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ABSTRACT

Binary label information is widely used semantic information in discriminative dictionary learning and
non-negative matrix factorization. A Discriminative Dictionary Learning (DDL) algorithm uses the
label of some data samples to enhance the discriminative property of sparse signals. A discriminative
Non-negative Matrix Factorization (NMF) utilizes label information in learning discriminative bases.
All these technique are using binary label information as semantic information. In contrast to such
binary attributes or labels, relative attributes contain richer semantic information where the data is
annotated with the strength of the attributes. In this paper, we utilize the relative attributes of training
data in non-negative matrix factorization and dictionary learning. Precisely, we learn rank functions
(one for each predefined attribute) to rank the images based on predefined semantic attributes. The
strength of each attribute in a data sample is used as semantic information. To assess the quality
of the obtained signals, we apply k-means clustering and measure the performance for clustering.
Experimental results conducted on three datasets, namely PubFig (16), OSR (24) and Shoes (15)
confirm that the proposed approach outperforms the state-of-the-art discriminative algorithms.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Image content representation plays a key role in computer
vision and pattern recognition. The idea is to transform an im-
age from its original representation into a new representation
suitable for a desired task (e.g. classification). Modern tech-
niques such as Bag-of-Words models of local features (e.g.,
SIFT (21), Weber (8), Gabor (19)) represent an image by a
very high-dimensional feature vector. Although this represen-
tation leads to relatively high accuracy in visual recognition and
search, it increases the computation time and, consequently, is
improper for real-time applications. Therefore, developing new
algorithms that generate a compact and informative represen-
tation of image content is highly needed. Perhaps, the most
common way to tackle this problem is learning a subspace of
the original feature space and using this representation for the
recognition tasks.

For several years, the representation of images with visual at-
tributes has been studied intensively by researchers in the fields
of clustering, classification, object recognition, and face verifi-
cation. Farhadi et al. (10) proposed a shift from naming images
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to describing images. Instead of a naming an animal a ”dog”
it can be described as a ”spotty dog”. This means a shift from
traditional approaches, where each instance was labeled with
one label, to a model with more semantic information. This
information can be crucial to model and learn inter- and intra-
class relations. Kumar et al. (17) have developed an attribute
classifier which focuses on the similarity regions in an image,
associates classed depending on them. In Silberer et al. (28) im-
ages were described by attributes of 8 different categories, such
as shape size, color patterns and structure. Generally, these
attributes are observable semantic cues, which can be learned
from low-level features. For example, “smiling” and “dry” can
be considered as attributes of a face or a scene, respectively.
Recently, it has been proposed that relative attributes provide a
richer source of semantic information in images (25),(14) than
binary attributes. They depict the strength of attributes in an
image and can be predicted by pre-learned rank functions. For
each attribute, a single rank function, which is a rank-SVM,
is learned from a set of training data (25). In this work, we
use predicted relative attributes, as discriminant constraints to
guide a NMF to generate a new subspace of images. More pre-
cisely, the relative attributes are embedded in a regularizer cou-
pled with the NMF objective function. We call our proposed
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method Attribute constrained NMF (ANMF).
Also we present a Dictionary Learning approach, utilizing rel-
ative attributes to find a discriminative sparse representation
for images. In Dictionary Learning we consider a set of n
input signals Y ∈ Rp×n and the goal is to find a dictionary
D = [d1,d2, ...,dk] ∈ Rp×k and sparse representations X ∈ Rk×n

such that Y � DX, where the term over-complete indicates
k > n. Dictionaries can either be predefined as in the form
of wavelets (23), or be learned from observations (1; 32; 7).
Additionally, many approaches have been developed to impose
discriminative capabilities onto the dictionary learning process.
Those methods often use binary label information to acquire
discriminative behavior. In this work, we present an approach
that utilizes relative attributes instead of binary labels to en-
hance the discriminative property of the dictionary. Just as pre-
vious discriminative dictionary learning approaches use binary
label information to enhance their discriminative capabilities,
we incorporate relative attributes into the dictionary learning
process as semantic information.
The rest of the paper is organized as follows. In section 2 re-
lated work in the field of dictionary learning and non-negative
matrix factorization is presented. Section 3 gives an in-depth
explanation of the problem solved by the dictionary learning
approach. In sections 4 and 5 the details for the dictionary
learning and non-matrix factorization algorithms are given. Af-
terwards in Section 6 the concluded experiments are described
together with the obtained results. The report concludes with a
discussion and summary in Section 8.

2. Related Work

The first approaches in the field of reconstructive dictionary
learning are the K-SVD algorithm (1) and the Method of
Optimal Direction (MOD) (9), where no semantic information
is used in the learning process. An additional example for the
usage of sparse representation is the Sparse Representation
based Classification (SRC) (29) where the dictionary is built
directly from the training data.

Another large field in dictionary learning is called Dis-
criminative Dictionary Learning (DDL), where either the
discriminative property of the signal reconstruction residual, or
the discriminative property of the sparse representation itself
is enhanced. Approaches with a focus on the reconstruction
residual are the work of Ramirez et al. (26), which includes a
structured incoherence term to find independent sub-directories
for each class, and the work of Gao et al. (11), where sub-
dictionaries for the different classes are learned as well as a
shared dictionary over all classes.

Methods aiming at finding discriminative coding vectors
learn the dictionary and a classifier simultaneously. In the
work of Zhang et al. (32), the K-SVD algorithm is extended
by a linear classifier. Jiang et al. (13) included an additional
discriminative regularizer to come up with the so called
Label Consistent K-SVD (LC-KSVD) algorithm. Both of
these algorithms show good results for classification and face
recognition tasks. The approach of Yang et al. (31) combines
the two types of DDL by taking the discriminative capabilities

of the reconstruction residual and the sparse representation into
account. Therefore, class specific sub-dictionaries are learned
while maintaining discriminative coding vectors by applying
the Fisher discrimination criterion. In the recent work of Cai
et al. (7) a method called Support Vector Guided Dictionary
Learning (SVGDL) is presented, where the discrimination term
consists of a weighted summation over squared distances be-
tween the pairs of coding vectors. The algorithm automatically
assigns non-zero weights to critical vector pairs (the support
vectors) leading to a generalized good performance in pattern
recognition tasks.

Inspired by the part-based perception behavior of the hu-
man brain (i.e., combining the perceptions of an object to per-
ceive it as a whole) non-negative Matrix Factorization (NMF)
is a widely used matrix factorization method (6; 20; 18). A
parts-based representation can be achieved by applying a non-
negativity constraint to the matrix factors, only allowing addi-
tive combinations of original data.
In order to find a robust data representaion, further methods
are needed besides the non-negativity constraint (20). One ap-
proach is to focus on preserving the intrinsic geometry of the
data space by defining new objective functions. Cai (6) pro-
posed the GNMF, constructing a nearest neighbor graph and
encoding the geometrical information of the data space, and
therefore considering the local invariance. Another approach is
the CNMF, introduced by Liu and Wu (30) who constrain the
NMF to only use the prior annotation of the data, enforcing sim-
ilar encoding for points from the same class. In the work of Gu
and Zhou (12) local linear embedding assumptions are used to
propose the so called NPNMF. A new constraint was presented
allowing each data point to be presented by its neighbors.

3. Background

For the general problem formulation we assume Y =

[y1, y2, ...yn] to be the set of p-dimensional input signals, each
belonging to one of C (hidden) classes, X = [x1, x2, ..., xn] to
be their corresponding k-dimensional sparse representation and
D ∈ Rn×k to be the dictionary. As a consequence, the standard
dictionary learning method is defined by

< D,X >= arg min
D,X

‖Y − DX‖22 + λ1‖X‖1, (1)

with the regularization parameter λ1. In order to take the rela-
tive attributes into account the objective function has to be ex-
tended with an additional term L(X).

< D,X >= arg min
D,X

‖Y − DX‖22 + λ1‖X‖1 + λ2L(X) (2)

As additional information, the strength of M predefined
attributes, the so called relative attributes (25), for the input
signals are available.

3.1. Relative Attributes
The idea in learning relative attributes, assuming there are

M attributes A = {am}, is to learn M ranking functions wm
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for m = 1..M. Therefore, the predicted relative attributes are
computed by

rm(xi) = wm
ᵀxi, (3)

such that the maximum number of the following constraints is
satisfied:

∀(i, j) ∈ Om : wm
ᵀxi > wm

ᵀxj, (4)
∀(i, j) ∈ Sm : wm

ᵀxi ≈ wm
ᵀxj (5)

whereby Om = {(i, j)} is a set of ordered signal pairs with sig-
nal i having a stronger presence of attribute am than signal j
and Sm = {(i, j)} being a set of un-ordered pairs where sig-
nal i and j have about the same presence of attribute am. It is
possible to approximate this objective with the introduction of
non-negative slack variables, similar to an SVM classifier:

min
(

1
2
‖wm

ᵀ‖ + c
(∑

ξi j +
∑

γi j

))
(6)

s.t. wm
ᵀ(xi − xj) ≥ 1 − ξi j; ∀(i, j) ∈ Om (7)

|wm
ᵀ(xi − xj)| ≤ γi j; ∀(i, j) ∈ Sm (8)

The work of Parikh et al. (25) provides us with a convenient
RankSVM function that returns the ranking vector wm for a set
of input images and their relative ordering. This information
can further be used in the objective function in Eq. (2).

4. Attributes Constrained Dictionary Learning

The RankSVM function maps the original input signal (yi) to
a point (qi) in a so-called relative attribute space. Additionally,
we assume that there exists a linear transformation (i.e., A) that
maps the sparse signal (xi) to the point qi (see Figure 1 and Eq.
(9)). First, we define the matrix Q ∈ Rn×M with the elements
qim = rm(yi) that contains the strength of the (relative) attributes
of all signals in Y. In order to find the transformation of Y
into Q, we apply the RankSVM function known from (25) onto
the original input signal and obtain the weighting matrix W =

[w1
ᵀ; w2

ᵀ; ...; wM
ᵀ].

arg min
A
‖Q − AX‖22 = arg min

A
‖WY − AX‖22. (9)

The objective is finding a matrix A, which transform the sparse
representation of the signals into their corresponding relative
attribute representations Q with a minimum distance between
wm

ᵀyi and am
ᵀxi. By using Eq. (9) in Eq. (2) as a loss term we

get the formulation

< D,X >= arg min
D,X,A

‖Y − DX‖22 + λ1‖X‖1

+ λ2‖WY − AX‖22. (10)

From the first part of the equation we can see that Y � DX. If
Y in the loss term for the relative attributes is approximated by
DX then the equation becomes

< D,X >= arg min
D,X,A

‖Y − DX‖22 + λ1‖X‖1

+ λ2‖WDX − AX‖22. (11)

yi

yj qj

qi

xi

xj

D

D

A
W

W A

original feature 

space

sparse signal

space

ranked 

attribute space

Y Q X

Fig. 1. Illustration of signal transformations. The goal is to transform xi
and xj as close as possible to qi and q j.

The third term of Eq. (11) is minimized if A = WD. This
information can be used to eliminate A from Eq. (10) to arrive
at the final objective function

< D,X >= arg min
D,X

‖Y − DX‖22 + λ1‖X‖1

+ λ2‖W(Y − DX)‖22.
(12)

Additionally, we can replace the term ‖X‖1 with ‖X‖22 since
the goal is to learn a discriminative dictionary and not to ob-
tain sparse signals (as in (7)). However, once the dictionary is
learned, the sparse representation is obtained by the orthogonal
matching pursuit (27). Finally, we end up with the following
optimization problem:

< D,X >= arg min
D,X

‖Y − DX‖22 + λ1‖X‖22

+ λ2‖W(Y − DX)‖22. (13)

Since this equation is not a jointly convex optimization problem
X and D are optimized sequentially. The update rules for D and
X are found by deriving the objective function and setting the
derivatives to zero.

O = ‖Y − DX‖22 + λ1‖X‖22 + λ2‖W(Y − DX)‖22
(14)

∂O
∂D

= − 2(Y − DX)Xᵀ − 2λ2Wᵀ(WY −WDX)Xᵀ = 0

=(Y − DX) + λ2WᵀW(Y − DX) = 0
=(I + λ2WᵀW)(Y − DX) = 0

⇒D = Y(XᵀX)−1Xᵀ (15)

∂O
∂X

= − 2Dᵀ(Y − DX) + 2λ1X − 2λ2DᵀWᵀ(WY −WDX) = 0

=(DᵀD + λ1I + λ2DᵀWᵀWD)X − DᵀY − λ2DᵀWᵀY = 0.
(16)
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Therefore, we have

X =(DᵀD + λ1I + λ2DᵀWᵀWD)−1(DᵀY + λ2DᵀWᵀY). (17)

The complete algorithm works as follows. Initially, the
RankSVM (25) function is used to learn the ranking matrix W
from the original input data Y and their relative ordering (i.e.,
sets Om, Sm). The initial dictionary D and the sparse represen-
tation of the data is obtained by first building a dictionary from
random chosen input signals and then applying the KSVD-
algorithm (1). Afterward, the dictionary and the sparse repre-
sentation are optimized alternately until convergence. In order
to avoid scaling issues the dictionary is L2 normalized column-
wise. The structure of the algorithm can be seen in Algorithm 1.

Algorithm 1 Relative Attribute Guided Dictionary Learning
Require: Original signal Y, sets of ordered (Om) and un-orderd

images (Sm)
Ensure: Dictionary D

1: W← RankSVM(Y,Om,Sm)
2: Dinit ← rndperm(Y)
3: D,X← KSVD(Dinit,Y)
4: for i = 0 to numIter do
5: D← Y(XᵀX)−1Xᵀ

6: D← normcol(D)
7: X← (DᵀD + λ1I + λ2DᵀWᵀWD)−1(DᵀY−λ2DᵀWᵀY)
8: end for

5. Attributes Guided Non-negative Matrix Factorization

We assume that X ∈ RD×N denotes N data points (e.g., im-
ages) represented by D dimensional low-level feature vectors.
The NMF decomposes the non-negative matrix X into two non-
negative matrices U ∈ RD×K and V ∈ RN×K such that the multi-
plication of U and V approximates the original matrix X (3; 4).
Here, U represents the bases and V contains the coefficients,
which are considered as new representation of the original data.
The NMF objective function is:

F =
∥∥∥X − UVT

∥∥∥2
F

s.t. U = [uik] ≥ 0
V = [v jk] ≥ 0. (18)

Additionally, we assume that M semantic attributes have
been predefined for the data and the relative attributes of each
image are available. Precisely, the matrix of relative attributes,
Q ∈ RM×N , has been learned by some ranking function (e,.g,
rankSVM). Intuitively, those images which own similar relative
attributes have similar semantic contents and therefore belong
to the same semantic class. This concept can be formulated as
a regularizer to be added to the main NMF objective function.
This information can be formulated in a regularization term as

R = α
∥∥∥Q − AVT

∥∥∥2
, (19)

where V = [v1, ..., vN]T ∈ RN×K and the matrix A ∈ RM×K . The
matrix A linearly transforms and scales the vectors in the new
representation in order to obtain the best fit for the matrix Q.
The matrix A is allowed to take negative values and is computed
as part of the NMF minimization. We arrive at the following
minimization problem:

min F =
∥∥∥X − UVT

∥∥∥2
+ α

∥∥∥Q − AVT
∥∥∥2

s.t. U = [uik] ≥ 0
V = [v jk] ≥ 0. (20)

5.1. Update rules
For the derivation of the update rules we expand the objective

to

O =Tr
(
XXT

)
− 2Tr

(
XVUT

)
+ Tr

(
UVT VUT

)
+ αTr

(
QQT

)
− α2Tr

(
QVAT

)
+ αTr

(
AVT VAT

)
(21)

and introduce Lagrange multipliers Φ = [φik], Ψ = [ψ jk] for
the constraints [uik] ≥ 0, [v jk] ≥ 0 respectively. Adding the
Lagrange multipliers and ignoring the constant terms leads to
the Lagrangian:

L = − 2Tr
(
XVUT

)
+ Tr

(
UVT VUT

)
+ Tr (ΦU)

+ Tr (ΨV) − α2Tr
(
QVAT

)
+ αTr

(
AVT VAT

)
. (22)

The partial derivatives of L with respect to U, V and A are:

∂L

∂U
= −2XV + 2UVTV +Φ (23)

∂L

∂V
= −2XT U + 2VUT U − α2QT A + α2VAT A +Ψ (24)

∂L

∂A
= −2QV + 2AVTV (25)

For the derivation of the update rules for U and V we apply
the KKT-conditions φikuik = 0, ψ jkv jk = 0 (5). For A the up-
date rules can be derived directly by setting its derivative of the
Lagrangian to 0. Thus, we arrive at the following equations:

uik ← uik
[XV]ik

[UVTV]ik
(26)

v jk ← v jk
[XTU + α(VATA)− + α(QTA)+] jk

[VUTU + α(VATA)+ + α(QTA)−] jk
(27)

A← QV(VTV)−1 (28)

where for a matrix M we define M+, M− as M+ = (|M| + M)/2
and M− = (|M| −M)/2. The newly introduced terms depend
only on the variables V and A.

6. Experiment 1

6.1. Datasets
In order to assess the quality of the learned dictionary, we

purpose a clustering task for three public available datasets,
namely Public Figure Face (PubFig) (16), Outdoor Scene
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Fig. 2. Example images from the PubFig, OSR and Shoes datasets.

Recognition (OSR) (24) and Shoes (15). Some sample images
of each dataset are presented in Figure 2. The conducted tests
lead to the used parameters λ1 = 0.01 and λ2 = 1 for all exper-
iments and datasets.

a) The subset of the PubFig dataset is the same as in (25)
containing 772 images from 8 different identities defined
by the 512 dimensional GIST (24) features and is split into
241 training images and 531 test images.

b) The OSR set consist of 2688 images from 8 categories
described again by the 512 dimensional GIST (24) features
split into 240 training and 2488 testing images.

c) In the Shoes dataset there are 14658 images from 10 dif-
ferent types. Out of this set 240 images were used for
training and 1579 for testing. The images are described by
960 dimensional GIST (24) features.

6.2. Finding the optimal λ

Additionally tests were conducted to find the optimal values
for λ1 and λ2. Therefore, different fixed values were chosen
λ1 while iterating over candidates for λ2. The tests lead us to
λ1 = 0.01 and λ2 = 1 for the Pubfig dataset, λ1 = 0.1 and
λ2 = 0.01 for the OSR dataset and λ2 = 0.001 and λ2 = 0.1 for
the Shoes dataset.

6.3. Evaluation Metrics

After the dictionary is learned, the goal is to acquire a sparse
representation of the input data and to quantify their separabil-
ity. The sparse representation is obtained by solving the error-
constrained sparse coding problem, given by Eq. (29), with the
help of the OMP-Box Matlab toolbox (27), where the recon-
struction error from the training phase is chosen as ε.

X̂ = arg min
X
‖X‖0 s.t. X = ‖Y − DX‖22 ≤ ε, (29)

In order to quantify the clustering capabilities of the sparse
representation, the k-means (22) algorithm is applied to X̂ and
the accuracy (AC) and the normalized Mutual Information
(nMI) metrics (2) are computed. The accuracy describes the
percentage of correctly clustered data points for the best match
of the clusters found by the k-means algorithm to the original
label information provided by the dataset.

6.4. Results

As a benchmark for the results, different unsupervised and
unsupervised (discriminative) dictionary learning techniques
are used, namely (1) KSVD (1), (2) SRC (29) as unsuper-
vised techniques and (3) LC-KSVD (32), (4) FDDL (31), (5)
SVGDL (7) as supervised techniques. Additionally, the orig-
inal features (O. Feat.) are clustered as well by the k-means
algorithm to evaluate the additional value of using relative at-
tributes as semantic information. The results were compared by
their performance for full label information, varying dictionary
sizes and a varying amount of training data. Table 1 shows the
accuracy and normalized mutual information for all algorithms
tested on the three datasets when using all training data, their
label information and fixed a dictionary size of 130. Addition-
ally, the average result is computed. One can see that although
the proposed algorithm uses a different kind of semantic infor-
mation, it reaches a comparable (for Shoes) up to better perfor-
mance (for PubFig and OSR) in regards to other algorithms that
use label information. Additionally, it clearly outperforms the
unsupervised algorithms indicating the benefit of using relative
attributes.

In Table 2 the runtime of the training phase of the algorithms
is analyzed, where the numbers confirm that the proposed algo-
rithm runs much faster than all the contestants. The experiments
were conducted on an Asus N56VZ-S4044V Notebook with an
Intel Core i7-3610QM processor and a clock speed of 2.3 GHz.
Figure 3 shows the behavior of the algorithms for an increasing
the dictionary size with all training data available. The dictio-
nary sizes used were [16, 40, 80, 120, 160, 240] for the PubFig
and OSR dataset and [20, 50, 100, 140] for the Shoes dataset,
which corresponds to [2, 5, 10, 15, 20, 30] and [2, 5, 10, 14]
atoms per class. The number of atoms per class are constrained
by the partition of the data into training and testing (for the
Shoes dataset one class only includes 14 training samples). One
should notice that the FDDL algorithm cannot use all training
data, since the dictionary size restricts the size of the training
samples. Therefore, only in the last test case the algorithm uses
the complete training information. The results show that for the
proposed algorithm the accuracy increases with the dictionary
size, up to values exceeding the compared algorithms. How-
ever, for the OSR and Shoes dataset and an increasing dictio-
nary size the SVGDL and FDDL produce comparable results.
Figure 4 illustrates the results when the amount of used training
data is varied. In addition, the dictionary sizes were matched
to the size of training data. Again, the proposed algorithm can
exceed the results of the compared approaches up to a num-
ber of training samples in the OSR and Shoes dataset were
the SVGDL and FDDL algorithms produce comparable results.
The number of training samples per class were [2, 5, 10, 15, 20,
30] for the PubFig and OSR dataset and [2, 5, 10, 14] for the
Shoes dataset.

7. Experiment 2

We apply the proposed method (ANMF), PCA, and NMF on
the original representations of three datasets to generate (learn)
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Clustering Results
Accuracy

Method O.Feat. SRC KSVD LC-KSVD FDDL SVGDL proposed
PubFig 0.324 ± 0.000 0.226 ± 0.000 0.310 ± 0.001 0.306 ± 0.001 0.584 ± 0.003 0.595 ± 0.002 0.789 ± 0.001
OSR 0.563 ± 0.000 0.239 ± 0.000 0.466 ± 0.001 0.500 ± 0.001 0.680 ± 0.000 0.662 ± 0.001 0.731 ± 0.000
Shoes 0.356 ± 0.000 0.198 ± 0.000 0.345 ± 0.001 0.302 ± 0.001 0.498 ± 0.000 0.481 ± 0.001 0.463 ± 0.000
Avg. 0.414 0.221 0.374 0.369 0.576 0.579 0.661

normalized Mutual Information
PubFig 0.170 ± 0.000 0.062 ± 0.000 0.159 ± 0.001 0.161 ± 0.001 0.417 ± 0.001 0.448 ± 0.001 0.600 ± 0.000
OSR 0.433 ± 0.000 0.071 ± 0.000 0.334 ± 0.000 0.342 ± 0.000 0.498 ± 0.000 0.521 ± 0.000 0.564 ± 0.000
Shoes 0.322 ± 0.000 0.061 ± 0.000 0.261 ± 0.001 0.220 ± 0.001 0.407 ± 0.001 0.407 ± 0.000 0.394 ± 0.000
Avg. 0.308 0.065 0.251 0.241 0.441 0.459 0.519

Table 1. Accuracy and normalized Mutual Information for different dictionary learning algorithms applied to the datasets

Runtime (in seconds)
Method O.Feat. SRC KSVD LC-KSVD FDDL SVGDL proposed
PubFig - - 3.910 5.652 33.170 8.130 1.443
OSR - - 3.803 5.467 32.492 7.628 1.422
Shoes - - 5.116 7.058 30.316 9.612 2.381
Avg. - - 4.276 6.059 31.993 8.457 1.749

Table 2. Runtime (in seconds) for different dictionary learning algorithms applied to the datasets.
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Fig. 3. Clustering results for all three datasets for increasing dictionary sizes. The first and second row represent the Accuracy (AC) and normalized MI
(nMI), respectively. The first, second, and third columns are the results of the PubFig, OSR, and Shoes datasets, respectively.

different subspaces of the data. Then we apply k-means clus-
tering on the new subspaces and also on the original data with
k equal to the dimension of subspaces. We perform the exper-
iments with k different classes, sampled from each dataset. In
order to obtain representative results, we repeat the experiments
10 times for each k. The k-means runs 20 times per experiment
and the best result is selected. For the subspace learning tech-

niques (i.e., PCA, NMF, ANMF), we always set the new dimen-
sion equal to the number of classes. In ANMF, the regulariza-
tion parameter is chosen by running a cross-validation on each
dataset. For the OSR dataset, the PubFig dataset, and the Shoes
dataset, this parameter was 10, 100, and 100, respectively.
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Fig. 4. Clustering results for all three datasets for increasing training data. The first and second row represent the Accuracy (AC) and normalized MI
(nMI), respectively. The first, second, and third columns are the results of PubFig, OSR, and Shoes datasets, respectively.

7.1. Results

The clustering results on the learned subspaces are depicted
in Fig. 5. Figs. 5(a) and 5(d) show the accuracy and normalized
Mutual Information (nMI) of the clustering results for the Pub-
Fig dataset. The OSR results are depicted in Figs. 5(b) and 5(e)
and the results for the Shoes dataset are represented in 5(c) and
5(f). It can be seen that the proposed method outperforms the
other techniques significantly on both datasets. For the Pub-
Fig dataset we even achieve 75% − 85% accuracy. The algo-
rithm converges quickly after 20 iterations and therefore can be
considered computationally efficient. The experimental results
confirm that the proposed method learns the bases with different
semantic attributes successfully.

8. Conclusion

We have presented novel discriminative dictionary learning
and non-negative matrix factorization algorithms that use rela-
tive attributes as semantic information instead of binary labels.
In dictionary learning algorithm, we use the learned ranking
functions in the learning process. The ranking functions trans-
form the original features into a relative attribute space and
therefore, we aim to transform the sparse signal linearly into
this attribute space. This can be achieved by adding an addi-
tional loss term to the objective function of a standard dictio-
nary learning problem. In matrix factorization, the proposed
algorithm uses predicted relative attributes embedded in a reg-
ularizer coupled with the main objective function of NMF. Our
experiments on three image datasets confirm that the obtained
sparse and/or subspace representations are very discriminative

and lead in better clustering results in comparison to other
methods.
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