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Sina Ober-Blöbaum1, Oliver Junge2 and Jerrold E. Marsden3

Abstract. The optimal control of a mechanical system is of crucial importance in many application
areas. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal
energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics.
In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has
to be performed in order to make the problem amenable to computations. The approach proposed in
this paper is to directly discretize the variational description of the system’s motion. The resulting
optimization algorithm lets the discrete solution directly inherit characteristic structural properties
from the continuous one like symmetries and integrals of the motion. We show that the DMOC
(Discrete Mechanics and Optimal Control) approach is equivalent to a finite difference discretization of
Hamilton’s equations by a symplectic partitioned Runge-Kutta scheme and employ this fact in order
to give a proof of convergence. The numerical performance of DMOC and its relationship to other
existing optimal control methods are investigated.
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Introduction

In order to solve optimal control problems for mechanical systems, this paper links two important areas of
research: optimal control and variational mechanics. The motivation for combining these fields of investigation is
twofold. Besides the aim of preserving certain properties of the mechanical system for the approximated optimal
solution, optimal control theory and variational mechanics have their common origin in the calculus of variations.
In mechanics, the calculus of variations is also fundamental through the principle of stationary action; that is,
Hamilton’s principle. When applied to the action of a mechanical system, this principle yields the equations of
motion for that system – the Euler-Lagrange equations. In optimal control theory the calculus of variations also
plays a fundamental role. For example, it is used to derive optimality conditions via the Pontryagin maximum
principle. In addition to its importance in continuous mechanics and control theory, the discrete calculus of
variations and the corresponding discrete variational principles play an important role in constructing efficient
numerical schemes for the simulation of mechanical systems and for optimizing dynamical systems.
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Discrete optimal control and discrete variational mechanics. The theory of discrete variational me-
chanics has its roots in the optimal control literature of the 1960s; see for example [14,33,34]. Specifically, [14]
developed a discrete calculus of variations theory in the following way: A function is introduced which depends
on a sequence of numbers, e.g. a sequence of times. A minimizing sequence necessarily satisfies a second-order
difference equation, which is called the discrete Euler equation in reminiscence of its similarity with the Euler
equation of the classical calculus of variations. An application of the discrete calculus of variations to an op-
timal control problem leads to a so called direct solution method. In this, one transforms the optimal control
problem into a finite dimensional equality constrained nonlinear optimization problem via a finite dimensional
parameterization of states and controls. In contrast, indirect methods (see Sect. 2.3 for an overview) are based
on the explicit derivation of the necessary optimality conditions via the Pontryagin maximum principle.

On the other hand, the theory of discrete variational mechanics describes a variational approach to discrete
mechanics and mechanical integrators. The application of a discrete version of Hamilton’s principle results in
the discrete Euler-Lagrange equations. Analogous to the continuous case, near conservation of discrete energy,
discrete momentum maps related to the discrete system’s symmetries and the discrete symplectic form can be
shown. This is due to the discretization of the variational structure of the mechanical system directly. Early
work on discrete mechanics was often independently done by [15,50,51,58,60–62]. In this work, the role of the
discrete action sum, the discrete Euler-Lagrange equations and the discrete Noether’s theorem were clearly
understood. The variational view of discrete mechanics and its numerical implementation is further developed
in [85,86] and then extended in [5,6,38,39,66,67]. The route of a variational approach to symplectic-momentum
integrators has been taken by [59,80]; see the review by [64] and references therein. In this review a detailed
derivation and investigation of these variational integrators for conservative as well as for forced and constrained
systems is given.
Combining optimal control and variational mechanics. The present paper concerns the optimal control
of dynamical systems whose behavior can be described by the Lagrange-d’Alembert principle. To numerically
solve this kind of problem, we make use of the discrete calculus of variations only, that means we apply the
discrete variational principle on two layers. On the one hand we use it for the description of the mechanical
system under consideration, and on the other hand for the derivation of necessary optimality conditions for
the optimal control problem. The application of discrete variational principles already on the dynamical level
(namely the discretization of the Lagrange-d’Alembert principle) leads to structure-preserving time-stepping
equations which serve as equality constraints for the resulting finite dimensional nonlinear optimization problem.
The benefits of variational integrators are handed down to the optimal control context. For example, in the
presence of symmetry groups in the continuous dynamical system, also along the discrete trajectory the change
in momentum maps is consistent with the control forces. Choosing the objective function to represent the
control effort, which has to be minimized is only meaningful if the system responds exactly according to the
control forces.

Related work. A survey of different methods for the optimal control of dynamical systems described by
ordinary differential equations is given in Section 2.3. However, to our knowledge, DMOC is the first approach to
solutions of optimal control problems involving the concept of discrete mechanics to derive structure-preserving
schemes for the resulting optimization algorithm. Since our first formulations and applications to space mission
design and formation flying [35–37,71], DMOC has been applied for example to problems from robotics and
biomechanics [40,46,47,68,73,78] and to image analysis [69]. From the theoretical point of view, considering
the development of variational integrators, extensions of DMOC to mechanical systems with nonholonomic
constraints or to systems with symmetries are quite natural and have already been analyzed in [46,47]. Further
extensions are currently under investigation, for example DMOC for hybrid systems [73] and for constrained
multi-body dynamics (see [56,57,71]). DMOC related approaches are presented in [52,53]. The authors discretize
the dynamics by a Lie group variational integrator. Rather than solving the resulting optimization problem
numerically, they construct the discrete necessary optimality conditions via the discrete variational principle
and solve the resulting discrete boundary value problem (the discrete state and adjoint system). The method is
applied to the optimal control of a rigid body and to the computation of attitude maneuvers of a rigid spacecraft.
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Outline. In Sections 1.1 and 1.2 we introduce the relevant concepts from classical variational mechanics and
discrete variational mechanics following the work of [64]. Especially, we focus on the Lagrangian and Hamiltonian
description of control forces for the established framework of variational mechanics. Definitions and concepts of
the variational principle, the Legendre transform, and Noether’s theorem are readopted for the forced case in
both the continuous as well as the discrete setting. In Sections 2.1 and 2.2 we combine concepts from optimal
control and discrete variational mechanics to build up a setting for the optimal control of a continuous and
a discrete mechanical system, respectively. Section 1.3 describes the correspondence between the continuous
and the discrete Lagrangian system as basis for a comparison between the continuous and the discrete optimal
control problems in Section 2.3: We link both frameworks viewing the discrete problem as an approximation of
the continuous one. The application of discrete variational principles for a discrete description of the dynamical
system leads to structure-preserving time-stepping equations. Here, the special benefits of variational integrators
are handed down to the optimal control context. These time-stepping equations serve as equality constraints
for the resulting finite dimensional nonlinear optimization problem, therefore the described procedure can be
categorized as a direct solution method. Furthermore, we show the equivalence of the discrete Lagrangian
optimal control problems to those resulting from Runge-Kutta discretizations of the corresponding Hamiltonian
system. This equivalence allows us to construct and compare the adjoint systems of the continuous and the
discrete Lagrangian optimal control problem. In this way, one of our main results is related to the order of
approximation of the adjoint system of the discrete optimal control problem to that of the continuous one. With
the help of this approximation result, we show that the solution of the discrete Lagrangian optimal control
system converges to the continuous solution of the original optimal control problem. The proof strategy is
based on existing convergence results of optimal control problems discretized via Runge-Kutta methods [21,28].
Section 3.1 gives a detailed description of implementation issues of our method. Furthermore, in Section 3.2
we numerically verify the preservation and convergence properties of DMOC and the benefits of using DMOC
compared to other standard methods to the solution of optimal control problems.

1. Mechanical systems with forcing and control

1.1. Variational mechanics

Our aim is to optimally control Lagrangian and Hamiltonian systems. For the description of their dynamics,
we introduce a variational framework including external forcing resulting from dissipation, friction, loading and
in particular control forces. To this end, we extend the notions in [64] to Lagrangian control forces.
Forced Lagrangian systems. Consider an n-dimensional configuration manifold Q with local coordinates
q = (q1, . . . , qn), the associated state space given by the tangent bundle TQ and a Ck Lagrangian L : TQ→ R,
k ≥ 2. Given a time interval [0,T], we consider curves q in the path space C1,1([0,T], Q)4 and the action map
G : C1,1([0,T], Q) → R,

G(q) =
∫ T

0

L(q(t), q̇(t)) dt. (1.1)

To define control forces for Lagrangian systems, we introduce a control manifold U ⊂ R
m and define the

control path space L∞([0,T], U) with u(t) ∈ U also called the control parameter5. With this notation we
define a Lagrangian control force as a map fL : TQ × U → T ∗Q, which is given in coordinates as fL :
(q, q̇, u) �→ (q, fL(q, q̇, u)), where we assume that the control forces can also include configuration and velocity
dependent forces resulting e.g. from dissipation and friction. We interpret a Lagrangian control force as
a family of Lagrangian forces that are fiber-preserving maps fu

L : TQ → T ∗Q over the identity idQ
6, i.e. in

coordinates fu
L : (q, q̇) �→ (q, fu

L(q, q̇)). Whenever we denote fL(q, q̇, u) as a one-form on TQ, we mean the family

4C1,1([0, T], Q) is the space of functions q : [0, T] → Q which are continuously differentiable on (0, T) and whose first derivative
is Lipschitz continuous on [0, T].

5L∞ denotes the space of essentially bounded, measurable functions equipped with the essential supremum norm.
6A map ϕ : T ∗S → T ∗Q is called fiber preserving if f ◦ πQ = πS ◦ ϕ−1 with πQ : T ∗Q → Q, πS : T ∗S → S the canonical

projections and where f : Q → S is defined by f = ϕ−1|Q.
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of horizontal one-forms fu
L(q, q̇) on TQ induced by the family of fiber-preserving maps fu

L. Given a control path
u ∈ L∞([0,T], U), the Lagrange-d’Alembert principle seeks curves q ∈ C1,1([0,T], Q) satisfying

δ

∫ T

0

L(q(t), q̇(t)) dt+
∫ T

0

fL(q(t), q̇(t), u(t)) · δq(t) dt = 0, (1.2)

where δ represents variations vanishing at the endpoints. The second integral in (1.2) is the virtual work acting
on the mechanical system via the force fL. Integration by parts shows that this is equivalent to the forced
Euler-Lagrange equations

∂L

∂q
(q, q̇) − d

dt

(
∂L

∂q̇
(q, q̇)

)
+ fL(q, q̇, u) = 0. (1.3)

These equations implicitly define a family of forced Lagrangian vector fields Xu
L : TQ × [0,T] → T (TQ) and

associated forced Lagrangian flows Fu
L : TQ× [0,T] → TQ (u ∈ L∞([0,T], U) fixed).

Remark 1.1. We distinguish between two notations: When we fix u ∈ U we always consider a family of
Lagrangian control forces fu

L. As soon as we consider evolutions given by differential equations or integrals,
instead of fixing only one u ∈ U , we fix an entire curve u ∈ L∞([0,T], U), such that for each time t we use the
force fL that corresponds to fL(q(t), q̇(t), u(t)). In particular, by fixing a control path u ∈ L∞([0,T], U) we
obtain a non-autonomous system whose evolution is also dependent on the initial time t0, such that the flow Fu

L

would be defined on TQ× [0,T]2 rather than on TQ× [0,T]. In the following we will fix the initial time to be
t0 = 0 so that we do not need to keep track on the initial time in the notation. This is no restriction since we
consider all possible control paths u ∈ L∞([0,T], U).

The one-form ΘL on TQ given in coordinates by ΘL = ∂L
∂q̇i dqi is called the Lagrangian one-form, and the

Lagrangian symplectic form ΩL = dΘL is given in coordinates by ΩL(q, q̇) = ∂2L
∂qi∂q̇j dqi ∧dqj + ∂2L

∂q̇i∂q̇j dq̇i ∧dqj .
Recall that in the absence of forces, the Lagrangian symplectic form is preserved under the Lagrangian flow [64].
Forced Hamiltonian systems. Consider an n-dimensional configuration manifold Q, and define the phase
space to be the cotangent bundle T ∗Q. The Hamiltonian is a function H : T ∗Q → R. We will take local
coordinates on T ∗Q to be (q, p) with q = (q1, . . . , qn) and p = (p1, . . . , pn). Define the canonical one-form Θ
on T ∗Q by Θ(pq) · upq = 〈pq, TπQ · upq〉, where pq ∈ T ∗Q, upq ∈ Tpq(T ∗Q), πQ : T ∗Q → Q is the canonical
projection, TπQ : T (T ∗Q) → TQ is the tangent map of πQ and 〈·, ·〉 denotes the natural pairing between
vectors and covectors. In coordinates, we have Θ(q, p) = pidqi. The canonical two-form Ω on T ∗Q is defined
to be Ω = −dΘ, which has the coordinate expression Ω(q, p) = dqi ∧ dpi. A Hamiltonian control force is
a map fH : T ∗Q × U → T ∗Q identified by a family of fiber preserving maps fu

H : T ∗Q → T ∗Q over the
identity. Given such a control force, we define the corresponding family of horizontal one-forms f ′

H on T ∗Q
by (fu

H)′(pq) · wpq = 〈fu
H(pq), TπQ · wpq〉. This expression is reminiscent of the canonical one-form Θ on T ∗Q,

and in coordinates it reads (fu
H)′(q, p) · (δq, δp) = fu

H(q, p) · δq. For a given curve u ∈ L∞([0,T], U), the forced
Hamiltonian vector field Xu

H is now defined by the equation iXu
H

Ω = dH − (fu
H)′ and in coordinates this gives

the well-known forced Hamilton’s equations

Xu
q (q, p) =

∂H

∂p
(q, p), Xu

p (q, p) = −∂H
∂q

(q, p) + fu
H(q, p), (1.4)

which are the standard Hamilton’s equations in coordinates with the forcing term added to the momentum
equation. This defines the forced Hamiltonian flow Fu

H : T ∗Q× [0,T] → T ∗Q of the forced Hamiltonian vector
field Xu

H = (Xu
q , X

u
p ) (u ∈ L∞([0,T], U) fixed).

The Legendre transform with forces. Given a Lagrangian L, we can take the standard Legendre transform
FL : TQ→ T ∗Q defined by

FL(vq) · wq =
d
dε

∣∣∣∣
ε=0

L(vq + εwq),



326 S. OBER-BLÖBAUM ET AL.
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where vq, wq ∈ TqQ, and which has coordinate form FL : (q, q̇) �→ (q, p) = (q, ∂L/∂q̇(q, q̇)), and relate
Hamiltonian and Lagrangian control forces by fu

L = fu
H ◦ FL. If we also have a Hamiltonian H related to L by

the Legendre transform as H(q, p) = FL(q, q̇) · q̇ − L(q, q̇), then the forced Euler-Lagrange equations and the
forced Hamilton’s equations are equivalent. That is, if Xu

L and Xu
H are the forced Lagrangian and Hamiltonian

vector fields, respectively, then (FL)∗(Xu
H) = Xu

L, cf. [64].
Noether’s theorem with forcing. A key property of Lagrangian flows is their behavior with respect to group
actions. Assume a Lie group G with Lie algebra g acts on Q by the (left or right) action φ : G × Q → Q.
Consider the tangent lift of this action to φTQ : G × TQ given by φTQ

g (vq) = T (φg) · vq. For ξ ∈ g the
infinitesimal generators ξQ : Q → TQ and ξTQ : TQ → T (TQ) are defined by ξQ(q) = d

dg (φg(q)) · ξ and
ξTQ(vq) = d

dg

(
φTQ

g (vq)
)
· ξ, and the Lagrangian momentum map JL : TQ → g∗ is defined to be JL(vq) · ξ =

ΘL ·ξTQ(vq). If the Lagrangian is invariant under the lift of the action, that is we have L◦φTQ
g = L for all g ∈ G

(we also say, the group action is a symmetry of the Lagrangian), the Lagrangian momentum map is preserved
of the Lagrangian flow in the absence of external forces. We now consider the effect of forcing on the evolution
of momentum maps that arise from symmetries of the Lagrangian. In [64] it is shown that the evolution of the
momentum map from time 0 to time T is given by the relation

[(
JL ◦ (Fu

L )T
)

(q(0), q̇(0)) − JL(q(0), q̇(0))
]
· ξ =

∫ T

0

fu
L(q(t), q̇(t)) · ξQ(q(t)) dt. (1.5)

Equation (1.5) shows, that forcing will generally alter the momentum map. However, in the special case that
the forcing is orthogonal to the group action, the above relation shows that Noether’s theorem will still hold.

Theorem 1.2 (forced Noether’s theorem). Consider a Lagrangian system L : TQ → R with control forcing
fL : TQ×U → T ∗Q such that the Lagrangian is invariant under the lift of the (left or right) action φ : G×Q→ Q
and 〈fu

L(q, q̇), ξQ(q)〉 = 0 for all (q, q̇) ∈ TQ, u ∈ U and all ξ ∈ g. Then the Lagrangian momentum map
JL : TQ→ g∗ will be preserved by the flow, such that JL ◦ (Fu

L )t = JL for all t.

1.2. Discrete mechanics

The discrete Lagrangian. Again we consider a configuration manifold Q, and define the (“discrete”) state
space to be Q × Q. Rather than considering a configuration q and velocity q̇ (or momentum p), we now
consider two configurations q0 and q1, which should be thought of as two points on a curve q which are a
time step h > 0 apart, i.e. q0 ≈ q(0) and q1 ≈ q(h). The manifold Q × Q is locally isomorphic to TQ and
thus contains the same amount of information. A discrete Lagrangian is a function Ld : Q × Q → R, which
we think of as approximating the action integral along the exact solution curve segment q between q0 and q1:
Ld(q0, q1) ≈

∫ h

0 L(q(t), q̇(t)) dt. We consider the grid {tk = kh | k = 0, . . . , N}, Nh = T , and define the discrete
path space Pd(Q) = {qd : {tk}N

k=0 → Q}. We will identify a discrete trajectory qd ∈ Pd(Q) with its image
qd = {qk}N

k=0, where qk = qd(tk). The discrete action map Gd : Pd(Q) → R along this sequence is calculated by
summing the discrete Lagrangian on each adjacent pair and defined by Gd(qd) =

∑N−1
k=0 Ld(qk, qk+1). As the

discrete path space Pd is isomorphic to Q× . . .×Q (N + 1 copies), it can be given a smooth product manifold
structure. The discrete action Gd inherits the smoothness of the discrete Lagrangian Ld. The tangent space
Tqd

Pd(Q) to Pd(Q) at qd is the set of maps vqd
: {tk}N

k=0 → TQ such that τq ◦ vqd
= qd, which we will denote

by vqd
= {(qk, vk)}N

k=0. To complete the discrete setting for forced mechanical systems, we present a discrete
formulation of the control forces introduced in the previous section. Since the control path u : [0,T] → U has
no geometric interpretation, we have to find an appropriate discrete formulation to identify a discrete structure
for the Lagrangian control force.
Discrete Lagrangian control forces. Analogous to the replacement of the path space by a discrete path
space, we replace the control path space by a discrete one. To this end we consider a refined grid Δt̃, generated
via a set of control points 0 ≤ c1 < . . . < cs ≤ 1 as Δt̃ = {tk� = tk + c�h | k = 0, . . . , N − 1, 	 = 1, . . . , s}. With
this notation the discrete control path space is defined to be Pd(U) = {ud : Δt̃→ U}. We define the intermediate
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control samples uk on [tk, tk+1] as uk = (uk1, . . . , uks) ∈ Us to be the values of the control parameters guiding
the system from qk = qd(tk) to qk+1 = qd(tk+1), where ukl = ud(tkl) for l ∈ {1, . . . , s}. With this definition of
the discrete control path space, we take two discrete Lagrangian control forces f+

d , f
−
d : Q × Q × Us → T ∗Q,

given in coordinates as

f+
d (qk, qk+1, uk) =

(
qk+1, f

+
d (qk, qk+1, uk)

)
, f−

d (qk, qk+1, uk) =
(
qk, f

−
d (qk, qk+1, uk)

)
, (1.6)

also called left and right discrete forces7. Analogously to the continuous case, we interpret the two discrete
Lagrangian control forces as two families of discrete fiber-preserving Lagrangian forces fuk,±

d : Q × Q → T ∗Q
in the sense that πQ ◦ fuk,±

d = π±
Q with fixed uk ∈ Us and with the projection operators π+

Q : Q × Q → Q,

(qk, qk+1) �→ qk+1 and π−
Q : Q×Q → Q, (qk, qk+1) �→ qk. We combine the two discrete control forces to give a

single one-form fuk

d : Q×Q→ T ∗(Q×Q) defined by

fuk

d (qk, qk+1) · (δqk, δqk+1) = fuk,+
d (qk, qk+1) · δqk+1 + fuk,−

d (qk, qk+1) · δqk, (1.7)

where fd(qk, qk+1, uk) denotes the family of all one-forms fuk

d (qk, qk+1) with fixed uk ∈ Us. To simplify the
notation we denote the left and right discrete forces by f±

k := f±
d (qk, qk+1, uk), respectively, and the pair

consisting of both by fk := fd(qk, qk+1, uk). We interpret the left discrete force f+
k−1 (and right discrete

force f−
k , respectively) as the force resulting from the continuous control force acting during the time span

[tk−1, tk] (during the time span [tk, tk+1], respectively) on the configuration node qk.
The discrete Lagrange-d’Alembert principle. As with discrete Lagrangians, the discrete control forces
also depend on the time step h, which is important when relating discrete and continuous mechanics. Given
such forces, we modify the discrete Hamilton’s principle, following [39], to the discrete Lagrange-d’Alembert
principle, which seeks discrete curves {qk}N

k=0 that satisfy

δ

N−1∑
k=0

Ld (qk, qk+1) +
N−1∑
k=0

[
f−

d (qk, qk+1, uk) · δqk + f+
d (qk, qk+1, uk) · δqk+1

]
= 0 (1.8)

for all variations {δqk}N
k=0 vanishing at the endpoints. This is equivalent to the forced discrete Euler-Lagrange

equations

D2Ld (qk−1, qk) +D1Ld (qk, qk+1) + f+
d (qk−1, qk, uk−1) + f−

d (qk, qk+1, uk) = 0, k = 1, . . . , N − 1. (1.9)

These equations implicitly define the forced discrete Lagrangian map F
uk−1,uk

Ld
: Q × Q → Q × Q for fixed

controls uk−1, uk ∈ Us, mapping (qk−1, qk) to (qk, qk+1). The discrete Lagrangian one-forms Θ+
Ld

and Θ−
Ld

are
in coordinates Θ+

Ld
(q0, q1) = D2Ld(q0, q1)dq1 and Θ−

Ld
(q0, q1) = −D1Ld(q0, q1)dq0. In the absence of external

forces, the discrete Lagrangian maps inherit the properties of symplectic preservation from the continuous
Lagrangian flows. That means the discrete Lagrangian symplectic form ΩLd

= dΘ+
Ld

= dΘ−
Ld

(see [64] for the
coordinate expression) is preserved under the discrete Lagrangian map as (FLd

)∗(ΩLd
) = ΩLd

, if no external
forcing is present.
The discrete Legendre transforms with forces. Although in the continuous case we used the standard
Legendre transform for systems with forcing, in the discrete case it is necessary to take the forced discrete
Legendre transforms

F
f+Ld : (q0, q1, u0) �→ (q1, p1) =

(
q1, D2Ld (q0, q1) + f+

d (q0, q1, u0)
)
, (1.10a)

F
f−Ld : (q0, q1, u0) �→ (q0, p0) =

(
q0,−D1Ld (q0, q1) − f−

d (q0, q1, u0)
)
. (1.10b)

7Observe that the discrete control force is now dependent on the discrete control path.
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Again, we denote with F
f±Lu0

d the forced discrete Legendre transforms for fixed controls u0 ∈ Us. Using these
definitions and the forced discrete Euler-Lagrange equations (1.9), we can see that the corresponding forced
discrete Hamiltonian map F̃u0

Ld
= F

f±Lu1
d ◦ Fu0,u1

Ld
◦ (Ff±Lu0

d )−1 is given by the map F̃u0
Ld

: (q0, p0) �→ (q1, p1),
where

p0 = −D1Ld (q0, q1) − fu0,−
d (q0, q1) , p1 = D2Ld (q0, q1) + fu0,+

d (q0, q1) , (1.11)
which is the same as the standard discrete Hamiltonian map with the discrete forces added.

As in [64] one can show that the following two definitions of the forced discrete Hamiltonian map

F̃u0
Ld

= F
f±Lu1

d ◦ Fu0,u1
Ld

◦
(
F

f±Lu0
d

)−1
, F̃u0

Ld
= F

f+Lu0
d ◦

(
F

f−Lu0
d

)−1
, (1.12)

are equivalent with coordinate expression (1.11). Thus from the second expression in (1.12) it becomes clear,
that the forced discrete Hamiltonian map that maps (q0, p0) to (q1, p1) depends on u0 only.
The discrete Noether theorem with forcing. As in the unforced case, we can formulate a discrete version
of the forced Noether’s theorem (for the derivation see for example [64]). To this end, the discrete momentum
map in presence of forcing is defined as

Jf+
Ld

(q0, q1) · ξ = 〈Ff+Lu0
d (q0, q1) , ξQ (q1)〉, Jf−

Ld
(q0, q1) · ξ = 〈Ff−Lu0

d (q0, q1) , ξQ (q0)〉.

The evolution of the discrete momentum map is described by

[
Jf+

Ld
◦
(
Fud

Ld

)N−1 − Jf−
Ld

]
(q0, q1) · ξ =

N−1∑
k=0

fuk

d (qk, qk+1) · ξQ×Q (qk, qk+1) . (1.13)

Again, in the case that the forcing is orthogonal to the group action we have the unique momentum map
Jf

Ld
: Q×Q→ g∗ and it holds:

Theorem 1.3 (forced discrete Noether’s theorem). Consider a discrete Lagrangian system Ld : Q×Q→ R with
discrete control forces f+

d , f
−
d : Q×Q×Us → T ∗Q such that the discrete Lagrangian is invariant under the lift

of the (left or right) action φ : G×Q→ Q and 〈fuk

d , ξQ×Q〉 = 0 for all ξ ∈ g and uk ∈ Us, k ∈ {0, . . . , N − 1}.
Then the discrete Lagrangian momentum map Jf

Ld
: Q × Q → g∗ will be preserved by the discrete Lagrangian

evolution map, such that Jf
Ld

◦ Fuk,uk+1
Ld

= Jf
Ld

.

1.3. The discrete vs. the continuous Lagrangian systems

In this section, we relate the continuous and the discrete Lagrangian system. First, along the lines of [64],
we define expressions for the discrete mechanical objects that exactly reflect the continuous ones. Based on
the exact discrete expressions, we determine the order of consistency concerning the difference between the
continuous and the discrete mechanical system.
Exact discrete Lagrangian and forcing. Given a regular Lagrangian L : TQ→ R and a Lagrangian control
force fL : TQ×U → T ∗Q, we define the exact discrete Lagrangian LE

d : Q×Q×R → R and the exact discrete
control forces fE+

d , fE−
d : Q×Q× L∞([0, h], U) × R → T ∗Q to be

LE
d (q0, q1, h) =

∫ h

0

L (q(t), q̇(t)) dt, fE+
d (q0, q1, u0, h) =

∫ h

0

fL (q(t), q̇(t), u(t)) · ∂q(t)
∂q1

dt, (1.14a)

fE−
d (q0, q1, u0, h) =

∫ h

0

fL (q(t), q̇(t), u(t)) · ∂q(t)
∂q0

dt, (1.14b)

with uk ∈ L∞([kh, (k + 1)h], U) and where q : [0, h] → Q is the solution of the forced Euler-Lagrange equa-
tions (1.3) with control function u : [0, h] → U for L and fL satisfying the boundary conditions q(0) = q0
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(q0, q1) (q1, q2)

(q0, p0) (q1, p1) (q2, p2)

(q0, q̇0) (q1, q̇1) (q2, q̇2)

F u0,u1

LE
d

F
f−LE,u0

d F
f+LE,u0

d
F

f−LE,u1
d F

f+LE,u1
d

F̃ u0
LE

d

= (F u0
H )h

F̃ u1
LE

d

= (F u1
H )h

FL FL FL

(F u0
L )h (F u1

L )h

Figure 1. Correspondence between the exact discrete Lagrangian and forces and the contin-
uous forced Hamiltonian flow.

and q(h) = q1. Observe, that the exact discrete control forces depend on an entire control path in contrast to
the continuous control forces. Consequently, the exact forced discrete Legendre transforms are given by

F
f+LE

d (q0, q1, u0, h) =
(
q1, D2L

E
d (q0, q1, h) + fE+

d (q0, q1, u0, h)
)
,

F
f−LE

d (q0, q1, u0, h) =
(
q0,−D1L

E
d (q0, q1, h) − fE−

d (q0, q1, u0, h)
)
.

As in Section 1.2 F
f±LE,uk

d (qk, qk+1) and fE,uk,±
d (qk, qk+1) denote the exact discrete forces and the exact forced

discrete Legendre transforms for a fixed uk ∈ L∞([kh, (k + 1)h], U). As in [64] (Lem. 1.6.2) by taking the
presence of control forces into account we obtain that a regular Lagrangian L and the corresponding exact
discrete Lagrangian LE

d have Legendre transforms related by

F
f+LE

d (q0, q1, u0, h) = FL (q0,1(h), q̇0,1(h)) , F
f−LE

d (q0, q1, u0, h) = FL (q0,1(0), q̇0,1(0)) ,

for sufficiently small h and close q0, q1 ∈ Q. Here q0,1 denotes the solution of the corresponding Euler-Lagrange
equations with q(0) = q0, q(h) = q1. This also proves that exact discrete Lagrangians are automatically regular.

Combining this result with the relations (1.12) gives the commutative diagram shown in Figure 1 for the
exact discrete Lagrangian and forces. The diagram also clarifies the following observation, that was already
proved in [64] (Thm. 1.6.3) for unforced systems and can now be established for the forced case as well: consider
the pushforward of both, the continuous Lagrangian and forces and their exact discrete Lagrangian and discrete
forces to T ∗Q, yielding a forced Hamiltonian system with Hamiltonian H and a forced discrete Hamiltonian
map F̃ uk

LE
d

, respectively. Then, for a sufficiently small time step h ∈ R, the forced Hamiltonian flow map equals

the pushforward discrete Lagrangian map: (F u0
H )h = F̃ u0

LE
d

.

Order of consistency. In the previous paragraph we observed that the exact discrete Lagrangian and forces
generate a forced discrete Hamiltonian map that exactly equals the forced Hamiltonian flow of the continuous
system. Since we are interested in using discrete mechanics to reformulate optimal control problems, we generally
do not assume that Ld and L or H are related by (1.14). Moreover, the exact discrete Lagrangian and exact
discrete forces are generally not computable. In this section we determine the error we obtain by using discrete
approximations for the Lagrangian and the control forces and make use of the concept of variational error
analysis (introduced in [64]). In this context, it is considered how closely a discrete Lagrangian matches the
exact discrete Lagrangian given by the action. Thus, a given discrete Lagrangian Ld is of order r, if for a fixed
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curve u ∈ L∞([0,T], U) there exist an open subset Vv ⊂ TQ with compact closure and constants Cv > 0 and
hv > 0 such that

|Ld(q(0), q(h), h) − LE
d (q(0), q(h), h)| ≤ Cvh

r+1 (1.15)

for all solutions q(t) of the forced Euler-Lagrange equations with initial condition (q0, q̇0) ∈ Vv and for all
h ≤ hv, were we assume Q to be a normed vector space equipped with the norm ‖ · ‖. For forced systems,
we additionally take into account how closely the discrete forces match the exact discrete forces: Analogously,
we define that a given discrete force fu0,±

d and the discrete Legendre transforms F
+Lu0

d and F
−Lu0

d of a dis-
crete Lagrangian Ld are of order r, if we have ‖fu0,±

d (q(0), q(h), h) − fE,u0,±
d (q(0), q(h), h)‖ ≤ Cwh

r+1 and
‖F

±Lu0
d (q(0), q(h), h) − F

±LE,u0
d (q(0), q(h), h)‖ ≤ Cfh

r+1 for existing open subsets Vw, Vf ⊂ TQ with com-
pact closure and constants Cw, Cf > 0 and hw, hf > 0 as above, respectively, and with fixed u0 ∈ Us and
u0 ∈ L∞([0, h], U).

To give a relationship between the orders of a discrete Lagrangian, discrete forces, the forced discrete Legendre
transforms, and their forced discrete Hamiltonian maps, we define that L1

d is equivalent to L2
d if their discrete

Hamiltonian maps are equal. For the forced case, we say analogously, that for fixed uk ∈ Us the discrete pair
(L1

d, f
uk,1
d ) is equivalent to the discrete pair (L2

d, f
uk,2
d ) if their forced discrete Hamiltonian maps are equal,

such that F̃uk

L1
d

= F̃uk

L2
d

. With F̃uk

L1
d

= F
f+Luk,1

d ◦ (Ff−Luk,1
d )−1, it follows that if (L1

d, f
uk,1
d ) and (L2

d, f
uk,2
d )

are equivalent, then their forced discrete Legendre transforms are equal. Thus, equivalent pairs of discrete
Lagrangians and control forces generate the same integrators. As in [64] (Thm. 2.3.1) and [72] we get the
following equivalent statements:

(i) the forced discrete Hamiltonian map for (Ld, f
uk,±
d ) is of order r;

(ii) the forced discrete Legendre transforms of (Ld, f
uk,±
d ) are of order r;

(iii) (Ld, f
uk,±
d ) is equivalent to a pair of discrete Lagrangian and discrete forces, both of order r.

(1.16)

Note that, given a discrete Lagrangian and discrete forces, their order can be calculated by expanding the
expressions for Ld(q(0), q(h), h) and fuk,±

d in a Taylor series in h and comparing these to the same expansions
for the exact Lagrangian and the exact forces, respectively. If the series agree up to r terms, then the discrete
objects are of order r.

2. Optimal control of a mechanical system

2.1. The continuous setting

On the configuration spaceQ we consider a mechanical system described by a regular LagrangianL : TQ→ R.
Additionally, assume that a Lagrangian control force acts on the system and is defined by a map fL : TQ×U →
T ∗Q with fL : (q, q̇, u) �→ (q, fL(q, q̇, u)) and u : [0,T] → U , the time-dependent control parameter. Note that
the Lagrangian control force may include both dissipative forces within the mechanical system and external
control forces resulting from actuators steering the system.

The Lagrangian optimal control problem. We now consider the following optimal control problem: During
the time interval [0, T ], the mechanical system described by the Lagrangian L is to be moved on a curve q from
an initial state (q(0), q̇(0)) = (q0, q̇0) ∈ TQ to a final state. The motion is influenced via a Lagrangian control
force fL with control parameter u such that a given objective functional

J(q, u) =
∫ T

0

C (q(t), q̇(t), u(t)) dt+ Φ (q(T), q̇(T)) (2.1)

is minimized. Here C : TQ×U → R and Φ : TQ→ R (Mayer term) are continuously differentiable cost functions.
The final state (q(T), q̇(T)) is required to fulfil a constraint r(q(T), q̇(T), qT, q̇T) = 0 with r : TQ× TQ→ R

nr
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and (qT, q̇T) ∈ TQ given. The motion of the system is to satisfy the Lagrange-d’Alembert principle, which
requires that

δ

∫ T

0

L (q(t), q̇(t)) dt+
∫ T

0

fL (q(t), q̇(t), u(t)) · δq(t) dt = 0 (2.2)

for all variations δq with δq(0) = δq(T) = 0. In many cases, one encounters additional constraints on the states
and controls given by h(q(t), q̇(t), u(t)) ≥ 0 with h : TQ × U → R

nh , where V ≥ 0 for vectors V ∈ R
n holds

componentwise. To summarize, we are faced with the following:

Problem 2.1 (Lagrangian optimal control problem (LOCP)).

min
q∈C1,1([0,T],Q),u∈L∞([0,T],U)

J(q, u) (2.3a)

subject to δ

∫ T

0

L(q(t), q̇(t)) dt +
∫ T

0

fL(q(t), q̇(t), u(t)) · δq(t) dt = 0, (2.3b)

(q(0), q̇(0)) = (q0, q̇0), (2.3c)

h(q(t), q̇(t), u(t)) ≥ 0, t ∈ [0,T], (2.3d)

r(q(T), q̇(T), qT, q̇T) = 0. (2.3e)

The interval length T may either be fixed, or appear as degree of freedom in the optimization problem.

Definition 2.2. A curve (q, u) ∈ C1,1([0,T], Q) × L∞([0,T], U) is feasible, if it fulfills the constraints (2.3b)–
(2.3e). The set of all feasible curves is the feasible set of Problem 2.1. A feasible curve (q∗, u∗) is an optimal
solution of Problem 2.1, if J(q∗, u∗) ≤ J(q, u) for all feasible curves (q, u). An feasible curve (q∗, u∗) is a local
optimal solution, if J(q∗, u∗) ≤ J(q, u) in a neighborhood of (q∗, u∗). The function q∗ is called (locally) optimal
trajectory, and u∗ is the (locally) optimal control.

The Hamiltonian optimal control problem. We now formulate the problem using the Hamiltonian variant
for the system dynamics. This is equivalent to the Lagrangian formulation as we have seen in Section 1.1 on
the Legendre transform with forces. For a set R = {(q, q̇) ∈ TQ | g(q, q̇) ≥ 0} determined via a constraint g :
TQ→ R

ng on TQ we obtain the corresponding set in the cotangent bundle as R̃ = {(q, p) ∈ T ∗Q | g̃(q, p) ≥ 0}
with g̃ = g ◦ (FL)−1. Analogously, we define J̃ , C̃, Φ̃, h̃, and r̃ such that the optimal control problem in the
Hamiltonian formulation reads as follows:

Problem 2.3 (Hamiltonian optimal control problem (HOCP)).

min
q,p,u

J̃(q, p, u) =
∫ T

0

C̃(q(t), p(t), u(t)) dt+ Φ̃(q(T), p(T)) (2.4a)

subject to q̇(t) = ∇pH(q(t), p(t)), (2.4b)
ṗ(t) = −∇qH(q(t), p(t)) + fH(q(t), p(t), u(t)), (2.4c)

(q(0), p(0)) = (q0, p0), (2.4d)

h̃(q(t), p(t), u(t)) ≥ 0, t ∈ [0,T] (2.4e)

r̃(q(T), p(T), qT, pT) = 0, (2.4f)

where (qT, pT) = FL(qT, q̇T), p(0) = D2L(q(0), q̇(0)), p0 = D2L(q0, q̇0) and Φ̃ = Φ ◦ (FL)−1 etc., and the
minimization is over q ∈ C1,1([0,T], Q) = W 2,∞([0,T], Q), p ∈ W 1,∞([0,T], T ∗

q Q) and u ∈ L∞([0,T], U).
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Necessary optimality conditions. In this paragraph, we derive necessary conditions for the optimality of
a solution (x∗, u∗) with x = (q, p) to Problems 2.1 and 2.3. Since we need (x∗, u∗) ∈ W 2,∞([0,T], T ∗Q) ×
W 1,∞([0,T], U) later on we use the same smoothness assumption for the derivation. In addition, we restrict
ourselves to the case of problems with the controls pointwise constrained to the (nonempty) set U = {u ∈
R

nu |h(u) ≥ 0} and fixed final time T. With f(x, u) = (∇pH(q, p),−∇qH(q, p)+fH(q, p, u)) we can rewrite (2.4)
as

min
x∈W2,∞([0,T],T∗Q)

u∈W1,∞([0,T],U)

J̃(x, u) =
∫ T

0

C̃(x(t), u(t)) dt+ Φ(x(T)) (2.5)

subject to ẋ = f(x, u), x(0) = x0, u(t) ∈ U for t ∈ [0,T] and r̃(x(T), xT ) = 0. Necessary conditions for
optimality of solution trajectories η(·) = (x(·), u(·)) can be derived based on variations of an augmented cost
function, the Lagrangian of the system:

L(η, λ) =
∫ T

0

C̃(x(t), u(t)) + λT (t) · (ẋ− f(x(t), u(t))) dt+ Φ(x(T)), (2.6)

where λ ∈ W 2,∞([0,T],Rnx) is the adjoint variable or the costate. A point (η∗, λ∗) is a saddle point of (2.6), if
L(η, λ∗) ≤ L(η∗, λ∗) ≤ L(η∗, λ) for all η and λ. The function H(x, u, λ) := −C̃(x, u) + λT · f(x, u) is called the
Hamiltonian of the optimal control problem. When setting variations of L with respect to η and λ to zero, the
resulting Euler-Lagrange equations provide necessary optimality condition for the optimal control problem (2.5).
Formally, one obtains the following celebrated theorem (cf. [74]):

Theorem 2.4 (Pontryagin maximum principle). Let (x∗, u∗) ∈ W 2,∞([0,T], T ∗Q) × W 1,∞([0,T], U) be an
optimal solution to (2.5). Then there exists a function λ ∈ W 2,∞([0,T],Rnx) and a vector α ∈ R

nr such that

H (x∗(t), u∗(t), λ(t)) = max
u∈U

H (x(t), u, λ(t)) t ∈ [0,T], (2.7a)

and λ solves the following initial value problem:

λ(T) = ∇xΦ (x∗(T)) −∇xr̃
(
x∗ (T) , xT

)
α, λ̇ = −∇xH (x∗, u∗, λ) . (2.7b)

2.2. The discrete setting

For the numerical solution we need a discretized version of Problem 2.1. To this end we formulate an optimal
control problem for the discrete mechanical system described by discrete variational mechanics introduced in
Section 1.2. In Section 2.3 we show how the optimal control problem for the continuous and the discrete
mechanical system are related. To obtain a discrete formulation, we replace each expression in (2.3) by its
discrete counterpart in terms of discrete variational mechanics. As described in Section 1.2, we replace the state
space TQ of the system by Q×Q and a path q : [0,T] → Q by a discrete path qd : {0, h, 2h, . . . , Nh = T } → Q
with qk = qd(kh). Analogously, the continuous control path u : [0,T] → U is replaced by a discrete control path
ud : Δt̃ → U (writing uk = (ud(kh+ c�h))s

�=1 ∈ Us).

The discrete Lagrange-d’Alembert principle. Based on this discretization, the action integral in (2.2)
is approximated on a time slice [kh, (k + 1)h] by the discrete Lagrangian Ld : Q × Q → R, Ld(qk, qk+1) ≈∫ (k+1)h

kh
L(q(t), q̇(t)) dt, and likewise the virtual work by the left and right discrete forces, f−

k ·δqk +f+
k ·δqk+1 ≈∫ (k+1)h

kh
fL(q(t), q̇(t), u(t)) · δq(t) dt, where f−

k , f
+
k ∈ T ∗Q. As introduced in equation (1.8), the discrete version

of the Lagrange-d’Alembert principle (2.2) requires one to find discrete paths {qk}N
k=0 such that for all variations

{δqk}N
k=0 with δq0 = δqN = 0, one has the discrete Lagrange-d’Alembert principle (1.8), or, equivalently, the

forced discrete Euler-Lagrange equations (1.9).
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Boundary conditions. In the next step, we need to incorporate the boundary conditions q(0) = q0, q̇(0) = q̇0

and r(q(T), q̇(T), qT, q̇T) = 0 into the discrete description. Those on the configuration level can be used as
constraints in a straightforward way as q0 = q0. However, since in the present formulation velocities are
approximated in a time interval [tk, tk+1] (as opposed to an approximation at the time nodes), the velocity
conditions have to be transformed to conditions on the conjugate momenta. These are defined at each time
node using the discrete Legendre transform. The presence of forces at the time nodes has to be incorporated
into that transformation leading to the forced discrete Legendre transforms F

f−
Ld and F

f+Ld defined in (1.10).
Using the standard Legendre transform FL : TQ → T ∗Q, (q, q̇) �→ (q, p) = (q,D2L(q, q̇)) leads to the discrete
initial constraint on the conjugate momentum

D2L
(
q0, q̇0

)
+D1Ld (q0, q1) + f−

d (q0, q1, u0) = 0. (2.8)

As shown in the previous section, we can transform the boundary condition from a formulation with configuration
and velocity to a formulation with configuration and conjugate momentum. Thus, instead of considering a
discrete version of the final time constraint r on TQ we use a discrete version of the final time constraint r̃
on T ∗Q. We define the discrete boundary condition on the configuration level to be rd : Q×Q×Us×TQ→ R

nr ,

rd
(
qN−1, qN , uN−1, q

T, q̇T
)

= r̃
(
F

f+Ld (qN−1, qN , uN−1) ,FL
(
qT, q̇T

))
,

i.e. we used (qN , pN ) = F
f+Ld(qN−1, qN , uN−1) and (qT, pT) = FL(qT, q̇T), that is pN = D2Ld(qN−1, qN ) +

f+
d (qN−1, qN , uN−1) and pT = D2L(qT, q̇T). Notice that for the simple final velocity constraint q̇(T) − q̇T = 0,

we obtain for the transformed condition on the momentum level r̃(q(T), p(T), qT, pT) = p(T) − pT the discrete
constraint

−D2L(qT, q̇T) +D2Ld(qN−1, qN ) + f+
d (qN−1, qN , uN−1) = 0, (2.9)

which together with equation (2.8) constitute the boundary constraints on momentum level.
Discrete path constraints. Opposed to the final time constraint we approximate the path constraint in (2.3d)
on each time interval [tk, tk+1] rather than at each time node. Thus, we maintain the formulation on the
velocity level and replace the continuous path constraint h(q(t), q̇(t), u(t)) ≥ 0 by a discrete path constraint
hd : Q ×Q × Us → R

snh which suitably approximate the continuous constraint pointwise (see Sect. 2.4) with
hd(qk, qk+1, uk) ≥ 0, k = 0, . . . , N − 1.
Discrete objective function. Similar to the Lagrangian we approximate the objective functional in (2.1) on
the time slice [kh, (k + 1)h] by Cd(qk, qk+1, uk) ≈

∫ (k+1)h

kh
C(q(t), q̇(t), u(t)) dt. Analogously to the final time

constraint, we approximate the final condition via a discrete version Φd : Q×Q×Us → R yielding the discrete
objective function

Jd (qd, ud) =
N−1∑
k=0

Cd (qk, qk+1, uk) + Φd (qN−1, qN , uN−1) .

The discrete optimal control problem. In summary, after performing the above discretization steps, one
is faced with the following discrete optimal control problem.

Problem 2.5 (discrete Lagrangian optimal control problem).

min
(qd,ud)∈Pd(Q)×Pd(U)

Jd (qd, ud) (2.10a)

subject to q0 = q0, (2.10b)

D2L
(
q0, q̇0

)
+D1Ld (q0, q1) + f−

0 = 0, (2.10c)

D2Ld (qk−1, qk) +D1Ld (qk, qk+1) + f+
k−1 + f−

k = 0, k = 1, . . . , N − 1, (2.10d)

hd (qk, qk+1, uk) ≥ 0, k = 0, . . . , N − 1, (2.10e)

rd
(
qN−1, qN , uN−1, q

T, q̇T
)

= 0. (2.10f)
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Recall that the f±
k are dependent on uk ∈ Us. To incorporate a free final time T as in the continuous setting,

the step size h appears as a degree of freedom within the optimization problem. However, in the following
formulations and considerations we restrict ourselves to the case of fixed final time T and thus fixed step size h.
Special case: fixed boundary conditions. Consider the special case of a problem with fixed initial and final
configuration and velocities and without path constraints, i.e. consider Problem 2.1 without the constraint (2.3d)
and r(q(T), q̇(T)) = (q(T) − qT, q̇(T) − q̇T). A straightforward way to derive initial and final constraints for
the conjugate momenta rather than for the velocities from the variational principle directly is stated in the
following proposition:

Proposition 2.6. With (q0, p0) = FL(q0, q̇0) and (qT, pT) = FL(qN , q̇N ) equations (2.3b), (2.3c) and (2.3e)
are equivalent to the following principle with free initial and final variation and with augmented Lagrangian

δ

(∫ T

0

L(q(t), q̇(t)) dt+ p0(q(0) − q0) − pT(q(T) − qT)

)
+
∫ T

0

fL(q(t), q̇(t), u(t)) · δq(t) dt = 0. (2.11)

Proof. Variations of (2.3b) with respect to q and zero initial and final variation δq(0) = δq(T) = 0 together
with (2.3c), (2.3e) yield

d
dt

∂

∂q̇
L(q(t), q̇(t)) − ∂

∂q
L(q(t), q̇(t)) = fL(q(t), q̇(t), u(t)), (2.12a)

q(0) = q0, q̇(0) = q̇0, q(T) = qT, q̇(T) = q̇T. (2.12b)

On the other hand variations of (2.11) with respect to q and λ = (p0, pT) with free initial and final variation
lead to

d
dt

∂

∂q̇
L(q(t), q̇(t)) − ∂

∂q
L(q(t), q̇(t)) = fL(q(t), q̇(t), u(t)), (2.13a)

q(0) = q0, q(T) = qT,
∂

∂q̇
L(q(t), q̇(t))

∣∣∣∣
t=0

= pT,
∂

∂q̇
L(q(t), q̇(t))

∣∣∣∣
t=T

= p0. (2.13b)

The Legendre transform applied to the velocity boundary equations in (2.12b) gives the corresponding momenta
boundary equations (2.13b). �

On the discrete level we derive the optimal control problem for fixed initial and final configurations and
velocities in an equivalent way. Thus, we consider the discrete principle with discrete augmented Lagrangian

δ

(
N−1∑
k=0

Ld (qk, qk+1) + p0
(
q0 − q0

)
− pT

(
qN − qT

))
+

N−1∑
k=0

[
f−

k · δqk + f+
k · δqk+1

]
= 0, (2.14)

which, with free initial and final variation δq0 and δqN , respectively, is equivalent to

δ

N−1∑
k=0

Ld (qk, qk+1) +
N−1∑
k=0

[
f−

k · δqk + f+
k · δqk+1

]
= 0, (2.15a)

q0 = q0, qN = qT, p0 +D1Ld (q0, q1) + f−
0 = 0, −pT +D2Ld (qN−1, qN ) + f+

N−1 = 0, (2.15b)

where the third and fourth equations in (2.15b) are exactly the discrete initial and final velocity constraints
derived in the remark containing equation (2.9) with p0 = D2L(q0, q̇0) and pT = D2L(qT, q̇T).

We note that this derivation of the discrete initial and final conditions directly gives the same formulation
that we found before by first transforming the boundary condition on the momentum level T ∗Q and then
formulating the corresponding discrete constraints on Q×Q× Us.
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Necessary optimality conditions. The system (2.10) results in a constrained nonlinear optimization problem,
also called a nonlinear programming problem, that is an objective function has to be minimized subject to
algebraic equality and inequality constraints. Let ξ be the set of parameters introduced by the discretization
of an infinite dimensional optimal control problem. Then, the nonlinear programming problem (NLP) to be
solved is

min
ξ
ϕ(ξ), subject to a(ξ) = 0, b(ξ) ≥ 0, (2.16)

where ϕ : R
n → R, a : R

n → R
m, and b : R

n → R
p are continuously differentiable. We briefly summarize some

terminology: A feasible point is a point ξ ∈ R
n that satisfies a(ξ) = 0 and b(ξ) ≥ 0. A (strict) local minimum

of (2.16) is a feasible point ξ∗ with ϕ(ξ∗) ≤ ϕ(ξ) (ϕ(ξ∗) < ϕ(ξ)) for all feasible points ξ in a neighborhood of ξ∗.
Active inequality constraints bact(ξ) at a feasible point ξ are those components bj(ξ) of b(ξ) with bj(ξ) = 0.
Subsuming the equality constraints and the active inequalities at a point ξ (known as active set) in a combined
vector function gives the active constraints as ã(ξ) := (a(ξ), bact(ξ)). The active set may be different at different
feasible points. Feasible points ξ that satisfy the condition that the Jacobian of the active constraints, ∇ã(ξ)T ,
has full rank are denoted as regular points.

To investigate local optimality in the presence of constraints, we introduce the Lagrangian multiplier vectors
λ ∈ R

m and μ ∈ R
p, that are also called adjoint variables, and we define the Lagrangian function L̃ by

L̃(ξ, λ, μ) := ϕ(ξ) − λT a(ξ) − μT b(ξ). (2.17)

The following variant of the Karush-Kuhn-Tucker necessary conditions for local optimality of a point ξ∗ have
been derived first by Karush in 1939 [41] and independently by Kuhn and Tucker in 1951 [49]. For brevity, we
restrict our attention to regular points only.

Theorem 2.7 (Karush-Kuhn-Tucker conditions (KKT)). If a regular point ξ∗ ∈ R
n is a local optimum of the

NLP problem (2.16), then there exist unique Lagrange multiplier vectors λ∗ ∈ R
m and μ∗ ∈ R

p such that the
triple (ξ∗, λ∗, μ∗) satisfies the following necessary conditions:

∇ξL̃(ξ∗, λ∗, μ∗) = 0, a(ξ∗) = 0, b(ξ∗) ≥ 0, μ∗ ≥ 0, μ∗
jbj(ξ

∗) = 0, j = 1, . . . , p.

A triple (ξ∗, λ∗, μ∗) that satisfies these conditions is called a Karush-Kuhn-Tucker point (KKT point).

2.3. The discrete vs. the continuous problem

This section gives an interpretation of the discrete problem as an approximation to the continuous one. In
addition, we identify certain structural properties that the discrete problem inherits from the continuous one.
We determine the consistency order of the discrete scheme and establish a result on the convergence of the
discrete solution as the step size goes to zero.
The place of DMOC amongst solution methods for optimal control problems. In Figure 2 we present
schematically different discretization strategies for optimal control problems:

• In an indirect method, starting with an objective function and the Lagrange-d’Alembert principle we
obtain via two variations (the first for the derivation of the Euler-Lagrange equations and the second
for the derivation of the necessary optimality conditions) the Pontryagin maximum principle. The
resulting boundary value problem is then solved numerically, e.g. by gradient methods [11,16,17,43,70,
81], multiple shooting [7,12,18,24,32,42] or collocation [1,2,19].

• In a direct approach, starting form the Euler-Lagrange equations we directly transform the problem
into a restricted finite dimensional optimization problem by discretizing the differential equation. Com-
mon methods like e.g. shooting [48], multiple shooting [8], or collocation methods [82], rely on a direct
integration of the associated ordinary differential equations or on its fulfillment at certain grid points
(see also [3,76] for an overview of the current state of the art). The resulting finite dimensional non-
linear constrained optimization problem can be solved by standard nonlinear optimization techniques
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R
apide N

ot H
ig

hl
ig

ht

Figure 2. Optimal control for mechanical systems: the order of variation and discretization
for deriving the necessary optimality conditions.

like sequential quadratic programming [31,75]. Implementations are found in software packages like
DIRCOL [83], SOCS [4], or MUSCOD [54].

• In the DMOC approach, rather than discretizing the differential equations arising from the Lagrange-
d’Alembert principle, we discretize in the earliest stage, namely already on the level of the variational
principle. Then, we consider variations only on the discrete level to derive the restricted optimization
problem and its necessary optimality conditions.
This approach derived via the concept of discrete mechanics leads to a special discretization of the
system equations based on variational integrators, which are dealt with in detail in [64]. Thus, the
discrete optimal control problem inherits special properties exhibited by variational integrators. In the
following, we specify particular important properties and phenomena of variational integrators and try
to translate their meaning into the optimal control context.

Preservation of momentum maps. If the discrete system, obtained by applying variational integration to
a mechanical system, inherits the same symmetry groups as the continuous system, the corresponding discrete
momentum maps are preserved. For the forced case the same statement holds, if the forcing is orthogonal to
the group action (see Thm. 1.3). On the one hand, this means for the optimal control problem, that if the
control force is orthogonal to the group action, our discretization leads to a discrete system, for which the
corresponding momentum map is preserved. On the other hand, in the case of the forcing not being orthogonal
to the group action, the forced discrete Noether’s theorem provides an exact coherence between the change
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in angular momentum and the applied control force via (see Sect. 3.2 for examples)

[
Jf+

Ld
◦
(
Fud

Ld

)N−1 − Jf−
Ld

]
(q0, q1) · ξ =

N−1∑
k=0

fuk

d (qk, qk+1) · ξQ×Q (qk, qk+1) .

Conservation of a modified energy. Variational integrators are symplectic, which implies that a certain
modified energy is conserved (see for example [30]). This is an important property if the long time behavior of
dynamical systems is considered. For the case of the optimal control of systems with long maneuver time such
as low thrust space missions, it would therefore be interesting to investigate the relation between a modified
energy and the virtual work. However, this has not been considered within this paper.

Implementation. Rather than using a configuration-momentum implementation of variational integrators as
proposed in [64], we stay on Q×Q. That means we just determine the optimal trajectory for the configuration
and the control forces and reconstruct the corresponding momenta and velocities via the forced discrete Legendre
transforms. This yields computational savings. A more detailed description of the computational savings
compared to standard discretizations for optimal control problems is given in Remark 2.11.

2.4. The correspondence with Runge-Kutta discretizations

In this section we are going to show that the discretization derived via the discrete Lagrange-d’Alembert
principle is equivalent to one resulting from a finite difference discretization of the associated Hamiltonian
system via a symplectic partitioned Runge-Kutta scheme.

Symplectic partitioned Runge-Kutta methods. As shown in [64] (Thm. 2.6.1), the discrete Hamiltonian
map generated by the discrete Lagrangian is a symplectic partitioned Runge-Kutta method. As we will show, a
similar statement is true for discrete Hamiltonian maps with forces. The resulting method is still a partitioned
Runge-Kutta method, but no longer symplectic in the original sense since the symplectic form is not preserved
anymore due to the presence of control forces. However, we still denote it as a symplectic method having in
mind that the symplectic form is preserved only in absence of external control forces.

A partitioned Runge-Kutta method for the regular forced Lagrangian system (L, fL) is a map T ∗Q× Us →
T ∗Q specified by coefficients bi, aij , b̃i, ãij , i = 1, . . . , s, and defined by (q0, p0, u0) �→ (q1, p1), where

q1 = q0 + h
s∑

j=1

bjQ̇j , p1 = p0 + h
s∑

j=1

b̃jṖj ,

Qi = q0 + h
s∑

j=1

aijQ̇j , Pi = p0 + h
s∑

j=1

ãij Ṗj ,

Pi = ∂L
∂q̇

(
Qi, Q̇i

)
, Ṗi = ∂L

∂q

(
Qi, Q̇i

)
+ fL

(
Qi, Q̇i, Ui

)
,

(2.18)

i = 1, . . . , s, where the points (Qi, Pi) are known as the internal stages and Ui are the control samples given
by Ui = u0i = ud(t0 + cih). For aij = ãij and bi = b̃i the partitioned Runge-Kutta method is a Runge-Kutta
method. The method is symplectic (that is, it preserves the canonical symplectic form Ω on T ∗Q in absence of
external forces) if the coefficients satisfy

biãij + b̃jaji = bib̃j and bi = b̃i, i, j = 1, . . . , s. (2.19)

Since discrete Lagrangian maps are symplectic, we can assume that we have coefficients satisfying (2.19) and
write a discrete Lagrangian and discrete Lagrangian control forces that generate the corresponding symplectic
partitioned Runge-Kutta method. Given points (q0, q1) ∈ Q × Q, we can regard (2.18) as implicitly defining
p0, p1, Qi, Pi, Q̇i and Ṗi for i = 1, . . . , s. Taking these to be defined as functions of (q0, q1), we construct
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a discrete Lagrangian

Ld (q0, q1, h) = h

s∑
i=1

biL
(
Qi, Q̇i

)
, (2.20)

and left and right discrete forces as

f+
d (q0, q1, u0, h) = h

s∑
i=1

bifL

(
Qi, Q̇i, Ui

)
· ∂Qi

∂q1
, f−

d (q0, q1, u0, h) = h

s∑
i=1

bifL

(
Qi, Q̇i, Ui

)
· ∂Qi

∂q0
· (2.21a)

For fixed u0 the corresponding forced discrete Hamiltonian map is exactly the map (q0, p0) �→ (q1, p1) which is
the symplectic partitioned Runge-Kutta method for the forced Hamiltonian system (1.4). Straight forward to
the proof for unforced systems in [64] (Thm. 2.6.1) we get:

Theorem 2.8. The discrete Hamiltonian map generated by the discrete Lagrangian (2.20) together with the
discrete forces (2.21) is a partitioned Runge-Kutta method (which is symplectic in the unforced case).

Optimal control and Runge-Kutta discretizations. In this paragraph, we carry forward the results of
the previous section into the context of optimal control problems. To formulate the optimal control problem
for the discrete system in terms of Runge-Kutta discretizations, we have to give appropriate expressions for
the boundary conditions, the path constraints, and the objective functional. Concerning the dynamics of the
mechanical system, we have already seen that the discretization obtained via the discrete Lagrange-d’Alembert
principle can be rewritten as a Runge-Kutta scheme for the corresponding mechanical system in terms of (p, q)
as in (2.18). Since we consider regular Lagrangians and regular Hamiltonians, we reformulate the last equation
of (2.18) with the help of the Hamiltonian as

Q̇ki =
∂H

∂p
(Qki, Pki), Ṗki = −∂H

∂q
(Qki, Pki) + fH(Qki, Pki, Uki),

where the additional index i ∈ {1, . . . , s} denotes the dependence of the intermediate state and control variables
on the time interval [tk, tk+1].

Boundary conditions. Due to a formulation of the optimal control problem within the Hamiltonian frame-
work, we use the same formulation for the boundary constraint as the one for the continuous Hamiltonian
optimal control Problem 2.3 evaluated at (qN , pN ), i.e. r̃(qN , pN , q

T, pT) = 0.

Discrete path constraints. Again we use the formulation in Problem 2.3 and enforce the path constraints to
hold in each time step (Qi, Pi, Ui) as h̃(Qki, Pki, Uki) ≥ 0 for k = 0, . . . , N − 1 and i = 1, . . . , s.

Discrete objective function. We construct the discrete objective function in the same way as the discrete
Lagrangian (2.20). However, corresponding to the Hamiltonian formulation evaluated in each substep (Qi, Pi, Ui),
it now reads

J̃d (qd, pd, ud) =
N−1∑
k=0

h

s∑
i=1

biC̃ (Qki, Pki, Uki) + Φ̃ (qN , pN ) ,

where the final constraint holds for the node corresponding to the final time T. Combining terms, the discrete
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optimal control problem from the Hamiltonian point of view reads

min
qd,pd,ud

J̃d(qd, pd, ud) (2.22a)

subject to (q0, p0) =
(
q0, p0

)
, (2.22b)

qk+1 = qk + h

s∑
j=1

bjQ̇kj , Qki = qk + h

s∑
j=1

aijQ̇kj , (2.22c)

pk+1 = pk + h

s∑
j=1

b̃jṖkj , Pki = pk + h

s∑
j=1

ãijṖkj , (2.22d)

Q̇ki =
∂H

∂p
(Qki, Pki) , Ṗki = −∂H

∂q
(Qki, Pki) + fH (Qki, Pki, Uki) , (2.22e)

h̃(Qki, Pki, Uki) ≥ 0 for k = 0, . . . , N − 1, i = 1, . . . , s and r̃(qN , pN , q
T, pT) = 0. Problem (2.22) is the

finite dimensional optimization problem resulting from the Hamiltonian optimal control Problem 2.3 that is
discretized via a symplectic partitioned Runge-Kutta scheme.

Theorem 2.9 (equivalence). Given a discrete Lagrangian and discrete forces as defined in (2.20) and (2.21),
respectively. Then, the discrete Lagrangian optimal control problem defined in (2.10) and the problem (2.22)
resulting from discretizing the Hamiltonian optimal control problem by a symplectic partitioned Runge-Kutta
scheme are equivalent in the sense that both problems have the same set of solutions.

Proof. Assume (q∗d, u
∗
d) is a solution of (2.10). By using the discrete Legendre transform we obtain an optimal

solution in terms of the discrete momenta as (q∗d , p
∗
d, u

∗
d). To prove that (q∗d, p

∗
d, u

∗
d) is also an optimal solution for

problem (2.22) we have to show feasibility and optimality. Theorem 2.8 and application of the forced discrete
Legendre transform to the boundary conditions give us the equivalence of equations (2.10b)–(2.10d), (2.10f)
and (2.22c)–(2.22e) and r̃(qN , pN , q

T, pT) = 0. For the choice of the discretizations of the curves q(t) and u(t)
the inequality condition (2.10e) reads as h(Qki, Qk,i+1, Uki) ≥ 0 for i = 1, . . . , s−1 and h(Qks, Qk+1,0, Uks) ≥ 0.
Again, due to the forced discrete Legendre transform h and h̃ determine the same solution set. This makes
(q∗d, p

∗
d, u

∗
d) a feasible solution of the problem (2.22). Optimality holds due to J̃d(q∗d , p

∗
d, u

∗
d) = Jd(q∗d , u

∗
d) ≤

Jd(qd, ud) = J̃d(qd, pd, ud) for all feasible points (qd, pd) ∈ T ∗Pd(Q) and ud ∈ Pd(U) (global optimality), or for
all feasible points (qd, pd, ud) in a neighborhood of (q∗d, p

∗
d, u

∗
d) (local optimality). Analogous, we can show that

an optimal solution (q∗d, p
∗
d, u

∗
d) of problem (2.22) is also an optimal solution for problem (2.10). �

Example 2.10.
(a) With b = 1 and a = 1

2 we obtain the implicit midpoint rule as a symplectic Runge-Kutta scheme, that
is the partitioned scheme reduces to a standard one-stage Runge-Kutta scheme. This is equivalent to
the discretization derived via the Lagrangian approach with midpoint quadrature.

(b) The standard Lobatto IIIA-IIIB partitioned Runge-Kutta method is obtained by using the Lobatto
quadrature for the discrete Lagrangian.

Remark 2.11.
1. The formulations based on the discrete Lagrange-d’Alembert principle on the one hand side and based

on a Runge-Kutta discretization of the Hamiltonian system on the other hand side are equivalent in
the sense that the same solution set is described. However, the Lagrangian approach uses less variables
and less constraints: For q ∈ R

n and N intervals of discretization we need (Ns+ 1)n configurations qν
k ,

k = 0, . . . , N − 1, ν = 0, . . . , s with qs
k = q0k+1, k = 1, . . . , N − 1 and nN(s − 1) + n(N − 1) extended

discrete Euler-Lagrange equations, so altogether, (Ns− 1)n constraints excluding boundary conditions.
The Runge-Kutta approach for the Hamiltonian system uses 2(Ns+ 1)n configurations and momenta
and 2nN + 2nN(s − 1) = 2nNs equality constraints. Thus, via the Runge-Kutta approach we obtain
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twice as many state variables and (Ns + 1)n more equality constraints. Comparisons concerning the
computational effort are presented in Section 3.2.2.

2. Another advantage of the variational approach over the symplectic Runge-Kutta discretization is that
one does not have to handle any conditions on the coefficients (such as condition (2.19)) to enforce
symplecticity. The symplecticity of the DMOC discretization results naturally from the variational
structure of this approach.

2.5. Transformation to Mayer form

Continuous system. Within the previous sections we introduced optimal control problems in Bolza form, in
which the objective functional consists of a cost functional of integral form and a final point constraint. For the
error analysis in Sections 2.6 and 2.7 it will be useful to transform the problem into Mayer form, in which the
objective functional consists of the final point constraint only. To this end we introduce a new state variable as

z(t) :=
∫ t

0

C (q(τ), q̇(τ), u(τ)) dτ, 0 ≤ t ≤ T, (2.23)

resp. y(t) :=
∫ t

0
C̃(q(τ), p(τ), u(τ)) dτ , 0 ≤ t ≤ T for the Hamiltonian form. By extension of the state space

from TQ to TQ× R, and from T ∗Q to T ∗Q× R, respectively, the new objective function in Mayer form reads

J(q, u) = z(T) + Φ(q(T), q̇(T))

resp. J̃(q, p, u) = y(T) + Φ̃(q(T), p(T)). Equation (2.23) is typically adjoint to the problem description as an
additional differential equation of the form ż = C(q, q̇, u), z(0) = 0, resp. ẏ = C̃(q, p, u), y(0) = 0. Note that
the Mayer form destroys the unifying Lagrangian and Hamiltonian structures.
Discrete Lagrangian system. As in the continuous setting, the discrete optimal control problem (2.10) can
be transformed into a problem in Mayer form, that is the objective function consists of a final condition only.
The transformation is performed on the discrete level to keep the Lagrangian structure of the original problem.
We introduce new variables z0 = 0, z� =

∑�−1
k=0 Cd(qk, qk+1, uk), 	 = 1, . . . , N , and rephrase the discrete

problem (2.10) into a problem of Mayer type:

min
qd,ud

zN + Φd (qN−1, qN , uN−1) (2.24a)

subject to (2.10b)–(2.10f) and z0 = 0, zk+1 − zk − Cd (qk, qk+1, uk) = 0, k = 0, . . . , N − 1. (2.24b)

Thus equations (2.24b) provide the corresponding discretization for the additional equation of motion resulting
from the Mayer transformation of the Lagrangian optimal control problem on the continuous level.
Discrete Hamiltonian system. Similarly, (2.22) can be transformed into an optimal control problem of Mayer
type as follows: analogous to what we did in equation (2.24), we introduce additional variables yd = {yl}N

l=0 as

y0 = 0, yl =
l−1∑
k=0

h

s∑
i=1

biC̃ (Qki, Pki, Uki) , l = 1, . . . , N, (2.25)

yielding the discrete optimal control problem of Mayer type as

min
qd,pd,ud

Φ̄ (qN , pN , yN ) = yN + Φ̃ (qN , pN ) (2.26a)

subject to the constraints in problem (2.22). We obtain exactly the same problem by discretizing the continuous
Hamiltonian optimal control problem of Mayer type with the same partitioned Runge-Kutta discretization



DISCRETE MECHANICS AND OPTIMAL CONTROL: AN ANALYSIS 341

R
ap

id
e 

N
ot

eH
ighlight

for the extended system of differential equations

˙̃q = ν(q̃, p, u), q̃(0) = q̃0,

˙̃p = η(q̃, p, u), p(0) = p0,

with q̃ = (q, y), ν(q̃, p, u) = (∇pH(q, p), C̃(q, p, u)), η(q̃, p, u) = −∇pH(q, p) + fH(q, p, u), q̃0 = (q0, 0).

2.6. The adjoint systems

The adjoint system provides necessary optimality conditions for a given optimal control problem. In the
continuous case the adjoint system is derived via the Pontryagin maximum principle. The KKT equations
provide the adjoint system for the discrete optimal control problem. In [28], a transformed adjoint system
is derived which uses standard Runge-Kutta discretizations. Also, order conditions on the coefficients of the
adjoint scheme are identified up to order 4. In [9], these are extended up to order 7.

By using the same strategy as Hager in [28], we here show that DMOC leads to a discretization of the same
order for the adjoint system as for the state system. Therefore no additional order conditions on the coefficients
are necessary. In the following we ignore path and control constraints and restrict ourselves to the case of
unconstrained optimal control problems.
Continuous setting. We consider a Hamiltonian optimal control problem in Mayer form without final con-
straint, path and control constraints, i.e.

Problem 2.12.
min
q,p,u

Φ(q(T), p(T)) (2.27)

subject to q̇ = ν(q, p), ṗ = η(q, p, u), (q(0), p(0)) = (q0, p0), with q, p ∈ W1,∞([0,T],Rn), u ∈ L∞([0,T],Rm),
ν(q, p) = ∇pH(q, p), η(q, p, u) = −∇qH(q, p) + fH(q, p, u). We also write x = (q, p), x0 = (q0, p0) and f̃(x, u) =
(ν(q, p), η(q, p, u)), such that the problem reads as ẋ = f̃(x, u), x(0) = x0.

Along the lines of [28], we now formulate the assumptions that are employed in the analysis of DMOC
discretizations of Problem 2.12. First, a smoothness assumptions is required to ensure regularity of the solution
and the problem functions. Second, we enforce a growth condition that allows for having a unique solution for
the control function of the optimal control problem.

Assumption 2.13 (smoothness). For some integer κ ≥ 2, Problem 2.12 has a local solution (x∗, u∗) which lies
in Wκ,∞ × Wκ−1,∞. There exists an open set Ω ⊂ R

2n × R
m and ρ > 0 such that8 Bρ(x∗(t), u∗(t)) ⊂ Ω for

every t ∈ [0,T]. The first κ derivatives of ν and η are Lipschitz continuous in Ω, and the first κ derivatives
of Φ are Lipschitz continuous in Bρ(x∗(T)).

First order optimality conditions. Under Assumption 2.13 there exists an associated Lagrange multiplier
ψ∗ = (ψq,∗, ψp,∗) ∈ Wκ,∞ for which the following form of the first-order optimality conditions derived via the
Pontryagin maximum principle is satisfied at (x∗, ψ∗, u∗):

q̇ = ν(q, p), q(0) = q0, (2.28a)

ṗ = η(q, p, u), p(0) = p0, (2.28b)

ψ̇q = −∇qH (q, p, ψq, ψp, u) , ψq(T) = ∇qΦ(q(T), p(T)) (2.28c)

ψ̇p = −∇pH (q, p, ψq, ψp, u) , ψp(T) = ∇pΦ (q(T), p(T)) (2.28d)

∇uH (q(t), p(t), ψq(t), ψp(t), u(t)) = 0 for all t ∈ [0,T], (2.28e)

8Bρ(z) is the closed ball centered at z with radius ρ.
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with the Hamiltonian H defined by H(q, p, ψq, ψp, u) = ψqν(q, p) + ψp. We also write H(x, ψ, u) := ψf̃(x, u)
such that (2.28c) and (2.28d) read as ψ̇ = −∇xH(x, ψ, u) with ψ(T) = ∇xΦ(x(T)).
Second order optimality conditions. In order to formulate the second-order sufficient optimality conditions
we define the following matrices (cf. [28]):

A(t) = ∇xf̃(x∗(t), u∗(t)), B(t) = ∇uf̃(x∗(t), u∗(t)), V (t) = ∇2Φ(x∗(T)),
P (t) = ∇xxH(x∗(t), ψ∗(t), u∗(t)), R(t) = ∇uuH(x∗(t), ψ∗(t), u∗(t)), S(t) = ∇xuH(x∗(t), ψ∗(t), u∗(t)).

Let B be the quadratic form B(x, u) = 1
2

(
x(T)TV x(T) + 〈x, Px〉 + 〈u,Ru〉+ 2〈x, Su〉

)
, where 〈·, ·〉 denotes the

usual L2 inner product over the time interval [0,T].

Assumption 2.14 (coercivity). There exists a constant α > 0 such that B(x, u) ≥ α‖u‖2
L2

for all (x, u) ∈ M,
where M =

{
(x, u) ∈ H1 × L2 | x(0) = 0 and ẋ = Ax +Bu for a.e. t ∈ [0,T]

}
.

Under the assumptions Smoothness and Coercivity, the control uniqueness property holds (cf. [27]): the
Hamiltonian H has a locally unique minimizer u∗ = û(x, ψ) in the control, depending Lipschitz continuously on x
and ψ with û : T ∗Q×R

2n → U . Let φ = (φq, φp) denote the function defined by φq(x, ψ) = −∇qH(x, ψ, û(x, ψ)),
φp(x, ψ) = −∇pH(x, ψ, û(x, ψ)). Additionally, let η(x, ψ) = η(x, u∗). By substituting u∗ = û(x, ψ) into (2.28)
one obtains a two-point boundary-value problem with

ψ̇q = φq (q, p, ψq, ψp) , ψ̇p = φp (q, p, ψq, ψp) . (2.29)

Note that the functions φq and φp are defined only implicitly. These can be solved for during simulation.
Discrete setting. It was shown in Section 2.4 that the discrete Lagrangian control problem is equivalent to
problem (2.22) (resp. (2.26)). Using some transformation and change of variables (see [28,71]), by reversing the
order of time and applying the control uniqueness property, we obtain the following version of the first-order
necessary optimality conditions associated with (2.22) (the Karush-Kuhn-Tucker conditions):

qk+1 = qk + h
s∑

i=1

biν (Qki, Pki) , q0 = q0, (2.30a)

pk+1 = pk + h

s∑
i=1

biη (Qki, Pki,Ψ
q
ki,Ψ

p
ki) , p0 = p0, (2.30b)

Qki = qk + h

s∑
j=1

aq
ijν (Qkj , Pkj) , Pki = pk + h

s∑
j=1

ap
ijη
(
Qkj , Pkj ,Ψ

q
kj ,Ψ

p
kj

)
, (2.30c)

ψq
k+1 = ψq

k + h
s∑

i=1

biφ
q (Qki, Pki,Ψ

q
ki,Ψ

p
ki) , ψq

N = ∇qΦ (qN , pN) , (2.30d)

ψp
k+1 = ψp

k + h

s∑
i=1

biφ
p (Qki, Pki,Ψ

q
ki,Ψ

p
ki) , ψp

N = ∇pΦ (qN , pN) , (2.30e)

Ψq
ki = ψq

k + h

s∑
j=1

āq
ijφ

q
(
Qkj , Pkj ,Ψ

q
kj ,Ψ

p
kj

)
, Ψp

ki = ψp
k + h

s∑
j=1

āp
ijφ

p
(
Qkj , Pkj ,Ψ

q
kj ,Ψ

p
kj

)
, (2.30f)

āq
ij =

bibj − bja
q
ji

bi
, āp

ij =
bibj − bja

p
ji

bi
· (2.30g)

Assuming h small enough and xk = (qk, pk) near x∗(tk) = (q∗(tk), p∗(tk)) the intermediate states Qki and
Pki and costates Ψq

ki and Ψp
ki are uniquely determined since û(x, ψ) depends Lipschitz continuously on x near

x∗(t) and ψ near ψ∗(t) for any t ∈ [0,T]. This follows from smoothness and the implicit function theorem
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as for standard Runge-Kutta discretization as stated in [28] (see for example [23]). Thus, there exists a locally
unique solution (Qki, Pki,Ψ

q
ki,Ψ

p
ki), 1 ≤ i ≤ s of (2.30d)–(2.30f).

The scheme (2.30) can be viewed as a discretization of the two-point boundary-value problem (2.28), (2.29).
To ensure a desired order of approximation for this two-point boundary-value problem, [28] derives order
conditions on the coefficients of the Runge-Kutta scheme via Taylor expansions. In our case, however, we more
easily obtain the following result concerning the order of consistency.

Theorem 2.15 (order of consistency). If the symplectic partitioned Runge-Kutta discretization of the state
system is of order κ and bi > 0 for each i, then the scheme for the adjoint system is again a symplectic
partitioned Runge-Kutta scheme of the same order (in particular, both schemes are the same).

Proof. Starting with a symplectic partitioned Runge-Kutta discretization for the state system (2.27), the dis-
crete necessary optimality conditions are given as the adjoint system (2.30d)–(2.30g). This system is again
a partitioned Runge-Kutta scheme for the adjoint equations with coefficients bi, ā

q
ij , ā

p
ij . Substituting the

symplecticity condition ap
ij =

bibj−bjaq
ji

bi
into equation (2.30g), the coefficients are determined as āq

ij = ap
ij , and

āp
ij = aq

ij . Since the coefficients of the Runge-Kutta scheme of the adjoint system for (ψp, ψq) are the same as
the coefficients of the Runge-Kutta scheme of the state system for (q, p) the adjoint scheme is of same order. �

With Theorems 1.16 and 2.8 one obtains the following:

Lemma 2.16. Let a Lagrangian optimal control problem with regular Lagrangian L and Lagrangian control
force fL be given. If the discrete Lagrangian Ld (2.20) and the discrete control force f±

d (2.21) with bi > 0 for
each i are both of order κ, then the corresponding adjoint scheme is also of order κ.

2.7. Convergence

The purpose of this section is to establish the convergence of solutions of the discrete optimal control prob-
lem (2.10) to a solution of the Lagrangian optimal control problem (2.3) as the step size h→ 0. As in Section 2.6,
we restrict ourselves to the case without path and control constraints and without final point constraint. Our
convergence statement is a direct application of the one in [21] (cf. also [28,71]). We need the following abstract
result:

Theorem 2.17 ([29]). Let X be a Banach space and let Y be a linear normed space with the norm in both
spaces denoted by ‖ · ‖. Let F : X �→ 2Y be a set-valued map, let L : X �→ Y be a bounded, linear operator, and
let T : X �→ Y with T continuously Frechét differentiable in Br(w∗) for some w∗ ∈ X and r > 0. Suppose that
the following conditions hold for some δ ∈ Y and scalars ε, λ and σ > 0:

(P1) T (w∗) + δ ∈ F(w∗);
(P2) ‖DT (w) − L‖ ≤ ε for all w ∈ Br(w∗);
(P3) the map (F −L)−1 is single-valued and Lipschitz continuous in Bσ(π), π = (T −L)(w∗) with Lipschitz

constant λ.
If ελ < 1, εr ≤ σ, and ‖δ‖ ≤ (1 − λε)r/λ, then there exists a unique w ∈ Br(w∗) such that T (w) ∈ F(w).
Moreover, we have the estimate

‖w − w∗‖ ≤ λ

1 − λε
‖δ‖. (2.31)

Consistency corresponds to assumption (P1) and the bounds on the norm of δ, stability corresponds to
assumption (P3) and the bound on the Lipschitz constant λ for the linearization, and convergence is stated
in (2.31). The following convergence result is formulated in terms of the averaged modulus of smoothness of
the optimal control. If J ⊂ R is an interval and v : J → R

n, let ω(v, J ; t, h) denote the modulus of continuity:
ω(v, J ; t, h) = sup{|v(s1)− v(s2)| : s1, s2 ∈ [t− h/2, t+ h/2]∩ J}. The averaged modulus of smoothness τ of v
over [0,T] is the integral of the modulus of continuity: τ(v;h) =

∫ T

0 ω(v, [0,T]; t, h) dt. It is shown in [79] that
limh→0 τ(v;h) = 0 if and only if v is Riemann integrable, and τ(v;h) ≤ ch with constant c if v has bounded
variation.
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Theorem 2.18 (convergence). Let (x∗, u∗) be a solution of the Lagrangian optimal control problem (2.3a)–
(2.3b). If smoothness and coercivity hold, the discrete Lagrangian Ld (2.20) and the discrete control force f±

d

(2.21) are of order κ with bi > 0 for each i, then for all sufficiently small h there exists a strict local mini-
mizer (xh, uh) of the discrete Lagrangian optimal control problem (2.10) and an associated adjoint variable ψh

satisfying the first-order necessary optimality conditions such that

max
0≤k≤N

∣∣xh
k − x∗(tk)

∣∣+ ∣∣ψh
k − ψ∗(tk)

∣∣+ ∣∣u(xh
k , ψ

h
k ) − u∗(tk)

∣∣ ≤ chκ−1
(
h+ τ

(
∂κ−1

t u∗;h
))
, (2.32)

where u(xh
k , ψ

h
k ) is a local minimizer of the Hamiltonian H corresponding to x = xk and ψ = ψk.

Proof. With (1.16) and by Theorem 2.8 we know that a discrete Lagrangian and discrete forces both of or-
der κ lead to a symplectic partitioned Runge-Kutta discretization of order κ for the state system. Because of
smoothness and coercivity we can build up a discrete adjoint scheme with eliminated control that approximates
the continuous adjoint scheme with order κ (see Lem. 2.16). This leads in Hager’s terminology to a Runge-
Kutta scheme of order κ for optimal control, and therefore Hager’s convergence result for standard Runge-Kutta
schemes in [28], Theorem 2.1, is directly applicable. �
Remark 2.19. The estimate for the error in the discrete control in (2.32) is expressed in terms of û(xh

k , ψ
h
k )

not uk. This is due to the fact, that we derive the estimate via the transformed adjoint system with removed
control due to the control uniqueness property. In [21] the estimate is proved in terms of uk for Runge-Kutta
discretization of second order.

Remark 2.20. Theorem 2.18 can be extended to optimal control problems with constraints on the control
function u(t) as it was done in [28] for Runge-Kutta discretizations of order 2.

3. Implementation and applications

3.1. Implementation

As a balance between accuracy and efficiency we employ the midpoint rule for approximating the relevant
integrals for the example computations in the following section, that is we set

Cd (qk, qk+1, uk) = hC

(
qk+1 + qk

2
,
qk+1 − qk

h
, uk+1/2

)
, Ld (qk, qk+1) = hL

(
qk+1 + qk

2
,
qk+1 − qk

h

)
,

∫ (k+1)h

kh

fL(q(t), q̇(t), u(t)) · δq(t) dt ≈ hfL

(
qk+1 + qk

2
,
qk+1 − qk

h
, uk+1/2

)
· δqk+1 + δqk

2
, k = 0, . . . , N − 1.

Here, f−
k = f+

k = h
2 fL

(
qk+1+qk

2 , qk+1−qk

h , uk+1/2

)
are used as the left and right discrete forces with qk = q(tk)

and uk+1/2 = u
(

tk+tk+1
2

)
.

SQP method. We solve the resulting finite dimensional constrained optimization problem by a standard SQP
method as implemented for example in the routine fmincon of MATLAB. For more complex problems we use
the routine nag opt nlp sparse of the NAG library9. Since SQP is a local method, different initial guesses can
lead to different solutions. This has been observed in almost all our example computations.
Automatic differentiation. The SQP method makes use of the first and second derivatives of the constraints
and the objective function. In the case where no derivatives are provided, the code approximates those by finite
differences. This approximation is time-consuming and cancellation errors lead to bad convergence behavior. In
order to avoid these drawbacks we make use of the concept of Automatic Differentiation (AD) (see [26,77,87]),
a method to numerically evaluate the derivative of a function specified by a computer program. In our imple-
mentation we used the package ADOL-C (Automatic Differentiation by OverLoading in C++ [84]).

9www.nag.com.
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3.2. Applications

In this section, we numerically compare DMOC to a collocation method by means of two problems: a low
thrust orbital transfer and the optimal control of a two-link manipulator. For this comparison, we apply a
collocation method of order 2 to two different models: the Hamiltonian system with coordinates (q, p) as well
as the system formulated on tangent bundle with coordinates (q, q̇) = (q, v).

3.2.1. Low thrust orbital transfer

Model. Consider a satellite with mass m which moves in the gravitational field of the Earth (mass M). The
satellite is to be transferred from one circular orbit to one in the same plane with a larger radius, while the
number of revolutions around the Earth during the transfer process is fixed. In 2d-polar coordinates q = (r, ϕ),
the Lagrangian of the system has the form

L(q, q̇) =
1
2
m
(
ṙ2 + r2ϕ̇2

)
+ γ

Mm

r
,

where γ denotes the gravitational constant. Assume that the propulsion system continuously exhibits a force u
only in the direction of circular motion (i.e. orthogonal to the vector r), such that the corresponding Lagrangian
control force is given by fL = (0, r u)T .

Boundary conditions. Assume further that the satellite initially moves on a circular orbit of radius r0. Let
(r(0), ϕ(0)) = (r0, 0) be its position at t = 0, then its initial velocity is given by ṙ(0) = 0 and ϕ̇(0) =

√
γM/(r0)3.

Using its thruster, the satellite is required to reach the point (rT, 0) at time T = d
√

4π2

8γM (r0 + rT)3 and, without

any further control input, to continue to move on the circle with radius rT. Here, d is a prescribed number
of revolutions around the Earth. Thus, the boundary values at t = T are given by (r(T), ϕ(T)) = (rT, 0) and
(ṙ(T), ϕ̇(T)) = (0,

√
γM/(rT)3).

Objective functional. During this transfer, our goal is to minimize the control effort, correspondingly the
objective functional is given by

J(u) =
∫ T

0

u(t)2 dt.

Results. We compute the transfer from an orbit of radius r0 = 30 km to one of radius rT = 330 km around the
Earth. The optimal control for a transfer within one revolution (d = 1) around the Earth is shown in Figure 3a.
First, we investigate how well the balance between the change in angular momentum and the amount of the
control force is preserved. Due to the invariance of the Lagrangian under the rotation ϕ, the angular momentum
of the satellite is preserved in the absence of external forces (as stated in Noether’s theorem). However, in the
presence of control forces, equation (1.5) gives a relation between the forces and the evolution of the angular
momentum.

In Figure 3b, we compare the amount of the acting force with the change in angular momentum in each time
interval. For the solution resulting from DMOC and the collocation approach applied to the Hamiltonian system,
the change in angular momentum exactly equals the sum of the applied control forces (to numerical accuracy).
The collocation method of second order corresponds to a discretization via the implicit midpoint rule. Thus,
the optimization problem resulting from DMOC is equivalent to that obtained by applying collocation to the
Hamiltonian formulation of the system as shown in Theorem 2.9 and Example 2.10a. Obviously, we obtain equal
solutions by applying both methods. These results are consistent with the well-known conservation properties
of variational integrators, that provide discretizations that preserve the continuous properties as momentum
maps in the discrete setting in a natural way. On the other hand, the collocation method applied to the tangent
space system described in velocities fails to capture the change in angular momentum accurately because the
discrete tangent space formulation destroys the discrete Hamiltonian structure and the resulting (also unforced)
scheme is not momentum-preserving anymore.
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Figure 3. (a) Optimal control trajectory for a satellite transfer. (b) Comparison of the accu-
racy of the computed open loop control for DMOC and a collocation approach: difference of
force and change in angular momentum in dependence on the number of discretization points.
The lines for DMOC and collocation (q, p) lie on top of each other.
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Figure 4. (a) Approximation error for the configurations (solid) and the controls (dashed)
in dependence of the step size for DMOC and a collocation approach. For all three methods
the lines lie almost on top of each other. (b) Comparison of the number of iteration steps
performed by the SQP solver for DMOC and a collocation approach in dependence on the
number of discretization points.

In Figure 4a we show the convergence rates for all three methods. A reference trajectory is computed with
N = 1024 discretizations points and time step h = 2.9 × 10−3. The error in the configuration and control
parameter of the discrete solution with respect to the reference solution is computed as maxk=0,...,N |q(tk) −
qref(tk)| and maxk=0,...,N |u(tk)− uref(tk)|, respectively, where | · | is the Euclidean norm. For all three methods
the convergence rate for the configuration and control trajectory is O(h2), as predicted by Theorem 2.18.

Still, DMOC is advantageous regarding the computational efficiency. Due to its formulation on the dis-
crete configuration space, DMOC only uses 3

5 ≈ 0.6 of the number of variables of the collocation approach
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a) b) c)

Figure 5. (a) Model of a two-link manipulator. (b) Optimal configuration trajectories.
(c) Optimal control trajectories.

(cf. Rem. 2.11). Figure 4b shows the number of all iterations that the SQP solver performs in order to solve the
quadratic subproblems (minor iterations). We observe that for DMOC the SQP solver needs about 1.7 times
less iterations in comparison to collocation. This is in exact agreement with the reduced number of variables.

3.2.2. Two-link manipulator

As a second numerical example we consider the optimal control of a two-link manipulator. Again, we compare
DMOC to a collocation method of the same order.
Model. The two-link manipulator (see Fig. 5a) consists of two coupled planar rigid bodies with mass mi,
length li and moment of inertia Ji, i = 1, 2, respectively. For i ∈ 1, 2, we let θi denote the orientation of the
ith link measured counterclockwise from the positive horizontal axis. If we assume one end of the first link to
be fixed in an inertial reference frame, the configuration of the system is specified by q = (θ1, θ2).

The Lagrangian is given via the kinetic and potential energy

K(q, q̇) =
1
8

(m1 + 4m2) l21θ̇
2
1 +

1
8
m2l

2
2 θ̇

2
2 +

1
2
m2l1l2 cos (θ1 − θ2)θ̇1θ̇2 +

1
2
J1θ̇

2
1 +

1
2
J2θ̇

2
2

and V (q) = 1
2m1gl1 sin θ1 +m2gl1 sin θ1 + 1

2m2gl2θ2, with the gravitational acceleration g. Control torques τ1, τ2
are applied at the base of the first link and at the joint between the two links. This leads to the Lagrangian
control force fL(τ1, τ2) = (τ1 − τ2, τ2)

T .
Boundary conditions. The two-link manipulator is to be steered from the stable equilibrium q0 = (−π

2 ,−
π
2 )

with zero angular velocity q̇0 = (0, 0) to the unstable equilibrium point qT = (π
2 ,

π
2 ) with velocity q̇T = (0, 0).

Objective functional. Fixing the final time T = 1, we would like to minimize the control effort

J (τ1, τ2) =
∫ T

0

1
2
(
τ2
1 (t) + τ2

2 (t)
)

dt.

Results. The optimal configuration and control trajectories are shown in Figures 5b and 5c, respectively. In
Figure 6 we show (a) the resulting cost and (b) the difference of the amount of force (including the control and
the gravitational force) and the change in angular momentum in dependence on the number of discretization
points for all three methods. As expected, we obtain (numerically) identical solutions for DMOC and the
equivalent collocation method for the Hamiltonian formulation. The midpoint rule applied to the tangent
space formulation performs equally well with respect to the objective value evolution. However, as in the
previous example it does not reflect the momentum-force consistency as good as the other methods as shown
in Figure 6. In Figure 7a the convergence rates are depicted. Here, a reference trajectory has been computed
with N = 512 discretizations points and time step h = 1.9 × 10−3. For all three methods the convergence
rate for the configuration and control trajectory is O(h2), as expected for a scheme of second order accuracy.
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Figure 6. Comparison of the accuracy of the computed open loop control for DMOC and
a collocation approach: (a) approximated cost; (b) difference of force and change in angular
momentum in dependence on the number of discretization points. The lines for DMOC and
collocation (q, p) lie on top of each other.
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Figure 7. (a) Comparison of the convergence rates for the configurations (solid) and controls
(dashed) in dependence of the time step h for DMOC and a collocation approach. The lines for
DMOC and collocation (q, p) lie on top of each other. (b) Comparison of the number of iteration
steps performed by the SQP solver for DMOC and a collocation approach in dependence on
the number of discretization points.

In Figure 7b the number of minor iterations that the SQP solver performs to solve the quadratic subproblems
is shown. Similar to what we have seen in the orbital transfer, we observe that the SQP solver needs about
1.5 times less iterations when using DMOC rather than a collocation approach. This factor reflects the fact,
that DMOC uses only 2

3 ≈ 0.67 of the number of variables in comparison to the collocation approach.

4. Conclusions and future directions

In this paper we developed a fully discrete formulation of the optimal control of mechanical systems. Based
on discrete variational principles, the discrete optimal control problem yields a strategy, denoted by DMOC,
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for the efficient solution of these kinds of problems. The benefits of using DMOC are twofold: On the one hand,
in the presence of a symmetry group in the continuous dynamical system, it is known that the momentum map
changes in a definite way. The use of discrete mechanics allows one to find an exact counterpart to this on the
discrete level. In this paper, this behavior was shown numerically for specific examples. On the other hand, due
to the fact that DMOC is implemented on the configuration level rather than on the configuration-momentum
or configuration-velocity level, one gets significant computational savings for the number of iterations steps the
SQP solver needs to solve the optimization problem. Again, this was demonstrated numerically in examples.

Although the developed method works very successfully in many examples considered in this paper and
others (see [35–37,57,71]), there are still some open challenges that will be investigated in future work.

Global minima. One challenge is the issue of local versus global minima. The use of an SQP solver for solving
the resulting optimization problem restricts one to local minima that are dependent on the initial guess. One
approach to overcome this issue is the use of DMOC primitives [25,45]. The authors create a roadmap of feasible
trajectories given by a graph where the edges represent small pre-computed DMOC segments referred to as
DMOC primitives. A feasible solution of the optimal control problem corresponds to a specific concatenation of
the DMOC primitives respecting the dynamics. The global optimal control can be approximated by determining
the optimal path in the graph with a given objective function with a global search using techniques from dynamic
programming. Initial demonstrations of this idea show that it can be carried out in real time. This, together
with the fact that real dynamics is included via DMOC primitives are the significant advantages of this approach.

Adaptive time-stepping. For many applications, an adaptive time-stepping strategy is essential. For example,
for problems in space mission design, the planned trajectories require a finer time-stepping nearby planets due
to the strong influence of gravity, while for a transfer in nearly free space only few discretization points are
necessary to accurately reflect the dynamics of the system. Here, different strategies such as error control
based on the discretization grid under consideration and variational approaches could be investigated. For the
variational approach a constraint is included to the Lagrange-d’Alembert principle that ensures time step control
directly at the level of the discrete action [44]. According to different adaption schemes different constraints
can be included such as adaption to acceleration or the strength of control forces.

Convergence involving path constraints. A proof of convergence involving path constraints becomes chal-
lenging due to smoothness issues: changes in the active set result into different DAE system which may lead
to an order reduction of accuracy and convergence. Only few work has been done and mostly for specific cases
(see e.g. [13,20]) Active set changes are important to investigate and will be subject of future investigations.

Miscellaneous. The framework could be extended to the optimal control of mechanical systems with stochastic
influence or contact problems, respectively making use of the theory of stochastic [10] and nonsmooth variational
integrators [22], respectively. Due to the variational formulation of DMOC, an extension towards the optimal
control of partial differential equations for the treatment of fluid and continuum mechanics might be interesting
as well (see [55,63,65] for basic extensions of variational integrators to the context of PDEs).
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