f(xi; w̃)) + λ(1− α)wj + λα. (3.38)

In general, the coordinate-wise update has the form

w̃j :=
S
(

1/N
∑N

i=1 φj(xi)(yi − ỹ
(j)
i ), λα

)
1 + λ(1− α)

, (3.39)
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where

• ỹ
(j)
i =

∑
h6=j φh(xi)w̃h is the fitted value excluding the contribution from

φj(xi), and hence yi − ỹ(j)
i is the partial residual for fitting wj,

• S(z, γ) := sgn(z)||z| − γ|+ is the soft-threshold operator.

To obtain the regularisation path, we compute the solutions for a decreasing
sequence of values λ, starting with the largest value λmax which causes the entire
vector w̃ to be zero. When w̃ is zero, Equation (3.39) indicates that w̃j remains
zero if 1/N |〈φj,y〉| < λα. This is true if we select λmax = maxh |〈φh,y〉|/(Nα).

Regularisation path is constructed from a decreasing sequence of K values
between λmax and λmin = ελmax on the logarithmic scale. Friedman et al. (2010)
suggested typical values ε = 0.001 and K = 100. Apart from giving us the
regularisation path, this scheme exploits warm-starts and leads to a more stable
algorithm.

Minimisation with sparsity-inducing penalties requires specialised optimisa-
tion algorithms. Fortunately, many efficient algorithms for solving these prob-
lems appeared in the recent years. As we will see in the next section, these
algorithms can be readily adapted to our purposes, which leads to improved
learning techniques for adaptive sparse grid models.

3.5. Numerical Experiments

It is now time to subject our refinement strategies and sparsity-inducing penal-
ties to a test. We begin by reconstructing the decision boundaries of a two-
dimensional rhombus. Then we consider a six-dimensional problem of photo-
metric redshift prediction frequently discussed in connection with sparse grid
regression. Finally, we illustrate how using the new adaptive sparse grid meth-
ods we can approach a ninety-dimensional regression problem of predicting a
year of creation of different songs.

In order to obtain the numerical results in this and the following chapters,
I implemented the described methods in SG++—an open source sparse grid
software framework developed in the research groups at the chair for scien-
tific computing at the Technische Universität München and the institute for
parallel and distributed systems at the Universität Stuttgart and available at
sgpp.sparsegrids.org.

3.5.1. Two-Dimensional Rhombus

At the beginning of Sec. 3.1 we motivated the sparse grid refinement as the
process of manifold learning. As an illustration, in Fig. 3.1 we considered the
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Figure 3.6.: Two-dimensional function with rhombus decision boundaries. This
problem poses a challenge for sparse grids since the boundaries are
not axis-aligned.

approximation of decision boundaries of a rhombus. Now we return to this ex-
ample and consider it as a benchmark for evaluating the performance of different
regularisation functions and refinement strategies.

Figure 3.6 illustrates the function we want to approximate. It represents
a two-dimensional rhombus such that all data points outside of the rhombus
have the value 0 and the points inside the rhombus have the value 1. While
this two-dimensional synthetic problem may seem simple, in fact it is not. The
boundaries of the rhombus are non-smooth and unaligned with respect to the
axis. In contrast, the sparse grid models are usually more successful at approx-
imating the function irregularities located parallel to the axis since the position
of the basis functions is axis-aligned.

Table 3.3 summarised the methods we compare in this section. The method
elastic-net uses the coordinate descent (CD) optimisation method (Sec. 3.4.3)
combined with the elastic-net regularisation penalty (Sec. 3.3.2). The method
forward-backward is an implementation of the adaptive forward-backward
greedy selection algorithm (Sec. 3.2.3), where we compute the potential con-
tribution of new grid points using formula (3.7) and the parameter fitting is
done using the conjugate gradients (CG) method. The ridge regression method
is the standard regression method by Pflüger (2010) that combines `2

2 regular-
isation penalty, CG parameter fitting, and the spatially-adaptive refinement of
children indices in all dimensions (2.39) using the refinement indicator (2.40).
The lasso method differs from ridge in the application of the `1 penalisation
term and FISTA optimisation method (Alg. 10). The methods greedy ridge and
greedy lasso are the modifications of the ridge and lasso methods where we
apply spatially-dimension-adaptive refinement adding only children indices in
particular dimensions and using the refinement indicator (3.7).
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3.5. Numerical Experiments

To conduct the experiment we sampled 2000 data points on the function and
split them into a training set (80%) and a validation set (20%).6 The validation
set was used to identify the optimal values for various hyperparameters of the
respective methods. We identified the optimal hyperparameters presented in
Table 3.4 using a Bayesian optimisation procedure (Martinez-Cantin, 2014).

Usually, the hyperparameters would include the regularisation parameter λ,
the number of fit-refine steps we conduct until convergence and the number of
grid functions we refine. We would stop the alternation of the fit-refine steps
if the sparse grid size becomes larger than 1000, which means we surpass the
budget, or if the validation error increases, which means the model starts to
overfit. Hence, the final grid sizes in Fig. 3.7 below may differ.

For the methods with spatially-adaptive refinement strategy the parameter
refinement points denotes the number of parent grid indices that are to refine,
hence in two-dimensional space on average four times as many new grid indices
are create at every refinement step. For the methods with spatially-dimension-
adaptive refinement strategy this parameter denotes the number of children
pairs in a particular dimension that are to be created, hence on average twice
as many new grid indices are created at every refinement step.

Table 3.4 shows that the optimal regularisation parameter λ is invariant to the
choice of the refinement strategies: for ridge and greedy ridge as well as for lasso
and greedy lasso the optimal values of λ are very similar. For the elastic-net
method we do not estimate the optimal hyperparameters since the coordinate
descent algorithm is used to compute the complete regularisation path.

Once the optimal hyperparameters were chosen, we retrained the models on
the complete training dataset and computed a test error on 2000 data points of
the test dataset. We present the test errors in Fig. 3.7. The greedy lasso method
outperforms others once the grid becomes larger than 400 points; greedy ridge
and forward-backward method show very similar performance; ridge and lasso
methods also show similar performance. For more than 1000 grid points elastic-
net shows superior results.

Method Sparsity Fit-Step Ref. Strategy Ref. Indic.
Elastic-Net Elastic-Net CD Spat.-Dim.
Forward-Backward Greedy Sel. CG Spat.-Dim. (3.7)
Ridge `2

2 CG Spat.-Adapt. (2.40)
Greedy Ridge `2

2 CG Spat.-Dim. (3.7)
Lasso `1 FISTA Spat. (2.40)
Greedy Lasso `1 FISTA Spat.-Dim. (3.7)

Table 3.3.: Summary description of methods in the experiment.

6The use of a cross-validation procedure did not change the results, which suggests that
the sample size was sufficiently large.
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Method λ Ref. points Ref. steps
Forward-Backward 1.02 · 10−4 27 5
Ridge 1.27 · 10−4 35 11
Greedy Ridge 9.56 · 10−5 42 10
Lasso 5.15 · 10−5 46 10
Greedy Lasso 4.37 · 10−5 41 11

Table 3.4.: Optimal hyperparameters for the 2-d rhombus benchmark.
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Figure 3.7.: Test error for different refinement methods. The greedy lasso
method outperforms other methods once the grid becomes larger
than 400 grid points. For more than 1000 grid points elastic-net
shows superior results.
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Method λ Ref. points Ref. steps
Ridge w/o Rosenblatt 1 · 10−6 20 20
Ridge w. Rosenblatt 1 · 10−6 20 20
Greedy Ridge w/o Rosenblatt 1 · 10−6 100 20
Greedy Ridge w. Rosenblatt 1 · 10−6 50 20

Table 3.5.: Optimal hyperparameters for SDSS DR5 benchmark.

This experiment shows that the methods for fitting and refining the sparse
grid models presented in this chapter are able to outperform the standard ridge
regression method for spatially-adaptive sparse grids. Altogether, greedy ridge
regression for spatially-dimension-adaptive sparse grids shows promise, produc-
ing a good compromise between accuracy and computational efficiency. Let us
now look at how this method compares to the standard ridge regression in a
real-world setting.

3.5.2. Photometric Redshift Prediction

We now assess the performance of the greedy ridge and standard ridge regression
methods using the data from the Sloan Digital Sky Survey (SDSS) from Data
Release 5 (Adelman-McCarthy et al., 2007). The goal is to predict the redshift
of galaxies from the Main Galaxy Sample using 6 features from the dataset:
dereded intensities in five broadbands (ugriz ) together with a meta-parameter
eClass (Pflüger, 2010). Both training and test datasets contain 60 000 data
points each.

Usually, sparse grid regression utilises the normalisation technique where in-
put variables are mapped into a unit hypercube by shifting and scaling (see
Fig. 3.8a) (Garcke, 2004). High correlation between attributes can alas inhibit
the effectiveness of spatial adaptivity. Alternatively, one can use the trans-
formation suggested by Rosenblatt (1952), which effectively makes the data
distribution uniform (see Fig. 3.8b).

As we observed in the previous section, different refinement strategies do not
influence the choice of the optimal regularisation parameter λ, and we set λ
equal to 1 · 10−6 for all experiment configurations. Table 3.5 summarises the
optimal hyperparameters obtained in a validation procedure.

For fitting of the spatially-dimension-adaptive sparse grid models we used the
averaged stochastic gradient descent algorithm (Bottou, 2012). As shown in
(Khakhutskyy & Hegland, 2016), this method leads to the similar results as the
conjugate gradient method but with a faster initial convergence.

Since we only want to compare the new method with the state of the art, we
use a hard termination criterion: the training stops after a certain number of
refinement steps (even if the global convergence has not been achieved yet).
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(b) Rosenblatt transformation

Figure 3.8.: Illustration of the normalisation methods for the first three at-
tributes of the SDSS Data Release 5 dataset. The Rosenblatt trans-
formation removes the correlation between attributes and produces
almost uniformly distributed input values.

Figure 3.9 illustrates the decline of the training and test errors for differ-
ent learning scenarios. Note that the algorithms favour different normalisation
methods: While the spatially-adaptive ridge regression method produces better
results if the data simply shifted and scaled to a unit hypercube, the spatially-
dimension-adaptive greedy ridge regression benefits from the uniform distribu-
tion of the input data. There is a big gap between the performance of the ridge
regression with the Rosenblatt transformation and the performance of the rest.
Hence, to compact the representation we break the continuity of the ordinate
axis, which depicts the root mean squared error (RMSE). Instead of 0, the or-
dinate axis starts at 1.8 · 10−2 which seems to be the optimum for published
nonlinear models (Pflüger, 2010, Tab. 6.8).

The best greedy ridge regression model has RMSE of 1.82 · 10−2 on the test
data with 4 247 grid indices. This is significantly better than 2.00 · 10−2 with
9 940 grid indices of the best standard ridge regression model.

Altogether, the results show that the spatially-dimension-adaptive greedy
ridge regression method can build smaller sparse grid models which have the
same predictive power as the state of the art. In (Khakhutskyy & Hegland,
2016) we also showed that, combined with stochastic gradient descent optimi-
sation methods, it may require just a fraction of the number of data passes to
build and train a new model. The next section shows that with the spatially-
dimension-adaptive greedy ridge regression we can approach the large high-
dimensional problems that were unattainable by the spatially-adaptive method.
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Figure 3.9.: Performance comparison between Ridge and Greedy Ridge regres-
sion methods. The Greedy Ridge method clearly shows the ability
to create smaller sparse grids with the same representation power.

83



3. Exploiting Low-dimensional Manifolds

3.5.3. Million Song Dataset: Year Prediction

Sparse grid models were used to approach problems with over 100 dimensions
before. Pflüger (2010) used a level 2 regular sparse grid model for the Musk-1
classification problem. The dataset contains 166 attributes and 476 data points
such that the sparse grid contained 333 basis functions. The result compared
favourably with another machine learning models. However, the use of a level
2 regular sparse grid cannot capture high nonlinearity. The spatially-adaptive
refinement of such a large problem is prohibitively expensive and, due to the
small sample size, may lead to premature overfitting.

In this experiment we choose another high-dimensional problem, which has
less attributes but significantly more samples. We consider a 90-dimensional
regression problem of predicting the year of creation of music titles based on
their acoustic characteristics. The Million Song Dataset (MSD) collected by
Bertin-Mahieux et al. (2011) contains information about 515 576 music titles
representing 28 223 different artists and covering the timeline between 1922 and
2011. Each title is described by 90 values derived from the averages and co-
variances of the timbre vectors. The dataset is split into the training set with
463 715 titles and the test set with 51 630 titles such that all songs by the same
artist will appear either in the training or in the test set (to avoid the “producer
effect”).

For this problem the use of a regular sparse grid model becomes impractical
for any but a trivial case. For a regular sparse grid model with maximum level
2 we have only 181 basis functions, whereas for the level 3 it becomes 16 561
and for the level 4 it becomes 1 021 201 basis functions. Level 3 allows only for
low local resolution of the model and level 4 is computationally infeasible and
would require much more data samples than are available.

A typical spatially-adaptive refinement also quickly becomes problematic
since for every refinement grid point at least 180 new basis functions are added.
Hence, the number of basis functions explodes. To counteract this, we apply
the spatially-dimension-adaptive refinement with ridge regression that recom-
mended itself in the previous experiments. We start with a level 2 sparse grid
and use modified linear basis functions.

As we start with the level 2 sparse grid, we would need to calculate the
refinement indicators for more than 16 000 grid points at every refinement step.
The time for this computation can quickly dominate the fitting time. Moreover,
usually it is sufficient to look for refinement candidates in a few areas with
a high local error. Hence, to accelerate the refinement step, the error-based
refinement indicator (2.40) was used to sort the refinable parent nodes and
then the spatially-dimension adaptivity indicator (3.7) were computed for only
a subset of these nodes.

To estimate the optimal hyperparameters, we selected 10% of the points from
the training dataset—46 372 data samples. From this subset, 80% of the points
were used for training and 20% for validation of the hyperparameters. The
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3.5. Numerical Experiments

Method RMSE Reference
1-NN 13.99 (Bertin-Mahieux et al., 2011)
Constant Pred. 10.80 (Bertin-Mahieux et al., 2011)
50-NN 10.20 (Bertin-Mahieux et al., 2011)
Vowpal Wabbit 8.76 (Bertin-Mahieux et al., 2011)
Linear SVM 11.08 (Ho & Lin, 2012)
RBF SVM 10.11 (Ho & Lin, 2012)
Lasso 9.34 (Arnaldo et al., 2015)
Multiple Linear Regression 9.34 (Arnaldo et al., 2015)
Multiple Regr. Genetic Programm. 9.34 (Arnaldo et al., 2015)
FFNN 8.78 (Arnaldo et al., 2015)
Adaptive Sparse Grids 9.00

Table 3.6.: Results for the year prediction challengen in MSD. Adaptive sparse
grids show a competitive performance.

optimal results were achieved with the regularisation term λ = 7 · 10−9 and
refinement of 50 pairs of points in every refinement step (similar to the previous
section).

Once the optimal hyperparameters were determined, we trained the model
on the complete training set and evaluated the root-mean-square error on the
test set. Using the adaptive sparse grids we were able to achieve the test error
of 9.00 using a model with 2 555 grid points. Table 3.6 compares this result
with other results described in the literature. One can see that adaptive sparse
grids are among the best models in the comparison, significantly outperforming
most of the linear and nonlinear models. However, as it is often the case,
an unambiguous comparison is difficult. For example, the results published by
Arnaldo et al. (2015) are used to illustrate their feature selection and generation
methods and, hence, the feed-forward neural network (FFNN) were trained on
a transformed dataset, whereas for the adaptive sparse grids and for the Vowpal
Wabbit in (Bertin-Mahieux et al., 2011) no feature generation is taking place.

Figure 3.10 compares the decrease of the test error with advancing refinement
steps and increasing grid size for Greedy Ridge and Ridge methods. It shows
that it is unnecessary to have a large grid to achieve good results as the final grid
size is still much smaller than the size of a regular sparse grid with level 3. The
best test error achieved for the Ridge method was 9.02 for 8 442 greedy points.
Moreover, the diagram suggests that the spatially-adaptive sparge grid model
run into the overfitting phase and does not allow any further improvement while
the spatially-dimension-adaptive methods continues to improve.

We were able too successfully build an adaptive sparse grid model for a re-
gression problem with 90 real-valued attributes. This became possible due to a
greedy refinement technique that controls the sparsity of the model in a more
granular way than the standard spatially-adaptive method. To improve the com-
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Figure 3.10.: Test error versus sparse grid size for the year prediction challenge
MSD. Despite the high dimensionality of the problem large sparse
grid models are unnecessary. Greedy Ridge achieves better predic-
tion error with a quarter of the grid size.

putational performance, we were adding several new grid points at once and we
were considering only the most promising subsets of the refinement candidates.
These measures were necessary for the method to be practical for large-scale
learning. In the result, our model performed among the best models reported
in the literature.

The key to tackling a high-dimensional problem with a low-dimensional man-
ifold is to identify this manifold and to use it for learning. Spatial adaptivity
of the sparse grid models allows us to identify such low-dimensional manifolds
directly during the learning process. Consideration of the refinement problem
in a formal framework leads to a formulation of a discrete optimisation problem,
which is usually exponentially hard to solve directly. To overcome this complex-
ity, we can either relax the optimality of the solution, which leads to the various
greedy optimisation methods, or relax the problem formulation, which leads to
the convex sparsity-inducing norms.

As we have seen in the experiments, both greedy optimisation methods and
convex relaxation methods can yield similar results. Usually, this methods pro-
duce models with smaller size and better accuracy than the standard spatially-
adaptive sparse grid methods.

If a high-dimensional problem does not possess a low-dimensional manifold,
sometimes it still may be solved efficiently. Even if the nominal dimensionality
of a problem is high, the effective dimensionality can be low. In the next chapter
we discuss this case in detail.
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Dimensionality

Capt. Kirk: Spock, give me an update on the dark area ahead.
Mr. Spock: No analysis due to insufficient information.
Capt. Kirk: No speculation, no information, nothing? I’ve
asked you three times for information on that thing and you’ve
been unable to supply it. Insufficient data is not sufficient, Mr.
Spock! You’re the science officer. You’re supposed to have
sufficient data all the time.

— Star Trek.The Immunity Syndrome

Imagine, you need to assemble a team of experts. How would you do it? This
depends on the goal this team has to accomplish. If the goal is to define a new
policy, you would invite experts with different backgrounds and values, who
would discuss, negotiate, and vote to find a compromise decision. The more
diverse your policy makers are, the more different their values and interests—
the more agreeable is the result. In contrast, if the goal is, for example, to
win a football championship, you would look for players with complementary
expertise. They would train relentlessly to work together as a team and to
achieve the same goal.

What does this have to do with sparse grids? Just as it is simpler to find
a team of experts to cover a broad set of skill and qualifications than to find
one super-human that could do everything, it is often simpler to consider a
set of low-dimensional models instead of one high-dimensional. In this sense,
the two metaphors for creating a team of experts provide an intuition for the
two approaches for training sparse grid models discussed in this chapter. Both
approaches for reducing the number of degrees of freedom rely on the assumption
that the problem possess an additive structure, meaning that the true high-
dimensional solution can be approximated as a sum of low-dimensional solutions.
This also implies that the interaction between subsets of dimensions are not
important for practical solution, such that higher-order interaction terms can
be dismissed. This property is called a low effective dimensionality.

The first metaphor of policy makers corresponds to an ensemble of indepen-
dent low-dimensional sparse grid models that solve a high-dimensional regression
problem described in Sec. 4.1. To the best of my knowledge, this work is the
first to consider the use of ensembles of sparse grids with random projections.
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It shows that having a number of low-dimensional sparse grids instead of one
high-dimensional can reduce the number of degrees of freedom—and hence the
time and space complexities—by several magnitudes. Empirical results show
that such ensembles produce satisfactory results and hence provide a simple
and practical way to tackle high-dimensional problems.

The second metaphor of a football team relates to identifying and training
important parts of a single sparse grid model necessary for the solution of a
high-dimensional learning problem. We discuss these methods in Sections 4.2
and 4.3. We gain two major insights: First, the use of modified linear basis
leads to correct identification of functional components and inherits (at least
from the practical point of view) the rich theory available for prewavelet ba-
sis, while prewavelet basis itself is impractical for spatial adaptivity. Second,
extending the sparsity-inducing penalties to sparse grid subspaces, we derive a
new indicator for identifying important functional components.

Formally, the two approaches discussed in this chapter offer an approximate
solution for (2.5) when it is infeasible to solve the problem exactly in the sparse
grids function space V . In the first case, we approximate V as a sum of smaller
spaces V1, . . . , Vk with smaller input dimensionalities and perform an inexact
minimisation. In the second case, we reduce the function space V keeping the
minimisation exact.

We will see that the latter task is significantly more complicated than the
first one, which may explain why some professional football players become
politicians, but no politician becomes a professional football player.

4.1. Ensemble of Independent Models

In the previous chapter we mentioned that dimensionality reduction can serve as
a pre-processing step before model fitting to prevent the curse of dimensionality,
although the data-aware methods for dimensionality reduction can become pro-
hibitively expensive. Unlike the dimensionality reduction and manifold learning
methods, subspace projections are data-oblivious, which means that they do
not rely on data to produce the mapping from a high-dimensional space to a
low-dimensional one. Random forests is the paragon of this class of methods.

Subspace projections can be performed in several ways. Commonly, these
projection methods aim to preserve certain properties important for the models.
For example, they may aim to preserve the distance between the data points or
their scalar products. We focus on two particular methods: random projections
and feature hashing.

Johnson and Lindenstrauss (1984) showed that any set S of N points embed-
ded in D dimensions can be projected down to K ∈ O(ε−2 logN) dimensions
such that the distortion from this projection is not worse than 1+ε. This means
that for every pair of points x,x′ from S and a projection matrix P of size D×K
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it holds that√
K
D
‖x− x′‖2(1− ε) ≤ ‖Px−Px′‖2 ≤

√
K
D
‖x− x′‖2(1 + ε). (4.1)

The entries of the matrix P should be independent and identically distributed.
The efficient computation of the projection matrices is a subject of an ongoing
research. Major efforts focus either on finding very sparse projection matrices
(Achlioptas, 2001) or on utilising the matrix structure for a fast matrix-vector
product computation (Ailon & Chazelle, 2009).

The property (4.1) is important for the machine learning methods that rely
on Euclidean distance as a similarity metric, i.e. k-nearest-neighbours, kernels,
or support vector machines.

As the dimensionality of the input space grows, storage of the projection
matrix can become a bottleneck. Here, hash functions offer a remedy. Random
hashing relies on two hash functions h : N→ {1, . . . ,m} and ξ : N→ {±1} that
together define the hashed feature map

ψ
(h,ξ)
i (x) :=

∑
j:h(j)=i

ξ(j)xj.

Function h maps the entry j of the original vector to the entry i of the new
vector and function ξ decides whether to add or to subtract the entry. If writ-
ten in matrix notation, the combination of functions h and ξ corresponds to
a projection matrix P where every column has only one nonzero entry and all
nonzero entries are either +1 or −1.

These feature maps can be used to define an inner product

〈x,x′〉ψ := 〈ψ(h,ξ)(x), ψ(h,ξ)(x′)〉.

similar to the procedure in Sec. 2.4.4. Weinberger et al. (2009) showed that this
construction leads to an unbiased kernel, which means

Eψ [〈x,x′〉ψ] = 〈x,x′〉.

For kernel methods, hashing can be integrated into the kernel trick implemen-
tation (see Sec. 2.4.4).

Data-oblivious random subspace projections can certainly cause the loss of
important information. That is why the supervised learning methods rarely
rely on a single projection but rather construct ensembles of numerous simple
models from differently projected data and aggregate the predictions as depicted
in Fig. 4.1. Rooney et al. (2004) showed that this method can outperform other
ensemble building methods such as bagging and boosting.

The complexity overhead of an ensemble is moderate and vastly smaller than
the complexity of the high-dimensional model. Figure 4.2 compares the number
of grid indices of a regular sparse grid with level 4 and an ensemble of low-
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Figure 4.1.: Construction procedure for an ensemble of random projections. A
high-dimensional training dataset Xtrain is projected using k inde-
pendent matrices P1, . . . , Pk to obtain lower-dimensional training
datasets X1, . . . , Xk. These datasets together with the target val-
ues ytrain are used to fit the models M1, . . . ,Mk. At the prediction
phase, the output of the individual models is combined to produce
an overall ensemble prediction. Adapted from (Batzner, 2015).

Figure 4.2.: Growth of the total number of grid points for a single sparse grid
model and ensembles of sparse grids with fixed dimensionality. All
sparse grids have level 4. The number of sparse grid models in an
ensemble is the ratio between the total number of dimensions for a
single sparse grid model and the number of dimensions of ensemble
members, e.g. a 30-dimensional single sparse grid is compared with
ensembles of three 10-dimensional, six 5-dimensional, and ten 3-
dimensional sparse grids. Single model grows exponentially while
ensembles grow linearly.
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4.1. Ensemble of Independent Models

dimensional sparse grids with level 4 as the problem dimensionality increases.
The size of a regular sparse grid grows exponentially while the total number of
grid points in an ensemble grows linearly.

Both, random projection and feature hashing, have linear complexity in the
number of ambient and projected dimensions. In the bachelor project with
Batzner (2015) we observed that the random projection method is faster as
long as the projection matrix, which grows linearly with d, can fit into the main
memory.

To find the optimal combination of individual models in an ensemble, Wolpert
(1992) suggested the stacking procedure. For regression ensembles, it results in
a convex combination, which means that all combination coefficients are non-
negative and add up to 1. These coefficients are chosen in the way that minimises
the generalisation error of a previously unseen validation dataset or as a part of
a cross-validation procedure:

min
α1,...,αK

N∑
i=1

(
yi −

K∑
k=1

αkfk(xi)

)2

subject to αk ≥ 0, k = 1, . . . , K∑
k

αk = 1. (4.2)

For classification ensembles, this procedure amounts to a weighted majority
voting to obtain the overall prediction, which is the same as convex combination
and subsequent thresholding. Breiman (1996) observed that in most cases this
scheme leads to a lower prediction error than a single predictor fk with the
lowest cross-validation error.

We observed that these random projection ensembles can work very well for
real-world problems. In particular, these ensembles showed the state-of-the-art
performance for the internet advertisement prediction problem.1 The Internet
Advertisements dataset is a standard classification benchmark dataset compiled
by Kushmerick (1999).2 It addresses the problem of identification advertisement
banners on web pages. The dataset consists of meta information about 3 279
hyperlinked images found on web pages. The meta information is described by
1 557 attributes such as the geometry of the image (if available), the phrases
occurring in the URL of the hyperlink, the URL and alt text of the image, the
anchor text, and words occurring near the anchor text. The goal is to predict
whether an image is an advertisement or not. Only 14% of all data entries are
advertisements, which means that if a model predicts that neither of images is
an ad, it will be correct 86% of the time. Fradkin and Madigan (2003) studied
the influence of dimensionality reduction techniques in the dataset. To keep the

1The results for other benchmarks can be found in (Batzner, 2015).
2The dataset is available from UCI Machine Learning Repository at

archive.ics.uci.edu/ml.
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Method Stacking Method PCA RP
SG+RP 95.4 C 4.5 94.7 90.7
SG+FH 95.8 NN 95.8 95.8
SG+PCA 96.1 SVM 96.6 96.5

Table 4.1.: Internet Advertisement benchmark. Sparse grids results on the left
are compared to the results from (Fradkin & Madigan, 2003) on the
right.

settings comparable, in Table 4.1 (right) we present their results from principle
component analysis (PCA) and random projections (RP) onto 500 dimensions.

The sparse grid results presented in Table 4.1 (left) were obtained using en-
semble stacking with majority voting for 10 sparse grid regressors with level
3 and 50 dimensions using random projection (SG+RP) and feature hashing
(SG+FH) methods. We also compare the results to PCA a singular sparse grid
model with level 2 and 500 dimensions (SG+PCA). The computation of a level
3 sparse grid with 500 dimensions would be intractable.

The idea of using ensembles of sparse grids is not completely new. Heinecke,
Peherstorfer, Pflüger, and Song (2012) used a procedure called AdaBoost to
create an ensemble of weak regular sparse grids that could match the accuracy
of a spatially adaptive sparse grid. The major difference is that for Heinecke
et al. “weak” means having full dimensionality and reduced level, while in this
work “weak” means reduced dimensionality and high level. Besides, the creation
of an ensemble using independent random projections bears more potential for
parallelisation than inherently sequential AdaBoost.

Although subspace projections may not have a strong mathematical appeal,
they constitute a working horse behind numerous machine learning applications
where the trade-off between working sufficiently good in most cases and working
mediocre in the worst case is made in favour of the former.

4.2. Single Model with Additive Structure

How to predict the price and quality of a Bordeaux wine? All you need to
know is the age of the vintage, the average temperature during the growing
season, as well as the rainfall in the preceding winter and during harvest months.
According to Ashenfelter (2010), the weighted sum of these numbers explains
about 80% of the wine price variation.3 This is only one in a multitude of
examples for simple linear regression models used in science and industry.

The secret of success of many linear regression models lies in the property
of many real-world problems where most of the variation of the target variable

3Ashenfelter (2010) also calculated the rate of return to holding wine at about 2-3%
p.a. which vastly surpassed the return rates of German government bonds at the moment of
writing.
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4.2. Single Model with Additive Structure

can be explained by the input variables directly or together with few interac-
tions between the input variables. Sparse grid models are able to preserve this
property. This means, in consequence, that for a given problem certain parts of
the sparse grid can be omitted without any significant loss of accuracy. This in
turn allows to tackle higher-dimensional problems.

We begin this section by showing that every solution for a supervised learn-
ing problem—simply every function— possesses an additive structure in form
of functional analysis of variance (ANOVA) decomposition (Sec. 4.2.1). This
ANOVA decomposition alone does not bring us far. However, using ANOVA
decomposition we can formalise the property of a high-dimensional function to
be represented as a sum of low-dimensional ones. We call this property an effec-
tive dimensionality (Sec. 4.2.2). Finally, we show that when certain sparse grids
discretise a function, the parts of the sparse grid model correspond to discretised
ANOVA components (Sec. 4.1). This implies that low effective dimensionality
of the original problem reflects in low effective dimensionality of the sparse grid
model. We build upon this observation in Sec. 4.3.

4.2.1. Functional ANOVA Decomposition and Additive
Models

Functional ANOVA decomposition represents a high-dimensional function as a
sum of functions of the form

f(x1, x2, . . . , xD) = f0 +
D∑
i

fi(xi) +
D∑
i<j

fij(xi, xj) (4.3)

+
D∑

i<j<k

fijk(xi, xj, xk) + · · ·+ f1,...,D(x1, . . . , xD).

The first term f0 is constant, fi denotes one-dimensional functions, fij denotes
two-dimensional functions—also called second-order interactions—and so on.

Our exposition of the ANOVA decomposition and its relation to sparse grids
follows Griebel (2006) and Feuersänger (2010). Let V (D) denote aD-dimensional
tensor product function space and f(x1, . . . , xD) ∈ V (D) be a mapping from
[0, 1]D to R. Let µ be a product measure,4 which means that

dµ =
D∏
j=1

dµj(xj),

4Do not be afraid if you missed the lecture on measurable spaces in your curriculum. A
measure can be intuitively understood as a generalisation of the concepts of length, area, and
volume. It assigns a real number to a subset and should satisfy several properties, such as
non-negativity and assignment of 0 to an empty set. Definition of a measure is not unique. We
will learn two important measures that allow us to define projections with different properties.
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4. Additive Structure and Effective Dimensionality

with unit mass such that∫ 1

0

dµj(xj) = 1 for each j = 1, . . . , D.

In the one-dimensional case, we are interested in the decomposition of the form

f(x) = f0 + f1(x) (4.4)

with f0 ∈ span{1} and f1 ∈ W (1). Hence, we decompose V (1) in a constant and
a one-dimensional contribution

V (1) = 1⊕W (1), (4.5)

where 1 = span{1} denotes the one-dimensional space of constant functions and
W (1) denotes its complement to V (1).

We use the projection operator P

Pf :=

∫
[0,1]

f(x)dµ(x) (4.6)

to formulate the functions f0 and f1 explicitly. It is straightforward to compute
the constant as

f0 = Pf(x) =

∫
[0,1]

f(x)dµ(x). (4.7)

The one-dimensional remainder then becomes

f1(x) = f(x)− f0 = (I − P )f(x) = f(x)−
∫

[0,1]

f(x)dµ(x). (4.8)

The measure µ(x) yields the definition 〈f, g〉 :=
∫

[0,1]
f(x)g(x)dµ(x), which

determines certain properties of the ANOVA components. In particular,
〈f1, f0〉 = 0 with respect to this inner product, since the subspace increment
W (1) = (I − P )V (1) is the orthogonal compliment to 1 in V (1).

The tensor product construction allows the generalisation of the splitting (4.5)
to a D-dimensional case:

V (d) =
D⊗
i=1

(1i ⊕W (1)
i ) (4.9)

= 11 ⊗ . . .⊗ 1D

⊕
D⊕
i=1

11 ⊗ · · · ⊗Wi ⊗ . . .⊗ 1D

⊕
⊕
i<j

11 ⊗ · · · ⊗Wi ⊗ · · · ⊗Wj ⊗ · · · ⊗ 1D
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4.2. Single Model with Additive Structure

⊕ · · ·
⊕ W1 ⊗ · · · ⊗WD. (4.10)

The subscripts i and j identify the corresponding coordinate directions.

Using subsets u ⊆ {1, . . . , D}, we can establish a shorthand notation for
ANOVA component, where fu ∈ Wu and xu represents a subvector of x with
components xi, i ∈ u. Hence, we can write (4.3) as

f(x1, . . . , xD) =
∑

u⊆{1,...,D}

fu(xu), (4.11)

and (4.9) as

V (D) =
⊕

u⊆{1,...,D}

Wu :=
⊕

u⊆{1,...,D}

 ⊗
k∈{1,...,D}\u

1k

⊗(⊗
j∈u

Wj

)
.

(4.12)

Different measures induce different projections and hence different decompo-
sitions. For example, the Lebesgue measure dµ(x) = dx induces

Pf =

∫
[0,1]

f(x)dx

and the corresponding classical ANOVA decomposition is well-known in statis-
tics (Efron & Stein, 1981; Wahba, 1990).

The Dirac measure located at a point a ∈ [0, 1] induces

Pf =

∫
[0,1]

f(x)δ(x− a)dx = f(a).

and the corresponding decomposition is known under the names anchored
ANOVA decomposition (Sloan et al., 2004; Dick et al., 2004) and cut-HDMR
(Rabitz & Alis, 1999).

For a fixed choice of the one-dimensional mapping Pj, the decomposition

(4.12) is unique. The empty set projection P∅ =
∏D

j=1 Pj is the unconditional
mean of f with respect to the measure µ, while the partial projections Pu =∏

j∈u Pj for u 6= ∅ describe the conditional means
∫
. . .
∫
f(x)

∏
k∈{1,...,D}\u dµk

that marginalise out the complementary directions j ∈ {1, . . . , D} \ u.
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4. Additive Structure and Effective Dimensionality

The individual terms fu in (4.11) can be computed by successive application
of projections and subtraction of low order terms (Griebel, 2006):

fu(xu) =

 ∏
j∈{1,...,D}\u

Pjf

−∑
v⊂u

fv(xv) =
∑
v⊆u

(−1)|u|−|v|

 ∏
j∈{1,...,D}\v

Pjf

 (xv).

(4.13)
Note that ANOVA components are orthogonal with respect to µ(x). This

means that for every fu and fv with u 6= v we have

〈fu, fv〉 =

∫
[0,1]D

fu(xu)fv(xv)dµ(x) = 0. (4.14)

Also, for every component fu with u 6= ∅ we have∫
[0,1]D

fudµ(x) = 0. (4.15)

ANOVA decomposition contains 2D terms and does not lead to the compu-
tation improvement per se. It was observed, however, that for many relevant
approximation problems, including data mining, the importance of the ANOVA
components decays with the increasing order of interactions (Friedman, 1991).
This means that the high-order terms in (4.3) can be omitted without a signif-
icant loss of approximation quality.

4.2.2. Effective Dimensionality

For practical considerations, the computation of ANOVA components is only
useful if the number of informative components is limited and small. In con-
trast, if high-order interaction terms carry essential information about the ap-
proximant, identification of low dimensional terms yields no benefits. Following
Holtz (2011), we introduce the notion of effective dimensionality to characterise
how well low-dimensional terms can express an approximant.5

Classical ANOVA decomposition allows to bound the approximation error
with respect to effective dimensions. Let

σ2(f) :=

∫
[0,1]D

(
f(x)−

∫
[0,1]D

f(z)dz

)2

dx (4.16)

5Holtz (2011) considers two kinds of effective dimensionality: superposition, where |u| ≤
ds the interaction order is restricted, and truncated, where u ⊆ {1, . . . , dt} can include any
interaction order but the input space dimensionality is restricted. We only consider the first
kind.
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4.2. Single Model with Additive Structure

be the total variance of the function f . This total variance can be decomposed
into the variances of individual ANOVA components, since

σ2(f) =

∫
[0,1]D

(f(x)− f0)2 dx =

∫
[0,1]D

f 2(x)dx− 2

∫
[0,1]D

f(x)f0dx + f 2
0

=

∫
[0,1]D

 ∑
u⊆{1,...,D}

fu(xu)

 ∑
u⊆{1,...,D}

fu(xu)

−
2

∫
[0,1]D

∑
u⊆{1,...,D}

fu(xu)f0dx + f 2
0

=
∑

u⊆{1,...,D}

‖fu‖2
2 +

∑
u⊆{1,...,D}

∑
v⊆{1,...,D}

v 6=u

‖fu‖2
2 − 2

∑
u⊆{1,...,D}

〈fu, f0〉+ f 2
0

=
∑

u⊆{1,...,D}
u 6=∅

‖fu‖2
2 +

∑
u6=∅,v 6=∅

u6=v

〈fu, fv〉
(4.14)
=

∑
u⊆{1,...,D}

u6=∅

‖fu‖2
2

(4.15)
=

∑
u⊆{1,...,D}

u6=∅

∫
[0,1]D

(
fu(xu)−

∫
[0,1]D

fu(zu)dz

)2

dx

=
∑

u⊆{1,...,D}
u6=∅

σ2(fu).

The effective dimensionality ds describes the maximum interaction order of
the ANOVA components necessary to preserve the variance up to a proportion
α ∈ [0, 1]:

ds := arg min
t∈{1,...,D}

∑
|u|≤t
u6=∅

σ2(fu) ≥ ασ2(f). (4.17)

All ANOVA components with interaction order larger than ds yield only an
insignificant improvement of the approximation quality.

Holtz (2011, Lemma 2.3) showed that the approximation error from trunca-
tion of ANOVA components is bounded by the total variance. This means that
for the effective dimensionality ds with a proportion α we have

‖f −
∑
|u|≤ds

fu‖2
2 ≤ (1− α)σ2(f). (4.18)

A choice of α = 0.99 would imply that only 1% of the total variance was lost
due to the truncated interaction order.
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4. Additive Structure and Effective Dimensionality

In contrast, anchored ANOVA decomposition yields an error bound for
quadrature. Let I be a quadrature operator

I(f) :=

∫
[0,1]D

f(x)dx.

Furthermore, let

σ̃(f) :=
∑

u⊆{1,...,D}
u6=∅

|Ifu| (4.19)

denote the sum of absolute values of all anchored ANOVA components.

In the anchored ANOVA case, the effective dimensionality ds describes the
maximum interaction order of the ANOVA components required to preserve a
proportion α ∈ [0, 1] of σ̃(f):

ds := arg min
t∈{1,...,D}

∑
|u|≤t
u6=∅

|Ifu| ≥ ασ̃(f). (4.20)

Holtz (2011, Lemma 2.8) showed that this definition allows to bound the
quadrature error from truncation of ANOVA components similar to (4.18). For
the effective dimensionality ds with a proportion α we have∣∣∣∣∣∣I(f)− I

∑
|u|≤ds

fu

∣∣∣∣∣∣ ≤ (1− α) σ̃(f). (4.21)

Altogether, functional ANOVA is a form of function subspace decomposition.
It only requires a choice of a suitable measure function (e.g. Lebesgue or Dirac
delta function), then the projection operation, the form of individual ANOVA
components, and the properties such as effective dimensionality follow automat-
ically. The ability to rely on theoretical properties of ANOVA components is
very useful. For example, estimate of effective dimensionality tells a lot about
the problem at hand. However, working with measure functions, integrals, and
component formulas of the form (4.13) directly is cumbersome and inefficient.
Fortunately, sparse grids can help us (of cause they can!) to estimate ANOVA
components directly through an appropriate function space discretisation.

4.2.3. Sparse Grids and ANOVA Decomposition

Until this point the discussion of the functional ANOVA decomposition was
very general and without any connection to sparse grids. An attentive reader,
however, may have noticed the similarity between the function space structures
(4.9) and (2.13). This similarity is not coincidental.
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4.2. Single Model with Additive Structure

Figure 4.3.: ANOVA components discretised with a hierarchical basis. Basis
functions covered in one colour correspond to the same ANOVA
component.

If a sparse grid basis set contains a one-dimensional constant function, due to
the tensor product construction rule this constant function becomes a factor of
some high-dimensional function. Assume that we have the modified linear basis.
Then the value of high-dimensional basis functions that contains the constant
function φ1,1 in d-th dimension does not depend on the coordinate xd in d-th
dimension:

φl,i(x) = φl1,i1(x1)×· · ·×φld−1,id−1
(xd−1)×1×φld+1,id+1

(xd+1)×· · ·×φlD,iD(xD).

As Fig. 4.3 suggests, we can then combine all basis functions φl,i with cor-
responding weights wl,i that have a constant in the dimension d and not a

constant in all other dimensions into a function f̂d. This combination gives us
a part of the total approximant that does not depend on the coordinate xd in
d-th dimension. In particular, for the example in Fig. 4.3 we have

f̂0(x) = 1 · 1,
f̂1(x) =

∏
(l,i)∈G`

wl,iφl,i(x), where l1 = 1 and l2 > 1,

f̂2(x) =
∏

(l,i)∈G`

wl,iφl,i(x), where l1 > 1 and l2 = 1,

f̂12(x) =
∏

(l,i)∈G`

wl,iφl,i(x), where l1 > 1 and l2 > 1.
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4. Additive Structure and Effective Dimensionality

The sparse grid model f̂ then evaluates to

f̂(x) = f̂0(x) + f̂1(x) + f̂2(x) + f̂12(x),

which is identical to the form of the functional ANOVA decomposition (4.3).
The strong connection between the ANOVA decomposition and the sparse

grids technique has been known for years. Hegland (2003) motivated dimen-
sional adaptivity of sparse grids for approximation to recover the underlying
ANOVA structure. This idea was furthered by Gerstner and Griebel (2003)
for high-dimensional quadrature and by Garcke (2004) for machine learning
problems. Later, Holtz (2011) and Feuersänger (2010) developed constructive
approaches to represent ANOVA components with sparse grids for quadrature
and function approximation.

Feuersänger (2010) showed how the use of multiscale basis functions with
vanishing zeroth moment (i.e. the second order piecewise linear Neumann pre-
wavelet basis) leads to a natural decomposition of hierarchical subspaces into
ANOVA components. Hence, wavelets could be a first choice as sparse grid ba-
sis functions. Unfortunately, the efficiency of standard wavelet basis functions,
such as those used by Feuersänger, is limited due to growing cost for refinement
(Buse, 2015). It turns out that representation of these basis functions requires
introduction of so called “shadow points”. The number of these auxiliary points
grows fast with the refinement level and the dimensionality. Hence, the storage
of these points becomes a limiting factor.

For an anchored ANOVA decomposition, it is sufficient to have a hierarchical
basis that contains a constant function. For example, the modified linear basis
contains a constant function on its first level. Hence, if we use the modified
linear basis and the Dirac measure (which means that we evaluate the func-
tion at the sparse grid points and use these values to compute the sparse grid
coefficients) we obtain sparse grid subspaces that correspond to discretised an-
chored ANOVA components. Then using (4.20) and (4.21) we could calculate
the effective dimensionality and error bounds for quadrature.

Unfortunately, this is useless for our goals for two particular reasons: First, we
are unable to evaluate the functions behind most supervised learning problems at
an arbitrary point. And second, in supervised learning we are usually interested
in approximation of function output and not in computing its quadrature.

Fortunately, if the approximant f̂ is a solution to a regression problem, we
can establish an alternative definition of effective dimensionality that allows us
to bound the mean squared error from leaving out certain high-order interaction
components f̂u like in the case of functional ANOVA decomposition.

Similar to the definitions of contributions of the ANOVA components in (4.16)
and (4.19), for the dataset {xi, yi}Ni=1 we define

σ̂2(f) := 1
N

N∑
i=1

f(xi) · yi. (4.22)
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4.2. Single Model with Additive Structure

And, consequently, we define effective dimensionality ds in terms of preserving
the α’s portion of σ̂2(f):

ds := arg min
t∈{1,...,D}

∑
|u|≤t

σ̂2(fu) ≥ ασ̂2(f). (4.23)

Following lemma suggests that using this notion of effective dimensionality
we can obtain the error bounds from the removal of superfluous subspaces as
we did in (4.18).

Lemma 4.1. Let S = {xi, yi}Ni=1 be a dataset. Let f̂ and f̂ ′ be two functions

fitted to S such that f̂ ′ contains the ANOVA components of f̂ with effective
dimensionality ds. The mean squared error from removing the subspaces above
effective dimensionality ds defined in (4.23) is bounded as

1
N

N∑
i=1

(
yi − f̂ ′(xi)

)2

− 1
N

N∑
i=1

(
yi − f̂(xi)

)2

≤ (1− α)σ̂2(f̂). (4.24)

Proof. First we show that σ̂2(f̂) can be decomposed in the sum of individual
components:

σ̂2(f̂) = 1
N

N∑
i=1

(
yif̂(xi)

)
= 1

N

N∑
i=1

yi
∑

u⊆{1,...,D}

f̂u(xi)

=
∑

u⊆{1,...D}

1
N

N∑
i=1

yif̂u(xi) =
∑

u⊆{1,...,D}

σ̂2(f̂u).

If f̂ is fitted to S then its residual is orthogonal to predictions. Therefore, we
can rewrite the mean squared error as

1
N

N∑
i=1

(
yi − f̂(xi)

)2

= 1
N

N∑
i=1

(
yi − f̂(xi)

)(
yi − f̂(xi)

)
= 1

N

N∑
i=1

yi

(
yi − f̂(xi)

)
− 1

N

N∑
i=1

f̂(xi)
(
yi − f̂(xi)

)
= 1

N

N∑
i=1

y2
i − σ̂2(f̂). (4.25)
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Let f̂u and f̂ ′u be the ANOVA components of f̂ and f̂ ′ correspondingly. Then
we have

1
N

N∑
i=1

yi − ∑
|u|≤ds

f̂ ′u(xi)

2

≤ 1
N

N∑
i=1

yi − ∑
|u|≤ds

f̂u(xi)

2

, (4.26)

since f̂ ′ does not contain any other components and selecting a subset of com-
ponents from f̂ leads to an additional truncation error. If we apply (4.25) to
(4.26) we immediately obtain

1
N

N∑
i=1

y2
i −

∑
|u|≤ds

σ̂2
(
f̂ ′u

)
≤ 1

N

N∑
i=1

y2
i −

∑
|u|≤ds

σ̂2
(
f̂u

)
. (4.27)

Now we can how the error bound (4.24):

1
N

N∑
i=1

(
yi−f̂ ′(xi)

)2

− 1
N

N∑
i=1

(
yi−f̂(xi)

)2 (4.25)
= 1

N

N∑
i=1

y2
i−σ̂2(f̂ ′)− 1

N

N∑
i=1

y2
i +σ̂

2(f̂)

(4.27)

≤ 1
N

N∑
i=1

y2
i −

∑
|u|≤ds

σ̂2
(
f̂u

)
− 1

N

N∑
i=1

y2
i + σ̂2(f̂) =

∑
|u|>ds

σ̂2(f̂u)

= (1− α)σ̂2(f̂).

Let us see on a concrete example how the components of a discretised
sparse grid relate to the functional ANOVA components. Feuersänger (2010,
Fig. 4.4, 4.8) demonstrated that the discretisation of the function

f(x, y) = 10 + x2
1 + 4ex2 + 0.3x1x2 (4.28)

using prewavelet basis functions recovers correct terms, while the basis set con-
sisting of hat functions and a constant with anchor ANOVA decomposition fails
to do so. Using the definition (4.13) we can estimate the ANOVA components
exactly6

f0 = 17.28,

f1(x1) = x2
1 + 0.15x1 − 0.41,

f2(x2) = 0.15x2 + 4ex2 − 6.95,

f12(x1, x2) = 0.3x1x2 − 0.15x− 0.15x2 + 0.075.

6The values are rounded to the second significant digit.
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(a) Analytical ANOVA
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Figure 4.4.: Comparison of analytically computed and numerically estimated
ANOVA components for f(x, y) = 10 + x2 + 4ey + 0.3xy. (a): an-
alytically computed ANOVA components f0, f1, f2 compared with
the term of f(x, y), they differ by a constant. (b): analytically
computed ANOVA components f0, f1, f2 compared with sparse grid
discretisation f̂0, f̂1, f̂2 and prewavelet discretisation f̃0, f̃1, f̃2, the
coincidence is almost exact. (c): the two-dimensional reminder as
estimated from the sparse grid discretisation, the amplitude and
contribution is negligible compared to the one-dimensional terms.

Figure 4.4a shows that this ANOVA components have the same form as the
terms of (4.28) but shifted by a constant.

Now, let us approximate the function (4.28) using a sparse grid with modified
linear basis. As we can see in Fig. 4.4b, prewavelet basis functions are perfectly
suitable to reconstruct the underlying components of classical ANOVA. In fact,
the ANOVA components fi and prewavelet approximants f̃i are indistinguish-
able from each other. Surprisingly, our approximants f̂i that uses modified
linear basis functions are not far away! Finally, modified linear functions suc-
ceed to identify the unimportance of the two-dimensional remainder f̂12 shown
in Fig. 4.4c.

This example suggests an important conclusion: Although the modified linear
basis functions do not possess a vanishing zeros model, in practice they recon-
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struct the classical ANOVA components just as well as the prewavelet basis
functions. This mean, they could, at least for practical purposes, be applied to
identify the importance of the ANOVA components, the effective dimensionality
and the bounds for the approximation error.

4.3. Sparse Grids with Additive Structures

Let us know discuss different ways to control the shape of the sparse grid model.
This control can be explicit, when the prior knowledge of the problem structure
is available or the resolution of higher interaction terms is determined by an
external paramete—this is the subject of Sec. 4.3.1. Alternatively, this con-
trol can be implicit, identified by putting a penalty on the number of ANOVA
components—this is the subject of Sec. 4.3.2. Finally, we conclude this section
and this chapter with Sec. 4.3.3 that presents the opportunities for learning a
structure in a regression problem using a number of numerical examples.

4.3.1. Integration of Known Structure

Griebel and Knapek (2000) introduced generalised sparse grids that have the
flexibility to vary the maximal possible resolution of the interaction terms in a
sparse grid.7 It extends the constraint in the definition (2.17) by limiting the
maximum norm of the level vector:

GT
` :=

⋃
l

Gl such that |l|1 − T |l|∞ ≤ (`+ d− 1)− T · `. (4.29)

The parameter T ∈ [−∞, 1] controls the shape of the diagonal and hence the
number of degrees of freedom in higher-order interaction terms. Figure 4.5
shows the influence of T on the shape of the subspace tableau. For T = 0 we
obtain the standard regular sparse grid; T > 0 leads to exclusion of hierarchical
subspaces from the sparse grid (starting with isotropic ones); T < 0 leads to
inclusion of new hierarchical subspaces with the special case T = −∞, where it
becomes a full grid.

Figure 4.6 compares the number of grid points in different interaction orders
for a generalised sparse grid with 5 dimensions and maximum level 5 for different
values of the parameter T . Two things are interesting in this diagram. First,
for a regular sparse grid most of the points are in the 2-order and 3-order
interactions and there are much more points than, for example, in the 1-order
or 4-order (as we look on the logarithmic scale). Second, the parameter T > 0
quickly reduces the number of points in higher interaction terms, while keeping

7The generalised sparse grids introduced by Griebel and Knapek (2000) are not to be
confused with the generalised sparse grids which were introduced by Hegland (2003) and
denote dimension adaptivity.
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Figure 4.5.: Subspace tableau for a generalised sparse grid with different values
of T from (4.29). For T = 0 we obtain the standard regular sparse
grid; T > 0 leads to exclusion of hierarchical subspaces from the
sparse grid (starting with isotropic ones); T < 0 leads to inclusion
of new hierarchical subspaces with the special case T = −∞, where
it becomes a full grid. Adapted from (Griebel & Knapek, 2000).

the form of the distribution same, T < 0 explodes the number of points in higher
interactions while keeping the distribution form the same.

In addition to limiting the resolution in high-order interaction terms, the
domain-specific information can suggest to limit the neighbourhood of allowed
interactions. This principle naturally occurs in processing images, such as clas-
sification of handwritten digits. Here, the dimension corresponds to a pixel or
a superpixel (colour patch) in the images. To recognise a shape in the image,
it is therefore more import to consider the information in the local neighbour-
hood of every pixel and not the information of the other side of the image. In
terms of sparse grids this means that certain dimensions (pixels) xi and xj do

not interact with each other and the component f̂ij(xi, xj) and can be excluded
from the sparse grid structure.

Figure 4.7b shows the growth of a 64-dimensional sparse grid model for recog-
nition of 8×8 pixel digits (e.g. Fig 4.7a). The interaction terms are truncated
according to the Chebyshev distance between pixels. For example, pixel (1,1)
has Chebyshev distance 1 with pixels (0,0), (0,1), (0,2), (1,0), (1,2), (2,0), (2,1),
(2,2) and hence the interaction terms between corresponding directions are in-
cluded in the neighbourhood size 1 in Fig. 4.7b. In contrast, pixel (1,3) has
Chebyshev distance 2 and hence the interaction between (0,0) and (1,3) is not
included in the bars with neighbourhood size 1 but it is included into the bars
with neighbourhood size 2. The advantage of limiting the neighbourhood size
increases with the maximum level of the sparse grid model: for example, for a
sparse grid level 3 the neighbourhood 7 is about 7 times larger than neighbour-
hood 1, for a sparse grid level 5 this difference is 452 times.

If the structure of the problem domain is known a priori, sparse grids of-
fer mechanisms to tinker the model structure reducing its size by orders of
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Figure 4.6.: Number of grid points in different interaction orders for generalised
sparse grids. For a regular sparse grid with T = 0 most of the points
concentrate in the 2-order and 3-order interactions. For T > 0 the
number of points in higher interaction terms diminishes. For T < 0
the number of points in higher interactions explodes. The shape of
the point distribution remains the same.
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Figure 4.7.: Growth of a sparse grid model for recognition of 8×8 pixel hand-
written digits. The correlation between collocated pixels is more
significant than between far apart. Right: the size of a sparse grid
model where only interaction between collocated pixels is consid-
ered, the radius of the collocation is denoted as the neighbourhood
size. The advantage of limiting the neighbourhood size increases
with the maximum grid level.
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magnitude. This can facilitate solution solution of high-dimensional problems.
However, often this structure is unknown a priori but there is plenty of data. In
this case, we should try to identify the structure a posteriori.

4.3.2. Identification of Unknown Structure

Our methods for identifying an additive structure in the problem resemble the
methods for identifying low-dimensional manifolds in Chapter 3. Two main
classes discussed in this section are greedy approaches and sparsity-inducing
norms applied on the level of ANOVA components.

ANOVA greedy approach

The idea of using dimension-adaptive sparse grids to recover the ANOVA struc-
ture was initially suggester by Hegland (2003) and Garcke (2004) for data mining
and by Gerstner and Griebel (2003) for quadrature computation. The suggested
algorithms can be classified as forward greedy selection methods that operate on
complete hierarchical subspaces Wl and respect the lattice structure of the solu-
tion (you can only add a hierarchical space if all its parents in all dimensions are
already added). Usually an algorithm would start with an initial grid as small
as consisting only of the subspace W(1,...,1). The algorithm would maintain two
sets of subspaces:

1. active set consisting of hierarchical subspaces that have been made a part
of the model and

2. candidate set consisting of subspaces to select the new subset from.

The algorithm would identify a hierarchical subspace with the largest error
indicator (application dependent) and add it to the active set. The children
subspaces of this one are added to the candidate set if all their hierarchical
ancestors are already in the active set. Since candidate subspaces are not neces-
sarily orthogonal, the error indicators of the subspaces in the candidate set need
to be recomputed with respect to the new model. The iteration continues until
some convergence criterion is reached, i.e. training error surpasses a certain
threshold.

Numerical experiments conducted by Hegland (2003) showed that this meth-
ods can be successfully used for identification of ANOVA components. Alas,
this forward selection method on hierarchical subspaces inherits the drawbacks
described in Sec. 3.2. Moreover, it can be computationally intractable for higher
dimensions.

Feuersänger (2010) suggested a spatially-dimension-adaptive algorithm for
function approximation that respects the ANOVA structure of the sparse grid
model. The procedure starts with an initial grid G(0) of “small, but not too
small, level”. The algorithm starts with a backward-greedy procedure where it
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fits the initial grid model to the problem, identifies the importance of different
ANOVA components in the grid model by summarising the local error indicators
of the grid-indices, and eliminates the basis functions with the indicator below
a certain threshold value. After this coarsening, the algorithm continues with
a standard spatially-adaptive refinement procedure where only children in the
same ANOVA component are added. In practice, this means that, if the level
vector of a grid index is 1 in a certain dimension, children in this dimension are
not created.

By default the algorithm would refine all grid indices with the local error
indicator larger than a certain threshold. This makes it a refinement in a breath-
first-search manner of traversion through the hierarchical subspaces scheme in
contrast to the depth-first-search manner used by Garcke and Hegland.

We can see three problems with this approach:

1. The requirement to consider all important main influences and the interac-
tion terms right from the beginning makes the initialisation step extremely
expensive in high dimensions. The failure to make correct assumptions
about the choice of interaction order cannot be corrected in the later
stage. For example, a regular sparse grid of level level l would be able to
capture at most the interaction terms of up to order l− 1 and the highest
orders would have only very few grid points. On the other side, a too
generous estimation of the maximum interaction order explodes the size
of the initial grid making the coarsening step intractable.

2. The choice of a threshold, either absolute or relative, is critical for the suc-
cess. Either the same threshold controls refinement and coarsening and
makes the whole algorithm more crucially depend on the proper choice,
or we have two different thresholds and the cross-validation procedure be-
comes much more expensive. In fact, nothing in the compression step
suggests that any of the ANOVA components will be completely elim-
inated as even within the same ANOVA component the volume of the
basis function can vary strongly. It seems to be more reasonable to iden-
tify the summarised error indicator of the complete ANOVA component
and then decide whether to eliminate it or not.

3. Finally, the breath-first-search procedure for refinement seem to be overly
lavish for high-dimensional setting. Spending too many grid indices where
it is not necessary is exactly what we want to avoid for high-dimensional
supervised learning problems. The author reasonably argues that breath-
first-search manner reduces the number of overall iterations. However, this
strategy heavily relies on the assumption that the algorithm succeeds at
choosing the refinement threshold that selects only the right grid indices.

The methods to deal with ANOVA structure suggested so far belong to for-
ward and backward greedy procedures. And similarly to the greedy approach in
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Sec. 3.2, identification of the additive subcomponents of the model can occur by
greedy insertion and deletion of the ANOVA components of a sparse grid model.
The main difference is that instead of considering individual grid indices, where
evaluation is comparably inexpensive, we operate with sets of dozens or hun-
dreds of grid indices. Hence, it may be too expensive to include and remove
again the subspaces as easy as individual grid indices in Alg. 8.

ANOVA sparsity-inducing norms

The application of sparsity-inducing norms to facilitate ANOVA structure for
nonparametric multivariate structure estimation was studied in the context
smoothing splines (see a comprehensive review by Gu (2013)). The idea of
smoothing spline ANOVA (SS-ANOVA) goes back to the work by Wahba et
al. (1995). In the later study, H. H. Zhang et al. (2004) combined SS-ANOVA
and basis pursuit to identify the main one-dimensional ANOVA components
and two-dimensional interactions. Their approach uses `1-norm as the regular-
isation operator and two kinds of regularisation parameters λπ and λs to dif-
ferentiate between one-dimensional and two-dimensional ANOVA components.
This allows a fine control over regularisation, but makes the hyperparameter
configuration more time-consuming.

An alternative `1-norm regularisation of lasso is to a mixed `1/`q-norm group
lasso regularisation (3.18). The formulation is easily extendable to sparse grid
ANOVA context. We can summarise all basis functions that belong to the
same ANOVA component in a group and penalise all corresponding parameters
together.

Let P = P({1, . . . , D}) be a powerset, u ∈ P , Gu = {(l, i) | lj >
1 for each j ∈ u, lj = 1 for each j /∈ u}, and wu = {wg | g ∈ Gu}. Then
the penalisation term has the form

Ω(w) =
∑
u∈P

γu‖wu‖q. (4.30)

Depending on the method, the normalisation term γu is set either to
√
|Gu| or

to λ/‖wls
u‖q, where wls

u is the simple least-squares solution without any regular-
isation terms.

Using a sparsity-inducing norm to recover ANOVA structure in sparse grids
offers many advantages. It makes the initial coarsening procedure unnecessary.
Important or unimportant ANOVA components can be identified at any step
of the learning procedure. Since it can substitute the existing regularisation
term in (2.6), it does not introduce any additional hyperparameters that need
to be estimated using expensive cross-validation procedure. As the next section
shows, some sparsity-inducing norms are more robust to the choice of λ than
others.
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4.3.3. Numerical Experiments

Now it is time to put our methods for ANOVA identification to a test. We
take a well studied benchmark datasets from (Friedman, 1991) and compare
three different sparsity-inducing penalties for their abilities to identify impor-
tant ANOVA components and the stability of the methods to the choice of
regularisation parameters.

Friedman 1 is a ten-dimensional dataset where only first five dimensions con-
tribute to the target variable:

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε (4.31)

with uniformly distributed x1, . . . , x10 ∼ U(0, 1) and a normally dis-
tributed white noise ε ∼ N (0, 1).

Friedman 2 is generated using a four-dimensional input as

y =

√
x2

1 +

(
x2x3 −

1

x2x4

)2

+ ε (4.32)

with x1 ∼ U(0, 100), x2 ∼ U(40π, 560π), x3 ∼ U(0, 1), x4 ∼ U(1, 11), and a
comparably high random noise ε ∼ N (0, 15 625).

Friedman 3 is another four-dimensional dataset with inputs distributed iden-
tically to Friedman 2 and target values generates as

y = arctan

(
x2x3 − 1

x2x4

x1

)
+ ε (4.33)

with a low random noise ε ∼ N (0, 0.01).

Friedman (1991) compared different noise settings for each dataset. In this
evaluation we follow the configuration used in (Pflüger, 2010). Friedman 1
dataset contains 10 000 points while Friedman 2 and Friedman 3 contain 5 000
data points. We are not interested in the test error and so we do not control for
it.8 We are rather interested in testing three regularisation penalties: `1-norm
(lasso), `2

2-norm, and group lasso for their ability to identify important ANOVA
components. While `2

2-norm has been used for sparse grid regression for years
and today is a quasi state-of-the-art regulariser, lasso and group lasso are two
new contestants that are expected to produce sparser solutions. Lasso achieves

8Note that the variance of the random noise directly implies the optimal MSE that is
achievable on the dataset. For example, with our instance of Friedman 2 dataset it is virtually
impossible to train a model to achieve test error lower than 15 625, training error that is
significantly lower than 15 625 would indicate possible overfitting.
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this by forcing individual coefficients to 0, while group lasso is configured in a
way to regularise all coefficients from the same ANOVA component together.

For the Friedman 1 we train a ten-dimensional sparse grid model with level
4. As we know that the effective dimensionality of the dataset is equal to 2, we
restrict the interaction order to 2 as well. This alone immediately reduces the
grid size from 2001 to 1041 points.

Figure 4.8 compares the contributions of individual ANOVA subspaces for
different norms with respect to the choice of different values for the parameter
λ. Both lasso and group lasso succeed at identifying important ANOVA sub-
spaces (all left of f5). In contrast, `2

2-norm regulariser tends to shrinking all
contributions such that it is impossible to find a threshold that could separate
important components from unimportant. Moreover, in the list of 10 compo-
nents with the highest contributions we do not find the component f5 which,
we know, plays an important role in the true function.

For `1-norm penalty we observe a significant drop in contribution between
important components (left of f5) and unimportant (right of it). For λ > 0.001
the unimportant contributions go to zero. Even for largest tested regularisation
parameter λ = 0.1 the contribution of all important components is above zero
such that we do not miss any important ANOVA components.

For group lasso this drop can be observed for λ ≥ 0.001 and for λ = 0.01 the
contribution of unimportant components goes to zero. However, as λ continues
to increase an becomes 0.1, even important components (right of f4) becomes
zero. This could result in a false negative error.

For Friedman 2 dataset we do not know unimportant ANOVA components a
priori. However, the application of all three penalties results in identification of
third-order interactions as insignificant (see Fig. 4.9). We order the components
with respect to their contributions for λ = 0.001 and, surprisingly, this order is
very stable independently of the selected penalty. As 0.001 implies a relatively
high regularisation, the influence of the regularisation is not insignificant and the
stability of this order is an evidence that our methods of measuring contribution
makes sense and that regularisations make a desirable impact.

The choice of the regularisation parameter implies the relative order of the
contributions more strongly for `2

2 than for other regularisation penalties: We
can see that for lasso and group lasso the contributions strongly monotonically
decrease with increasing λ, at the same time the order of components does not
change significantly. In contrast, for `2

2-norm the general trend is declining but
without monotonicity (see, e.g. the increase in contributions for f4 or the strong
change for the contributions for f1,4).

We also observe that group lasso is more prone to false positives for larger
values of λ. For example for λ > 0.01 all components right of f2 are basically
excluded. This is not necessarily a reason for abandoning this penalty, it is
rather a caution to be careful with the choice of λ.

For Friedman 3 dataset (see Fig. 4.10) we can again confirm that stable or-
dering of more important components for all three regularisation methods. Sur-
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Figure 4.8.: Penalty term comparison for Friedman 1. The indicator interval
is restricted to [0, 5 · 10−5], while the maximum indicator value for
f0 is ca. 2 · 10−4. The penalties produce similar errors for the
corresponding values of the parameter λ. Both lasso and group lasso
succeed at identifying important ANOVA subspaces (all left of f5).
In contrast, `2

2-norm regulariser tends to shrinking all contributions
and misses the component f5.
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Figure 4.9.: Penalty term comparison for Friedman 2. The indicator interval is
restricted to [0, 2], while maximum indicator value for f0 is ca. 6.
The penalties produce similar errors for the corresponding values of
the parameter λ. The order of components is similar for all penalties
which implies the significance of the results. Three-dimensional
ANOVA components fijk are marginal in all three cases. Lasso
and group lasso produce stable monotonically declining sequences
of components while results from the `2

2-norm are noisy.
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Figure 4.10.: Penalty term comparison for Friedman 3. The indicator interval is
restricted to [0, 0.002], while the maximum indicator value for f0 is
ca. 0.02. The penalties produce similar errors for the correspond-
ing values of the parameter λ. The order of components is similar
for all penalties which implies the significance of the results. Lasso
and group lasso produce stable monotonically declining sequences
of components while results from the `2

2-norm are noisy.
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prisingly, the diagrams shows that the contribution of the constant part is over-
whelmingly high, while one-dimensional contributions and two-way interactions
are significantly small and three-way interactions are basically non-existent. We
cannot conclude that one-dimensional components are always more important
than two-way interactions, but three-way interactions can be safely ignored!
The differences in the results between `1-, `2

2-, and `1/`2-norms are identical to
those from Friedman 2 dataset.

We learned that additive structure can come from properties of a particular
problem, as in the case of ANOVA decomposition, or be imposed artificially to
facilitate the processing of high-dimensional data, as in the case of ensembles
with random projections. Depending on a particular problem, both methods
can be used to solve high-dimensional supervised learning problems with sparse
grids.

Prior knowledge or specific properties of the problem domain can be inte-
grated directly into the sparse grid structure, using the generalised sparse grids
technique or explicitly reducing the order of allowed interactions in the shape
of a sparse grid. If the prior knowledge is unavailable, the sparsity-inducing
regularisation penalties with a group structure can facilitate the identification
of the ANOVA components.

Besides theoretical aspects of problem decomposition there are practical as-
pects of efficient fitting additive models. How can we train the football players,
from the beginning of the chapter, to act as a team? We direct our attention to
this problem next.
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How can intelligence emerge from nonintelligence? [...] you
can build a mind from many little parts, each mindless by itself.
I’ll call “Society of Mind” this scheme in which each mind is
made of many smaller processes. These we’ll call agents. Each
mental agent by itself can only do some simple thing that needs
no mind or thought at all. Yet when we join these agents in
societies—in certain very special ways—this leads to true
intelligence.

— Marvin Minsky, Society of Mind

Nowadays, the importance of high-performance data analysis and distributed
machine learning algorithms cannot be overstated. And so our study of sparse
grid methods for high-dimensional data mining would be incomplete without a
discussion of parallel algorithms for fitting sparse grid models.

In recent years, a variety of parallel algorithms for sparse grid learning
emerged in and around our research group at the Technische Universität
München. Heinecke (2014) conjured up a number of optimised and parallelised
operations for spatially adaptive sparse grids for commodity hardware as well as
for accelerators. Similarly, Buse (2015) developed optimised and parallelised al-
gorithms for dimensionally adaptive sparse grids utilising the subspace scheme.
In a recently published paper, Pfander, Heinecke, and Pflüger (2016) developed
a new algorithm for spatially-adaptive sparse grids that exploits the subspace
scheme for efficiency.

In contrast to their work, here we are not concerned with parallelising the
evaluation of a sparse grid model or with the implementation of a distributed
conjugate gradient solver for the normal equation (2.33). Instead, we investigate
alternative problem formulations that arise from a sparse grid model decompo-
sition. We are interested in the theoretical and empirical properties of these
formulations and in the distributed algorithms to solve these problems.

In this chapter we consider two such formulations in combination with the
corresponding fitting procedures. The first one, described in Sec. 5.1, comes
from statistics and is used for solving a system of smoothing equations. It
can be used for differentiable refularisation penalties, such as `2

2. To solve this
problem we develop a new parallel Krylov solver. The second one, discussed in
Sec. 5.2, appears in machine learning and optimisation of separable functions.
It is called Alternating Directions Method of Multipliers (ADMM) and can be
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used for the regularisaton penalties with known proximal operators. We derive
two parallel implementations for ADMM and discuss the implication of using
ADMM on the hierarchical structures of sparse grids.

5.1. Solving Additive Smoothing Equations

In Sec. 2.4.5 we introduced linear smoothers. The definition of a linear smoother
can be generalised to additive models. In fact, many different nonparametric
models can be generalised to the linear smoother formulation. It is therefore
no surprise that efficient solutions for this generalisation are highly interesting
and influential. In this section we suggest a new algorithm for fitting additive
smoothers, analyse its potential for improvement through preconditioning, and
develop a parallel version of the algorithm.

We are going to focus on the minimisation problem

min
w
‖Φw − y‖2

2 + λ‖Γw‖2
2 (2.76 revisited)

introduced in Sec. 2.3, but first let us define some additional notation used
throughout this chapter.

In the last chapter we considered sparse grid models with an additive structure
of the form

f(x) = f0 +
∑
i

fi(xi) +
∑
i 6=j

fij(xi, xj) + · · · . (4.3 revisited)

For convenience of the notation and more general results, in this chapter we
consider models in a more general form

f(x) =
m∑
j=1

fj(x), (5.1)

where the sum is taken over m D-dimensional functions fj. Obviously, (4.3) is a
special case of (5.1). Furthermore, we change the order of the basis function in
the sparse grid model—and, hence, the columns in the matrices Φ and Γ—such
that the basis functions from the same function term fj appear next to each
other. This allows us to identify the block-matrices and block-vectors that corre-
spond to the individual components: Φ = [Φ1, . . . ,Φm], w = [w1, . . . ,wm], and
the matrix D, the result of ΓTΓ, which can be expressed as diag(D1, . . . ,Dm).
The evaluation of the complete model f(x) and of functions fj(x) at all points
in the dataset can then be expressed in a vector form as

f := Φw, fj := Φjwj such that f =
m∑
j=1

fj. (5.2)
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5.1. Solving Additive Smoothing Equations

Similar to the definition of the smoother matrix (2.89), we define the partial
smoother matrices as

Sj := Φj(Φ
T
j Φj + λDj)

−1ΦT
j , for j = 1, . . . ,m. (5.3)

With this new notation we can rewrite the normal equation (2.33) as
ΦT

1 Φ1 + λD1 ΦT
1 Φ2 · · · ΦT

1 Φm

ΦT
2 Φ1 ΦT

2 Φ2 + λD2 · · · ΦT
2 Φm

...
...

. . .
...

ΦT
mΦ1 ΦT

mΦ2 · · · ΦT
mΦm + λDm




w1

w2
...

wm

 =


ΦT

1 y
ΦT

2 y
...

ΦT
my

 .
(5.4)

By multiplying both sides of this equation from left with the block-diagonal
matrix

Φ1

(
ΦT

1 Φ1 + λD1

)−1

Φ2

(
ΦT
j Φ2 + λD2

)−1

. . .

Φm

(
ΦT
mΦm + λDm

)−1


we obtain the transformed equation

Φ1 S1Φ2 · · · S1Φm

S2Φ1 Φ2 · · · S2Φm
...

...
. . .

...
SmΦ1 SmΦ2 · · · Φm




w1

w2
...

wm

 =


S1y
S2y

...
Smy

 .
Finally, we transform it to the additive smoothing equation. This means that
instead of wj being an unknown, our unknown is fj = Φjwj:

I S1 · · · S1

S2 I · · · S2
...

Sm Sm · · · I


︸ ︷︷ ︸

=:S̃


f1

f2
...

fm


︸ ︷︷ ︸

=:f̃

=


S1y
S2y

...
Smy


︸ ︷︷ ︸

=:c

. (5.5)

This transformation gives us an alternative view on the regression problem:
the solution is a number of predictions f1, . . . , fm, such that together they give
an overall prediction f = f1 + · · ·+ fm ≈ y and every individual prediction is a
smoothed version of the residual fj = Sj(y −

∑
k 6=j fk).

This alternative view also gives us new learning procedures described in Sec-
tions 5.1.1 and 5.1.2. Yet, we still can recover the internal model parameters
without additional costs. Section 5.1.3 describes how to do it. In Sections 5.1.4
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and 5.1.5 we consider in detail the ways how to parallelise and accelerate the
new learning procedure.

5.1.1. Backfitting Procedure

Traditionally, problem (5.5) is solved using the backfitting procedure suggested
by Buja et al. (1989). Backfitting is essentially a block-Gauss-Seidel method
presented in Alg. 12.

Buja et al. published their paper “Linear Smoothers and Additive Models”
in the Annals of Statistics. They showed the convergence of Alg. 12 for (5.5)
with Sj defined as in (5.3). However, the definition of smoothers they consid-
ered in their work was much broader and, besides linear smoothers, included
other one-dimensional scatterplot and kernel smoothers. A linear smoother is
symmetric positive definite and, as Proposition 2.6 shows, has eigenvalues be-
tween 0 and 1. The other smoothers may be unsymmetric and with unrestricted
spectrum, which inhibits the convergence of the backfitting algorithm. More-
over, the backfitting algorithm fails to eliminate the errors that correspond to
constant, linear, and low-frequency terms, which are associated with eigenval-
ues close to 1. Buja et al. suggested to remedy the situation by deflating those
eigenvalues explicitly, which may be cumbersome and require a deeper analysis
of the smoothers matrices.

The parallelisation of the backfitting algorithm is also not simple. Hegland,
McIntosh, and Turlach (1999) developed an algorithm for parallel fitting of
(generalised) additive models based on the backfitting procedure where they
split the existing data and merge the results. This parallelisation procedure
may work well if the amount of data is large but the smoothing models are
inexpensive to compute. However, it offers little remedy if we want to distribute
the computation of individual smoothers. The parallel execution of the blocked
Gauss-Seidel Procedure of Alg. 12 is more difficult. In fact, we could not find
any successful mentions in the literature and our own attempts to parallelise it
failed miserably. The parallel backfitting would simply not converge.

This motivated my work with Markus Hegland on an alternative fitting pro-
cedure described in the following section. And since the interest in smoothing

Algorithm 12: Backfitting Algorithm

Input: S,S1, . . . ,Sm smoothing matrices, y target vector
Output: fT := (fT1 , . . . , f

T
m) predictions

while not converged do
for j = 1 to m do

fj = Sj

(
y −∑k 6=j fk

)
end for

end while
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5.1. Solving Additive Smoothing Equations

methods is not restricted to the sparse grid community, we studied a wide range
of different models and not only sparse grids.

5.1.2. BiCGStab Procedure

In (Khakhutskyy & Hegland, 2014a) we suggested to solve (5.5) using a Krylov
method. Experience has shown that Krylov methods can handle system matrices
with clustered eigenvalues, characteristic for smoothers, better than the Gauss-
Seidel procedure. Since the system matrix in (5.5) is not symmetric, we use the
stabilised version of the BiCG algorithm, the Biconjugate Gradient Stabilised
(BiCGStab) method, suggested by van der Vorst (1992) and shown in Alg. 13.
We also adopt his notation throughout this section.

Algorithm 13: BiCGStab Algorithm without preconditioning for solving
(5.5) adopted from (van der Vorst, 1992)

1: Input: S̃,S1, . . . ,Sm smoothing matrices, y target vector
2: Output: f predictions of the additive models
3: rT = (r0)T = (S1y,S2y, . . . ,Smy)
4: f̃ = t = v = s = 0
5: α = ω = 1
6: ρold = ρnew = β = rT r
7: while not converged do
8: β = ρnew/ρold · α/ω
9: ρold = ρnew

10: p = β(p− ωv) + r
11: v = S̃p {synchronisation}
12: α = ρold/vT r0 {synchronisation}
13: s = r− αv
14: check convergence
15: t = S̃s {synchronisation}
16: ω = tT s

tT t
{synchronisation}

17: ρnew = −ωtT r0 {synchronisation}
18: r = s− ωt
19: f̃ = f̃ + ωs + αp
20: check convergence
21: end while

In each iteration step the BiCGStab algorithm identifies two correction direc-
tions—s and p—and step sizes—ω and α—that are used to modify the vector
of unknowns f̃ . Ideally, we would like all correction directions to be orthogonal,
similar to the conjugate gradients algorithm. Unfortunately, such orthogonalisa-
tion procedure is often infeasible if the system matrix is not symmetric. Instead,
the pairs of the correction directions are biorthogonal. The step sizes insure the

121



5. Parallel Fitting of Models with Additive Structure

(a) Residual (b) Error

Figure 5.1.: Comparison of problem formulations (5.4) and (5.5) for minimisa-
tion of residual and error of a synthetic 100-dimensional dataset
from model. Fitting of 1 000 data points was performed using re-
gression cubic splines with λ = 10−7 and dof=10. The problem
formulation (5.5) is superior to (5.4). MINRES succeeds at min-
imising the residual this does not affect the prediction error. Source:
(Khakhutskyy & Hegland, 2014a).

stable convergence of the algorithm, although they do not guarantee the min-
imisation of the residual norm in every step.

To illustrate the advantage of working with (5.5) instead of (5.4), we solve
the same problem in both formulations and compare the convergence speed.
Our benchmark is a synthetic dataset generated by a linear model with an
additive noise term. The dataset has 100 dimensions, whereas only 10 of them
are informative:

y = w0 + w1x1 + . . .+ w10x10 + 0x11 + . . .+ 0x100 + ε

with uniformly distributed variables x1, . . . , x100 ∼ U(0, 1) and a normally dis-
tributed noise ε ∼ N (0, 0.01). We denote the parameter vector by w.

We generated 1 000 samples and fitted a regression cubic spline to the data
(Khakhutskyy & Hegland, 2014a). Figure 5.1 illustrates the decline relative
residual norm ‖(ΦTΦ +λD)wk−ΦTy‖/‖(ΦTΦ +λD)w0−ΦTy‖ for MINRES
and ‖S̃f̃k−c‖/‖S̃f̃0−c‖ for the backfitting and the BiCGStab; and the relative
prediction error norm ‖fk − y‖/‖f0 − y‖ for iteration k.

One can see the superiority of the problem formulation (5.5) both by using the
classical backfitting algorithm and the BiCGStab method. While the residual
in Formulation (5.4) decreases, this does not considerably affect the error of the
resulting additive model. This is important since our main goal is to improve
the prediction error.
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5.1. Solving Additive Smoothing Equations

If we compare between the backfitting and the BiCGStab methods, we observe
that the error and residual norms of the backfitting algorithm decline more
steadily but also much slower. Since BiCGStab does not directly minimise the
error norm, some irregularities (spikes as seen in Fig. 5.1) are not uncommon,
although the algorithm would usually continue to converge afterwards.

5.1.3. Updating Internal Parameters

Algorithm 13 describes the fitting procedure by adjusting the components fj
of f̃ . However, our primary goal is to learn the parameters wj. Fortunately,
BiCGStab can be modified to update internal parameters of the model without
additional costs.

It follows from (5.5) that, once the algorithm converged, we have

Φjwj = fj = Sj

(
y −

∑
i 6=j

fi

)
for j = 1, . . . ,m. (5.6)

Since Sj = Φj(Φ
T
j Φj + λD)−1ΦT

j , (5.6) implies that

wj = Φ†j

(
y −

∑
i 6=j

fi

)
, with Φ†j := (ΦT

j Φj + λD)−1ΦT
j . (5.7)

A naive approach would be to estimate fj first and then recalculate wj from
(5.7). But nobody says “a naive approach” without having a better one up
their sleeves. For the Master’s thesis of Uphoff (2015) we derived a procedure
that avoids the solution of (5.7) and instead updates wj using already calculated
results as the algorithm proceeds. This idea is based on two observations.

First, the multiplication of a matrix Sj with a vector can be seen as a two-
step operation: In the first step, a vector of size N , number of data points, is
multiplied by Φ†j, which is a more expensive calculation. In the second step, the
intermediate result is multiplied by Φj, which is cheaper.

Second, the prediction fj is updated in Line 19 by adding the values ωs and
αp. If we denote the values ω, s, α, and p at the iteration l by ωl, sl, αl, and pl

then after k iterations we have

fkj =
k∑
l=1

(ωlsl + αlpl). (5.8)

It then follows from (5.7) that

wj = Φ†j

(
y−
∑
i 6=j

k∑
l=1

(
ωlsl+αlpl

))
= Φ†jy−

k∑
l=1

(
ωlΦ†j

∑
i 6=j

sli+α
lΦ†j

∑
i 6=j

plj

)
.

(5.9)
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If we look at the smoothing procedure this way, we notice that the intermediate

results in Lines 11 and 15 already give us Φ†j

(∑
i 6=j pi

)
and Φ†j

(∑
i 6=j si

)
.

Putting these observations together, our improved approach initiates the pa-
rameter vector wj with the value Φ†jy and then updates the vector once as

wj = wj − αΦ†jpj (5.10)

after new α is computed in Line 12 and once as

wj = wj − ωΦ†jsj (5.11)

after new ω is computed in Line 16.

5.1.4. Preconditioned BiCGStab

Preconditioners can often improve the convergence of Krylov solvers. Instead
of solving a system of linear equations Ax = b, we consider a preconditioned
system

Ãx̃ = b̃ (5.12)

with

Ã = M−1
1 AM−2

2 and b̃ = M−1
1 b

for some nonsingular matrices M1 and M2 such that A ≈M1M2. Once (5.12)
is solved, we retrieve the original solution as x = M−1

2 x̃.
Together with Carsten Uphoff (2015) we studied the applicability and im-

pact of several preconditioners for the solution of (5.5) with the BiCGStab
method. The study showed that the benefit of most common precondition-
ers, i.e. SSOR and sparse approximations (ILU, SPAI, AINV), is very limited.
The most promising results were achieved with a preconditioner Carsten called
LRW : a Low-Rank approximation of the matrices Sj and application of the
Woodbury matrix identity.

The idea of this preconditioner is very elegant. It considers the matrix S̃ in
the form

S̃ =


I− S1

I− S2

. . .

I− Sm

+


S1

S2
...

Sm

 [I I . . . I
]
, (5.13)

computes the rank-k approximate SVD of the matrices Sj using the fast algo-
rithm by Halko et al. (2011), and then applies the Sherman-Morrison-Woodbury
formula (A.3) to obtain the approximate inverse of S.
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5.1. Solving Additive Smoothing Equations

Figure 5.2.: Comparison of the relative residual for BiCGStab without precon-
ditioner and with the LRW preconditioner. LRW facilitates the
convergence significantly. Source: (Uphoff, 2015, Fig. 8.1.).

The LRW preconditioner allows to significantly accelerate the convergence of
our BiCGStab method as shown in Fig. 5.2. However, the use of the the precon-
ditioner requires an additional synchronisation step of the distributed algorithm
(see the next section) and computation of the approximate SVD requires an ad-
ditional setup time. Hence, the application of LRW makes sense only when every
smoothing step is costly (e.g. for Nadaraya-Watson kernel smoothers described
in the Master’s thesis).

5.1.5. Parallel BiCGStab

The original BiCGStab method, as shown in Alg. 13, is not well suited for
parallelisation since the operations in Lines 11, 12, 15, 16, and 17 require syn-
chronisation. Therefore, we perform a series of modifications to the original
algorithm exploiting the special structure of the matrix S̃.

Let us now consider a parallel BiCGStab method shown in Alg. 14. The
general idea behind the parallelisation is following: The large vectors r, r0,v, s, t,
and f have mN entries for m smoothers and N data points. To parallelise the
algorithm, we place different smoothers on different processing units. Therefore,
we consider the subvectors of N elements r0

j , vj, etc. computed and stored on
the same processing unit as Sj. Now, to compute the block j of the vector v in
Line 11, we can use the structure of the j-th block of the matrix S̃ to obtain

vj =
[
Sj · · · I · · ·Sj

]
p =

∑
k 6=j

Sjpk + pj = Sj

(
m∑
k=1

pk − pj

)
+ pj. (5.14)
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We modify the algorithm to avoid the exchange of all mN elements of these
vectors. Instead, we aggregate sums of subvectors or scalar products. For
example, in the equation above we would aggregate the sum pΣ =

∑m
k=1 pk.

Summation of vectors from different processing units with subsequent redistri-
bution of the result is a common operation in parallel computing. There are
efficient implementations of this operation in standard communication libraries.
For instance, MPI libraries implement it as the function Allreduce with the
SUM operand. We adopt this notation in Lines 4, 10, and 20 of Alg. 14 where
we sum up the variables from the first argument across all processes and store
the results in the variables of the second argument.

Now let us eliminate the synchronisation step in Line 12 of Alg. 13. Since all
smoothing matrices Sj are symmetric, we can rewrite the dot product vT r0 as
follows:

vT r0 =
m∑
j=1

vTj r0
j =

m∑
j=1

(pj + Sj(pΣ − pj))
T r0

j (5.15)

=
m∑
j

pTj r0
j + pTΣ

m∑
j

Sjr
0
j −

m∑
j

pTj Sjr
0
j . (5.16)

Here the first and the last summands can be accumulated using Allreduce,
while the middle summand can be precomputed at the beginning.

The computation of the scalar products in Lines 16 and 17 of Alg. 13 requires
an exchange of scalar values between processing units. To avoid this additional
communication, we reorder the algorithmic steps in a way that allows us to com-
pute the dot products and matrix-vector products simultaneously by storing the
variables in one memory segment and then performing an Allreduce summa-
tion on the complete segment.1 The scalar products in the second argument
of the Allreduce functions in Lines 10 and 20 of Alg. 14 stand for variables
containing the corresponding scalar products. Note that due to the reordering,
it is more convenient to aggregate the vectors t and v instead of p and s.

Altogether, we reduced five synchronisation steps per iteration in Alg. 13 to
only two in Alg. 14.

Besides this model-based parallelism, we can add a layer of data-parallelism
(Khakhutskyy & Hegland, 2014b). The data is partitioned into subdomains
using kd-trees. This allows us to decouple the individual problems as illustrated
in Fig. 5.3. The smoothness of the solution across the partition borders may get
lost. However, it is often not required in practice. Additionally, the decompo-
sition complemented with orthogonalisation is known to adapt to the internal
data manifolds (Guangliang & Maggioni, 2010).

If domain decomposition is used, the communication in Lines 10 and 20 of
Alg. 14 can be performed in three steps to minimise the amount of sent and

1A similar idea was proposed by L. Yang and Brent (2002).
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5.1. Solving Additive Smoothing Equations

Algorithm 14: Parallel BiCGStab Algorithm: code for processor j, 1 ≤
j ≤ m (Khakhutskyy & Hegland, 2014a)

1: Input: Sj smoothing matrix, y target vector
2: Output: fj predictions of the function fj(x) at the data points
3: r0

j = Sjy; rj = r0
j

4: Allreduce([rj, r
T
j rj], [rΣ, ρ

new], SUM)
5: α = ω = 1; ρold = β = ρnew

6: fj = tj = vj = vΣ = pj = pΣ = sj = sΣ = 0
7: while not converged do
8: if iteration > 0 then
9: ρold = ρnew

10: Allreduce([sTj r0
j , t

T
j sj, t

T
j tj, t

T
j r0

j , tj], [s
T r0, tT s, tT t, tT r0, tΣ], SUM)

11: ω = tT s
tT t

; ρnew = sT r0 − ωtT r0; β = ρnew

ρold
· α
ω

12: ρold = ρnew

13: rj = sj − ωtj; rΣ = sΣ − ωtΣ

14: fj = fj + ωsj
15: check convergence on r
16: end if
17: pj = β(pj − ωvj) + rj
18: pΣ = β(pΣ − ωvΣ) + rΣ

19: vj = pj + Sj(pΣ − pj)
20: Allreduce

(
[vTj r0

j ,vj], [v
T r0,vΣ], SUM

)
21: α = ρold/vT r0

22: sj = rj − αvj; sΣ = rΣ − αvΣ

23: fj = fj + αpj
24: check convergence on s
25: tj = sj + Sj(sΣ − sj)
26: end while
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(a) Task and data decomposition of
Equation (5.5)
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(b) Data partitioning and transforma-
tion with kd-trees

Figure 5.3.: Parallelisation of the fitting algorithm using task and data decom-
position with kd-trees. On the left: Transformation of Equation
(5.5). The coloured blocks are computed simultaneously. On the
right: Kd-tree based partitioning (solid lines) of data with a low-
dimensional manifold (black dots) and its orthogonalisation in in-
dividual partitions (red dots). Source: (Khakhutskyy & Hegland,
2014b).

received data (see Fig. 5.4). In the first step, we calculate the sum of large
vectors [sTj r0

j , t
T
j sj, t

T
j tj, t

T
j r0

j , tj] and [vTj r0
j ,vj] among the processors that share

the same data partition (Fig. 5.4a). At this stage the size of the communicated
vectors is basically the number of points in the partition. In the second step,
only the scalar product results [sTj r0

j , t
T
j sj, t

T
j tj, t

T
j r0

j ] and [vTj r0
j ] are aggregated

between the root processes of individual partitions (Fig. 5.4b). While the com-
munication between partitions is more expensive in distributed clusters, we need
to communicate only a small constant number of values, which is efficiently im-
plemented in MPI libraries. In the last step, the updated values are broadcasted
from the roots to all processes in the partitions (Fig. 5.4c).

We illustrate the performance of our parallelised BiCGStab algorithm using
the MSD benchmark introduced in Sec. 3.5.3. To remind you, the dataset
consists of 463 715 training examples with 88 numerical attributes describing
the song’s acoustic properties.2 We use linear models as smoothing operators
Sj, although an extension to other smoothers is straightforwards.

As mentioned above, data partitioning and orthogonalisation can improve
the performance and accelerate the convergence. Figure 5.5 compares the rela-
tive residual norm and the mean prediction error for the same model with and
without orthogonalisation. The orthogonalised version converges after the first
step!

Figure 5.6a illustrates the strong scaling of our algorithm. To make the plot,
we conducted 45 iterations using different number of processors: between 2 and

2Actually, there are 90 features but 88 is easier to split evenly among different number of
processors.
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5.1. Solving Additive Smoothing Equations

+ +

(a) Step 1

+

(b) Step 2

copy copy

(c) Step 3

Figure 5.4.: Three-steps communication model for Lines 10 and 20 of Alg. 14
with data partitioning. In the first step, we calculate the sum of
large vectors among the processors that share the same data par-
tition (a). In the second step, only the scalar product results are
aggregated between the root processes of individual partitions (b).
In the last step, the updated values are broadcasted from the roots
to all processes in the partitions (c). Source: (Khakhutskyy & Heg-
land, 2014b).
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Figure 5.5.: Comparison of the relative residual norm and the mean prediction
error for the same model with and without orthogonalisation on the
MSD. Source: (Khakhutskyy & Hegland, 2014b).
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Figure 5.6.: Scaling properties of Alg. 14. On the left: strong scaling results for
the Million Songs dataset with 88 features and 463 715 examples.
On the right: the computation-to-communication relationship for
different number of processors. Due to the limited size of the dataset
we show the strong scaling results of up to 256 processors. Source:
(Khakhutskyy & Hegland, 2014b).

256. There is a trade-off between the reduction of computation time and the
increase of communication overhead (Fig. 5.6b). For up to 8 processors, every
process receives all examples. Starting with 16 processors, we use data partition-
ing. This is responsible for a jump in communication overhead. An application
of more computationally intensive basis functions or smoothing kernels would
improve the computation/communication ratio.

Due to the limited size of the dataset we show the strong scaling results
for up to 256 processors. To use more processors we would need to split the
dataset further, which does not make sense in this particular case. However,
these diagrams are characteristic and similar behaviour is expected when the
total number of processors grows proportionally to the dataset size.

While originally motivated in statistics, fitting a system of smoothers can
find a much broader applicability as a framework for handling problems with
additive structure. We derived a new Krylov fitting method that exhibits a
faster convergence than the state of the art per se. Additionally, if necessary,
this method can be parallelised or further accelerated using a preconditioner.
As always, the usefulness of such measures is governed by the trade-off between
the gain and the additional overhead. As we demonstrated, this method can be
applied to a broad range of smoothers including sparse grid models.

The application of the method discussed in this section is limited to problems
with `2

2 regularisation. This is a broadly used regularisation penalty, but, as we
showed earlier, not the only one of interest. In the next section we consider an
alternative problem formulation in combination with an optimisation algorithm
that can be used with a wide range of regularisation functions.
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5.2. Alternating Direction Method of Multipliers

5.2. Alternating Direction Method of Multipliers

The Alternating Directions Method of Multipliers (ADMM) is a further de-
velopment of the dual ascent algorithm by Arrow, Hurwicz, and Uzawa (1958).
The method gained recent popularity largely due to the seminal review by Boyd
et al. (2010) whose exposition we follow in the introduction of the method in
Sec. 5.2.1. Afterwards, we show in Sec. 5.2.2 the connection between ADMM
and backfitting, uncovering the relationships unknown before. Sections 5.2.3
and 5.2.4 discuss the distributed version of the ADMM algorithm for sparse
grid models with synchronous and asynchronous communication patterns.

5.2.1. Introduction to ADMM

ADMM solves constrained optimisation problems of the form

min
x,z

h(x) + g(z)

subject to Ax + Bz = c (5.17)

with variables x ∈ Rn, z ∈ Rm, linear constraints given by a vector c ∈ Rp

and matrices A ∈ Rp×n, B ∈ Rp×m, and convex cost functions h : Rn → R,
g : Rm → R. Note that for now this notation is general and has nothing to do
with the notation, for the input variable x, used in the previous chapters. Later
on we adopt the specific notation used elsewhere in the thesis.

The problem (5.17) is solved iteratively using the augmented Lagrangian func-
tion

Lρ(x, z,y) = h(x) + g(z) + yT (Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖2

2, (5.18)

with the Lagrangian multiplier y ∈ Rp and a positive penalisation coefficient
ρ ∈ R+.

In each iteration of the ADMM algorithm, the x and z variables are calculated
as minimisers of the augmented Lagrangian

xk+1 := arg min
x

L(x, zk,yk), (5.19)

zk+1 := arg min
z

L(xk+1, z,yk) (5.20)

followed by the update of the Lagrangian multiplier variable

yk+1 := yk + ρ(Axk+1 + Bzk+1 − c). (5.21)

Often, it is more convenient to use a so-called scaled form of the equations
(5.19)–(5.21). Let r := Ax + Bz − c denote the residual and let u := (1/ρ)y
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5. Parallel Fitting of Models with Additive Structure

denote the scaled dual variable. Then

yT r + (ρ/2)‖r‖2
2 = (ρ/2)‖r + (1/ρ)y‖2

2 − (1/2ρ)‖y‖2
2

= (ρ/2)‖r + u‖2
2 − (ρ/2)‖u‖2

2.

Thus, the ADMM updates (5.19)–(5.21) can be expressed as

xk+1 := arg min
x

(
h(x) + (ρ/2)‖Ax + Bzk − c + uk‖2

2

)
, (5.22)

zk+1 := arg min
z

(
g(z) + (ρ/2)‖Axk+1 + Bz− c + uk‖2

2

)
, (5.23)

uk+1 := uk + Axk+1 + Bzk+1 − c. (5.24)

Note that, since Axt + Bzt − c can be interpreted as the residual at iteration
t, the scaled dual variable uk = u0 +

∑k
t=1 Axt + Bzt− c is the running sum of

residuals.

The usage of the penalisation term (ρ/2)‖ · ‖2
2 in the augmented Lagrangian

function improves the convergence of the dual ascent algorithm (Fortin &
Glowinski, 1983). It can be easily seen that for feasible solutions (x∗, z∗) the
penalty becomes 0. If the saddle point of the Lagrangian function exists, Gabay
and Mercier (1976) have shown that the saddle point of the Lagrangian function
without the penalisation term is a saddle point of Lρ and vice versa.

The convergence of the ADMM for closed, proper convex functions h : Rn →
R∪{+∞} and g : Rm → R∪{+∞} and ρ ≥ 0 was shown by Gabay and Mercier
in 1976. More recently, He, Yang, and Wang (2000) were able to give the con-
vergence rate using a variational inequality formulation of Problem (5.17). The
authors showed that after T iterations of the ADMM algorithm the averaged
aggregated solution vector (xk, zk,yk)T = 1/T

∑T
k=1(xk, zk,yk)T would approx-

imate the solution of the variational inequality with accuracy O(1/T ).

To show the relationship between ADMM and proximal operators, let vk :=
−Bzk + c − uk and assume A = I. Then we can express the x-update step
(5.22) as

xk+1 := arg min
x

(
h(x) + (ρ/2)‖x− v‖2

2

)
. (5.25)

In this update step we can recognise the proximal operator (3.27):

xk+1 := prox(1/ρ)h(−Bzk + c− uk). (5.26)

Analogously, we can define the update of z using the proximal operator as

zk+1 := prox(1/ρ)g(−Axk+1 + c− uk). (5.27)

If A 6= I, then the updates (5.22) and (5.23) are, strictly speaking, not prox-
imal operators in itself. However, they are strongly related to these operators
as we will see later.
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5.2. Alternating Direction Method of Multipliers

ADMM is often used when the properties of the functions h and g—i.e. con-
vexity, differentiability, or separability—are different. Then the particular prox-
imal operators (5.26) and (5.27) can benefit from exploiting these properties.

To derive a concrete ADMM algorithm for empirical risk minimisation with
sparse grid models, we observe that for the models with additive structure the
regularisation term described in Sec. 4.3.2 can be divided in a sum of penalty
terms on subvectors of parameters, like in (4.30). At the same time, the residual
sum of squares

∑N
i=1(
∑m

j=1 fj(xi) − yi)
2 cannot be divided. This yields the

empirical risk minimisation problem of the form

min
w1,...,wm

1
2

N∑
i=1

(
m∑
j=1

wT
j φj(xi)− yi

)2

+
m∑
j=1

λΩj(wj), (5.28)

where φj(xi) denotes a vector with the basis functions from the split j evaluated
at the point xi.

To apply the ADMM, we bring this minimisation problem in form (5.17). In
order to do this, we introduce an auxiliary variable fj to signify the result of
the matrix vector product Φjwj and connect it to wj using the constraint. We
then obtain the minimisation problem

min
f1,...,fm

w1,...,wm

1
2

∥∥∥∥∥
m∑
j=1

fj − y

∥∥∥∥∥
2

2

+
m∑
j=1

λΩj(wj)

subject to Φjwj = fj, j = 1, . . . ,m.

Let g(f) := 1/2‖f − y‖2 and hj(wj) := λΩj(wj). By splitting the problem
into a sum of two functions, we obtain an optimisation problem in the form
required for ADMM:

min g

(
m∑
j=1

fj

)
+

m∑
j=1

hj(wj)

subject to Φjwj = fj j = 1, . . . ,m. (5.29)

Application of the ADMM steps (5.22)– (5.24) leads to the updates

wk+1
j := arg min

wj

{
λΩj(wj) +

ρ

2
‖Φjwj − fkj + ukj‖2

2

}
, (5.30)

f̃k+1 := arg min
f̃=(fT1 ,...,f

T
m)T

1
2


∥∥∥∥∥

m∑
j=1

fj−y

∥∥∥∥∥
2

2

+
m∑
j=1

ρ

2

∥∥Φjw
k+1
j −fi+ukj

∥∥2

2

 ,(5.31)

uk+1
j := ukj + Φjw

k+1
j − fk+1

j . (5.32)
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The update (5.31) involves optimisation over a mN -dimensional space, which
would be infeasible for most applications. Fortunately, it is not required since
it can be proven (see, e.g., (Boyd et al., 2010)) that solving the minimisation
step (5.31) is equivalent to solving

f̄k+1 = arg min
f̄

1
2
‖mf̄ − y‖2

2 +
mρ

2
‖f̄ − 1

m

m∑
j=1

Φjw
k+1
j − 1

m

m∑
j=1

uk+1
j ‖2

2. (5.33)

Individual variables fj can then be recovered as

fk+1
j = Φjx

k+1
j + ukj + f̄k+1 − 1

m

m∑
j=1

Φjw
k+1
j − 1

m

m∑
j=1

ukj . (5.34)

Finally, by substituting (5.33) and (5.34) into (5.30), (5.31), and (5.32), one
can see that the different Laplacian multiplier vectors uj become equal. Hence,
we can use a single vector u. We then obtain the equations

wk+1
j := arg min

wj∈RMj

λΩj(wj)+
ρ

2

∥∥∥∥∥Φjwj−Φjw
k
j−f̄k+

1

m

m∑
j=1

Φjw
k
j+uk

∥∥∥∥∥
2

2

 ,

(5.35)

f̄k+1 := arg min
f∈RN

1

2
‖m · f − y‖2

2 +
m · ρ

2

∥∥∥∥∥f − 1

m

m∑
j=1

Φjw
k+1
j − uk

∥∥∥∥∥
2

2

 ,

(5.36)

uk+1 := uk +
1

m

m∑
i=1

Φjw
k+1
j − f̄k+1 . (5.37)

Let us comment on the technical details of the steps (5.35) and (5.36). The
minimisation problem (5.36) has an analytical solution and its minimiser is
inexpensive to compute:

f̄k+1 =
1

m+ ρ

(
y + ρ 1

m

m∑
j=1

Φjw
k+1
j + ρuk

)
.

The update step (5.35) is, strictly speaking, not a proximal operator since
it has the form arg minwj

{λΩj(wj) + (ρ/2)‖Φjwj − v‖2
2}, with appropriately

defined v, instead of arg minwj
{λΩj(wj) + (ρ/2)‖wj − v‖2

2} (notice the missing
Φj). Naturally, the solution of the modified operators can be computed similarly
to the original proximal operators summarised in Table 3.2. The minimisation
step for common forms of Ωj were described by Boyd et al. (2010, Sec. 8.3). For
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completeness, we summarise them here and give details on efficient implemen-
tation.

`2
2-norm If Ωj(wj) = ‖wj‖2

2, the step (5.35) becomes a ridge regression problem

wk+1
j := arg min

wj

ρ
2
‖Φjwj − v‖2

2 + λ‖wj‖2
2

= (ΦT
j Φj +

2λ

ρ
I)−1ΦT

j v.

Since this step requires a repeated solution of linear systems with the same
system matrix and different right-hand-side vectors, precomputing the Cholesky
factorisation of the matrix (ΦT

j Φj + (2λ/ρ)I) at the initialisation of the algo-
rithm could improve the overall performance. The Cholesky factorisation often
becomes feasible due to this splitting and parallelisation (see Sec. 5.2.3). While
the total matrix does not fit in the main memory of a single node, the small
matrices of the splits do.

`1-norm If Ωj(wj) = ‖wj‖1, the step (5.35) becomes a lasso problem

wk+1
j := arg min

wj

ρ
2
‖Φjwj − v‖2

2 + λ‖wj‖1.

We discussed the methods for solution of lasso problems in Sec. 3.4.

To accelerate the computation, we observe that

‖ΦT
j v‖2 ≤ λ

ρ
⇔ wj = 0.

Hence, we need to solve the lasso problem only if ‖ΦT
j v‖2 > λ/ρ.

`1/`2-norm If Ωj(wj) = ‖wj‖2, the step (5.35) becomes

wk+1
j = arg min

wj

ρ
2
‖Φjwj − v‖2

2 + λ‖wj‖2.

Similar to lasso, we have

‖ΦT
j v‖2 ≤ λ

ρ
⇔ wj = 0.

If ‖ΦT
j v‖2 > λ/ρ then the solution has the form

wj = (ΦT
j Φj + νI)−1ΦT

j v

for some positive ν > 0 such that ν‖wj‖2 = λ/ρ. Such ν can be found using a
line-search method.
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Again, (ΦT
j Φj + νI) does not change between iterations and can be decom-

posed using Cholesky factorisation. Alternatively, we can use the eigenvalue
decomposition of ΦT

j Φj to accelerate the search for the optimal parameters λ

and ν. If ΦT
j Φj = QΛQT , then ‖wj‖2 = ‖(Λ + νI)−1‖2 · ‖QTΦT

j v‖2. It only

remains to compute QTΦT
j v, which is relatively cheap, and inversion of the

diagonal matrix Λ + νI is just linear in the size of wj.

5.2.2. On the Connection between ADMM and Backfitting

Historically, the backfitting algorithm for solving (5.5) and the ADMM were
considered independently: one rises from statistics and linear smoothers while
the other from partial differential equations and constrained optimisation with
proximal operators. While the convergence analysis of ADMM splitting is still
out of reach, we arrive at a formulation that gives us a good intuition about the
convergence properties of the algorithm.

To summarise the results from the previous section, for Ω(w) = ‖w‖2
2 ADMM

iterates between the following sequence of updates:

(ρΦT
j Φj + λI) wk+1

j = ρΦT
j (Φjw

k
j + f̄k − 1

m

m∑
i=1

Φiw
k
i − uk) (5.38)

f̄k+1 =
1

m+ ρ

(
y +

ρ

m

m∑
i=1

Φiw
k+1
i + ρuk

)
(5.39)

uk+1 = uk +
1

m

m∑
i=1

Φiw
k+1
i − f̄k+1. (5.40)

To establish the relationship between ADMM and smoothing equations, we
need to transform them into the same form. Therefore, we rewrite the ADMM
updates as a stationary method for solving a system of linear equations. Then
we deduce what this system looks like.

Proposition 5.1. Let

x =


w1

w2
...

wm

f̄

 and b =
1

ρ


ΦT

1 y
ΦT

2 y
...

ΦT
my
0

 .

The ADMM algorithm (5.38)– (5.40) corresponds to a stationary method of the
form

Mxk+1 = Nxk + b
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with

M =


(λ
ρ
I + ΦT

1 Φ1) 0 . . . 0 0

0 (λ
ρ
I + ΦT

2 Φ2) . . . 0 0
...

...
. . .

...
...

0 0 . . . (λ
ρ
I + ΦT

mΦm) 0

− ρ
m

Φ1 − ρ
m

Φ2 . . . − ρ
m

Φm (m+ ρ)I

 (5.41)

N =


(1− 1

m
)ΦT

1 Φ1 − 1
m

ΦT
1 Φ2 . . . − 1

m
ΦT

1 Φm (1− m
ρ

)ΦT
1

− 1
m

ΦT
2 Φ1 (1− 1

m
)ΦT

2 Φ2 . . . − 1
m

ΦT
2 Φ2 (1− m

ρ
)ΦT

2
...

...
. . .

...
...

− 1
m

ΦT
mΦ1 − 1

m
ΦT
mΦ2 . . . (1− 1

m
)ΦT

mΦm (1− m
ρ

)ΦT
m

0 0 . . . 0 mI

 .
(5.42)

If M is nonsingular and the spectral radius ρ(M−1N) < 1 then this method
converges to the solution of the system of linear equations

Ax = b, (5.43)

with

A = M−N

=



(
λ
ρ
I + 1

m
ΦT

1 Φ1

)
1
m

ΦT
1 Φ2 . . . 1

m
ΦT

1 Φm (m
ρ
− 1)ΦT

1

1
m

ΦT
2 Φ1

(
λ
ρ
I + 1

m
ΦT

2 Φ2

)
. . . 1

m
ΦT

2 Φp (m
ρ
− 1)ΦT

2

...
...

. . .
...

...
1
m

ΦT
mΦ1

1
m

ΦT
p Φ2 . . .

(
λ
ρ
I + 1

m
ΦT
mΦm

)
(m
ρ
− 1)ΦT

m

− ρ
m

Φ1 − ρ
m

Φ2 . . . − ρ
m

Φm ρI


Proof. An interested reader can find the proof of the proposition in Appendix
B.2.

This proposition moves ADMM from the realm of optimisation into the realm
of iterative solvers, which may be much more familiar to some readers. In
particular, we can recognise in the entries of M a combination of Jacobi and
Gauss-Seidel methods. We can also formulate the similarity between ADMM
and the linear smoother formulation describe in Sec. 5.1 as described in the
following corollary.
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Figure 5.7.: Training error using ADMM and BiCGStab for regression on SDSS
DR5 with 60 000 entries and random subspace projection ensemble
with five 3-dimensional sparse grids with level 3 and λ = 10−6.
Source: (Khakhutskyy & Hegland, 2014b).

Corollary 5.1. The system of linear equations (5.43) is equivalent to the aug-
mented system of linear smoother equations

I S1 · · · S1 (m
ρ
− 1)S1

S2 I · · · S2 (m
ρ
− 1)S2

...
...

. . .
...

...
Sm Sm · · · Sm (m

ρ
− 1)Sm

I I · · · I −I




f1

f2
...

fm
f

 =
m

ρ


S1y
S2y

...
Smy

0

 (5.44)

with f = mf̄ , fj = Φjxj, and Sj = Φj(Φ
T
j Φj + λm

ρ
I)−1ΦT

j for j = 1, . . . ,m.

Proof. An interested reader can find the proof in Appendix B.3.

Note, Corollary 5.1 implies that, since in (5.44) the regularisation parameter
is λ ·m/ρ instead of only λ in (5.5), ADMM and linear smoother converge to
the same solution only if ρ = m.

To compare ADMM and BiCGStab empirically, we use the photometric red-
shift prediction problem of the SDSS DR5 dataset introduced in Sec. 3.5.2. To
create an additive model of the form (5.1) we randomly select three attributes
out of available six and use them to fix a three-dimensional sparse grid model
with level 3. We add the predictions from five such models together, which gives
us an additive model. Figure 5.7 compares the results. Both fitting methods are
comparable, although the BiCGStab-based backfitting method exhibits a faster
convergence at the beginning.
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5.2.3. Distributed Implementation

The idea of parallelising the ADMM algorithm for (generalised) additive models
was initially suggested by Chu et al. (2013). Here, we address the parallelisation
of the ADMM algorithm for hierarchical models such as sparse grids. The pro-
cedure is summarised in Alg. 15. Individual processors can compute the updates
(5.35) independently. Once finished, they communicate the results of the prod-
ucts Φjw

k+1
j in order to compute the sum

∑m
j=1 Φjw

k+1
j in a distributed way.

This distributed computation can be done by the MPI operation Allreduce al-
ready used in the parallel BiCGStab algorithm in Sec. 5.1.5. Since steps (5.36)
and (5.37) are not computationally expensive and can be performed indepen-
dently by each process, no further communication is required during individual
iterations. Once ADMM converges, the sub-vectors wj are collected using the
MPI Gatherv method.

Algorithm 15: ADMM Algorithm for Sparse Grids (Khakhutskyy &
Pflüger, 2014)

1: {Initialise variables:}
2: wj ← 0;
3: f̄ ← 1

m
y;

4: u← 0;
5: repeat
6: update xj by solving (5.35) simultaneously by all processors;
7: Allreduce(Φjwj,Φw, SUM); {sum up the vectors Φjwi from all

processes}
8: update f̄ using (5.36);
9: update u using (5.37);

10: until convergence;
11: Gatherv(wj,w); {collect partial results}
12: return w;

Let us consider ADMM as a generic parallelisation algorithm for sparse grids.
We can do this since the matrix Φ can be divided into matrices Φj arbitrary
and in many different ways. Proposition 5.1 states that ADMM convergences
if ρ(M−1N) < 1. The spectral radius, however, is the subject to the division
strategy. Therefore, it is fruitful to observe the numerical properties of the
different grid splitting strategies. Let us consider the alternatives.

The simplest way to split basis functions into subsets is to do itrandomly (see
Fig. 5.8a). In general, random splitting offers the best load balancing since it
does not constrain the structure of the subsets and allows to partition the grid
function equally.

Unfortunately, random splitting of hierarchical structure of sparse grids may
have undesired effects and slow convergence (Khakhutskyy & Pflüger, 2014).
Instead, we can split the basis functions level-wise (see Fig. 5.8b). In this case
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(a) Random (b) Levelwise (c) Recursive

Figure 5.8.: Sparse grid splitting schemes. Different colours identify the sparse
grid functions assigned to the same processor.

the sparse grid functions that belong to the same or to adjacent diagonals in the
subspace tableau are assigned to the same processor. This splitting strategy can
lead to a significant reduction in the number of ADMM iterations, if the first
update step (5.35) is performed serially and later update steps are performed
concurrently (Khakhutskyy & Pflüger, 2014).

A more elaborate way to split a sparse grid is using the recursive splitting
scheme (see Fig. 5.8c). This splitting approach roots in the idea that every
sparse grid of level l and dimension d can be divided into two sparse grids
of level l − 1 and dimension d and one sparse grid of level l and dimension
d− 1 (Bungartz,1998). The recursive splitting retains the hierarchical structure
inside the individual splits, ensuring that every step (5.35) by itself solves a
small sparse grid problem. Alas, the size of such subgrids may vary leading
to an imbalance. To minimise this imbalance we developed an algorithm that
maintains the queue of subsets of the sparse grid basis functions, consequently
splitting the largest subset in the queue until the required number of splits (the
number of processors) is achieved (Khakhutskyy et al., 2014).

In fact, the recursive splitting scheme bears a similarity to splitting a sparse
grid into ANOVA components f0, fi, fij, etc. In Fig. 5.9 we compare the results
of the both splitting schemes for a two-dimensional sparse grid with level 4. Re-
cursive splitting keeps one one-dimensional component (shown in red) and splits
the other (horizontal) between two different processes (shown in blue and green).
It also assigns the parts of the two-dimensional interaction to these processes. If
these subtask would need to be divided further, the one-dimensional component
will be kept and the two-dimensional interactions would be distributed between
other two processors. We split the grid points among 3 processors and in recur-
sive splitting scheme the processors get either 15 or 17 grid points (unknown
parameters) to estimate, while in ANOVA scheme 14 or 20. The problem sizes
for ANOVA splitting schemes are less balanced. This imbalance becomes more
severe as the dimensionality or level grows. Figure 4.6 shows that for larger
sparse grids the number of grid points in different interaction orders can differ
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(a) ANOVA scheme (b) Recursive scheme

Figure 5.9.: Comparison of the recursive and additive splitting schemes for a
sparse grid. Grid points of the same colours are assigned to the
same processor. In recursive scheme the processors get either 15 or
17 grid points, in additive scheme either 14 or 20. The imbalance
in the ANOVA scheme is higher and grows with the level.

by orders of magnitudes. Hence, recursive scheme offers a good middle ground
between retaining the structure of the subproblems of a sparse grid model and
load-balancing of parallel algorithms.

We observed the superior properties of the recursive splitting (Khakhutskyy
et al., 2014). Motivated by these results, together with Strauß (2016) we studied
the connection between the convergence of ADMM and the different kinds of
splitting. This study confirmed the advantage of the recursive splitting.

To illustrate this advantage we consider the problem of reconstructing the
parameter vector w∗ of a two-dimensional sparse grid with level 3 from 400 ob-
servations. The resulting matrix Φ ∈ R400×17 is distributed between 3 proces-
sors and for the purpose of comparison we use random, level-wise, and recursive
splitting strategies as illustrated in Fig. 5.8. We use Alg. 15 with λ = 10−7 and
ρ = 1 to solve the underlying regression problem.

In Fig. 5.10a we see how the norm of the difference between w∗ and the
estimated parameter wk decreases with proceeding ADMM iterations. The
recursive splitting clearly outperforms the alternatives. Figures 5.10b– 5.10d
compare the distribution of the eigenvalues of M−1N. This comparison suggests
the connection between these distributions and the convergence speed. For
the recursive splitting we have ρ(M−1N) < 1 (see Figure 5.10d) and therefore
convergence is guaranteed. For two other splitting methods we have ρ(M−1N) ≈
1.2. Note that, while ρ(M−1N) > 1, ADMM with these splittings still converges,
although the convergence is much solver.

The ability to train models on a distributed computer architecture enables
ADMM to train large sparse grid models. This, combined with a large number of
supported regularisation functions, makes sparse grids ready for large-scale data
analysis. We postpone the scalability tests of this (synchronous) distributed
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(a) Errors for different splitting strategies
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Figure 5.10.: The declining error norm ‖wk−w∗‖2 for Alg. 15 and the distribu-
tion of eigenvalues for different splitting strategies. Recursive split-
ting is clearly superior to others and has ρ(M−1N) < 1. Source:
(Strauß, 2016).
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ADMM implementation until the next section, where it is compared with the
asynchronous implementation.

5.2.4. Asynchronous Updates and Delayed Synchronisation

We can further accelerate the distributed ADMM algorithm by letting the pro-
cesses to communicate asynchronously. This mitigates the need of one processor
to wait for others before computing the step (5.36). On the other side, this
means that different processes may work on different data, which is dangerous
and may lead to instability. However, with a proper problem decomposition
scheme this danger becomes negligible (Khakhutskyy et al., 2014).

Algorithm 16 shows the asynchronous version of the ADMM. The main dif-
ference appears in the Line 7 in Alg. 15 and Lines 8 to 11 in Alg. 16. In the first
case, we can use Allreduce with summation implemented in MPI. In the second
case, we update the sum vector Φwshared with increments using the one-sided
Accumulate operation. As the name suggests, this function adds the value of
the increment vector ∆Φjwj to all instances of Φwshared using direct memory
access. This method is described by the MPI-2 standard and implemented in
distributed shared memory libraries like GlobalArrays (Nieplocha et al., 1996).

Algorithm 16: ADMM Algorithm with Asynchronous Communication

1: {Initialise variables:}
2: define Φwshared; {shared over all processors}
3: wj ← 0;
4: f̄ ← 1

m
y;

5: u← 0;
6: repeat
7: ∆Φjwj ← ∆Φjwj −Φjwj;
8: update wj by solving (5.35) simultaneously in all processes;
9: ∆Φjwi ← ∆Φjwj + Φjwj;

10: Accumulate (∆Φjwj,Φwshared); {sum up the vectors ∆Φjwj from all
processes}

11: update f̄ using (5.36);
12: update u using (5.37);
13: until ‖Φw − u‖2

2 ≤ convergence threshold; {training error is one possible
convergence criterion}

14: Gatherv(wj,w); {collect partial results}
15: return w;

In (Strauß, 2016) we studied the sufficient conditions for the asynchronous
convergence of Alg. 16. Let |M−1N| be a matrix with absolute values of the
entries of M−1N. Summarising the results from (Strauß, 2016), we can say
that, for Alg. 16 to converge in a totally asynchronous setting, it is sufficient to
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have ρ(|M−1N|) < 1. The prove of conditions for asynchronous convergence of a
parallel algorithm is not straightforward. Since the delays in the communication
between individual processors can be arbitrary small, the required theoretical
conditions are often very strong. So in our case ρ(|M−1N|) < 1 is rarely given.
This by no means implies that Alg. 16 would necessarily diverge otherwise but
rather that there can be an example setting where it could diverge.

We repeat the reconstruction of the parameters of a two-dimensional sparse
grid from 400 samples presented in the previous section but this time we simulate
a totally asynchronous random communication. Figure 5.11a illustrates the
change of the error norm ‖wk −w∗‖2 with proceeding ADMM iterations. The
error in the recursive splitting scenario slowly declines while the two adversary
methods diverge. Figures 5.11b, 5.11c, and 5.11d illustrate the distribution of
the absolute values of eigenvalues of |M−1N|, which is not to be confused with
the distributions in Figures 5.10b, 5.10c, and 5.10d where the matrix is M−1N
can have positive or negative entries. The spectral radius in all three cases in
Figures 5.11b, 5.11c, and 5.11d is larger than 1. For recursive splitting scheme
it is still comparably smaller and this may cause the convergence.

In practice, the extreme cases of totally asynchronous communication are
very rare. Apart from the cases where the hardware fails completely, the results
from every processor are usually distributed within some realistic time frame.
If we can assume that such time frame exists and its finite, we speak of partially
asynchronous algorithms.3 For partially asynchronous algorithms the theory
becomes more complex while the practice more simple.

Once again we consider the reconstruction of the parameters of a two-dimen-
sional sparse grid from 400 examples. Again, we use Alg. 16 but this time we
assume (and enforce) that the processors exchange information within 5 update
steps. Figure 5.12 illustrates the change of the error norm ‖wk−w∗‖2 with pro-
ceeding ADMM iterations. The results for this partially asynchronous experi-
ment stand between the results for the synchronous and the totally asynchronous
experiments: Random and recursive splittings converge, although slower than
in the synchronous case. Levelwise splitting, which exhibits the slowest conver-
gence in the synchronous case, diverges in the partially asynchronous setting.
The recursive splitting converges slower than in the synchronous setting, faster
than in the totally asynchronous, and faster than the adversaries.

To compare the synchronous and asynchronous ADMM algorithms in a real-
istic scenario, we use the SDSS DR5 photometric redshift prediction problem
introduced in Sec. 3.5.2. The performance of the different splitting schemes is
similar to that shown in examples above and therefore we focus only on the
recursive splitting scheme in synchronous (Alg. 15) and asynchronous (Alg. 16)
settings.

3Obviously, partial asynchronicity changes only assumptions about properties of the com-
putational environment and not the algorithm itself.
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(a) Errors for different splitting strategies
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(c) Eigenvalues of |M−1N| for
levelwise splitting
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Figure 5.11.: The declining error norm ‖wk −w∗‖2 for Alg. 16 in totally asyn-
chronous setting and the distribution of eigenvalues for different
splitting strategies. Recursive splitting has the smaller spectral
radius and is the only method to with declining error. Source:
(Strauß, 2016).
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Figure 5.12.: The declining error norm ‖wk−w∗‖2 for Alg. 16 in partially asyn-
chronous setting. The results lie between the synchronous set-
ting in Fig. 5.10a and totally asynchronous setting in Fig. 5.11a.
Adopted from (Strauß, 2016).
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Figure 5.13.: Comparison of the number of ADMM iterations and elapsed time
for the synchronous and asynchronous distributed settings. Asyn-
chronous version is superior for more than 24 processors. Source:
(Khakhutskyy et al., 2014).
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Figure 5.14.: Convergence of ADMM algorithm based on grid splitting for the
synchronous and asynchronous settings. The results are indistin-
guishable. Adopted from (Khakhutskyy et al., 2014).

Figure 5.13 compares the scalability of the synchronous and asynchronous
ADMM methods. It is characteristic for ADMM that while the number of it-
erations increases with the number of processors due to the need for agreement
between more parties (partitions), the time for matrix assembly and factorisa-
tion as well as the time of individual iterations decreases. As the number of
processors grows, the advantage of the asynchronous implementation becomes
apparent: between 4 and 16 processors both methods finish at a comparable
time, for more than 16 processors the asynchronous algorithm is faster even if it
requires to perform more ADMM iterations (as for 24 processors). Figure 5.14
demonstrates the decline of the mean squared error on the training and test
datasets for a run with 32 processors. The error curves are virtually identical.

As the number of processors grows, the efficiency of the distributed ADMM
becomes a subject to a trade-off between decreasing computation time and
increasing communication overhead. This overhead can be reduced using
asynchronous communication patterns. Unfortunately, we observe that asyn-
chronous algorithms need not to converge in every case and the existing theory
is fuzzy on this matter. Our experience and numerical experiments showed,
however, that recursive splitting performs remarkably robust in an asynchronous
setting. We hypothesise that recursive sparse grid splitting maintains a better
internal hierarchical structure, which improves the performance. The numeri-
cal evaluation of the spectrum of the contraction operator M−1N supports this
hypothesis.
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In this chapter we discussed two methods for training models that can be de-
composed into a sum of smaller models. While the developed methods had dif-
ferent motivations, under certain circumstances, these methods are connected.
This connection was unknown before. Both methods can be parallelised and
hence can be used for large-scale learning problems. Both methods have their
advantages. BiCGStab can exhibit a faster convergence, especially at the begin-
ning, it can also be accelerated with preconditioning. ADMM supports a large
number of different regularisation functions and asynchronous communication.
Hence, the final decision, which method to use for a particular problem, should
be made by weighing these advantages against each other.

Sparse grids is a prominent example of models that can be decomposed into
a sum of smaller models. Among many different ways to decompose a sparse
grid, we advise to use either the ANOVA decomposition discussed in the previous
chapter or the recursive decomposition discussed in this chapter. These splitting
schemes maintain a meaningful structure inside of individual subproblems. The
use of the ANOVA decomposition reduces the size of the dataset, as only a subset
of input dimensions is used by an ANOVA component. Recursive decomposition,
on the other hand, offers a better load-balancing. Additionally, the number of
subproblems in recursive splitting is independent of the number of ANOVA
component, which is a big advantage for distributed computing.
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I would rather have questions that can’t be answered than
answers which can’t be questioned.

— attributed to Richard Feynman

We presented new techniques for supervised learning with sparse grids that
make them better suitable for large-scale learning and handling the volume of
Big Data. This aptitude is achieved by improving the model’s adaptability to a
low-dimensional manifold in data and by discounting unimportant interactions
between input variables. To this end, we extended the notion of parsimony
for hierarchical sparse grid models and developed a learning algorithm that
simultaneously optimises the model parameters and the model structure to befit
the problem at hand.

With seven original propositions, four lemmas, one theorem, and one corollary,
a significant portion of this dissertation is dedicated to the theoretical treatment
of the presented ideas. This attention to theory was motivated by an aspiration
to provide the models and algorithms derived in this dissertation with a solid
theoretical foundation and to make the results generalisable.

The main contributions of this thesis can be summarised as follows:

• The interpretation of sparse grids as Bayesian linear basis models, pre-
sented in Chapter 2, makes the sparse grid techniques better accessible
to machine learning experts and statisticians. It also provides the prob-
abilistic meaning to various regularisation functions, making them easier
to interpret and to adjust to different model assumptions.

• The kernel trick algorithm developed and analysed in Chapter 2 integrates
the sparse grid models into the kernel machines. As the complexity of our
kernel trick is only quadratic in the number of attributes, it effectively
breaks the curse of dimensionality making the combination of sparse grids
and kernel machines especially attractive for high-dimensional problems
with moderately many data points.

• In Chapters 2 and 3 we posed the refinement of sparse grids as an optimisa-
tion problem, which gave us a theoretical framework for development and
analysis of new problem-specific refinement strategies. Using this frame-
work, we derived a new spatially-dimension-adaptive procedure that fits
to a low-dimensional manifold in data more effectively than the previous
methods.

149



6. Conclusions and Future Work

• In Chapter 4 we derived a new ANOVA-like notion for effective dimension-
ality. It provides new criteria for adaptive sparse grids to fit the additive
structure of a problem at hand. This new notion bridges the gap in the ex-
isting theory between the classical functional ANOVA decomposition and
the anchored ANOVA. It provides error bounds for supervised learning
problems (like classical ANOVA decomposition) while at the same time it
can be efficiently estimated for standard sparse grid basis functions, e.g.
linear or modified linear basis functions, and is not limited to prewavelet
basis intractable in high dimensions (like classical ANOVA).

• Finally, in Chapter 5 we developed two algorithms for parallel training of
sparse grid models. The choice of a particular training method depends
on the regularisation function that has to be used. We implemented and
analysed these algorithms for synchronous and asynchronous communi-
cation patterns and derived a sparse grid partitioning scheme for better
convergence.

Sparse grids should not be considered in isolation but rather embedded in the
family of Bayesian linear basis models with a specific feature transformation.
The benefits of this paradigm shift are numerous: On the one side, we can apply
the knowledge from other Bayesian linear basis models to sparse grid models
improving interpretability (as in Chapter 2) and adopting the rich theoretical
and algorithmic groundwork (as in Chapter 3). On the other side, with this
perspective in mind, the new algorithms developed for sparse grids can be readily
applied to other linear regression models and linear smoothers (as in Chapter
5). We can only speculate what further improvements this synergy can produce.

The principal advantage of the sparse grid models lies undoubtedly in their
adaptability. This, however, depends critically on the quality of the refinement
strategies used for different problems. In turn, the number of possible refinement
strategies is limited only by the number of PhD students dedicated to invent a
new one. By posing the refinement process as an active-set optimisation problem
with specific sparsity-inducing regularisation functions, I intended to formalise
the frame of thinking and to streamline the invention process.

However, as every optimisation algorithm considers only the training data,
a zealous optimisation unavoidably leads to deterioration of the model’s gen-
eralisation performance. Right now, the premature overfitting is prevented by
refining a larger number of grid points at once and by including all hierarchical
ancestors of a grid point. The trade-off between the adaptivity and general-
ity of the sparse grid models—or between exploration and exploitation of the
hypothesis space—is still poorly understood. The challenge of developing a reg-
ularisation procedure that effectively manages this trade-off is waiting for its
champion.
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A. Results from Linear Algebra and
Probability Theory

This appendix briefly summarises the standard theoretical results from linear
algebra and probability theory used throughout the dissertation.

Lemma A.1 (Blockwise inversion). Let A and D be square invertible matrices.
Let B and C be matrices such that A and BD−1C as well as D and CA−1B
have the same dimensions. Then following equalities hold:[

A B
C D

]−1

=

[
A−1+A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]
(A.1)

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1+D−1C(A−BD−1C)−1BD−1

]
.

(A.2)

Corollary A.1 (Sherman–Morrison–Woodbury formula). Let A and D be
square invertible matrices. Let B and C be matrices such that A and BD−1C
as well as D and CA−1B have the same dimensions. Then following equalities
hold:

(A−BD−1C)−1 = A−1 + A−1B(D−CA−1B)−1CA−1, (A.3)

(D−CA−1B)−1CA−1 = D−1C(A−BD−1C)−1. (A.4)

Lemma A.2 (Marginal and Conditional Gaussians (Bishop, 2006, p. 93)).
Given a marginal Gaussian distribution for x and a conditional Gaussian dis-
tribution for y given x in the form

p(x) = N (x|µ,D−2), (A.5)

p(y|x) = N (y|Ax + w,B−1), (A.6)

the marginal distirbtuion of y and the conditional distribution of x given y are
given by

p(y) = N (y|Aµ+ w,B−1 + AD−1AT ), (A.7)

p(x|y) = N (x|ΣATB(y −w) + Dµ,Σ), (A.8)
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where
Σ = (D + ATBA)−1. (A.9)
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B. Proofs

This appendix presents the proofs for some original theoretical results in the
main part of the dissertation.

B.1. Theorem 3.1

To prove Theorem 3.1 we use two auxiliary propositions. First, we establish
a relationship between projections onto nested subspaces in Proposition B.1.
Then in Proposition B.2 we show that J− can be defined as a negative residual
norm using such a projection.

Proposition B.1. Let V1, V2, and W be Euclidean vector spaces, V1 ⊂ V2, and
let PV1 , PV2, and PW be orthogonal projections onto the corresponding spaces.
Then

‖(PV1+W − PV1)y‖ ≥ ‖(PV2+W − PV2)y‖. (B.1)

Proof. The vector space W can be either a part of V2 or a part of its orthogonal
complement V ⊥2 or consist of parts in V2 and parts in its orthogonal complement.
We consider these three cases separately.

Case 1. If W ⊆ V2 then we have

‖(PV1+W − PV1)y‖ ≥ ‖(PV2+W − PV2)y‖ = 0.

Case 2. If W ⊥ V2 then

‖(PV1+W − PV1)y‖ = ‖PWy‖ = ‖(PV2+W − PV2)y‖.

Case 3. Finally, if W = W1 +W2 such that W1 ⊆ V ⊥2 and W2 ⊆ V2 then

‖(PV1+W1+W2 − PV1)y‖ = ‖(PV1+W2+PW1−PV1)y‖ = ‖(PV1+W2−PV1)y+PW1y‖
=

√
‖(PV1+W2 − PV1)y‖2 + ‖PW1y‖2 ≥ ‖PW1y‖.

‖(PV2+W1+W2 − PV2)y‖ = ‖(PV2+W2 + PW1 − PV2)y‖ = ‖PW1y‖

and together we have

‖(PV1+W1+W2 − PV1)y‖ ≥ ‖(PV2+W1+W2 − PV2)y‖.
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Let I : {1, . . . , |Γ|} → Γ be a bijective mapping that enumerates the elements
of Γ. For every sparse grid index g we define a vector in RN+|Γ| as

vg :=
(
φg(x1), . . . , φg(xN),

√
λNδI(g),1,

√
λNδI(g),2, . . . ,

√
λNδI(g),|Γ|

)T
, (B.2)

with δi,j being the Kronecker delta. Then

VX := span{vg}g∈X (B.3)

is a vector space embedding of X. We appropriately extend the target vector y
to the dimensionality N + |Γ| by appending |Γ| zeros:

ỹ :=

[
y
0

]
. (B.4)

Proposition B.2. Assume that VX is defined as in (B.3) and ỹ is defined as
in (B.4). Then for the orthogonal projection PX that satisfies

PX : RN+|Γ| → VX

ỹ 7→ arg min
f∈VX

‖f − ỹ‖2 (B.5)

we have
J−(X) = −‖PX ỹ − ỹ‖2. (B.6)

Proof. For any f ∈ VX there is a set of linear combination coefficients w :=
{wg}g∈X such that

f =
∑
g∈X

wgvg.

The squared norm of the difference between f and ỹ is equal to the value of the
cost function J(w;X) defined in (2.30):

‖f − ỹ‖2 =
N∑
i=1

(∑
g∈X

wgφg(xi)− yi
)2

+ λN
∑
g∈X

(wg − 0)2.

Hence, the projection PX ỹ that minimises (B.5) corresponds to w? that solves
the minimisation problem in (3.3). This leads directly to (B.6).

Now everything is ready for the actual proof. Let us start by restating the
theorem formulation.

Theorem 3.1. The function J− defined in (3.3) is a monotone non-decreasing
submodular function. The submodular optimisation problem with cardinality
constraint

max
G⊂Γ,|G|≤m

J−(G) (3.5 revisited)
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is NP-hard. It can be solved with a greedy algorithm such that, if Ĝ is the greedy
solutions and G∗ is the optimal solution, we have

J−(Ĝ)

J−(G∗)
≥ 1−

(
m− 1

m

)m
≥
(

1− 1

e

)
≈ 0.632. (3.6 revisited)

This boundary is tight unless P=NP.

Proof. Suppose that X ⊂ Γ, VX is defined as in (B.3), ỹ is defined as in (B.4),
and PX is defined as in (B.5). For simplicity of the notation we also introduce
the residual vector

RX := PX ỹ − ỹ. (B.7)

Let Y be another sparse grid index-set such that X ⊆ Y ⊂ Γ, and let
s ∈ Γ \ Y be a new sparse grid index. Analogously, we define the projections
PY , Ps, PX∪{s}, PY ∪{s} as well as the residual vectors RY , Rs, RX∪{s}, RY ∪{s}.

We are going to show the property of diminishing returns

J−(s | X) ≥ J−(s | Y ),

where J−(· | ·) is a marginal gain function of J− as defined in (2.37).

We begin by writing the relation (B.1) from Lemma B.1 as

‖RX∪{s}−RX‖2 = ‖(PX∪{s}−PX)ỹ‖2 ≥ ‖(PY ∪{s}−PY )ỹ‖2 = ‖RY ∪{s}−RY ‖2.
(B.8)

We now consider the norms ‖RX∪{s} −RX‖2 and ‖RY ∪{s} −RY ‖2 in (B.8). We
can rewrite the inequality as

‖RX∪{s}‖2 − 2〈RX∪{s}, RX〉+ ‖RX‖2 ≥ ‖RY ∪{s}‖2 − 2〈RY ∪{s}, RY 〉+ ‖RY ‖2.

Since PX and PX∪{s} are orthogonal projections, we have PX∪{s}(PXa) = PXa
and 〈RX∪{s}, PX∪{s}a〉 = 0 for any a ∈ RN+|Γ|. With this in mind, we can rewrite
the inner product as

〈RX∪{s}, RX〉 = 〈(PX∪{s} − I)ỹ, (PX − I)ỹ〉
= 〈PX∪{s}ỹ, PX ỹ〉 − 〈PX∪{s}ỹ, ỹ〉 − 〈ỹ, PX ỹ〉+ 〈ỹ, ỹ〉
= 〈ỹ, ỹ〉 − 〈PX∪{s}ỹ, ỹ〉+ 〈RX∪{s}, PX ỹ〉
= 〈ỹ, ỹ〉 − 〈PX∪{s}ỹ, ỹ〉+ 〈RX∪{s}, PX∪{s}PX ỹ〉
= 〈ỹ, ỹ〉 − 〈PX∪{s}ỹ, ỹ〉. (B.9)

Similarly, we obtain

‖RX∪{s}‖2 = 〈RX∪{s}, RX∪{s}〉 = 〈ỹ, ỹ〉 − 〈PX∪{s}ỹ, ỹ〉. (B.10)
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Using identities (B.9) and (B.10), we can rewrite the expression ‖RX∪{s} −
RX‖2 as

‖RX∪{s} −RX‖2 = ‖RX∪{s}‖2 − 2〈RX∪{s}, RX〉+ ‖RX‖2

= 〈ỹ, ỹ〉 − 〈PX∪{s}ỹ, ỹ〉 − 2〈ỹ, ỹ〉+ 2〈PX∪{s}ỹ, ỹ〉+ ‖RX‖2

= ‖RX‖2 −
(
〈ỹ, ỹ〉 − 〈PX∪{s}ỹ, ỹ〉

)
= ‖RX‖2 − ‖RX∪{s}‖2.

(B.11)

The expression ‖RY ∪{s} − RY ‖2 can be rewritten analogously. Hence, plugging
it back into (B.8), we get

−‖RX∪{s}‖2 + ‖RX‖2 ≥ −‖RY ∪{s}‖2 + ‖RY ‖2

and then with (B.6):

J−(X ∪ {s})− J−(X) ≥ J−(Y ∪ {s})− J−(Y ).

Hence, J−(X) satisfies the diminishing returns property from Definition 3.1.

Now we show that J−(X) is monotonically non-decreasing. Suppose that
J−(X) is not monotonically non-decreasing and there is s ∈ Γ \ Y such that

J−(X ∪ {s})− J−(X) < 0.

From (B.6) and (B.7) this would be equivalent to ‖RX‖2 < ‖RX∪{s}‖2. In this
case, there would be a vector v ∈ VX such that ‖v − ỹ‖2 < ‖v′ − ỹ‖2 for every
v′ ∈ VX∪{s}. This is a contradiction, since VX ⊂ VX∪{s}.

Finally, the relationship (3.6) was shown in (Nemhauser, Wolsey, & Fisher,
1978) for all submodular functions and, hence, can be applied to J− as well.
The tightness of the boundary follows from (Feige, 1998).

B.2. Proposition 5.1

Let

x =


w1

w2
...

wm

f̄

 and b =
1

ρ


ΦT

1 y
ΦT

2 y
...

ΦT
my
0

 .

The ADMM algorithm (5.38)– (5.40) corresponds to a stationary method of the
form

Mxk+1 = Nxk + b
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with

M =


(λρ I + ΦT

1 Φ1) 0 . . . 0 0

0 (λρ I + ΦT
2 Φ2) . . . 0 0

...
...

. . .
...

...

0 0 . . . (λρ I + ΦT
mΦm) 0

− ρ
mΦ1 − ρ

mΦ2 . . . − ρ
mΦm (m+ ρ)I


(5.41 revisited)

N =


(1− 1

m)ΦT
1 Φ1 − 1

mΦT
1 Φ2 . . . − 1

mΦT
1 Φm (1− m

ρ )ΦT
1

− 1
mΦT

2 Φ1 (1− 1
m)ΦT

2 Φ2 . . . − 1
mΦT

2 Φ2 (1− m
ρ )ΦT

2
...

...
. . .

...
...

− 1
mΦT

mΦ1 − 1
mΦT

mΦ2 . . . (1− 1
m)ΦT

mΦm (1− m
ρ )ΦT

m

0 0 . . . 0 mI

 .
(5.42 revisited)

If M is nonsingular and the spectral radius ρ(M−1N) < 1 then this method converges
to the solution a system of linear equations

Ax = b, (5.43 revisited)

with

A = M−N

=



(
λ
ρ I + 1

mΦT
1 Φ1

)
1
mΦT

1 Φ2 . . . 1
mΦT

1 Φm (mρ − 1)ΦT
1

1
mΦT

2 Φ1

(
λ
ρ I + 1

mΦT
2 Φ2

)
. . . 1

mΦT
2 Φp (mρ − 1)ΦT

2

...
...

. . .
...

...
1
mΦT

mΦ1
1
mΦT

p Φ2 . . .
(
λ
ρ I + 1

mΦT
mΦm

)
(mρ − 1)ΦT

m

− ρ
mΦ1 − ρ

mΦ2 . . . − ρ
mΦm ρI



Proof. If we solve (5.39) with respect to uk and substitute the result into (5.40),
we can remove the recurrent relationship and obtian simple update formula

uk =
1

ρ
(m · f̄k − y). (B.12)

Even more, we can completely eliminate the variable uk in updates steps (5.38)
and (5.39). To do this, we replace uk in (5.38) and (5.39) according to (B.12).
This leads to the two ADMM update steps

(ρΦT
j Φj + λI) wk+1

j = ρΦT
j

(
Φjw

k
j +

(
1− m

ρ

)
f̄k − 1

m

m∑
i=1

Φiw
k
i +

1

ρ
y

)
(B.13)
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f̄k+1 =
1

m+ ρ

(
ρ

m

m∑
i=1

Φiw
k+1
i +mf̄k

)
. (B.14)

These equations signify that the linear relationship (wk+1, f̄k+1) and (wk, f̄k).
Hence, (B.13) and (B.14) can be written in a matrix-vector form

(λ
ρ
I + ΦT

1 Φ1) 0 . . . 0 0

0 (λ
ρ
I + ΦT

2 Φ2) . . . 0 0
...

...
. . .

...
...

0 0 . . . (λ
ρ
I + ΦT

mΦm) 0

− ρ
m

Φ1 − ρ
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(B.15)

We recognise in a fixpoint iteration. Since the general form of fixpoint itera-
tions is

Mxk+1 = (M−A)xk + b,

we can deduce the form the matrix A.

B.3. Corollary 5.1

The system of linear equations (5.43) is equivalent to the augmented system of
linear smoother equations

I S1 · · · S1 (m
ρ
− 1)S1

S2 I · · · S2 (m
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− 1)S2
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Smy

0

 (5.44 revisited)

with f = mf̄ , fj = Φjxj, and Sj = Φj(Φ
T
j Φj + λm

ρ
I)−1ΦT

j for j = 1, . . . ,m.
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B.3. Corollary 5.1

Proof. The system of linear equation (5.43) has the form
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If we this system of equation by
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If we replace Φjwj by fj and mf̄ by f we obtain (5.44).
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Glossary

ADMM Alternating Directions Method of Multipliers. 117, 118, 131–133, 136,
138–141, 143, 144, 147, 148, 159

BCD block coordinate descent algorithm. 76

BiCGStab Biconjugate Gradient Stabilised. 121–125, 128, 138, 139, 148

CAP composite absolute penalty. 67, 68

CD coordinate descent algorithm. 76

CG conjugate gradients. 78

DAG directed acyclic graph. 16, 67–70

FISTA fast iterative shrinkage-thresholding algorithm. 73, 74, 76

ISTA iterative shrinkage-thresholding algorithm. 73, 76

LARS least angle regression. 68, 75, 76

MSD Million Song Dataset. 84, 128

RKHS reproducing kernel Hilbert space. 32
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chischen basen. Numerische Mathematik , 63 (1), 83-97.

168



References

Hastie, T., Tibshirani, R., & Friedman, J. (2011). The elements of statistical
learning: Data mining, inference, and prediction (2nd ed.). Springer.

He, B., Yang, H., & Wang, S. (2000). Alternating direction method with self-
adaptive penalty parameters for monotone variational inequalities. Jour-
nal of Optimization Theory and Applications , 106 (2), 337–356.

Hegland, M. (2003, April). Adaptive sparse grids. In K. Burrage & R. B. Sidje
(Eds.), ANZIAM Journal (Vol. 44, pp. C335–C353).

Hegland, M., McIntosh, I., & Turlach, B. (1999, October). A parallel solver for
generalised additive models. Computational Statistics & Data Analysis ,
31 (4), 377–396.

Heinecke, A. (2014). Boosting scientific computing applications through lever-
aging data parallel architectures (Dissertation). Institut für Informatik,
Technische Universität München, München.
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