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Abstract

This thesis is concerned with methods for option pricing that we investigate both the-
oretically and numerically. The first main part interprets option prices as solutions to
partial integro differential equations (PIDEs). Focusing on exponential Lévy models, we
implement a numerical tool for solving PIDEs using a Galerkin finite element approach
that is flexible in the driving asset process. Many numerical examples provide evidence
for the numerical feasibility of the method. Furthermore we establish a stability and con-
vergence analysis for PIDEs with time-inhomogeneous operators of Gårding type. The
second part of the thesis applies Chebyshev polynomial interpolation to option pricing
by interpreting option prices as functions of option and model parameters. A numer-
ical implementation of the pricing interpolation technique illustrates the method and
emphasizes the gain in efficiency. The third part combines the empirical interpolation
algorithm of Barrault et al. (2004) with Fourier based option pricing by interpolating
associated Fourier integrands. Theoretical findings are numerically validated. Further
numerical studies highlight the appealing features of the method, especially in higher
dimensional parameter spaces. Additionally, the recursive nature of the interpolation
operator is resolved which renders the method numerically accessible for the interpola-
tion of multivariate Fourier integrands, as well.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Methoden zur Optionspreisbewertung in the-
oretischer und numerischer Hinsicht. Der erste Teil der Arbeit betrachtet Optionspreise
als Lösungen von partiellen Integro-Differentialgleichungen (PIDEs). Mit besonderer
Berücksichtigung von exponentiellen Lévy-Modellen wird ein numerisches Tool zur Lö-
sung solcher PIDEs implementiert, das sich durch eine große Flexibilität bezüglich des
treibenden Lévy-Prozesses auszeichnet. Viele numerische Beispiele unterstreichen die
numerische Umsetzbarkeit der Herangehensweise. Zudem wird eine Stabilitäts- und Kon-
vergenzanalyse für PIDEs mit zeitinhomogenem Operator, der eine Gårding-Ungleichung
erfüllt, hergeleitet. Der zweite Teil der Arbeit verwendet die Chebyshev’sche Interpo-
lationsmethode zur Optionspreisbewertung. Optionspreise werden dazu als Funktio-
nen von Options- und Modellparametern behandelt. Eine numerische Implementierung
der Methode unterstreicht den resultierenden Effizienzgewinn. Der dritte Teil kom-
biniert schließlich die Empirische Interpolation von Barrault et al. (2004) mit Fourier-
Techniken zur Optionspreisbestimmung durch die Interpolation der zugehörigen Fourier-
Integranden. Theoretische Ergebnisse der Untersuchung werden numerisch validiert.
Weitere numerische Studien heben die attraktiven Eigenschaften der Methode hervor,
insbesondere im Hinblick auf Parameterräume höherer Dimension. Zudem wird der
rekursive Aufbau des Interpolationsoperators aufgelöst und die Interpolation so auch
der Anwendung auf multivariate Fourier-Integranden numerisch zugänglich gemacht.
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1 Introduction

Option pricing is a key task in mathematical finance. The statement itself seems clear
and unambiguous at first, yet it offers a variety of interpretations with equally manifold
consequences to mathematical finance.

Speculation and risk appetite interpret options as means to benefit from market behav-
ior. Anticipated developments of the economy like ups and downs of exchange rates or
cyclically recurring events with economic impact like central bank chair meetings provide
an opportunity for financial profit from occasions that might otherwise be insignificant
to individual interest. In this interpretation, options suddenly give financial value to
originally unrelated events and option pricing becomes a sophisticated gambling instru-
ment.
A different interpretation emphasizes the contribution of options in enabling other trad-
ing activities. Market participants engaging in mutual trading activities cherish the
ability of options to seal sources of risk that threaten their primary commercial transac-
tions. Here, option pricing enables trade and supports a running economy.
Capturing the market in terms of model assumptions and an associated parametrization
fosters a third interpretation. Equipped with option pricing tools, a parametrized mar-
ket model not only yields prices of financial instruments but also allows a description
of the current state of the real world economy that it portrays. Risks that prevail in
the markets are thus mirrored by the parameter values of the simulating model. In this
perspective, option pricing methods not only map parameter values to option prices but
implicitly provide a link between observed option prices and the current state of the
economy. Option pricing routines then drive the calibration of market models and carry
out the first step for risk measurement and risk assessment purposes.

Each interpretation provokes its own reaction by financial mathematics. Speculation
identifies market behavior that it intends to benefit from and stimulates the development
of mathematical valuation methods for respective sophisticated financial instruments.
Hedging purposes require the capacity to provide options that exhaustively capture all
relevant sources of risk and obtain prices for them. Finally, risk management purposes
demand reliable quantification of risk, a requirement which translates into option pricing
methods that yield precise results and and maintain trustworthy numerical routines.

The actual interpretation thus matters indeed and guides research in different directions.
In this thesis we follow the third interpretation. We adopt the view that a market and the
structure of its movements can be described by model assumptions and associated param-
eters, a view that is emphasized by the expression parametric option pricing or POP in
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1 Introduction

short. The literature on parametric option pricing has largely followed the seminal work
of Carr and Madan (1999) and Raible (2000). It has thus almost exclusively been de-
voted to the development of algorithms based on fast Fourier transforms, see Lee (2004),
Lord, Fang, Bervoets and Oosterlee (2008), Feng and Linetsky (2008), Kudryavtsev and
Levendorskĭi (2009), Boyarchenko and Levendorskĭi (2014). Furthermore, we refer to
Sachs and Schu (2010), Cont, Lantos and Pironneau (2011) and Haasdonk, Salomon and
Wohlmuth (2012) that apply the so-called reduced basis method to parametric option
pricing in finance. Prices of financial products are thus functions which link parameters
describing both the current condition of the market and the characteristics of the product
to the prices of the instrument. As sketched above, this link applies in both directions.
On the basis of a parametrized model, the pricing method of choice yields option prices
which match the observed market valuation whenever the model parametrization matches
the current state of the market. In return, observed option prices in the market serve as
reference points for calibrating the parametric model to market reality. A model aligned
to observed market reality then facilitates risk assessment. Reliable risk quantification,
however, requires reliable pricing tools.

Mathematical finance faces several challenges of theoretical and numerical nature in es-
tablishing that reliable link between market reality and its model equivalent. First,
the theoretical frameworks need to comprise the capabilities for thorough error control.
Proper risk assessment relies on theoretical error bounds and convergence results to
justify its claims. The requirements to option pricing approaches thus go beyond the
deployment of pure concepts but rather additionally expect estimates on the errors in-
evitably occurring when those concepts are applied practically. Second, the approaches
that prevail in theory must maintain numerical feasibility. Risk measurement techniques
operate on actual data retrieved from the market and are implemented numerically. To-
day’s numerical limitations thus restrict the set of solution approaches to the option
pricing problem even though it might be unlimited in theory.

Theoretical concepts and numerical implementations in mathematical finance have come
under additional distress in recent years. With the crisis of 2007–2009 hitting the global
economy, neglected sources of risk in the markets had become visible. As a consequence,
models have grown considerably in complexity in order to better reflect the observed
market reality. Considering a few examples we mention stochastic volatility and Lévy
models as well as models based on further classes of stochastic processes. See for instance
Heston (1993), Eberlein, Keller and Prause (1998), Duffie, Filipović and Schachermayer
(2003), Cuchiero, Keller-Ressel and Teichmann (2015) for asset models and see Eberlein
and Özkan (2005), Keller-Ressel, Papapantoleon and Teichmann (2013), Filipović, Lars-
son and Trolle (2014) for fixed income models. Given these developments, the model
of Black and Scholes (1973) and Merton (1973) that had originally initiated mathemat-
ical finance today comes across like an anecdotal special case in that expanded model
universe.

Increases in model complexity naturally resonate in the respective numerical implementa-
tions. While the Black&Scholes model allowed for (semi-)explicit formulas for European
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1 Introduction

plain vanilla options, a whole new generation of pricing tools has been developed to
numerically process the advancements on the theoretical side. These pricing tools fall
into three distinct main families. A first family contains Monte-Carlo techniques. Here,
market movements are simulated path-wise and option prices are derived by taking av-
erages over the simulated option payoffs for each path. The idea of this approach is
very appealing given the wide applicability of the method concerning both models and
options. At the same time, the method suffers from comparably low accuracy and slow
runtimes. A second family consists in the collection of Fourier techniques. Option pric-
ing based on the Fourier transform has been intensively studied and applied in recent
years. The approach that had been pioneered by Stein and Stein (1991) and Heston
(1993) for Brownian models unveiled a great flexibility in terms of capturing a large
class of models and option types. Fourier pricing of European options in Lévy and the
large class of affine jump models has first been developed by Carr and Madan (1999),
Raible (2000) and Duffie et al. (2000). There is a large and further growing literature
on Fourier methods to price path dependent options and we refer to Boyarchenko and
Levendorskĭi (2002b), Feng and Linetsky (2008), Kudryavtsev and Levendorskĭi (2009),
Zhylyevskyy (2010), Fang and Oosterlee (2011), Levendorskĭi and Xie (2012), Feng and
Lin (2013) and Zeng and Kwok (2014) in this regard. Additionally consider Eberlein,
Glau and Papapantoleon (2010) for a general framework and analysis. For plain vanilla
options, Fourier integration combines the advantages of theoretically and numerically
proven efficiency with implementational ease. Yet the restriction to plain vanilla options
excludes many products of American type that are in general more liquidly traded in
the market and would thus be the preferred choice for example for the purpose of model
calibration. Finally, a third family comprehends the partial integro differential equations
(PIDE) approach. Here, option prices are interpreted as solutions to partial differential
equations additionally containing an integral term, see Hilber et al. (2013), Hilber et al.
(2009), Dang et al. (2016), Eberlein and Glau (2014) and others for an overview over
PIDE theory as such. Numerical solutions to PIDEs based on finite difference schemes
are proposed for example in Cont and Voltchkova (2005), Fakharany et al. (2016), Co-
clite et al. (2016), Chen and Wang (2015) and Company et al. (2013). For solution
schemes relying on the finite element method we refer to Matache et al. (2004), Matache
et al. (2005b), Matache et al. (2005a) and Winter (2009). Lin and Yang (2012) and
Florescu et al. (2014) describe numerical solutions to PIDEs based on other schemes.
While the PIDE method provides a great flexibility in terms of both models and options,
the implementation of numerical PIDE solvers is rather sophisticated, indeed.

In summary we observe, that each of the three methods conveys a certain appeal which
in return comes at a certain cost. Fast runtimes are paid by limited flexibility while an
extensive scope of applicability corresponds to numerical expenses. In this thesis we try
to resolve that seeming contradiction. We aim at

• exploiting the flexibility that option pricing techniques offer

• ensuring numerical feasibility of pricing methods especially in terms of runtimes

• developing error control measures wherever possible

13



1 Introduction

We will pursue these goals in a two-step approach. In a first step, we focus on the
flexibility that a special class of partial differential equations offers and study its potential
for option pricing in detail. That class is the family of PIDEs, where the differential
operator is allowed to contain an additional integral term that accounts for the modeling
of jumps in the trajectories of market asset. Jumps are the characteristic feature of
Lévy model theory which can indeed be cast in PIDE terms and which will provide
examples that make the abstract model framework concrete. As we have indicated
earlier, however, the flexibility that PIDE theory offers to option pricing carries a burden
in numerical terms in turn. Numerical runtimes of PIDE solvers often fall short of the
high expectations and practical needs of the industry. Therefore, in a second step, we
focus on the expectation of fast numerical runtimes and the desire for efficient numerical
schemes expressed by the industry. A first approach to improving numerical runtimes
easily connects to arbitrary pricing methods thus including PIDE solvers, as well. A
second approach that we investigate for fast and efficient option pricing will be taylored to
Fourier pricing in particular. In both steps we balance thorough theoretical investigations
with extensive numerical case studies. Neither theory nor implementation shall seem
neglected throughout this thesis.

Before we are able to present our main results, Chapter 2 briefly surveys basic elements of
the theories that this thesis relies on. Furthermore, it presents a variety of asset models
that will serve as examples throughout the numerical studies done in this manuscript.

In Chapter 3 we consider prices u as solutions to partial integro differential equations

∂tu+Au = f,

u(0) = g,

with a model specific operator A and an initial condition g that depends on the payoff
profile of the option. We address the issue of finding solutions to PIDEs both theoret-
ically and numerically. Introducing the Galerkin method serves both ends. Interpreted
as a theoretical concept it provides a solution framework that is compatible with the
functional analysis behind PIDE theory. Interpreted as an algorithmic guideline it de-
scribes a numerical implementation for a PIDE solver. In the chapter we illustrate this
duality. After a theoretical description of the method we take the Merton model as an
example and implement a pricing tool based on the finite elements method (FEM). In a
third step, we exploit Fourier techniques to resolve the model dependence of that FEM
solver rendering it accessible to a variety of asset models simultaneously. Many numer-
ical studies enrich the topics of the chapter. It closes with a major proof on stability
and convergence for approximate solutions of time dependent PIDEs. The contents of
this chapter appear in Gaß and Glau (2016) and parts of the implementation support
the studies in Burkovska et al. (2016).

In the subsequent Chapter 4, we shift our focus to improving numerical runtimes of
option pricing methods in general. To this end we introduce the Chebyshev polynomial
interpolation method for option pricing, a technique using the well understood Cheby-
shev polynomials, see Platte and Trefethen (2008) and Trefethen (2013). The method

14



1 Introduction

interprets an option price as a function of model and option parameters. It demands
option prices at prespecified nodes in the parameter space P and interpolates prices for
arbitrary parameters p ∈ P inbetween,

Pricep ≈ IN (Price(·))(p) =

N1∑
j1=0

. . .

ND∑
jD=0

c(j1,...,jD)T(j1,...,jD)(p), p ∈ P,

wherein c(j1,...,jD) are parameter independent, precomputed coefficients and T(j1,...,jD)

are model independent Chebyshev polynomials. The Chebyshev method thus builds on
arbitrary option pricing tools but reduces their application to providing prices at the
prespecified nodes that the interpolation is built on. Pricing then consists in assembling
a weighted sum with known coefficients and polynomials that are easy to evaluate thus
improving pricing runtimes tremendously. Under certain smoothness conditions on the
underlying price we state an exponential convergence result for the algorithm. The
contents of the chapter are also presented in Gaß et al. (2016).

Chapter 5 pursues a similar objective. Tayloring the capacity of the empirical magic point
interpolation method by Barrault et al. (2004) and the results of Maday et al. (2009)
to Fourier pricing, we achieve a significant gain in efficiency and numerical runtimes
in option pricing. The resulting magic point integration method interpolates Fourier
integrands by achieving their separation into parts that depend on the parameter p ∈ P
and parts that depend on the integration variable alone,

Pricep ≈ IM (h)(p) :=

M∑
m=1

hp(z
∗
m)

∫
Ω
θMm (z) dz, p ∈ P.

The sum in the interpolator IM thus consists of parameter independent integrals that are
computed beforehand and parameter dependent coefficients that are cheap to evaluate.
Pricing has again turned into the evaluation of a sum. By exploiting the structure of
the model specific Fourier integrands, the algorithm detects those local nodes in the
parameter space P that explain the structure of all parametrized Fourier integrands at
a given precision, globally. Enjoying this flexibility renders the algorithm less affected
by the curse of dimensionality that other methods suffer from. We state theoretical
conditions for exponential convergence of the algorithm. Numerous case studies and
pricing examples validate and illustrate our theoretical claims empirically. In the context
of pricing, the method is presented in Gaß et al. (2015), as well. The general applicability
for parametric integration is furthermore demonstrated in Gaß and Glau (2015).

In the appendix we gather supplementary material for the main chapters sketched above.
An integration technique for oscillating integrands that we encounter in Chapter 3 is
presented in Appendix A. Properties of the empirical interpolation method being the
key ingredient for the pricing algorithm of Chapter 5 are stated in Appendix B. Finally,
a proof of Gronwall’s lemma in a version crucial to our convergence result at the end of
Chapter 3 is provided in Appendix C.
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1 Introduction

Research aims at pushing boundaries of knowledge further into the unknown. Yet any
research must acknowledge its own limitations. The discipline it is located in, the topics
within this discipline that it devotes itself to and the process in itself eventually determine
that special spot that individual research occupies. As naturally as that spot emerges
and as inevitable as the process leading to it seems, research should be prepared to
answer the question of which purpose it serves. Research questions arise from various
observations and occasions and hence the answers to that question might be as diverse
as individual research is.
In this thesis we investigate aspects of parametric option pricing. We pursue thorough
theoretical investigations, propose numerical implementations that meet practical needs
and embed our results into thorough error control regimes. In this regard the diffuse
noise from a collapsing global economy in 2007 that echoes until today was the question
we encountered and we offer our results as parts of an answer.
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1 Introduction

We briefly summarize the main contributions of this thesis.

Chapter 3 First, we introduce a method for solving pricing PIDEs using a finite ele-
ment approach that is highly flexible in the model choice and numerically
feasible. We implement the method using mollified hat functions and
splines as basis functions and empirically confirm theoretically prescribed
convergence rates. In the second part of the chapter we generalize sta-
bility and convergence results for approximate solutions to PIDEs of von
Petersdorff and Schwab (2003) to time-dependent bilinear forms of Gård-
ing type.

These contributions are separately presented in Gaß and Glau (2016) and
support the studies in Burkovska, Gaß, Glau, Mahlstedt, Mair, Schoutens
and Wohlmuth (2016). Parts of this chapter also appear in Gaß and Glau
(2014).

Chapter 4 We apply the Chebyshev interpolation method of Trefethen (2013) to
option pricing. Interpreting the characteristic function of a Lévy model as
a function of the model parameters, we derive areas in the parameter space
that these functions are analytic on thus providing examples that fulfill
theoretical requirements for exponential convergence of the method. We
perform thorough numerical studies that validate the theoretical claims
of exponential convergence and emphasize the gain in efficiency.

These contributions are separately presented in Gaß, Glau, Mahlstedt
and Mair (2016).

Chapter 5 We apply the empirical interpolation method of Barrault et al. (2004) to
option pricing. For a variety of Lévy models we derive conditions on the
parameter space that guarantee the existence of a strip of analyticity of
the associated characteristic function. We present a variety of numerical
studies that validate theoretical claims of exponential convergence of the
method and emphasize its suitability for the approximation of option
prices in several free parameters in the one-asset case. In the second part
of the chapter we resolve the recursive nature of the interpolation operator
and thus provide the possibility to apply the method numerically feasibly
for pricing options on several assets, as well.

These contributions are separately presented in Gaß, Glau and Mair (2015)
and Gaß and Glau (2015).
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2 Preliminaries

In this chapter we gather some elementary concepts and results that the main parts of
this thesis rely on. The following sections of this chapter are by no means exhaustive
regarding the topics they present. Yet, they aim at providing a theoretic overview
containing the most important cornerstones necessary for a full understandings of the
main concepts that the following chapters investigate.

2.1 Fourier theory

The first section in this preliminary chapter is devoted to Fourier theory. The Fourier
transform has been extensively studied, see Bracewell (1999) for an introduction. Today,
the transform lies at the heart of many applications in statistics and beyond. Appendix 1
of Kammler (2007) provides an idea of the rich scope of Fourier analysis.

The following definitions set up the Fourier transform framework that we shall use in
this thesis. Since there are different various of Fourier transforms we emphasize that all
Fourier related content of this work traces back to the concept of the Fourier transform
as outlined by the following Definition 2.1.

Definition 2.1 (Fourier transform)
Let f : Rd → R be an integrable real valued function, f ∈ L1(Rd). We define denote by
f̂ or F(f) the Fourier transform of f , defined by

f̂(ξ) = F(f)(ξ) =

∫
Rd
ei〈ξ,x〉f(x) dx, ∀ξ ∈ Rd. (2.1)

In (2.1), the bilinear form 〈·, ·〉 denotes the Euclidian scalar product.

Under certain conditions, an integrable function f can be reconstructed by inverting
the associated Fourier transform. The following lemma provides an inversion theorem
for smooth functions in one dimension, d = 1, that we cite from Stein and Shakarchi
(2003).

Lemma 2.2 (Fourier inversion)
Let f̂ : R→ R be the Fourier transform of a function f ∈ S(R), where

S(R) =
{
f ∈ C∞(R)

∣∣ sup
x∈R
|x|k |f (l)(x)| <∞, for every k, l ≥ 0

}
,
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the so called Schwartz space. Then the relation

f(x) =
1

(2π)d

∫
Rd
e−i〈ξ,x〉f̂(ξ) dξ, ∀x ∈ R (2.2)

holds.

Proof
We refer to the proof of Theorem 1.9 in Stein and Shakarchi (2003). �

When the function f in expression (2.1) is taken to be a probability density function,
the respective integral can be cast as an expected value. In this sense, Fourier analysis
is easily linked to probability theory. Thus, unsurprisingly, Fourier transforms for many
probability density functions have been derived and analyzed. The following lemma gives
the Fourier transform of the normal distribution as an example.

Lemma 2.3 (Fourier transform of the Normal density)
Let fµ,σ be the density of the univariate Normal distribution N (µ, σ) with expected value
µ ∈ R and standard deviation σ > 0,

fµ,σ(x) =
1√

2πσ2

∫
R

exp

(
−(x− µ)2

2σ2

)
dx. (2.3)

The Fourier transform f̂µ,σ = F(fµ,σ) of fµ,σ exists and is given by

f̂µ,σ(ξ) = eiµξe−
1
2
σ2ξ2

(2.4)

for all ξ ∈ R.

Proof
See Theorem 15.12 in Klenke (2008). �

The Fourier transform possesses many convenient properties that we exploit heavily
throughout this theses. The following lemma collects some of these properties.

Lemma 2.4 (Properties of the Fourier transform)
Let y ∈ Rd and a ∈ R\{0} be given and let f, g ∈ L1(Rd). Define fy = f(· − y) and
fa = f(a·). Then, the following equalities hold.

i) The Fourier transform of f shifted by y computes to

f̂y(ξ) = ei〈ξ,y〉f̂(ξ), ∀ξ ∈ Rd.

ii) The Fourier transform of f with its argument scaled by a computes to

f̂a(ξ) =
1

|a|
f̂(ξ/a), ∀ξ ∈ Rd.
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iii) The Fourier transform of a convolution is given by the product of the two individual
Fourier transforms,

(f̂ ∗ g)(ξ) = f̂(ξ)ĝ(ξ), ∀ξ ∈ Rd.

Proof
i)–ii) Elementary calculations.

iii) With f, g ∈ L1(Rd), also f ∗ g ∈ L1(Rd). The Fourier transform of the convo-
lution thus exists. Inserting the definition of both the Fourier transform and the
convolution we derive for ξ ∈ Rd

(̂f ∗ g)(ξ) =

∫
Rd
ei〈ξ,x〉 (f ∗ g) (x) dx

=

∫
Rd
ei〈ξ,x〉

[∫
Rd
f(x− y)g(y) dy

]
dx.

By applying Fubini’s theorem twice and with the substitution z = x− y we have∫
Rd
ei〈ξ,x〉

[∫
Rd
f(x− y)g(y) dy

]
dx =

∫
Rd

∫
Rd
ei〈ξ,x〉f(x− y)g(y) dx dy

=

∫
Rd

∫
Rd
ei〈ξ,z+y〉f(z)g(y) dz dy

=

∫
Rd
ei〈ξ,z〉f(z) dz

∫
Rd
ei〈ξ,y〉g(y) dy

= f̂(ξ)ĝ(ξ),

which proves the claim. �

Remark 2.5 (Dampening)
When a function f : Rd → R is not integrable, f /∈ L1(Rd), its Fourier transform doesn’t
exist. Yet, if there exists η ∈ Rd such that

fη(x) = e〈η,x〉f(x), ∀x ∈ Rd, (2.5)

is in L1(Rd), we can derive the Fourier transform of fη and thus introduce the concept
of a generalized Fourier transform.

Definition 2.6 (Generalized Fourier transform)
Let f : Rd → R and η ∈ Rd such that fη = e〈η,·〉f ∈ L1(Rd). We call

f̂η(ξ) = ê〈η,·〉f(ξ), ∀ξ ∈ Rd (2.6)

the generalized Fourier transform of f . We sometimes write

f̂η = f̂(· − iη). (2.7)

We call η ∈ Rd such that fη ∈ L1(Rd) a dampening constant and the term e〈η,·〉 a
dampening factor of f .
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The following theorem introducing Parseval’s identity will be a crucial cornerstone of
this thesis. It allows computing the integral of a product of functions by integrating
the product of the two respective Fourier transforms, instead. The value of this identity
for practical applications becomes evident, when numerical integration of functions is
concerned which are difficult to evaluate but posses a Fourier transform in closed form
at the same time.

Theorem 2.7 (Parseval’s identity)
Let f, g ∈ L2(Rd). Then we have the identity

〈f, g〉L2(Rd) =

∫
Rd
f(x)g(x) dx =

1

(2π)d

∫
Rd
f̂(ξ)ĝ(ξ) dξ

which is called Parseval’s identity.

Proof
See Equation (10) on page 187 in Rudin (1987). �

Parseval’s identity of Theorem 2.7 draws our attention to integrability properties of
Fourier transformed functions. While a function f might be difficult to evaluate, its
Fourier transform f̂ might be easy to evaluate, but difficult to integrate. The next
remark expands on this issue.

Remark 2.8 (On the relation between smoothness of f and decay of f̂)
There is an interesting relation between the smoothness of a function and the rate of
decay of its Fourier transform. Let f ∈ Cn(R) and f (n) = ∂n

∂xn f ∈ L1(R). Then, the
Fourier transform of f (n) exists. By repeated integration by parts it can be expressed in
terms of f̂ by

f̂ (n)(ξ) =

∫
R
eiξx

∂n

∂xn
f(x) dx

= (−iξ)
∫
R
eiξxf (n−1)(x) dx

= (−iξ)n
∫
R
eiξxf(x) dx

= (−iξ)nf̂(ξ)

(2.8)

for all ξ ∈ R. The Fourier transform of a function in L1(R) is also in L1(R). Conse-
quently, f̂ (n) = (−i ·)n f̂ ∈ L1(R). We conclude that f̂ decays faster to zero than |ξ|n
diverges to infinity for |ξ| → ±∞. In the same manner, decay properties of the Fourier
transform of a function translate into smoothness properties of the function itself.

Relation (2.8) of Remark 2.8 will have a material impact with regards to numerical
implications in Chapter 3.
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2.2 Lévy process theory

We have already briefly touched upon the relation between Fourier analysis and proba-
bility theory in the remarks preceding Lemma 2.3 above. In this section we introduce a
class of distributions, or rather a class of stochastic processes, that can even be charac-
terized in Fourier terms, that is the class of Lévy processes. The majority of asset models
that we consider in this thesis falls into this class. Models contained therein share the
property that the log-asset process is modeled by a Lévy process. We therefore introduce
the fundamental definitions and results of Lévy process theory in the following. We begin
by citing Sato (2007) for the definition of a probability space and a Lévy process.

Definition 2.9 (Lévy process)
We call a d variate stochastic process (Lt)t≥0 on a probability space (Ω,F , P ) a Lévy
process if the following conditions are satisfied.

i) For any choice of n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn, random variables Lt0, Lt1−Lt0,
Lt2 − Lt1 , . . . , Ltn − Ltn−1 are independent (independent increments property)

ii) L0 = 0 a.s.

iii) The distribution of Ls+t − Ls does not depend on s (temporal homogeneity or sta-
tionary increments property)

iv) It is stochastically continuous

v) There is Ω0 ∈ F with P (Ω0) = 1 such that for every ω ∈ Ω0, Lt(ω) is right-
continuous in t ≥ 0 and has left limits in t > 0.

With (Lt)t≥0 being a Lévy process, the random variable Lt for t ≥ 0 belongs to the large
class of infinitely divisible distributions. Such distributions and thus also Lévy processes
can be beautifully characterized via their Fourier transform.

Lemma 2.10 (Fourier transform of a Lévy process)
Let (Lt)t≥0 be a Lévy process on Rd. Let t ≥ 0 arbitrary but fix. The characteristic
function L̂t of the random variable Lt is defined as

L̂t(ξ) = E[ei〈ξ,Lt〉], ∀ξ ∈ Rd, (2.9)

and there exists a cumulant generating function θ such that the characteristic function
of Lt can be represented by

L̂t(ξ) = etθ(iξ), ∀ξ ∈ Rd, (2.10)

with θ given by

θ(iξ) = i〈ξ, b〉 − 1

2
〈ξ, σξ〉+

∫
Rd
ei〈ξ,y〉 − 1− i〈ξ, h(y)〉F (dy), ∀ξ ∈ Rd, (2.11)
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with σ ∈ Rd×d a symmetric, positive semi-definite matrix, a drift term b ∈ Rd and a
Borel Lévy measure F satisfying

F ({0}) = 0,

∫
Rd

min{1, |y|2}F (dy) <∞, (2.12)

and for some cut-off function h : Rd → R that is a bounded measurable function with
compact support and

h(x) = x (2.13)

in an environment of the origin.

Proof
Confer the proof of Theorem 8.1 in Sato (2007). �

Due to its significance to Lévy theory, the triplet (b, σ, F ) characterizing a Lévy process
through its cumulant generating function in (2.11) is given a name by the following
definition.

Definition 2.11 (Characteristic triplet)
Let (Lt)t≥0 be a Lévy process. We call the triplet (b, σ, F ) of Lemma 2.10 the character-
istic triplet of the Lévy process (Lt)t≥0.

Note that the characteristic triplet of a Lévy process depends on the cut-off function h
in (2.11). Given an additional property that not all Lévy processes share, the cut-off
function can be replaced and the cumulant generating function can be rewritten in the
sense of the following remark.

Remark 2.12 (Disregarding the cut-off function)
Let (Lt)t≥0 be a Lévy process with characteristic triplet (b, σ, F ). Identity (2.11) of
Lemma 2.10 states the general form of the cumulant generating function of a Lévy pro-
cess. If the Lévy measure F additionally satisfies∫

|x|≤1
|x|F (dx) <∞ (2.14)

we may use the zero function as cut-off function, h ≡ 0, leaving us with

θ(iξ) = i〈ξ, b̃〉 − 1

2
〈ξ, σξ〉+

∫
Rd

(ei〈ξ,y〉 − 1)F (dy), ∀ξ ∈ Rd, (2.15)

with an appropriately adjusted b̃ ∈ Rd given by

b̃ = b−
∫
Rd
h(y)F (dy) (2.16)

and thus an equivalent characteristic triplet (̃b, σ, F ) with the zero function as cut-off
function, compare Remark 8.4 in Sato (2007).
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We will need to extend the domain of the characteristic function of a Lévy process to
parts of the complex plane. This extension is well-defined under the assumptions of the
following theorem taken from Sato (2007).

Theorem 2.13 (Exponential Moments)
Let (Lt)t≥0 be a Lévy process on Rd with characteristic triplet (b, σ, F ). Let

C =

{
c ∈ Rd |

∫
|x|>1

e〈c,x〉F (dx) <∞

}
. (2.17)

i) The set C is convex and contains the origin.

ii) c ∈ C if and only if E[e〈c,Lt〉] <∞ for some t > 0 or, equivalently, for every t > 0.

iii) If w ∈ Cd is such that <(w) ∈ C, then

Ψ(w) = 〈b, w〉+
1

2
〈w, σw〉+

∫
Rd

(e〈w,y〉 − 1− 〈w, h(y)〉)F (dy) (2.18)

is definable, E[|e〈w,Lt〉|] <∞, and

E[|e〈w,Lt〉|] = etΨ(w). (2.19)

Proof
For a proof confer the proof of Theorem 25.17 in Sato (2007). �

We are now equipped with the quantities needed to introduce the notion of the symbol
of a Lévy process. It will become clear later in the thesis that this concept builds a
bridge from Fourier representations of Lévy processes to the theory of partial (integro-)
differential equations.

Definition 2.14 (Symbol of a Lévy process)
Let (Lt)t≥0 be a Lévy process on Rd with characteristic triplet (b, σ, F ). The symbol
A : Rd → C of the Lévy process (Lt)t≥0 is defined by

A(ξ) = i〈ξ, b〉+
1

2
〈ξ, σξ〉 −

∫
Rn

(exp(−i〈ξ, y〉)− 1 + i〈ξ, h(y)〉)F (dy) (2.20)

for all ξ ∈ Rd.

The symbol A of a Lévy process is a crucial quantity in this thesis. As pointed out in
Glau (2015) one may show that there exists a constant C > 0 such that

|A(ξ)| ≤ C(1 + ‖ξ‖)2, ∀ξ ∈ Rd. (2.21)

The notion of a symbol, however, is not exclusively reserved for Lévy processes. Indeed,
other measurable functions satisfying inequalities in the fashion of (2.21) are called sym-
bols as well and establish a link between the roots of these quantities in Fourier theory to
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the topic of partial (integro-)differential equations. To properly generalize the concept
of symbols, we first need to cite the definitions of the Schwartz space S(Rd) from Eskin
(1981), that we have already encountered in the special case of d = 1 in Lemma 2.2
above.

Definition 2.15 (The Schwartz space S(Rd))
The space S = S(Rd) is defined as the totality of all infinitely differentiable functions
ϕ in the d-dimensional space Rd such that ϕ(x) and all derivatives ∂p

∂xpϕ(x) with multi-
index p = (p1, . . . , pd) of nonnegative integers decrease more rapidly than any negative

power of ‖x‖ as ‖x‖ =
√
x2

1 + · · ·+ x2
d →∞.

Eberlein and Glau (2011) extend the notion of a Schwartz space to the weighted Schwartz
space.

Definition 2.16 (The exponentially weighted Schwartz space Sη(Rd))
For η ∈ Rd let

Sη(Rd) = {u ∈ C∞(Rd,C) | ‖u‖m,η <∞, ∀m ∈ N0} (2.22)

with
‖ϕ‖m,η =

∥∥∥e〈η,·〉ϕ∥∥∥
m
, (2.23)

wherein for every m ∈ N0 the norms ‖·‖m are defined by

‖ϕ‖m = sup
|p|≤m

sup
x∈Rd

(1 + |x|2)m|Dpϕ(x)|. (2.24)

We denote the dual space of Sη(Rd) by S∗η(Rd).

Following Eskin (1981) and Glau (2015), we define the general notion of a symbol A :
Rd → C and connect it with the concept of pseudo-differential operators.

Definition 2.17 (The class S0
α and related pseudodifferential operators)

Let (At∈[0,T ]) be a family of measurable functions A : [0, T ] × Rd → C satisfying with
α ∈ (0, 2] and 0 ≤ β < α

|At(ξ)| ≤ C1(1 + ‖ξ‖2)α/2, ∀t ∈ [0, T ], ξ ∈ Rd,

<(At(ξ)) ≥ C2‖ξ‖α − C3(1 + ‖ξ‖2)β/2, ∀t ∈ [0, T ], ξ ∈ Rd,
(2.25)

for some C1, C2 ∈ R+ and C3 ≥ 0 independent of t ∈ [0, T ]. Each function At is called
a symbol. We denote the set of functions satisfying (2.25) by S0

α. With t ∈ [0, T ], the
operator At defined on S(Rd) by

Atu =
1

(2π)d

∫
Rd
At(ξ)û(ξ)e−i〈·,ξ〉 dξ, ∀u ∈ S(Rd), (2.26)

is called pseudodifferential operator with symbol At.
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Definition 2.18 (Sobolev index α)
Let A be a symbol. Following Glau (2015) we call the parameter α ∈ (0, 2] of (2.25) the
Sobolev index of symbol A or the order of the associated operator A, respectively.

Remark 2.19 (On the symbol and the Fourier transform of a Lévy process)
Let (Lt)t≥0 be a Lévy process with characteristic triplet (b, σ, F ). Considering Lemma 2.10
and Definition 2.14, we note that the associated symbol A satisfies the relation

A(ξ) = i〈ξ, b〉+
1

2
〈ξ, σξ〉 −

∫
Rn

(exp(−i〈ξ, y〉)− 1 + i〈ξ, h(y)〉)F (dy) (2.27)

= − θ(−iξ)
= − θ(i(−ξ)).

Thus, we realize an interesting connection between the Fourier transform of a Lévy pro-
cess, its cumulant generating function and the symbol in the sense that

L̂t(ξ) = exp(tθ(iξ)) = exp(−tA(−ξ)),

for all ξ ∈ Rd.

2.3 Some Lévy asset price models

We present a selection of asset models of Lévy type that will accompany us throughout
the whole thesis. Some of these model introductions are taken from Gaß et al. (2015). In
what follows we denote by Q̃ the parameter space that the model as such is defined on.
In later chapters, we will consider these models on possibly restricted parameter spaces
Q ⊆ Q̃ only, which is the reason for this minor notational inconvenience. Throughout
all model introductions, the constant r ≥ 0 denotes the risk-free interest rate. Each
model is driven by an appropriately chosen Lévy process (Lqt )t≥0, q ∈ Q̃. The asset price
process is then given by

St = S0e
Lqt , S0 > 0, ∀t ∈ R+, (2.28)

where (2.28) is understood componentwise when a d-variate model is concerned. For
each model we state the characteristic function of LqT , T ∈ T , for some chosen time
horizon T and q ∈ Q̃ that is

ϕT,q(z) = L̂qT (z) = E
[
e〈iz,L

q
T 〉
]
, z ∈ Rd. (2.29)

In finance, the characteristic function (2.29) of a Lévy process is a useful quantity in
pricing, as we will see in the next section. To this end, however, the drift b of the process
must be adjusted for the discounted asset process (S0e

−rt+Lqt )t≥0 to become a martingale.
This is ensured by the so called drift condition. Let r ≥ 0 denote the risk-less interest
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rate and (b, σ, F ) the triplet of (Lqt )t≥0 in (2.29), then the requirement for the discounted
asset process of (2.28) to be a martingale is equivalent to∫

|y|>1
eyF (dy) <∞ (2.30)

with the drift b being set to

b = r − σ2

2
−
∫
R

(ey − 1− h(y))F (dy), (2.31)

compare for example Achdou and Pironneau (2005). We present some typical examples
for such exponential Lévy models below.

2.3.1 Multivariate Black&Scholes model

The famous model of Black and Scholes (1973) marks the big bang of mathematical
finance and earned its two inventors the Nobel price. The model allows the modeling
of asset-price movement, albeit on an elementary level from today’s point of view. A
volatility parameter of the log-asset price process – and additional covariance parameters
in the multivariate case – suffice to set up the mathematical model. More precisely, the
d-variate Black-Scholes model is driven by a d-variate Brownian motion. The parameter
space of the model solely consists of values determining the underlying covariance matrix
σ ∈ Rd×d, which is symmetric and positive definite. For a concise representation of the
parameter space, we define Q̃ as

Q̃ = {q ∈ Rd(d+1)/2 | det(σ(q)) > 0} ⊂ Rd(d+1)/2 (2.32)

with the function σ : Rd(d+1)/2 → Rd×d defined by

σ(q)ij = q(max{i,j}−1) max{i,j}/2+min{i,j}, i, j ∈ {1, . . . , d}. (2.33)

By construction, σ(q) is symmetric. The characteristic function of the process LqT , T ∈ T ,
q ∈ Q̃, driving log-returns in the model is then given by

ϕT,q(z) = exp
(
T
(
i〈b, z〉 − 1

2
〈z, σz〉

))
, (2.34)

for all z ∈ Rd with drift b = b(q) ∈ Rd adhering to the no-arbitrage condition (2.31)

bi = r − 1

2
σii, i ∈ {1, . . . , d}. (2.35)

Note that for each q ∈ Q̃ given by (2.32), the characteristic function of the d-variate
Black&Scholes model is analytic in z on the whole of Cd. Figure 2.1 displays some asset
price trajectories (St)t∈[0,1] in the univariate Black&Scholes model for various values of
σ ∈ Q̃.
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Figure 2.1 Three asset price trajectories in the univariate Black&Scholes model for
different parameter sets with S0 = 1 and r = 0.03.

2.3.2 Univariate Merton jump diffusion model

In the univariate case, the Merton Jump Diffusion model by Merton (1976) naturally
extends the Black&Scholes model to a jump diffusion setting. The logarithm of the asset
price process is composed of a Brownian part with variance σ2 > 0 and a compound
Poisson jump part consisting of normally N (α, β2) distributed jumps arriving at a rate
λ > 0. The model parameter space is thus given by

Q̃ = {(σ, α, β, λ) ∈ R+ × R× R+
0 × R+} ⊂ R4 (2.36)

and the characteristic function of LqT with T ∈ T , q ∈ Q̃ computes to

ϕT,q(z) = exp

(
T

(
ibz − σ2

2
z2 + λ

(
eizα−

β2

2
z2 − 1

)))
, (2.37)

for all z ∈ R, with no-arbitrage condition (2.31) demanding

b = r − σ2

2
− λ

(
eα+β2

2 − 1

)
. (2.38)

As in the univariate Black&Scholes model, for each q ∈ Q and T > 0, the characteristic
function ϕT,q of the Merton model is holomorphic. In Figure 2.2, we simulate three
trajectories of the Merton jump diffusion model. Both the structural proximity to the
Black&Scholes model and the distinguishing jump feature are clearly visible.
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Figure 2.2 Three asset price trajectories in the Merton model for different parameter
sets with S0 = 1 and r = 0.03.

2.3.3 Univariate CGMY model

Another well known Lévy model that we consider is the univariate CGMY model by
Carr et al. (2002). This class is also known as Koponen and KoBoL in the literature, see
also Boyarchenko and Levendorskĭi (2002a) and as tempered stable processes. With the
model parameter space given by

Q̃ = {(C,G,M, Y ) ∈ R+ × R+
0 × R+

0 × (1, 2) | (M − 1)Y ∈ R} ⊂ R4, (2.39)

the associated characteristic function of LqT with T ∈ T , q ∈ Q̃ computes to

ϕT,q(z) = exp
(
T
(
ibz + CΓ(−Y )[
(M − iz)Y −MY + (G+ iz)Y −GY

] ))
,

(2.40)

for all z ∈ R, where Γ(·) denotes the Gamma function. For no-arbitrage pricing we set
the drift b ∈ R to

b = r − CΓ(−Y )
[
(M − 1)Y −MY + (G+ 1)Y −GY

]
. (2.41)

2.3.4 Univariate Normal Inverse Gaussian model

Another Lévy model we present is the univariate Normal Inverse Gaussian (NIG) model.
The parameterization consists of δ, α > 0, β ∈ R, with α2 > β2. The model parameter
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Figure 2.3 Three asset price trajectories in the NIG model for different parameter sets
with S0 = 1 and r = 0.03.

set Q̃ is thus given by

Q̃ =
{

(δ, α, β) ∈ R+ × R+ × R | α2 > β2, α2 ≥ (β + 1)2
}
⊂ R3. (2.42)

The characteristic function of LqT for this model is given by

ϕT,q(z) = exp
(
T
(
ibz + δ

(√
α2 − β2 −

√
α2 − (β + iz)2

)))
(2.43)

for T ∈ T , q ∈ Q̃, wherein the no-arbitrage condition requires

b = r − δ
(√

α2 − β2 −
√
α2 − (β + 1)2

)
. (2.44)

The second condition in (2.42), α2 ≥ (β + 1)2, guarantees b ∈ R. Figure 2.3 displays
three sample paths of the NIG model. Graphically, the pure jump characteristic result
in paths consisting of dots rather than connected lines.

2.3.5 Multivariate Normal Inverse Gaussian model

The NIG Lévy model exists in a multivariate version. Then, the parameterization con-
sists of δ, α > 0, β ∈ Rd, Λ ∈ Rd×d symmetric with det(Λ) = 1 and α2 > 〈β,Λβ〉. The
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model parameter set Q̃ is thus given by

Q̃ =
{

(δ, α, β, λ) ∈ R+ × R+ × Rd × Rd(d+1)/2

|α2 > 〈β,Λ(λ)β〉, det(Λ(λ)) = 1,

α2 ≥ 〈(β + ei),Λ(λ)(β + ei)〉, ∀i ∈ {1, . . . , d}
}
⊂ R2+d+d2

,

(2.45)

where ei = (0, . . . , 0, 1, 0, . . . , 0)′ for all i ∈ {1, . . . , d} and wherein we define the function
Λ : Rd(d+1)/2 → Rd×d by

Λ(λ)ij = λ(max{i,j}−1) max{i,j}/2+min{i,j}, i, j ∈ {1, . . . , d}. (2.46)

The characteristic function in the d variate NIG model is given by

ϕT,q(z) = exp

(
T

(
i〈b, z〉+ δ

(√
α2 − 〈β,Λβ〉 −

√
α2 − 〈β + iz,Λ(β + iz)〉

)))
(2.47)

with T ∈ T , q ∈ Q̃. In a multivariate model, the no-arbitrage condition (2.31) must
hold componentwise and thus requires

bi = r − δ
(√

α2 − 〈β,Λβ〉 −
√
α2 − 〈(β + ei),Λ(β + ei)〉

)
, (2.48)

for all i ∈ {1, . . . , d}. Equivalently to its univariate version, the third condition in (2.45),
α2 ≥ 〈(β + ei),Λ(β + ei)〉 for all i ∈ {1, . . . , d}, guarantees b ∈ Rd. Note that for d = 1,
we have Λ ≡ 1 and the expression for the d variate characteristic function for the NIG
model collapses to its unvariate counterpart. For notational convenience when dealing
with the univariate model in numerical experiments, later, however, we decided to split
the introduction of the model in the two cases d = 1 and d > 1.

2.4 Parametric option pricing with Fourier transform

Combining Fourier theory of Section 2.1 with Lévy theory of Section 2.2 in general and
invoking the Lévy models we presented in the preceding Section 2.3 in particular now
allows us to introduce the main concepts and prerequisites for option pricing based on
the Fourier transform. The approach of pricing options using Fourier concepts has been
initiated by Stein and Stein (1991) and Heston (1993) and has gained tremendous success
in both academia and industry alike. A special emphasis on Lévy models and related
models in Fourier pricing has been taken by Carr and Madan (1999), Raible (2000) and
Duffie et al. (2000) to which we refer for an in-depth analysis of the matter.

We have given the following introduction into option pricing with Fourier transform
methods in Gaß et al. (2015) already where we compute option prices of the form

PriceK,T,q := E
[
fK(LqT )

]
(2.49)
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with parametrized payoff function fK : Rd → R and a parametric FT -measurable Rd-
valued random variable Xq

T for payoff and model parameters K ∈ K ⊂ RD1 , T ∈ T ⊂
RD2 , q ∈ Q ⊂ RD3 denoting D = D1 +D2 +D3. Furthermore, let

p = (K,T, q) ∈ P where P = K × T ×Q.

In order to pass to the pricing formula in terms of Fourier transforms, we impose the
following exponential moment condition for η ∈ Rd,

E
[
e−〈η,X

q
T 〉
]
<∞ for all (T, q) ∈ T ×Q, (Exp)

which allows us to define for every (T, q) ∈ T × Q the extension of the characteristic
function of Xq

T to the complex domain Rd + iη,

ϕT,q(z) := E
[
ei〈z,X

q
T 〉
]
, for all z = ξ + iη, ξ ∈ Rd. (2.50)

We further introduce the following integrability condition

x 7→ e〈η,x〉fK(x), ξ 7→ ϕT,q(ξ + iη) ∈ L1(Rd) for all (K,T, q) ∈ P. (Int)

As indicated above, the Fourier representation of option prices traces back to the pio-
neering works of Carr and Madan (1999) and Raible (2000). The following version is an
immediate consequence of Theorem 3.2 in Eberlein et al. (2010).

Proposition 2.20 (Fourier pricing)
Let η ∈ Rd such that (Exp) and (Int) are satisfied. Then for every (K,T, q) ∈ P,

PriceK,T,q =
1

(2π)d

∫
Rd+iη

f̂K(−z)ϕT,q(z) dz. (2.51)

Typically, that is for the most common option types, the generalized Fourier transform
of fK is of the form

f̂K(z) = Kiz+cF (z) (2.52)

for every z ∈ Rd + iη with some constant c ∈ R and a function F : Rd + iη → C. Then
the option prices (2.51) are indeed parametric Fourier integrals of the form

PriceK,T,q =
1

(2π)d

∫
Rd+iη

e−i〈z,log(K)〉KcF (z)ϕT,q(z) dz. (2.53)

As a first step in the numerical evaluation of (2.53) we employ an elementary symmetry
and obtain∫

Rd+iη
f̂K(−z)ϕT,q(z) dz = 2

∫
R+×Rd−1+iη

<
(
f̂K(−z)ϕT,q(z)

)
dz, (2.54)

which reduces the numerical effort by half.
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Lemma 2.21 (Generalized Fourier transform of European vanilla options)
Let g : R→ R+

0 be the payoff profile of a European option, that is

g(x) = (ex −K)+, ∀x ∈ R, (2.55)

for the European call option and

g(x) = (K − ex)+, ∀x ∈ R, (2.56)

for the European put option, respectively. In both payoff profile functions, K ∈ R+

denotes the strike price. Then, the generalized Fourier transform computes to

F(gη)(ξ) = ĝη(ξ) =
Kiξ+η+1

(iξ + η)(iξ + η + 1)
(2.57)

wherein we choose
η < − 1, for the call option, and
η > 0, for the put option,

(2.58)

for the generalized Fourier transform to exist.

Proof
The lemma is proved by a straight-forward calculation. �

The structure of the Fourier transform of the payoff profiles of univariate plain vanilla
European options extends to the multivariate case as well, as the following lemma demon-
strates.

Lemma 2.22 (Generalized Fourier transform of European call on d assets)
The payoff profile of a call option on the minimum of d assets with strike K ∈ R+ is
defined as

fK(x) = (ex1 ∧ ex2 ∧ · · · ∧ exd −K)+ , (2.59)

for x = (x1, . . . xd)
′ ∈ Rd. With weight value η ∈ Rd, ηj < −1, for all j ∈ {1, . . . d}, the

generalized Fourier transform of the multivariate fK is

f̂K(z + iη) = (−1)d
−K1+

∑d
j=1(izj+ηj)∏d

j=1 (izj + ηj)
(

1 +
∑d

j=1 (izj + ηj)
) . (2.60)

Proof
The result is taken from Example 5.7 in Eberlein et al. (2010). �
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2.5 Sobolev spaces

Fourier theory has presented itself as an established theoretical framework for option
pricing. By Proposition 2.20, option prices based on the stochastic nature of stock
movements are expressed in terms of expected values and transformed to Fourier inte-
grals. Recalling the seminal paper of Black and Scholes (1973), however, we understand
that the pricing problem has initially been embedded in the theory of partial differential
equations, a field that seems totally unrelated at first sight.

Yet, these two theories are just two different perspectives on the same problem. The first
main chapter of this thesis will consider option pricing through the lens that it has been
originally discovered with, that is the theory of partial differential equations. As we shall
see in the following chapter, for solutions to partial differential equations in finance to
exist, the notion of differentiability needs to be weakened. For a univariate, real-valued
function f , the classic or strong derivative at x ∈ supp(f) ⊆ R is given by the limit

f ′(x) =
∂

∂x
f(x) = lim

h→0
x+h∈ supp(f)

f(x+ h)− f(x)

h
, (2.61)

so it exists. By this definition, however, the function ϕ0 : R→ R, defined by

ϕ0(x) = (1− |x|) · 1|x|≤1

is not differentiable at x ∈ {−1, 0, 1} because the limit does not exist for these values.
The choice of ϕ0 as an example for a function not differentiable everywhere might appear
random right now. Yet, precisely functions of this kind will play a key role in the theory
of solving partial differentiable equations in the next chapter, both theoretically and
numerically. The concept of differentiability must thus be widened until it contains
functions like ϕ0, as well.

We thus introduce the new concept of so called weakly differentiable functions which in a
second step will constitute function spaces that solutions to partial differential equations
in finance live in. We follow Seydel (2012) in defining the concept that generalizes the
classic understanding of a derivative.

Definition 2.23 (Weak derivative)
Let Ω ⊂ Rn and let

C∞0 (Ω) = {v ∈ C∞(Ω) | supp(v) is a compact subset of Ω}.

For a multi-index α = (α1, . . . , αn) with αi ∈ N0 for all i ∈ {1, . . . , n} define

|α| =
n∑
i=1

αi. (2.62)

With α a multi-index we call

(Dαv)(x1, . . . , xn) =
∂|α|

∂xα1
1 . . . ∂xαnn

v(x1, . . . , xn) (2.63)
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the partial derivative of v of order |α|. Let u : Ω→ R be a real-valued function. If there
exists w ∈ L2(Ω) with∫

Ω
uDαv dx = (−1)|α|

∫
Ω
w v dx, for all v ∈ C∞0 (Ω), (2.64)

we define Dαu = w the weak derivative of u with multi-index α. Sometimes we also call
Dαu the derivative of u in distributional sense.

From Definition 2.23 we understand that weak differentiability is not a pointwise property
like strong differentiability is but rather a global property that acts on integration against
test functions. Having Definition 2.23 at hand, we can now build up new function spaces
and introduce the notion of Sobolev spaces.

Definition 2.24 (Sobolev spaces Hk)
Let Ω ⊂ Rn and k ∈ N0. We define the Sobolev space

Hk(Ω) =
{
v ∈ L2(Ω) |Dαv ∈ L2(Ω) for |α| ≤ k

}
, (2.65)

with Dα· being the weak derivative of Definition 2.23. For a < b ∈ Ω we define the
subspace Hk

0 (a, b) ⊂ Hk(Ω) by

Hk
0 (a, b) =

{
v ∈ Hk(Ω) | v(a) = v(b) = 0

}
. (2.66)

For the upcoming definition of fractional Sobolev spaces Hs, s ∈ R+, we follow Glau
(2010).

Definition 2.25 (Fractional Sobolev spaces Hs(Rd))
Let s ∈ R+. We define

Hs(Rd) =
{
v ∈ S′(Rd)

∣∣F(v) ∈ L1
loc(Rd), such that ‖v‖Hs(Rd) <∞

}
, (2.67)

wherein F(v) denotes the Fourier transform of v, see Definition 2.1 and the norm ‖·‖Hs

is given by

‖v‖Hs(Rd) =

√∫
Rd
|F(v)(ξ)|2 (1 + |ξ|)2s dξ, ∀v ∈ S′(Rd). (2.68)

We call the space Hs(Rd) a fractional Sobolev space of order s.

Definition 2.26 (Fractional Sobolev spaces H̃s(a, b))
For s ∈ R+ and a < b ∈ R we define by

H̃s(a, b) =
{
v ∈ Hs(R)

∣∣ v|R\[a,b] = 0
}

(2.69)

a subspace H̃s(R) ⊂ Hs(R) of the fractional Sobolev space of Definition 2.25.

36



2.3.5 Multivariate Normal Inverse Gaussian model

Definition 2.27 (Sobolev space H1(Ω))
The space H1(Ω) denotes the space of functions u ∈ L2(Ω) that possess a weak derivative
(of first order) in L2(Ω). The scalar product of H1(Ω) is defined by

(u, v)H1(Ω) := (∂u, ∂v)L2(Ω) + (u, v)L2(Ω) =

∫
Ω
∂u(x)∂v(x) dx+

∫
Ω
u(x)v(x) dx. (2.70)

Consequently, the norm of the space, ‖·‖H1(Ω) is given by

‖u‖H1(Ω) =
√

(u, u)H1(Ω), (2.71)

for all u ∈ H1(Ω).

Even though Sobolev spaces contain functions that are not even differentiable in the
strong sense, they maintain a close relationship to infinitely smooth functions in the
strong sense, as the following theorem emphasizes.
Theorem 2.28 (C∞(Ω) ∩H1(Ω) dense in H1(Ω))
The intersection of C∞(Ω) with H1(Ω), C∞(Ω) ∩H1(Ω) is dense in H1(Ω).

Proof
The claim follows from Theorem 3.5 in Wloka (2002) where a proof is provided. �

Definition 2.29 (H1
0(Ω))

The completion of the space C∞0 (Ω) in the norm ‖·‖H1(Ω), is denoted by H1
0 (Ω),

H1
0 (Ω) := C∞0 (Ω)

‖·‖H1(Ω) . (2.72)

In the Fourier section above, we have already encountered the idea of exponentially
weighting non-integrable functions with an appropriately chosen value η ∈ Rd to achieve
integrability of the transformed result. There, the weighting approach aimed at making
Fourier pricing accessible to plain vanilla European call and put options, the payoff func-
tions of which lack integrability and can thus not be Fourier transformed. The following
definition extends the weighting approach to Sobolev spaces that we have just intro-
duced. In the context of pricing plain vanilla European call and put options, weighted
Sobolev spaces will be as important to PDE theory as the generalized Fourier transform
has been to Fourier pricing. We give the respective definition following Eberlein and
Glau (2011).

Definition 2.30 (Weighted Sobolev-Slobodeckii space Hs
η(R

d))
Let s ∈ R and η ∈ Rd. The weighted Sobolev-Slobodeckii space Hs

η(Rd) is defined by

Hs
η(Rd) =

{
u ∈ S∗η(Rd) |

∥∥∥F(e〈η,·〉u)
∥∥∥
Ĥs

<∞
}

(2.73)

with the scalar product

〈u, v〉Hs
η

= 〈F(e〈η,·〉u),F(e〈η,·〉v)〉
Ĥs (2.74)

with
〈ϕ,ψ〉

Ĥs =

∫
Rd
ϕ(ξ)ψ(ξ)(1 + |ξ|)2s dξ. (2.75)
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2.6 Other concepts

This final section of the preliminary chapter summarizes some other concepts that we will
encounter within the thesis. We begin by stating some definitions concerning Banach,
Hilbert and related spaces. The section closes with a repetition of other elementary
definitions. Stating them now in the preliminary section will later allow us to present
our main results without unnecessary distractions.

We state the definition of a Banach and a Hilbert space that we took from Grossmann
et al. (2007).

Definition 2.31 (Banach space)
Let U be a linear space endowed with a norm ‖·‖U : U → R that is a mapping with the
following properties

i) ‖u‖U ≥ 0, for all u ∈ U , ‖u‖U = 0⇔ u = 0,

ii) ‖λu‖U = |λ|‖u‖U , for all u ∈ U , λ ∈ R,

iii) ‖u+ v‖U ≤ ‖u‖U + ‖v‖U , for all u, v ∈ U .

The space U endowed with the norm ‖·‖U is called a normed space. A normed space is
called complete if every Cauchy sequence (uk)k≥1 ⊂ U converges in U . Complete normed
spaces are called Banach spaces.

Definition 2.32 (Hilbert space)
Let H be a Banach space. If the norm ‖·‖H in the space is induced by the scalar product
〈·, ·〉H : H×H → R,

‖u‖H =
√
〈u, u〉H, ∀u ∈ H, (2.76)

we call the space H a Hilbert space.

Definition and Theorem 2.33 (Separability of Hilbert spaces)
Let H be a Hilbert space. If H is finite dimensional, then it is separable, that is it contains
a countable dense subset. If H is infinite dimensional, it is separable if and only if it has
an orthonormal basis.

Proof
Consider the proof of Theorem 3.52 in Rynne and Youngson (2000). �

The next few definitions and results build on the Hilbert space theory and prepare it for
the notion of solution spaces to partial differential equations in finance.

Definition 2.34 (The space L2(0, T ;H))
For each Hilbert space H we define the function space L2(0, T ;H) by

L2(0, T ;H) =
{
u : [0, T ]→ H

∣∣ ∫ T

0
‖u(t)‖2H dt <∞

}
. (2.77)
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We take the definition of a Riesz basis from Christensen (2013).

Definition 2.35 (Riesz basis)
Let H be a Hilbert space. A Riesz basis for H is a family of the form (U ek)k≥1, where
(ek)k≥1 is an orthonormal basis for H and U : H → H is a bounded bijective operator.

We follow page 15 from Arendt et al. (2011) and give the following definition.

Definition 2.36 (The space Cn([0, T ];H))
Let H be a Banach space and T > 0. We denote by C([0, T ];H) the vector space of all
continuous functions f : [0, T ] → H. With n ∈ N we denote by Cn([0, T ];H) the vector
space of all n times differentiable functions with continuous n-th derivative, that is the
space of all functions f such that for all k ∈ {0, . . . , n− 1} the limits

f (k+1)(t) = lim
∆t→0

t+∆t∈[0,T ]

f (k)(t+ ∆t)− f (k)(t)

∆t

exist for all t ∈ [0, T ] with f (0), . . . , f (n) being continuous and the convention f (0) ≡ f .

We cite the following Definition 2.37 from page 15 of Arendt et al. (2011).

Definition 2.37 (Absolute continuity of a function)
Let a < b ∈ R and let X be a Banach space. Let f : [a, b] → X. We say that f is
absolutely continuous on [a, b] if for every ε > 0 there exists δ > 0 such that∑

i∈I
‖f(bi)− f(ai)‖X < ε (2.78)

for every finite set {(ai, bi)}i∈I , I ⊂ N, |I| < ∞, of disjoint intervals in [a, b] with∑
i∈I(bi − ai) < δ.

Consider also Chapter VII in Elstrodt (2011) on the notion of absolute continuity. It is
well known that absolute continuity is a weaker concept than continuous differentiability
as far as functions on compacts are concerned. In other words, continuous differentiability
of a function defined on a compact interval implies absolute continuity as the following
lemma demonstrates. We give a short proof for the reader’s convenience.

Lemma 2.38 (Absolute continuity of continuously differentiable functions)
Let f : [a, b] → X with |a|, |b| < ∞ and X a normed vector space and assume f to be
continuously differentiable. Then f is absolutely continuous on [a, b].

Proof
Let ε > 0. With f being continuously differentiable, f ′ is continuous and as a function
defined on a compact set it is thus bounded. Let

M = max
x∈[a,b]

∥∥f ′(x)
∥∥
X
. (2.79)
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Choose δ < ε/M . Now choose an arbitrary finite set {(ai, bi)}i∈I of disjoint intervals in
[a, b] with

∑
i∈I(bi − ai) < δ. Without loss of generality we may assume ai < bi for all

i ∈ I. Then∑
i∈I
‖f(bi)− f(ai)‖X =

∑
i∈I

∥∥∥∥f(bi)− f(ai)

bi − ai

∥∥∥∥
X

(bi − ai) ≤M
∑
i∈I

(bi − ai) < ε (2.80)

which proves that f is absolutely continuous on [a, b]. �

We introduce the notion of the Bochner integral strictly following Definitions and The-
orem 24.6 in Wloka (2002).

Definitions and Theorem 2.39 (Bochner integral)
Let H be a separable Hilbert space.

i) Let E denote the set of finitely valued functions x : S → H. E is a linear set and
E ⊂ L1(S,H). If x ∈ E we define∫

S
x(s) dm(s) =

n∑
i=1

xim(Bi), (2.81)

where im(x) = {x1, . . . , xn, 0} and Bi = x−1(xi) for i ∈ {1, . . . , n}. The integral is
linear and ∥∥∥∥∫

S
x(s) dm(s)

∥∥∥∥ ≤ ∫
S
‖x(s)‖dm(s). (2.82)

ii) We write B1(S,H) = E
L1(S;H) and call B1(S,H) the set of Bochner integrable

functions. If x ∈ B1(S,H) there exists a sequence (xn)n≥1, xn ∈ E for all n ≥ 1,
with xn → x in L1(S;H) as n→∞. We put∫

S
x(s) dm(s) = lim

n→∞

∫
S
xn(s) dm(s). (2.83)

In the theory of real-valued functions that are differentiable, Taylor’s theorem links
the evaluation of a differentiable function to a weighted sum of its derivatives and a
remainder term that can be expressed in a (Riemann) integral form. Using the Bochner
integral of Definitions and Theorem 2.39, the theorem extends to functions mapping real
values to Hilbert spaces. The Taylor theorem for these Hilbert space valued functions
will be central to the error and convergence analysis of approximate solutions to partial
differential equations in finance, later.
Theorem 2.40 (Taylor’s theorem)
With n ∈ N, T > 0 and H a separable Hilbert space, assume f ∈ Cn([0, T ];H). Let
t0 ∈ [0, T ] and ∆t > 0 such that t0 + ∆t ≤ T . Then

f(t0 + ∆t) =

n−1∑
k=0

1

k!
f (k)(t0)∆tk +

∫ t0+∆t

t0

(t0 + ∆t− s)n−1

(n− 1)!
f (n)(s) ds (2.84)

holds.
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Proof
Assume first that n = 1. With f being continuously differentiable on a compact interval,
Lemma 2.38 yields that f is absolutely continuous. We may thus apply Proposition 1.2.3
in (Arendt et al., 2011) which gives

f(t0 + ∆t)− f(t0) =

∫ t0+∆t

t0

f (1)(s) ds (2.85)

and thus confirms formula (2.84) for n = 1. For general n ∈ N, taking (2.85) as induction
assumption, the claim now follows from induction using integration by parts. �

We will derive approximate solutions to partial differential equations numerically by a
so-called finite element approach. The method consists of an iterative scheme that is
driven by two key matrices. When we investigate the method more closely, the two core
matrices will usually have be of a so-called Toeplitz structure in the sense of the following
definition.

Definition 2.41 (Toeplitz matrix)
Let M ∈ RN×N be a real valued matrix. We call M a Toeplitz matrix if there exists a
set {v−(N−1), . . . , v−1, v0, v1, . . . vN−1} ⊂ R such that

M =



v0 v1 v2 · · · vN−1

v−1 v0 v1
. . .

...

v−2
. . . . . . . . . v2

...
. . . v−1 v0 v1

v−(N−1) · · · v−2 v−1 v0


.

We sometimes also say M has a Toeplitz structure.

We state Hölder’s well known inequality which will contribute significantly in Chapter 3
during the derivation of stability and convergence results of approximate solutions to
partial (integro) differential equations.

Theorem 2.42 (Hölder’s inequality)
Let f, g ∈ L1(R) be real valued integrable functions. Let p, q ∈ (1,∞) with 1

p + 1
q = 1.

Then the inequality∫
R
|f(x)g(x)|dx ≤

(∫
R
|f(x)|p dx

)1/p(∫
R
|g(x)|q dx

)1/q

.

holds.

Finally, recall the definition of a Bernstein ellipse as introduced by Bernstein (1912).
It describes an ellipse in the complex plane with foci at ±1, as the following definition
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R
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0−1 1
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∆

Figure 2.4 A Bernstein Ellipse B([−1, 1], %) with foci −1, 1 and ellipse parameter % > 1.
The semimajor a% is part of the real line, the semiminor b% is part of the complex line.
Here, ∆ denotes the distance from either of the two foci to the center of the ellipse. For
the ellipse parameter %, the identity % = a% + b% holds.

states. In Chapter 4, the ellipse will characterize areas of analyticity of functions that
we approximate with an interpolation approach. Therein, we reserve the flexibility of
reshaping the classic Bernstein ellipse to a more general one in order to capture more
individual areas of analyticity that the functions we approximate possess.

Definition 2.43 ((Generalized) Bernstein ellipse)
We define the Bernstein ellipse B([−1, 1], %) ⊂ C with parameter % > 1 as the open region
in the complex plane bounded by the ellipse with foci ±1 and semiminor and semimajor
axis lengths summing up to %. We set the origin as the center and set the semimajor
axis to lie on the real axis. Based on the concept of the Bernstein ellipse we define for
b < b ∈ R the generalized Bernstein ellipse by

B([b, b], %) := τ[b,b] ◦B([−1, 1], %), (2.86)

where the transform τ[b,b] : C→ C is defined for every z ∈ C as

τ[b,b]

(
z
)

= b+
b− b

2

(
1−<(z)

)
+ i

b− b
2
=(z). (2.87)

Additionally, for an arbitrary set Z ⊂ R, we define the generalized Bernstein ellipse by

B(Z, %) := B([inf Z, supZ], %). (2.88)

We call % > 1 the ellipse parameter of the (generalized) Bernstein ellipse.

A Bernstein ellipse is depicted in Figure 2.4. The figure also depicts the relation between
the ellipse semimajor a% and the semiminor b% in comparison to the location of the ellipse
foci. The sum of the two ellipse axis lengths determines the ellipse parameter %. The
following remark states the relations between these quantities for later reference.
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Remark 2.44 (Ellipse semiminor and semimajor)
Let B([−1, 1], %) with % > 1 be a Bernstein ellipse with semimajor a% and semiminor b%
satisfying a% + b% = %. Let ∆ be the difference from either of the two foci of an ellipse to
the center of the ellipse, then

∆ =
√
a2
% − b2% (2.89)

holds. In a Bernstein ellipse, ∆ = 1. From this, the well known relations

a% =
%+ 1

%

2
, b% =

%− 1
%

2
(2.90)

immediately follow.
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3 PIDEs and option pricing

This chapter addresses some aspects of the theory of partial integro-differential equations
in the context of finance and beyond. In abstract terms, we are considering problems of
form

∂tu+Au = f,

u(0) = g,

for so-called partial integro-differential operators A. Confronted with such a problem
many questions naturally arise. Is there a function u that solves the problem? Is it
unique? Is this u numerically accessible, or can we only dispose of it in theory? Are
there methods to approximate u and how accurately are they? Do they converge?

Some of these questions address purely theoretical aspects of the problem. Others con-
cern rather numerical issues and are answered in algorithmic terms. Still others cannot
be assigned to either of these two categories but lie in the intersection where PIDE theory
and numerical concepts blend.

This ambiguity draws through the whole chapter. On the one hand, it challenges the
reader by confronting him with separate fields neither of which can be omitted in the
derivation of numerical solutions that rest on solid theoretical grounds. On the other
hand, it provides two perspectives onto the same problem that complement each other
and foster extensive understanding.

Similarly, the contents of the following sections do not fall into strictly separated cat-
egories. Some have a strong theoretical focus, some emphasize numerical implications
and some address the intersection of both realms.

We therefore highlight the four main sections in this chapter and briefly comment on
their main emphasis. In Section 3.1 we present the theoretical framework of PIDE theory.
The sections answers the question of existence and uniqueness of solutions u to problems
as above and introduces the function spaces that a solution u lies in. The consecutive
Section 3.2 illustrates the bridge from the theoretical problem to a numerical solution
approach. It provides the theoretical foundation that approximate numerical solution
schemes rely on. Section 3.3 is devoted to the development of a numerical solver for the
PIDE of the well known asset model by Merton (1976). It implements the theoretical
steps taken in the sections before and makes the theory explicitly comprehensible. Then,
Section 3.4 abstracts from the Merton model and presents a very general framework for a
FEM solver that easily adapts to many different models. After that, Section 3.5 compares
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all implementations empirically by presenting empirical order of convergence studies for
several FEM implementations and a variety of models. Finally, Section 3.6 reconciles
the numerical approximation with the solution provided by theory by deriving stability
and convergence results in very general terms.

3.1 Existence and uniqueness of (weak) solutions to PDEs

Let us state the main interest of this chapter more concisely. We are interested in finding
solutions u : [0, T ]× Rd → R to problems of the form

∂tu+Atu = f, for almost all t ∈ (0, T )

u(0) = g,
(3.1)

with A = (At)t∈[0,T ] a time-inhomogeneous Kolmogorov operator, a source term or right
hand side f : [0, T ]× Rd → R and an initial condition g : Rd → R.

Existence and uniqueness of such solutions u and the properties of the spaces that they
live in depend heavily on the properties of the operator A as well as of properties like
smoothness of the two functions f and g.

A well known example for a PDE in the form of (3.1) is the so-called heat equation,

∂tu− c2 ∂
2

∂x2
u = 0, for almost all t ∈ (0, T )

u(0) = g,

(3.2)

with c ∈ R+, g ∈ C∞0 (R). By a Fourier approach one derives the solution u ∈
C1,2(R+,R) given by

u(t, x) =
1

2π

∫
R
e−iξxe−tc

2ξ2
ĝ(ξ) dξ, ∀(t, x) ∈ R+ × R (3.3)

with ĝ the Fourier transform of g, see Cannon and Browder (2008).

The function u defined by (3.3) solves the heat equation of problem (3.2) pointwise. It
is also called a strong solution, since it interprets the differential operator in the PDE in
the strong sense of (2.61) as stated in the preliminary chapter above. Differentiability
of this kind is indeed a strong property. In finance, we can not expect such strongly
differentiable solutions to PDEs to exist, let alone smooth ones like u above. Think
for example of the nondifferentiable payoff profiles of call and put options that lead to
initial conditions g /∈ C∞0 (R) which affects the regularity of u accordingly. Consider in
this context Eberlein and Glau (2014) for an approach deriving solutions in the form
of (3.3) to PDEs in finance.

Consequently, the notion specifying the solution to a PDE must adapt to this issue of
regularity.
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One way of adjusting the concept of a solution to a PDE is pursued by the theory of
viscosity solutions. Let us briefly touch upon this first possibility in the following before
moving on. In Bardi et al. (1997), an analysis of viscosity solutions to PDEs of second
order is provided. The authors analyze scalar-valued functions u : Ω → R that solve
partial differential equations in the general form of

F (x, u,Du,D2u) = 0 (3.4)

on the open set Ω in the sense of the following definitions taken from Bardi et al. (1997).

Definition 3.1 (Upper and lower semicontinuous envelope)
Let u : Ω → R. The notions of the upper semicontinuous envelope u∗ and the lower
semicontinuous envelope u∗ of u are given by

u∗(x) = lim sup
r↓0

{u(y) : y ∈ Ω, |y − x| ≤ r}

u∗(x) = lim inf
r↓0
{u(y) : y ∈ Ω, |y − x| ≤ r}

and u is upper semicontinuous if u = u∗ and u is lower semicontinuous if u = u∗.

Definition 3.2 (Viscosity solution)
Let S(N) be the set of real symmetric N × N matrices and F of (3.4) be a function
F : Ω × R × RN × S(N) → R with F (x, r, p,X) ≤ F (x, r, p, Y ) for Y ≤ X with the
ordering X ≤ Y , if 〈Xξ, ξ〉 ≤ 〈Y ξ, ξ〉 for all ξ ∈ RN , and let further F be nondecreasing
in the second argument. Then u is a viscosity subsolution (supersolution) to PDE (3.4)
in Ω if it is upper (lower) semicontinuous and for every ϕ ∈ C2(Ω) and local maximum
(minimum) point x̂ ∈ Ω of u− ϕ we have

F (x̂, u(x̂), Dϕ(x̂), D2ϕ(x̂)) ≤0

(F (x̂, u(x̂), Dϕ(x̂), D2ϕ(x̂)) ≥0).

And finally, u is called a viscosity solution to (3.4) if it is a viscosity subsolution and a
viscosity supersolution.

We have encountered two different concepts in interpreting the notion of a solution to
PDEs or PIDEs, respectively, the first one being the strong solution, the second one
being the viscosity solution and further concepts exist as well. The fact that we actually
have a choice in selecting a solution scheme to solve PIDEs fuels the suspicion that the
eventual decision critically depends on the features that we expect from that solution
scheme and the subsequent solution itself. Let us highlight the main goals that we pursue
in deriving solutions to PIDEs. These are

i) possibility for thorough error control

ii) algorithmic accessibility

iii) numerical feasibility
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A scheme that provides all these features is the Galerkin method which is based on the
notion of weak differentiability. It powerfully combines a theoretical concept with an
algorithmic translation that opens the method to numerically feasible implementations.
At the same time it offers error control methods that manage to monitor inaccuracies
inevitably arising from those numerical schemes. In order to be able to apply the Galerkin
method we need to weaken the idea of differentiability of a function by replacing the
strong derivative by a more general concept. The new notion of a derivative does no
longer take effect in a pointwise fashion. Instead, weak differentiability acts on integration
against test functions. Preparing our introduction of the associated idea of a weak
solution, we cite Definition 17.1 of a Gelfand triplet from Wloka (2002).

Definition 3.3 (Gelfand triplet)
Let V be an (anti)reflexive Banach space and H a Hilbert space. Suppose V ↪→

i
H and

that the embedding i is continuous, injective and that im i is dense in H. Let i′ : H → V ∗

be continuous and injective and im i′ dense in V ∗. Altogether we have

V ↪→
i
H ↪→

i′
V ∗, (3.5)

where both embeddings i, i′ are continuous, injective and have dense images in H and
V ∗. A scheme of this kind is called a Gelfand triplet. For notational convenience we
omit the symbols i and i′ from here on.

Based on Definition 2.34 and Definition 3.3 we define the solution space W 1(0, T ;V,H)
for special choices of separable Hilbert spaces V and H.

Definition 3.4 (The solution space W 1(0, T ;V,H))
Assume separable Hilbert spaces V and H which together with V ∗, the dual space of V ,
form a Gelfand triplet,

V ↪→ H ∼= H∗ ↪→ V ∗. (3.6)

We define the solution space W 1(0, T ;V,H) by

W 1(0, T ;V,H) = {u ∈ L2(0, T ;V ) | ∂tu ∈ L2(0, T ;V ∗)}, (3.7)

wherein the time derivative ∂tu is meant in the distributional or weak sense of Defini-
tion 2.23.

Before we can state the notion of a weak solution, we introduce a notion of associating
an operator A with a bilinear form.

Definition 3.5 (Bilinear forms with associated operators)
Let (at)t∈[0,T ] be a family of bilinear forms a : [0, T ]×V ×V → R that are measurable in t.
We say that this family of bilinear forms, is associated with linear operators At : V → V ∗

if for almost all t ∈ [0, T ]
〈Atu, v〉V ∗×V = at(u, v) (3.8)

holds ∀u, v ∈ V .
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With these tools we are now able to introduce the notion of a weak solution to prob-
lem (3.1). Analogously to Definition 1 in Glau (2016) we give the following definition.

Definition 3.6 (Weak solution)
Let V , H be separable Hilbert spaces which together with V ∗, the dual of V , form a
Gelfand triplet,

V ↪→ H ∼= H∗ ↪→ V ∗.

Let f ∈ L2(0, T ;V ∗) and g ∈ H. Then we call u ∈ W 1(0, T ;V,H) a weak solution to
problem (3.1), if for almost every t ∈ (0, T )

(∂tu(t), v)H + at(u(t), v) = 〈f(t), v〉V ∗×V (3.9)

holds for all v ∈ V , where for each t ∈ [0, T ] at is the bilinear form associated with
operator At and if additionally

lim
t↓0
‖g − u(t)‖H = 0 (3.10)

for t converging to zero from above holds as well. Then for every v ∈ V and χ ∈
C∞0 ([0, T ]) we have

−
∫ T

0
(u(t), v)H χ̇(t) dt+

∫ T

0
at(u, v)χ(t) dt =

∫ T

0
〈f(t), v〉V ?×V χ(t) dt, (3.11)

which we state here for later reference.

Under certain conditions, unique weak solutions u ∈W 1(0, T ;V,H) to partial differential
equations exist. We cite the classic result from Wloka (2002).

Theorem 3.7 (Existence and uniqueness of weak solutions)
Let 0 < T <∞. Let V ↪→ H ↪→ V ∗ be a Gelfand triplet with separable Hilbert spaces V
and H over R. Let a : [0, T ] × V × V → R, (t, ϕ, ψ) 7→ at(ϕ,ψ) be a bilinear form that
satisfies the following three conditions.

i) The mapping (t, ϕ, ψ) 7→ at(ϕ,ψ) is a measurable mapping on [0, T ] for fixed ϕ,ψ ∈
V .

ii) There exists a constant α > 0 independent of t, such that

|at(ϕ,ψ)| ≤ α‖ϕ‖V ‖ψ‖V , ∀t ∈ [0, T ] and ∀ϕ,ψ ∈ V. (3.12)

iii) There exist constants β > 0 and λ ≥ 0 independent of t such that

at(ϕ,ψ) ≥ β‖ϕ‖2V − λ‖ψ‖
2
H , ∀t ∈ [0, T ] and ∀ϕ,ψ ∈ V. (3.13)
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Further, let (At)t∈[0,T ] be defined via the relation (3.8). Then there exists a unique weak
solution u ∈W 1(0, T ;V,H) to the linear parabolic problem (3.1).
Additionally, the operator L relating the pair (f, g) ∈ L2(0, T ;V ∗) × H to that unique
weak solution u ∈ W 1(0, T ;V,H) of the linear parabolic problem (3.1) is a linear and
continuous mapping,

L : L2(0, T ;V ∗)×H →W 1(0, T ;V,H).

Proof
For a proof of the theorem we refer the reader to the proof of Theorem 26.1 in Wloka
(2002). �

Remark 3.8 (On the existence and uniqueness result)
Actually, the existence and uniqueness result of Theorem 3.7 also holds under more gen-
eral assumptions. In condition iii) for example, the bilinear form may map to C instead
of R. Then, the left side of the inequality is replaced by <(at(ϕ,ψ)). We decided to focus
on the real-valued case, however, since it lays out the scope for option pricing purposes.
In the error and convergence analysis section later, Conditions ii) and iii) will play a
most prominent role.

Remark 3.9 (Existence and uniqueness result for Lévy models)
The claim of Theorem 3.7 comprises partial differential equations from many model
classes. In Eberlein and Glau (2011), the authors translate the result to the class of
Lévy models. To that extent they transform the assumptions of the theorem into require-
ments onto the characteristic triplet (b, σ, F ) of the underlying process and even allow
for time-dependence of that triplet. Theorem 5.3 in Eberlein and Glau (2011) then yields
the claim of existence and uniqueness of weak solutions to problems of form (3.1) in the
Lévy model case.

Theorem 3.10 (Feynman-Kac)
Let (Lt)t≥0 be a (time-homogeneous) Lévy process. Consider the PIDE (3.1) where At ≡
A is assumed to be the operator associated with the symbol of (Lt)t≥0 and f ≡ 0. Assume
further the assumptions (A1)–(A3) of Eberlein and Glau (2011) to hold. Then (3.1)
possesses a unique weak solution

u ∈W 1(0, T ;Hα/2
η (Rd), L2

η(Rd)) (3.14)

where α > 0 is the Sobolev index of the symbol of (Lt)t≥0 and η ∈ Rd is chosen according
to Theorem 6.1 in Eberlein and Glau (2011). If additionally gη ∈ L1(Rd), then the
relation

u(T − t, x) = E [g(LT−t + x)] (3.15)

holds for all t ∈ [0, T ], x ∈ Rd.

Proof
The result is proved in Eberlein and Glau (2011) and follows from Theorem 6.1 therein.
Their claim applies beyond the scope of time-homogeneous Lévy processes and includes
so-called time-inhomogeneous PIIAC processes, as well. �
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The analysis of Feynmac-Kac theorems in the fashion of Theorem 3.10, which link
stochastic quantities via their expected value to the solution of PIDEs, is a topic of
its own. In the context of finance, where u is the price of an option with payoff profile g
in an asset model driven by a stochastic process (Lt)t≥0, this link opens a second access
to the classic pricing problem. Either one solves the associated PIDE or one computes
the expected value. Depending on the given model and option, the one or the other way
might be better suited to determine the option price. For a thorough investigation of
the Feynman-Kac formula we refer the reader to the recent publication of Glau (2016),
where the result is derived for Lévy processes with discontinuous killing rate.

3.2 The Galerkin method

By now, we have introduced the core definitions and theorems of the classic theory of
partial differential equations in an abstract framework. We now know that solutions to
PDEs exist under certain conditions and we have introduced the spaces that they live
in. For practical use of these solutions, however, for example for pricing or calibration
purposes, we also need numerical representations of these solutions. In general, the
solution spaces we have considered so far are infinite dimensional. Clearly, a numerical
solution can not provide such richness. Instead, its numerical means are limited to finite
dimensionality. We thus have to transform the original, infinite dimensional problem to
a finite dimensional, approximative setting. We consider the pricing PDE

∂tu(t, x) + (Au) (t, x) + ru(t, x) = 0, ∀(t, x) ∈ (0, T )× R
u(0, x) = g(x), ∀x ∈ R.

(3.16)

The time-homogeneous operatorA carries the model information. We state the operators
A in (3.16) for some well known time-homogeneous univariate asset models from the
Lévy class. Since a Lévy model is identified by its characteristic triplet (b, σ, F ), so is
the operator A of the associated PIDE, which is in general given by

(Af) (x) = −b∂xf(x)− 1

2
σ2∂xxf(x)

−
∫
R

(f(x+ z)− f(x)− ∂xf(x)h(z))F (dz),
(3.17)

for all f ∈ C∞0 (R) and x ∈ R, see for example Eberlein and Glau (2011). Here, we
are only interested in the operator representation of each model. For a more detailed
overview we refer the reader to Papapantoleon (2008). In the general Lévy model frame-
work, the operator A as stated in (3.17) contains an integral term. The respective PDE
is more precisely a partial integro differential equation, PIDE. The following examples
offer an overview over the operators of some well known Lévy models.

Example 3.11 (Black&Scholes (BS) model)
In the Black&Scholes model of Black and Scholes (1973), the log-asset price process is
modeled without jumps. The Brownian part drives the model exclusively. Therefore, we
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have F ≡ 0. The operator of the Black&Scholes PDE thus reduces to setting

σ > 0, F ≡ 0 (3.18)

in (3.17). The drift term b is set to

b = r − 1

2
σ2 (3.19)

for martingale pricing.

Example 3.12 (Merton model)
The model of Merton (1976) enriches the Brownian part from the Black&Scholes model
by a jump part. The log-asset prices process thus consists of a Brownian motion together
with a compound Poisson process with independent normally N (α, β2) distributed jumps
arriving at a rate λ > 0. From this, the characteristic triplet (b, σ, F ) is derived as

σ > 0, F (dz) =
λ√

2πβ2
exp

(
−(z − α)2

2β2

)
dz, (3.20)

with drift set to

b = r − 1

2
σ2 − λ

(
eα+β2

2 − 1

)
, (3.21)

as required by the no-arbitrage condition.

Example 3.13 (CGMY model)
The CGMY model by Carr et al. (2002) is a so-called pure jump model. In contrast to
the Merton model, jumps do not arrive discretely in time. Instead, in each finite time
interval, infinitely many jumps occur. The model inherits its name from the parameter-
ization

C > 0, G ≥ 0, M ≥ 0, Y ∈ (1, 2). (3.22)

The characteristic triplet determining the operator A is given by

σ > 0, F (dz) = C
exp(−Mz)

z1+Y
1z>0 dz + C

exp(Gz)

|z|1+Y
1z<0 dz, (3.23)

with drift term b

b = r − 1

2
σ2 − CΓ(−Y )

[
(M − 1)Y −MY + (G+ 1)Y −GY

]
(3.24)

by the no-arbitrage condition.

Example 3.14 (Univariate Normal Inverse Gaussian (NIG) model)
Finally, we present the NIG model by Barndorff-Nielsen (1997). With

δ > 0, α > 0, β ∈ R (3.25)
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and the parameter condition α2 > β2, the characteristic triplet is given by

σ > 0, F (dz) = exp(βz)
δα

π|z|
K1(α|z|) dz, (3.26)

wherein K1 denotes the Bessel function which for z ∈ R+0 allows the representation

K1(z) =

∫ ∞
0

e−z cosh(t) cosh(t) dt, (3.27)

see Chapter VI in Watson (1995). The drift term b is set to

b = r − 1

2
σ2 − δ

(√
α2 − β2 −

√
α2 − (β + 1)2

)
(3.28)

to satisfy the no-arbitrage condition.

This reduction is achieved by the so-called Galerkin method that we introduce now. It
consists of several steps that we discuss one by one. The identification of these steps that
we present below is in major parts taken from Section VI.1 in Glau (2010) and inspired
by Zeidler (1990). They lead from the general PIDE (3.16) to a numerically tractable
approximative scheme that we consider in the next section with the Merton model as a
specific example. The transition steps are the following.

i) Modification to a problem with fast decaying solution.
We will not solve problem (3.16) directly. One of the main obstacles that pre-
vents an immediate numerical solution is the unbounded spacial domain of prob-
lem (3.16). This unbounded domain needs to be reduced to a bounded on. As
a preparation for this localization, we modify problem (3.16) to a new problem
which we know to possess a solution that rapidly decays to zero as x → ±∞.
This adjustment prepares step ii), where the motivation of this modification will
be clarified. In order for the modification to result in a new the solution to which
quickly decays to zero, we subtract a function ψ that we know to approximately
mimic the behavior of u for large absolute values of x ∈ R. The modification of this
step i) thus consists in subtracting ψ from u and considering the resulting problem
for φ = u− ψ given by

∂tφ(t, x) + (Aφ) (t, x) + rφ(t, x) = f(t, x), ∀(t, x) ∈ (0, T )× R
φ(0, x) = gΨ(x), ∀x ∈ R,

(3.29)

where gΨ(x) = g(x)− ψ(0, x) for all x ∈ R and the right hand side f is given by

f(t, x) := − (∂tψ(t, x) + (Aψ)(t, x) + rψ(t, x)) .

The solution u to the original problem (3.16) can easily be restored by u = φ+ ψ.
We establish the properties that ψ needs to provide, later, where we will present
some examples, as well.
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ii) Localization to a boundary value problem.
At first glance, the modification of the original problem (3.16) to the modified
problem (3.29) complicated the derivation of numerical solution. Yet, now that
we know φ to decay to zero for |x| → ∞, we may cut the domain R to a finite
interval (a, b) and assume the solution to the cut domain problem to be equal to
zero outside of that interval. We denote the solution to the cut domain problem
by φ. Instead of (3.29) we thus now and consider

∂tφ(t, x) +
(
Aφ
)

(t, x) + rφ(t, x) = f(t, x), ∀(t, x) ∈ (0, T )× (a, b)

φ(t, a) = φ(t, b) = 0, ∀t ∈ (0, T ),

φ(0, x) = gφ(x), ∀x ∈ (a, b),

(3.30)

wherein gφ = gΨ and where the right hand side remains unchanged.

iii) Weak formulation of the resulting problem.
Solution φ to problem (3.30) still lives in the same function space as solution u
to the original problem 3.16. We thus now cast problem (3.30) in an appropriate
functions space setting which reflects our restriction of the infinite domain R to the
finite domain of interest (a, b). Choosing an appropriate Gelfand triplet guarantees
a weak solution v ∈W 1(0, T ;V,H) to the localized problem (3.30)

∂tv +Av + rv = f,

v(0) = gψ,
(3.31)

where V and H build on the finite domain (a, b) and are assumed to be separable
Hilbert spaces. The actual choices of V and H depend on the properties of the
operator A and thus on the regularity that is required for a weak solution v to
exist.

iv) Variational formulation.
We make the meaning of the weak formulation of problem (3.31) explicit. This
step serves again as a preparatory step for the discretizations soon to follow. A
function v ∈W 1(0, T ;V,H) solves the weak problem (3.31) of step iii), if v satisfies
the initial condition as a limit in H and if

−
∫ T

0
〈v(t, ·), ϕ〉H∂tν(t) dt+

∫ T

0
a(v(t, ·), ϕ)ν(t) dt+ r

∫ T

0
〈v(t, ·), ϕ〉Hν(t) dt

= −
(
−
∫ T

0
〈ψ(t, ·), ϕ〉H∂tν(t) dt (3.32)

+

∫ T

0
a(ψ(t, ·), ϕ)ν(t) dt+ r

∫ T

0
〈ψ(t, ·), ϕ〉Hν(t) dt

)
for all ν ∈ C∞0 (0, T ) that serve as test functions with respect to the time domain
and for all ϕ ∈ V that serve as test functions with respect to the spacial domain.
In (3.32), the weak derivatives with respect to time have been transfered to the
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test function ν, the expression for the right hand side f has been resolved and
a(·, ·) denotes the bilinear form associated with the operator A in the sense of
Definition 3.5.

v) Space discretization.
In general, the solution v ∈W 1(0, T ;V,H) to problem 3.31 lives in a Hilbert space
of infinite dimension. Clearly, we will not be able to capture its infinite dimen-
sionality numerically. Instead, we choose a sequence of finite dimensional Hilbert
spaces Vn, n ∈ N, with Vn ⊂ V for all n ∈ N and reformulate problem (3.31)
on these subspaces. A finite set of n ∈ N basis functions suffices to span each
subspace Vn which thus renders numerical solutions schemes applicable. By as-
sumption in step iii), the space V is separable.We choose a countable Riesz basis
{ϕ1, ϕ2, ϕ3, . . . } of V . Since by virtue of the Gelfand triplet V is dense in H, there
exists a sequence (hn)n∈N with

hn → gψ|(a,b)

in H and hn ∈ Vn = span{ϕ(n)
1 , ϕ

(n)
2 , . . . , ϕ

(n)
n } for each n ∈ N where ϕ(j)

i ∈
{ϕ1, ϕ2, ϕ3, . . . } for all i ≤ j ∈ N. The approximation vn ∈ W 1(0, T ;Vn, H ∩ Vn)
of v and hn are thus given by

vn(t) :=

n∑
k=1

V
(n)
k (t)ϕ

(n)
k , hn =

n∑
k=1

α
(n)
k ϕ

(n)
k . (3.33)

By its definition in (3.33), for each n ∈ N, vn is given as a linear combination of
basis functions ϕ(n)

k , k ∈ {1, . . . , n}, of Vn. These basis functions are weighted by
time dependent weights. Consequently we have for each t ∈ (0, T ) that vn(t) ∈
Vn. Considering the consequences of this reduction in dimensionality we now face
instead of finding v in (3.32) the new problem of finding vn ∈W 1(0, T ;Vn, H ∩Vn)
such that

−
∫ T

0
〈vn(t, ·), ϕ〉H∂tν(t) dt+

∫ T

0
a(vn(t, ·), ϕ)ν(t) dt+ r

∫ T

0
〈vn(t, ·), ϕ〉Hν(t) dt

= −
(
−
∫ T

0
〈ψ(t, ·), ϕ〉H∂tν(t) dt (3.34)

+

∫ T

0
a(ψ(t, ·), ϕ)ν(t) dt+ r

∫ T

0
〈ψ(t, ·), ϕ〉Hν(t) dt

)
for all ν ∈ C∞0 (0, T ) and for all test functions ϕ ∈ Vn. By assumption, the
bilinear form a(·, ·) satisfies conditions ii) and iii) with respect to the space V . As
a consequence, so does the bilinearform a|Vn×Vn with respect to Vn. The classic
Theorem 3.7 thus guarantees the existence and uniqueness of a weak solution vn to
the variational problem (3.34) for each n ∈ N. Additionally, the sequence (vn)n≥1

converges to the solution v of the infinite dimensional original problem (3.32) in
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3 PIDEs and option pricing

the sense that

vn → v in L2(0, T ;V ), max
0≤t≤T

‖vn(t)− v(t)‖H → 0, (3.35)

see Theorem 23.A and Remark 23.25 in Zeidler (1990).

vi) Matrix formulation.
For t ∈ (0, T ) we can represent each vn(t, ·) using the basis functions of Vn,

vn(t, ·) =
n∑
k=1

Vk(t)ϕ
(n)
k , (3.36)

with t dependent coefficients Vk(t), k ∈ {1, . . . , n}. A matrix representation
of (3.34) arises. Let n ∈ N arbitrary but fix. All operators in (3.34) are linear.
Therefore, using only the basis function ϕ(n)

j , j ∈ {1, . . . , n}, of Vn as test functions
does not result in a loss of generality. It allows, however, transforming (3.34) into
a matrix form. We get

n∑
k=1

∂tVk(t)〈ϕ
(n)
k , ϕ

(n)
j 〉H +

n∑
k=1

Vk(t)a(ϕ
(n)
k , ϕ

(n)
j )

+r

n∑
k=1

Vk(t)〈ϕ
(n)
k , ϕ

(n)
j 〉H = Fj(t),

Vk(0) = αk, k ∈ {1, . . . , n},

(3.37)

with appropriately chosen αk, k ∈ {1, . . . , n}, to approximate the initial condition
and wherein for j ∈ {1, . . . , n}

Fj(t) = −
(
〈∂tψ(t, ·), ϕ(n)

j 〉+ a(ψ(t, ·), ϕ(n)
j ) + r〈ψ(t, ·), ϕ(n)

j 〉
)
. (3.38)

We rewrite (3.37) in matrix notation by

M V̇ (t) +AV (t) = F (t), for almost all t ∈ [0, T ],

V (0) = α,
(3.39)

wherein F (t) = (F1(t), . . . , Fn(t))′ and equivalently α = (α1, . . . , αn)′ and the
central matrices M ∈ Rn×n and A ∈ Rn×n are given by

Mjk = 〈ϕ(n)
k , ϕ

(n)
j 〉H , ∀1 ≤ j, k ≤ n, (3.40)

Ajk = a(ϕ
(n)
k , ϕ

(n)
j ) + r〈ϕ(n)

k , ϕ
(n)
j 〉H , ∀1 ≤ j, k ≤ n. (3.41)

We call M the mass matrix and A the stiffness matrix. To solve problem (3.39)
we thus now need to determine the time dependent vector

V (t) = (V1(t), . . . , Vn(t))′ (3.42)

that satisfies the ODE therein.
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3 PIDEs and option pricing

vii) Time discretization.
We have reduced the dimensionality in space. Equally, we now discretize (3.39)
with respect to time to receive a so-called fully discretized problem. To this end
we choose M ∈ N and set up a time grid

0 = t0 < t1 < · · · < tM = T. (3.43)

We introduce the notation V k := V (tk), k ∈ {0, . . . ,M}, and ∆tk = tk+1 − tk,
k ∈ {0, . . . ,M − 1}. We choose a θ ∈ [0, 1], approximate the time derivative by a
finite difference approach and get from (3.39) the fully discrete scheme

M
V k+1 − V k

∆tk
+AV k+θ = F k+θ, k ∈ {0, . . . ,M − 1}

V 0 = α,

(3.44)

with

V k+θ = θV k+1 + (1− θ)V k, k ∈ {0, . . . ,M − 1},
F k+θ = θF k+1 + (1− θ)F k, k ∈ {0, . . . ,M − 1}.

Different values of θ ∈ [0, 1] result in variations in stability of the numerical pro-
cedures as we shall see later. Typically, we set θ = 1/2, yielding the so-called
Crank-Nicolson scheme.

The matrix-vector formulation in the fully discretized scheme links the solution
V k at time grid point tk to the solution V k+1 at time grid point tk+1 The initial
condition provides the values for V 0 ∈ Rn. Thus, rewriting (3.44) and sorting by
exponent we get the relation

(M + ∆tkθA)V k+1 =
(
M −∆tk(1− θ)A

)
V k + F k+θ,

for k ∈ {0, . . . ,M − 1}, which is equivalent to

V k+1 = (M + ∆tkθA)−1
((
M −∆tk(1− θ)A

)
V k + F k+θ

)
, (3.45)

for k ∈ {0, . . . ,M − 1}. By iteratively applying (3.45), the solution to (3.44) on
the whole space-time grid is derived.

Remark 3.15 (On the fully discrete solution)
Steps i)–vii) impose several layers of approximation on the original problem (3.16).
Loosely speaking they first introduce a discretization in space, and a discretization in
time, thereafter. When the PIDE is discretized in space, at the end of step v) we cite the
convergence result (3.35) of Zeidler (1990) for the semi-discrete approximate solution
that is still continuous in time. Convergence results for the fully discrete approximate
solution V k, k ∈ {0, . . . , N}, in (3.45) are provided in Section 3.6.
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3.3.1 The model

Steps i) to vii) provide us with the theoretical background to set up a numerical Galerkin
solver to solve pricing PIDEs of type (3.16). For an actual implementation of the method
we need to decide on basis functions w(n)

k , k ∈ {1, . . . , n}, spanning the solution spaces,
a European payoff profile g and a pricing model represented by the PIDE operator A.
The core challenge then lies in calculating the key numerical ingredients, those being
the mass matrix M ∈ Rn×n as defined in (3.40), the stiffness matrix A ∈ Rn×n as
defined in (3.41), and the right hand side F ∈ Rn of (3.38). We consider the numerical
difficulties arising from these quantities in the next section, taking the pricing problem
of a European plain vanilla option in the Merton model as an example.

3.3 A FEM solver for the Merton model using hat functions

In this section, we build an actual Galerkin solver for pricing plain vanilla options in an
elementary yet well known Lévy jump diffusion model. The computational steps that
follow reflect the theoretical steps of the abstract framework of Section 3.2. We consider
the Merton model as an example.

3.3.1 The model

We briefly stated the Merton jump-diffusion asset model of Merton (1976) in Fourier
terms in Section 2.3.2. Throughout the rest of this chapter, it will serve as the ex-
ample that the numerical PIDE solver being developed in this chapter will be based
on. Let us therefore highlight its features in more detail. Consider a stochastic basis
(Ω,F , (Ft)t≥0,Q). In the Merton model, the price process (St)t≥0 of the underlying asset
is modeled by

St = S0e
Lt , (3.46)

with S0 = ex0 > 0 being today’s value of the underlying, and wherein (Lt)t≥0 is a
Lévy jump diffusion process composed of a drift b ∈ R, a Brownian part σ > 0 and
a compound Poisson distributed jump part with jump intensity λ > 0 and Normally
N (α, β2) distributed jump sizes,

Lt = bt+ σWt +

Nt∑
i=1

Xi, (3.47)

wherein (Wt)t≥0 is a standard Brownian motion and Xi ∼ N (α, β2), for all i ∈ N. The
Brownian motion (Wt)t≥0, the Poisson process (Nt)t≥0 and the normally distributed
random variables are independent from another. From (3.47) we read off the the triplet
(b, σ, F ) that characterizes the model. The Lévy measure is given by

F (dx) = λ
1√

2πβ2
exp

(
−(x− α)2

2β2

)
dx. (3.48)
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3.3.2 Pricing P(I)DE

In order to determine the drift value we consider the no-arbitrage condition. The process
(St)t≥0 defined in (3.46) discounted by the constant risk-free interest rate r ≥ 0 must be
a martingale under Q, such that

ert = EQ[eLt ] = etθ(i(−i)), ∀t ≥ 0, (3.49)

holds. By the definition of the cumulant generating function θ in (2.11) of Lemma 2.10,
the identity (3.49) holds if

r = θ(i(−i)) = b+
1

2
σ2 +

∫
R

(ey − 1)F (dy), (3.50)

where we set the cut-off function to zero, h ≡ 0, by Remark 2.12. Note that we may
choose the ξ argument of the cumulant generating function to be complex by Theo-
rem 2.13. In accordance with the no-arbitrage condition stated in generality by iden-
tity (2.31), the drift b is thus set to

b = r − σ2

2
−
∫
R

(ey − 1)F (dy)

= r − σ2

2
− λ

(
exp

(
(α+ β2)2 − α2

2δ2

)
− 1

)
= r − σ2

2
− λ

(
exp

(
α+

β2

2

)
− 1

)
,

(3.51)

which completes the triplet (b, σ, F ). Figure 2.2 displays a typical asset price trajectory
(S0 exp(Lt))t≥0 in the Merton model for t ∈ [0, 1].

3.3.2 Pricing P(I)DE

The Merton model introduces the forward pricing PIDE

∂tu+Au+ ru = 0 in (0, T )× R
u(0) = g in R,

(3.52)

where by (3.17) the operator takes the form

(Af)(x) = −b∂xf(x)− 1

2
σ2∂xxf(x)−

∫
R

(f(x+ y)− f(x))F (dy) (3.53)

for all f ∈ C∞0 (R), with (b, σ, F ) the characteristic triplet from above. In Section 3.1 we
underlined, that the existence and uniqueness of (weak) solutions to PIDEs of form (3.52)
depend on the choice of the solution space W 1(0, T ;V,H) yielded by the Hilbert spaces
V and H that generate a Gelfand triplet together with V ∗, the dual of V . In Section 3.2
we have taken several theoretical steps that demonstrated how to simplify a PIDE of
form (3.52) to an approximate problem that is numerically tractable. Now we want to
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

ex
p
(L

t
)

Merton Model Trajectory

σ = 0.15, λ = 2.5, α = 0.02, δ = 0.03

Figure 3.1 A single asset price trajectory in the Merton model. The Brownian compo-
nent is parameterized by σ = 0.15. Jumps arrive at a rate of λ = 2.5 with expected value
α = 0.02 and standard deviation δ = 0.03. The asset price process starts at S0 = 1. The
constant riskless interest rate is set to r = 0.03.
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3.3.2 Pricing P(I)DE

focus on the actual numerical implementation of the rather theoretical perspective of
the previous two sections. We thus do not explicitly state the various solution spaces as
we put those abstract simplification steps into concrete terms. As usual, however, we
chose

H = L2(R), or respectively H = L2(a, b). (3.54)

The pricing of classic European options requires the notion of weighted Sobolev spaces
to determine V and V ∗, consider Definition 2.30. Weighted Sobolev spaces have also
played a role in Theorem 3.10 where they were needed to link the solution to a PIDE of
type (3.52) to an expected value via a Feynman-Kac approach. We thus emphasize, that
weighted Sobolev spaces are crucial for the theoretical framework required for a unique
weak solution to (3.52) to exist. Nevertheless, from here on we focus on implementational
issues and thus try to avoid direct contact with the functional analysis in the background
wherever possible. We recommend Eberlein and Glau (2011) for the proper treatment
of the underlying spaces.

The numerical objects that we need in order to numerically approximate the weak solu-
tion to the Merton pricing PIDE (3.52) almost all depend on the bilinear form associated
with the operator. The operator A of (3.53) yields a time-homogeneous bilinear form

a(ϕ,ψ) = − b
∫
R

(∂xϕ(x))ψ(x) dx

− 1

2
σ2

∫
R

(∂xxϕ(x))ψ(x) dx

−
∫
R

(∫
R

(ϕ(x+ y)− ϕ(x))F (dy)

)
ψ(x) dx

+ r

∫
R
ϕ(x)ψ(x) dx,

(3.55)

defined for all ϕ,ψ ∈ C∞0 (R). The bilinear form a(·, ·) of (3.55) is continuous as a
mapping from H1

0 (R)×H1
0 (R)→ R. As such, it has a unique extension to an associated

bilinear form a : H1
0 (R)×H1

0 (R)→ R given by

a(ϕ,ψ) = − b
∫
R

(∂xϕ(x))ψ(x) dx

+
1

2
σ2

∫
R

(∂xϕ(x)) (∂xψ(x)) dx

−
∫
R

(∫
R

(ϕ(x+ y)− ϕ(x))F (dy)

)
ψ(x) dx

+ r

∫
R
ϕ(x)ψ(x) dx,

(3.56)

for all ϕ,ψ ∈ H1
0 (R), where the transition from (3.55) to (3.56) is achieved by applying

integration by parts in the first summand. We proceed with the bilinear form a(·, ·)
of (3.56).
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Figure 3.2 A plot of N = 15 hat functions ϕi, i ∈ {1, . . . , N}, spanning the bounded
domain (a, b) as given by Definition 3.16 on an equidistant grid. For them to better
distinguish, ϕ6 is highlighted.

3.3.3 Basis functions: The hat functions

In accordance with step ii) of the abstract scheme in Section 3.2, we limit the unbounded
spacial domain R of the Merton pricing PIDE problem to a bounded domain (a, b) ⊂ R.
On this bounded domain we establish a finite set of basis functions that span the finite
dimensional space with respect to the spacial variable x. Key ingredients of a numerical
PIDE solver depend heavily on the choice of basis functions. In this implementation we
choose the well known hat functions as basis functions.

Definition 3.16 (FEM hat functions)
Let N ∈ N and a < b ∈ R. Assume an equidistant grid Ω = {x0, x1, . . . , xN , xN+1} on
(a, b) with mesh fineness h > 0,

a = x0 < x1 < · · · < xN < xN+1 = b, (3.57)

with xi = a+ ih for all i ∈ {1, . . . , N + 1}, then the N hat functions ϕi, i ∈ {1, . . . , N},
are given by

ϕi(x) =

(
1− |x− xi|

h

)
1|x−xi|<h, i ∈ {1, . . . , N}, (3.58)

with derivative in the distributional or weak sense of Definition 2.23 given by

∂

∂x
ϕi(x) =

{
h−1, x ∈ (xi − h, xi],
−h−1, x ∈ (xi, xi + h),

(3.59)

for all i ∈ {1, . . . , N}.

Clearly, the hat functions of Definition 3.16 are piecewise linear as Figure 3.2 illustrates.
Later, we will also need the Fourier transform of the hat functions on an equidistant
grid. This is provided by the following lemma.
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3.3.3 Basis functions: The hat functions

Lemma 3.17 (Fourier transform of hat functions)
Assume N ∈ N and let ϕi, i ∈ {1, . . . , N}, be the hat functions on an equidistant grid
{x1, . . . , xN} with grid fineness h > 0 as introduced in Definition 3.16. Denote by ϕ0 the
hat function associated with the origin,

ϕ0(x) =

(
1− |x|

h

)
1|x|<h, (3.60)

with appropriately scaled support, suppϕ0 ⊂ [−h, h]. Then, the characteristic function
of hat function ϕj, j ∈ {1, . . . , N}, is given by

ϕ̂j(ξ) = eiξxj ϕ̂0(ξ), (3.61)

for all ξ ∈ R, where
ϕ̂0(ξ) =

2

ξ2h
(1− cos(ξh)), (3.62)

for all ξ ∈ R.

Proof
The derivation of the characteristic function of ϕ0 is a straightforward calculation,

ϕ̂0(ξ) =

∫
R
eiξxϕ0(x) dx

=
1

h

∫ 0

−h
(h+ x)eiξx dx+

1

h

∫ h

0
(h− x)eiξx dx

=
1

h

(∫ h

0
he−iξx + heiξx dx+

∫ h

0
−xe−iξx − xeiξx dx

)
=

1

h

(
2h

∫ h

0
cos(ξx) dx− 2

∫ h

0
x cos(ξx) dx

)
=

2

h

(
h

[
1

ξ
sin(ξx)

]h
0

− 1

ξ2
[ξx sin(ξx) + cos(ξx)]h0

)

=
2

h

(
h

ξ
(sin(ξh)− 0)− 1

ξ2
(ξh sin(ξh) + cos(ξh)− (0 + 1))

)
=

2

ξ
sin(ξh)− 2

ξ2h
(ξh sin(ξh) + cos(ξh)− 1)

=
2

ξ2h
(1− cos(ξh)).

From this we deduce with ϕj = ϕ0(· − xj) and by property i) of Lemma 2.4, that the
characteristic function of ϕj is given by

ϕ̂j(ξ) = eiξxj ϕ̂0(ξ),

for all ξ ∈ R and for all j ∈ {1, . . . , N}, which proves the lemma. �
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3.3.4 Mass and stiffness matrix - an explicit derivation

3.3.4 Mass and stiffness matrix - an explicit derivation

As we have seen in Section 3.2, the key ingredients of a numerical solver are the mass
matrix M and the stiffness matrix A. They drive the so-called time stepping scheme
of (3.44) or (3.45), respectively, that iteratively derives the fully discrete solution on the
space-time grid. Both matrices depend on the choice of basis functions ϕi, i ∈ {1, . . . , N},
spanning the finite dimensional solution spaces built on VN .

Lemma 3.18 (Mass matrix for hat functions)
Let N ∈ N, and assume N hat functions ϕi, i ∈ {1, . . . , N}, spanning a bounded domain
given by an equidistantly spaced grid with mesh fineness h > 0. Then the mass matrix
M ∈ RN×N given by

Mij =

∫
R
ϕj(x)ϕi(x) dx, i, j ∈ {1, . . . , N}, (3.63)

computes to

M =
h

6



4 1 0 · · · 0

1 4 1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 4 1

0 · · · 0 1 4


, (3.64)

with M ∈ RN×N .

Proof
The entries of the mass matrix M are derived by elementary calculations. �

Mass matrix entriesMij for i, h ∈ {1, . . . , N}, as defined by (3.63) are only nonzero when
the domains of the associated basis functions ϕi and ϕj overlap. Therefore, the mass
matrix M of (3.64) is a sparse matrix when the underlying grid is populated by finitely
supported hat functions and the degree of sparsity grows in N , as Mi,j 6= 0 if and only
of |i− j| ≤ 1.

The derivation of the stiffness matrix is a lot more involved. We recall the definition of
the stiffness matrix in Equation (3.41) as

Aij = a(ϕj , ϕi) + r〈ϕj , ϕi〉H , i, j ∈ {1, . . . , N}.

We split up the stiffness matrix A ∈ RN×N into several parts that we compute individ-
ually,

A = A(1) +A(2) +A(3) +A(4) (3.65)
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where

A
(1)
ij = − b

∫
R

(
∂

∂x
ϕj(x)

)
ϕi(x) dx (3.66)

A
(2)
ij =

1

2
σ2

∫
R

∂

∂x
ϕj(x)

∂

∂x
ϕi(x) dx (3.67)

A
(3)
ij = −

∫
R

∫
R

(ϕj(x+ y)− ϕj(x))F (dy)ϕi(x) dx (3.68)

A
(4)
ij = rMij (3.69)

for i, j ∈ {1, . . . , N}, where we implicitly use H = L2(a, b) as set in (3.54). The stiff-
ness matrix carries the information describing the behavior of the underlying asset price
process as represented by the characteristic triplet (b, σ, F ). Especially the existence of
a Lévy measure F carrying jump information, F (dy) 6= 0, in general complicates the
derivation of (semi-)explicit formulas of the stiffness matrix considerably. Section 3.2,
where we stated the Lévy measures F of some well known models, underlines the chal-
lenge of numerical integration with respect to Lévy measures.

Yet, for the Merton model we will derive (semi-)explicit formulas for the stiffness matrix
entries, including the jump part A(3)

ij in (3.68). We will analytically solve the integrals in

A
(k)
ij , k ∈ {1, 2, 3, 4}, until explicit formulas are derived or until the expressions depend

on integrals with respect to the Lévy measure F that the following Lemma can solve.

Lemma 3.19 (Important integrals with respect to F (dy) in the Merton model)
Let F (dy) be the Lévy measure of the Merton model,

F (dy) = λ
1√
2πβ

exp

(
−(y − α)2

2β2

)
dy (3.70)

with α ∈ R, β ∈ R+ and λ ∈ R+. Then we have the following identities,
x∫

−∞

F (dy) =
1

2
λ erf

(
x− α√

2β

)
. (3.71)

Let c ∈ R, then
x∫

−∞

(y − c)F (dy) =
λ√
2πβ

(
β2

(
−e−

(x−α)2

2β2

)
−
√
π

2
β(c− α) erf

(
x− α√

2β

))
, (3.72)

and
x∫

−∞

(y − c)2F (dy) =
λ

2
√

2π

(√
2π
(
(α− c)2 + β2

)
erf

(
x− α√

2β

)

− 2β(α− 2c+ x)e
− (α−y)2

2β2

)
, (3.73)
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Figure 3.3 The erf function as given by (3.76) in Lemma 3.19, evaluated over x ∈ [−3, 3].

further

x∫
−∞

(y − c)3F (dy) = − λ

2
√

2π

(√
2π(c− α)((α− c)2 + 3β2) erf

(
x− α√

2β

)

+ 2βe
− (α−x)2

2β2 (α2 + 3c2 − 3c(α+ x) + 2β2 + x2 + αx)

)
, (3.74)

and finally
x∫

−∞

eyF (dy) = −λ
2
eα+β2

2 erf

(
α+ β2 − x√

2β

)
. (3.75)

In all identities (3.71)–(3.75), erf denotes the so called error function,

erf : R→ (−1, 1),

defined by

erf(x) =
2√
π

∫ x

0
e−t

2
dt, ∀x ∈ R. (3.76)

Proof
All integrals have been solved using http://www.wolframalpha.com and performing
elementary transformations on the results. �

A plot of the erf function is depicted in Figure 3.3.
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Remark 3.20 (erf and normal distribution)
The relation between the erf function and the cumulative distribution function of the
standard normal distribution is obvious,

erf(x) =
2√
π

∫ x

0
e−t

2
dt =

2√
2π

∫ √2x

0
e−

t2

2 dt

= 2
[
Φ0,1

(√
2x
)
− Φ0,1(0)

]
= 2Φ0,1

(√
2x
)
− 1,

where Φµ,σ2 denotes the cumulative distribution function of the normal distribution with
expected value µ ∈ R and standard deviation σ ∈ R+.

We begin the derivation of the individual parts A(k), k ∈ {1, 2, 3, 4}, of the stiffness
matrix A of (3.65).

(A
(1)
ij ) Elementary calculations result in

A
(1)
ij =

1

2
b

{
−1, j − i = 1,

1, j − i = −1,

yielding the matrix

A(1) =
1

2
b



0 −1 0 · · · 0

1 0 −1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 0 −1

0 · · · 0 1 0


,

with b as in (3.51).

(A
(2)
ij ) Elementary calculations result in

A
(2)
ij =

1

2h
σ2

{
2, |i− j| = 0,

−1, |i− j| = 1,

yielding the matrix

A(2) =
1

2h
σ2



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2


. (3.77)
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x

ϕ·(x)

xi xj − y
x

ϕ·(x)

xi
xj − y

Figure 3.4 Two types of overlap have to be distinguished during the derivation of A(3)
ij

in (3.78). On the left, y is such that h < |xi − (xj − y)| < 2h, while on the right, y is
such that |xi− (xj − y)| < h. Whenever |xi− (xj − y)| > 2h, there is no overlap and the
respective integral (3.80) is equal to zero.

(A
(3)
ij ) We compute A(3) of (3.68).

A
(3)
ij = −

∫
R

∫
R

(ϕj(x+ y)− ϕj(x))F (dy)ϕi(x) dx

= −
∫
R

∫
R

(ϕj(x+ y)− ϕj(x))ϕi(x) dxF (dy)

= −
∫
R

[∫
R
ϕj(x+ y)ϕi(x) dx

]
F (dy) +

∫
R

[∫
R
ϕj(x)ϕi(x) dx

]
F (dy)

= −
∫
R

[∫
R
ϕj(x+ y)ϕi(x) dx

]
F (dy) + λMij . (3.78)

Let now y ∈ R and i, j ∈ {1, . . . , N} fix such that

y ≤ xj − xi ⇔ xi ≤ xj − y (3.79)

and consider
∫
R ϕj(x+ y)ϕi(x) dx. Then, by the definition of the hat functions ϕi,

i ∈ {1, . . . , N}, in Definition 3.16 we have∫
R
ϕj(x+ y)ϕi(x) dx

=

∫
R

(
1− |x− (xj − y)|

h

)
1|x−(xj−y)|<h

(
1− |x− xi|

h

)
1|x−xi|<h dx.

(3.80)

The integral (3.80) is nonzero only if the two functions in the integrand overlap,
which is the case if |xi − (xj − y)| < 2h. Then, two different kinds of overlapping
have to be distinguished, see Figure 3.4.

Define d = xj − xi. Then, by some tedious but elementary calculations, (3.80)
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computes to∫
R
ϕj(x+ y)ϕi(x) dx = 1h<|y−d|≤2h

[
(2h− |y − d|)3

6h2

]
+ 1|y−d|≤h

[
1

2h2
|y − d|3 − 1

h
|y − d|2 +

2

3
h

]
.

(3.81)

Concerning the indicator functions in (3.81) we find that

1h<|y−d|≤2h = 1⇔ y ∈ (d+ h, d+ 2h] ∪ [d− 2h, d− h),

1|y−d|≤h = 1⇔ y ∈ [d− h, d+ h].
(3.82)

We use the intervals of (3.82), where the indicator functions in (3.81) are nonzero,
to integrate

∫
R ϕj(x+y)ϕi(x) dx with respect to the Lévy measure ν of the Merton

model. Until now, all derivations have been conducted independently of the model
represented by the Lévy measure. At this point, the derivations depend on the
model. We derive∫

R

∫
R
ϕj(x+ y)ϕi(x) dxF (dy) =

∫
R
1h<|y−d|≤2h

[
(2h− |y − d|)3

6h2

]
F (dy)

+

∫
R
1|y−d|≤h

[
1

2h2
|y − d|3 − 1

h
|y − d|2 +

2

3
h

]
F (dy).

(3.83)

We integrate both summands in (3.83) separately. For the first we find∫
R
1h<|y−d|≤2h

[
(2h− |y − d|)3

6h2

]
F (dy)

=
1

6h2

(∫ d−h

d−2h
(2h+ y − d)3F (dy) +

∫ d+2h

d+h
(2h− (y − d))3F (dy)

)
=

1

6h2

(∫ d−h

d−2h
(y − (d− 2h))3F (dy)−

∫ d+2h

d+h
(y − (d+ 2h))3F (dy)

) (3.84)

For the integration of the second summand in (3.81) we have∫
R
1|y−d|≤h

[
1

2h2
|y − d|3 − 1

h
|y − d|2 +

2

3
h

]
F (dy)

=
1

2h2

∫ d+h

d−h
|y − d|3F (dy)− 1

h

∫ d+h

d−h
|y − d|2F (dy) +

2

3
h

∫ d+h

d−h
F (dy)

=
1

2h2

(∫ d+h

d
(y − d)3F (dy)−

∫ d

d−h
(y − d)3F (dy)

)
− 1

h

∫ d+h

d−h
(y − d)2F (dy) +

2

3
h

∫ d+h

d−h
F (dy)

(3.85)

All the individual integral values in (3.84) and (3.85) are now provided by Lemma 3.19.

This finishes the derivation of
∫
R
∫
R ϕj(x+ y)ϕi(x) dxF (dy) in (3.78) and thereby

also the computation of the third part of the stiffness matrix A as given by (3.68).
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(A
(4)
ij ) For the final part of the stiffness matrix, A(4) there is nothing left to do. By

definition,
A

(4)
ij = rMij ,

so the forth part of the stiffness matrix A is given by the definition of the mass
matrix in (3.63).

3.3.5 The right hand side F - a Fourier approach

As the goal of this implementation is to derive prices of plain vanilla European call
and put options, the solution to pricing PIDE (3.52) will not possess zero boundaries.
Linear combinations of classic hat functions, however, can only represent functions with
zero boundaries (where we will not pursue the concept of special hat functions that
are basically half hats associated with node x0 or xN+1, respectively, that circumvent
this restriction. We direct the reader to Chapter 5.2 in Seydel (2012) for these special
basis functions, instead). Consequently, the original Merton pricing PIDE needs to be
transformed to a new problem which we assume to be equal to zero at the boundaries of
the bounded domain (a, b). We have seen the theoretical concept of the enforcement of
Dirichlet zero-boundaries in Section 3.2 and in Steps i) and ii) therein. For the numerical
implementation, we need to decide on a specific function ψ to subtract from the solution
to the original problem. The choice of this function depends first and foremost on the
payoff profile of the option that we derive prices for.

For plain vanilla European call and put options, there are standard boundary conditions
in the literature see Example 15.5 in Hull (2015). These are inherited from the price
value V C of a call option and the price value V P of a put option that behave for |x| → ∞
and |x| → 0 as

V C(x, t)→ 0, x→ −∞, t ∈ [0, T ]

V C(x, t)→ ex −Ke−rt, x→ +∞, t ∈ [0, T ]
(3.86)

for call options and

V P (x, t)→ Ke−rt − ex, x→ −∞, t ∈ [0, T ]

V P (x, t)→ 0, x→ +∞, t ∈ [0, T ]
(3.87)

for put options. In Figure 3.5 we assess the accuracy of these boundary conditions in
the Black&Scholes model. For the localization of the pricing PIDE (3.52) to a bounded
space-time region (0, T )× (a, b) with a� log(K)� b ∈ R and T > 0, a function ψ,

ψ : [0, T ]× [a, b]→∞, (3.88)

to subtract would need to fulfill

ψC(t, a) = 0, ∀t ∈ [0, T ],

ψC(t, b) = eb −Ke−rt, ∀t ∈ [0, T ],
(3.89)
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Figure 3.5 Precision study of the classic boundary conditions for European call (left)
and put options (right). We compare ψ defined according to (3.89) or (3.90), respectively,
to prices of the Black&Scholes model generated by Matlab’s blsprice routine. We set
r = 0.05, K = 1, σ = 0.3 and evaluate European call and put prices for Smax

0 = eb with
b = 2.5 and Smin

0 = ea with a = −2.5 for time to maturity values of t ∈ [1, 2]. With
values for r and σ being rather large and |b| and |a| being rather small, both model as
well as grid parameters have been chosen rather conservatively. Results in more realistic
settings are even better than the depicted ones.

for call options and
ψP (t, a) = Ke−rt − ea, ∀t ∈ [0, T ],

ψP (t, b) = 0, ∀t ∈ [0, T ],
(3.90)

for put options. Naive choices for both European options are

ψ̃C(t, x) =
(
ex −Ke−rt

)+
,

ψ̃P (t, x) =
(
Ke−rt − ex

)+
.

(3.91)

Both candidates in (3.91) fulfill the boundary conditions (3.89) and (3.90), respectively.

However, we do not want to repeat tedious calculations of the kind we encountered in
the derivation of semi-explicit expressions for entries of the stiffness matrix. Instead,
we intend to apply a Fourier approach and compute the entries of the right hand side
F ∈ RN numerically. As we shall see below, for the application of this approach we
need not only a closed expression of the function ψ which we subtract from the original
problem, but additionally a closed expression of its Fourier transform ψ̂. For better
numerical tractability, we require a fast decay of |ψ̂(ξ)| for |ξ| → ∞. The smoother ψ, the
faster |ψ̂| decays, compare Remark 2.8. Consequently, due to the kink at x = log(Ke−rt)
for all t ∈ [0, T ], both ψ̃C(·, t) and ψ̃P (·, t) are only continuous, but not continuously
differentiable and thus already lack elementary smoothness. We thus need different
functions ψ to subtract that not only fulfill the appropriate boundary conditions (3.89)
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or (3.90) but that are also as smooth as possible. This additional requirement rules out
naive candidates like (3.91). As we have seen in (3.38), the right hand side in vector
notation is given by F (tk) = (F1(tk), . . . , FN (tk)) ∈ RN for each tk on the time grid with
Fj(·), j ∈ {1, . . . , N}, given by

Fj = −
∫
R

(∂tψ(t, x) + (Aψ)(t, x) + rψ(t, x))ϕj(x) dx (3.92)

for all j ∈ {1, . . . , N}.

In contrast to the integrals in the stiffness matrix, we intend to avoid solving the integral
in (3.92) analogously to derive the right hand side F . Instead, we follow Eberlein and
Glau (2011) by invoking Parseval’s identity of Theorem 2.7 in a way that we call the
symbol method.

Lemma 3.21 (The symbol method)
Let A be the symbol of a Lévy process given by the characteristic triplet (b, σ, F ). Denote
by A : C∞0 (Rd,C)→ C∞(Rd,C) the pseudodifferential operator associated with symbol A.
Furthermore, denote by a : C∞0 × C∞0 → C the bilinear form associated with the operator
A. Let η ∈ Rd. If

i) the exponential moment condition∫
|x|>1

e−〈η
′,x〉F (dx) <∞ (3.93)

holds for all η′ ∈ sgn(η1)[0, |η1|]× · · · × sgn(ηd)[0, |ηd|] and

ii) there exists a constant C1 > 0 with

|A(z)| ≤ C1(1 + ‖z‖)α (3.94)

for all z ∈ U−η where
U−η = U−η1 × · · · × U−ηd (3.95)

with U−ηj = R− i sgn(ηj)[0, |ηj |),

then a(·, ·) possesses a unique linear extension a : H
α/2
η ×Hα/2

η → C which can be written
as

a(ϕ,ψ) =
1

(2π)d

∫
Rd
A(ξ − iη)ϕ̂(ξ − iη)ψ̂(ξ − iη) dξ (3.96)

for all ϕ,ψ ∈ Hα/2
η (Rd).

Proof
The proof can be found in Eberlein and Glau (2011) using Theorem 4.1 therein and
Parseval’s identity 2.7. �
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Lemma 3.21 enables us to avoid considering the operator A for evaluating the associated
bilinear form and use the belonging symbol A, instead. Let us observe the effect of
Lemma 3.21 on the derivation of the right hand side Fj , j ∈ {1, . . . , N} for our numerical
FEM solver for the Merton model.

With this identity, we are able to derive the right hand side (Fj)j∈{1,...,N} in terms of
Fourier transforms. Consider a smooth function ψ : [0, T ] × R → R such that ψ(t) ∈
H
α/2
η (R) for all t ∈ [0, T ] for some η ∈ R. With t ∈ [0, T ],

Fj(t) = −
∫
R

(∂tψ(t, x) + (Aψ)(t, x) + rψ(t, x))ϕj(x) dx

= −
(∫

R
∂tψ(t, x)ϕj(x) dx+

∫
R

(Aψ)(t, x)ϕj(x) dx+ r

∫
R
ψ(t, x)ϕj(x) dx

)
.

(3.97)

We consider the three parts in (3.97) individually. In the last summand we use appro-
priate dampening to apply Parseval’s identity of Theorem 2.7 and get∫

R
ψ(t, x)ϕj(x) dx =

∫
R
eηxψ(t, x)e−ηxϕj(x) dx

=
1

2π

∫
R
F(eη·ψ(·, t))(ξ)F(e−η·ϕj(·, t))(ξ) dξ

=
1

2π

∫
R
ψ̂η(·, t)(ξ)ϕ̂j−η(ξ) dξ.

(3.98)

By the same means we get for the first summand in (3.97) that∫
R
∂tψ(t, x)ϕj(x) dx =

1

2π

∫
R
∂tψ̂η(·, t)(ξ)ϕ̂j−η(ξ) dξ. (3.99)

Finally, for the second summand we have by applying the symbol method of Lemma 3.21
to (3.92) that∫

R
(Aψ)(t, x)ϕj(x) dx =

1

2π

∫
R
A(ξ − iη)ψ̂(·, t)(ξ − iη)ϕ̂j−η(ξ) dξ, (3.100)

where A denotes the symbol of the Merton model.

Example 3.22 (Symbol in the Merton model)
In the Merton model where σ > 0, λ > 0, α ∈ R and β > 0, the symbol computes to

A(ξ) = Amerton(ξ) =
1

2
σ2ξ2 + iξb− λ

(
e−iαξ−

1
2
β2ξ2 − 1

)
(3.101)

for all ξ ∈ R.

We see from Example 3.22 that the symbol of the Merton model appears to be numer-
ically accessible. Consequently, the symbol A for the Merton model is very suitable for
numerical integration, as is ψ̂ given that the function ψ itself is smooth enough. In this
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case, solving the integral in (3.100) is numerically accessible – in stark contrast to the
respective integral in (3.97).

The following remark summarizes the numerical requirements on ψ.
Remark 3.23 (Empirical criteria for ψ)
Consider a pricing PIDE (3.52) for a European plain vanilla option with payoff profile
g with weak solution u ∈ W 1(0, T ;H

α/2
η (R), L2

η(R)) for some weight η ∈ R that shall be
numerically approximated on a space time grid in [a, b] × [0, T ]. Assume ψ ∈ Hα/2

η (R)
that (approximately) matches the boundary conditions on the boundaries of the space-time
grid i.e. for the call option (3.89) and for the put option (3.90). Then ψ is numerically
suitable for the purpose of localizing the pricing PIDE (3.52) if

i) ψ is quickly evaluable on the region [a, b]× [0, T ] and

ii) the integral

Fj = − 1

2π

∫
R

(
̂∂tψ(·, t)(ξ − iη, t) +A(ξ − iη)ψ̂(·, t)(ξ − iη) + rψ̂(ξ − iη, t)

)
ϕ̂j−η(ξ) dξ

can be numerically evaluated for all j ∈ {1, . . . , N}.

Criterium i) allows retransforming the solution of the localized problem into the solution
of the original pricing PIDE, while criterium ii) grants the numerical derivation of the
right hand side F ∈ RN .

In the following two subsections we will analyze two candidates for ψ that match the
criteria of Remark 3.23.

A first suggestion for ψ consists in using Black&Scholes prices as functions in x =
log(S0) ∈ [a, b] and time to maturity t ∈ [0, T ] for localization of the pricing PIDE (3.52).
We express the price of a European option with payoff profile fK in the Black&Scholes
model in terms of (generalized) Fourier transforms using Proposition 2.20 and define ψ
accordingly, as the following lemma explains.
Lemma 3.24 (Subtracting Black&Scholes prices)
Let η ∈ R such that Conditions (Exp) and (Int) of Proposition 2.20 are satisfied. Choose
a Black&Scholes volatility σ2 > 0 and for European options set rΨ = r with r ≥ 0 the
prevailing risk-free interest rate. Define ψ to be the associated Black&Scholes price,

ψ(t, x) = ψbs,rψ(t, x) = e−ηxe−rψt
1

2π

∫
R
eiξxf̂K(−(ξ + iη))ϕ

bs,rψ
t,σ (ξ + iη) dξ, (3.102)

wherein fK = g, the initial condition and A the symbol of the associated operator A
in (3.16). Then, the right hand side F : [0, T ]→ RN takes the form

Fj(t) =
1

2π

∫
R

(
(rψ − r) +

(
Abs,rψ −A

)
(ξ − iη)

)
f̂K(ξ − iη) exp

(
−t
(
rψ +Abs,rψ(ξ − iη)

))
ϕ̂j(ξ + iη) dξ. (3.103)
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Figure 3.6 Precision study of the boundary conditions for European call (left) and put
options (right) now given by (3.114). We compare ψ ×Φ0,σΦ=0.5 or ψ × (1−Φ0,σΦ=0.5),
respectively, to prices of the Black&Scholes model. Equivalently to Figure 3.5 we set
r = 0.05, K = 1, σ = 0.3 and evaluate European call and put prices for Smax

0 = exmax

and Smin
0 = exmin . In contrast to Figure 3.5, the absolute values of xmin and xmax have

to be increased to xmin = −3.5 and xmax = 3.5 to achieve comparable accuracy.

for all j ∈ {1, . . . , N}.

Proof
In order to derive the right hand side, we need to represent ψ in Fourier terms. Since
for call and put options, ψ /∈ L1(R), we compute the (generalized) Fourier transform of
ψ or the Fourier transform of ψη, respectively. We get

ψη(t, x) = eηxψbs,rψ(t, x)

= e−rψt
1

2π

∫
R
eiξxf̂K(−(ξ + iη))ϕ

bs,rψ
t,σ (ξ + iη) dξ

= e−rψt
1

2π

∫
R
e−iξxf̂K(ξ − iη)ϕ

bs,rψ
t,σ (−(ξ − iη)) dξ.

(3.104)

The integral in (3.104) is a Fourier (inversion) integral. Hence,

ψ̂η(ξ, t) = e−rψtf̂K(ξ − iη)ϕ
bs,rψ
t (−(ξ − iη))

= e−rψtf̂K(ξ − iη) exp
(
−tAbs,rψ(ξ − iη)

)
= f̂K(ξ − iη) exp

(
−t
(
rψ +Abs,rψ(ξ − iη)

))
,

(3.105)

where we used the relation between the characteristic function and the symbol of a
process, confer Remark 2.19. Next, we prove that

∂̂

∂t
ψη(t, ξ) =

∂

∂t
ψ̂η(t, ξ) (3.106)
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for almost all t ∈ [0, T ]. For notational convenience we assume r = 0 and K = 1 for the
proof of (3.106). Let 0 < ε < T and define Iε = [ε, T ]. Thus, the claim (3.106) holds, if∫

R
eiξx

∂

∂t

∫
R
e−izxf̂1(z − iη)ϕbs

t,σ(−(z − iη)) dz dx

=

∫
R
eiξx

∫
R
e−izxf̂1(z − iη)

∂

∂t
ϕbs
t,σ(−(z − iη)) dz dx,

(3.107)

which holds if

∂

∂t

∫
R
e−izxf̂1(z − iη)ϕbs

t,σ(−(z − iη)) dz

=

∫
R
e−izxf̂1(z − iη)

∂

∂t
ϕbs
t,σ(−(z − iη)) dz, ∀x ∈ R.

(3.108)

Fix x ∈ R. The integrand on the left of (3.108) is integrable for all t ∈ Iε and it
is differentiable for all z ∈ R. Furthermore, the integrand on the right of (3.108) is
bounded by a function h independent of t ∈ Iε, since∣∣∣∣e−izxf̂1(z − iη)

∂

∂t
ϕbs
t,σ(−(z − iη))

∣∣∣∣
=

∣∣∣∣f̂1(z − iη)

(
ib(−(z − iη))− 1

2
σ2(z − iη)2

)
ϕbs
t,σ(−(z − iη))

∣∣∣∣
=

∣∣∣∣f̂1(z − iη)

(
ib(z − iη) +

1

2
σ2(z − iη)2

)∣∣∣∣∣∣∣∣exp

(
it[−bz + σ2ηz]− tbη − t1

2
σ2(z2 − η2)

)∣∣∣∣
≤
∣∣∣∣f̂1(z − iη)

(
ib(z − iη) +

1

2
σ2(z − iη)2

)∣∣∣∣
max
t∈[ε, T ]

exp
(
− t(bη − 1

2
σ2η2)

)
exp

(
− ε1

2
σ2z2

)
= h(z)

(3.109)

wherein b ∈ R is the risk neutral drift chosen according to (2.35) from Section 2.3.1 in
the preliminary chapter. The upper bound derived in (3.109) is integrable, h ∈ L1(R).
We may therefore apply Lemma 16.2 from Bauer (1992) which validates identity (3.108)
and thus proves identity (3.106) for all t ∈ Iε. Since ε can be chosen arbitrarily small,
identity (3.106) holds almost everywhere on [0, T ]. We may thus exchange integration
and differentiation and get

∂̂

∂t
ψη(t, ξ) =

∂

∂t
ψ̂η(t, ξ)

= f̂K(ξ − iη)
(
−
(
rψ +Abs,rψ(ξ − iη)

))
exp

(
−t
(
rψ +Abs,rψ(ξ − iη)

))
= −

(
rψ +Abs,rψ(ξ − iη)

)
ψ̂η(t, ξ).

(3.110)
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Finally, since ψbs,rψ ∈ Hα/2
η (R), we have analogously to identity (3.100), that∫

R
(Aψbs,rψ)(t, x)ϕj(x) dx =

1

2π

∫
R
A(ξ − iη) ̂ψbs,rψ(t, ·)(ξ − iη)ϕ̂j−η(ξ) dξ. (3.111)

So, collecting our results, for ψ = ψbs,rψ we arrive at

Fj(t) = −
∫
R

(
∂

∂t
ψbs,rψ(t, x) + (Aψbs,rψ)(t, x) + rψbs,rψ(t, x)

)
ϕj(x) dx

= − 1

2π

∫
R

(
−
(
rψ +Abs,rψ(ξ − iη)

)
ψ̂
bs,rψ
η (t, ξ)

+A(ξ − iη)ψ̂
bs,rψ
η (t, ξ)

+ rψ̂
bs,rψ
η (ξ, t)

)
ϕ̂j−η(ξ) dξ

=
1

2π

∫
R

(
(rψ − r) +

(
Abs,rψ(ξ − iη)−A(ξ − iη)

))
ψ̂
bs,rψ
η (t, ξ)ϕ̂j−η(ξ) dξ

=
1

2π

∫
R

(
(rψ − r) +

(
Abs,rψ −A

)
(ξ − iη)

)
f̂K(ξ − iη) exp

(
−t
(
rψ +Abs,rψ(ξ − iη)

))
ϕ̂j(ξ + iη) dξ, (3.112)

which proves the claim. �

For the choice of η in Lemma 3.24, consider Proposition 2.20 or Lemma 2.21, respectively,
for plain vanilla European options. The candidate ψ = ψbs,rΨ matches the criteria of
Remark 3.23. It is quickly evaluable, since functions for yielding Black&Scholes prices
are implemented in many code libraries. Also, the integral in (3.103) is numerically
accessible, since the integrand decays fast.

Remark 3.25 (rΨ = 0 for American options)
Choosing ψ to be Black&Scholes prices does not only suit the case of European plain
vanilla options but American ones, as well. Only the value of rΨ needs to be adjusted.
When no dividends are paid, the price of an American call options is equal to the price
of a European call option. In this case, the Lemma applies identically. For put options,
however, the boundary conditions change when an American put instead of a European
put is considered. Then, the boundary conditions coincide with those of a European put
when interest rates are assumed to be equal to zero,

V P
Am(x, t)→ K − ex, x→ −∞,
V P

Am(x, t)→ 0, x→ +∞,
(3.113)

confer also Chapter 11 in Hull (2015). Consequently, for American options, choose
rΨ = 0 in (3.102).
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A major disadvantage of choosing ψ = ψbs,rΨ , however, lies in the fact that neither j ∈
{1, . . . , N} nor t ∈ [0, T ] can be separated from the integrand in (3.103). Consequently,
Fj(t

k), j ∈ {1, . . . , N}, k ∈ {1, . . . ,M}, must be numerically evaluated on each grid node
individually. This results in significant numerical cost. We therefore present a second
candidate for ψ that avoids this issue.

Lemma 3.26 (Subtracting Quasi-Hockey stick multiplied by Normal)
Let σψ > 0. In the European option case set rψ = r, with r ≥ 0 the prevailing risk-free
interest rate. Define ψC in the call option and ψP in the put option case by

ψC(t, x) =
(
ex −Ke−rψt

)
Φ(x), (t, x) ∈ [0, T ]× [a, b],

ψP (t, x) =
(
Ke−rψt − ex

)
(1− Φ(x)) , (t, x) ∈ [0, T ]× [a, b],

(3.114)

where Φ denotes the cumulative distribution function of the normal N (0, σ2
ψ) distribution.

Furthermore, in the call option case choose η < −1 and η > 0 in the put option case.
Then, the right hand side F : [0, T ]→ RN is given by

Fj(t) =
1

2π

(∫
R

(
A(ξ − iη) + r

) f̂N (ξ − i(η + 1))

iξ + (η + 1)
ϕ̂j(ξ + iη) dξ

− e−rψtK
∫
R

(
r − rψ +A(ξ − iη)

) f̂N (ξ − iη)

iξ + η
ϕ̂j(ξ + iη) dξ

)
, (3.115)

for all j ∈ {1, . . . , N} with t ∈ [0, T ], where A is the symbol of the associated operator A
in PIDE (3.52) and with

f̂N (ξ) = exp

(
−1

2
σ2
ψξ

2

)
,

the Fourier transform of the normal N (0, σ2
ψ) density derived in Lemma 2.3.

Proof
We consider the call option case, first. To derive the expression for Fj in (3.115) we
need to compute the Fourier transform of (the appropriately weighted) ψC . We choose
η < −1 arbitrary but fix and t ∈ [0, T ] arbitrary but fix and compute for K = 1,

ψ̂Cη (t, ·)(ξ) =

∫
R
eiξxeηx

(
ex − e−rψt

)
Φ(x) dx

=

∫
R
eiξxe(η+1)xΦ(x) dx− e−rψt

∫
R
eiξxeηxΦ(x) dx.

(3.116)

We take the first integral in (3.116) and get by applying integration by parts∫
R
eiξxe(η+1)xΦ(x) dx =

∫
R
ei(ξ−i(η+1))xΦ(x) dx

=

[
ei(ξ−i(η+1))x

iξ + (η + 1)
Φ(x)

]+∞

−∞

−
∫
R

ei(ξ−i(η+1))x

iξ + (η + 1)
fN (x) dx,

(3.117)
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where
fN (x) =

∂

∂x
Φ(x) (3.118)

denotes the density of the normal N (0, σ2
ψ). Since η < −1, the non-integral part

in (3.117) tends to zero as x→ +∞. Furthermore, by l’Hôpital’s rule we have

lim
x→−∞

e(η+1)xΦ(x) = lim
x→−∞

Φ(x)

exp
(
− (η + 1)x

)
= lim

x→−∞

fN (x)

−(η + 1) exp
(
− (η + 1)x

)
= − 1

η + 1

1√
2πσ2

ψ

lim
x→−∞

exp

(
−1

2
σ2
ψx

2

)
exp

(
(η + 1)x

)
= 0.

(3.119)

Hence, the non-integral part in (3.117) is equal to zero and we have∫
R
eiξxe(η+1)xΦ(x) dx = − 1

iξ + (η + 1)

∫
R
ei(ξ−i(η+1))xfN (x) dx, (3.120)

which can be expressed in terms of the Fourier transform of the normal distribution
yielding ∫

R
eiξxe(η+1)xΦ(x) dx = − f̂N (ξ − i(η + 1))

iξ + (η + 1)
. (3.121)

Equivalently, we obtain for the second integral in (3.116)∫
R
eiξxeηxΦ(x) dx = − f̂N (ξ − iη)

iξ + η
. (3.122)

Assembling these results we find

ψ̂Cη (t, ·)(ξ) = − f̂N (ξ − i(η + 1))

iξ + (η + 1)
+ e−rψt

f̂N (ξ − iη)

iξ + η
. (3.123)

As in the proof of Lemma 3.24, we exchange differentiation and integration and get

̂∂
∂t
ψCη (t, ·)(ξ) =

∂

∂t
ψ̂Cη (·, t)(ξ) = −rψe−rψt

f̂N (ξ − iη)

iξ + η
. (3.124)

We thus have

Fj(t) = − 1

2π

∫
R

(
˙̂
ψCη (ξ, t) +A(ξ − iη)ψ̂Cη (ξ, t) + rψ̂Cη (ξ, t)

)
ϕ̂j−η(ξ) dξ

= − 1

2π

∫
R

(
− rψe−rψt

f̂N (ξ − iη)

iξ + η

+
(
A(ξ − iη) + r

)(
− f̂
N (ξ − i(η + 1))

iξ + (η + 1)
+ e−rψt

f̂N (ξ − iη)

iξ + η

))
ϕ̂j−η(ξ) dξ
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from which we deduce by splitting the integral

Fj(t) =
1

2π

(∫
R

(
A(ξ − iη) + r

) f̂N (ξ − i(η + 1))

iξ + (η + 1)
ϕ̂j(ξ + iη) dξ

− e−rψt
∫
R

(
r − rψ +A(ξ − iη)

) f̂N (ξ − iη)

iξ + η
ϕ̂j(ξ + iη) dξ

)
(3.125)

with
f̂N (ξ) = exp

(
−1

2
σ2
ψξ

2

)
.

For the put option case we choose as defined in (3.114),

ψP (x, t) =
(
Ke−rψt − ex

)
(1− Φ(x))

=
(
ex −Ke−rψt

)
(Φ(x)− 1) .

(3.126)

Since
∂

∂x
(Φ(x)− 1) =

∂

∂x
Φ(x), ∀x ∈ R, (3.127)

the computations for ψ̂Pη follow along the same lines as they do for the call and we get
the relation

ψ̂Pη (t, ·)(ξ) = ψ̂Cη (t, ·)(ξ), ∀(t, ξ) ∈ [0, T ]× R, (3.128)

for η set to some η > 0, which proves the claim. �

Remark 3.27 (Computational features of ψC and ψP )
While ψC serves as localizing function for the call option case, ψP can be used in the
put option case. Both candidates are based on their "naive" counterparts in (3.91) but
avoid the lack of differentiability with respect to x in x = log(Ke−rt) for t ∈ [0, T ]. As a
consequence, both ψC and ψP are very smooth functions and thus fulfill the requirements
collected in Remark 3.23 when σψ is chosen small enough. Additionally, the two integrals
in (3.115) do not depend on the time variable t ∈ [0, T ] and thus need to be computed only
once for each basis function ϕj. This results in a significant acceleration in computational
time compared to the suggestion ψ = ψbs,σψ of Lemma 3.24.

We implemented the FEM solver as sketched above in MATLAB and conducted a study
of the empirical order of convergence. The results of this study can be found in Section 3.5
below.

We have also tested the implementation in a project analyzing a method commonly
used by practitioners for model calibration purposes. Clearly, our implementation as
outlined above is designed with European options in mind. As such, it is a valuable
tool for calibrating the Merton model to European option prices in the market. Yet,
practice argues that American options are traded more liquidly and thus would offer a
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more favorable source for reference prices in model calibration. Calibrating a model to
American prices, however, depends on the ability to derive American model prices for
a vast amount of model parameter constellations within a reasonable amount of time
which is typically numerically unfeasible. Therefore, some practitioners take American
option prices that they observe in the market, strip off the component that represents
the price for the American feature and calibrate their models in a European fashion
to quasi-European prices that result from that transformation. This method is known
as De-Americanization. Its effect on pricing and calibration is studied extensively in
Burkovska et al. (2016) to which our implementation contributed the results with regards
to pricing call and put options in the Merton model.

3.4 A general FEM solver based on the symbol method

Section 3.3 has provided us with a FEM solver capable of deriving European call and
put option prices in the Merton model. The key ingredients of the solver have been
analytically derived. Let us emphasize our two main findings from that exercise. First,
the analytic treatment of the Lévy measure presented a serious challenge during the
computations. Especially the double integral term and the Lévy density required lengthy
and tedious consideration. Second, the actual computations we performed are closely tied
to the Merton model. Naively setting up a FEM solver for different models in the same
way would put us in the position of having to adapt all of our Merton-specific calculations
with respect to the Lévy measure of the new model. These two findings underline that
our first approach above can hardly be generalized to other models without serious
computational efforts for each new model individually.

Consequently, in this section we approach the calculation of FEM solver components
differently. In Section 3.3.5, Parseval’s identity of Theorem 2.7 has enabled us to compute
the right hand side by numerical integration of the Fourier transforms of the involved
quantities. We have seen that in the course of this transformation, dealing with the
operator of the underlying model has vanished while the associated symbol appeared
in the calculations, instead. In stark contrast to the operator, the symbol of a Lévy
model is numerically accessible in many cases and we will present several examples in the
following. This feature nourishes the hope of being able to renounce the treatment of the
operator alltogether by shifting the focus to its Fourier counterpart, the symbol, instead.
Investigating this shift in perspective, this section aims at establishing a numerical FEM
solver framework that

i) provides flexibility in the choice of the asset model and thus

ii) avoids tedious individual consideration of different models but still

iii) maintains numerical feasibility.
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As we will see, achieving these core aims comes at a certain cost. While considering the
FEM solver components in Fourier space will be highly advantageous regarding some
aspects, it will also pose new challenges regarding others. More precisely, while shifting
our perspective to Fourier spaces solves the problem of having to consider the operator,
at the same time it leaves us with new numerical challenges concerning the choice of
basis functions. The contents of this section that focuses on the symbol method also
appear in Gaß and Glau (2016).

Before we consider these new challenges, let us state the core lemma of this section.

Lemma 3.28 (Symbol method for bilinear forms)
Let A ∈ S0

α be a univariate symbol as introduced in Definition 2.17 and let A be the
associated operator in a PIDE of form (3.1). Further, let a(·, ·) be the associated bilinear
form. If there exists a constant c > 0 such that

a(u, v) ≤ c‖u‖
H
α/2
0 (R)

‖v‖
H
α/2
0 (R)

, ∀u, v ∈ C∞0 (R), (3.129)

then the bilinear form possesses a unique linear extension

a : H
α/2
0 (R)×Hα/2

0 (R)→ C. (3.130)

Assume further for N ∈ N a set of functions ϕ0, ϕ1, . . . , ϕN ∈ Hα/2
0 (R) and constants

x1, . . . , xN ∈ R, such that for all i ∈ {1, . . . , N}

ϕi(x) = ϕ0(x− xi), ∀x ∈ R,

holds. Then we have

a(ϕl, ϕk) =
1

2π

∫
R
A(ξ)eiξ(xl−xk) |ϕ̂0(ξ)|2 dξ. (3.131)

for all k, l ∈ {1, . . . , N}. If additionally

<(A(ξ)) = <(A(−ξ)) and =(A(ξ)) = −=(A(−ξ)), (3.132)

then
a(ϕl, ϕk) =

1

π

∫ ∞
0
<
(
A(ξ)eiξ(xl−xk)

)
|ϕ̂0(ξ)|2 dξ (3.133)

for all k, l ∈ {1, . . . , N}.

Proof
Due to property i) in Lemma 2.4

ϕ̂j(ξ) = eiξxj ϕ̂0(ξ). (3.134)

Since ϕi ∈ Hα/2
0 (R), for all i ∈ {1, . . . , N}, the identity (3.131) follows from Theorem 4.1

and Remark 5.2 and the lines thereafter in Eberlein and Glau (2011), see also page 68
in Glau (2010). The second claim (3.133) is then elementary. �

82



3.3.5 The right hand side F - a Fourier approach

Remark 3.29 (On the symbol method for bilinear forms)
Lemma 3.28 provides an appealing formula to derive the values of all entries in the stiff-
ness matrix (Aij)i,j∈{1,...,N}. It offers an alternative to explicitly considering the effect of
the operator A on the basis functions that we presented in Section 3.3.4. Instead, it ex-
ploits the availability of the associated symbol A that often contains the model information
in an explicit and numerically pleasing way, as the following examples show.

Corollary 3.30 (Symbol method for stiffness matrices)
Let A ∈ S0

α be a univariate symbol associated with the operator A of a PIDE of form (3.52).
Denote by ϕi ∈ L1(R), i ∈ {1, . . . , N} the basis functions of a Galerkin solving scheme
associated with an equidistantly spaced grid Ω = {x1, . . . , xN} possessing the property

ϕi(x) = ϕ0(x− xi), ∀x ∈ R, (3.135)

for some ϕ0 : R → R. Then, the stiffness matrix A ∈ RN×N of the scheme can be
computed by

Akl =
1

2π

∫
R
A(ξ)eiξ(xl−xk) |ϕ̂0(ξ)|2 dξ (3.136)

for all k, l ∈ {1, . . . , N}.

Proof
The proof is an immediate consequence of Lemma 3.28. �

Earlier, we introduced operators A and the characteristic triplets (b, σ, F ) of some well
known asset models. In Example 3.22 we have already seen the symbol of the Merton
model. The following examples present the symbols of the remaining models introduced
before.

Example 3.31 (Symbol in the Black&Scholes (BS) model)
In the univariate Black&Scholes model, determined by the Brownian volatility σ > 0, the
symbol is given by

A(ξ) = Abs(ξ) = iξb+
1

2
σ2ξ2, (3.137)

with drift set b to

b = r − 1

2
σ2 (3.138)

as seen in Example 3.11.

Example 3.32 (Symbol in the CGMY model)
In the CGMY model of Carr et al. (2002) with σ > 0, C > 0, G ≥ 0, M ≥ 0 and
Y ∈ (1, 2), the symbol computes to

A(ξ) = Acgmy(ξ) = iξb+
1

2
σ2ξ2

− CΓ(−Y )
[
(M + iξ)Y −MY + (G− iξ)Y −GY

]
, (3.139)

83



3.3.5 The right hand side F - a Fourier approach

for all ξ ∈ R, with drift b set to

b = r − 1

2
σ2 − CΓ(−Y )

[
(M − 1)Y −MY + (G+ 1)Y −GY

]
(3.140)

for martingale pricing.

Example 3.33 (Symbol in the NIG model)
With σ > 0, α > 0, β ∈ R and δ > 0 such that α2 > β2, the symbol of the NIG model is
given by

A(ξ) = Anig(ξ) =
1

2
σ2ξ2 + iξb− δ

(√
α2 − β2 −

√
α2 − (β − iξ)2

)
(3.141)

for all ξ ∈ R with drift given by

b = r − 1

2
σ2 − δ

(√
α2 − β2 −

√
α2 − (β + 1)2

)
(3.142)

Corollary 3.34 (Deriving the BS stiffness matrix using the symbol)
Denote by r ≥ 0 the prevailing constant risk-free interest rate. Consider the pricing
PDE of the univariate Black&Scholes model, that is (3.52) with operator A given by
Example 3.11. Consider the numerical implementation of a FEM solver assuming the
hat functions ϕi, i ∈ {1, . . . , N}, of Definition 3.16 for some N > 0 as basis functions on
an equidistant grid with fineness h > 0. Then the respective stiffness matrix A ∈ RN×N
is given by

Aij =
2σ2

πh2

∫ ∞
0

1

ξ2
cos(ξh(j − i))(1− cos(ξh))2 dξ

− 4b

πh2

∫ ∞
0

1

ξ3
sin(ξh(j − i))(1− cos(ξh))2 dξ + rMij (3.143)

for all i, j ∈ {1, . . . , N}, where M ∈ RN×N is the model-independent mass matrix given
by Lemma 3.18

Proof
The stiffness matrix A is given by the bilinear form a(·, ·) : H

α/2
0 (R) × Hα/2

0 (R) → R
with α = 2, associated with the operator A by

Aij = a(ϕj , ϕi) + rMij .

Let ϕ0 be the hat function centered over the origin with suppϕ0 ⊂ (−h, h), as de-
fined in (3.60). Since the Black&Scholes symbol A = Abs fulfills condition (3.132) of
Lemma 3.28, we have

a(ϕj , ϕi) =
1

π

∫ ∞
0
<
(
Abs(ξ)eiξ(xj−xi)

)
|ϕ̂0(ξ)|2 dξ.

Inserting the formula of ϕ̂0 from Lemma 3.17 and Abs from (3.137) of Example 3.31
yields the claim. �
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Remark 3.35 (Toeplitz structure of stiffness matrix)
The mass matrix M is a Toeplitz matrix given that the basis functions are defined on
an equidistant grid and possess property (3.135). We observe that the values of the
integrals in Equation (3.136) in Corollary 3.30 only depend on the value of j − i ∈
{−(N − 1), . . . ,−1, 0, 1, . . . , N − 1}. This means, that each individual diagonal of A is
determined by only one single value in the sense of Definition 2.41. Consequently, the
stiffness matrix is a Toeplitz matrix, as well. Thus, for its numerical derivation only
2N − 1 instead of N2 integrals have to be computed. This feature is lost, if the grid that
the basis functions populate is not equidistantly spaced.

Algorithm 1 A symbol method based FEM solver
1: Choose equidistant space grid xi, i ∈ {1, . . . , N}
2: Choose basis functions ϕi, i ∈ {1, . . . , N}, with ϕi(x) = ϕ0(x− xi) for some ϕ0

3: Choose equidistant time grid Tj , j ∈ {0, . . . ,M}
4: procedure Compute Mass Matrix M
5: Derive the mass matrix M ∈ RN×N by
6: Mkl =

∫
R ϕl(x)ϕk(x) dx, ∀k, l ∈ {1, . . . , N}

7: procedure Compute Stiffness Matrix A
8: Derive the stiffness matrix A ∈ RN×N by plugging the symbol A of the chosen

model into the following formula and computing
9: Akl = 1

2π

∫
RA(ξ) eiξ(xl−xk) |ϕ̂0(ξ)|2 dξ, ∀k, l ∈ {1, . . . , N}

10: using numerical integration
11: procedure Run Theta Scheme
12: Following the suggestions by Lemma 3.24 or Lemma 3.26 for plain vanilla Euro-

pean options choose a function ψ to subtract from the original pricing problem
to obtain a zero boundary problem and retrieve the respective basis function
coefficient vectors ψk ∈ RN , k ∈ {0, . . . ,M}

13: Choose an appropriate basis function coefficient vector V 1 ∈ RN matching the
initial condition of the transformed problem

14: Derive the right hand side vectors F k ∈ RN , k ∈ {0, . . . ,M}, as defined in
Lemma 3.24 or Lemma 3.26 matching the choice of ψ

15: Choose θ ∈ [0, 1] and run the iterative scheme
16: for k = 0 : (M − 1)
17: V k+1 = (M + ∆t θ A)−1

(
(M −∆t (1− θ)A)V k + F k+θ

)
18: end
19: procedure Reconstruct Solution to Original Problem
20: Add previously subtracted right hand side ψ to the solution of the transformed

problem by computing
21: Ṽ k = V k + ψ

k
, k ∈ {0, . . . ,M}

22: to retrieve the basis function coefficient vectors Ṽ k, k ∈ {0, . . . ,M}, to the orig-
inal pricing problem
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3.4.1 Numerical aspects

Algorithm 1 summarizes the abstract structure of a general FEM solver based on the
symbol method. By plugging the symbol associated to the model of choice into the
computation of line 9 of the algorithm, the solver instantly adapts to that model. In
other words, only one line needs to be specified to obtain a model specific solver for
option pricing. As Examples 3.31, 3.32, 3.33 and others emphasize, the symbol exists in
analytically (semi–)closed form for many models, indeed. Algorithm 1 thus provides a
very appealing tool for FEM pricing in practice. Model specific computations that we
had encountered earlier for the Merton model have become unnecessary.

3.4.1 Numerical aspects

By now we have seen two alternative ways to compute the stiffness matrix A. The
derivation in Section 3.3.4 required the consideration of the Lévy measure F . Taking the
Merton model as an example we understood that long and tedious calculations may come
with this approach. Section 3.4 offered a different solution. By expressing its entries in
terms of Fourier transforms, Corollary 3.30 displayed a formula for the stiffness matrix
values that accesses model information not via the operator but via the related symbol,
instead. Many examples have shown, that explicit formulas for the symbol exist for
many interesting models.

From a numerical perspective, however, new challenges arise. Basis functions with
bounded support alleviate numerical integration as they limit the area within the in-
tegration range that supporting nodes are distributed over. This is the case for classic
hat functions ϕi since suppϕi ⊆ [xi − h, xi + h]. Transitioning into Fourier space, how-
ever, comes at the cost of numerical integration on an unbounded domain, since the
support of ϕ̂i is not bounded in R, supp ϕ̂i = R, see Figure 3.7.

As an example, Figure 3.8 displays some stiffness matrix integrands for the Black&Scholes
model in Fourier terms. More precisely, we show several integrands of A ∈ RN×N in the
representation provided by (3.143) of Corollary 3.34. Each integrand is evaluated for a
different value of j − i over three different subintervals taken from the unbounded inte-
gration range. In the Fourier approach of calculating the stiffness matrix A ∈ RN×N via
the respective symbol, the integrands of Aij would have to be numerically integrated for
all j − i ∈ {−(N − 1), . . . ,−1, 0, 1, . . . , N − 1}. The larger |j − i|, however, the more
severe the numerical challenges for evaluating the integrand, as Figure 3.8 demonstrates.
All integrands illustrated therein decay rather slowly. Additionally, oscillations increase
in |j − i|. In combination, these two observations seriously threaten a numerically re-
liable evaluation of the integral. With increasing values of |j − i|, the oscillations of
the integrand accelerate and the number of necessary supporting points for accurate
integration soars. In this toy example of the Black&Scholes model, pointing out the
challenging integration of the stiffness matrix integrand for large values of |j − i| might
not be very convincing, since we know the stiffness matrix entries to be equal to zero
for |j − i| > 1. For Lévy jump models, however, the stiffness matrix is in general fully
populated and these oscillations have to be dealt with, indeed. In the following section
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Figure 3.7 Graph of ϕ̂0, the Fourier transform of the hat function ϕ0 centered over the
origin, evaluated over three subintervals of R+. The mesh is chosen with h = 1. The
oscillations and the rather slow decay to zero complicate numerical integration with high
accuracy requirements considerably when ϕ̂0 is involved.

we investigate the influence of inaccurately calculated stiffness matrix entries onto the
accuracy of option prices.

3.4.2 An accuracy study of the stiffness matrix

Using the classic hat functions as basis functions we thus have to accept that severe
numerically challenges are attached to the computation of the 2N − 1 entries of the
stiffness matrix A ∈ RN×N via the Fourier approach of Corollary 3.30 due to heavily
oscillating integrands. Investigating how material these challenges are, we conduct an
empirical study of the propagation of integration errors in the stiffness matrix and their
influence on the accuracy of the derived option prices. We have already performed a
similar study of this kind in Gaß and Glau (2014) wherein the results are presented in
more detail. We choose the Black&Scholes model parametrized by σ = 0.2 modeling
price movements of a stock in a market with interest rate r = 0.01, where we price a
put option with strike K = 1 and maturities T ∈ [0, 3] for current values of the stock
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Figure 3.8 The first integrand of Aij in (3.143) for several values of j − i. The grid
of the hat functions spans the interval [−5, 5] with 150 equidistantly spaced inner nodes
and grid fineness h = 0.0662. A Black&Scholes solution on this grid would thus be
represented by the weighted sum of 150 hat functions. We observe that oscillations of
the integrand increase in the value of |j − i|.
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S0 ∈ [Smin, Smax] with Smin = 0.01 and Smax = 10. We set the number of involved
FEM hat functions to N = 150, resulting in a mesh with 150 inner grid nodes and mesh
fineness h = 0.0464. We know the mass matrix of the Black&Scholes model to be

M =
h

6



4 1 0 · · · 0

1 4 1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 4 1

0 · · · 0 1 4


∈ RN×N ,

and the stiffness matrix to be given by

A = Abs = A(1) +A(2) + rM ∈ RN×N , (3.144)

where

A(1) =
1

2

(
r − σ2

2

)


0 −1 0 · · · 0

1 0 −1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 0 −1

0 · · · 0 1 0


, A(2) =

σ2

2

1

h



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2


.

With these matrices we set up a theta scheme, θ = 0.5, and derive Black&Scholes put
option prices. The resulting pricing surface is depicted in Figure 3.9. Since we can
solve the integrals determining the entries of the stiffness matrix A ∈ RN×N explicitly
in the case of the Black&Scholes model, we know their true value and can simulate how
the resulting pricing surface is affected by inaccuracies that might occur when these
integrals are solved numerically, instead. To this extent we take the correct stiffness
matrix given by (3.144) and distort each of its entries randomly at different positions
D ∈ N after the decimal point by adding εDi = 10−(D−1)εi with random εi ∈ (−1, 1) for
i ∈ {−(N − 1), . . . ,−1, 0, 1, . . . , (N − 1)} onto the (side) diagonal i of Matrix A. Each
individual (side) diagonal of the original stiffness matrix is thus affected evenly, keeping
the Toeplitz structure of the matrix intact. Since the value of Aij is only determined
by the value of j − i, this distortion mimics the influence that integration inaccuracies
would have.

So, for D ∈ N we define the distorted stiffness matrix by

ADdistort = A+ εD ∈ RN×N , (3.145)
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Figure 3.9 Pricing surface of a put option with strike K = 1 in the Black&Scholes
model with parameter σ = 0.2 and interest rate r = 0.01. The space grid consists of
N = 150 equidistant inner nodes with mesh fineness h = 0.0464. Only a part from the
whole surface spanning from Smin = 0.01 to Smax = 10 that prices were computed for is
shown. The considered maturities range from Tmin = 0 to Tmax = 3.

with

εD = 10−(D−1)



ε0 ε1 ε2 · · · · · · · · · εN−1

ε−1 ε0 ε1
. . . . . . . . .

...

ε−2 ε−1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . ε1 ε2

...
. . . . . . . . . ε−1 ε0 ε1

ε−(N−1) · · · · · · · · · ε−2 ε−1 ε0


∈ RN×N ,

with uniformly distributed εi ∈ (−1, 1), i ∈ {−(N−1), . . . ,−1, 0, 1, . . . , (N−1)}, that are
drawn independently from each other. Using these distorted stiffness matrices ADdistort
for different values D ∈ N, we derive again price surfaces of the put option in the
Black&Scholes model and compare the difference between the prices coming from the
distorted stiffness matrix ADdistort ∈ RN×N to the prices from the intact stiffness matrix
A ∈ RN×N . The results are shown in Figure 3.10. We observe that the absolute price
differences decrease almost linearly in D. An accuracy of D = 3 corresponds to integra-
tion results that are exact up to the third digit after the decimal point. Pricing resulting
from stiffness matrices computed with such a low integration accuracy are unacceptable.
The respective pricing errors observable in the top left corner of Figure 3.10 indicate
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Figure 3.10 Absolute price differences resulting from a distortion of the stiffness ma-
trix A. True and distorted prices describe the market value of a put option in the
Black&Scholes model parametrized equivalently to the setting of Figure 3.9. We com-
pare the price surfaces coming from a theta scheme using the stiffness matrix A given
by (3.144) to the respective pricing surface when A is replaced by ADdistort, the distorted
version of A as defined in (3.145), for different values of D ∈ N. The influence of the
distortion decreases in D.
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relative errors of several hundred percent points. With more precise integration results,
the error decreases in D until highly appealing pricing results are achieved for D = 7 and
beyond. The magnitude of the pricing error resulting from a distorted stiffness matrix
emphasizes the necessity of being able to derive the stiffness matrix entries as accurately
as possible. This poses a serious challenge to the numerical integration routines that
have to handle strongly oscillating and slowly decaying integrands which we have seen
in Figure 3.8. Yet, this problem of numerical integration of oscillating integrands has
drawn attention by research for a long time. One example for an integration routine of
approximating the integral

V1 =

∫ b

a
f(x) cos(c x) dx, a ≤ b ∈ R, c ∈ R (3.146)

is so called Filon’s formula, see Abramowitz and Stegun (2014) for details. Unfortu-
nately, Filon’s approach focuses on the oscillation alone while lacking an emphasis on
the integration of decaying functions. Consequently, b <∞ is required which thus rules
out an immediate application of the approach for our purposes, where coming back to
our Black&Scholes model example expressions of the form

V2 =

∫ ∞
0

g(x)

xk
dx, 2 ≤ k ∈ N (3.147)

for oscillating functions g in the sense that ∃p > 0 such that g(x) = g(x+p) for all x ∈ R+

are considered. In Appendix A and Lemma A.2 therein, we present an integration
algorithm for expressions of the form (3.147) tailor-made for the integration of that
special class of decaying functions exhibiting the oscillatory behavior we observed above.
Numerical experiments study the approximation power of the algorithm in detail.

Yet, stiffness matrix integrals in general can not be cast in terms of expression (3.147). In
some cases, a periodic behavior of the nominator is missing, in others the order of decay
is not equal to an integer value. In these cases, again individual integration algorithms
would be required which is exactly what the symbol method tries to avoid. Therefore, in
the following section we take a different approach to arrive at stiffness matrix integrals
that allow a feasible numerical evaluation.

3.4.3 New choices for the basis functions

Previously we had presented a Finite Element implementation for pricing European plain
vanilla options in the Merton model using the well known classic hat functions as basis
functions. As we have seen, the existence of a jump part with Lévy measure F in the
operator A renders the derivation of the stiffness matrix numerically challenging. While
the Merton model still allows quasi-explicit formulas for the stiffness matrix entries, this
is in general no longer the case when more involved Lévy jump models are considered.
Therefore we analyized the possibility of accessing the jump information in the Fourier
space, instead. Then, the model information is represented by the symbol instead of
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the operator, a quantity that is available in closed form in many cases. As a negative
consequence of this shift into the Fourier space, however, we now have to integrate terms
involving the Fourier transform of the considered FEM basis functions. In the case of
classic hat functions, this translates into the necessity of integrating slowly decaying,
heavily oscillating integrands. Classic hat functions therefore appear hardly compatible
to the symbol method approach. Let us therefore investigate two alternative choices for
FEM basis functions.

3.4.3.1 Mollified hat functions

Hat functions are piecewise linear functions. While being continuous they are not con-
tinuously differentiable everywhere and thus lack smoothness on an elementary level
already. This lack of smoothness translates into a slow decay of their Fourier transform,
compare Remark 2.8. A fast decay of the Fourier transform, however, is one of the cru-
cial features that basis functions need to possess in order to become eligible in a symbol
method based FEM implementation.

Due to its lack of smoothness, the classic hat function is thus ruled out as a FEM basis
function candidate in such an implementation and needs to be replaced by an alternative.
It is well known, however, that convolution with a smooth function has a smoothing effect
on the function that the convolution is applied to. Our first basis function alternative
will therefore be a classic hat function smoothed by convolution.

Definition 3.36 (Mollifier)
A smooth function m ∈ C∞(Rd), m : Rd → R is called mollifier, if it fulfills

i)
∫
Rdm(x) dx = 1,

ii) lim
ε→0

mε(x) = lim
ε→0

1
εd
m
(
x
ε

)
= δ(x), where δ is the Dirac delta function and

iii) m has compact support, m ∈ C∞0 (Rd).

Convoluting certain functions f with a mollifier m results in very smooth functions f ∗m
in the sense of the following lemma.

Lemma 3.37 (Mollifying a function)
Let m ∈ C∞(R) be a univariate mollifier and f ∈ C0

0 (R) a continuous function with
compact support. Then the mollfied f , denoted by f ∗m, is infinitely smooth, f ∗m ∈
C∞(R).

Proof
The claim is a direct consequence from Theorem E.25 in Schilling (2005). �
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Example 3.38 (Standard mollifier)
A standard example of a mollifier m : R→ R+

0 is given by

m(x) =

{
1
C exp

(
− 1

1−|x|2

)
, |x| < 1,

0, otherwise,
(3.148)

with the normalization constant defined by C =
∫
Rm(x) dx.

Let us investigate, how the standard mollifier of Example 3.38 operates on both smooth
and non-smooth functions. We define

f1 : x 7→ 1|x|<2,

f2 : x 7→ 1

6
(x+ 3)1|x|≤3,

f3 : x 7→ ϕh=1
0 (x),

f4 : x 7→ m(x),

(3.149)

so f1 is a piecewise constant function, f2 is a piecewise linear function, f3 is the clas-
sic hat function centered over the origin as defined in (3.60) and f4 is the mollifier of
Example 3.38, itself. We apply the standard mollifier m defined in (3.148) of Exam-
ple 3.38 to each of these functions by convolution. Figure 3.11 shows the graph of each
fi, i ∈ {1, 2, 3, 4}, together with fi∗m, the convolution of that function with the standard
mollifier. The smoothing effect is clear to see.

Mollifying functions has a smoothing effect on them. By Remark 2.8, smoothness of a
function translates into decay rates of its Fourier transform. Lemma 3.30 presented a
method to derive stiffness matrix entries in Fourier space. In the respective formula,
the Fourier transform of the basis functions was needed. When hat functions are used
as basis functions, however, we face numerical challenges since the Fourier transforms
of hat functions oscillate heavily and decay rather slowly. Hat functions smoothed by
mollifiers thus appear as interesting candidates to replace the classic hat functions as
basis functions in a Finite Element implementation.

Before we can test the suitability of mollified hat functions as basis functions, however,
we want to control the influence of the mollifier on functions it is applied to. Simply
applying m to the hat function might distort it too strongly. After all, in Figure 3.11
the mollified hat function is hardly distinguishable from the mollified mollifier.

Remark 3.39 (The mollication parameter ε > 0)
Let m : Rd → R be a mollifier in the sense of Definition 3.36. Define for ε > 0

mε(x) =
1

εd
m
(x
ε

)
, ∀x ∈ Rd.

We call ε the mollification parameter of m. The function mε is still a mollifier. The
parameter ε > 0 regulates the smoothing influence on the function that the mollifier is
applied to. For decreasing values of ε the smoothing influence decreases, for increasing
values of ε, the smoothing influence increases.
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Figure 3.11 The effect of the classic mollifier defined in Example 3.38 on four exemplary
functions fi, i ∈ {1, 2, 3, 4}, defined in (3.149). The first two functions are not even
continuous, the third one is not differentiable. After mollification, however, they all
appear smoothed. Note two interesting observations. The mollifier leaves piecewise
linear function parts unchanged when they are long enough (f1, f2). At the same time,
it might further mollify functions that are already smooth (f4).

Introducing the mollification parameter ε of Remark 3.39 we gain control over the molli-
fication influence. In choosing ε > 0 smaller, the mollified function gravitates towards its
untreated counterpart. Both are identical in the limit, as the following lemma shows.

Lemma 3.40 (Convergence of mollified functions)
Let f : Rd → R be continuous. Let m be a mollifier in the strict sense of Definition 3.36
with support in the unit ball, suppm ⊆ B‖·‖1 (0) with respect to some norm. Then f∗mε →
f uniformly as ε→ 0 on any compact subset K ⊂ Rd.

Proof
The proof is taken from Loftin (2010), see also (Showalter, 2010, Chapter II, Lemma
1.2). By assumption, K ⊂ Rd is compact. Therefore, there exists r > 0 such that

K ⊂ B
‖·‖
r (0). The continuous function f is uniformly continuous on the compact set

B
‖·‖
r+1(0). Choose ε̃ > 0. There exists δ > 0 such that for z, w ∈ B‖·‖r+1(0) we have with
‖z − w‖ < δ also |f(z)− f(w)| < ε̃. Now choose ε ∈ (0,min{1, δ}).
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Let x ∈ K ⊂ B‖·‖r (0). Then,

|(f ∗mε)(x)− f(x)| =
∣∣∣∣∫

Rd
f(x− y)mε(y) dy − f(x)

∣∣∣∣
=

∣∣∣∣∫
Rd
f(x− y)mε(y) dy −

∫
Rd
f(x)mε(y) dy

∣∣∣∣
≤
∫
Rd
|f(x− y)− f(y)|mε(y) dy. (3.150)

Since suppm = B1(0) and mε = 1
εm(·/ε), suppmε = B

‖·‖
ε (0). Thus, continuing

in (3.150) we get∫
Rd
|f(x− y)− f(y)|mε(y) dy =

∫
B
‖·‖
ε (0)

|f(x− y)− f(y)|mε(y) dy (3.151)

<

∫
B
‖·‖
ε (0)

ε̃mε(y) dy

= ε̃,

which proves the claim. �

The mollification parameter ε and the claim of Lemma 3.40 are powerful tools in smooth-
ing the nondifferentiable hat functions. Before the smoothed functions can be deployed,
however, we need to derive their Fourier transform.

The Fourier transform of the convolution of two integrable functions is given by the
product of the two individual Fourier transforms as Property iii) in Lemma 2.4 shows.
In theory, this provides the link from using smoothed hat functions as basis functions
to the numerical derivation of the stiffness matrix entries. The Fourier transform of
the classic mollifier, however, is not known in closed form. Its numerical evaluation
is thus challenging, especially when integration of the mollifier is concerned. Recently,
Johnson (2015) has expanded on the issue of evaluating m̂ approximately, emphasizing
the numerical difficulties involved.

Classic mollifiers or the standard mollifier of Example 3.38 at least thus don’t suit our
needs. We therefore mollify with a different class of functions that display very similar
mollification effects. Following Proposition and Definition 2.14 in Alt (2011) we introduce
the definition of a Dirac sequence.

Definition 3.41 (Dirac sequence)
We call a sequence (m̃k)k∈N, m̃k ∈ L1(Rd) for all k ∈ N, a Dirac sequence, if

i) m̃k ≥ 0, ∀k ∈ N,

ii)
∫
Rd m̃k(x) dx = 1, and
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iii) if for all % > 0 we have the convergence∫
Rd\B%(0)

m̃k(x) dx→ 0,

for k →∞.

Again by Proposition and Definition 2.14 in Alt (2011) we have the following remark.

Remark 3.42 (Dirac ε)
Let m̃ ∈ L1(Rd) with

m̃ ≥ 0 and
∫
Rd
m̃(x) dx = 1. (3.152)

Analogously to Remark 3.39 define

m̃ε =
1

εd
m̃
( ·
ε

)
. (3.153)

Then for each % > 0 we have∫
Rd
m̃ε(x) dx = 1 and

∫
Rd\B%(0)

m̃ε(x) dx→ 0, (3.154)

for ε → 0. Consequently, for each null sequence (εk)k∈N the sequence (m̃εk)k∈N is a
Dirac sequence in the sense of Definition 3.41.

Definition 3.41 generalizes the notion of a (positive) mollifier as defined in Definition 3.36.
Each sequence of (mεk)k∈N, mεk = ε−dk m(·/εk), with m a positive mollifier, m : R→ R+

0 ,
is a Dirac sequence.

Example 3.43 (A Dirac sequence based on the Normal distribution)
We present an example for a Dirac sequence. Define

m̃Gaussian(x) =
1√
2π
e−

x2

2 . (3.155)

Define further

m̃ε
Gaussian =

1

ε
m̃Gaussian

( ·
ε

)
. (3.156)

With (εk)k∈N a null sequence we call (m̃εk
Gaussian)k∈N a Gaussian Dirac sequence.

A Gaussian Dirac sequence as given by Example 3.43 can be used for mollification of
(non-smooth) functions, as well. For that matter, we take

m̃ε
Gaussian =

1

ε
m̃Gaussian

( ·
ε

)
(3.157)
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of Example 3.43 and apply m̃ε
Gaussian to the classic hat function by convolution for dif-

ferent values of ε > 0. As in the case of mollifiers, the value of ε governs the degree of
the smoothing effect on the function that m̃ε

Gaussian is applied to. Figure 3.12 shows the
results of mollifying classic hat functions using the Dirac sequence of Example 3.43. Due
to the smoothing effect of a Dirac sequence, we use the term mollifier in this context, as
well, even though a Dirac sequence does not necessarily fulfill the requirement of compact
support of Definition 3.36.

Corollary 3.44 (Fourier transform of Gaussian mollifier)
The characteristic function of the Gaussian mollifier is known in closed form,

̂mε
Gaussian(ξ) = exp

(
−1

2
ε2ξ2

)
, (3.158)

and exhibits exponential decay, which is the reason why this mollifier is especially inter-
esting for our purposes.

Proof
Since mε

Gaussian is identical to the density of a normally N (0, ε2) distributed random
variable, the claim is a direct consequence of Lemma 2.3. �

Analogously to Lemma 3.40 we also have a convergence result for functions f mollified
by a Dirac sequence.

Lemma 3.45 (Convergence of mollification with a Dirac sequence)
Let 1 ≤ p <∞. Let f ∈ Lp(Rd) and (m̃k)k∈N be a Dirac sequence. Then

f ∗ m̃k → f (3.159)

in Lp(Rd) for k →∞.

Proof
See the proof of Satz 2.15 in Alt (2011). �

We state an analogous result to Corollary 3.34 with mollified hat functions as basis
functions.

Corollary 3.46 (Black&Scholes stiffness matrix with mollified hat functions)
Consider the pricing PDE of the univariate Black&Scholes model, that is a PDE of
form (3.52) wherein the operator A is parametrized following Example 3.11 with r ≥ 0
and σ > 0. Consider a numerical FEM solver and assume N > 0 mollified hat functions

ϕεi = ϕi ∗ m̃ε
Gaussian, ∀i ∈ {1, . . . , N} (3.160)

on an equidistant grid with grid fineness h > 0 as basis functions, wherein m̃ε
Gaussian

denotes the Gaussian mollifier of Example 3.43 with mollification parameter ε > 0.
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Figure 3.12 A comparison between the classic hat function ϕ0 with h = 1 as defined
in (3.60) and the mollified hat function ϕε0 = ϕ0 ∗ m̃ε

Gaussian for several values of ε ∈
{0.05, 0.15, 0.3} using the Gaussian mollifier of Example 3.43.

Then the respective stiffness matrix A ∈ RN×N is given by

Aij =
2σ2

πh2

∫ ∞
0

1

ξ2
cos(ξh(j − i))(1− cos(ξh))2e−ε

2ξ2
dξ

− 4

πh2
(r − 1

2
σ2)

∫ ∞
0

1

ξ3
sin(ξh(j − i))(1− cos(ξh))2e−ε

2ξ2
dξ

+
4r

πh2

∫ ∞
0

1

ξ4
cos(ξh(j − i))(1− cos(ξh))2e−ε

2ξ2
dξ,

(3.161)

for all i, j ∈ {1, . . . , N}.

Proof
The result is proved analogously to Corollary 3.34, using

ϕ̂ε0 = ϕ̂0 m̂
ε
Gaussian

by property iii) of Lemma 2.4. The Fourier transform m̂ε
Gaussian is given by Corol-

lary 3.44. �

Figure 3.13 displays the integrand in (3.161). The integrand is evaluated on three subin-
tervals of the semi-infinite integration region. The grid setting is identical to the one
of Figure 3.8. Instead of classic hat functions their mollified counterparts have been
employed as basis functions using the Gaussian mollifier of Example 3.43 as smoothing
influence. Even with just a slight mollification influence, ε = 0.05h, the decay of the
integrand accelerates. For moderate values of ε = 0.3h the integrand decays to zero
rapidly.
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Figure 3.13 The integrand of Aij in (3.161), the stiffness matrix of the Black&Scholes
model with mollified hat functions as basis functions for the main diagonal entry, j−i = 0.

We have implemented the symbol method using mollified hat functions as basis functions
for several models and have conducted an empirical order of convergence study that
we present at the end of the chapter. The results confirm that mollification is not
only theoretically interesting but empirically solves the problem of lacking numerical
integrability, as well. Mollifying the hat functions has thus proved to be numerically
advantageous.

But let us consider the theoretical consequences, as well. The Fourier transform of a
smoothed function decays faster than the Fourier transform of the original function itself.
The integrals in the stiffness matrix thus become feasible. In our FEM implementation,
the non-smooth hat functions span a finite dimensional subspace of the solution space
of the underlying PDE. But smoothing a function changes it. Therefore, smoothing the
hat basis functions changes the spaces they span.
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Figure 3.14 Graph of ϕ̂ε0, the Fourier transform of the mollified hat function ϕε0 centered
over the origin, evaluated over three subintervals of R+. The mesh is chosen with h = 1
and the mollification parameter is set to ε = 0.3h. The oscillations and the rather slow
decay to zero that we observe in Figure 3.7 where the Fourier transform of the classic
hat function is displayed, have vanished completely.

In other words, the discretization in space by mollified hat functions might not fall into
the scope of step v) of Section 3.2. Principally, there are two ways to deal with this
modification theoretically.

i) Investigate the function spaces that are spanned by mollified hat functions

ii) Treat mollified hat functions as classic hat functions and interpret the contribution
of mollification to the algorithm’s quantities as a numerical inaccuracy that is
addressed by error control methods separately

The appeal of possibility i) lies in the straightforwardness with which the situation would
be assessed. The mollification takes effect on the level of the basis functions and modifies
them immediately. Investigating the basis properties of the resulting functions from a
theoretical point of view would address mollification directly instead of avoiding that
confrontation. At the same this, the approach could be cumbersome as the theoretical
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effect of mollification is rather severe, for example regarding the support of the mollified
hat functions which is infinite in theory.

Possibility ii) avoids the issue by viewing the effect of mollification not as a theoreti-
cal adaptation but rather as a purely numerical influence, instead. The theoretically
expected values of the algorithm’s output, for example the stiffness matrix, would thus
still be based on the classic hat functions. Independently from the accuracy of the ap-
plied numerical integration routine, however, the actual result of the derivations would
deviate due to the effect of the mollifier. That difference in the respective quantity would
be interpreted as a kind of commonly observed numerical noise that one tries to measure
and control. In this regard, the mollification parameter ε becomes the trigger of the
numerical disturbance the influence of which can be limited and reduced by shifting ε
closer to zero. The actually chosen value of the parameter would then result from a com-
promise between feasible integrability and desired accuracy of the output. The challenge
of this approach would consist in investigating whether this compromise can be reached
in all cases of interest. In von Petersdorff and Schwab (2003), the authors provide a
framework with which that kind of noise control could be achieved.

Both of these possibilities might stimulate further research to reconcile (mollified) hat
functions with the challenges arising from the Fourier aspect of the symbol method. On
the other hand, the problem could be avoided in the first place, if we abandoned the hat
functions alltogether and turned to already smooth basis functions, instead. This will
be the motivation for the next section on splines.

3.4.3.2 Splines

After our analysis of the hat functions we now investigate a second, well-established class
of finite element basis function candidates by considering cubic splines. Spline theory
is a well-investigated field that applies to a much broader context than we consider
here. We refer the reader to Schumaker (2007) for thorough introduction and overview.
In this section, we focus on the following facts. Splines are smooth basis functions.
Their Fourier transform is accessible and the theory of function spaces they span is well-
established. As such, they offer a very interesting alternative to non-differentiable hat
functions by avoiding theoretical challenges regarding their deployment in the algorithm
while maintaining the promise of numerical feasibility at the same time.

We give the definition of the Irwin-Hall cubic spline that inherits its name from the
related probability distribution.
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Figure 3.15 A plot of N = 15 spline functions ϕi, i ∈ {1, . . . , N}, as given by Defini-
tion 3.48 on an equidistant grid. For convenience, ϕ6 is depicted in orange. Note that in
contrast to hat functions, the support of an inner spline function does not only overlap
with the supports of two but six neighboring splines.

Definition 3.47 (Irwin-Hall cubic spline)
We define the univariate Irwin-Hall spline ϕ : R→ R+ by

ϕ(x) =
1

4


(x+ 2)3 , −2 ≤ x < −1

3|x|3 − 6x2 + 4 , −1 ≤ x < 1

(2− x)3 , 1 ≤ x ≤ 2

0 , elsewhere

(3.162)

for all x ∈ R. The spline ϕ has compact support on [−2, 2] and is a cubic spline.

Definition 3.48 (Spline basis functions on an equidistant grid)
Choose N ∈ N. Assume an equidistant grid Ω = {x1, . . . , xN}, xi ∈ R for all i ∈
{1, . . . , N}, with mesh fineness h > 0. Let ϕ be the Irwin-Hall spline of Definition 3.47.
For i ∈ {1, . . . , N} define

ϕi(x) = ϕ((x− xi)/h), ∀x ∈ R.

We call ϕi the spline basis function associated to node i.

Figure 3.15 displays a set of Irwin-Hall spline basis functions as defined by Definition 3.48.
The functions cover a real domain [a, b] ⊂ R equidistantly.

For a given equidistant grid consisting of N ∈ N grid nodes, the set of associated splines
ϕ1, . . . , ϕN given by Definition 3.48 and illustrated by Figure 3.15 constitutes the com-
plete basis which our approximate solution relies on. We are well aware that in the
literature often the set of Irwin-Hall basis function splines contains additional functions
associated with the fringes of the domain, that the discrete grid spans, for the pur-
pose of providing more flexibility concerning boundary conditions. Yet, this flexibility
comes with the numerical cost that those additional basis function again lack elemen-
tary smoothness in terms of differentiability and even continuity which disqualifies their
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deployment for our purposes. Furthermore, this additional flexibility could not even
be appreciated in our setup, as we will again transform the PDEs we consider to zero
boundary problems, anyway. The issue of omitting spline basis functions that do not
belong to the set described by Definition 3.48 has also been investigated theoretically
and numerically in Zimmermann (2016). The numerical studies therein confirm that
flexibility regarding boundary conditions of Dirichlet or Neumann type or with respect
to higher derivatives can be neglected for the options we consider here and thus validate
our approach. Thirdly, constraining the set of basis functions in such a way that each
function can be transformed into another one by a mere horizontal shift preserves ad-
vantageous properties regarding the derivation of the associated Fourier transforms as
the following two results demonstrate.

Lemma 3.49 (Fourier transform of the Irwin-Hall spline)
Let ϕ be the Irwin-Hall cubic spline of Definition 3.47. Then its Fourier transform ϕ̂ is
given by

ϕ̂(ξ) =
3

ξ4
(cos(2ξ)− 4 cos(ξ) + 3) (3.163)

for all ξ ∈ R.

Proof
Elementary calculations yield

4 ϕ̂(ξ) = 4

∫
R
eiξxϕ(x) dx

=

∫ −1

−2
(x+ 2)3eiξx dx+

∫ 1

−1
(3|x|3 − 6x2 + 4)eiξx dx+

∫ 2

1
(2− x)3eiξx dx

= 2

∫ −1

−2
(x+ 2)3 cos(ξx) dx+ 2

∫ 1

0
(3x3 − 6x2 + 4) cos(ξx) dx.

Standard integration rules lead to

4 ϕ̂(ξ) =
2

ξ4

[
ξ(x+ 2)

(
ξ2(x+ 2)2 − 6

)
sin(ξx) + 3

(
ξ2(x+ 2)2 − 2

)
cos(ξx)

]x=−1

x=−2

+
2

ξ4

[
ξ
(
ξ2
(
3x3 − 6x2 + 4

)
− 18x+ 12

)
sin(ξx) + 3

(
ξ2x(3x− 4)− 6

)
cos(ξx)

]x=1

x=0

=
2

ξ4

(
3(ξ2 − 2) cos(ξ) + 6 cos(2ξ)− 3(ξ2 + 6) cos(ξ) + 18

)
=

2

ξ4
(−6 cos(ξ) + 6 cos(2ξ)− 18 cos(ξ) + 18)

=
12

ξ4
(cos(2ξ)− 4 cos(ξ) + 3) .

Consequently,

ϕ̂(ξ) =
3

ξ4
(cos(2ξ)− 4 cos(ξ) + 3) ,

which finishes the proof. �
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Corollary 3.50 (Fourier transform of spline basis functions)
Choose N ∈ N. Assume an equidistant grid Ω = {x1, . . . , xN}, xi ∈ R for all i ∈
{1, . . . , N}, with mesh fineness h > 0 and let ϕi be the spline basis function associated
with node i as defined in Definition 3.48. Its Fourier transform is given by

ϕ̂i(ξ) = eiξxi
3

h3ξ4
(cos(2ξh)− 4 cos(ξh) + 3)

for all ξ ∈ R.

Proof
Denote by ϕ0 the scaled spline function centered over the origin,

ϕ0(x) = ϕ(x/h), (3.164)

where ϕ is the Irwin-Hall spline of Definition 3.47. With property ii) of Lemma 2.4 we
compute

ϕ̂0(ξ) =hϕ̂(ξh)

=
3h

(ξh)4
(cos(2ξh)− 4 cos(ξh) + 3)

=
3

h3ξ4
(cos(2ξh)− 4 cos(ξh) + 3).

Exploiting property i) of Lemma 2.4 shows the claim. �

Figure 3.16 illustrates the decay of the Fourier transform derived by Lemma 3.49 or
Corollary 3.50, respectively. Recalling the respective Figure 3.7 where the analogous
situation for Fourier transform of the classic hat function had been shown together with
Figure 3.14 that display the oscillatory decay of the Fourier transform of the hat function
after mollification we observe that the Fourier transform of the Irwin-Hall spline falls in
between those two.

Finally, Figure 3.17 provides a visual overview over the Fourier transforms of all three
basis function candidates that are the classic hat functions, the mollified hat functions
and the cubic splines of Irwin-Hall type. When all three Fourier transforms are displayed
together, those of the mollified hat function and the Irwin-Hall splines can hardly be
distinguished and appear to attain zero value very quickly, while the oscillations of the
Fourier transform of the classic hat function endure over the whole displayed domain. In
Remark 2.8 we established a connection between smoothness of a function and the speed
of decay of its Fourier transform. Figure 3.17 indeed serves as an impressive reminder.

In the previous section, Corollary 3.46 presented the formula for the stiffness matrix
entries in the Black&Scholes model with mollified hat functions as basis functions. The
following corollary translates that result to the situation when splines are used as basis
functions, instead.
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Figure 3.16 Graph of ϕ̂0, the Fourier transform of the Irwin-Hall spline function ϕ0

centered over the origin, evaluated over three subintervals of R+. The mesh is chosen
with h = 1. Oscillations and decay rate of the function lie inbetween those displayed in
Figure 3.7 and Figure 3.14.

Corollary 3.51 (Black&Scholes mass and stiffness matrix with splines)
Consider the pricing PDE of the univariate Black&Scholes model, that is a PDE of
form (3.52) wherein the operator A is parametrized following Example 3.11, with r ≥ 0
and σ > 0. Consider a numerical FEM solver and assume N > 0 Irwin-Hall spline
functions on an equidistant grid with grid fineness h > 0 as defined in Definition 3.48 as
basis functions. Then the respective mass matrix M ∈ RN×N is given by

Mlk =
9

πh6

∫ ∞
0

cos(ξ(xk − xl))
1

ξ8
(cos(2ξh)− 4 cos(ξh) + 3)2 dξ (3.165)

and the stiffness matrix A ∈ RN×N computes to

Alk =
9σ2

2πh6

∫ ∞
0

1

ξ6
cos(ξh(k − l))(cos(2ξh)− 4 cos(ξh) + 3)2 dξ

− 9

πh6
(r − 1

2
σ2)

∫ ∞
0

1

ξ7
sin(ξh(k − l))(cos(2ξh)− 4 cos(ξh) + 3)2 dξ

+ rMlk,

(3.166)
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Figure 3.17 Graphs of the Fourier transforms of all basis function candidates presented
in this section, evaluated over three subintervals of R+. The mesh is chosen with h = 1,
the mollification parameter is again set to ε = 0.3h.

for all i, j ∈ {1, . . . , N}.

Proof
The mass matrix is derived by applying Parseval’s identity of Theorem 2.7 and then using
the characteristic function of the Irwin-Hall spline derived in Lemma 3.49. The expression
for the stiffness matrix entries is derived analogously to the proof of Corollary 3.34. �

We have implemented a symbol method based FEM solver using Irwin-Hall spline func-
tions as basis functions and conducted an empirical order of convergence study. The
results are presented in the next section.

3.5 Implementation and numerical results

The previous sections have outlined the necessary consecutive phases in setting up a
Finite Element solver for option pricing. In a first step, using the Merton model as an
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example, the key ingredients of such a solver have been analytically calculated. During
the derivation we faced serious limitations regarding the generalizability of that ap-
proach. Therefore, in a second step, we introduced the symbol method which considers
all components of the FEM solver in Fourier space, instead. There, components are
based on the symbol instead of the Lévy measure and become numerically accessible.
Many examples of asset models for which the associated symbols exist in analytically
closed form have deemed this alternative approach being worthwhile to pursue. At the
same time, however, smoothness of the FEM basis functions became a critical issue which
ruled out further working with the classic hat functions that we had considered, before.
In a third step, we therefore investigated two examples of basis functions that manage
to combine smoothness and numerical accessibility. Mollified hat functions and splines
were introduced as promising examples to construct a symbol method based FEM solver
with.

This section will put that promise to the test. In addition to the hat function based
FEM solver for the Merton model we implemented the symbol method for both mollified
hats and splines. The FEM solver with hat functions is tailored to the Merton model
and can not easily be generalized to other asset models. In stark contrast, the symbol
method enjoys the flexibility of being able to easily plug in the symbol of any Lévy
model for which it is available in analytically closed form. The model restriction of
that first implementation thus disappears. Instead of having to restrict ourselves to the
Merton model, we could therefore enhance the model scope of our symbol method based
implementation to additionally comprise the NIG and the CGMY model with virtually
no additional implementation effort. In this regard, the method impressively underlines
its appeal for applications in practice where the suitability of a model might depend on
the asset class it is employed for. An institution that needs to maintain pricing routines
for several asset classes will thus cherish the flexibility that the symbol method offers,
recall Algorithm 1 in this regard which sketches the implementation of a general, symbol
method based FEM solver that easily adapts to various models.

Finally, we conduct an empirical order of convergence study. We consider the univariate
Merton, CGMY and NIG model and investigate the empirical rates of convergence for
the different implementations as Table 3.1 summarizes.

For each model and each implemented basis function type enlisted in Table 3.1 we con-
duct an empirical order of convergence study using the pricing problem of a call option
with strike K = 1 as an example, thus considering the payoff function

g(x) = max(ex − 1, 0). (3.167)

In each study we compute FEM prices for Nk basis functions, with

Nk = 1 + 2k, k ∈ {4, . . . , 9} (3.168)

resulting in N4 = 17 basis functions in the most coarse and N9 = 513 basis functions in
the most granular case. On each grid, the nodes that basis functions are associated with
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Model Symbol Parameter choices Implemented basis functions

Hats Mollified hats Splines

Merton Example 3.22 σ = 0.15, α = −0.04,
X X X

β = 0.2, λ = 3

CGMY Example 3.32 C = 0.5, G = 23.78,
X X

M = 27.24, Y = 1.1

NIG Example 3.33 α = 12.26, β = −5.77,
X X

δ = 0.52

Table 3.1 An overview of the models considered in the empirical order of convergence
analysis and their parametrization. For these models, the symbol method is implemented
and tested for both mollified hat functions and splines. In addition, we investigate the
empirical convergence rate for the Merton model using classic hat functions as basis
functions in a classic implementation disregarding the symbol method. In all models,
the constant risk-less interest rate has been set to r = 0.03.

are equidistantly spaced from another and the basis functions always span the space
interval Ω = [−5, 5]. The time discretization is kept constant with Ntime grid = 2000
equidistantly spaced time nodes spanning a grid range of two years up until maturity,
thus covering a time to maturity interval of

[T1, TNtime ], with T1 = 0 and TNtime = 2. (3.169)

For each k ∈ {4, . . . , 9}, the resulting price surface constructed by Nk basis functions
in space and Ntime = 2000 grid points in time is computed. A comparison of these
surfaces is drawn to a price surface of most granular structure based on the same type
of basis function. We call this most granular surface true price surface. It rests on
Ntrue = N11 = 1 + 211 = 2049 basis functions in space and Ntime grid points in time
spanning the same grid intervals as above, that is Ω = [−5, 5] in space and [0, 2] in
time, respectively. The underlying FEM implementation is thus based on distances htrue
between grid nodes that basis function are associated with of

h
(mollified) hat
true = (5− (−5))/(2 + 211) ≈ 0.0049,

hsplinestrue = (5− (−5))/(4 + 211) ≈ 0.0049,

∆ttrue = 2/(2000− 1) ≈ 0.001

(3.170)

in space and time, respectively. Note that all space grids are designed in such a way that
the log-strike log(K) = 0 is one of the space nodes. For each model and method and
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Figure 3.18 Results of the empirical order of convergence study for the Merton model
with classic hat functions. Refer to Table 3.1 for the chosen parametrization of the
model. Additionally, part of a straight line with (absolute) slope of 2 is depicted and
serves as a comparison.

each k ∈ {4, . . . , 9}, the (discrete) L2 error εL2 is calculated as

εL2(k) =

√√√√∆ttrue · htrue ·
Ntime∑
i=1

Ntrue∑
j=1

(
Pricetrue(i, j)− Pricek(i, j)

)2
,

wherein Pricetrue(i, j) is the value of the true pricing surface at space node j ∈ {1, . . . , 1+
211} and time node i ∈ {1, . . . , 2000} and Pricek(i, j) is the respective, linearly interpo-
lated value of the coarser pricing surface with only Nk basis function nodes. Figure 3.18
illustrates the results for the first implementation, the taylormade approach for the
Merton model using the classic hat functions as basis functions. Similarly, Figure 3.19
summarizes the results of the six studies of empirical order of convergence in the Merton,
the NIG and the CGMY model in a symbol based implementation once using mollified
hats and once using splines as basis functions.

In each implementation and for all considered models, the (discrete) L2 error decays
exponentially with rate 2. We thus precisely achieve an empirical rate of convergence
that we would theoretically expect, as the upcoming Section 3.6 will explain in detail.
This is especially remarkable for the mollified hat functions that are not FEM basis
functions in a strict theoretical sense. Our numerical results may thus motivate further
research on these functions and their appealing numerical features in Fourier space.
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Figure 3.19 Results of the empirical order of convergence study for the Merton, the NIG
and the CGMY model using mollified hats (left pictures) and splines (right pictures) as
basis functions. All models are parametrized as stated in Table 3.1. Additionally, part of
a straight line with (absolute) slope of 2 is depicted in each figure serving as a comparison.
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3.6 Stability and convergence analysis

When an approximate finite dimensional solution to a PDE shall be obtained, two ques-
tions naturally arise.

i) Is the numerical scheme deriving the solution stable?
A numerical scheme is said to be stable, if its solution normed in a certain way is
bounded by the equivalently normed right hand side of the scheme and its initial
condition up to multiplication with a constant that is independent of the discretiza-
tion itself. In other words, the solution to a numerically stable scheme is bounded
by the input data.

ii) Does the finite dimensional solution converge to the true solution?
The precision of a solution to the numerical scheme should increase when the un-
derlying mesh grids in space and time become finer. Only then can we expect
error control. In fact, the larger topic of convergence separates into several indi-
vidual questions. Does the solution converge polynomially or even exponentially?
Which rate of convergence does it exhibit? How can the normed difference be-
tween the true solution and its approximation be expressed as a function of the
mesh parameters?

In this final section of the chapter we want to assess these two questions. The frame-
work that we consider for this task is kept very general. Not only do we consider PDEs
with operators independent of time like the Black&Scholes PDE. Instead, our analysis
comprises the time-inhomogeneous case, as well, and thus allows the stability and con-
vergence analysis of approximate solutions to time-dependent problems. In this regard,
the analysis below extends the work done by von Petersdorff and Schwab (2003) to the
time-inhomogeneous case.

The group of PDE problems, however, can not only be separated along their dependence
on time. Additionally, all PDE problems can be segregated along a different characteristic
of the operator. In the classic existence and uniqueness result on weak solutions to PDEs
that Theorem 3.7 presented, the bilinear form at(·, ·) associated with the operator At
needed to satisfy, among other requirements, that there exist constants β > 0 and λ ≥ 0
independent of t such that

at(ϕ,ψ) ≥ β‖ϕ‖2V − λ‖ψ‖
2
H , ∀t ∈ [0, T ] and ∀ϕ,ψ ∈ V. (3.171)

Concerning the sophistication of stability and convergence analysis it will mean a sig-
nificant difference, whether the constant λ ≥ 0 in (3.171) is actually zero or not. For
vanishing λ, the associated PDE is called coercive. For this case, the results in von Peters-
dorff and Schwab (2003) provide stability and convergence results for time-homogeneous
problems. For nonnegative λ values, the PDE problem is called of Gårding type. When
PDEs with λ > 0 are concerned, however, standard approaches to stability and conver-
gence analysis fail and the proofs of these claims become a lot more involved. In finance,
this is especially unsatisfactory, since PDE problems in the realm of option pricing are
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usually of Gårding type and thus require the consideration of the general case of λ > 0.
A popular shortcut to avoid this issue is to transform the original PDE problem of Gård-
ing type into a PDE problem that is coercive and then apply the discretization steps on
the basis of the transformed problem. By this approach, however, the link between the
original problem and the discrete scheme is lost. Claims regarding stability and conver-
gence only apply to the transformed problem and do not extend to the original pricing
PDE, as such. We will illustrate this issue in more detail, later.

In this section, we derive stability and convergence results that apply to PDEs with
time-inhomogeneous operator of Gårding type. We begin by extending the results of von
Petersdorff and Schwab (2003) to time-inhomogeneous problems focusing on coercive
PDEs exlusively. On the basis of these results, we extend the scope of our findings in a
second major step to fully general time-inhomogeneous problems of Gårding type.

Consider again the problem of finding solutions u : [0, T ]× Rd → R to a problem of the
form

∂tu+Atu = f, for almost all t ∈ (0, T )

u(0) = g,
(3.172)

with A = (At)t∈[0,T ] a time-inhomogeneous operator of order αA ∈ (0, 2] as introduced
in Definition 2.18, a source term or right hand side f : [0, T ] × Rd → R and an initial
condition g : Rd → R.

The next few definitions introduce the notation that we use throughout the rest of the
section.

Definition 3.52 (Semi-discrete weak solution)
Let V , H be separable Hilbert spaces and the dual V ∗ of V be given that form a Gelfand
triplet,

V ↪→ H ∼= H∗ ↪→ V ∗

and let Vh ⊂ V be a finite dimensional subspace of V . Let f ∈ L2(0, T ;V ∗). Then we
call uh ∈W 1(0, T ;Vh, H) a semi-discrete weak solution to problem (3.172), if for almost
every t ∈ (0, T )

(∂tuh(t), vh)H + at(uh(t), vh) = 〈f(t), vh〉V ∗×V (3.173)

holds for all vh ∈ Vh where the time derivative is understood in the weak sense and a is
the bilinear form associated with operator A and

uh(0) = gh (3.174)

wherein gh ∈ H is an approximation of g of problem (3.172).

Note that in the literature, the notion of gh ∈ H approximating the initial data g
is sometimes interpreted in a stricter and more precise sense thus affecting the initial
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condition of the semi-discrete weak solution of (3.174). Clearly, when convergence is
concerned the interpretation of gh approximating g becomes more crucial. For our notion
of a semi-discrete weak solution as outlined by Definition 3.52, however, we do not yet
focus on this issue.

To arrive at a fully discrete problem formulation that is numerically accessible we need
to discretize the time horizon [0, T ], as well. Instead of accessing time via a continuous
variable t ∈ [0, T ], we replace the continuum by M + 1 discrete points for some M ∈ N.
The following definition establishes the notion of an equidistant discretization of the time
domain [0, T ].

Definition 3.53 (Equidistant time grid)
Let T > 0. ChooseM ∈ N and define ∆t = T/M and tm = ∆tm for all m ∈ {0, . . . ,M}.
We call (T,M,∆t) an equidistant time discretization, the set {t0, t1, . . . , tM} the asso-
ciated equidistant time grid and we call ∆t the time stepping size. Throughout the
following, the number of time steps will always be denoted by M and ∆t will always be
defined as above.

Definition 3.54 (Fully discrete weak solution)
Let V , H be separable Hilbert spaces and the dual V ∗ of V be given that form a Gelfand
triplet,

V ↪→ H ∼= H∗ ↪→ V ∗

and let Vh ⊂ V be a finite dimensional subspace of V . Let f ∈ L2(0, T ;V ∗). Further
choose M ∈ N and let {t0, . . . , tM} be an equidistant time grid with time stepping size
∆t. Finally choose θ ∈ [0, 1]. Then we call (umh )m∈{0,...,M}, umh ∈ Vh, the fully discrete
weak solution to problem (3.172), if(

um+1
h − umh

∆t
, vh

)
H

+ am+θ(um+θ
h (t), vh) = 〈fm+θ, vh〉V ∗×V (3.175)

holds for all vh ∈ Vh and for all m ∈ {0, . . . ,M − 1} and if

u0
h = gh (3.176)

wherein gh ∈ H is an approximation of g of problem (3.172) and where we set

um+θ
h = θum+1

h + (1− θ)umh , (3.177)

fm+θ = θfm+1 + (1− θ)fm, (3.178)

wherein fm = f(tm). With a being the bilinear form associated with operator A we have
set

am+θ(·, ·) = aθtm+1+(1−θ)tm(·, ·). (3.179)

An iterative relation between umh and um+1
h for all m ∈ {0, . . . ,M − 1} as arising from

(3.175) and (3.176) is also called θ scheme.
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Remark 3.55 (On the notation in θ schemes)
In (3.177), (3.178) and (3.179) of the previous definition we introduced a convention
that we will repeatedly apply in the following. Beyond the scope of Definition 3.54 we
therefore fix the following notation. Let (T,M,∆t) be an equidistant time discretization,
let H be a Hilbert space and choose θ ∈ [0, 1]. With um ∈ H for all m ∈ {0, . . . ,M} we
set

um+θ = θum+1 + (1− θ)um, ∀m ∈ {0, . . . ,M − 1}. (3.180)

With f ∈ L2(0, T ;H) we set

fm = f(tm), ∀m ∈ {0, . . . ,M}, (3.181)

fm+θ = θfm+1 + (1− θ)fm, ∀m ∈ {0, . . . ,M − 1}. (3.182)

And with a : [0, T ]×H×H → R a time dependent bilinear form we set

am+θ(vH, wH) = aθtm+1+(1−θ)tm(vH, wH), ∀vH, wH ∈ H, (3.183)

for all m ∈ {0, . . . ,M − 1}.

In contrast to the actual weak solution u to problem (3.172), its fully discretized coun-
terpart (umh )m∈{0,...,M} is numerically accessible.

With the notion of the fully discrete weak solution of Definition 3.54 we are able to restate
the two initial questions from the beginning of this section more precisely. Considering
the approximation (umh )m∈{0,...,M} of u, we ask

1. under which conditions is the approximation (umh )m∈{0,...,M} numerically stable?
And,

2. under which conditions does the approximation (umh )m∈{0,...,M} converge to u and
if so in which sense and how fast?

3.6.1 Assumptions

The answers to these questions depend on the spaces that the weak solution u and its
finite-dimensional approximation live in. The necessary conditions for stability and con-
vergence are given below. In the way they are stated, they generalize the set of assump-
tions required by von Petersdorff and Schwab (2003) for their stability and convergence
analysis.
Remark 3.56 (Adding a superscript s to V )
For the error analysis and the derivation of convergence results we assume that the space
V that the solution space of the weak solution u ∈ W 1(0, T ;V,H) is built on provides a
certain smoothness, denoted by a positive real value s ∈ R+. More precisely, the space
V will always be a Sobolev space with index s ∈ R+, see Definitions 2.25 or 2.26 for
two exemplary definitions of such spaces. From here on, we therefore add the superscript
s to V , thus writing V s instead of V , and its finite dimensional subspaces, by writing
analogously V s

h instead of Vh, to represent the smoothness of the respective space.
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Remark 3.57 (Space discretization by polynomials)
We discretize the space V s to receive a finite dimensional subspace V s

h ⊂ V s using for
example piecewise polynomials of degree p ≥ 0. Using spaces spanned by the classic hat
functions as in our implementation in Section 3.3 we have p = 1, while the Irwin-Hall
splines implemented thereafter result in p = 3. The higher p ≥ 0, the more smoothness
the spanned space V s

h provides.

Assumption 3.A (General approximation property)
Let V s

h ⊂ V s be a finite dimensional subspace. Let s ≤ t with 0 ≤ s ≤ αA/2 ≤ t. We
assume that for all u ∈ V t there exists uh ∈ V s

h such that

‖u− uh‖V s ≤ CΥ Υ(h, t, s, u) (3.184)

for some positive constant CΥ > 0 and some function Υ both independent of s and t with
Υ(h, t, s, u)→ 0 in h→ 0 when t > s.

Assumption 3.B (Inverse property)
We assume that there is a constant CIP > 0 independent of h > 0 such that with 0 ≤ s ≤
αA/2 we have

‖uh‖V s ≤ CIP h
−s‖uh‖H (3.185)

for all uh ∈ V s
h .

Assumption 3.C (Approximation property of the projector)
We assume that there exists a bounded linear projector

Ph : V s → V s
h (3.186)

for which the approximation property (3.184) of Assumption 3.A holds when uh is re-
placed by Ph(u) for all u ∈ V s.

Example 3.58 (The setting of von Petersdorff and Schwab (2003))
We present a first example of a specific instance for Assumption 3.A. In von Petersdorff
and Schwab (2003), the authors consider the space

Hs(Ω) =

{
V = H̃αA/2(Ω), s = αA/2

V ∩Hs(Ω), s > αA/2,

for Ω ⊂ Rd a bounded domain with Lipschitz boundary Γ = ∂Ω and αA ∈ [0, 2] the order
of the possibly nonlocal operator A in problem (3.172) with the space H̃s(Ω) defined as

H̃s(Ω) = {u|Ω
∣∣u ∈ Hs(Rd), u|Rd\Ω = 0}.

The discrete approximation (umh )m∈{0,...,M} lives in Vh ∈ {Vh}h>0 ⊂ V , a finite dimen-
sional subspace based on piecewise polynomials of degree p ≥ 0, see Section 3.4.1 in von
Petersdorff and Schwab (2003) for details.
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In this setting, Assumption 3.A assumes that for all u ∈ Ht(Ω) with t ≥ αA/2 there
exists a uh ∈ Vh such that for 0 ≤ s ≤ αA/2 and αA/2 ≤ t ≤ p+ 1

‖u− uh‖H̃s(Ω) ≤ c h
t−s‖u‖Ht(Ω) (3.187)

for some c > 0. The general function Υ of Assumption 3.A is thus defined as

Υ(h, t, s, u) = ht−s‖u‖Ht(Ω) (3.188)

for all u ∈ Ht(Ω) and CΥ = c.

Example 3.59 (The setting of Hilber et al. (2008))
In Hilber et al. (2008), the authors conduct a convergence analysis for the time-homogeneous
case for coercive operators. They implicitly assume Assumption 3.A by taking V to be a
Sobolev-type space with smoothness index r, in the sense that

V = H̃r, H̃0 = H = L2. (3.189)

As they state, r depends on the order of the operator. They assume the solution u to
problem (3.172) to possess higher regularity in space, u(t) ∈ Hs ⊂ H̃r for t ∈ (0, T ],
where they assume Hs again to be a Sobolev-type space with smoothness index s.

We present a final example for Sobolev spaces with integer index that originates from
the results of da Veiga et al. (2014) as presented in Zimmermann (2016).

Example 3.60 (Results from da Veiga et al. (2014))
Let Ω ⊂ R be a bounded domain. Let further s, t ∈ N0 with 0 ≤ s ≤ t ≤ p+1 with p ∈ N.
Consider the space of B-splines with degree p spanned over a partition ∆̃, confer da Veiga
et al. (2014) for details. Then there exists a projector

Π
p,∆̃

: Hp+1(Ω)→ Sp(∆̃) (3.190)

from the Sobolev space Hp+1(Ω) onto Sp(∆̃), the space spanned by B-splines with degree
p such that with

V = Hs(Ω) (3.191)

there exists a constant C(p) > 0 such that for all u ∈ Ht(Ω)∥∥∥u−Π
p,∆̃
u
∥∥∥
Hs(Ω)

≤ Cht−s‖u‖Ht(Ω) (3.192)

holds.

The results of Example 3.60 also extend to non-integer Sobolev spaces. Consider for
example Theorem 2.3.2 in Roop (2006) or similarly Theorem 7.2 in Ervin and Roop
(2007) for a verification of the approximation property in a fractional Sobolev space
setting. Moreover we refer to Takacs and Takacs (2015), Karkulik and Melenk (2015)

117



3.6.1 Assumptions

and Du et al. (2013) for further results and examples on the abstract approximation
property of Assumption 3.A.

Additionally, consider Definition 1.9 of the Ph.D. thesis of Schötzau (1999), where a
projector Πr

l is defined. In Theorem 1.19 and Corollary 1.20, the author then derives
approximation results for that projector. These results present themselves in the spirit
of Assumption 3.A and hold for integer and non-integer Sobolev spaces, respectively.

Attached to the spacesH, V s and V s
h that the (approximate) solutions live in we consider

the norms
‖u‖ := ‖u‖H , for u ∈ H,

‖f‖V sh ∗ := sup
vh∈V sh
vh 6=0

(f, vh)

‖vh‖V s
, for f ∈ V s∗, (3.193)

Remark 3.61 (An estimate for ‖·‖V s
h

∗)
From the definition of ‖·‖V sh ∗ in (3.193), we immediately get for f ∈ V s∗ the estimate

‖f‖V sh ∗ = sup
vh∈V sh
vh 6=0

(f, vh)

‖vh‖V s
≤ sup

vh∈V sh
vh 6=0

√
(f, f)

√
(vh, vh)

‖vh‖V s
= ‖f‖H sup

vh∈V sh
vh 6=0

‖vh‖H
‖vh‖V s

≤ ‖f‖H ,

(3.194)
which we state here for later use.

We will also need the constant Λ, defined by

Λ = sup
vh∈V sh
vh 6=0

‖vh‖2H
‖vh‖2V sh ∗

. (3.195)

Remark 3.62 (On Λ)
Given h > 0 and the respective finite dimensional space V s

h ⊂ V s, the constant Λ defined
in (3.195) is finite due to the fact that all norms involved are norms restricted to finite
dimensional spaces and in finite dimensional spaces all norms are equivalent. From this,
Λ being finite follows immediately. As a consequence, however, Λ depends on h and thus
on the dimension of the spaces involved,

Λ = Λ(h).

Yet, Λ is not necessarily bounded in h and thus in the limit, h→ 0, not necessarily finite,
anymore.

In Definition 3.54 we introduced the notion of a Theta scheme as an iterative relation
between approximate solutions to the original problem 3.172 that live on an (equidistant)
time grid in finite dimensional space. We restate this structure here for later reference.
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Theta Scheme 3.63 (Fully discretized θ scheme)
Let (umh )m∈{0,...,M} be the fully discretized solution to problem (3.172), umh ∈ V s

h ⊂ V s.
The umh ∈ V s

h , m ∈ {0, . . . ,M}, solve the θ scheme(
um+1
h − umh

∆t
, vh

)
+ am+θ(um+θ

h , vh) = (fm+θ, vh),

u0
h = gh,

(3.196)

for all vh ∈ V s
h .

In general, θ ∈ [0, 1] and M ∈ N or rather ∆t = ∆t(M) of the time discretization
(T,M,∆t) that the solution of Theta Scheme 3.63 rests on can not be chosen inde-
pendently from another. The variable M serves as a measure of the fineness of the
discretization (T,M,∆t) in time. The value of θ controls the degree of implicitness of
the scheme (3.196). With θ = 1, the element um+1

h appears twice in the scheme (3.196)
which is then called fully implicit. With θ = 0 the element um+1

h appears only once and
thus the scheme is called fully explicit. So called semi-explicit schemes are those with
θ ∈ (0, 1) with the Crank-Nicolson scheme as the most prominent example (θ = 1

2). As
we will see later, in case that θ ≤ 1

2 , convergence and stability lemmas and theorems
only grant their claims if ∆t is small enough. Conditions of that sort are always called
time stepping conditions.

For the accuracy of an approximate solution (umh )m∈{0,...,M} to problem (3.172), the
approximation quality of gh, the approximate of the initial value g plays a vital role.

Assumption 3.D (Quasi-optimality of the initial condition)
The initial condition u0

h = gh in Theta Scheme 3.63 initiates the iterative relation
of (3.196). This initial value gh ∈ H is in general only an approximation of the ini-
tial value g ∈ H of the original problem (3.172). We assume quasi optimality in H of
the initial condition of the scheme in the sense that ∃CI > 0 such that

‖g − gh‖H ≤ CI inf
vh∈V sh

‖g − vh‖H (3.197)

holds.

The framework that we have presented in the previous section has prepared us for proving
the theorems and lemmas that follow. Therein, properties of the original problem (3.172)
will be specified and consequent features of the approximate fully discretized solution
will be rigorously derived.

In this section, we prove stability and convergence results for θ schemes that yield so-
lutions to fully discretized PIDEs in subspaces Vh ⊂ V . In the analysis of stability and
convergence, we distinguish between two major classes. First, we consider PIDEs where
the operator A induces a bilinear form that is both continuous and coercive.
Secondly, we consider the more general class of PIDEs where the operator A induces a

119



3.6.2 Results for continuous and coercive bilinear forms

bilinear form that is still continuous but only of Gårding type. A bilinear form of Gård-
ing type generalizes the notion of coercivity and complicates the derivation of stability
and convergence results considerably.

3.6.2 Results for continuous and coercive bilinear forms

In this subsection we consider PIDEs with time dependent operator A that induces a
family of bilinear forms at(·, ·) : V s × V s → R for each t ∈ [0, T ] that is continuous
and coercive uniformly in time. We will generalize the second restriction in the next
subsection. Our results on PIDEs with operators of this first kind thus generalize the
results of von Petersdorff and Schwab (2003) in that they allow for time-dependence
of the operator and thus admit more flexibility in the model choice. Furthermore we
keep track of the involved constants in all estimates and make them explicit wherever
possible.

Definition 3.64 (Continuity)
A bilinear form a·(·, ·) : [0, T ]×V s×V s → R is called continuous uniformly in time with
respect to V s, if there exists α ∈ R+ independent of t such that

|at(u, v)| ≤ α‖u‖V s‖v‖V s (3.198)

holds for all u, v ∈ V s and for all t ∈ [0, T ]. We call such an α a continuity constant of
the bilinear form a.

Definition 3.65 (Coercivity)
A bilinear form a·(·, ·) : [0, T ] × V s × V s → R is called coercive uniformly in time with
respect to V s, if there exists β ∈ R+ independent of t such that

at(u, u) ≥ β‖u‖2V s (3.199)

holds for all u ∈ V s and for all t ∈ [0, T ]. We call such a β a coercivity constant of the
bilinear form a.

Remark 3.66 (Energy norm)
A bilinear form a that is both continuous uniformly in time in the sense of Definition
3.64 and coercive uniformly in time in the sense of Definition 3.65 induces a norm
‖·‖at =

√
at(·, ·) on V s for each t ∈ [0, T ] that is equivalent to the norm of V s, since√

β‖u‖V s ≤ ‖u‖at ≤
√
α‖u‖V s ,

for all u ∈ V s wherein α and β are the time independent constants from Definition 3.64
and Definition 3.65, respectively. The norm ‖·‖at is called enery norm of at(·, ·).

Remark 3.67 (On the continuity and coercivity definition)
Note that the definition of continuity by inequality (3.198) and the definition of coercivity
by inequality (3.199) comply precisely with the requirements ii) and iii) of Theorem 3.7
for the existence and uniqueness of weak solutions to problems of form (3.172).
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3.6.2.1 Stability of coercive schemes

We derive a stability result regarding a solution to Theta Scheme 3.63 under the assump-
tion of continuity and coercivity of the associated time dependent bilinear form.

Lemma 3.68 (Stability estimate for θ scheme)
Let a·(·, ·) be a time dependent bilinear form that is both continuous and coercive uni-
formly in time with respect to V s and H. Let θ ∈ [0, 1] and let (umh )m∈{0,...,M} be a
solution of the associated θ scheme 3.63 on an equidistant time grid (T,M,∆t). For
θ ∈

[
1
2 , 1
]
let

0 < C1 < 2,

C2 ≥
1

β(2− C1)
,

with β the coercivity constant of bilinear form a. For θ ∈
[
0, 1

2

)
assume the time stepping

size ∆t to satisfy the time stepping condition

0 < ∆t <
2β

(1− 2θ)Λα2
, (3.200)

with Λ defined in (3.195), define the constant

µ = (1− 2θ) Λ∆t > 0 (3.201)

and let

C1 ∈
(

0, 2− µα2

β

)
, (3.202)

C2 ≥ max

{
µ,

(1 + µα)2

(2− C1)β − µα2
+ µ

}
. (3.203)

Then the stability estimate

∥∥uMh ∥∥2

H
+ ∆t C1

M−1∑
m=0

∥∥∥um+θ
h

∥∥∥2

am+θ
≤
∥∥u0

h

∥∥2

H
+ ∆t C2

M−1∑
m=0

∥∥∥fm+θ
∥∥∥2

V sh
∗
,

is satisfied.

Before we prove Lemma 3.68, the following remark argues that the intervals for the
constants C1, C2 introduced therein are indeed well-defined.

Remark 3.69 (On the constants of Lemma 3.68)
For θ ∈ [0, 1

2) the constant µ is well defined and indeed larger than zero and the set of
possible values for C1, C2 is non-empty. With ∆t chosen according to (3.200) we have

µα2

β
=

(1− 2θ)Λ∆tα2

β
<

(1− 2θ)Λ 2β
(1−2θ)Λα2α

2

β
= 2
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which admits a non-empty interval of choices for C1. Since µ is finite and bounded, we
have C2 <∞ if

(2− C1)β > µα2

which is the case if (2 − C1) > µα2/β which is true by the interval that C1 is chosen
from.

Proof (of Lemma 3.68)
The proof follows the structure of the proof of Proposition 4.1 by von Petersdorff and
Schwab (2003) replacing their norm ‖·‖∗ by norm ‖·‖V sh ∗ as defined in equation (3.193).
At the core of the proof lies verifying that

Xm := ‖umh ‖
2
H −

∥∥um+1
h

∥∥2

H
−∆t C1

∥∥∥um+θ
h

∥∥∥2

am+θ
+ ∆t C2

∥∥∥fm+θ
∥∥∥2

V sh
∗
≥ 0, (3.204)

for all m ∈ {0, . . . ,M − 1}, since summing up the Xm, m ∈ {0, . . . ,M − 1}, then yields

M−1∑
m=0

Xm =
∥∥u0

h

∥∥2

H
−
∥∥uMh ∥∥2

H
−∆t C1

M−1∑
m=0

∥∥∥um+θ
h

∥∥∥2

am+θ
+ ∆t C2

M−1∑
m=0

∥∥∥fm+θ
∥∥∥2

V sh
∗
≥ 0,

from which by simple rearrangement of terms if follows that

∥∥uMh ∥∥2

H
+ ∆t C1

M−1∑
m=0

∥∥∥um+θ
h

∥∥∥2

am+θ
≤
∥∥u0

h

∥∥2

H
+ ∆t C2

M−1∑
m=0

∥∥∥fm+θ
∥∥∥2

V sh
∗
,

which shows the claim.

Fix m ∈ {0, . . . ,M − 1} and define

w̄ = um+1
h − umh . (3.205)

With this definition of w̄ the θ scheme 3.63 yields

(w̄, um+θ
h ) = ∆t

(
−am+θ

(
um+θ
h , um+θ

h

)
+
(
fm+θ, um+θ

h

))
= ∆t

(
−
∥∥∥um+θ

h

∥∥∥2

am+θ
+
(
fm+θ, um+θ

h

))
,

(3.206)

The definition of the norm ‖·‖V sh ∗ in (3.193) directly gives the estimate(
fm+θ, um+θ

h

)
≤
∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s
. (3.207)

Combining (3.206) and (3.207) gives the estimate

(w̄, um+θ
h ) ≤ ∆t

(
−
∥∥∥um+θ

h

∥∥∥2

am+θ
+
∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

)
. (3.208)
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Using the definition of w̄ in (3.205) we get

um+θ
h =

(
umh + um+1

h

)
/2 +

(
θ − 1

2

)
w̄,

which is equivalent to the relation

um+1
h + umh = 2um+θ

h − (2θ − 1)w̄. (3.209)

With the definition of w̄ and (3.209) we see that∥∥um+1
h

∥∥2

H
− ‖umh ‖

2
H = (um+1

h − umh , um+1
h + umh ) =

(
w̄, 2um+θ

h − (2θ − 1)w̄
)
,

such that by changing signs we arrive at

‖umh ‖
2
H −

∥∥um+1
h

∥∥2

H
= −2(w̄, um+θ

h ) + (2θ − 1)(w̄, w̄). (3.210)

Continuing in (3.210), we get by invoking the upper boundary of (3.208) in the first
summand that
−2(w̄, um+θ

h ) + (2θ − 1)(w̄, w̄)

≥ 2∆t

(∥∥∥um+θ
h

∥∥∥2

am+θ
−
∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

)
+ (2θ − 1)‖w̄‖2H .

(3.211)

Thus the final estimate for the difference between ‖umh ‖
2
H and

∥∥um+1
h

∥∥2

H
is given by

combining (3.210) and (3.211) as

‖umh ‖
2
H −

∥∥um+1
h

∥∥2

H

≥ 2∆t

(∥∥∥um+θ
h

∥∥∥2

am+θ
−
∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

)
+ (2θ − 1)‖w̄‖2H .

(3.212)

Now we have collected all prerequisites for analyzing Xm of (3.204). Taking its definition
and the estimate (3.212) we deduce

Xm = ‖umh ‖
2
H −

∥∥um+1
h

∥∥2

H
−∆t C1

∥∥∥um+θ
h

∥∥∥2

am+θ
+ ∆t C2

∥∥∥fm+θ
∥∥∥2

V sh
∗

≥ 2∆t

(∥∥∥um+θ
h

∥∥∥2

am+θ
−
∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

)
+ (2θ − 1)‖w̄‖2H

−∆t C1

∥∥∥um+θ
h

∥∥∥2

am+θ
+ ∆t C2

∥∥∥fm+θ
∥∥∥2

V sh
∗
.

(3.213)

Collecting terms gives

Xm ≥ ∆t(2− C1)
∥∥∥um+θ

h

∥∥∥2

am+θ
+ (2θ − 1)‖w̄‖2H

− 2∆t
∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

+ ∆t C2

∥∥∥fm+θ
∥∥∥2

V sh
∗

= (2θ − 1)‖w̄‖2H

+ ∆t

[
(2− C1)

∥∥∥um+θ
h

∥∥∥2

am+θ
+ C2

∥∥∥fm+θ
∥∥∥2

V sh
∗
− 2
∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

]
.

(3.214)
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By assumption, the bilinear form at(·, ·) is uniformly coercive with coercivity constant
β, so ∥∥∥um+θ

h

∥∥∥2

am+θ
= am+θ

(
um+θ
h , um+θ

h

)
≥ β

∥∥∥um+θ
h

∥∥∥2

V s
. (3.215)

Using the assumption C1 < 2 and inserting (3.215) into (3.214) gives

Xm ≥ (2θ − 1)‖w̄‖2H

+ ∆t

[
(2− C1)β

∥∥∥um+θ
h

∥∥∥2

V s
+ C2

∥∥∥fm+θ
∥∥∥2

V sh
∗
− 2
∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

]
.

(3.216)

To proceed we distinguish two cases for θ ∈ [0, 1].

θ ∈ [1
2 , 1] So, assume first that θ ∈

[
1
2 , 1
]
. Then, proceeding from (3.216) gives by the second

binomial formula

Xm ≥ (2θ − 1)‖w̄‖2H + ∆t

[(√
(2− C1)β

∥∥∥um+θ
h

∥∥∥
V s
−
√
C2

∥∥∥fm+θ
∥∥∥
V sh
∗

)2

+ 2
(√

(2− C1)βC2 − 1
)∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

]
.

(3.217)

Now,

(2− C1)βC2 ≥ 1⇔ C2 ≥
1

β(2− C1)
, (3.218)

which is true by assumption. By the choice of θ, (2θ−1)‖w̄‖2H ≥ 0, and by (3.218)
all other summands in (3.217) are nonnegative as well, so

Xm ≥ 0, (3.219)

which proves the claim of the lemma for θ ∈
[

1
2 , 1
]
.

θ ∈ [0, 1
2) Here, (2θ− 1) < 0, which prohibits arguing like above. By θ scheme 3.63, we have

(w̄, vh) = ∆t
(
−am+θ

(
um+θ
h , vh

)
+
(
fm+θ, vh

))
, (3.220)

for all vh ∈ V s
h . Consequently,

‖w̄‖V sh ∗ = sup
vh∈Vh

(w̄, vh)

‖vh‖V s

= sup
vh∈Vh

∆t
(
−am+θ

(
um+θ
h , vh

)
+
(
fm+θ, vh

))
‖vh‖V s

,

(3.221)
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which gives

‖w̄‖V sh ∗ ≤ ∆t

 sup
vh∈Vh

−am+θ
(
um+θ
h , vh

)
‖vh‖V s

+ sup
vh∈Vh

(fm+θ, vh)

‖vh‖V s


= ∆t

(∥∥∥am+θ
(
um+θ
h , ·

)∥∥∥
V sh
∗

+
∥∥∥fm+θ

∥∥∥
V sh
∗

)
.

(3.222)

Clearly, by taking the uniform continuity of at(·, ·) with respect to ‖·‖V s into
account we deduce∥∥∥am+θ

(
um+θ
h , ·

)∥∥∥
V sh
∗

= sup
vh∈Vh

am+θ
(
um+θ
h , vh

)
‖vh‖V s

≤
∥∥∥um+θ

h

∥∥∥
V s

sup
vh∈Vh

α‖vh‖V s
‖vh‖V s

= α
∥∥∥um+θ

h

∥∥∥
V s
,

(3.223)

which we insert into (3.222) to get

‖w̄‖V sh ∗ ≤ ∆t

(
α
∥∥∥um+θ

h

∥∥∥
V s

+
∥∥∥fm+θ

∥∥∥
V sh
∗

)
. (3.224)

By the definition of Λ in (3.195) we have the „inverse estimate“

‖w̄‖H ≤
√

Λ‖w̄‖V sh ∗ . (3.225)

Assembling our results by combining (3.224) with (3.225) gives

‖w̄‖H ≤
√

Λ‖w̄‖V sh ∗ ≤
√

Λ∆t

(
α
∥∥∥um+θ

h

∥∥∥
V s

+
∥∥∥fm+θ

∥∥∥
V sh
∗

)
. (3.226)

Finally, we can continue in (3.216) under our assumption that θ ∈ [0, 1
2) by applying

result (3.226) to compute

Xm ≥ (2θ − 1)‖w̄‖2H

+ ∆t

[
(2− C1)β

∥∥∥um+θ
h

∥∥∥2

V s
+ C2

∥∥∥fm+θ
∥∥∥2

V sh
∗
− 2
∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

]
≥ (2θ − 1)

(√
Λ∆t

(
α
∥∥∥um+θ

h

∥∥∥
V s

+
∥∥∥fm+θ

∥∥∥
V sh
∗

))2

(3.227)

+ ∆t

[
(2− C1)β

∥∥∥um+θ
h

∥∥∥2

V s
+ C2

∥∥∥fm+θ
∥∥∥2

V sh
∗
− 2
∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

]
.

Expanding the squared brackets in (3.227) gives

Xm ≥ ∆t

[
(2θ − 1)∆tΛ

(
α2
∥∥∥um+θ

h

∥∥∥2

V s
+ 2α

∥∥∥um+θ
h

∥∥∥
V s

∥∥∥fm+θ
∥∥∥
V sh
∗

+
∥∥∥fm+θ

∥∥∥2

V sh
∗

)

+ (2− C1)β
∥∥∥um+θ

h

∥∥∥2

V s
+ C2

∥∥∥fm+θ
∥∥∥2

V sh
∗
− 2
∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

]
.
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Collecting terms we derive

Xm ≥ ∆t

[ [
(2− C1)β − (1− 2θ)∆tΛα2

] ∥∥∥um+θ
h

∥∥∥2

V s

− 2 [1 + (1− 2θ)∆tαΛ]
∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

+ [C2 − (1− 2θ)∆tΛ]
∥∥∥fm+θ

∥∥∥2

V sh
∗

]
.

(3.228)

Recall the definition of µ in (3.201) as

µ = (1− 2θ) Λ∆t (3.229)

which turns (3.228) into

Xm ≥ ∆t

[ [
(2− C1)β − µα2

] ∥∥∥um+θ
h

∥∥∥2

V s

− 2 [1 + µα]
∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

+ [C2 − µ]
∥∥∥fm+θ

∥∥∥2

V sh
∗

]
.

(3.230)

Define constants

γ = 1 + µα, (3.231)
δ = C2 − µ, (3.232)

κ = (2− C1)β − µα2. (3.233)

Trivially, γ > 0. We also have δ ≥ 0, since C2 ≥ µ by the first condition for C2 in
(3.203). Furthermore, we have κ > 0, since

C1 < 2− µα2

β

by the upper bound for the open interval of possible values for C1 according to
(3.202). Inserting the definitions of the nonnegative δ and the positive γ and κ
into (3.230) and applying the second binomial formula then gives

Xm ≥ ∆t

[(
√
κ
∥∥∥um+θ

h

∥∥∥
V s
−
√
δ
∥∥∥fm+θ

∥∥∥
V sh
∗

)2

+ 2
(√

κδ − γ
)∥∥∥fm+θ

∥∥∥
V sh
∗

∥∥∥um+θ
h

∥∥∥
V s

]
.

(3.234)
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The lower bound for Xm stated in (3.234) is thus nonnegative, if
√
κδ ≥ γ,

which by the nonnegativity of the constants involved is equivalent to

κδ ≥ γ2, (3.235)

Using the definitions of κ, δ and γ, (3.235) holds, if(
(2− C1)β − µα2

)
(C2 − µ) ≥ (1 + µα)2,

which is the case, since

C2 ≥
(1 + µα)2

(2− C1)β − µα2
+ µ,

by the second condition for C2 in (3.203). Therefore, Xm ≥ 0 which finishes the
proof. �

Remark 3.70 (On the time stepping condition and the inverse property)
Let us have a closer look at the time stepping condition (3.200) for θ ∈

[
0, 1

2

)
in

Lemma 3.68. Under the inverse property Assumption 3.B we have for all wh ∈ V s
h ,

‖wh‖V sh ∗ = sup
vh∈V sh

(wh, vh)

‖vh‖V s
≥ 1

CIP
hs sup

vh∈V sh

(wh, vh)

‖vh‖H
≥ 1

CIP
hαA/2‖wh‖H (3.236)

and hence

Λ = sup
vh∈V sh

‖vh‖2H
‖vh‖2V sh ∗

≤ C2
IP h

−αA , (3.237)

with Λ = Λ(h) defined in (3.195) at the beginning of Section 3.6.1. Consequently, under
Assumption 3.B, for θ ∈

[
0, 1

2

)
the time stepping condition on ∆t as required by (3.200)

in Lemma 3.68 is satisfied if

0 < ∆t <
2β

(1− 2θ)C2
IP α

2
hαA = Cθ h

αA (3.238)

with Cθ = 2β/[(1− 2θ)C2
IP α

2].

Corollary 3.71 (Stability estimate for θ scheme)
Under the assumptions of Lemma 3.68 the stability estimate

∥∥uMh ∥∥2

H
+ ∆t C1β

M−1∑
m=0

∥∥∥um+θ
h

∥∥∥2

V s
≤
∥∥u0

h

∥∥2

H
+ ∆t C2

M−1∑
m=0

∥∥∥fm+θ
∥∥∥2

V sh
∗
, (3.239)

holds with positive constants C1, C2 and the same time stepping condition for θ ∈ [0, 1
2)

as required by Lemma 3.68.
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Proof
The claim is a direct consequence of Lemma 3.68 and the uniform coercivity of the
bilinear form with coercivity constant β. �

Note that the result (3.239) of Corollary 3.71 in a way describes that the solution of the
discrete scheme is bounded by its initial data in a discrete L2(0, T, V s) or L2(0, T, V s

h
∗)

norm fashion, respectively.

3.6.2.2 Convergence of coercive schemes

Under the assumptions of Lemma 3.68, the solution to Theta Scheme 3.63 is stable. In
this subsection we show that it also converges in the dimensionality N(h) of the space
and the fineness ∆t of the time grid. For that matter we consider the residuals between
each member of (um)m∈{0,...,M}, the weak solution of (3.172) evaluated at time points tm,
m = 0, . . . ,M , and the respective members of the sequence (umh )m∈{0,...,M}, the solution
of Theta Scheme 3.63.

In order to ultimately prove convergence, we will show that (parts of) these residuals
satisfy their own θ scheme with a new right hand side. Applying Lemma 3.68 to these very
residuals will yield an upper bound for the sum of their norms from which convergence
can be deduced.

We define for all m ∈ {0, . . . ,M} the difference emh between the weak solution evaluated
at time point tm and its finite dimensional approximation affiliated with time point tm

as

emh = um − umh
= (um − Phum) + (Phu

m − umh )

= ηm + ξmh ,

(3.240)

with

ηm = um − Phum, ∀m ∈ {0, . . . ,M}, (3.241)
ξmh = Phu

m − umh , ∀m ∈ {0, . . . ,M}, (3.242)

with a projector Ph adhering to Assumption 3.C. The quantity emh thus consists of two
parts. The first part, ηm, carries the discretization error, the second part, ξmh , denotes
the inaccuracy of the approximate solution with respect to the projection of the weak
solution into the finite dimensional subspace.

In the end, convergence itself then depends on the specification of the function Υ of
Assumption 3.A and its behavior when h tends to zero. This behavior of Υ in turn orig-
inates from the smoothness that the weak solution u admits. The more smoothness it
provides, the faster the achieved rate of convergence will be. We will keep this issue de-
termining the rate of convergence separate from the derivation of the convergence results
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as such wherever possible. After the formal convergence analysis has been completed,
the assumptions on the space that the solution lives in will determine the actual rate of
convergence that the θ scheme achieves.

To derive the convergence result we focus on the term ξmh in (3.240), first. Being the
part of the residual emh that denotes the deviation of the solution of the θ scheme from
the projection of the weak solution, it is of central interest for the whole analysis.

Lemma 3.72 (θ scheme for the ξmh )
Let u ∈W 1(0, T ;V s, H) be the weak solution to problem (3.172) with continuous and co-
ercive bilinear form a and (umh )m∈{0,...,M} the solution to the associated Theta Scheme 3.63.
Further, let ξmh , m ∈ {1, . . . ,M}, be defined by (3.242). If additionally u ∈ C1([0, T ];H)
and the bilinear form is continuous in t then we have(

ξm+1
h − ξmh

∆t
, vh

)
+ am+θ(θξm+1

h + (1− θ)ξmh , vh) = (rm, vh),

ξ0
h = Phg − u0

h,

(3.243)

for all m = 1, . . . ,M − 1 and for all vh ∈ V s
h , where the weak residuals rm : V s

h → R
have the form

rm = rm1 + rm2 + rm3 (3.244)

with

(rm1 , vh) =

(
um+1 − um

∆t
− u̇m+θ, vh

)
,

(rm2 , vh) =

(
Phu

m+1 − Phum

∆t
− um+1 − um

∆t
, vh

)
,

(rm3 , vh) = am+θ
(
Phu

m+θ − um+θ, vh

)
.

for all m ∈ {0, . . . ,M − 1}.

Proof
By admitting time dependence of the bilinear form, this lemma generalizes Lemma
5.1 in von Petersdorff and Schwab (2003). The proof therein provides very reliable
guidelines along which we now derive our result, as well.
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Choose vh ∈ V s
h ⊂ V s arbitrary but fix and m ∈ {0, . . . ,M − 1} and compute(

ξm+1
h − ξmh

∆t
, vh

)
+ am+θ

(
θξm+1
h + (1− θ)ξmh , vh

)
=

(
(Phu

m+1 − um+1
h )− (Phu

m − umh )

∆t
, vh

)
+ am+θ

(
θ
(
Phu

m+1 − um+1
h

)
+ (1− θ) (Phu

m − umh ) , vh
)

=

(
Phu

m+1 − Phum

∆t
, vh

)
−

(
um+1
h − umh

∆t
, vh

)
+ am+θ(Phu

m+θ, vh)− am+θ(um+θ
h , vh)

=

(
Phu

m+1 − Phum

∆t
, vh

)
+ am+θ(Phu

m+θ, vh)

−

((
um+1
h − umh

∆t
, vh

)
+ am+θ(um+θ

h , vh)

)
. (3.245)

We invoke the relation provided by the fully discretized θ scheme 3.63 to bring fm+θ

into the equation, then add a zero and thus continue from (3.245) with(
Phu

m+1 − Phum

∆t
, vh

)
+ am+θ(Phu

m+θ, vh)−

((
um+1
h − umh

∆t
, vh

)
+ am+θ(um+θ

h , vh)

)

=

(
Phu

m+1 − Phum

∆t
, vh

)
+ am+θ(Phu

m+θ, vh)− (fm+θ, vh)

=

(
Phu

m+1 − Phum

∆t
− u̇m+θ, vh

)
+ am+θ(Phu

m+θ, vh)

+ (u̇m+θ, vh)− (fm+θ, vh). (3.246)

By Equation (3.11) and the assumption that u ∈ C1([0, T ], H) together with the bilinear
form a being continuous in t, the fundamental theorem of variational calculus implies
that

(u̇m+θ, v) + am+θ
(
um+θ, v

)
= (fm+θ, v), ∀v ∈ V s. (3.247)

Recalling that vh ∈ V s
h ⊂ V s we combine (3.247) and (3.246) to get(

Phu
m+1 − Phum

∆t
− u̇m+θ, vh

)
+ am+θ(Phu

m+θ, vh) + (u̇m+θ, vh)− (fm+θ, vh)

=

(
Phu

m+1 − Phum

∆t
− u̇m+θ, vh

)
+ am+θ(Phu

m+θ, vh)− am+θ(um+θ, vh) (3.248)
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Adding an artificial zero to (3.248) we arrive at(
Phu

m+1 − Phum

∆t
− u̇m+θ, vh

)
+ am+θ(Phu

m+θ, vh)− am+θ(um+θ, vh)

=

(
Phu

m+1 − Phum

∆t
− um+1 − um

∆t
, vh

)
+

(
um+1 − um

∆t
− u̇m+θ, vh

)
+ am+θ(Phu

m+θ − um+θ, vh),

= (rm, vh),

with
(rm, vh) := (rm1 + rm2 + rm3 , vh),

wherein

(rm1 , ·) =

(
um+1 − um

∆t
− u̇m+θ, ·

)
,

(rm2 , ·) =

(
Phu

m+1 − Phum

∆t
− um+1 − um

∆t
, ·
)
,

(rm3 , ·) = am+θ(Phu
m+θ − um+θ, ·),

which validates the decomposition of rm claimed by the lemma. �

We have therefore derived a θ scheme for ξmh which we state for later reference.

Theta Scheme 3.73 (θ scheme for the ξmh )
Under the assumptions of Lemma 3.72 with θ ∈ [0, 1], the ξmh defined by (3.242) satisfy
the θ scheme(

ξm+1
h − ξmh

∆t
, vh

)
+ am+θ(θξm+1

h + (1− θ)ξmh , vh) = (rm, vh),

ξ0
h = Phg − u0

h,

(3.249)

for all m = 1, . . . ,M − 1 and for all vh ∈ V s
h , where the right hand side given by rm is

defined as in (3.244) of the Lemma.

For the solution (ξmh )m∈{0,...,M} of Scheme 3.73, the following stability estimate holds.

Corollary 3.74 (Stability estimate for ξmh )
Let (ξmh )m∈{0,...,M} be the solution of the θ scheme 3.73 with θ ∈ [0, 1] and let the as-
sumptions of Lemma 3.68 be satisfied. Then there exist positive constants C1, C2 such
that the stability estimate

∥∥ξMh ∥∥2

H
+ ∆t C1

M−1∑
m=0

∥∥∥ξm+θ
h

∥∥∥2

am+θ
≤
∥∥ξ0
h

∥∥2

H
+ ∆t C2

M−1∑
m=0

‖rm‖2V sh ∗ (3.250)

holds.
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Proof
By assumption, the bilinear form at(·, ·) is continuous and coercive uniformly in time.
The ξmh thus take the role of the umh in the θ scheme 3.63 and the rm take the role of the
fm+θ therein. Consequently, we can directly apply Lemma 3.68. The constants C1, C2

of the corollary are thus identical to the two constants of the lemma. �

Convergence of the (approximate) solution (umh )m∈{0,...,M} will depend on convergence
of the right hand side in (3.250). In that respect, Corollary 3.74 is the key ingredient to
our convergence results for bilinear forms that are both continuous as well as coercive
uniformly in time. In preparation of these results we shall now derive upper bounds for
the individual residual parts rm1 , rm2 and rm3 .

The following lemma provides upper bounds for the residuals individually. Each of those
bounds depends on the grid parameters h and ∆t. Both serve as determinants for the
rate of convergence of the θ scheme, later.

Lemma 3.75 (Upper bounds for normed residuals)
Let the assumptions of Lemma 3.72 be satisfied and let (rmi , ·)H with rmi : V s

h → R, i ∈
{1, 2, 3}, be the weak residuals derived by the lemma. We require additional smoothness
of the weak solution u by assuming further that

i) Assumption 3.A holds for some function Υ and some constant CΥ

ii) Assumption 3.C on the projector Ph holds

iii) u ∈W 1(0, T ;V t, H) for some t ≥ αA/2

iv) u ∈ C2([0, T ], H)

In case θ = 1
2 assume optionally

v) u ∈ C3([0, T ], H)

Then there exist positive constants Cr1, Cr2 and Cr3 such that

‖rm1 ‖V sh ∗ ≤ Cr1


√

∆t
(∫ tm+1

tm ‖ü(s)‖2V sh ∗ ds
) 1

2
, θ ∈ [0, 1]

∆t
3
2

(∫ tm+1

tm ‖...u (s)‖2V sh ∗ ds
) 1

2
, θ = 1

2 and given v) holds
(3.251)

‖rm2 ‖V sh ∗ ≤ Cr2
1√
∆t

(∫ tm+1

tm
Υ2 (h, t, αA/2, u̇(τ)) dτ

) 1
2

, (3.252)

‖rm3 ‖V sh ∗ ≤ Cr3 Υ(h, t, αA/2, u
m+θ), (3.253)

for all m = 0, . . . ,M − 1.

Proof
Choose vh ∈ V s

h arbitrary but fix. We derive each upper bound individually.
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Upper bound for ‖rm1 ‖V sh ∗:
Clearly,

|(rm1 , vh)| ≤
∥∥∥∥um+1 − um

∆t
− u̇m+θ

∥∥∥∥
V sh
∗
‖vh‖V s , (3.254)

by the definition of the norm ‖·‖V sh ∗ . Recall that our time grid is equidistantly spaced
so tm+1 = tm + ∆t for all m ∈ {0, . . . ,M − 1}. Under the assumption that u ∈
C2 ([0, T ], H) we represent um+1 = u(tm+1) by the Taylor expansion of u around
tm, evaluated at tm+1. Thus, by applying Theorem 2.40, the Taylor theorem for
Banach-valued functions, we have

um+1 = um + u̇m∆t+

∫ tm+1

tm
(tm+1 − τ)ü(τ) dτ. (3.255)

Proceeding with elementary calculations we get

um+1 − um

∆t
− u̇m+θ

=

(
um + u̇m∆t+

∫ tm+1

tm (tm+1 − τ)ü(τ) dτ
)
− um

∆t
− u̇m+θ

= u̇m +
1

∆t

∫ tm+1

tm
(tm+1 − τ)ü(τ) dτ −

(
θu̇m+1 + (1− θ)u̇m

)
=

1

∆t

∫ tm+1

tm
(tm+1 − τ)ü(τ) dτ −

(
θu̇m+1 − θu̇m

)
. (3.256)

Since u ∈ C2([0, T ], H), Lemma 2.38 together with Proposition 1.2.3 in Arendt et al.
(2011) grant that ü is Bochner integrable and

θu̇m+1 − θu̇m = θ

∫ tm+1

tm
ü(τ) dτ. (3.257)

Inserting (3.257) into (3.256) yields

um+1 − um

∆t
− u̇m+θ =

1

∆t

∫ tm+1

tm

(
tm+1 − τ

)
ü(τ) dτ −

(
θu̇m+1 − θu̇m

)
=

1

∆t

∫ tm+1

tm

(
tm+1 − τ − θ∆t

)
ü(τ) dτ

= − 1

∆t

∫ tm+1

tm

(
τ − (1− θ)tm+1 − θtm

)
ü(τ) dτ.

(3.258)
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Since ü is Bochner integrable, we can apply Theorem 24.7 in Wloka (2002) to get∥∥∥∥um+1 − um

∆t
− u̇m+θ

∥∥∥∥
V sh
∗

=

∥∥∥∥∥ 1

∆t

∫ tm+1

tm

(
τ − (1− θ)tm+1 − θtm

)
ü(τ) dτ

∥∥∥∥∥
V sh
∗

≤ 1

∆t

∫ tm+1

tm

∥∥(τ − (1− θ)tm+1 − θtm
)
ü(τ)

∥∥
V sh
∗ dτ (3.259)

taking the norm into the integral. Considering the function

gθ(τ) = τ − (1− θ)tm+1 − θtm, gθ :
[
tm, tm+1

]
→ R

we find due to its strict monotonicity in τ that for τ ∈ [tm, tm+1]

|gθ(τ)| ≤ max
{∣∣tm+1 − (1− θ)tm+1 − θtm

∣∣ , ∣∣tm − (1− θ)tm+1 − θtm
∣∣}

= max{|θ(tm+1 − tm)|, |(1− θ)(tm+1 − tm)|}
= ∆tmax{θ, (1− θ)} = ∆t Cθ,

(3.260)

with Cθ = max{θ, (1− θ)}. Using the estimate (3.260) we develop (3.259) into

1

∆t

∫ tm+1

tm

∥∥(τ − (1− θ)tm+1 − θtm
)
ü(τ)

∥∥
V sh
∗ dτ

≤ Cθ

∫ tm+1

tm
‖ü(τ)‖V sh ∗ dτ

≤ Cθ
√

∆t

(∫ tm+1

tm
‖ü(τ)‖2V sh ∗ dτ

) 1
2

, (3.261)

with the Hölder inequality of Theorem 2.42 being applied in the last step.

Special case θ = 1/2:

For θ = 1/2 and under the assumption of additional smoothness of u in the sense of
v) being satisfied, further computations are possible. So let us assume that θ = 1

2 .
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Continuing in (3.258), we get by integration by parts and elementary calculations

um+1 − um

∆t
− u̇m+θ

= − 1

∆t

∫ tm+1

tm

(
τ − 1

2
tm+1 − 1

2
tm
)
ü(τ) dτ

= − 1

2∆t

([ (
τ2 −

(
tm+1 + tm

)
τ
)
ü(τ)

]tm+1

tm

−
∫ tm+1

tm

(
τ2 −

(
tm+1 + tm

)
τ
) ...
u (τ) dτ

)
= − 1

2∆t

(
− tmtm+1üm+1 + tmtm+1üm

−
∫ tm+1

tm

(
τ2 − (tm+1 + tm)τ

) ...
u (τ) dτ

)
= − 1

2∆t

(
−tmtm+1

(
üm+1 − üm

)
−
∫ tm+1

tm

(
τ2 − (tm+1 + tm)τ

) ...
u (τ) dτ

)

=
1

2∆t

∫ tm+1

tm

(
τ2 − (tm+1 + tm)τ + tmtm+1

) ...
u (τ) dτ

=
1

2∆t

∫ tm+1

tm
(τ − tm+1)(τ − tm)

...
u (τ) dτ.

(3.262)

The absolute value of τ 7→ (τ − tm+1)(τ − tm) with τ ∈
[
tm, tm+1

]
is bounded,∣∣(τ − tm+1)(τ − tm)

∣∣ ≤ 1

4
∆t2, τ ∈ [tm, tm+1]. (3.263)

We take the norm ‖·‖V sh ∗ of the result of (3.262), use the Bochner integrability of ...u
guaranteed by Proposition 1.2.3 in Arendt et al. (2011), apply again Theorem 24.7 of
Wloka (2002) and then get by invoking estimate (3.263) that∥∥∥∥ 1

∆t

(
um+1 − um

)
− u̇m+θ

∥∥∥∥
V sh
∗

=
1

2∆t

∥∥∥∥∥
∫ tm+1

tm

(
tm+1 − τ

)
(tm − τ)

...
u (τ) dτ

∥∥∥∥∥
V sh
∗

≤ 1

2∆t

∫ tm+1

tm

1

4
∆t2‖...u (τ)‖V sh ∗ dτ

=
1

8
∆t

∫ tm+1

tm
‖...u (τ)‖V sh ∗ dτ

≤ 1

8
∆t

3
2

(∫ tm+1

tm
‖...u (τ)‖2V sh ∗ dτ

) 1
2

, (3.264)

with the Hölder inequality yielding the last step. Setting

Cr1 = max

{
Cθ,

1

8

}
= Cθ ∈

[
1

2
, 1

]
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defines the constant in (3.251) and finishes the treatment of rm1 .

Upper bound for ‖rm2 ‖V sh ∗ :
With assumption iv) we have again by combining Lemma 2.38 with Proposition 1.2.3
in Arendt et al. (2011) that u̇ is Bochner integrable and

um+1 − um =

∫ tm+1

tm
u̇(τ) dτ. (3.265)

We begin the derivation of an upper bound for the norm of rm2 by using (3.265) and
compute

|(rm2 , vh)| ≤ 1

∆t

∥∥(um+1 − um
)
− Ph

(
um+1 − um

)∥∥
V sh
∗‖vh‖V s

=
1

∆t

∥∥(I − Ph)
(
um+1 − um

)∥∥
V sh
∗‖vh‖V s

=
1

∆t

∥∥∥∥∥(I − Ph)

(∫ tm+1

tm
u̇(τ) dτ

)∥∥∥∥∥
V sh
∗

‖vh‖V s ,

(3.266)

where I denotes the identity mapping. By Proposition 1.1.6 in Arendt et al. (2011)
we may interchange integration with the (I − Ph) operator to get

(I − Ph)

(∫ tm+1

tm
u̇(τ) dτ

)
=

∫ tm+1

tm
(I − Ph) (u̇(τ)) dτ. (3.267)

Proposition 1.1.6 in Arendt et al. (2011) also grants that with u̇ being Bochner in-
tegrable, (I − Ph) (u̇) is Bochner integrable, as well. Consequently, we may combine
expressions (3.266) and (3.267) and conclude again by Theorem 24.7 in Wloka (2002)
that

|(rm2 , vh)| ≤ 1

∆t

∥∥∥∥∥(I − Ph)

(∫ tm+1

tm
u̇(τ) dτ

)∥∥∥∥∥
V sh
∗

‖vh‖V s

=
1

∆t

∥∥∥∥∥
∫ tm+1

tm
(I − Ph) (u̇(τ)) dτ

∥∥∥∥∥
V sh
∗

‖vh‖V s

≤ 1

∆t

∫ tm+1

tm
‖(I − Ph)u̇(τ)‖V sh ∗ dτ‖vh‖V s .

(3.268)

At this point we want to apply the approximation property of the projector Ph out-
lined in Assumption 3.C. Before we can do that we need to establish a relation between
‖·‖V sh ∗ that we recognize in the last line of (3.268) and ‖·‖V s .
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Keep τ ∈
[
tm, tm+1

]
arbitrary but fix. Using the definition of norm ‖·‖V sh ∗ we derive

‖(I − Ph)u̇(τ)‖V sh ∗ = sup
vh∈Vh

((I − Ph)u̇(τ), vh)

‖vh‖V s

≤ sup
vh∈Vh

‖(I − Ph)u̇(τ)‖H‖vh‖H
‖vh‖V s

= ‖(I − Ph)u̇(τ)‖H sup
vh∈Vh

‖vh‖H
‖vh‖V s

≤ ‖(I − Ph)u̇(τ)‖V s ,

(3.269)

since ‖v‖H ≤ ‖v‖V s for all v ∈ V s. Inserting (3.269) into (3.268) and applying the
approximation property of Ph pointwise in time we derive

|(rm2 , vh)| ≤ 1

∆t

∫ tm+1

tm
‖(I − Ph)u̇(τ)‖V sh ∗ dτ‖vh‖V s

≤ 1

∆t

∫ tm+1

tm
‖(I − Ph)u̇(τ)‖V s dτ‖vh‖V s

≤ CΥ
1

∆t

∫ tm+1

tm
Υ (h, t, αA/2, u̇(τ)) dτ ‖vh‖V s

≤ Cr2
1√
∆t

(∫ tm+1

tm
Υ2 (h, t, αA/2, u̇(τ)) dτ

) 1
2

‖vh‖V s ,

(3.270)

where the Hölder inequality grants the last step and where we used the additional
smoothness in the sense of assumption iii) and where Cr2 = CΥ.

Upper bound for ‖rm3 ‖V sh ∗:
The bound for the norm of rm3 is a direct consequence of the uniform continuity of
at(·, ·). We compute for vh ∈ V s

h that

|(rm3 , vh)| =
∣∣∣am+θ(Phu

m+θ − um+θ, vh)
∣∣∣

≤ α
∥∥∥Phum+θ − um+θ

∥∥∥
V s
‖vh‖V s

≤ Cr3 Υ(h, t, αA/2, u
m+θ)‖vh‖V s ,

wherein Cr3 = αCΥ, with α the continuity constant of at(·, ·) and CΥ the constant
stemming from the approximation property (3.184) of Assumption 3.A.

This finishes the derivation of upper bounds for the norms of the individual residuals
rm1 , r

m
2 and rm3 , m = 0, . . . ,M − 1. �

We are now able to state the core theorem, granting convergence of the θ scheme 3.63
where the involved bilinear form is continuous and coercive uniformly in time.
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Theorem 3.76 (Convergence of the coercive θ scheme)
Let u ∈ W 1(0, T ;V t, H) , t > αA/2, be the weak solution to problem (3.172) where the
operator is associated with a bilinear form a that is continuous and coercive uniformly
in time. Further, assume

i) u to be smooth enough in the sense that u ∈ C2([0, T ], H)

ii) and for θ ∈ [0, 1/2) let the time stepping condition (3.200) of Lemma 3.68 be
satisfied.

In case θ = 1
2 assume optionally

iii) u ∈ C3([0, T ], H)

Let (umh )m∈{0,...,M} be the solution to the associated Theta Scheme 3.63 with θ ∈ [0, 1]
and assume further

iv) The approximation property Assumption 3.A holds for some function Υ and some
constant CΥ

v) The inverse property Assumption 3.B is satisfied

vi) Assumption 3.C on the projector Ph holds

vii) Assumption 3.D on the initial condition is satisfied

Then there exists a constant C > 0 such that

∥∥uM − uMh ∥∥2
+ ∆t

M−1∑
m=0

∥∥∥um+θ − um+θ
h

∥∥∥2

am+θ

≤ C max
0≤τ≤T

Υ2(h, t, αA/2, u(τ))

+ C

∫ T

0
Υ2(h, t, αA/2, u̇(τ)) dτ

+ C

{
(∆t)2

∫ T
0 ‖ü(s)‖2V sh ∗ ds, ∀θ ∈ [0, 1]

(∆t)4
∫ T

0 ‖
...
u (s)‖2V sh ∗ ds, θ = 1

2 and if iii)

(3.271)

holds.

Proof
For m ∈ {0, . . . ,M} recall the definition

emh = um − umh = ηm + ξmh

with

ηm = um − Phum, ∀m ∈ {0, . . . ,M}, (3.272)
ξmh = Phu

m − umh , ∀m ∈ {0, . . . ,M}, (3.273)
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as introduced in (3.240). Additionally, we denote

ηm+θ = θηm+1 + (1− θ)um = um+θ − Phum+θ, ∀m ∈ {0, . . . ,M − 1}, (3.274)

ξm+θ
h = θξm+1

h + (1− θ)ξmh = Phu
m+θ − um+θ

h , ∀m ∈ {0, . . . ,M − 1}. (3.275)

By the third binomial formula we get

∥∥uM − uMh ∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥um+θ − um+θ
h

∥∥∥2

am+θ

=
∥∥eMh ∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥em+θ
h

∥∥∥2

am+θ

=
∥∥ηM + ξMh

∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥ηm+θ + ξm+θ
h

∥∥∥2

am+θ

≤ 2

(∥∥uM − PhuM∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥um+θ − Phum+θ
∥∥∥2

am+θ

)
(3.276)

+ 2

(∥∥ξMh ∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥ξm+θ
h

∥∥∥2

am+θ

)
. (3.277)

Considering the first main summand, that is (3.276), we simply exploit the continuity of
at(·, ·) to get

∥∥uM − PhuM∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥um+θ − Phum+θ
∥∥∥2

am+θ

≤
∥∥uM − PhuM∥∥2

V s
+ α

T

M

M−1∑
m=0

∥∥∥um+θ − Phum+θ
∥∥∥2

V s
.

(3.278)

Considering the term
∑M−1

m=0

∥∥um+θ − Phum+θ
∥∥2

V s
in (3.278) we see by the linearity of

the projector Ph and elementary calculations that

M−1∑
m=0

∥∥∥um+θ − Phum+θ
∥∥∥2

V s

=

M−1∑
m=0

∥∥θ (um+1 − Phum+1
)

+ (1− θ) (um − Phum)
∥∥2

V s

≤ 2
M−1∑
m=0

(
θ2
∥∥um+1 − Phum+1

∥∥2

V s
+ (1− θ)2‖um − Phum‖2V s

)
. (3.279)
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We split the sum in (3.279) and replace the individual summands by the maximum
summand yielding the estimate

M−1∑
m=0

∥∥∥um+θ − Phum+θ
∥∥∥2

V s

≤ 2

(
Mθ2 max

0≤τ≤T

(
‖u(τ)− Phu(τ)‖2V s

)
+M(1− θ)2 max

0≤τ≤T

(
‖u(τ)− Phu(τ)‖2V s

))
= 2M

(
θ2 + (1− θ)2

)
max

0≤τ≤T

(
‖u(τ)− Phu(τ)‖2V s

)
≤ M max

0≤τ≤T

(
‖u(τ)− Phu(τ)‖2V s

)
.

(3.280)

Inserting (3.280) into (3.278) yields

∥∥uM − PhuM∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥um+θ − Phum+θ
∥∥∥2

am+θ

≤
∥∥uM − PhuM∥∥2

V s
+ αT max

0≤τ≤T

(
‖u(τ)− Phu(τ)‖2V s

)
≤ (1 + αT ) max

0≤τ≤T

(
‖u(τ)− Phu(τ)‖2V s

)
.

(3.281)

Finally, the approximation property of the projector of Assumption 3.C applied pointwise
in time yields

∥∥uM − PhuM∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥um+θ − Phum+θ
∥∥∥2

am+θ

≤ C1 max
0≤τ≤T

Υ2(h, t, αA/2, u(τ)),

(3.282)

with C1 = C2
Υ(1 + αT ).

Considering now the main summand in (3.277) we find applying Corollary 3.74 using
the positive constants C1 and C2 therein that

∥∥ξMh ∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥ξm+θ
h

∥∥∥2

am+θ

≤ max

{
1,

1

C1

}(∥∥ξMh ∥∥2

H
+ ∆t C1

M−1∑
m=0

∥∥∥ξm+θ
h

∥∥∥2

am+θ

)

≤ max

{
1,

1

C1

}(∥∥ξ0
h

∥∥2

H
+ ∆t C2

M−1∑
m=0

‖rmh ‖
2
V sh
∗

)
.

(3.283)
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We investigate
∥∥ξ0
h

∥∥2

H
, first. By definition of ξmh for m = 0 we get∥∥ξ0

h

∥∥
H

=
∥∥Phu0 − u0

h

∥∥
H
. (3.284)

Recall that
u0 = u(t0) = u(0) = g, (3.285)

the initial condition of the original problem (3.172) and further

u0
h = gh, (3.286)

by the initial condition of the fully discretized θ scheme 3.63. With inserting both
(3.285) and (3.286) into (3.284) and exploiting approximation property of the projector
Ph of Assumption 3.C as well as the quasi-optimality of the initial condition as stated
in Assumption 3.D, we find∥∥ξ0

h

∥∥
H
≤
∥∥Phu0 − g

∥∥
H

+
∥∥g − u0

h

∥∥
H

= ‖u(0)− Phu(0)‖H + ‖g − gh‖H
≤ ‖u(0)− Phu(0)‖H + CI inf

vh∈V sh
‖g − vh‖H

= ‖u(0)− Phu(0)‖H + CI inf
vh∈V sh

‖u(0)− vh‖H

≤ max
0≤τ≤T

(
‖u(τ)− Phu(τ)‖H + CI inf

vh∈V sh
‖u(τ)− vh‖H

)
≤ max

0≤τ≤T
CΥ(1 + CI)Υ(h, t, αA/2, u(τ))

= max
0≤τ≤T

√
C2Υ(h, t, αA/2, u(τ))

(3.287)

with C2 = C2
Υ(1 +CI)

2, having applied the approximation property 3.C of the projector
Ph at the end of the derivation. Secondly, considering the sum of normed residuals in
(3.283) we observe that

‖rmh ‖
2
V sh
∗ = ‖rm1 + rm2 + rm3 ‖

2
V sh
∗

≤ 4
(
‖rm1 ‖

2
V sh
∗ + ‖rm2 ‖

2
V sh
∗ + ‖rm3 ‖

2
V sh
∗

) (3.288)

where we insert the individual upper bounds for the normed residuals ‖rm1 ‖V sh ∗ , ‖r
m
2 ‖V sh ∗
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and ‖rm3 ‖V sh ∗ that we have derived in Lemma 3.75 to find

1

4

M−1∑
m=0

‖rmh ‖
2
V sh
∗ ≤ C2

r1

M−1∑
m=0

∆t
∫ tm+1

tm ‖ü(s)‖2V sh ∗ ds, ∀θ ∈ [0, 1]

(∆t)3 ∫ tm+1

tm ‖...u (s)‖2V sh ∗ ds, θ = 1
2

+ C2
r2

M−1∑
m=0

1

∆t

∫ tm+1

tm

Υ2(h, t, αA/2, u̇(τ)) dτ

+ C2
r3

M−1∑
m=0

Υ2(h, t, αA/2, u
m+θ)

≤ C2
r1

{
∆t
∫ T

0 ‖ü(s)‖2V sh ∗ ds, ∀θ ∈ [0, 1]

(∆t)3 ∫ T
0 ‖

...
u (s)‖2V sh ∗ ds, θ = 1

2

+ C2
r2

1

∆t

∫ T

0
Υ2(h, t, αA/2, u̇(τ)) dτ

+ C2
r3M max

0≤τ≤T
Υ2(h, t, αA/2, u(τ)),

(3.289)

with positive constants Cr1 , Cr2 , Cr3 defined in the Lemma. We return to (3.277) and
invoke (3.282) and (3.283) to derive

∥∥uM − uMh ∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥um+θ − um+θ
h

∥∥∥2

am+θ

≤ 2

(∥∥uM − PhuM∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥um+θ − Phum+θ
∥∥∥2

am+θ

)

+ 2

(∥∥ξMh ∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥ξm+θ
h

∥∥∥2

am+θ

)
≤ 2C1 max

0≤τ≤T
Υ2(h, t, αA/2, u(τ))

+ 2 max

{
1,

1

C1

}(∥∥ξ0
h

∥∥2

H
+ ∆t C2

M−1∑
m=0

‖rmh ‖
2
V sh
∗

)
.

(3.290)

Invoking our considerations for ξ0
h and the sum of normed residuals rmh in (3.287) and
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(3.289) to deduce

∥∥uM − uMh ∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥um+θ − um+θ
h

∥∥∥2

am+θ

≤ 2C1 max
0≤τ≤T

Υ2(h, t, αA/2, u(τ))

+ 2 max

{
1,

1

C1

}(
C2 max

0≤τ≤T
Υ2(h, t, αA/2, u(τ))

+ 4C2

(
C2
r1

{
(∆t)2

∫ T
0 ‖ü(τ)‖2V sh ∗ dτ, ∀θ ∈ [0, 1]

(∆t)4 ∫ T
0 ‖

...
u (τ)‖2V sh ∗ dτ, θ = 1

2

+ C2
r2

∫ T

0
Υ2(h, t, αA/2, u̇(τ)) dτ

+ C2
r3T max

0≤τ≤T
Υ2(h, t, αA/2, u(τ))

))
.

(3.291)

For a notationally more satisfying result we define the constant

C = 2 max

{
3C1, max

{
1,

1

C1

}
max

{
3C2, 4C2 max

{
C2
r1 , C

2
r2 , 3C2

r3T
}}}

. (3.292)

Clearly, ‖g‖V s = ‖u(0)‖V s ≤ max
0≤τ≤T

‖u(τ)‖V s . Thus, using (3.292) in (3.291) we get the

estimate

∥∥uM − uMh ∥∥2
+ ∆t

M−1∑
m=0

∥∥∥um+θ − um+θ
h

∥∥∥2

am+θ

≤ C max
0≤τ≤T

Υ2(h, t, αA/2, u(τ))

+ C

{
(∆t)2

∫ T
0 ‖ü(τ)‖2V sh ∗ dτ, ∀θ ∈ [0, 1]

(∆t)4
∫ T

0 ‖
...
u (τ)‖2V sh ∗ dτ, θ = 1

2 and with iii)

+ C

∫ T

0
Υ2(h, t, αA/2, u̇(τ)) dτ

(3.293)

which finishes the proof. �
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Corollary 3.77 (Convergence of the θ scheme)
Under the assumptions of Theorem 3.76 there exists C > 0 such that the estimate

∥∥uM − uMh ∥∥2
+ ∆t

M−1∑
m=0

∥∥∥um+θ − um+θ
h

∥∥∥2

V

≤ C max
0≤τ≤T

Υ2(h, t, αA/2, u(τ))

+ C

{
(∆t)2

∫ T
0 ‖ü(τ)‖2V sh ∗ dτ, ∀θ ∈ [0, 1]

(∆t)4
∫ T

0 ‖
...
u (τ)‖2V sh ∗ dτ, θ = 1

2 and with iii)

+ C

∫ T

0
Υ2(h, t, αA/2, u̇(τ)) dτ

(3.294)

holds.
Proof
The result is an immediate consequence from Theorem 3.76 and the fact that at(·, ·) is
coercive uniformly in time with coercivity constant β. �

In Theorem 3.76 and Corollary 3.77, respectively, we have derived abstract convergence
results. The particular convergence now follows immediately, when the form of Υ of As-
sumption 3.A, the general approximation property, is specified. The following corollary
combines the result of
Corollary 3.78 (Convergence with Υ of von Petersdorff and Schwab (2003))
Under the assumptions of Theorem 3.76 and in the setting of von Petersdorff and Schwab
(2003) outlined in Example 3.58 there exists a constant C > 0 such that the convergence
estimate∥∥uM − uMh ∥∥2

+ ∆t

M−1∑
m=0

∥∥∥um+θ − um+θ
h

∥∥∥2

am+θ

≤ C h2(p+1−αA/2) max
0≤τ≤T

‖u(τ)‖2Hp+1(Ω)

+ C h2(p+1−αA/2)

∫ T

0
‖u̇(τ)‖2Hp+1(Ω) dτ (3.295)

+ C

(∆t)2
∫ T

0 ‖ü(s)‖2
V
αA/2
h

∗ ds, ∀θ ∈ [0, 1]

(∆t)4
∫ T

0 ‖
...
u (s)‖2

V
αA/2
h

∗ ds, θ = 1
2 and if u ∈ C3([0, T ], H)

holds.
Proof
The result is a direct consequence from Theorem 3.76 with

Υ(h, t, s, u) = ht−s‖u‖Ht(Ω),

taking t ≤ p+1 equal to its maximal admissible value with p the polynomial degree that
the basis functions of V αA/2

h achieve piecewisely. �
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The result of Corollary 3.78 confirms the order of convergence derived in Theorem 5.4 of
von Petersdorff and Schwab (2003). In contrast to that former result which our analysis
is based on, we allow for time-dependent bilinear forms and thus generalize their result
to the time-inhomogeneous case.

3.6.3 Results for continuous bilinear forms of Gårding type

The stability estimate of Lemma 3.68 and the convergence result of Theorem 3.76 hold for
continuous and coercive bilinear forms, only. In this subsection, we will derive equivalent
results for continuous bilinear forms that only fulfill the weaker Gårding inequality in
the sense of the following Definition 3.79.

Definition 3.79 (Gårding)
A bilinear form a·(·, ·) : [0, T ] × V s × V s → R, (t, u, v) 7→ at(u, v), is said to fulfill a
Gårding inequality uniformly in time with respect to V s, if there exist constants β > 0,
λ ≥ 0 independent of t such that

at(u, u) ≥ β‖u‖2V s − λ‖u‖
2
H (3.296)

holds ∀u ∈ V s, ∀t ∈ [0, T ]. We call β the coercivity constant and λ the Gårding constant.

Clearly, every uniformly coercive bilinear form in the sense of Definition 3.65 is of Gårding
type in the sense of Definition 3.79 as well with Gårding constant λ = 0.

Before we dive into the stability and convergence analysis of solutions of fully discretized
PIDEs with bilinear forms of Gårding type, let us shed some light on the relation between
coercive bilinear forms and their more general siblings.

3.6.3.1 On the relation between Coercivity and the Gårding property

A simple time transformation can transform a PIDE with operator of Gårding type into
a PIDE with coercive operator. Consider the PIDE

∂tu+AGårding
t u = f,

u(0) = g,
(3.297)

with weak solution u ∈ W 1(0, T ;V s, H), an operator AGårding
t that is assumed to be

both continuous and of Gårding type uniformly in time and that is associated with a
bilinear form

aGårding
· : [0, T ]× V s × V s → R, (t, u, v) 7→ at(u, v), (3.298)
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that fulfills the Gårding inequality (3.296) of Definition 3.79 with β > 0 as well as λ > 0.
Furthermore, let aGårding be continuous with continuity constant denoted by α. Then,
defining

uλ(t, x) = e−λtu(t, x), ∀(t, x) ∈ [0, T ]× R
fλ(t, x) = e−λtf(t, x), ∀(t, x) ∈ [0, T ]× R

(3.299)

and inserting (3.299) into (3.297) yields

∂t

(
eλtuλ(t, x)

)
+AGårding

t

(
eλtuλ(t, x)

)
= eλtfλ(t, x)

e0uλ(0) = g.
(3.300)

Using the product rule on the time derivative gives

∂t

(
eλ·uλ

)
= λeλ·uλ + eλ·∂tuλ,

turning (3.300) into

eλt∂tuλ(t, x) + eλtAGårding
t uλ(t, x) + λeλtuλ(t, x) = eλtfλ(t, x)

uλ(0) = g.
(3.301)

Multiplying both sides in the first line of (3.301) by e−λt gives

∂tuλ(t, x) +
(
AGårding
t + λ

)
uλ(t, x) = fλ(t, x)

uλ(0) = g.

which turns into

∂tuλ(t, x) +Aλtuλ(t, x) = fλ(t, x)

uλ(0) = g.
(3.302)

when we define the operator Aλ· by

Aλ· =
(
AGårding
· + λ

)
. (3.303)

In contrast to aGårding
· (·, ·) of (3.298), the associated bilinear form

aλ·(·, ·) : [0, T ]× V s × V s → R, (t, u, v) 7→ aλt(u, v), (3.304)

is now coercive uniformly in time which we indicate by the subscript λ. The coercivity
constant of aλ is β, its continuity constant is given by αλ = α + λ. The stability
Lemma 3.68 and the convergence Theorem 3.76 apply when their other assumptions are
fulfilled.

Given these considerations on the relation of bilinear forms between these two classes,
the need for stability and convergence analysis for a Gårding type setting might seem
questionable.
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3.6.3 Results for continuous bilinear forms of Gårding type

Yet, for the stability and convergence analysis there is no generic path from the Gårding
to the coercive case. More precisely, while a solution to the "coercified problem" (3.302)
allows for a transformation to the solution of the original PIDE (3.297) by

uλ = e−λ·u, (3.305)

on the whole space time domain, this is no longer possible once the PIDEs have been
discretized,

umλ,h 6= e−λt
m
umh , (3.306)

in general. Stability and convergence results may still apply to solutions to the discrete
version of the modified PIDE in (3.302). Due to Inequality (3.306), however, these results
forbid an immediate conclusion with respect to stability and convergence of solutions to
the related Gårding counterpart.

Despite the proximity between the two PIDEs, the respective stability and convergence
analysis vary significantly in complexity. This increase in complexity is due to the fact
that while a coercive (and continuous) bilinear form induces a norm that is equivalent to
‖·‖V s , a bilinear form of Gårding type loses this property. For that reason, stability and
convergence analysis in the literature often focuses on coercive problems and disregards
the more general yet more complex Gårding case.

In the following, we want to generalize our earlier stability and convergence analysis to
the more general Gårding case. For the remaining part of this section we thus focus on
the following problem. Let A be an operator of order αA ∈ [0, 2] that induces a bilinear
form a : [0, T ]× V s × V s that is continuous uniformly in time with continuity constant
α and fulfills a Gårding inequality uniformly in time with Gårding constants β, λ > 0.
Let the other requirements of Theorem 3.7 be satisfied such that there exists a unique
weak solution u ∈W 1(0, T ;V s, H) to the problem

u̇+Au = f

u(0) = g
(3.307)

where f ∈ V s∗, g ∈ H.

Let u ∈ W 1(0, T ;V s, H) be the unique weak solution to problem (3.307). Now define
uλ = e−λ·u and equivalently define fλ = e−λ·f . We have seen above that uλ solves

u̇λ +Aλuλ = fλ

uλ(0) = g.
(3.308)

Based on problems (3.307) and (3.308) and their discretizations, several θ schemes
arise.
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Theta Scheme 3.80 (Discretized Gårding scheme)
Let θ ∈ [0, 1]. We call (umh )m∈{0,...,M} with umh ∈ V s

h for all m ∈ {1, . . . ,M}, u0
h ∈ H,

the solution to the fully discretized version of problem (3.307) if(
um+1
h − umh

∆t
, vh

)
+ am+θ

(
um+θ
h , vh

)
=
(
fm+θ, vh

)
,

u0
h = gh,

(3.309)

for all vh ∈ V s
h , for all m ∈ {0, . . . ,M − 1}, with gh ∈ H an approximation of g of

problem (3.307) of problem (3.307).

Theta Scheme 3.81 (Discretized coercified scheme)
Let θ ∈ [0, 1]. We denote by (umλ,h)m∈{0,...,M}, umλ,h ∈ V s

h for all m ∈ {1, . . . ,M} and
u0
λ,h ∈ H, the solution to the fully discretized version of problem (3.308). Then,(

um+1
λ,h − u

m
λ,h

∆t
, vh

)
+ aλm+θ

(
um+θ
λ,h , vh

)
=
(
fm+θ
λ , vh

)
,

u0
λ,h = gh,

for all vh ∈ V s
h , for all m ∈ {0, . . . ,M − 1}, with gh ∈ H an approximation of g of

problem (3.307).

Let umh , m = 0, . . . ,M , be the solution to Scheme 3.80 that we just introduced. Define
ũmh = e−λt

m
umh , and insert the result back into Scheme 3.80. Then we get(

eλ(tm+∆t)ũm+1
h − eλtm ũmh
∆t

, vh

)
+ am+θ

(
θeλ(tm+∆t)ũm+1

h + (1− θ)eλtm ũmh , vh
)

=
(
fm+θ, vh

)
for all m ∈ {0, . . . ,M} for all vh ∈ V s

h . Multiplying both sides by e−λtm shows that the
ũmh fulfill the following (degenerate) scheme.

Theta Scheme 3.82 (Degenerate Gårding scheme)
Choose θ ∈ [0, 1] and let umh , m = 0, . . . ,M , be the solution to Scheme 3.80. Define

ũmh = e−λt
m
umh . (3.310)

Then,(
eλ∆tũm+1

h − ũmh
∆t

, vh

)
+ am+θ

(
θeλ∆tũm+1

h + (1− θ)ũmh , vh
)

=
(
e−λt

m
fm+θ, vh

)
,

ũ0
h = gh,

for all m ∈ {0, . . . ,M − 1}.
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Recall inequality (3.306) that stated

umλ,h 6= ũmh ,

in general. In other words, discretization and "coercification" do not permute. Never-
theless both quantities in inequality (3.306) are related after all. The strategy in the
following derivations lies in showing that their difference vanishes when the dimension-
ality in space and the fineness in time increase. Yet that difference between umλ,h and ũmh
will cause significant complexity within the derivation of our analysis. For that reason,
we simplify the involved theta schemes in return by assuming

θ = 1 (3.311)

throughout the whole derivation. While we do not expect assumption (3.311) to limit
the generality of our results, it surely allows focusing on the key difficulties and serves
the convenience of the reader. In order to quantify the difference between umλ,h and ũmh
we furthermore introduce the new quantities wm, m = 0, . . . ,M , defined as

wm = ũmh − umλ,h (3.312)

and analyze their role in the validation of stability and convergence of the solutions
to Gårding schemes. More precisely, we will realize that stability and convergence of
solutions to Gårding schemes actually rely heavily on stability and convergence of the
scheme that the wm of (3.312) satisfy. We thus start our derivation by verifying those
schemes and validating stability for these auxiliary quantities, themselves.

Lemma 3.83 (A scheme for wm)
Set θ = 1. Let ũmh , m = 0, . . . ,M , be given by Scheme 3.82 and let umλ,h, m = 0, . . . ,M ,
be the solution to Scheme 3.81. Define

wm = ũmh − umλ,h (3.313)

for all m ∈ {0, . . . ,M}. Then we have(
wm+1 − wm

∆t
, vh

)
+ aλm+1

(
wm+1, vh

)
= (rmw , vh) ,

w0 = 0,

(3.314)

for all m ∈ {0, . . . ,M − 1} and all vh ∈ V s
h with

(rmw , vh) = λ
(
wm+1 + um+1

λ,h , vh

)
− λ(∆t)

(
wm + umλ,h, vh

)
, (3.315)

wherein the function λ : R+ → R is defined by

λ(∆t) =
1− e−λ∆t

∆t
, (3.316)

for all ∆t > 0.
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Proof
First, considering the initial condition we find

w0 = ũ0
h − u0

λ,h = gh − gh = 0.

Second, by the definition of wm we have for vh ∈ V s
h arbitrary but fix that(

wm+1 − wm

∆t
, vh

)
+ aλm+1

(
wm+1, vh

)
=

(
ũm+1
h − ũmh

∆t
, vh

)
+ aλm+1

(
ũm+1
h , vh

)
−

[(
um+1
λ,h − u

m
λ,h

∆t
, vh

)
+ aλm+1

(
um+1
λ,h , vh

)]
.

(3.317)

We artificially expand the first two summands in (3.317) to get(
ũm+1
h − ũmh

∆t
, vh

)
+ aλm+1

(
ũm+1
h , vh

)
=

(
−eλ∆tũm+1

h + ũm+1
h + eλ∆tũm+1

h − ũmh
∆t

, vh

)
+ am+1

(
−eλ∆tũm+1

h + ũm+1
h + eλ∆tũm+1

h , vh

)
+ λ

(
ũm+1
h , vh

)
=:
(
r̃mũh , vh

)
.

(3.318)

From this we continue by isolating the left side of Scheme 3.82,(
r̃mũh , vh

)
=

(
eλ∆tũm+1

h − ũmh
∆t

, vh

)
+ am+1

(
eλ∆tũm+1

h , vh

)
+
(

1− eλ∆t
)( ũm+1

h

∆t
, vh

)
+
(

1− eλ∆t
)
am+1

(
ũm+1
h , vh

)
+ λ

(
ũm+1
h , vh

)
.

(3.319)

Next, we insert the right side of Scheme 3.82 for θ = 1 into (3.319) and get(
r̃mũh , vh

)
=
(
e−λt

m
fm+1, vh

)
(3.320)

+
(

1− eλ∆t
)( ũm+1

h

∆t
, vh

)
+
(

1− eλ∆t
)
am+1

(
ũm+1
h , vh

)
+ λ

(
ũm+1
h , vh

)
.

We artificially expand the part that just entered the equation and then use tm+1 =
tm + ∆t to get(

e−λt
m
fm+1, vh

)
=
(
e−λt

m
fm+1 − e−λtm+1

fm+1, vh

)
+
(
e−λt

m+1
fm+1, vh

)
=
(

1− e−λ∆t
)
e−λt

m (
fm+1, vh

)
+
(
fm+1
λ , vh

)
.

(3.321)

150



3.6.3 Results for continuous bilinear forms of Gårding type

We insert (3.321) into (3.320) and then use the equation from Scheme 3.81 to get(
r̃mũh , vh

)
=
(

1− e−λ∆t
)
e−λt

m (
fm+1, vh

)
+
(
fm+1
λ , vh

)
+
(

1− eλ∆t
)( ũm+1

h

∆t
, vh

)
+
(

1− eλ∆t
)
am+1

(
ũm+1
h , vh

)
+ λ

(
ũm+1
h , vh

)
=
(

1− e−λ∆t
)
e−λt

m (
fm+1, vh

)
+

(
um+1
λ,h − u

m
λ,h

∆t
, vh

)
+ aλm+1

(
um+1
λ,h , vh

)
+
(

1− eλ∆t
)( ũm+1

h

∆t
, vh

)
+
(

1− eλ∆t
)
am+1

(
ũm+1
h , vh

)
+ λ

(
ũm+1
h , vh

)
.

(3.322)

Combining (3.322) with (3.320) we have thus rewritten the first part of (3.317). We take
the resulting expression and insert it back into (3.317), to derive a right hand side for
the wm by(

wm+1 − wm

∆t
, vh

)
+ aλm+1

(
wm+1, vh

)
=

(
ũm+1
h − ũmh

∆t
, vh

)
+ aλm+1

(
ũm+1
h , vh

)
−

[(
um+1
λ,h − u

m
λ,h

∆t
, vh

)
+ aλm+1

(
um+1
λ,h , vh

)]

=

(
um+1
λ,h − u

m
λ,h

∆t
, vh

)
+ aλm+1

(
um+1
λ,h , vh

)
−

[(
um+1
λ,h − u

m
λ,h

∆t
, vh

)
+ aλm+1

(
um+1
λ,h , vh

)]
+
(

1− e−λ∆t
)
e−λt

m (
fm+1, vh

)
+
(

1− eλ∆t
)( ũm+1

h

∆t
, vh

)
+
(

1− eλ∆t
)
am+1

(
ũm+1
h , vh

)
+ λ

(
ũm+1
h , vh

)
=
(

1− e−λ∆t
)
e−λt

m (
fm+1, vh

)
+
(

1− eλ∆t
)( ũm+1

h

∆t
, vh

)
+
(

1− eλ∆t
)
am+1

(
ũm+1
h , vh

)
+ λ

(
ũm+1
h , vh

)
=: (rmw , vh) .

(3.323)

Next we will further simplify this expression for (rmw , vh). We begin by eliminating the
term containing fm+1 by invoking the relation provided by Scheme 3.80 for umh . Using
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relation (3.310) between ũmh and umh we proceed from (3.323) by

(rmw ,vh)

=
(

1− e−λ∆t
)
e−λt

m (
fm+1, vh

)
+
(

1− eλ∆t
)( ũm+1

h

∆t
, vh

)
+
(

1− eλ∆t
)
am+1

(
ũm+1
h , vh

)
+ λ

(
ũm+1
h , vh

)
=
(

1− e−λ∆t
)
e−λt

m (
fm+1, vh

)
+ λ

(
ũm+1
h , vh

)
+
(

1− eλ∆t
)
e−λt

m+1

[(
um+1
h

∆t
, vh

)
+ am+1

(
um+1
h , vh

)]
.

(3.324)

As a next step, we artificially expand the brackets of (3.324) and use the equation given
by Scheme 3.80 by(

um+1
h

∆t
, vh

)
+ am+1

(
um+1
h , vh

)
=

(
um+1
h − umh

∆t
, vh

)
+ am+1

(
um+1
h , vh

)
+

(
umh
∆t

, vh

)
=
(
fm+1, vh

)
+

(
umh
∆t

, vh

)
.

(3.325)

Now we exploit the equidistant spacing of our time grid, tm+1 = tm + ∆t, leading to(
1− eλ∆t

)
e−λt

m+1
= −

(
1− e−λ∆t

)
e−λt

m
. (3.326)

Inserting (3.325) and (3.326) into (3.324) yields

(rmw , vh) =
(

1− e−λ∆t
)
e−λt

m (
fm+1, vh

)
+ λ

(
ũm+1
h , vh

)
−
(

1− e−λ∆t
)
e−λt

m

[(
fm+1, vh

)
+

(
umh
∆t

, vh

)]
= λ

(
ũm+1
h , vh

)
−
(

1− e−λ∆t
)
e−λt

m

(
umh
∆t

, vh

)
= λ

(
ũm+1
h , vh

)
−
(
1− e−λ∆t

)
∆t

(ũmh , vh)

= λ
(
ũm+1
h , vh

)
− λ(∆t) (ũmh , vh) ,

(3.327)

wherein the function λ : R+ → R is defined as in (3.316). Consider the upcoming
Lemma 3.85 for some properties of the function λ.

We rewrite the expression of rmw in (3.327), the residuals of the wm, by invoking the
definition of wm in (3.313) and get

(rmw , vh) = λ
(
ũm+1
h , vh

)
− λ(∆t) (ũmh , vh)

= λ
(
wm+1 + um+1

λ,h , vh

)
− λ(∆t)

(
wm + umλ,h, vh

)
.

(3.328)
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We have thus derived an expression for the right hand side in (3.317). Note that the wm

reappear on the right side of their θ scheme that is a scheme with coercive bilinear form
aλ·(·, ·). �

Collecting our results, for later reference we cast the claim of Lemma 3.83 in the following
theta scheme framework that has been validated by the lemma.

Theta Scheme 3.84 (The special residuals wm)
Set θ = 1. Let ũmh , m = 0, . . . ,M , be given by Scheme 3.82 and let umλ,h, m = 0, . . . ,M ,
be the solution to Scheme 3.81. Let

wm = ũmh − umλ,h (3.329)

for all m ∈ {0, . . . ,M}. The wm fulfill the scheme(
wm+1 − wm

∆t
, vh

)
+ aλm+1

(
wm+1, vh

)
= (rmw , vh) ,

w0 = 0

(3.330)

with

(rmw , vh) = λ
(
wm+1 + um+1

λ,h , vh

)
− λ(∆t)

(
wm + umλ,h, vh

)
, (3.331)

where the function λ is defined by

λ(∆t) =
1− e−λ∆t

∆t
, (3.332)

for all ∆t > 0.

The function λ that was defined in (3.316) of Lemma 3.85 will play a decisive role in
the upcoming analysis. The following lemma derives some convergence results for this
auxiliary function λ that we will need, later.

Lemma 3.85 (On the function λ)
Let λ > 0 and let the function λ : R+ → R be defined as in (3.316) of Lemma 3.85 by

λ : ∆t 7→ 1− e−λ∆t

∆t
. (3.333)

Then, for ∆t approaching zero from above, λ satisfies

i) lim
∆t↓0

λ(∆t) = λ from below, in the sense that λ(∆t) ≤ λ, ∀∆t > 0,

ii) lim
∆t↓0

λ−λ(∆t)
∆t = λ2

2 from below, in the sense that λ−λ(∆t)
∆t ≤ λ2

2 , ∀∆t > 0.

153



3.6.3 Results for continuous bilinear forms of Gårding type

Class Quantity Solution to Scheme reference

coercive u Weak problem −
uh Weak problem discretized in space 3.63

Gårding u Weak problem −
umh Weak problem, fully discretized 3.80
uλ Related "coercified" problem −
umλ,h Related "coercified" problem, fully discretized 3.81
ũmh ũmh = e−λt

m
umh and degenerate Gårding scheme 3.82

wm wm = ũmh − umλ,h and auxiliary scheme 3.84

Table 3.2 An overview of all Schemes that have been derived so far. In the previous
section where we considered coercive PIDEs exclusively, only the solutions to the weak
formulation of the problem and its fully discretized counterpart were involved. For the
analysis of problems with an operator A of Gårding type many auxiliary quantities and
associated schemes will contribute.

Proof
i) The limit of the first claim follows from l’Hôpital’s rule. A well known lower bound

for the exponential function is given by

exp(x) ≥ 1 + x, ∀x ∈ R,

from which we deduce

exp(−λ∆t) ≥ 1− λ∆t, ∀∆t > 0. (3.334)

This is equivalent to
1− e−λ∆t

∆t
≤ λ, ∀∆t > 0,

from which convergence of λ to its limit from below follows immediately. This
proves i).

ii) Similarly, the limit of the second claim follows from applying l’Hôpital’s rule twice.
Convergence of ∆t 7→ (λ− λ(∆t))/∆t to its limit from below is derived from

λ− λ(∆t)

∆t
≤ λ2

2
, ∀∆t > 0, (3.335)

which we prove in the following. Invoking the definition of λ, (3.335) holds if

λ2

2
− λ∆t− (1− e−λ∆t)

(∆t)2
≥ 0, ∀∆t > 0,

which is the case if

(λ∆t)2 − 2λ∆t+ 2(1− e−λ∆t) ≥ 0, ∀∆t ≥ 0. (3.336)
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Inequality (3.336) holds for ∆t = 0. The function f : ∆t 7→ (λ∆t)2 − 2λ∆t +
2(1− e−λ∆t) is continuously differentiable. It is thus non-negative for all ∆t ≥ 0 if
∂
∂∆tf ≥ 0 for all ∆t ≥ 0. Consequently, we consider the derivative of f and find

∂

∂∆t
f(∆t) = 2λ

(
λ∆t− 1 + e−λ∆t

)
≥ 0, ∀∆t ≥ 0

if and only if
λ∆t− 1 + e−λ∆t ≥ 0, ∀∆t ≥ 0,

which is equivalent to

e−λ∆t ≥ 1− λ∆t, ∀∆t ≥ 0,

which is again validated by (3.334) and thus proves claim ii).

This finishes the proof of the lemma. �

3.6.3.2 Stability of Gårding schemes

We derive a stability estimate for the discrete solution to the Gårding problem. To
this end, the Gårding scheme is split up into a coercive scheme for which the results
of Section 3.6.2 can be applied and a scheme for the auxiliary quantities wm, m ∈
{1, . . . ,M}. For the latter, a stability estimate is derived, as well. From stability of
these two parts, stability of the whole Gårding scheme follows.

Corollary 3.86 (A stability estimate for wm)
Let the wm, m = 0, . . . ,M − 1, be solutions to Scheme 3.84. Choose constants

0 < C1 < 2, C2 ≥
1

β(2− C1)
(3.337)

with β being the coercivity constant from (3.296). Then, the wm fulfill the stability
estimate ∥∥wM∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥wm+1
∥∥2

V s
≤ ∆tC2

M−1∑
m=0

‖rmw ‖
2
V sh
∗ . (3.338)

Proof
These estimates are a direct application of Corollary 3.71 with θ = 1 based on the
uniform coercivity of bilinear form aλ with coercivity constant β. �

Theorem 3.87 (Stability estimate for the Gårding scheme)
Let umh , m = 0, . . . ,M−1, be the solution to Scheme 3.80 with θ = 1, where the associated
bilinear form a is uniformly continuous with continuity constant α and of Gårding type
with coercivity constant β > 0 and Gårding constant λ > 0. Choose constants

0 < C1 < 2, C2 ≥
1

β(2− C1)
(3.339)
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and let ∆t be small enough,

∆t ≤ min

1,

√√√√ C1β

8λ2eλC2

(
λ2

4 + (α+ λ)2
) , C1β + 16λ2eλC2

8λ2eλC1C2β

 . (3.340)

Then there exist positive constants C3, C4 such that the stability estimate∥∥uMh ∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥um+1
h

∥∥2

V s
≤ C3

∥∥u0
h

∥∥2

H
+ C4∆t

M−1∑
m=0

∥∥fm+1
∥∥2

V sh
? (3.341)

holds.
Proof
We expand the left hand side of (3.341) by elementary calculations,

∥∥uMh ∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥um+1
h

∥∥2

V s

≤ e2λT

(∥∥∥e−λtMuMh ∥∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥∥e−λtm+1
um+1
h

∥∥∥2

V s

)

= e2λT

(∥∥uMλ,h + ũMh − uMλ,h
∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥∥um+1
λ,h + ũm+1

h − um+1
λ,h

∥∥∥2

V s

)

≤ 2e2λT

(∥∥uMλ,h∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥∥um+1
λ,h

∥∥∥2

V s

+
∥∥wM∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥wm+1
∥∥2

V s

)
.

(3.342)

Consider the wm terms in (3.342), first. By Corollary 3.86 and w0 = 0 we have the
estimate ∥∥wM∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥wm+1
∥∥2

V
≤ ∆tC2

M−1∑
m=0

‖rmw ‖
2
V sh
∗ . (3.343)

By Theta Scheme 3.84 we have for any vh ∈ V s
h that

(rmw , vh) = λ
(
wm+1 + um+1

λ,h , vh

)
− λ(∆t)

(
wm + umλ,h, vh

)
=
(
λwm+1 − λ(∆t)wm, vh

)
+
(
λum+1

λ,h − λ(∆t)umλ,h, vh

)
,

(3.344)

with λ as defined in (3.332). We continue by considering the first bracket in (3.344),(
λwm+1−λ(∆t)wm, vh

)
=
(
λ− λ(∆t)

) (
wm+1, vh

)
+ λ(∆t)

(
wm+1 − wm, vh

)
=
(
λ− λ(∆t)

) (
wm+1, vh

)
+ λ(∆t)∆t

(
wm+1 − wm

∆t
, vh

)
=
(
λ− λ(∆t)

) (
wm+1, vh

)
+ λ(∆t)∆t

[
(rmw , vh)− aλm+1

(
wm+1, vh

)]
,

(3.345)
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where we used the relation provided by Scheme 3.84 for wm in the last step. By definition
of λ, λ− λ(∆t) 6= 0 for all ∆t > 0. Thus, combining (3.344) and (3.345) we conclude

(
rmw , vh

)
=

1

1− λ(∆t)∆t

[
(λ− λ(∆t))

(
wm+1, vh

)
− λ(∆t)∆t aλm+1

(
wm+1, vh

)
+
(
λum+1

λ,h − λ(∆t)umλ,h, vh

)]
.

(3.346)

Consequently,

‖rmw ‖V sh ? ≤
1

1− λ(∆t)∆t

[(
λ− λ(∆t)

∆t

)
∆t
∥∥wm+1

∥∥
V s

+ λ(∆t)(∆t)αλ
∥∥wm+1

∥∥
V s

+ λ
∥∥∥um+1

λ,h

∥∥∥
H

+ λ(∆t)
∥∥umλ,h∥∥H],

(3.347)

with αλ = α + λ the continuity constant of bilinear form aλ. Invoking the definition of
λ and the first assumption on ∆t in (3.340),

1

1− λ(∆t)∆t
= eλ∆t ≤ eλ. (3.348)

Thus, with (3.348) the convergence results of Lemma 3.85 imply the estimates

‖rmw ‖
2
V sh

? ≤ 4eλ

[((
λ2

2

)2

+ λ2α2
λ

)
(∆t)2

∥∥wm+1
∥∥2

V s

+ λ2
∥∥∥um+1

λ,h

∥∥∥2

H
+ λ2

∥∥umλ,h∥∥2

H

]

= 4λ2eλ
[(

λ2

4
+ α2

λ

)
(∆t)2

∥∥wm+1
∥∥2

V s
+
∥∥∥um+1

λ,h

∥∥∥2

H
+
∥∥umλ,h∥∥2

H

]
.

(3.349)

Combining (3.349) and (3.343) we get

∥∥wM∥∥2

H
+

(
C1β − C24λ2eλ

(
λ2

4
+ α2

λ

)
(∆t)2

)
∆t

M−1∑
m=0

∥∥wm+1
∥∥2

V s

≤ 4λ2eλC2∆t
M−1∑
m=0

(∥∥∥um+1
λ,h

∥∥∥2

H
+
∥∥umλ,h∥∥2

H

)

≤ 4λ2eλC2∆t
∥∥u0

λ,h

∥∥2

H
+ 8λ2eλC2∆t

M−1∑
m=0

∥∥∥um+1
λ,h

∥∥∥2

H
.

(3.350)

By the second assumption on ∆t in (3.340), we have

C1β − C24λ2eλ
(
λ2

4
+ α2

λ

)
(∆t)2 ≥ C1β

2
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and thus, we deduce from (3.350),

∥∥wM∥∥2

H
+C1β∆t

M−1∑
m=0

∥∥wm+1
∥∥2

V s

≤ 8λ2eλC2∆t
∥∥u0

λ,h

∥∥2

H
+ 16λ2eλC2∆t

M−1∑
m=0

∥∥∥um+1
λ,h

∥∥∥2

H
.

(3.351)

Returning to (3.342) and assembling our findings we get

∥∥uMh ∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥um+1
h

∥∥2

V s

≤ 2e2λT

(∥∥uMλ,h∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥∥um+1
λ,h

∥∥∥2

V s
+
∥∥wM∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥wm+1
∥∥2

V s

)

≤ 2e2λT

(∥∥uMλ,h∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥∥um+1
λ,h

∥∥∥2

V s

+ 8λ2eλC2∆t
∥∥u0

λ,h

∥∥2

H
+ 16λ2eλC2∆t

M−1∑
m=0

∥∥∥um+1
λ,h

∥∥∥2

H

)
(3.352)

≤ 2e2λT

(
8λ2eλC2∆t

∥∥u0
λ,h

∥∥2

H
+
∥∥uMλ,h∥∥2

H
+
(
C1β + 16λ2eλC2

)
∆t

M−1∑
m=0

∥∥∥um+1
λ,h

∥∥∥2

V s

)

≤ 2e2λT

(
8λ2eλC2∆t

∥∥u0
λ,h

∥∥2

H
+

(
1 +

16λ2eλC2

C1β

)(∥∥uMλ,h∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥∥um+1
λ,h

∥∥∥2

V s

))
.

We apply Corollary 3.71 which gives

∥∥uMλ,h∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥∥um+1
λ,h

∥∥∥2

V s
≤
∥∥u0

λ,h

∥∥2

H
+ C2∆t

M−1∑
m=0

∥∥fm+1
λ

∥∥2

V sh
? . (3.353)

Inserting (3.353) into (3.352) thus gives

∥∥uMh ∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥um+1
h

∥∥2

V s
(3.354)

≤ 2e2λT

(
8λ2eλC2∆t

∥∥u0
λ,h

∥∥2

H
+

(
1 +

16λ2eλC2

C1β

)(∥∥u0
λ,h

∥∥2

H
+ C2∆t

M−1∑
m=0

∥∥fm+1
λ

∥∥2

V sh
?

))
.

By the third assumption on ∆t in (3.340),

8λ2eλC2

1 + 16λ2eλC2
C1β

∆t ≤ 1,
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so (3.354) leads to

∥∥uMh ∥∥2

H
+C1β∆t

M−1∑
m=0

∥∥um+1
h

∥∥2

V s

≤ 2e2λT

(
1 +

16λ2eλC2

C1β

)(
2
∥∥u0

λ,h

∥∥2

H
+ C2∆t

M−1∑
m=0

∥∥fm+1
λ

∥∥2

V sh
?

)
.

Finally, since fmλ = e−λt
m
fm and u0

λ,h = u0
h, we arrive at

∥∥uMh ∥∥2

H
+C1β∆t

M−1∑
m=0

∥∥um+1
h

∥∥2

V

≤ 2e2λT

(
1 +

16λ2eλC2

C1β

)(
2
∥∥u0

h

∥∥2

H
+ C2∆t

M−1∑
m=0

∥∥fm+1
∥∥2

V sh
?

)
.

Defining the constants

C3 = 4e2λT

(
1 +

16λ2eλC2

C1β

)
, C4 = 2e2λT

(
1 +

16λ2eλC2

C1β

)
C2 (3.355)

yields the claim. �

Note that analogously to the coercive case of the previous section, the result (3.341) of
Theorem 3.87 in a way describes that the solution of the discrete scheme is bounded by
its initial data in a discrete L2(0, T, V s) or L2(0, T, V s

h
∗) norm fashion, respectively.

3.6.3.3 Convergence of Gårding schemes

We prove convergence for time-inhomogeneous Gårding schemes. We begin by split-
ting the Gårding scheme into two parts. One is its "coercified" version for which the
convergence result of Theorem 3.76 applies. The other is the scheme for the artificial
quantities wm, m ∈ {1, . . . ,M}, as outlined by Theta Scheme 3.84, with residuals rmw ,
m ∈ {1, . . . ,M}, defined therein. In Lemma 3.88, we derive an estimate for the sum over
these normed residuals which depends on the sum of ‖wm‖, m ∈ {0, . . . ,M}, and the
sum over new quantities ‖Um‖, m ∈ {0, . . . ,M}. In a second step we resolve this quasi-
recurrence and reduce the estimate in Lemma 3.89 to the occurrence of terms ‖Um‖,
m ∈ {0, . . . ,M}, alone. In a third step, Lemma 3.93 derives an estimate for the sum
over all ‖Um‖, m ∈ {0, . . . ,M}, that splits into three parts. One is again the "coerci-
fied" scheme for which we already have a convergence result. The second is a sum of
differences of the solution umλ to the non-discretized "coercified" problem, to which Tay-
lor’s theorem is applied. The third part consists of a quantity depending on λ− λ(∆t),
which converges by Lemma 3.85. Finally, Theorem 3.94 gathers all results and shows
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u− uh

uλ − uλ,h
with rhs fλ

ũh − uλ,h
with rhs rw

rw

w

U

rwU

U

uλ − uλ,h
Convergence by
Theorem 3.76

um+1
λ − umλ

Convergence by
Taylor’s Theorem 2.40

λ− λ
Convergence by
Lemma 3.85

Lemma 3.88

Lemma 3.89

Lemma 3.93

Theorem 3.94

Figure 3.20 A schematic overview over the convergence proof for Gårding schemes and
the involved lemmas and quantities.

convergence of the Gårding scheme.

Figure 3.20 offers a schematic overview over the different lemmas and quantities that
are involved in the proof of convergence. The right branch of the figure highlights the
additional effort required to treat the Gårding case λ > 0.

Lemma 3.88 (Upper bounds for
∥∥rmw ∥∥H)

Let umλ,h, m ∈ {0, . . . ,M}, be the solution of Scheme 3.81 and wm, m ∈ {0, . . . ,M}, be
the solution to Scheme 3.84 and let λ : R+ → R be defined as in Lemma 3.85. Define

Um = λum+1
λ,h − λ(∆t)umλ,h, ∀m ∈ {0, . . . ,M − 1}, (3.356)

and let rmw be the right hand side of Scheme 3.84 for the wm. Then,

‖rmw ‖
2
H ≤ 4λ2

(∥∥wm+1
∥∥2

H
+ ‖wm‖2H

)
+ 2‖Um‖2H (3.357)

≤ 4λ2
(∥∥wm+1

∥∥2

V s
+ ‖wm‖2V s

)
+ 2‖Um‖2H (3.358)

holds for all m ∈ {0, . . . ,M − 1}.
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Proof
The proof is a straightforward calculation. We have

‖rmw ‖
2
H =

∥∥∥λwm+1 − λ(∆t)wm + λum+1
λ,h − λ(∆t)umλ,h

∥∥∥2

H

=
∥∥λwm+1 − λ(∆t)wm + Um

∥∥2

H

≤ 4λ2
(∥∥wm+1

∥∥2

H
+ ‖wm‖2H

)
+ 2‖Um‖2H ,

since lim
∆t↓0

λ(∆t) = λ from below by Lemma 3.85. Consequently, also

‖rmw ‖
2
H ≤ 4λ2

(∥∥wm+1
∥∥2

V s
+ ‖wm‖2V s

)
+ 2‖Um‖2H , (3.359)

which proves the claim. �

Lemma 3.88 provides us with an upper bound for the residuals of the artificial quantities
wm, m ∈ {0, . . . ,M}. Within that upper bound, however, those artificial quantities
reappear. Using Gronwall’s Lemma C.1, the following result resolves that recurrence
and reduces the upper bound to an exclusive dependence on the new quantities Um,
m ∈ {0, . . . ,M − 1}, as defined by (3.356).

Lemma 3.89 (Non-recursive bounds for
∥∥rmw ∥∥H)

Let rmw , m ∈ 0, . . . ,M − 1, be the right hand side of Scheme 3.84 wherein the bilinear
form aλ is coercive uniformly in time with coercivity constant β > 0. Let Um be defined
as in (3.356) of Lemma 3.88 and λ > 0 as given therein. Assume

λ >
1√
8
β. (3.360)

Choose positive constants

0 < C1 < 2, C2 ≥
1

β(2− C1)

and assume further ∆t to be small enough,

0 < ∆t ≤ 1

8C2λ2 − C1β
. (3.361)

Then ∃C5 > 0 such that
M−1∑
m=0

‖rmw ‖
2
H ≤ C5

M−1∑
m=0

‖Um‖2H (3.362)

holds.

Before we give a proof for the claim of Lemma 3.89, the following remark comments on
the time stepping condition (3.361) of the Lemma.
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Remark 3.90 (On the time stepping condition in Lemma 3.89)
In Lemma 3.89, the prescribed interval for ∆t. In condition (3.361)

8C2λ
2 > C1β ⇔ λ >

√
C1β

8C2
, (3.363)

which holds if √
C1β

8C2
≥ 1√

8
β
√
C1(2− C1) (3.364)

by the interval that the value of C2 > 0 is chosen from. Given the set of possible values
for C1, the expression

√
C1(2− C1) is bounded by 1. Consequently, Inequality (3.364)

and thus the inequalities in (3.363) hold if condition (3.360) is satisfied. In other words,
by condition (3.360) the condition on ∆t in (3.361) is well-posed. When

8C2λ
2 − C1β > 0

then trivially also

4λ2 − C1β

2C2
> 0

which we state here for later use.

Proof (of Lemma 3.89)
We have by Corollary 3.86 and Remark 3.61 that

∥∥wM∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥wm+1
∥∥2

V s
≤ ∆tC2

M−1∑
m=0

‖rmw ‖
2
H . (3.365)

By Lemma 3.88 we have

‖rmw ‖
2
H ≤ 4λ2

(∥∥wm+1
∥∥2

H
+ ‖wm‖2H

)
+ 2‖Um‖2H (3.366)

for all m ∈ {0, . . . ,M − 1}.

The two inequalities (3.365) and (3.366) are intertwined in the sense that combining them
leaves us with wm terms occurring on both sides of the resulting inequality. In order
to confirm the claim (3.362), this entanglement has to be resolved. We take inequality
(3.365) as a starting point.

By the fact that ‖v‖H ≤ ‖v‖V s for all v ∈ V s and since
∥∥w0

∥∥
H

= 0 by Scheme 3.84 and
further by (3.366) we thus have

∥∥wM∥∥2

H
+ C1β

1

2
∆t

M−1∑
m=0

(∥∥wm+1
∥∥2

H
+ ‖wm‖2H

)
≤ ∆tC2

M−1∑
m=0

{
4λ2

(∥∥wm+1
∥∥2

H
+ ‖wm‖2H

)
+ 2‖Um‖2H

} (3.367)
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from which we deduce

∥∥wM∥∥2

H
≤ ∆tC2

M−1∑
m=0

{[
4λ2 − C1β

2C2

](∥∥wm+1
∥∥2

H
+ ‖wm‖2H

)
+ 2‖Um‖2H

}

= ∆tC2

M−1∑
m=0

{
C̃1

(∥∥wm+1
∥∥2

H
+ ‖wm‖2H

)
+ 2‖Um‖2H

} (3.368)

wherein we defined
C̃1 =

[
4λ2 − C1β

2C2

]
. (3.369)

By assumption (3.360), C̃1 > 0 as outlined by Remark 3.90.

Inequality (3.368) does not only hold for wM , as the result of the final step of our θ
scheme, but for all wM̃ , 1 ≤ M̃ ≤M . The function wM̃ can be interpreted as the solution
associated with the final time step of Scheme 3.84 with M̃ ≤M time steps instead of M
and with time horizon T̃ = ∆tM̃ instead of T = ∆tM with time discretization parameter
∆t = T̃ /M̃ = T/M yielding a solution on the equidistant time grid (T̃ , M̃ ,∆t) as defined
in Definition 3.53. It is important to realize that this ∆t is thus the very same for both
the solution of the original scheme, {w0, w1, . . . , wM}, as well as the solution of the
second, shortened scheme, {w0, w1, . . . , wM̃}.

Relabeling the summation indices in (3.368) gives

‖wm‖2H ≤ ∆tC2

m−1∑
k=0

{
C̃1

(∥∥∥wk+1
∥∥∥2

H
+
∥∥∥wk∥∥∥2

H

)
+ 2
∥∥∥Uk∥∥∥2

H

}
. (3.370)

Continuing with elementary calculations in (3.370) and recalling that
∥∥w0

∥∥
H

= 0 we get

‖wm‖2H ≤ 2∆tC2

m−1∑
k=0

{
C̃1

∥∥∥wk∥∥∥2

H
+
∥∥∥Uk∥∥∥2

H

}
+ ∆tC2C̃1‖wm‖2H , (3.371)

which is equivalent to

‖wm‖2H ≤
2∆tC2

1−∆tC2C̃1

m−1∑
k=0

{
C̃1

∥∥∥wk∥∥∥2

H
+
∥∥∥Uk∥∥∥2

H

}
, (3.372)

since
1−∆tC2C̃1 > 0

by the condition on ∆t in (3.361). Now, defining q by

q = q(∆t) =
∆tC2C̃1

1−∆tC2C̃1

(3.373)
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gives

‖wm‖2H ≤ 2q

m−1∑
k=0

∥∥∥wk∥∥∥2

H
+

2q

C̃1

m−1∑
k=0

∥∥∥Uk∥∥∥2

H
. (3.374)

By Gronwall’s Lemma C.1, setting for m ≥ 0

ym = ‖wm‖2H ,

fm =
m−1∑
k=0

2q

C̃1

∥∥∥Uk∥∥∥2

H
,

gm ≡ g = 2q,

we deduce

‖wm‖2H ≤
m−1∑
k=0

2q

C̃1

∥∥∥Uk∥∥∥2

H
+

∑
0≤j<m

(j−1∑
k=0

2q

C̃1

∥∥∥Uk∥∥∥2

H

)
(2q)

∏
j<i<m

(1 + 2q)


=

2q

C̃1

m−1∑
k=0

∥∥∥Uk∥∥∥2

H
+ 2q

2q

C̃1

m−1∑
j=0

(
j−1∑
k=0

∥∥∥Uk∥∥∥2

H

)
(1 + 2q)m−j−1

≤ 2q

C̃1

m−1∑
k=0

∥∥∥Uk∥∥∥2

H
+ 2q(1 + 2q)m

m−1∑
j=0

j−1∑
k=0

∥∥∥Uk∥∥∥2

H

 .

(3.375)

An elementary induction shows that the equality in

m−1∑
j=0

j−1∑
k=0

∥∥∥Uk∥∥∥2

H
=

m−2∑
k=0

(m− 1− k)
∥∥∥Uk∥∥∥2

H
≤ (m− 1)

m−2∑
k=0

∥∥∥Uk∥∥∥2

H
(3.376)

holds for all 0 ≤ m ≤M . Using (3.376) in (3.375) yields

‖wm‖2H ≤
2q

C̃1

(
m−1∑
k=0

∥∥∥Uk∥∥∥2

H
+ 2q(1 + 2q)m(m− 1)

m−2∑
k=0

∥∥∥Uk∥∥∥2

H

)
. (3.377)

Consequently,

M∑
m=0

‖wm‖2H ≤
2q

C̃1

( M∑
m=0

m−1∑
k=0

∥∥∥Uk∥∥∥2

H

+ 2q
M∑
m=0

(1 + 2q)m(m− 1)
m−2∑
k=0

∥∥∥Uk∥∥∥2

H

)
.

(3.378)

Furthermore, the same induction as above shows that

M̃∑
m=0

m−1∑
k=0

∥∥∥Uk∥∥∥2

H
=

M̃−1∑
k=0

(M̃ − k)
∥∥∥Uk∥∥∥2

H
, ∀1 ≤ M̃ ≤M. (3.379)
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Using (3.379) we thus have

M∑
m=0

m−2∑
k=0

∥∥∥Uk∥∥∥2

H
≤

M∑
m=0

m−1∑
k=0

∥∥∥Uk∥∥∥2

H
=

M−1∑
k=0

(M − k)
∥∥∥Uk∥∥∥2

H
≤M

M−1∑
k=0

∥∥∥Uk∥∥∥2

H
. (3.380)

With (
1 + 2q

)m
(m− 1) ≤

(
1 + 2q

)M
M, for m ∈ {0, . . . ,M} (3.381)

and by applying (3.380) to both of its sums we develop (3.378) into

M∑
m=0

‖wm‖2H ≤
2q

C̃1

(
M∑
m=0

m−1∑
k=0

∥∥∥Uk∥∥∥2

H
+ 2q

M∑
m=0

(
1 + 2q

)m
(m− 1)

m−2∑
k=0

∥∥∥Uk∥∥∥2

H

)

≤ 2q

C̃1

(
M

M−1∑
k=0

∥∥∥Uk∥∥∥2

H
+ 2q

(
1 + 2q

)M
MM

M−1∑
k=0

∥∥∥Uk∥∥∥2

H

)

=
2qM

C̃1

((
1 + 2qM

(
1 + 2q

)M)M−1∑
m=0

‖Um‖2H

)
.

(3.382)

Define
c̃ = 8C2λ

2 − C1β. (3.383)

By the time stepping condition (3.361) we have

∆t ≤ 1

c̃

and can write
C̃1 =

c̃

2C2
.

Recalling the definition of q in (3.373), the relation ∆t = T/M and above calculations,
we deduce

qM =
∆tC2C̃1

1−∆tC2C̃1

M ≤
T
MC2

c̃
2C2

1− 1
c̃C2

c̃
2C2

M =
c̃
2

1− 1
2

T = c̃T. (3.384)

Also, by the very same ingredients,

(
1 + 2q

)M ≤ (
1 +

2c̃T

M

)M
. (3.385)

It is well known that

lim
M̃→∞

(
1 +

x

M̃

)M̃
= exp (x) , ∀x ∈ R (3.386)

and that this convergence occurs from below. Consequently, incorporating (3.386) in
(3.385) gives (

1 + 2q
)M ≤ exp (2c̃T ) . (3.387)
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Taking (3.384) and (3.387) and returning to (3.382) gives

M∑
m=0

‖wm‖2H ≤
2qM

C̃1

((
1 + 2qM

(
1 + 2q

)M)M−1∑
m=0

‖Um‖2H

)

≤ 2c̃T

C̃1

(1 + 2c̃T exp (2c̃T ))
M−1∑
m=0

‖Um‖2H

= C̃2

M−1∑
m=0

‖Um‖2H

(3.388)

with
C̃2 =

2c̃T

C̃1

(1 + 2c̃T exp (2c̃T )) > 0. (3.389)

We know by Lemma 3.88 that

‖rmw ‖
2
H ≤ 4λ2

(∥∥wm+1
∥∥2

H
+ ‖wm‖2H

)
+ 2‖Um‖2H (3.390)

for all m ∈ {0, . . . ,M − 1}. Thus,
M−1∑
m=0

‖rmw ‖
2
H ≤ 4λ2

(
M−1∑
m=0

∥∥wm+1
∥∥2

H
+
M−1∑
m=0

‖wm‖2H

)
+ 2

M−1∑
m=0

‖Um‖2H

= 4λ2

(
M∑
m=1

‖wm‖2H +
M−1∑
m=0

‖wm‖2H

)
+ 2

M−1∑
m=0

‖Um‖2H

≤ 8λ2
M∑
m=0

‖wm‖2H + 2
M−1∑
m=0

‖Um‖2H .

(3.391)

Now inserting (3.388) gives

M−1∑
m=0

‖rmw ‖
2
H ≤ 8λ2C̃2

M−1∑
m=0

‖Um‖2H + 2
M−1∑
m=0

‖Um‖2H

= 2
(

1 + 4λ2C̃2

)M−1∑
m=0

‖Um‖2H .

(3.392)

Defining

C5 = 2
(

1 + 4λ2C̃2

)
(3.393)

yields the claim. �

Remark 3.91 (Interpretation of restriction (3.360))
Condition (3.360) is only a mild restriction. Recall that a coercive bilinear form acoercive(·, ·) :
V s × V s → R satisfies

acoercive(v, v) ≥ β‖v‖2V s , ∀v ∈ V s, (3.394)
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for some β > 0 whereas a bilinear form aGårding(·, ·) : V s × V s → R of Gårding type
satisfies the weaker inequality

aGårding(v, v) ≥ β‖v‖2V s − λ‖v‖
2
H , ∀v ∈ V s, (3.395)

for some β > 0, λ ≥ 0. We know that ‖v‖H ≤ ‖v‖V s for all v ∈ V s, so if assump-
tion (3.360) in Lemma 3.89 is violated by aGårding in the sense that λ ≤ β/

√
8 < β, we

have

aGårding(v, v) ≥ β‖v‖2V s − λ‖v‖
2
H

≥ β‖v‖2V s − λ‖v‖
2
V s = (β − λ)‖v‖2V s , ∀v ∈ V s.

Consequently, aGårding is not a genuine Gårding bilinear form but a coercive bilinear form
with coercivity constant β̃ = β − λ > 0 and thus Theorem 3.76 directly applies for the
confirmation of convergence of the associated scheme.

Remark 3.92 (Disregarding condition (3.360))
Condition (3.360) can be disregarded, if we define C̃1 in (3.369) in the proof of Lemma 3.89
differently via

C̃ ′1 = 4λ2 > C̃1. (3.396)

This basically means disregarding the large sum on the left hand side in (3.367) in the
proof of Lemma 3.89 making the upper estimate for

∥∥wM∥∥2

H
in (3.368) weaker. As a

consequence, constant C5 defined in (3.393) at the end of the proof becomes larger and the
time stepping condition for ∆t in (3.361) stricter. Note, however, that constants C1 and
C2 must be chosen differently, such that the time stepping condition is still well-posed.

Lemma 3.93 (Upper bound for ‖Um‖2H)
Let Um be given by

Um = λum+1
λ,h − λ(∆t)umλ,h, ∀m ∈ {0, . . . ,M − 1},

as introduced in (3.356) of Lemma 3.88. Then there is an upper bound ‖Um‖2H in the
form of

‖Um‖2H ≤ 4λ2

(∥∥∥um+1
λ,h − u

m+1
λ

∥∥∥2

H
+
∥∥umλ,h − umλ ∥∥2

H

+
∥∥um+1

λ − umλ
∥∥2

H

)
+ 4

(
λ− λ(∆t)

)2 ‖umλ ‖2H (3.397)

for all m ∈ {0, . . . ,M − 1}.

Proof
The proof is a straightforward calculation. By definition of Um in (3.356) of Lemma 3.88,
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we have with m ∈ {0, . . . ,M − 1} and by using Lemma 3.85

‖Um‖2H =
∥∥∥λum+1

λ,h − λ(∆t)umλ,h

∥∥∥2

H

=
∥∥∥λ(um+1

λ,h − u
m+1
λ

)
− λ(∆t)

(
umλ,h − umλ

)
+ λum+1

λ − λ(∆t)umλ

∥∥∥2

H

=
∥∥∥λ(um+1

λ,h − u
m+1
λ

)
− λ(∆t)

(
umλ,h − umλ

)
+ λ

(
um+1
λ − umλ

)
+
(
λ− λ(∆t)

)
umλ

∥∥∥2

H

≤ 4
(
λ2

(∥∥∥um+1
λ,h − u

m+1
λ

∥∥∥2

H
+
∥∥umλ,h − umλ ∥∥2

H

)
+ λ2

∥∥um+1
λ − umλ

∥∥2

H
+
(
λ− λ(∆t)

)2 ‖umλ ‖2H),
which proves the claim. �

Theorem 3.94 (Convergence of the Gårding scheme)
Let u ∈ W 1(0, T ;V t, H) , t > αA/2, be the weak solution to problem (3.172), where the
operator is associated with a bilinear form a that is continuous and satisfies a Gårding
inequality with respect to V s uniformly in time. Let u be smooth enough in the sense that
u ∈ C2([0, T ], H). Let (umh )m∈{0,...,M} be the solution to the associated Theta Scheme 3.63
with θ = 1 and assume further

i) The approximation property Assumption 3.A holds for some function Υ and some
constant CΥ

ii) The inverse property Assumption 3.B is satisfied

iii) Assumption 3.C on the projector Ph holds

iv) Assumption 3.D on the initial condition is satisfied

Then there exists a constant C6 > 0 such that the convergence estimate

∥∥uM − uMh ∥∥2

H
+ ∆t

M−1∑
m=0

∥∥um+1 − um+1
h

∥∥2

V s

≤ C6(3 + ∆t) max
0≤τ≤T

Υ2(h, t, αA/2, uλ(τ))

+ C6(∆t)2

(∫ T

0
‖üλ(τ)‖2V sh ∗ dτ +

∫ T

0
‖u̇λ(τ)‖2H dτ + max

τ∈[0,T ]
‖uλ(τ)‖2H

)
+ C6

∫ T

0
Υ2(h, t, αA/2, u̇λ(τ)) dτ

(3.398)

holds.
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Proof
We derive

∥∥uM − uMh ∥∥2

H
+∆t

M−1∑
m=0

∥∥um+1 − um+1
h

∥∥2

V s

= e2λtM
∥∥uMλ − ũMh ∥∥2

H
+ ∆t

M−1∑
m=0

e2λtm+1∥∥um+1
λ − ũm+1

h

∥∥2

V s

≤ 2e2λT

(∥∥uMλ − uMλ,h∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥um+1
λ − um+1

λ,h

∥∥∥2

V s

+
∥∥ũMh − uMλ,h∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥ũm+1
h − um+1

λ,h

∥∥∥2

V s

)
,

(3.399)

wherein uλ solves scheme (3.308), umλ,h its fully discretized counterpart in Scheme 3.81
and the ũmh solve the degenerate Scheme 3.82.

Inequality (3.399) contains two separate groups of quantities that need to converge.

i) First, for m ∈ {0, . . . ,M}, we recognize the weak solution umλ of problem (3.308)
and its approximation in a finite dimensional subspace, umλ,h, that satisfies Theta
Scheme 3.81.

ii) Second, for m ∈ {0, . . . ,M}, we identify the differences between ũmh and umλ,h
that define the auxiliary terms wm introduced in (3.313) of Lemma 3.83 or Theta
Scheme 3.84, respectively.

We know from the previous Section 3.6.2.2 and Theorem 3.76 therein, that the norm of
the difference between the quantities of group i) converges to zero, indeed. For conver-
gence of the right hand side of inequality (3.399) it thus remains to show, that also the
norm of the difference between the quantities of group ii) converges to zero, equivalently.
The convergence of the normed wm, m ∈ {0, . . . ,M}, thus lies in the focus of this proof.

By Corollary 3.86 we have

∥∥ũMh − uMλ,h∥∥2

H
+ C1β∆t

M−1∑
m=0

∥∥∥ũm+1
h − um+1

λ,h

∥∥∥2

V s
≤ ∆tC2

M−1∑
m=0

‖rmw ‖
2
V sh
∗ (3.400)

from which

min{1, C1β}
(∥∥ũMh − uMλ,h∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥ũm+1
h − um+1

λ,h

∥∥∥2

V s

)
≤ ∆tC2

M−1∑
m=0

‖rmw ‖
2
V sh
∗

(3.401)

169



3.6.3 Results for continuous bilinear forms of Gårding type

immediately follows. Applying Lemma 3.89 to inequality (3.401) gives

∥∥ũMh − uMλ,h∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥ũm+1
h − um+1

λ,h

∥∥∥2

V s
≤ ∆t

C2C5

min{1, C1β}

M−1∑
m=0

‖Um‖2H , (3.402)

with C5 and Um as defined in Lemma 3.89. We define

C̃1 =
C2C5

min{1, C1β}
(3.403)

for later use. Lemma 3.93 provides bounds for ‖Um‖2H , m ∈ {0, . . . ,M−1}, and develops
the sum over the normed Um into

M−1∑
m=0

‖Um‖2H ≤ 4

M−1∑
m=0

[
λ2

(∥∥∥um+1
λ,h − u

m+1
λ

∥∥∥2

H
+
∥∥umλ,h − umλ ∥∥2

H

+
∥∥um+1

λ − umλ
∥∥2

H

)
+
(
λ− λ(∆t)

)2 ‖umλ ‖2H]
≤ 4λ2

(∥∥u0
λ,h − u0

λ

∥∥2

H
+ 2

M−1∑
m=0

∥∥∥um+1
λ,h − u

m+1
λ

∥∥∥2

H

+

M−1∑
m=0

∥∥um+1
λ − umλ

∥∥2

H
+ (∆t)2λ

2

4

M−1∑
m=0

‖umλ ‖
2
H

)
,

(3.404)

where we used in the last step that

λ− λ(∆t)

∆t
≤ λ2

2

for all ∆t > 0 as shown in Lemma 3.85. Considering the last two sums in (3.404), we find
for the first one using the Bochner integrability of u̇λ resulting from u ∈ C2([0, T, ], H)
and Lemma 2.38 with Proposition 1.2.3 of Arendt et al. (2011) and the Hölder inequality
that

M−1∑
m=0

∥∥um+1
λ − umλ

∥∥2

H
=

M−1∑
m=0

∥∥∥∥∥
∫ tm+1

tm
u̇λ(s) ds

∥∥∥∥∥
2

H

≤
M−1∑
m=0

(∫ tm+1

tm
‖u̇λ(s)‖H ds

)2

≤
M−1∑
m=0

(∆t)
1
2

[∫ tm+1

tm
‖u̇λ(s)‖2H ds

] 1
2

2

= ∆t
M−1∑
m=0

∫ tm+1

tm
‖u̇λ(s)‖2H ds

= ∆t

∫ T

0
‖u̇λ(s)‖2H ds,

(3.405)
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wherein we use Theorem 24.7 of Wloka (2002) in the second step. For the second sum
we get

∆t

M−1∑
m=0

‖umλ ‖
2
H ≤ T max

0≤τ≤T
‖uλ(τ)‖2H . (3.406)

Now we take (3.405) and (3.406) and insert them back into (3.404) to get

M−1∑
m=0

‖Um‖2H ≤ 4λ2

(∥∥u0
λ,h − u0

λ

∥∥2

H
+ 2

M−1∑
m=0

∥∥∥um+1
λ,h − u

m+1
λ

∥∥∥2

H

+ ∆t

∫ T

0
‖u̇λ(s)‖2H ds+ ∆t

λ2

4
T max

0≤τ≤T
‖uλ(τ)‖2H

)
.

(3.407)

Now combining (3.402) and (3.407) and inserting the result in (3.399) gives

∥∥uM − uMh ∥∥2

H
+ ∆t

M−1∑
m=0

∥∥um+1 − um+1
h

∥∥2

V s

≤ 2e2λT

(∥∥uMλ − uMλ,h∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥um+1
λ − um+1

λ,h

∥∥∥2

V s
+ ∆tC̃1

M−1∑
m=0

‖Um‖2H
)

≤ 2e2λT

(∥∥uMλ − uMλ,h∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥um+1
λ − um+1

λ,h

∥∥∥2

V s

+ ∆t4C̃1λ
2

(∥∥u0
λ,h − u0

λ

∥∥2

H
+ 2

M−1∑
m=0

∥∥∥um+1
λ,h − u

m+1
λ

∥∥∥2

H

+ ∆t

∫ T

0
‖u̇λ(s)‖2H ds+ ∆t

λ2

4
T max

0≤τ≤T
‖uλ(τ)‖2H

))
≤ 2e2λT

(∥∥uMλ − uMλ,h∥∥2

H
+ ∆t(1 + 8C̃1λ

2)
M−1∑
m=0

∥∥∥um+1
λ − um+1

λ,h

∥∥∥2

V s

+ ∆t4C̃1λ
2

(∥∥u0
λ − u0

λ,h

∥∥2

H
+ ∆t

∫ T

0
‖u̇λ(s)‖2H ds+ ∆t

λ2

4
T max

0≤τ≤T
‖uλ(τ)‖2H

))
(3.408)

with C̃1 as defined in (3.403). The upper estimate in (3.408) now depends only on
terms umλ,h and umλ . These solve the related "coercified" scheme. While the umλ solve
problem (3.308), their discrete counterparts umλ,h solve Scheme 3.81. We can thus apply
the convergence results that we have derived in Section 3.6.2.2, earlier.

Considering the term
∥∥∥u0

λ,h − u0
λ

∥∥∥2

H
in (3.408) we recognize

u0
λ = uλ(0) = g,

u0
λ,h = uλ,h(0) = gh,

(3.409)
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the initial conditions. We use the quasi-optimality of the initial condition of Assump-
tion 3.D in (3.409) and then the approximation property of Assumption 3.A yielding∥∥u0

λ − u0
λ,h

∥∥
H

= ‖g − gh‖H ≤ CI inf
vh∈V sh

‖g − gh‖H

≤ CI inf
vh∈V sh

‖g − gh‖V s ≤ C̃2Υ(h, t, αA/2, uλ(0)),
(3.410)

where C̃2 = CΥCI > 0 with CI being the constant from Assumption 3.D and CΥ the
constant from Assumption 3.A. For the remaining normed residual terms in (3.408) we
have trivially

∥∥uMλ − uMλ,h∥∥2

H
+ ∆t(1 + 8C̃1λ

2)
M−1∑
m=0

∥∥∥um+1
λ − um+1

λ,h

∥∥∥2

V s

≤ C̃3

(∥∥uMλ − uMλ,h∥∥2

H
+ ∆t

M−1∑
m=0

∥∥∥um+1
λ − um+1

λ,h

∥∥∥2

V s

)
,

(3.411)

with
C̃3 = 1 + 8C̃1λ

2. (3.412)

Now we assemble our findings. Applying Corollary 3.77 for θ = 1 to (3.411) and inserting
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the result together with (3.410) into (3.408) gives

∥∥uM − uMh ∥∥2

H
+ ∆t

M−1∑
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(3.413)

Defining

C6 = 2e2λT max

{
C̃3C, 4C̃1λ

2 max

{
C̃2

2 , 1,
λ2

4
T

}}
(3.414)
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gives

∥∥uM − uMh ∥∥2

H
+ ∆t
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∥∥um+1 − um+1
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V s
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+ C6
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0
Υ2(h, t, αA/2, u̇λ(s)) ds

+ C6 max
0≤τ≤T

Υ2(h, t, αA/2, uλ(τ))

+ C6∆tΥ2(h, t, αA/2, uλ(0))

+ C6(∆t)2

∫ T

0
‖u̇λ(s)‖2H ds

+ C6(∆t)2 max
0≤τ≤T

‖uλ(τ)‖2H .

(3.415)

Collecting terms gives

∥∥uM − uMh ∥∥2

H
+ ∆t

M−1∑
m=0

∥∥um+1 − um+1
h

∥∥2

V s

≤ C6(3 + ∆t) max
0≤τ≤T

Υ2(h, t, αA/2, uλ(τ))

+ C6(∆t)2

(∫ T

0
‖üλ(τ)‖2V sh ∗ dτ +

∫ T

0
‖u̇λ(τ)‖2H dτ + max

0≤τ≤T
‖uλ(τ)‖2H

)
+ C6

∫ T

0
Υ2(h, t, αA/2, u̇λ(τ)) dτ.

(3.416)

which proves the claim. �

Corollary 3.95 (Convergence with Υ of von Petersdorff and Schwab (2003))
Let the assumptions of Theorem 3.94 be satisfied and assume further the setting of von
Petersdorff and Schwab (2003) as outlined in Example 3.58. Then there exists a constant
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C > 0 such that the convergence estimate

∥∥uM − uMh ∥∥2

H
+ ∆t

M−1∑
m=0

∥∥um+1 − um+1
h

∥∥2

V αA/2

≤ C h2(p+1−αA/2)

(
(3 + ∆t) max

0≤τ≤T
‖u(τ)‖2Hp+1(Ω) (3.417)

+

∫ T

0
‖u̇(τ)‖2Hp+1(Ω) + ‖u(τ)‖2Hp+1(Ω) dτ

)
+ C(∆t)2

(∫ T

0
‖ü(τ)‖2V sh ∗ + ‖u̇(τ)‖2V sh ∗ + ‖u(τ)‖2V sh ∗ dτ

+

∫ T

0
‖u̇(τ)‖2H + ‖u(τ)‖2H dτ + max

0≤τ≤T
‖u(τ)‖2H

)
holds.

Proof
The result follows from Theorem 3.94 with

Υ(h, t, s, u) = ht−s‖u‖Ht(Ω),

as outlined by Example 3.58 taking t ≤ p + 1 equal to its maximal admissible value
with p the polynomial degree that the basis functions of V αA/2

h achieve piecewisely.
Additionally, one uses the relations

uλ = e−λ·u, u̇λ = e−λ·(u̇− λu), üλ = e−λ·(ü− 2λ · u+ λ2u)

to derive the result. �

Theorem 3.94 that served as the foundation for the above Corollary 3.95 has generalized
the claim of Theorem 5.4 of von Petersdorff and Schwab (2003) in several ways. First,
we allow for a time-inhomogeneous PIDE and consequentially a time-dependent bilinear
form. Second, the convergence result now applies to bilinear forms of Gårding type
instead of being restricted to the special case of coercive bilinear forms. Additionally,
we framed the approximation property of Assumption 3.A in very general terms.
Within this generalized theoretical framework Corollary 3.95 expresses the fact that the
order of convergence derived in the initial result of von Petersdorff and Schwab (2003) has
remained unchanged. We thus achieve the same order of convergence in the generalized
framework that we observed in the special case, before.

We close by noting that the rate of convergence critically depends on the regularity of the
initial condition. Some numerical schemes have been designed with that requirement in
mind. In this regard we refer to the literature on hp discontinuous Galerkin schemes, for
example Schötzau and Schwab (2001) wherein a time stepping scheme is proposed that
manages to resolve non-smooth initial data at exponential rates of convergence. Confer
also more generally Schötzau (1999) in this regard.
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4 Chebyshev polynomial interpolation

The numerical PIDE solver that we implemented in the previous chapter enables us to
derive prices for European options in Lévy models. The symbol method equips this tools
with a rich flexibility regarding the model choice and the numerical results at the end of
the previous chapter verify the numerical feasibility of its implementation. At the same
time, a theoretical framework for error control proved convergence and stability of the
approach under even more general theoretical assumptions. With a working numerical
environment for option pricing at our disposal, we now focus on improving computational
runtimes of option pricing routines.

The complexity of today’s model universe reflects in the sophistication of numerical
implementations. Stochastic volatilities, time dependent Lévy jump models or pricing
in higher dimensions place challenging demands to numerics. While complexity in the
models is justified by the desire to reproduce the observed complex behavior of financial
markets, the industry insists on feasible runtimes that match practical needs. Buyers and
sellers of financial products alike expect quotations that reflect the market situation while
still being issued live. Risk managers rely on a model capable of capturing all relevant
sources of risk but depend on risk assessment before that risk materializes. Similarly, a
bank aims at maintaining a rich model environment but needs to be able to recalibrate
it steadily to markets that keep on moving constantly.

Industry thus faces a seeming contradiction. While numerical complexity continuously
grows, fast runtimes are expected to be maintained. In this chapter, we introduce a
method that aims at resolving this contradiction. It is based on an interpolation tech-
nique that has been known in other contexts before but has not been applied in fi-
nance, yet. This is truly surprising as the theory behind the method connects to finance
smoothly and its numerical implementation yields highly appealing results. The method
is called Chebyshev polynomial interpolation. It is an interpolation technique that uses
prices at prespecified points in the parameter space to interpolate prices for parameters
inbetween with Chebyshev polynomials.

The first section of this chapter introduces the method mathematically. Building on
its original one-dimensional form, a multivariate extension by tensorization is presented
and investigated. In Section 4.2, the so called online/offline decomposition being the key
element of the algorithm and responsible for its fast runtimes is explored more thoroughly.
The subsequent Section 4.3 derives conditions that prices interpreted as functions of the
model and option parameters need to fulfill for exponential convergence of the algorithm
and verifies these conditions for several Lévy models and option types. Section 4.4
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describes an implementation of the Chebyshev algorithm and presents empirical accuracy
and convergence studies for several models and options. The numerical results indicate
that the approximative power of the algorithm even exceeds the scope of applicability
that the theoretical findings suggest.

The results of this chapter are taken from the article Gaß et al. (2016) where they
have been jointly developed, first. The proofs of those theoretical results that were
developed by coauthors will only be referenced in this thesis. We refer the interested
reader to the article in these cases. Explanatory descriptions of the method and the
accompanying results have been rewritten in parts but clearly cannot deny their close
relation to the paper source. The numerical experiments have been repeated based on
a different parametrization, thereby validating the theoretical results from a different
perspective, again.

4.1 An algorithmic introduction of the method

In introducing Chebyshev interpolation we distinguish between the univariate case and
its multivariate extension. In both cases we present the method in an algorithmic fashion
already adapted to option pricing.

4.1.1 The univariate interpolation method

We present the Chebyshev interpolation method. We begin by introducing the method
in its one-dimensional form that was originally outlined in Trefethen (2013). In a second
step, we extend the uni-variate framework to the multivariate case and present results
of error convergence analysis both theoretically as well as empirically.

Assume a one-dimensional parameter space P given by P = [−1, 1] and an option price
depending on a single varying parameter taking values in that space,

Pricep, p ∈ P. (4.1)

We define the Chebyshev interpolator IN which will be the driving quantity in the
interpolation of Pricep based on Chebyshev polynomials of degree N . It is given by

IN (Price(·))(p) =
N∑
j=0

cjTj(p), (4.2)

wherein the coefficients cj , j ∈ {0, . . . , N}, are defined by

cj =
210<j<N

N

N∑
l=0

′′Pricepl cos
(
jπ

l

N

)
, j ∈ {0, . . . , N}, (4.3)
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Figure 4.1 A set of Chebyshev points pl ∈ [−1, 1] (blue) for degree N = 15 con-
structed by equidistantly spaced auxiliary construction points (red) on the semi-circle.
The MATLAB code for this construction of the Chebyshev nodes is taken from the book
Trefethen (2013).

where the notation of the doubly primed sum indicates that its first and last summand
are multiplied by 1/2. The basis functions Tj in (4.2) are given by

Tj(p) = cos
(
j arccos(p)

)
, j ∈ {0, . . . , N}, defined on [−1, 1]. (4.4)

The Chebyshev polynomial interpolation method inherits its name from the fact that
the basis functions Tj in (4.4) allow for a polynomial representation, as well. Chebyshev
nodes

pl = cos
(
π
l

N

)
, l ∈ {0, . . . , N}, (4.5)

mark locations in the parameter space where the method interpolates perfectly. Their
construction admits a beautiful geometric interpretation as illustrated by Figure 4.1.
There, N = 15 Chebyshev nodes in one dimension are depicted and their geometric
construction is emphasized. Self-evidently, univariate Chebyshev interpolation is not
restricted to the generic parameter space [−1, 1]. Instead, invoking an appropriate linear
transformation opens the method to any parameter space that can be cast in the form of
a real parameter interval [p, p]. The interpolation operator (4.2) is then easily adjusted
accordingly.

4.1.2 A multivariate extension

The scope of Chebyshev polynomial interpolation is not limited to univariate appli-
cations. Instead, a tensor based extension captures the multivariate case. Assume a
parameter space

P = K × T ×Q = [−1, 1]D1 × [−1, 1]D2 × [−1, 1]D3 = [−1, 1]D (4.6)
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for the interpolation of prices

Price(K,T,q), (K,T, q) ∈ P, (4.7)

where D1 = dim(K) ∈ N, D2 = dim(T ) ∈ N, D3 = dim(Q) ∈ N and D = D1 +D2 +D3.
As above, more general hyperrectangular parameter spaces are not excluded. Parameter
spaces given by

P = [K1,K1]× · · · × [KD1
,KD1 ]

× [T 1, T 1]× · · · × [TD2
, TD2 ]

× [Q
1
, Q1]× · · · × [Q

D3
, QD3

],

(4.8)

become admissible by appropriate linear transformations. With N = (N1, . . . , ND) and
Ni ∈ N0 for i ∈ {1, . . . , D}, the univariate interpolator as defined in (4.2) then extends
rather naturally to the multivariate case. With

∏D
i=1(Ni + 1) summands it is given by

IN (Price(·))(p) =
∑
j∈J

cjTj(p), p ∈ P, (4.9)

where the summation index j is a multiindex with values in

J = {(j1, . . . , jD) ∈ ND0 , where ji ∈ {0, . . . , Ni} for i ∈ {1, . . . , D}}. (4.10)

Thus, being fully explicit, equation (4.9) indeed turns into

IN (Price(·))(p) =

N1∑
j1=0

. . .

ND∑
jD=0

c(j1,...,jD)T(j1,...,jD)(p), p ∈ P. (4.11)

In the multivariate case, the basis functions Tj for j = (j1, . . . , jD) ∈ J are defined by

Tj(p1, . . . , pD) =

D∏
i=1

Tji(pi), p ∈ P, (4.12)

and the associated coefficients cj with j = (j1, . . . , jD) ∈ J are given by

cj =
( D∏
i=1

21{0<ji<Ni}

Ni

) N1∑
l1=0

′′ . . .

ND∑
lD=0

′′Pricep
(l1,...,lD)

D∏
i=1

cos

(
jiπ

li
Ni

)
. (4.13)

Similarly, the Chebyshev nodes pl are now defined for a multiindex l = (l1, . . . , lD) ∈ J
and distributed accordingly,

pl = (pl1 , . . . , plD), (4.14)

inheriting their actual values from their univariate counterparts,

pli = cos

(
π
li
Ni

)
, for li ∈ {0, . . . , Ni} and i ∈ {1, . . . , D}. (4.15)
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Figure 4.2 A set of D-variate Chebyshev points pl ∈ [−1, 1]D for D = 2 and N1 =
N2 = 15. Their arrangement adheres to the rule (4.15).

Figure 4.2 displays a set of D-variate Chebyshev nodes p(l1,...,lD) for D = 2 and N1 =
N2 = 15.

In the univariate case, convergence of interpolation by the Chebyshev method is well
known. We cite the according remark on convergence of the Chebyshev method from
Gaß et al. (2016).

Remark 4.1 (Convergence of multivariate Chebyshev interpolation)
It is well known that the error of approximation with Chebyshev polynomials decays poly-
nomially for differentiable functions and exponentially for analytic functions. More pre-
cisely, going back to Mastroianni and Szabados (1995), it is shown by Theorem 7.2 in Tre-
fethen (2013) that the error ‖f − IN (f)‖L∞([−1,1]) decays at rate O(Nν) if x 7→ f(x) is
ν times differentiable with νth derivative of finite variation and f (1), f (2), . . . , f (ν−1) are
absolutely continuous. Let additionally f be analytic in [−1, 1] then it is analytic in some
Bernstein ellipse B([−1, 1], %) with parameter % > 1, as defined in Definition 2.43. The-
orem 8.2 in Trefethen (2013), that traces back to the seminal work of Bernstein (1912),
shows that if f has an analytic extension to some Bernstein ellipse B([−1, 1], %) with
parameter % > 1 then the error decay is of exponential rate O(%−N ).

The rest of this chapter extends the result presented in Remark 4.1 for the univariate
case to its multivariate extension having the application of parametric option pricing in
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Figure 4.3 Left: Generalized Bernstein ellipse E1 with foci p, p and semimajor p+p

2 .
Right: Bernstein ellipse E2 with foci ±1 and semimajor ζ.

mind. We consider these parametric option prices to be given by

Price(K,T,q), for (K,T, q) ∈ P = K × T ×Q, (4.16)

wherein K ⊂ RD1 , T ⊂ RD2 , Q ⊂ RD3 and therefore P ⊂ RD with dimensionality D =
D1 +D2 +D3. The underlying parameter space P is assumed to be of hyperrectangular
structure, in the sense that

P = [p
1
, p1]× . . .× [p

D
, pD] (4.17)

with real p
i
≤ pi for all i ∈ {1, . . . , D}.

As Remark 4.1 indicates for the univariate case, exponential convergence of interpolation
by the Chebyshev method relies on regularity assumptions to be met by the interpolated
function. More precisely, for exponential convergence in the univariate case the inter-
polated function is required to be analytic on a Bernstein ellipse B([−1, 1], %) with a
certain ellipse parameter % > 1. This ellipse parameter directly determines the rate of
convergence. Before we can generalize the univarate convergence results to the multi-
variate case, the concept of a Bernstein ellipse must be extended accordingly. To this
end we define the D-variate and transformed analogon of a Bernstein ellipse around the
hyperrectangle P with parameter vector % ∈ (1,∞)D as

B(P, %) = B([p
1
, p1], %1)× . . .×B([p

D
, pD], %D) (4.18)

based on D generalized univariate Bernstein ellipses

B([p, p], %) = τ[p,p] ◦B([−1, 1], %), (4.19)

as given by Definition 2.43 in the preliminary chapter. Analogously to the univariate
case, the ellipse parameter vector % ∈ (1,∞)D will determine the rate of convergence.
Its value corresponds with the extension of the parameter space P and is determined by
the following remark.
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Remark 4.2 (How to derive %)
We comment on the derivation of the ellipse parameter % > 1 of the generalized Bernstein
ellipse. Assume a Chebyshev approximation of a function in the parameter p ∈ [p, p].
We denote the generalized Bernstein ellipse with p, p as foci and with the origin at its
boundary by E1,

E1 = B([p, p], %). (4.20)

Furthermore, we denote by E2 the Bernstein ellipse that originates from linearly mapping
the foci of E1 to the Bernstein ellipse with foci ±1 using the transformation τ[p,p] from
identity (4.19), that is

E2 = B([−1, 1], %) = τ−1
[p,p] ◦ E1. (4.21)

A schematic illustration of E1 and E2 is provided by Figure 4.3. In our notation, the
ellipse parameter of the generalized Bernstein ellipse E1 is defined as the ellipse parameter
ρ of the Bernstein ellipse E2. We determine the ellipse parameter % > 1 of E2 using
the mapping τ[p,p], or rather its inverse. To this extent recall that for a Bernstein ellipse
with semimajor a% and semiminor b% the relations

a% =
%+ 1

%

2
, b% =

%− 1
%

2
, % = a% + b% > 1 (4.22)

hold. Evidently, E1 has a semimajor value of p+p2 and thus E2 has a semimajor value of

ζ = aE2
% = τ−1

[p,p]

(p+ p

2

)
− τ−1

[p,p](0) =
p+ p

p− p
. (4.23)

Using the relations (4.22), we derive

% = ζ +
√
ζ2 − 1. (4.24)

The value in (4.24) determines the ellipse parameter of E2 and will provide the exponen-
tial decay rate in our theoretical results, later.

We are thus prepared to cite the core theorem granting exponential error decay of the
Chebyshev interpolation in the multivariate case.

Theorem 4.3 (Asymptotic error decay with tensorized Chebyshev interpolation)
Let P 3 p 7→ Pricep be a real valued function that has an analytic extension to some
generalized Bernstein ellipse B(P, %) for some parameter vector % ∈ (1,∞)D and assume
maxp∈B(P,%) |Pricep| ≤ V . Then

max
p∈P

∣∣Pricep − IN (Price(·))(p)
∣∣ ≤ 2

D
2

+1 · V ·

 D∑
i=1

%−2Ni
i

D∏
j=1

1

1− %−2
j

 1
2

. (4.25)

The proof of the theorem is provided in Gaß et al. (2016). As an immediate consequence
of Theorem 4.3 we obtain the following corollary.
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Corollary 4.4 (Asymptotic error decay with tensorized Chebyshev interpolation)
Under the assumptions of Theorem 4.3 there exists a constant C > 0 such that

max
p∈P

∣∣Pricep − IN (Price(·))(p)
∣∣ ≤ C%−N , (4.26)

where % = min
1≤i≤D

%i and N = min
1≤i≤D

Ni.

Citing the following remark from Gaß et al. (2016) we obtain exponential error conver-
gence when the same number of Chebyshev nodes N is chosen in each dimension of the
parameter space.

Remark 4.5 (Exponential error decay in N)
In particular, for the same number of nodes N in each dimension of the parameter space
Corollary 4.4 shows that the error decay is of exponential order O

(
%−N

)
= O

(
%−

D√M) for
some % > 1 withM denoting the number of degrees of freedom of the interpolation method
and D the dimension of the parameter space under the assumptions of Theorem 4.3.

4.2 The online/offline decomposition feature

In the introduction of the chapter we highlighted our goal of accelerating numerical
runtimes while at the same time maintaining flexibility regarding the choice of the model
and its complexity. Let us emphasize how the Chebyshev interpolation approach achieves
this goal. To this extent recall the interpolation operator in D dimensions as presented
by (4.11) as

Pricep ≈ IN (Price(·))(p) =

N1∑
j1=0

. . .

ND∑
jD=0

c(j1,...,jD)︸ ︷︷ ︸
i) offline phase

T(j1,...,jD)(p)︸ ︷︷ ︸
ii) online phase

, (4.27)

for a parameter p ∈ P from the parameter space. The computation of Pricep based on
an arbitrarily complex model and possibly suffering from a lengthy numerical derivation
has thus turned into the evaluation of a finite sum with known coefficients. This devel-
opment is by no means trivial since it allowed for a separation of the complex model and
the attached model pricing routine from the actual parameter p ∈ P that the price is
evaluated or rather approximated for. The overall pricing procedure has thus split into
two separate stages, which are called offline phase and online phase. Both labels have
their origin in the more general theory of model reduction techniques, yet their meaning
applies to the Chebyshev method equally.

i) Offline phase
In the first phase, the algorithm is set up and prepared for pricing or related ap-
plications. The model is chosen and model prices are computed for all Chebyshev
points in the parameter space in order to determine the coefficients c(j1,...,jD) using
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4.1.2 A multivariate extension

a pricing method of choice. Depending on the complexity of the model and the
runtime of the pricing method which can be Monte Carlo, Fourier pricing, PIDE
techniques or other algorithms, this offline phase possibly consumes a considerable
amount of time. Yet it is crucial for an understanding of the performance of the
Chebyshev algorithm to keep in mind, that this offline phase is only conducted
once.

ii) Online phase
Now that the algorithm is prepared, the pricing for model parameters of interest
takes place. The pricing routine used for the derivation of prices at the Chebyshev
points during the first phase has become unnecessary. Instead, pricing now con-
sists in the evaluation of the Chebyshev polynomials T(j1,...,jD) at the parameter
p ∈ P of interest and an assembling of the weighted sum in (4.27) with known
coefficients c(j1,...,jD) that are independent of the parameter p ∈ P.

The splitting of the original pricing routine into those two phases results in a tremendous
increase in pricing runtime. With the computationally intense derivations being shifted
into the offline phase, only numerically cheap evaluations of polynomials remain for
online pricing. The questions remain whether the resulting approximate price is accurate
and how far it converges to its true value. The next section discovers conditions under
which exponential convergence is obtained before the numerical sections investigate both
accuracy and convergence empirically.

4.3 Exponential convergence of Chebyshev interpolation for
parametric option pricing

In this section we embed the multivariate Chebyshev interpolation into the option pricing
framework. First, as in Gaß et al. (2016), we provide sufficient conditions under which
option prices analytically depend on the parameters. Second, these are verified for payoff
profiles and asset models individually. As an example, we investigate the interpolation
of call option prices in Lévy models in more detail.

Analytic properties of option prices can be conveniently studied in terms of Fourier
transforms. First, Fourier representations of option prices are explicitly available for
a large class of both option types and asset models. Second, Fourier transformation
unveils the analytic properties of both the payoff structure and the distribution of the
underlying stochastic quantity in a beautiful way. By contrast, if option prices are
represented as expectations, their analyticity in the parameters is hidden. For example
the function K 7→ (ST −K)+ is not even differentiable, whereas the Fourier transform of
the dampened call payoff function evidently is analytic in the strike, compare Table 4.1.
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4.3.1 Conditions for exponential convergence

In Gaß et al. (2016), we introduce a general option pricing framework. We consider
option prices of the form

Pricep=(K,T,q) = E
[
fK(Xq

T )
]
, p ∈ P, (4.28)

where fK is a parametrized family of measurable payoff functions fK : Rd → R+ with
payoff parameters K ∈ K and Xq

T is a family of Rd-valued random variables with model
parameters (T, q) ∈ T ×Q. The parameter set

p = (K,T, q) ∈ P = K × T ×Q ⊂ RD (4.29)

is again of hyperrectangular structure, that is

K = [p
1
, p1]× . . .× [p

D1
, pD1

]

T × Q = [p
D1+1

, pD1+1]× . . .× [p
D
, pD]

(4.30)

for some 1 ≤ D1 ≤ D and real p
i
≤ pi for all i ∈ {1, . . . , D}.

Option price representations of form (4.28) capture a large variety of option types in-
cluding plain vanilla European as well as American and other path dependent options.
In Gaß et al. (2016), all of these options types are considered. Here, we focus on the case
that the price (4.28) can be represented in Fourier terms. Focusing on these representa-
tions, the following paragraphs derive sufficient conditions under which the parametrized
prices possess an analytic extension to an appropriate Bernstein ellipsoid such that the
Chebyshev approximation method applies.

For most relevant options, the payoff profile fK is not integrable and its Fourier transform
is not well-defined. The European call and put options are prominent examples. In these
cases, however, the notion of the generalized Fourier transform of Definition 2.6 applies.
The following set of conditions establishes the foundation for employing the Chebyshev
method for Fourier pricing.

Conditions 4.6 (Chebyshev method on Fourier prices)
Let the parameter set P = K × T × Q ⊂ RD possess a hyperrectangular structure as
in (4.30). Let % ∈ (1,∞)D and denote %K = (%1, . . . , %D1) and %T Q = (%D1+1, . . . , %D)
and let weight η ∈ Rd.
(4.A) For every K ∈ K the mapping x 7→ e〈η,x〉fK(x) is in L1(Rd).

(4.B) For every z ∈ Rd the mapping K 7→ f̂K(z − iη) is analytic in the generalized
Bernstein ellipse B(K, %K) and there are constants c1, c2 > 0 such that

sup
K∈B(K,%K)

|f̂K(−z − iη)| ≤ c1e
c2|z| (4.31)

for all z ∈ Rd.
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(4.C) For every (T, q) ∈ T × Q the exponential moment condition E
[
e−〈η,X

q
T 〉
]
< ∞

holds.

(4.D) For every z ∈ Rd the mapping (T, q) 7→ ϕT,q(z+ iη) is analytic in the generalized
Bernstein ellipse B(T ×Q, %T Q) and there are constants α ∈ (1, 2] and c1, c2 > 0
such that

sup
(T,q)∈B(T ×Q)

|ϕT,q(z + iη)| ≤ c1e
−c2|z|α (4.32)

for all z ∈ Rd.

Conditions (4.A)–(4.D) are satisfied for a large class of payoff functions and asset models,
see Sections 2.4 and 2.3. More precisely, there are examples of (time-inhomogeneous)
Lévy processes that fall in the scope of Conditions 4.6 indeed and we refer the interested
reader to Glau (2016) for an overview and the article Gaß et al. (2016) that this chapter
is based on for more details.

Theorem 4.7 (Convergence of prices)
Let % ∈ (1,∞)D and weight η ∈ Rd. Under conditions (4.A)–(4.D) we have

max
p∈P
|Pricep − IN (Price(·))(p)|

≤
D∑
i=1

4V
%−Nii

%−Nii − 1
+

D∑
l=2

4V
%−Nl−
%l − 1

· 2l−1 (l − 1) + 2k−l − 1∏l−1
j=1(1− %−1

j )
.

(4.33)

Proof
This is Theorem 3.2 in Gaß et al. (2016) where a proof is provided. �

4.3.2 Selected option prices

In the previous Section, Conditions 4.6 introduced a framework in which the Chebyshev
approximation achieves (sub)exponential error decay. This abstract framework can be
related to two concrete option pricing settings in connection with Fourier pricing as
introduced by Proposition 2.20 from the preliminary chapter.

First, we assess European options in univariate Lévy models. Let r be the deterministic
and constant interest rate. We consider the parametrized family of asset prices,

Sqt = S0e
Lq
′
t (4.34)

with t ≥ 0. For fixed q = (S0, r, σ) ∈ Q = [S0, S0] × [r, r] × [σ, σ] we denote q′ = (r, σ)

and assume Lq′ to be a Lévy process and special semimartingale with characteristics
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(b, σ, F ) and parametric Lévy measure F . As we have seen in Section 2.2 of the intro-
ductory Chapter 2, the characteristic function of the parametrized Lévy process can be
represented by

ϕt,q′(z) = E
[
eizL

q′
t
]

= etψ
q′ (z),

ψq
′
(z) = ibz +

σ2z

2
+

∫
R

(
eizx − 1− izh(x)

)
F (dx).

(4.35)

Additionally, we separately denote the jump part of the cumulant generating function
by

ψ̃(z) =

∫
R

(
eizx − 1− izx

)
F (dx) (4.36)

for later reference. We assume L is defined under a risk neutral measure. Therefore, for
every q ∈ Q we assume E[eL

q′
t ] < ∞ for some and equivalently all t > 0 and the drift

condition

b = b(r, σ) = r − σ2

2
−
∫
R

(
ex − 1− h(x)

)
F (dx), (4.37)

to ensure that the discounted asset price process is a martingale, as already outlined
by identity (2.31) in Section 2.3. In asset model Sq the fair value at time t = 0 of a
European option with payoff written as function fK for K ∈ K = [K,K] ⊂ R with
maturity T ∈ T = [T , T ] ⊂ (0,∞) is given by

Price(K,T,q) = e−rTE
[
fK(S0 e

Lq
′
T )
]
. (4.38)

In order to guarantee (sub)exponential convergence of the Chebyshev interpolation, we
translate condition (4.C) on exponential moments and condition (4.D) on analyticity
and the upper bound into conditions on the cumulant function ψq′ . Then the following
corollary applies.

Corollary 4.8 (Exponential convergence of Fourier prices in N)
Let Conditions (4.A) and (4.B) be satisfied for weight η ∈ R and %K > 1 and set PK =

[K,K]. Moreover, let PT Q = [T , T ] × [S0, S0] × [r, r] × [σ, σ] ⊂ R4 with T , S0 > 0 and
σ ≥ 0. Assume ∫

|x|>1
(e−ηx ∨ ex)F (dx) <∞. (4.39)

If additionally one of the following conditions is satisfied,

i) σ > 0,

ii) there exist α ∈ (1, 2] and constants C1, C2 > 0 such that

<
(
ψ̃
)
(z + iη) ≤ C1 − C2|z|α for all z ∈ R,
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then there exist constants C > 0 and % > 1 such that

max
p∈K×T ×Q

∣∣Pricep − IN (Price(·))(p)
∣∣ ≤ C%−N , (4.40)

where N = min
1≤i≤5

Ni.

Proof
This is Corollary 3.4 in Gaß et al. (2016) where a proof is provided. �

For an application of the Chebyshev method to the pricing of basket options in affine
models both in theoretical and numerical terms, we refer the interested reader to Gaß
et al. (2016).

4.3.3 Examples of payoff profiles

We enlist in Table 4.1 a selection of payoff profiles fK for option parameter K as function
of the logarithm of the underlying. By Proposition 2.20, we can represent option prices
under certain conditions in Fourier terms. Therefore, the table provides the generalized
Fourier transform f̂K of the respective option payoff, as well.

Type Payoff Weight Fourier transform f̂K holomor-

f(x) η f̂K(z − iη) phic in log(K)

Call (ex −K)+ < −1 Kiz+1+η

(iz+η)(iz+1+η) X

Put (K − ex)+ > 0 Kiz+1+η

(iz+η)(iz+1+η) X

Digital 1x>log(K) < 0 −Kiz+η

iz+η X
down&out

Asset-or- ex1x>log(K) < −1 −Kiz+1+η

iz+1+η X
nothing
down&out

Table 4.1 Examples of payout profiles of a single underlying and the respective (gener-
alized) Fourier transforms.
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4.3.4 Chebyshev conditions and asset models

In this section, we shortly introduce some analyticity properties of the Fourier transforms
of the Lévy models introduced in Section 2.3. For some models and some parameters,
the domain of analyticity is immediately observable. For some non-trivial cases, we state
the domain briefly. Throughout the section, T > 0 denotes the time to maturity of the
option while r ≥ 0 refers to the constant risk-free interest rate.

We define

C+ = {z ∈ C | <(z) > 0},
C+

0 = {z ∈ C | <(z) ≥ 0},
(4.41)

for later reference.

In the multivariate Black&Scholes model of Section 2.3.1, analyticity in the parameters
is immediately confirmed, that is (T, q′) 7→ ϕT,q′(z) is holomorphic for every z ∈ Rd.
The admissible parameter domain, however, is restricted to parameter constellations
that encode a covariance matrix.

Remark 4.9 (Analyticity in the Black&Scholes model)
Let η ∈ Rd be the chosen weight in Conditions 4.6 and let the open set U be given by

U ⊆ C+ × C+
0 ×

{
~σ ∈ Cd(d+1)/2

∣∣ σ(<(~σ)) positive definite
}
, (4.42)

where σ : Rd(d+1)/2 → Rd×d is defined by σ(~σ)ij = σ(max{i,j}−1) max{i,j}/2+min{i,j}, i, j ∈
{1, . . . , d}, for ~σ ∈ Rd(d+1)/2. By construction, σ(~σ) is symmetric for any ~σ ∈ Rd(d+1)/2.

Then for every z ∈ Rd, (T, r, ~σ) 7→ ϕT,(r,σ(~σ))(z+ iη) is analytic on U . Note that U does
not depend on η.

The Merton model of Merton (1976) has been introduced in Section 2.3.2.

Remark 4.10 (Analyticity in the univariate Merton model)
In the Merton model, we find ourselves in the same situation, since the characteristic
function for the Merton jump diffusion model is itself composed of analytic functions. Let
η ∈ R be the chosen weight in Conditions 4.6 and choose the complex parameter space U
open according to

U ⊆ C+ × C+
0 ×

{
(σ, α, β, λ) ∈ C+ × C× C+

0 × C+
}
. (4.43)

Then for every z ∈ Rd, the mapping (T, r, σ, α, β, λ) 7→ ϕT,(r,σ,α,β,λ)(z + iη) is analytic
on U . Again, the domain of analyticity in the parameters does not depend on the weight
η.

Recall the Normal Inverse Gaussian (NIG) model of Section 2.3.4.
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4.3.4 Chebyshev conditions and asset models

Remark 4.11 (Analyticity in the univariate NIG model)
For weight η ∈ R from Conditions 4.6, choose an open set U(η) with

U(η) ⊆ C+ × C+
0 × C+

0 ×
{

(α, β) ∈ C+ × C
∣∣ <(α)2 −<(β)2 > =(α)2 −=(β)2, (4.44)

<(α)2 − (<(β)− η)2 > =(α)2 −=(β)2
}
.

Then for every z ∈ R, (T, r, δ, α, β) 7→ ϕT,(r,δ,α,β)(z + iη) is analytic on U(η).

In Section 2.3.3 we introduced the CGMY model of Carr et al. (2002).

Remark 4.12 (Analyticity in the univariate CGMY model)
The gamma function Γ that is part of the characteristic function in the CGMY model
has an analytic extension to the complex semispace C+. Consequently, with weight η ∈ R
from Conditions 4.6, we can choose an open set U(η) with

U(η) ⊆ C+ × C+
0 × C+ ×

{
(G,M) ∈ C+ × C+

∣∣ <(G)− η > 0, <(M) + η > 0
}

× {Y ∈ C+ | <(Y ) ∈ (1, 2)}. (4.45)

Then for every z ∈ Rd, (T, r, C,G,M, Y ) 7→ ϕT,(r,C,G,M,Y )(z + iη) for the characteristic
function ϕT,q of the CGMY model is analytic on U(η).

Table 4.2 taken from Gaß et al. (2016) displays for selected Lévy models conditions on
the weight η ∈ Rd and the index α ∈ (1, 2] that guarantee (4.C) and (4.D).

Class Conditions for (4.C), (4.D) to hold
on η on α

Brownian Motion α = 2
with drift

Merton Jump Diffusion α = 2

Lévy jump diffusion with
∫
|x|>1 e

|η||x|F (dx) <∞ α = 2

characteristics (b, σ, F )

univariate CGMY with η ∈ (−min{G,M}, max{G,M}) α = Y
parameters (C,G,M, Y )
with Y > 1

Table 4.2 Conditions on η and α for (4.C) and (4.D) to hold for a fixed model parameter
constellation. The selected Lévy models are described in more detail in Section 2.3.
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4.3.4.1 Heston model for two assets

Here we state the two asset version of the multivariate Heston model in the special
case of having a single, univariate driving volatility process (vt)t≥0. The two asset price
processes are modeled as

S1
t = S1

0e
H1
t and S2

t = S2
0e
H2
t , for t ≥ 0, (4.46)

where H = (H1, H2) solves the following system of SDEs,

dH1
t =

(
r − 1

2
σ2

1

)
dt+ σ1

√
vt dW 1

t ,

dH2
t =

(
r − 1

2
σ2

2

)
dt+ σ2

√
vt dW 2

t ,

dvt = κ(θ − vt) dt+ σ3
√
vt dW 3

t ,

where the Brownian motions Wi, i ∈ {1, 2, 3}, are correlated according to 〈W 1,W 2〉 =
ρ12, 〈W 1,W 3〉 = ρ13, 〈W 2,W 3〉 = ρ23. Following Eberlein et al. (2010), the characteris-
tic function of HT in this framework is

ϕT,(r,v0,κ,θ,σ1,σ2,σ3,ρ12,ρ13,ρ23)(z)

= exp

(
Ti

〈(
r
r

)
, z

〉)
exp

(
v0

σ2
3

(a− c)(1− exp(−cT ))

1− g exp(−cT )

+
κθ

σ2
3

[
(a− c)T − 2 log

(
1− g exp(−cT )

1− g

)])
,

(4.47)

with auxiliary functions

ζ = ζ(z) = −
(〈

z,

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)
z

〉
+

〈(
σ1

σ2

)
, iz

〉)
−
(
σ2

1z
2
1 + σ2

2z
2
2 + 2ρ12σ1σ2z1z2 + iσ2

1z1 + iσ2
2z2

)
,

a = a(z) = κ− iρ13σ1σ3z1 − iρ23σ2σ3z2,

c = c(z) =
√
a(z)2 − σ2

3ζ(z),

g = g(z) =
a(z)− c(z)
a(z) + c(z)

,

(4.48)

and positive parameters v0, κ, θ and σ3 fulfilling the Feller condition

σ2
3 ≤ 2κθ (4.49)

ensuring an almost surely non-negative volatility process (vt)t≥0. Obviously, for each
z ∈ R2, the characteristic function ϕT,(r,v0,κ,θ,σ1,σ2,σ3,ρ12,ρ13,ρ23)(z) of (4.47) is analytic in
v0 and θ. For further analysis of the domain of analyticity in the Heston model confer
Levendorskĭi (2012).
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4.3.5 Example: Call options in Lévy models

The fair price at t = 0 of a call option with strike K and maturity T in a geometric Lévy
model with deterministic interest rate r ≥ 0 is given by

CallS0,K
T = e−rTE

[
S0e

LT −K
]+ (4.50)

under a risk-neutral probability measure. Noticing that

CallS0,K
T = e−rTK E

[
(S0/K)eLt − 1

]+
, (4.51)

it suffices to interpolate the function

(T, S) 7→ CallS,1T (4.52)

on [T , T ] × [S0/K, S0/K] in order to approximate the prices CallS0,K
T on the range

(T, S0,K) ∈ [T , T ]× [S0, S0]× [K,K] ⊂ (0,∞)3.

Let us fix some η < −1. From Table 4.1 we see that for every z ∈ R the mapping
K 7→ f̂K(z − iη) is analytic on (0,∞).

Let (b, σ, F ) be the characteristics of L and recall

ψ̃(z) =

∫
R

(
eizx − 1− izx

)
F (dx) (4.53)

from (4.36). Now Corollary 4.8 yields the following

Corollary 4.13 (Convergence for call options in Lévy models)
Assume one of the following conditions.

i) L is a jump diffusion Lévy process, that is it possesses a non-zero Brownian com-
ponent σ > 0.

ii) There exist α ∈ (1, 2] and constants C1, C2 > 0 such that

<
(
ψ̃
)
(z + iη) ≤ C1 − C2|z|α for all z ∈ R.

Let P = [T , T ] × [S0/K, S0/K], ζ1 =
S0K+S0K

S0K−S0K
, ζ2 = T+T

T−T and %̃j = (%j)−Nj

%j−1
, then for

every %j ∈ (1, ζj +
√

(ζj)2 − 1) for j = 1, 2, there exists a constant V > 0 such that

max
(T,S0)∈P

∣∣CallS0,1
T − IN1,N2(Call

(·),1
(·) )(T, S0)

∣∣ ≤ 4V
(
%̃1 + %̃2 + %̃2

4

1− %−1
1

)
.

In particular, under the assumptions of Corollary 4.13 there exists a constant C > 0
such that

max
(T,S0)∈P

∣∣CallS0,1
T − IN1,N2(Call

(·),1
(·) )(T, S0)

∣∣ ≤ C%−N , (4.54)

where % = min{%1, %2} and N = min{N1, N2}.
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Remark 4.14
Under the assumptions of Corollary 4.13, when fixing the maturity T , letting ζ =

S0K+S0K

S0K−S0K
,

we obtain the exponential error decay

max
S0/K≤S0≤S0/K

∣∣CallS0,1
T − IN (Call

(·),1
T )(S0)

∣∣ ≤ 4V
%−N

%− 1
, (4.55)

for some % ∈ (1, ζ +
√
ζ2 − 1) and V = max

S0∈B([S0/K,S0/K],%)

∣∣∣CallS0,K
T

∣∣∣.
Examples of Lévy jump diffusion models that satisfy condition i) of Corollary 4.13 are
for example the Black&Scholes and Merton model. Examples of pure jump Lévy mod-
els satisfying condition ii) of Corollary 4.13 are provided in Glau (2016) also compare
Table 4.2.

4.4 Numerical experiments

We apply the Chebyshev interpolation method to parametric option pricing considering
a variety of option types in different well known option pricing models. Moreover, we
conduct an error analysis, a convergence study as well as a demonstration of the gain in
efficiency realized by the method. The first focuses on the accuracy that can be achieved
with a reasonable number of Chebyshev interpolation points. The second confirms the
theoretical order of convergence derived in Section 4.3, when the number of Chebyshev
points increases. The latter visualizes the gain in efficiency in terms of improved runtimes
for pricing procedures. We measure the numerical accuracy of the Chebyshev method
by comparing derived prices with prices coming from a reference method. We employ
the reference method not only for computing reference prices but also for computing
prices at Chebyshev nodes Pricep

(l1,...,lD)
with (l1, . . . , lD) ∈ J in the precomputing

phase of the Chebyshev coefficients cj , j ∈ J , in (4.13). Thereby, a comparability
between Chebyshev prices and reference prices is maintained. In this section we price
plain vanilla European products and use Fourier pricing by numerical integration as
reference method. In Gaß et al. (2016) we also consider exotic and higher dimensional
derivatives and apply the Monte Carlo method for measuring the accuracy of prices from
the Chebyshev approximation.

We implemented the Chebyshev method for applications with two parameters. To that
extent we pick two free parameters pi1 , pi2 out of (4.30), 1 ≤ i1 < i2 ≤ D, in each model
setup and fix all other parameters at reasonable constant values. We then evaluate option
prices for different products on a discrete parameter grid P ⊆ [p

i1
, pi1 ]× [p

i2
, pi2 ] defined

by

P =
{(
p
li1
i1
, p
li2
i2

)
, li1 , li2 ∈ {0, . . . , 100}

}
,

p
lij
ij

= p
ij

+
lij
100

(
pij − pij

)
, lij ∈ {0, . . . , 100}, j ∈ {1, 2}.

(4.56)
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Once the prices have been derived on P, we compute the discrete L∞(P) and L2(P)
error measures,

εL∞(N) = max
p∈P

∣∣∣Pricep − IN (Price(·))(p)
∣∣∣ ,

εL2(N) =

√√√√∆P

∑
p∈P

∣∣∣Pricep − IN (Price(·))(p)
∣∣∣2, (4.57)

where ∆P =
(pi1−pi1

)

100

(pi2−pi2
)

100 , to interpret the accuracy of our implementation and of
the Chebyshev method as such.

4.4.1 European options

We consider a plain vanilla European call option on one asset. The payoff profile of
the derivative and its generalized Fourier transform are enlisted in Table 4.1. For these
products we investigate the performance of the Chebyshev interpolation method for the
Heston model and the Lévy models of Black and Scholes (1973), Merton (1976) and Carr
et al. (2002). We keep the strike parameter constant at K = 1, and disregard interest
rates, setting r = 0. For the three Lévy models we vary the maturity T (in years) as
well as the option moneyness S0/K whereas for the Heston model we let v0 as one of the
model parameters float. A detailed overview of the chosen parametrization is given by
Table 4.3. For numerical integration in Fourier pricing we use Matlab’s quadgk routine
over the interval [0,∞) with absolute precision bound of ε < 10−14.

The first question we address concerns the achievable accuracy with a fixed number of
Chebyshev polynomials. We setN1 = N2 = 7 and precompute the Chebyshev coefficients
as defined in (4.13) with D = 2 using the parametrization of Table 4.3 for the models
therein. We evaluate the resulting polynomial over a parameter grid of dimension D = 2
and compute the approximate European option prices in each node. As a comparison,
we also compute the respective Fourier price via numerical integration of the accordingly
parametrized integrand, see Proposition (2.20). Figure 4.4 shows the results for the
European call option. The Chebyshev method achieves rather homogeneous accuracy
results over the four different models for N = N1 = N2 = 7 and reaches a very satisfying
error level of order 10−6. Increasing the number of Chebyshev points further improves
the accuracy. Since at its core the implementation of the Chebyshev method consists of
summing up matrices, this refinement comes at virtually no additional cost.

In Gaß et al. (2016), we perform the same analysis for a European digital down&out
option. While a call payoff profile is not differentiable but at least continuous, the digital
payoff function is not even continuous, compare Table 4.1. This reduction in smoothness
of the payoff function reduces the accuracy of the interpolation p 7→ Price(p), as well.
The analysis performed in Gaß et al. (2016) empirically demonstrates, however, that the
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Model fixed parameters free parameters
K T q q T

BS K = 1 σ = 0.25 S0/K ∈ [0.8, 1.2] T ∈ [0.5, 2]

Merton K = 1 σ = 0.2, S0/K ∈ [0.8, 1.2] T ∈ [0.5, 2]
α = −0.02,
β = 0.1,
λ = 2.5

CGMY K = 1 C = 0.6, S0/K ∈ [0.8, 1.2] T ∈ [0.5, 2]
G = 14,
M = 25,
Y = 1.2

Heston K = 1 T = 2 κ = 1.3, S0/K ∈ [0.8, 1.2]
θ = 0.22, v0 ∈ [0.12, 0.52]
σ = 0.2,
ρ = 0.6

Table 4.3 Parametrization of models and the European call option for the accuracy and
convergence study of the Chebyshev interpolation method.

reduced smoothness of the payoff profile effects the accuracy of the Chebyshev method
only marginally.

Coming back to the European call option, we conduct an empirical convergence study
for this very same setting of option and model parametrization. For an increasing degree
N = N1 = N2, the Chebyshev polynomial is set up and prices over a parameter grid
of structure (4.56) are computed. Again, Fourier pricing serves as a comparison. For
each N ∈ {1, . . . , 35}, the error measures εL∞ and εL2 , defined by (4.57) on the discrete
parameter grid P defined in (4.56), are evaluated. We observe exponential convergence
for all four models in both error measures. Figure 4.5 shows the L∞ decay for the
European call option while Figure 4.6 displays the L2 error of the same option prices.

Following Remark 4.2, we define ζ = T+T

T−T and set % = ζ +
√
ζ2 − 1. The theoretical

convergence analysis predicts a slope of the error decays in Figure 4.5 of at least

S = log10 (%) ≈ −0.47

or steeper. Empirically, we observe a slope for the Black&Scholes model of about SBS =
−0.64, for the Merton model of SMerton = −0.64 and for the CGMY model of SCGMY =
−0.62. Thus, the error in each Lévy model empirically confirms our theoretical claims.

This analysis has also been performed for a European digital down&out option. We refer
the interested reader to Gaß et al. (2016) where the results of this additional study are
discussed.
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Figure 4.4 Absolute pricing error for a European call option with strikeK = 1 in various
models. We compare the Chebyshev interpolation with N1 = N2 = 7 to classic Fourier
pricing by numerical integration. The parametrization of the models and the option
has been chosen according to Table 4.3. We observe homogeneous accuracy results over
all considered models. The structure of each surface reveals the location of Chebyshev
nodes in the bounded tensorized parameter space.

4.4.2 Basket and path-dependent options

In the paper, we also consider basket and path-dependent options, see Section 3.2.2
in Gaß et al. (2016) for theoretical background on basket options in affine models and
Section 4.2 in Gaß et al. (2016) for numerical results on the Chebyshev method applied
to these options.

4.4.3 Study of the gain of efficiency

Finally, we investigate the gain in efficiency achieved by the method in comparison to
Fourier pricing. We choose the pricing problem of a call option on the minimum of
two assets as an example. The generalized Fourier transform of this option is given by
Lemma 2.22 in the preliminaries. Today’s values of the underlying two assets are fixed
at

S
(1)
0 = 1, S

(2)
0 = 1.2. (4.58)

Modeling the future development of the underlyings, (S
(j)
t )t≥0, j ∈ {1, 2}, we con-

sider two bivariate models, separately. First, the two assets will be driven by the bi-
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Figure 4.5 Convergence study for the Black&Scholes model, Merton, CGMY and the
Heston model for prices of a European call option parametrized as stated in Table 4.3.
The reference price is derived by Fourier pricing and numerical integration with an
absolute accuracy of 10−14, which is reached by all models for N = N1 = N2 ≈ 25
the latest. The L∞ error is depicted. The error decays in all considered very precisely
coincide and thereby extend the findings illustrated by Figure 4.4.

variate Black&Scholes model of Section 2.3.1. The bivariate Black&Scholes model is
parametrized by a covariance matrix σ ∈ R2×2 that we choose to be given by

σ11 = 0.22, σ12 = 0.01, σ22 = 0.252. (4.59)

In a second efficiency study, asset movements follow the more involved bivariate Heston
model in the version of Section 4.3.4.1 above for which we choose the parametrization

v0 = 0.05, σ1 = 0.15, ρ13 = 0.01,

κ = 0.4963, σ2 = 0.2, ρ12 = 0,

θ = 0.2286, σ3 = 0.1, ρ23 = 0.02.

(4.60)

In both cases we neglect interest rates, thus setting r = 0. The benchmark method,
that is Fourier pricing, is evaluated using Matlab’s quad2d routine. We prescribe an
absolute and relative accuracy of at least 10−8 from the integration result and integrate
the Fourier integrand over the domain Ω = [−50, 50]× [0, 50], prescribing a maximum
number of 4000 function evaluations. The Chebyshev method is set up for pricing based
on strike K and maturity T as the two free parameters taking values in the intervals

K ∈ [Kmin, Kmax], Kmin = 0.8, Kmax = 1.2,

T ∈ [Tmin, Tmax], Tmin = 0.5, Tmax = 2.
(4.61)
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Figure 4.6 Convergence study for the Black&Scholes model, Merton, CGMY and the
Heston model for prices of a European call option parametrized as stated in Table 4.3.
Contrary to Figure 4.5, now the L2 error is displayed. Here, the error decay appears
slightly more nuanced. While the decays of the three Lévy models still coincide, the
Heston model achieves a marginally faster convergence rate. In all considered models,
the Chebyshev approximation reaches the accuracy of the reference method at N ≈ 25.

For a fair comparison, the number of Chebyshev polynomials is chosen such that Cheby-
shev interpolation prices yield an accuracy that matches the accuracy of the benchmark
method resulting in

NBS
Cheby = 11 and NHeston

Cheby = 23, (4.62)

for the bivariate Black&Scholes model and the bivariate Heston model, respectively.
Figure 4.7 illustrates the absolute errors over the whole K × T domain of interest be-
tween Fourier pricing and the Chebyshev method for both models, with the Chebyshev
interpolator being based on NBS

Cheby + 1 polynomials in the Black&Scholes model case
and NHeston

Cheby + 1 polynomials in the Heston model case.

When the offline phase of the Chebyshev method has been completed we compute 98
pricing surfaces, that is for each M ∈ {3, . . . , 100} we compute prices for all parameter
tuples from ΘM defined by

ΘM =
{

(KM
i , T

M
j )

∣∣ KM
i = Kmin +

i− 1

M − 1
(Kmax −Kmin),

TMj = Tmin +
j − 1

M − 1
(Tmax − Tmin), for 1 ≤ i, j ≤M

}
.

(4.63)

The computation time consumed by the Chebyshev offline phase is measured and stored.
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Figure 4.7 Left: Difference between prices from the Fourier method and Chebyshev
interpolation in the bivariate Black&Scholes model over the whole parameter domain of
interest. The model is parametrized as indicated by (4.59). Chebyshev interpolation
is based on NBS

Cheby + 1 = 12 Chebyshev polynomials. Right: The respective plot for
the Heston model parametrized as in (4.60). Here, Chebyshev interpolation is based on
NHeston

Cheby +1 = 24 Chebyshev polynomials. We achieve an absolute accuracy of order 10−8

in both cases, thus matching the accuracy that the benchmark method Fourier pricing
provides.

Also, for eachM ∈ {3, . . . , 100}, runtimes for deriving all |ΘM | = M2 prices are measured
and stored for both routines, the Fourier pricing method and the Chebyshev interpola-
tion algorithm. Figure 4.8 depicts these runtime measurements visually while Table 4.4
provides a second perspective in numbers.

In the Black&Scholes model case, the offline phase required TBS
offline = 8 seconds for

deriving option prices at all (NBS
Cheby + 1)2 = 144 Chebyshev nodes. The more involved

Heston model required THeston
offline = 101 seconds for the (NHeston

Cheby + 1)2 = 576 supporting
prices. Taking this initial investment into account deems pricing with the Chebyshev
method rather costly when only few option prices are derived after the offline phase
has been completed. Yet, as Figure 4.8 shows and Table 4.4 quantifies, the increase in
pricing speed that is achieved once the Chebyshev algorithm has been set up eventually
outpaces Fourier pricing as far as (combined) pricing runtimes are concerned. From our
experiments we conclude that the Chebyshev method outruns Fourier pricing in terms
of total runtimes when the number of prices to be computed exceeds (NBS

Cheby + 1)2 or
(NHeston

Cheby + 1)2, respectively.
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Figure 4.8 Comparison of pricing times between Fourier pricing and the Chebyshev
method for a call option on the minimum of two assets in the Black&Scholes model
(left) and the Heston model (right). For each M ∈ {3, . . . , 100}, runtimes for deriving
option prices for all M2 parameter tupels from ΘM defined by (4.63) are depicted. In
both model cases, computation times for the Chebyshev method contain the duration of
the offline phase that has to be conducted once in the beginning. The Fourier and the
Chebyshev curves roughly intersect when M = NBS

Cheby + 1 for the Black&Scholes model
and when M = NHeston

Cheby + 1 for the Heston model, respectively.

BS Heston
M 10 50 75 100 10 50 75 100

TCheby
online (in s) 0.18 4.54 10.20 18.11 0.70 17.58 39.66 69.82

TCheby
offline+online (in s) 8.06 12.42 18.07 25.98 101.96 118.85 140.92 171.08

TFourier (in s) 5.34 131.96 301.82 528.74 17.60 442.62 991.33 1788.08

TCheby
offline+online

TFourier 151% 9.41% 5.99% 4.91% 579.27% 26.85% 14.22% 9.57%

Table 4.4 Selected results of the Chebyshev efficiency study for the bivariate
Black&Scholes model and the bivariate Heston model. With increasing number of de-
rived prices, the Chebyshev algorithm increasingly benefits from the initial investment
of the offline phase. The complete record of the study is illustrated by Figure 4.8.
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5 Empirical interpolation with magic points

The Chebyshev interpolation method that we considered in the previous chapter has
succeeded in tremendously accelerating computational runtimes in option pricing and
related tasks by separating parameter dependence from model complexity. Interestingly,
during both the offline and online phase, the Chebyshev interpolation method was blind
to the underlying pricing algorithm. It prescribed fixed nodes in the parameter space
called Chebyshev nodes and demanded option prices at these parameter nodes disre-
garding the method they were computed with. On the basis of these given prices, the
method interpolated inbetween with Chebyshev polynomials, thus taking a black box
stance with respect to the approximated pricing routine.

Cleary, the Chebyshev algorithm conveys a very elegant appeal. Numerically, it seam-
lessly connects to arbitrary pricing methods and is thus not restricted in this regard.
At the same time, Chebyshev approximation comes at a significant cost. Due to its
tensorized extension for multivariate applications, the Chebyshev approach suffers from
the curse of dimensionality, rendering it inapt for models with a large number of free
parameters. There, the number of Chebyshev nodes grows exponentially in the dimen-
sionality of the pricing problem and thus increases the number of Chebyshev nodes that
need to be computed during the offline phase rather unpleasantly. The online phase is
affected similarly as the number of evaluated polynomials that need to be summed up
grows at the same unfavourable rate.

In this chapter we address the issue of dimensionality by introducing a different approx-
imation method for option pricing and related tasks and we call this method empirical
interpolation for parametric option pricing. Its name is inherited from Barrault et al.
(2004) where the method has been originally developed in the context of parametric
nonlinear partial differential equations. Here, we apply the concept to option pricing or
rather Fourier pricing, more concisely.

Contrary to the Chebyshev method, we do not approximate prices directly but rather
represent them in terms of Fourier integrals and then approximate the associated para-
metric integrands, instead. Tayloring the algorithm to Fourier pricing enables us to
exploit the structure of the model specific Fourier integrands. We thus open the black
box that the Chebyshev method left sealed and use this additional knowledge to our
advantage.

Similarly to the Chebyshev method, the empirical interpolation approach separates into
an offline phase and an online phase. Yet, instead of forcing the algorithm to consider
prescribed locations in the parameter space, the empirical interpolation routine may
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decide for itself which regions in the parameter space it needs to explore more deeply
and which ones it may disregard to achieve optimal global approximation results. The
empirical interpolation algorithm can thus afford to spare parts of the parameter space
that the Chebyshev method is obliged to examine. Precisely due to this feature, empirical
interpolation is not affected by the curse of dimensionality in the same way as the
Chebyshev method is.

In Section 5.1, we present the algorithm in detail. Then, Section 5.2 explores the
online/offline decomposition which is more involved than the respective phases of the
Chebyshev method. In Section 5.3, we derive conditions that grant exponential conver-
gence of the algorithm before we investigate examples of asset models and payoff profiles
in Section 5.4, for which these conditions are satisfied. We numerically implemented the
algorithm and present the results of a thorough numerical survey in Section 5.5, contain-
ing an empirical convergence study both in and out of sample and indepth studies for
several models individually. We investigate the interpolation operator of the algorithm
in Section 5.6 more closely and describe a structural inconvenience of it, that we finally
resolve in Section 5.7.

The results of this chapter are taken from the articles Gaß et al. (2015) and Gaß and
Glau (2015) where they have been jointly developed, first. The proofs of those theoretical
results that were developed by coauthors will only be referenced in this thesis. We refer
the interested reader to the articles in these cases. Explanatory descriptions of the
method and the accompanying results have been rewritten in parts but clearly cannot
deny their close relation to the paper sources. The numerical experiments have been
repeated based on a different parametrization, thereby validating the theoretical results
from a different perspective, again.

5.1 Magic point interpolation for integration

We introduce the Empirical Magic Point Interpolation method for parametric integration
presented in Gaß et al. (2015) to approximate parametric integrals of the form

I(hp) :=

∫
Ω
hp(z) dz, p ∈ P, (5.1)

with the parametric integrands

hp(z) = h(K,T,q)(z) := <
(
f̂K(−z)ϕT,q(z)

)
(5.2)

for every p = (K,T, q) in a given parameter set P. With P we associate

U :=
{
hp : Ω→ R | p ∈ P}, (5.3)

the set of all parametric integrands.
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Within this chapter, the integrands hp, p ∈ P, will be Fourier pricing integrands. The
method, however, not only applies to integrals with integrands of this kind. Instead,
integrands of more general type can be considered and their integral value can be ap-
proximately derived. We investigate this more general integration approximation routine
in Gaß and Glau (2015).

The approximation of functions using the Empirical Interpolation method that our in-
tegration approximation rests on has been originally introduced by Maday et al. (2009).
Before we present their algorithm, let us cite some basic assumptions from Gaß et al.
(2015) that ensure the well-definedness of the iterative procedure.

Assumptions 5.1 (Approximation framework)
Let (Ω, ‖.‖∞) and (P, ‖.‖∞) be compact, P × Ω 3 (p, z) 7→ hp(z) bounded and p 7→ hp
be sequentially continuous, i.e. for every sequence pi → p we have ‖hpi − hp‖∞ → 0.
Moreover, U is nontrivial in the sense that the set contains elements other than the
function that is constantly zero.

For M ∈ N we define a mapping IM from U to a tensor specified by

IM (h)(p, z) :=
M∑
m=1

hp(z
∗
m)θMm (z) (5.4)

and the Magic Point Integration with M points by

IM (h)(p) :=
M∑
m=1

hp(z
∗
m)

∫
Ω
θMm (z) dz (5.5)

with

θMm (z) :=
M∑
j=1

(BM )−1
jmqj(z), BM

jm := qm(z∗j ), (5.6)

where we denote by (BM )−1
jm the entry in the jth line and mth column of the inverse of

matrix BM . By definition, BM is a lower triangular matrix with unity diagonal and is
thus invertible. We could call IM the interpolator of integrands and IM the interpolator
of integrals. The magic points z∗1 , . . . , z

∗
M ∈ Ω and the basis functions q1, . . . , qM are

recursively defined in the following way:

In the first step, let

u1 := arg max
u∈U

‖u‖∞, z∗1 := arg max
z∈Ω

|u1(z)|, q1(·) :=
u1(·)
u1(z∗1)

. (5.7)

Note that thanks to Assumptions 5.1, these operations are well-defined. Then, recur-
sively, as long as there are at least M linearly independent functions in U , uM is chosen
according to a greedy procedure: The algorithm chooses uM as the function in the set
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U which is worst represented by the approximation with the previously identified M − 1
magic points and basis functions,

uM := arg max
u∈U

‖u− IM−1(u)‖∞. (5.8)

Since every u ∈ U is a parametric function, u = hp for some p ∈ P, it can be identified
by the associated parameter p. We call p∗M ∈ P identifying uM in (5.8) the Mth magic
parameter. In the same spirit, let

z∗M := arg max
z∈Ω

∣∣uM (z)− IM−1(uM )(z)
∣∣, (5.9)

and we call z∗M the Mth magic point. The Mth basis function is the residual, normed
to 1, when evaluated at the new magic point z∗M ,

qM (·) :=
uM (·)− IM−1(uM )(·)

uM (z∗M )− IM−1(uM )(z∗M )
. (5.10)

The functionality of the empirical integration operator IM is thus based on magic points
and taylored to Fourier integrands and integrals. To emphasize those building blocks,
we also call the whole algorithm MagicFT method sometimes. Some general features
and properties of the algorithm outlined above are summarized by Appendix B.

Note the well-definedness of the operations in the iterative step thanks to Assump-
tions 5.1 and the fact that the denominator in (5.10) is only zero, if all functions in U
are perfectly represented by the interpolation IM−1. In that case, however, they span a
linear space of dimensionM−1 or less and the procedure would have stopped already.

5.2 The online/offline decomposition of the algorithm

The magic point integration operator IM of the empirical interpolation algorithm ap-
proximates prices for a given parameter p ∈ P from the parameter space. The operator
consists of components some of which depend on this parameter p and others that do not.
Naturally, the whole algorithm thus splits into an offline and an online phase. During the
offline phase, numerically intense computations are conducted and the respective results
are stored from which the online phase later benefits. Recall the integration operator
IM as given in (5.5) by

Pricep ≈ IM (h)(p) =

M∑
m=1

hp(z
∗
m)︸ ︷︷ ︸

ii) online phase

∫
Ω
θMm (z) dz︸ ︷︷ ︸

i) offline phase

. (5.11)

The two phases the algorithm relies on can be summarized as follows.
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i) Offline phase
In the offline phase, the algorithm explores the parameter space P iteratively and
identifies in each iteration associated integrands that are approximated worst by
solving the optimization problems (5.8) and (5.9). The solutions to these prob-
lems consist of integrands um that are worst approximated and locations z∗m on
the integration domain of the respective Fourier integral where this poor approxi-
mation shows. The algorithm iteratively solves these optimization problems until
it reaches a prescribed global approximation precision. Then, basis functions qm
are assembled from all these identified integrands resulting in functions θMm which
are integrated and stored. The offline phase is only conducted once.

ii) Online phase
For a given parameter p ∈ P of interest, the online phase serves the only purpose of
determining the coefficients for the integrated θMm functions such that the weighted
sum approximates Pricep. To this end, the respective Fourier integrand hp is
evaluated at the magic points z∗m and thus those coefficients are found.

The following section provides the theoretical requirements for exponential convergence
of the algorithm.

5.3 Convergence analysis of magic point integration

A general convergence result for Magic Point Interpolation has been originally derived
in Maday et al. (2009). In Gaß et al. (2015), we link their convergence result to the best
linear n-term approximation that is formally expressed by the Kolmogorov n-width. For
a real or complex normed linear space

(
X , ‖ · ‖

)
and U ⊂ X , the Kolmogorov n-width is

defined as
dn(U ,X ) = inf

Un∈E(X ,n)
sup
g∈U

inf
f∈Un

‖g − f‖, (5.12)

where E(X , n) is the set of all n dimensional subspaces of X . Denoting by
(
L∞(Ω,C), ‖ ·

‖∞
)
the Banach space of functions mapping from Ω ⊂ Cd to C that are bounded in the

supremum norm we cite the following proposition from Gaß et al. (2015).

Proposition 5.2 (Convergence of the empirical interpolation method)
For the set U from (5.3) and M ∈ N

(5.A) assume Ω ⊂ Cd and Assumptions 5.1,

(5.B) assume there exist constants α > log(4) and c > 0 such that

dM
(
U , L∞(Ω,C)

)
≤ ce−αM .

Then for arbitrary ε > 0 and C := c
4e
α + ε we have for all u ∈ U that∥∥u− IM (u)
∥∥
∞ ≤ CMe−(α−log(4))M . (5.13)

207



5.3.1 Exponential convergence of magic point integration

Proof
The proposition directly follows from Theorem 2.4 in Maday et al. (2009), where a slightly
different version that does not explicitly use the Kolmogorov n-width is provided. We
therefore presented a detailed version of the proof of the proposition in Appendix A
of Gaß et al. (2015). �

5.3.1 Exponential convergence of magic point integration

As in the previous Chapter 4, we formulate our analyticity assumptions in terms of
(generalized) Bernstein ellipses. Recall the definition of a (generalized) Bernstein ellipse
B([b, b], %) for b < b ∈ R and ellipse parameter % > 1 from Definition 2.43. Using this
concept, we formulate two analyticity conditions in order to estimate the error resulting
from the Magic Point Interpolation method.
Conditions 5.3 (Analyticity conditions)
(5.A) The function (p, z) 7→ hp(z) is continuous on P × Ω and there exist functions

H1 : P × Ω→ C and H2 : P → C such that for all (p, z) ∈ P × Ω,

hp(z) = H1(p, z)H2(p)

and H1(p, z) has an extension H1 : P×B(Ω, %)→ C such that, for all fixed p ∈ P
the mapping z 7→ H1(p, z) is analytic in the interior of the generalized Bernstein
ellipse B(Ω, %).

(5.B) The function (p, z) 7→ hp(z) is continuous on P × Ω and there exist functions
H1 : P × Ω→ C and H2 : Ω→ C such that for all (p, z) ∈ P × Ω,

hp(z) = H1(p, z)H2(z)

and H1(p, z) has an extension H1 : B(P, %)×Ω→ C such that, for all fixed z ∈ Ω
the mapping p 7→ H1(p, z) is analytic in the interior of the generalized Bernstein
ellipse B(P, %).

Condition (5.A) is tailored to the case of univariate integration domains and (5.B) to
the case of univariate parameter spaces.

5.3.1.1 Parametric European options, generalized moments and other
univariate integrals

In the generic situation where option prices have to be evaluated for a large set of differ-
ent parameter constellations, a parametric integral of form (5.1) for a high dimensional
parameter space and a univariate integration domain needs to be computed. This com-
prises many well known examples such as prices of European and exotic options and
sensitivities of these prices as expressed by the Greeks for different option and model
parameters. Also risk measures like VaR and ES and other generalized moments or
parametric univariate integrals fall into the scope of this paragraph.
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5.4.1 Examples of univariate payoff profiles

Theorem 5.4
Let Ω ⊂ R and P ⊂ RD be compact. Fix some η ∈ R, some % > 4 and assume
that integrability conditions (Exp) and (Int) as well as analyticity condition (5.A) are
satisfied. Then for all p ∈ P and M ∈ N,∥∥hp − IM (hp)

∥∥
∞ ≤ CM(%/4)−M ,∣∣I(hp)− IM (hp)
∣∣ ≤ C|Ω|M(%/4)−M ,

where
C =

%

%− 1
max

(p,z)∈P×B(Ω,%)

∣∣H1(p, z)
∣∣max
p∈P
|H2(p)|. (5.14)

The proof is provided in Gaß and Glau (2015) and in the appendix of Gaß et al. (2016).

5.3.1.2 Basket options, multivariate generalized moments and other
multivariate integrals

A similar result applies to the error analysis of Magic Point Integration for basket options
for a single free parameter. Hence, real-time pricing of basket options with either varying
strikes or varying maturities in a fixed calibrated asset model could benefit. Additionally,
the computation of generalized moments such as covariances, and general multivariate
integrals with a single varying parameter in the integrand can be approximated with the
method. The result is stated in Section 4.1.2 of Gaß et al. (2015).

5.4 Examples of payoff profiles and asset models

We apply the MagicFT method to the pricing problem using univariate payoff profiles
and some well known Lévy asset models.

5.4.1 Examples of univariate payoff profiles

In Table 5.1 we summarize a selection of payoff profiles fK for option parameter K
as function of the logarithm of the underlying asset. We state the range of possible
weight values η such that x 7→ eηxfK(x) ∈ L1(R) and the respective generalized Fourier
transform exists.

Examining the generalized Fourier transforms of the payoff profiles fK in Table 5.1, we
realize that all of them admit a factorization in the spirit of condition (5.A) as

f̂K(z + iη) = Kiz+cH2(z) (5.15)

for some c ∈ R. While all of the payoff profiles fK of Table 5.1 either are not differentiable
or even discontinuous, the mapping z 7→ Kiz+c is a holomorphic function and thus
perfectly fits the requirements of Theorem 5.4.
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5.4.2 Examples of asset models

Type Payoff Weight Fourier transform

fK(x) η f̂K(z − iη)

Call (ex −K)+ < −1 Kiz+1+η

(iz+η)(iz+1+η)

Put (K − ex)+ > 0 Kiz+1+η

(iz+η)(iz+1+η)

Digital 1x>log(K) < 0 −Kiz+η

iz+η

down&out

Asset-or- ex1x>log(K) < −1 −Kiz+1+η

iz+1+η

nothing
down&out

Table 5.1 Typical payoff profiles for single stock options and the respective generalized
Fourier transform.

5.4.2 Examples of asset models

We present a selection of asset models that we use for pricing options in the numerical
experiments in section 5.5 below. The MagicFT algorithm, as we apply it, operates
on Fourier integrands that consist of the generalized Fourier transform of the option
profile, f̂K , as well as the Fourier transform of the process that drives the underlying
asset at maturity, ϕT,q. Theoretically, Theorem 5.4 requires the analytic property from
the characteristic function ϕT,q of the model in the sense of condition (5.A). Yet, for
some models fulfilling this requirement means strongly restricting the parameter space.
This would leave us with parameter spaces that are too limited for practical purposes.
Empirically, however, we observe that condition (5.A) may be replaced by a much weaker
condition while still maintaining exponential convergence. The existence of a shared strip
of analyticity SR(η) of width R ∈ (0,∞)d given by

SR(η) = Rd + i(η −R, η +R) ⊂ Cd, (5.16)

where all ξ 7→ ϕT,q(ξ), T ∈ T , q ∈ Q, are analytic on, grants exponential convergence
of the algorithm, already. Enforcing such a shared strip means imposing conditions on
the model parameter space Q, too. Yet these restrictions turn out to be rather mild
compared to the stronger condition (5.A) of Theorem 5.4.

In the following model presentations we denote by Q̃ the parameter space that the
model as such is defined on. From this we derive admissible parameter sets Q such that
condition (5.A) is satisfied. If this is not possible, they are chosen to guarantee the
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5.4.2 Examples of asset models

existence of a shared strip of analyticity according to (5.16). Throughout the following
model introductions, constant r > 0 denotes the risk-free interest rate.

5.4.2.1 Multivariate Black&Scholes model

Recall the d-variate Black&Scholes model introduced in Section 2.3.1. The parameter
space determines the underlying covariance matrix σ ∈ Rd×d exclusively. Thus, Q̃ is
defined as

Q̃ = {q ∈ Rd(d+1)/2 | det(σ(q)) > 0} ⊂ Rd(d+1)/2 (5.17)

with the function σ : Rd(d+1)/2 → Rd×d defined by

σ(q)ij = q(max{i,j}−1) max{i,j}/2+min{i,j}, i, j ∈ {1, . . . , d}. (5.18)

For each q ∈ Q̃ given by (5.17), the characteristic function of the d-variate Black&Scholes
model is analytic in z on the whole of Cd. We thus may choose the parameter set Q for
the MagicFT algorithm according to the following remark.

Remark 5.5 (Q for the multivariate Black&Scholes model)
Let σi ≤ σi ∈ R+ for all i ∈ {1, . . . , d(d+ 1)/2}. Define

Q = {q ∈ Rd(d+1)/2 |σi ≤ qi ≤ σi such that det(σ(q)) > 0} (5.19)

with the function σ given by (5.18). With the parameter set Q defined as above and
compact T ⊂ R+, the characteristic function of the Black&Scholes model satisfies con-
dition (5.A) of Theorem 5.4.

5.4.2.2 Univariate Merton jump diffusion model

We introduced the univariate Merton jump diffusion model by Merton (1976) in Sec-
tion 2.3.2. As we have seen there, the model parameter space is given by

Q̃ = {(σ, α, β, λ) ∈ R+ × R× R+
0 × R+} ⊂ R4 (5.20)

and the characteristic function of Xq
T with T ∈ T , q ∈ Q̃ computes to

ϕT,q(z) = exp

(
T

(
ibz − σ2

2
z2 + λ

(
eizα−

β2

2
z2 − 1

)))
, (5.21)

for all z ∈ R, with no-arbitrage condition

b = r − σ2

2
− λ

(
eα+β2

2 − 1

)
. (5.22)

As in the univariate Black&Scholes model, for each q ∈ Q and T > 0, the characteristic
function ϕT,q of the Merton model is holomorphic and the set Q for an application of the
MagicFT algorithm to the univariate Merton model is defined by the following remark.
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5.4.2 Examples of asset models

Remark 5.6 (Q for the Merton model)
Let σ ≤ σ ∈ R+, α ≤ α ∈ R, β ≤ β ∈ R+

0 and λ ≤ λ ∈ R+. Define

Q = {(σ, α, β, λ) ∈ R4 | σ ≤ σ ≤ σ, α ≤ α ≤ α,
β ≤ β ≤ β, λ ≤ λ ≤ λ}.

(5.23)

With the parameter set Q defined as above and compact T ⊂ R+, the characteristic
function of the Merton model satisfies condition (5.A) of Theorem 5.4.

5.4.2.3 Univariate CGMY model

Details on the CGMY model can be found in Section 2.3.3. With the model parameter
space given by

Q̃ = {(C,G,M, Y ) ∈ R+ × R+
0 × R+

0 × (1, 2) | (M − 1)Y ∈ R} ⊂ R4, (5.24)

the associated characteristic function of Xq
T with T ∈ T , q ∈ Q̃ computes to

ϕT,q(z) = exp
(
T
(
ibz + CΓ(−Y )[
(M − iz)Y −MY + (G+ iz)Y −GY

] ))
,

(5.25)

for all z ∈ R, where Γ(·) denotes the Gamma function. For no-arbitrage pricing we set
the drift b ∈ R to

b = r − CΓ(−Y )
[
(M − 1)Y −MY + (G+ 1)Y −GY

]
. (5.26)

The condition (M−1)Y ∈ R in (5.24) guarantees b ∈ R. Contrary to the models of Black
and Scholes (1973) and Merton (1976), the domain in C that the characteristic function
of the CGMY model is analytic on does not exist independently of its parametrization.
Consequently, Theorem 5.4 does not apply to pricing in the CGMY model unless the
parameter set that the algorithm may choose from is unreasonably restricted. Yet,
empirically we maintain exponential convergence in the CGMY model case when Q and
η are chosen such that all ξ 7→ ϕT,q(ξ), T ∈ T , q ∈ Q, share a common strip of analyticity
SR(η) as introduced in (5.16) depending on η ∈ R and R > 0, the desired strip width.
In the following, we derive conditions which guarantee the existence of such a strip. The
result of our analysis will consist in a combined suggestion for the weight value η that
complies with the restriction posed by the option choice as outlined by Table 5.1 and a
set of restrictions on the parameter space. These restrictions guarantee a shared strip of
analyticity as described above achieving a certain prescribed width R > 0.

Strip of analyticity for CGMY Before we are able to derive conditions on the
parameter space that originate a shared strip of analyticity, let us first determine the
strip of maximal width R > 0 that an individually parameterized characteristic function
of the CGMY model ϕT,q, T ∈ T , q ∈ Q̃, is analytic on.
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5.4.2 Examples of asset models

This strip in C is derived by analyzing the characteristic function ϕT,q, T ∈ T , q ∈ Q̃,
of the CGMY process on the domain of integration in (2.51) of Proposition 2.20 for
different weight values. Let η̃ ∈ R and consider the characteristic function ϕT,q on the
line

zη̃(ξ) = ξ + iη̃, ξ ∈ R. (5.27)

The values of η̃ for which ϕT,q is analytic on the associated line (5.27) determine the
width of the strip of analyticity of ϕT,q. For these values of η̃ ∈ R, both mappings

ξ 7→ (M − izη̃(ξ))Y ,
ξ 7→ (G+ izη̃(ξ))

Y

need to be analytic on R. By (5.27), we have

ξ 7→ (M − izη̃(ξ))Y = (M + η̃ − iξ)Y ,

and
ξ 7→ (G+ izη̃(ξ))

Y = (G− η̃ − iξ)Y .
For analyticity of these two quantities on R we need to ensure that both

M + η̃ > 0, (5.28)
G− η̃ > 0, (5.29)

hold. Inequalities (5.28) and (5.29) yield bounds η−, η+ given by

η+ = G,

η− = −M.
(5.30)

These two bounds span the strip of analyticity SR(η) for an individually parametrized
characteristic function of the CGMY model, wherein η = (η+ + η−)/2 = (G−M)/2 and
diameter 2R = G+M , as shown in Figure 5.1.

Now we can translate these findings to conditions on the model parameter set to derive
a compact set Q ⊂ Q̃ and a value for η ∈ R that ensure a common strip of analyticity
SR(η) for all mappings ξ 7→ ϕT,q(ξ), T ∈ T , q ∈ Q. From our considerations during the
derivation above and in particular by (5.30) we conclude that such a Q and η need to
satisfy

max
(C,G,M,Y )∈Q

−M < η < min
(C,G,M,Y )∈Q

G. (5.31)

We limit the rest of this analysis to the case of a call option where we necessarily have

η < −1 (5.32)

by Table 5.1. With G ≥ 0 due to the model parametrization (5.24), the second in-
equality in (5.31) trivially holds automatically. Combining (5.31) and (5.32) thus yields
condition

max
(C,G,M,Y )∈Q

−M < η < −1. (5.33)
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R

iR

G

η

−M

η+

η−

SR(η)

R

Figure 5.1 For fixed parametrization q ∈ Q̃, the hatched area visualizes the strip of
analyticity of the characteristic function of the CGMY process at T ∈ T , Xq

T . Its bounds
are determined by G ≥ 0 and M ≥ 0.

A strip width of R > 0 consequently follows if the final strip condition

min
(C,G,M,Y )∈Q

M > 1 + 2R (5.34)

is satisfied. In other words, choosing Q ⊂ Q̃ satisfying condition (5.34) and setting

η = − min
(C,G,M,Y )∈Q

(M + 1)/2 (5.35)

yields a strip of analyticity SR(η) with diameter 2R that all of the mappings ξ 7→ ϕT,q(ξ),
T ∈ T , q ∈ Q, share. We collect and summarize these results in the following remark.

Remark 5.7 (Q for the CGMY model)
Let C ≤ C ∈ R+, G ≤ G ∈ R+

0 , 1 ≤ M ≤ M ∈ R+
0 and Y ≤ Y ∈ (1, 2). Let R > 0 and

define

Q = {(C,G,M, Y ) ∈ R4 | C ≤ C ≤ C, G ≤ G ≤ G,
M ≤M ≤M, Y ≤ Y ≤ Y ,
(M − 1)Y ∈ R,
M + 2R > 1}.

(5.36)

All ϕT,q, T ∈ T , q ∈ Q, share a common strip of analyticity SR(η) with

η = −

(
min

(C,G,M,Y )∈Q
M
)

+ 1

2
. (5.37)
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While the characteristic function of the CGMY model parametrized by Q of (5.36) in
general does not satisfy condition (5.A) of Theorem 5.4, empirically we still observe
exponential convergence of the MagicFT algorithm.

Additionally, to avoid forcing the algorithm to support unrealistic parameter constella-
tions, impose the following additional plausibility restriction.

Remark 5.8 (Plausibility constraint on Q in the CGMY model)
The implied variance σ2

CGMY of a CGMY process (Xq
t )t≥0, q = (C,G,M, Y ) ∈ Q̃, at

t = 1 is given by

σ2
CGMY = CΓ(2− Y )

(
1

M2−Y +
1

G2−Y

)
,

see Carr et al. (2002). For appropriate constants 0 < σ− < σ+ consider imposing the
additional condition

σ2
− ≤ CΓ(2− Y )

(
1

M2−Y +
1

G2−Y

)
≤ σ2

+

for all (C,G,M, Y ) ∈ Q of Remark 5.7 thus keeping supported variance levels within
reasonable bounds.

5.4.2.4 Univariate Normal Inverse Gaussian model

The Normal Inverse Gaussian (NIG) model has been introduced in Section 2.3.4. The
parameterization of the univariate version consists of δ, α > 0, β ∈ R, with α2 > β2.
The model parameter set Q̃ is thus given by

Q̃ =
{

(δ, α, β) ∈ R+ × R+ × R | α2 > β2, α2 ≥ (β + 1)2
}
⊂ R3. (5.38)

The characteristic function of Xq
T for this model is given by

ϕT,q(z) = exp
(
T
(
ibz + δ

(√
α2 − β2 −

√
α2 − (β + iz)2

)))
(5.39)

for T ∈ T , q ∈ Q̃, wherein the no-arbitrage condition requires

b = r − δ
(√

α2 − β2 −
√
α2 − (β + 1)2

)
. (5.40)

The second condition in (5.38), α2 ≥ (β + 1)2, guarantees b ∈ R.

As in the CGMY model, the analyticity condition (5.A) posed by Theorem 5.4 is not
satisfied by all realistic parameter choices q ∈ Q̃. We therefore, analogously to the
CGMY case, derive a common strip of analyticity. Yet again, empirically, exponential
convergence is still observed when a strip of analyticity is shared among all parametrized
characteristic functions ϕT,q, T ∈ T , q ∈ Q, of interest.
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Strip of analyticity for univariate NIG We derive additional conditions that the
MagicFT parameter set Q ⊂ Q̃ for the NIG model needs to satisfy for the existence of
a shared strip of analyticity SR(η) of a certain width R > 0.

We begin by deriving the domain in C which a characteristic function ϕT,q, T ∈ T ,
q ∈ Q̃, of the Normal Inverse Gaussian model in the one-dimensional case, is analytic
on. From (5.39) we observe that the characteristic function is analytic, if and only if the
mapping

z 7→
√
α2 − (β + iz)2 (5.41)

is analytic. Let η̃ ∈ R and let us denote the complex line z ∈ C by

z = zη̃(ξ) = ξ + iη̃, ξ ∈ R (5.42)

and determine the set of possible values for η̃ ∈ R such that

ξ 7→
√
α2 − (β + iz(ξ))2 (5.43)

is analytic on R. The function of (5.43) is analytic, if the radicand of the square root
lies in C− = {z ∈ C | <(z) > 0} for all ξ ∈ R,

<
(
α2 − (β + izη̃(ξ))

2
)
> 0, ∀ξ ∈ R. (5.44)

Since

α2 − (β + i (ξ + iη̃))2 = α2 − (β − η̃)2 + ξ2 − 2iξ (β − η̃) ,

the function in (5.43) is analytic on R whenever

α2 − (β − η̃)2 > 0. (5.45)

Since by definition α > 0, the expression on the left hand side of (5.45) equals zero if

η̃ = β ± α. (5.46)

Equation (5.46) thus yields bounds η+, η− given by

η+ = β + α,

η− = β − α
(5.47)

that determine the strip SR(η), η = (η+ + η−)/2 = β, R = α that an individually
parametrized characteristic function ϕT,q of the Normal Inverse Gaussian model is ana-
lytic on as shown in Figure 5.2.

Understood as a function on R, ξ 7→ ϕT,q(ξ + iη), the characteristic function of the
one-dimensional NIG model, parameterized by T ∈ T , q ∈ Q̃ is thus analytic on R, if

β − α = η− < η < η+ = β + α. (5.48)
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R

iR

β + α

η

β − α

Sη(R)

η+

η−

R

Figure 5.2 The strip of analyticity, SR(η), for a fix parametrization q ∈ Q̃ in the
one-dimensional NIG model.

We can now in turn derive additional restrictions on the parametrization of the model
that guarantee the existence of a shared strip of analyticity SR(η) with strip width R > 0
for all functions ϕT,q, T ∈ T , q ∈ Q for some Q ⊂ Q̃ incorporating these restrictions.
Due to (5.48), the weight parameter η and the parameter set Q ⊂ Q̃ that the strip SR(η)
rests on need to satisfy

max
(δ,α,β,Λ)∈Q

β − α < η < min
(δ,α,β,Λ)∈Q

β + α. (5.49)

We focus on the case of a call option again. There, we already know that η < −1, so
condition (5.49) transforms into

max
(δ,α,β,Λ)∈Q

β − α < −1 (5.50)

and
− 1 < min

(δ,α,β,Λ)∈Q
β + α. (5.51)

The distance between the maximum value on the left hand side of (5.50) and −1 deter-
mines the width of the strip of analyticity. Condition (5.51) prevents parameter choices
that narrow the common strip of analyticity or even prohibit its appearance altogether,
as Figure 5.3 shows.

We enforce a certain width R of the resulting strip. Choose R > 0. Based on condi-
tion (5.50), we require Q to be chosen such that

β − α < −1− 2R and β + α > −1, ∀(δ, α, β,Λ) ∈ Q (5.52)

which is equivalent to

min
(δ,α,β,Λ)∈Q

α− β > 2R+ 1 and min
(δ,α,β,Λ)∈Q

α+ β > −1. (5.53)
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−1

β1 − α1 β1 + α1β1 − α1 β1 + α1

β2 − α2 β2 + α2

β3 − α3 β3 + α3β3 − α3 β3 + α3

I1

I2

I3

Figure 5.3 Illustration of the necessity of condition (5.51) for the existence of a common
strip of analyticity for the NIG model. The hatched area indicates the common strip
of analyticity for three parameter sets qi = (δi, αi, βi, 1) ∈ Q̃, i ∈ {1, 2, 3}, in the call
option case, η < −1. Since q3 violates condition (5.51), I1 ∩ I2 ∩ I3 = ∅ and a common
strip of analyticity does not exist.

Using the derived condition (5.53), we define Q for pricing call options in the the one-
dimensional NIG model along the following remark.

Remark 5.9 (Q for the univariate NIG model)
Let δ ≤ δ ∈ R+, α ≤ α ∈ R+ and β ≤ β ∈ R. Let R > 0 and define

Q = {(δ, α, β) ∈ R3 | δ ≤ δ ≤ δ, α ≤ α ≤ α,
β ≤ β ≤ β,
α2 > β2, α2 ≥ (β + 1)2,

α− β > 2R+ 1, α+ β > −1}.

(5.54)

All ϕT,q, T ∈ T , q ∈ Q, share a common strip of analyticity SR(η) with

η =

(
max

(δ,α,β)∈Q
β − α

)
− 1

2
< −1. (5.55)

While Q of (5.54) in general does not satisfy (5.A) of Theorem 5.4, empirically we still
observe exponential convergence of the MagicFT algorithm.

Remark 5.10 (Plausibility constraint on Q in the univariate NIG model)
Let q ∈ Q̃ of (5.38). The implied variance σ2

NIG of a univariate NIG process at t = 1,
Xq

1 , is given by

σ2
NIG(δ, α, β) =

δα2

(α2 − β2)
3
2

, (5.56)
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confer Prause (1999). To keep volatilities supported by the MagicFT algorithm within
reasonable bounds 0 < σ− < σ+ add the final restriction

σ2
− ≤ σ2

NIG(q) ≤ σ2
+, (5.57)

for all q ∈ Q of (5.54).

5.4.2.5 Multivariate Normal Inverse Gaussian model

For the parameter space Q̃ of the d variate Normal Inverse Gaussian model consider
Section 2.3.5. Again as in the univariate case, Condition (5.A) of Theorem 5.4 is not
fullfilled for all q ∈ Q̃.

Strip of analyticity for d variate NIG We extend our analyticity analysis to the
d-variate case. Similarly to the derivation in one dimension we identify the strip in Cd
that a d-variate characteristic function ϕT,q, T ∈ T , q ∈ Q̃, of the d-variate NIG model
is analytic on.

In a second step, we will derive conditions from our observations that the MagicFT
algorithm parameter set Q ⊂ Q̃ must satisfy such that all ϕT,q, q ∈ Q, share a common
strip of analyticity. Empirically this suffices for exponential error decay during the offline
phase of the MagicFT algorithm.

The analyticity of the characteristic function as given by (2.47) hinges on the second
radicand therein. More precisely, analogously to the computations from (5.43) in one
dimension, the analyticity of the characteristic function of the NIG model in d dimensions
depends on the analyticity of

z 7→
√
α2 − 〈β + iz,Λ(β + iz)〉. (5.58)

Let η̃ ∈ Rd and define
z = zη̃(ξ) = ξ + iη̃, ξ ∈ Rd. (5.59)

The existence of a strip of analyticity then requires the existence of bounds η− < η̃ <
η+ ∈ Rd where this inequality is to be understood component-wise such that

ξ 7→
√
α2 − 〈β + izη̃(ξ),Λ(β + izη̃(ξ))〉

=
√
α2 − 〈β + i(ξ + iη̃),Λ(β + i(ξ + iη̃))〉

(5.60)

is analytic on Rd whenever η− < η̃ < η+. Analogously to the one dimensional case,
analyticity of (5.60) translates into positivity of the real part of the radicand for all
ξ ∈ Rd. The subsequent condition

<
(
α2 − 〈β + i(ξ + iη̃),Λ(β + i(ξ + iη̃))〉

)
> 0, ∀ξ ∈ Rd (5.61)
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is equivalent to
α2 − 〈β − η̃,Λ(β − η̃)〉 > 0. (5.62)

Due to the symmetry of Λ ∈ Rd×d, condition (5.62) is equivalent to

α2 − (〈β,Λβ〉 − 2〈β,Λη̃〉+ 〈η̃,Λη̃〉) > 0. (5.63)

Identifying for a given q ∈ Q̃ all η̃ ∈ Rd that satisfy (5.63) is a highly complex problem.
We reduce that complexity by assuming η̃ to be given by

η̃ = η · 1d, with 1
d =

1
...
1

 ∈ Rd, η ∈ R, (5.64)

thus reducing the degrees of freedom in choosing η̃ to one. This restricts the generality
of possible choices for η̃ ∈ Rd. In return, however, it simplifies the matter considerably.
Using (5.64), condition (5.63) turns into identifying all η ∈ R such that

α2 −
(
〈β,Λβ〉 − 2η〈β,Λ1d〉+ η2〈1d,Λ1d〉

)
> 0. (5.65)

The values of η ∈ R setting the left hand side in (5.65) to zero are

η1/2 =
〈β,Λ1d〉 ±

√
〈β,Λ1d〉2 + 〈1d,Λ1d〉 (α2 − 〈β,Λβ〉)

〈1d,Λ1d〉
. (5.66)

Note that for d = 1 and thus Λ = 1, (5.66) reduces to (5.46). From (5.66) we infer that
the strip of analyticity of the d variate ϕT,q, T ∈ T and q ∈ Q̃, is spanned by the two
extreme values η−, η+ ∈ Rd where

η− = η11
d, η+ = η21

d (5.67)

with coefficients η1, η2 ∈ R given by

η1 =
〈β,Λ1d〉 −

√
〈β,Λ1d〉2 + 〈1d,Λ1d〉 (α2 − 〈β,Λβ〉)

〈1d,Λ1d〉
, (5.68)

η2 =
〈β,Λ1d〉+

√
〈β,Λ1d〉2 + 〈1d,Λ1d〉 (α2 − 〈β,Λβ〉)

〈1d,Λ1d〉
. (5.69)

Let us now determine the conditions that Q has to satisfy and derive the value of η ∈ Rd
such that all d-variate NIG characteristic functions ϕT,q, T ∈ T , q ∈ Q, share a common
strip of analyticity SR(η), with width R > 0.

We focus on pricing call-type options for instance a call option on the minimum of d
assets, such that η < −1 component-wise. We thus pose onto Q the conditions that

max
(δ,α,β,Λ)∈Q

〈β,Λ1d〉 −
√
〈β,Λ1d〉2 + 〈1d,Λ1d〉 (α2 − 〈β,Λβ〉)

〈1d,Λ1d〉
< − 1− 2R,

min
(δ,α,β,Λ)∈Q

〈β,Λ1d〉+
√
〈β,Λ1d〉2 + 〈1d,Λ1d〉 (α2 − 〈β,Λβ〉)

〈1d,Λ1d〉
> − 1.

(5.70)
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Again, this pair of conditions (5.70) comprises its one dimensional equivalent of (5.53)
as a special case. Consequently, fixing R > 0, d variate characteristic functions of the
NIG model parametrized by q ∈ Q with Q ⊂ Q̃ satisfying strip conditions (5.70) share
a common strip of analyticity SR(η) of width R > 0 with η ∈ Rd given by

η =

(
max

(α,β,δ,Λ)∈Q

〈β,Λ1d〉−
√
〈β,Λ1d〉2+〈1d,Λ1d〉(α2−〈β,Λβ〉)

〈1d,Λ1d〉

)
− 1

2
1
d ∈ Rd. (5.71)

This derivation is summarized by the following remark.

Remark 5.11 (Q for the d-dimensional NIG model)
Choose δ ≤ δ ∈ R+, α ≤ α ∈ R+, β

i
≤ βi ∈ R, i ∈ {1, . . . , d}, and λj ≤ λj,

j ∈ {1, . . . , d(d+ 1)/2}. Let R > 0 and define

Q =
{

(δ, α, β, λ) ∈ R2+d+d(d+1)/2 | δ ≤ δ ≤ δ, α ≤ α ≤ α,
β ≤ β ≤ β componentwise, λ ≤ λ ≤ λ componentwise,

det(Λ(λ)) = 1,

α2 > 〈β,Λ(λ)β〉,
α2 ≥ 〈(β + ei),Λ(λ)(β + ei)〉, ∀i ∈ {1, . . . , d},
〈β,Λ1d〉 −

√
〈β,Λ1d〉2 + 〈1d,Λ1d〉 (α2 − 〈β,Λβ〉)

〈1d,Λ1d〉
< −1− 2R,

〈β,Λ1d〉+
√
〈β,Λ1d〉2 + 〈1d,Λ1d〉 (α2 − 〈β,Λβ〉)

〈1d,Λ1d〉
> −1

}
.

(5.72)

All ϕT,q, T ∈ T , q ∈ Q, share a common strip of analyticity SR(η) with

η =

(
max

(α,β,δ,λ)∈Q

〈β,Λ(λ)1d〉−
√
〈β,Λ(λ)1d〉2+〈1d,Λ(λ)1d〉(α2−〈β,Λ(λ)β〉)

〈1d,Λ(λ)1d〉

)
− 1

2
1
d ∈ Rd. (5.73)

and thus fulfill the empirically required condition for pricing d variate call type options
in the NIG model using the MagicFT algorithm.

Remark 5.12 (Plausibility constraint on Q in the d-variate NIG model)
In Prause (1999), the covariance matrix of a d dimensional NIG process at t = 1, Xq

1 ,
q ∈ Q̃, is computed to

ΣNIG = δ
(
α2 − 〈β,Λβ〉

)− 1
2

(
Λ +

(
α2 − 〈β,Λβ〉

)−1
ΛββTΛ

)
. (5.74)

So additionally to the condition satisfied by (5.72) of Remark 5.11, one might use (5.74)
to impose additional restrictions regarding ΣNIG to keep supported implicit (co-)variances
within realistic bounds.
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5.4.2.6 The univariate Heston model

The models considered so far are all Lévy models. We now introduce the model by
Heston (1993) that does not fall into this class but is an affine stochastic volatility
model, instead. In the univariate Heston model, the asset price process (Sqt )t≥0 follows
the stochastic differential equation

dS
q=(v0,κ,θ,σ,ρ)
t = rSt dt+

√
vqtSt dW 1

t ,

dv
q=(v0,κ,θ,σ,ρ)
t = κ(θ − vt) dt+ σ

√
vqt dW 2

t ,
(5.75)

with the two Brownian motionsW 1,W 2 correlated by ρ ∈ [−1, 1] and with q ∈ Q̃ defined
by

Q̃ =
{

(v0, κ, θ, σ, ρ) ∈ R+× R+× R+× R+× [−1, 1], σ2 ≤ 2κθ
}
. (5.76)

The Feller condition
σ2 ≤ 2κθ

in Q̃ of (5.76) ensures an almost surely non-negative volatility process (vt)t≥0. With T ∈
T , q ∈ Q̃, the characteristic function ϕT,q of the log-asset price process (log(St/S0))t≥0

at T is given by

ϕT,q(z) = exp (T irz) exp

(
v0

σ2

(a− c)(1− exp(−cT ))

1− g exp(−cT ))

+
κθ

σ2

[
(a− c)T − 2 log

(
1− g exp(−cT )

1− g

)])
,

(5.77)

for all z ∈ R, with supporting functions defined by

a = a(z) = κ− iρσz,

c = c(z) =
√
a(z)2 − σ2(−zi− z2),

g = g(z) =
a(z)− c(z)
a(z) + c(z)

,

confer Schoutens et al. (2004). We simply choose Q ⊂ Q̃ to be a bounded subset of the
parameter space.

Remark 5.13 (Q for the univariate Heston model)
Choose bounds for the initial value of the volatility process, 0 < v0 ≤ v0, for its speed of
mean reversion, 0 < κ ≤ κ, the long-term volatility mean, 0 < θ ≤ θ, and the volatility
of the volatility process itself, 0 < σ ≤ σ, and a domain for the correlation parameter,
−1 ≤ ρ ≤ ρ ≤ 1. Define

Q =
{

(v0, κ, θ, σ, ρ) | v0 ≤ v0 ≤ v0, κ ≤ κ ≤ κ,
θ ≤ θ ≤ θ, σ ≤ σ ≤ σ, ρ ≤ ρ ≤ ρ,
σ2 ≤ 2κθ

}
.

(5.78)
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Despite the fact that Q defined above in general might not satisfy condition (5.A) of
Theorem 5.4, we still observe exponential convergence of the MagicFT algorithm.

For an analysis of the strip of analyticity in the Heston model, see Levendorskĭi (2012).

5.5 Numerical experiments

In the previous sections of this chapter we introduced the MagicFT algorithm for option
pricing and presented several asset models and option types. We also proved theoretical
claims for option pricing with the MagicFT algorithm. In this section we numerically
validate these theoretical claims and provide empirical indication that the scope of the
algorithm extends to a much wider class of pricing applications than suggested by the
theorems earlier.

5.5.1 Implementation

The following description is partially taken from Gaß et al. (2015) where an equivalent
implementation was used for the numerical experiments. This implementation of the
algorithm in Matlab introduces some simplifications. The continuous parameter space
P is replaced by a discrete parameter cloud randomly sampled. Each magic parameter
that the algorithm selects is a member of this discrete set. Consequently, the set U
that the algorithm is trained on is replaced by a discrete set, as well. Additionally, we
take Ω to be a discrete set with a finite number of points in each spacial dimension
distributed along a logarithmic allocation. Each function u ∈ U is then represented
by its evaluation on this discrete Ω and is thus replaced by a finite-dimensional vector,
numerically. The optimization steps from (5.7)–(5.9) thus reduce to a search on finite
sets. When all hp∗m ∈ U for m = 1, . . . ,M are identified, they are integrated using
Matlab’s quadgk routine (with an absolute tolerance requirement of 10−14, a relative
tolerance requirement of 10−12, a maximum number of intervals of 200000) and linearly
assembled to derive the quantities

∫
Ω θ

M
m (z) dz for m = 1, . . . ,M .

5.5.2 Empirical convergence

We study the empirical convergence of our implementation of the MagicFT pricing al-
gorithm. A plain vanilla European call option on one asset serves as an example. We
investigate the convergence in several models. For each model we set up a pool U of
parametrized Fourier integrands that the algorithm picks from. For each model, the
discrete parameter pool is chosen as a uniform sample of magnitude |P| = 6000 from the
free parameter ranges enlisted in Table 5.2.
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Model Fixed parameters Free parameters

BS K = 1 S0/K ∈ [0.5, 2], T ∈ [0.1, 1.5],
σ ∈ [0.1, 0.9]

Merton K = 1 S0/K ∈ [0.5, 2], T ∈ [0.1, 1.5],
σ ∈ [0.1, 0.7], α ∈ [−0.2, 0.2],
β ∈ [0.01, 0.3], λ ∈ [10−5, 3]

NIG K = 1 S0/K ∈ [0.5, 2], T ∈ [0.1, 1.5],
α ∈ [10−5, 3], β ∈ [−3, 3],
δ ∈ [0.2, 1]

CGMY K = 1, Y = 1.1 S0/K ∈ [0.5, 2], T ∈ [0.1, 1.5],
C ∈ [10−5, 1], G ∈ [0, 25],
M ∈ [0, 30]

Heston K = 1, κ = 2, S0/K ∈ [0.5, 2], T ∈ [0.1, 1.5],
σ = 0.15 v0 ∈ [0.22, 0.32], θ ∈ [0.152, 0.352],

ρ ∈ [−1, 1]

Table 5.2 In the numerical experiments, we price European call options as an example.
Various models have been selected. In the implementation, the Fourier integrands that
the algorithm constructs the basis functions qm with are parametrized according to the
intervals above. For each model investigated, U consists of a pool of |U| = 6000 Fourier
integrands.

Additionally, for the NIG and CGMY model, a shared strip of analyticity of width
R = 1/2 is enforced such that for all investigated models, the dampening factor η could
be set to η = −1.5. Furthermore, all model restrictions stated in Section 5.4.2 are
respected. Also, implied variances are kept in the interval [0.012, 0.82]. Each Fourier
integrand is evaluated on a discrete Ω ⊂ [0, 75] with |Ω| = 1750. The individual ωi ∈ Ω,
i ∈ {1, . . . , 1750}, are distributed on a log scale.

Figure 5.4 shows the empirically observed error decay during the offline phase of the
algorithm for all five considered models in the number of basis functions M . For each
model, the quantity max

z∈Ω

∣∣uM (z)−IM−1(uM )(z)
∣∣ is shown for increasing values ofM . The

algorithm has been instructed to construct basis functions qm until an error threshold of
10−10 has been reached in step (5.8) or until M has reached the value 50. We observe
exponential error decay in all considered models. Recall that Theorem 5.4 predicts this
behavior only for the Black&Scholes and the Merton model where analyticity of the
associated Fourier integrands is parameter independent. For the other two Lévy models,
however, the existence of a shared strip of analyticity results in exponential error decay,
as well. In case of the Heston model, the issue of analyticity of the Fourier integrands
in U has not been investigated here. Still, we observe exponential error decay too. The
empirical results depicted in Figure 5.4 thus indicate that it might be promising to
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Figure 5.4 A study of the empirical order of convergence of the error in step (5.9)
during the offline phase of the MagicFT algorithm. Five different models and European
call options are considered. Both the models and the option are parametrized according
to Table 5.2. The convergence result is theoretically backed by Theorem 5.4 for the
Black&Scholes and the Merton model. A shared strip of analyticity of the respective
Fourier integrands of width R = 1/2 has been enforced for the NIG and CGMY model.
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Figure 5.5 Pricing error decay study on 1000 out of sample parameter constellations
for different models. In each model, for increasing values of M , the L∞ error over the
randomly drawn parameter sets is evaluated. The parameter sets have been drawn from
the intervals given by Table 5.2.

investigate a theoretical result providing exponential error decay beyond the scope of
Theorem 5.4.

5.5.3 Out of sample pricing study

In the previous paragraph we studied empirical convergence during the offline phase of the
algorithm. More precisely, we investigated for several models how accurately all Fourier
integrands in the given pool U could be approximated on their integration interval Ω by
theM selected integrands or rather by the basis functions qm,m = 1, . . . ,M , constructed
thereof. Now we analyze, how the observed accuracy on the level of in sample integrands
translates to the accuracy in an out of sample call option pricing exercise.

To this extent we randomly draw 1000 parameter constellations for each model according
to the same rules as in the offline phase. For each such sample we compute the respective
Fourier price by numerical integration on [0, 75] thus containing the discrete Ω that the
MagicFT algorithm has been trained on. We integrate using Matlab’s quadgk with
absolute tolerance of 10−12 and 200, 000 integration intervals. Additionally, in each
model we approximate all prices associated with the randomly drawn parameters for
increasing values of M , evaluate the L∞ error and study its decay in M as depicted in
Figure 5.5.
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We observe exponential rates for all considered models. Curiously, the error decay attains
plateau-like shapes, especially for higher values of M . We explain this decay structure
by assuming that each plateau is associated with a certain single parameter realization
from the random sample that dominates the L∞ error until a magic parameter close to it
or rather the respective basis function contributes to the approximation of the belonging
price. Due to such outliers, the order in which the offline phase errors were decaying in
Figure 5.4 has changed.

In Figure 5.6, we depict evaluations of the absolute as well as the relative pricing errors for
all out of sample parameter sets, individually. Here, relative errors have been computed
only for prices larger than 10−3 to exclude numerical noise. In each model, M is set to
its final value assigned during the respective model’s offline phase and can be read off
from Figure 5.4.

Pricing accuracy in this out of sample pricing exercise reaches very satisfactory levels al-
beit the achieved accuracies vary between the considered models. For all models, average
absolute pricing accuracy reaches levels between avgmin ≈ 10−12 in the Black&Scholes
model and avgmax ≈ 10−10 for the CGMY model. Average relative pricing accuracy
ranges between 10−11 and 10−9. We observe individual outliers for all models. The ten
worst (largest) absolute errors together with the ten best (smallest) absolute errors in
each model are further addressed in the next section.

5.5.4 Individual case studies

We take a closer look into the numerical results for each model individually. We are
interested in the distribution of the magic points as well as the distribution of the magic
parameters that the algorithm picked. Figure 5.7 shows some basis functions qm from the
Black&Scholes model and the Merton model that the algorithm constructed evaluated
over the domain Ω.

Figure 5.8 displays basis functions for the approximation of prices in the NIG and the
CGMY model and finally Figure 5.9 depicts basis functions for approximation of prices
in the Heston model.

Intersections of basis functions qm with the Ω axis correspond to the location of magic
points. An accumulation of such magic points at the origin reveals that the Fourier in-
tegrands of the respective model possess the largest variation there. Differences between
the five models for example with respect to the distribution of magic points reflect the
different structure of the underlying Fourier integrands that all seem to possess a certain
model specific nature.

After this assessment of the magic points let us now analyze the distribution of magic
parameters in each model.
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Figure 5.6 Results of the out of sample pricing exercise. For each of the five considered
models, 1000 parameter sets have been drawn from the intervals given by Table 5.2. For
each set, the Fourier price as well as the MagicFT price have been calculated. On the
left column, all absolute errors are depicted. On the right, the relative errors are shown.

Black&Scholes During the offline phase of the algorithm for the Black&Scholes model
only the option strike K has been fixed, K = 1. The model parameter σ as well as the

228



5.5.4 Individual case studies

Ω

0 15 30 45 60 75
-1

-0.5

0

0.5

1
Some exemplary qm, BS

Ω

0 15 30 45 60 75
-1

-0.5

0

0.5

1
Some exemplary qm, Merton

Figure 5.7 Some exemplary qm basis functions in the Black&Scholes model and the
Merton model. Intersections with the Ω-axis mark the location of magic points. In both
cases, magic points accumulate close to the origin.

two other parameters S0/K and maturity T were allowed to vary within the bounds
assigned by Table 5.2. In the Black&Scholes case, the individual parameter intervals
tensorize meaning that any combination of parameter values respecting the individual
bounds can be picked by the algorithm. As Figure 5.10 demonstrates for the magic
parameter choices for S0/K and T , however, rather extreme constellations have been
selected. Figure 5.11 provides a complete overview over all parameter combinations
selected in the offline phase of the algorithm for the Black&Scholes model. With the
exception of T and σ combinations, rather extreme parameter pairs have been selected.
This special behavior is not surprising, since T and σ always appear together as a product
in the Fourier integrands of the Black&Scholes model, compare the definition of the
characteristic function in the Black&Scholes model in (2.34). The even distribution of the
(T, σ) parameter pairs thus reflects the even distribution of all individual parameters over
their domain, observable on the elements on the main diagonal of the figure. Additionally,
the paper illustrates parameter areas that are particularly challenging for the MagicFT
algorithm to approximate together with those that the algorithm is well prepared for.
Counterintuitively at first, orange parameter sets that resulted in the largest absolute
errors are often to be found in close proximity to selected magic parameters. And
green parameter sets the associated prices of which could be best approximated by the
algorithm lie in fallow fields. On second thought, however, this result corresponds to the
rule according to which magic parameters have been selected during the offline phase.
Parameter areas densely populated by magic parameters are precisely those that the
algorithm is facing the largest challenges in. Empty areas by contrast can already be
sufficiently approximated be the previously selected magic parameters.
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Figure 5.8 Some exemplary qm basis functions in the NIG and CGMY model. Inter-
sections with the Ω-axis mark the location of magic points.

Merton We perform the same analysis for the Merton model. Apart from the Eu-
ropean call option strike parameter K = 1, all other parameters were allowed to vary
within the intervals of Table 5.2. Figure 5.12 displays the distribution of the magic
parameters together with the randomly drawn parameter constellations of the out of
sample pricing accuracy study that resulted in the ten largest absolute pricing errors.
Again, orange parameter constellations in Figure 5.12 which indicate large pricing in-
accuracies, seem to particularly occur in areas densely populated by magic parameters
– areas which we would thus expect a rather high accuracy in pricing from. Yet, again
we see from the definition of uM in (5.8), during the offline phase, magic parameters are
chosen precisely where the approximation of the algorithm is worst. An accumulation
of magic parameters at one location indicates rather diverse shapes of the Fourier inte-
grands parametrized in this very location. In other words, in subsets of the parameter
space where magic parameters accumulate, pricing is especially challenging for the Mag-
icFT algorithm. This interpretation is confirmed by the location of the green parameter
sets marking those constellations that the algorithm approximated best.

NIG, CGMY & Heston Figure 5.13 depicts the parameter clouds for the free pa-
rameters in our parametrization of the NIG model. Note in the (α, β) combinations the
effect of model restriction α2 > β2. Figure 5.14 illustrates the magic parameter distribu-
tion for the CGMY model and Figure 5.15 finally visualizes the magic parameter choices
for the Heston model together with those out of sample draws that lead to the ten worst
and the ten best pricing results.
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Figure 5.9 Some exemplary qm basis functions in the Heston model. In contrast to the
four Lévy models displayed in Figure 5.7 and Figure 5.8, the magic points are rather
equally spread over the whole domain Ω.
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Figure 5.10 Parameter pairs (S0/K, T ) selected by the MagicFT algorithm in the offline
phase of the Black&Scholes model.
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Figure 5.11 All magic parameters selected during the offline phase of the algorithm for
the Black&Scholes model (empty blue circles). The filled orange circles denote the ten
parameter constellations that resulted in the maximal absolute pricing errors during the
out of sample pricing exercise. In contrast, the filled green circles mark the location of
the ten parameter constellations that yielded the best approximate pricing results.
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Figure 5.12 The distribution of magic parameters in the Merton model (blue empty
circles) together with those randomly drawn parameter samples that resulted in the ten
largest absolute pricing errors in the out of sample pricing exercise (filled orange circles).
The filled green circles, by comparison, mark the location of parameter constellations
that the algorithm could handle best.
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Figure 5.13 Distribution of NIG magic parameters (blue empty circles) and randomly
drawn parameter constellations resulting in the ten largest (orange) and the ten smallest
(green) absolute pricing errors during the out of sample pricing study.
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Figure 5.14 Magic parameters (blue empty circles) and randomly drawn parameter
constellations resulting in the ten largest absolute pricing errors marked in orange and
the ten smallest absolute pricing errors colored in green during the out of sample pricing
study in the CGMY model case.
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Figure 5.15 An overview over the distribution of magic parameters (blue empty circles)
and the randomly drawn parameter combinations resulting in the ten largest absolute
pricing errors (orange) in the Heston model. Equivalently, those random parameter
constellations the prices of which could be best approximated are depicted (colored in
green). Note the especially extreme combinations of selected T and ρ values.
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5.5.5 Comparison with Chebyshev interpolation

Finally, we compare the numerical performance of the MagicFT method to a different
pricing method using another interpolation. In Chapter 4, we presented a pricing method
based on the Chebyshev polynomials. There, prices are interpreted as functions of a set p
of model and option parameters and approximated by a linear combination of Chebyshev
coefficients cj , j ∈ J , independent of p and associated Chebyshev polynomials Tj , j ∈ J ,
depending on p,

Pricep ≈
∑
j∈J

cjTj(p) (5.79)

for a certain index set J . In the univariate case where J = {0, . . . , N} for some N ∈ N,
the Chebyshev polynomials Tj , j ∈ J , are given by

Tj(x) = cos(j arccos(x)), x ∈ [−1, 1]. (5.80)

Consequently, they are not adapted to the problem that the approximation method is
applied to. The coefficients cj , j ∈ J , are defined by a sum of precomputed prices Pricepk
for certain parameter sets pk, k ∈ {0, . . . , N}, in the parameter space.

Both algorithms thus resemble each other in the sense that they consist of an offline
phase where prices for certain parameter constellations are precomputed and stored,
and an online phase during which these precomputed quantities are added with weights
depending on the parameter set of interest. Yet, while the MagicFT algorithm decides
for itself which parameters to pick, the Chebyshev method fixes them in advance. Ad-
ditionally, while the MagicFT algorithm iteratively constructs its basis functions, the
Chebyshev method relies on the given Chebyshev polynomials of (5.80). And finally,
while the MagicFT algorithm approximates Fourier integrands, the Chebyshev method
approximates prices directly.

With these given similarities and differences in mind we compare the Chebyshev approx-
imation method to the MagicFT algorithm in three aspects:

i) How are the parameters that are selected during the offline phase distributed in
the parameter space in both methods?

ii) How do the basis functions of both algorithms compare?

iii) How accurately are prices approximated by both approaches in a comparable
setting?

We study these questions in an elementary setting by applying both algorithms to the
pricing of European call options on one asset in the Black&Scholes model with the
Black&Scholes volatility σ > 0 being the only free parameter. More precisely, we fix a
maturity T > 0, a strike value K > 0 and the current value of the underlying stock S0 >
0, disregard interest rates, r = 0, and interpret call option prices in the Black&Scholes
model as a function of σ ∈ [σmin, σmax], 0 < σmin < σmax < 1. Since the (univariate)
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Chebyshev method is defined for normed parameter intervals, p ∈ [−1, 1], we introduce
the transformation τ : [−1, 1]→ [σmin, σmax],

τ(σ) = σmin + (σmax − σmin)

(
1

2
+

1

2
σ

)
, (5.81)

and approximate the Black&Scholes price [σmin, σmax] 3 σ 7→ PriceK,T,σ by the Cheby-
shev method using

[−1, 1] 3 p 7→ IChebyN (PriceK,T,σ=τ(·))(p) (5.82)

wherein IChebyN is the Chebyshev interpolator of (2.2) in Gaß et al. (2016), respec-
tively (4.2) in Chapter 4, and by the MagicFT algorithm using

[σmin, σmax] 3 σ 7→ 1

2π

M∑
m=1

f̂K(−z∗m)ϕT,q=σ(z∗m)

∫
Ω
θMm (z) dz. (5.83)

To keep the two approximations roughly comparable, we provide both methods with a
similar number of Chebyshev polynomials or magic points by choosing N = M through-
out this study.

In defining the parameter space we choose σmin = 0.1 and σmax = 0.7 and fix today’s
value of the underlying at S0 = 2.2. The call option strike K = 2 and the time to
maturity T = 1 are kept constant.
We run the offline phase of the MagicFT algorithm until M = 10 basis functions qm out
of a pool U with |U| = 6000 are identified. The pool U is parameterized by a randomly
drawn sample of uniformly distributed σ values, σmin ≤ σ ≤ σmax. Associated with these
basis functions are 10 pairs of magic points and magic parameters (z∗k, p

∗
k), 1 ≤ k ≤ 10.

Equivalently, we prepare the Chebyshev method setting N = M = 10 and run the
precomputational offline phase deriving the coefficients cj , 0 ≤ j ≤ 10, by computing
European Black&Scholes call option prices at prespecified and application independent
Chebyshev nodes pk ∈ [τ−1(σmin), τ−1(σmax)], 0 ≤ k ≤ N . In both offline phases, all pre-
computed prices are derived using numerical integration of the respective Black&Scholes
Fourier integrand. Consequently, the influence of numerical integration is the same for
both methods. Figure 5.16 depicts the set of magic parameters chosen by the MagicFT
algorithm and the set of Chebyshev nodes. Associated with these parameter sets are the
two sets of basis functions. Again, the set of interpolands qm, 1 ≤ m ≤ M , constructed
by the MagicFT algorithm is model adapted. Each qm consists of a linear combina-
tion of Fourier integrands parametrized by the associated magic parameter. The set of
Chebyshev polynomials on the other hand is application independently defined by (5.80).

Figure 5.17 shows the first five MagicFT basis functions q1, . . . , q5 as well as the first five
Chebyshev polynomials T1, . . . , T5. The explanatory power of this comparison is of course
limited. While linear combinations of the MagicFT basis functions approximate Fourier
integrands on their integration domain Ω, linear combinations of the Chebyshev polyno-
mials approximate prices on the (normed) parameter domain [τ−1(σmin), τ−1(σmax)].
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Figure 5.16 Comparison between the distribution of the M = 10 magic parameters
0.1 = σmin ≤ p∗k ≤ σmax = 0.7, 1 ≤ k ≤M , and the N+1 Chebyshev nodes −1 ≤ pk ≤ 1,
0 ≤ k ≤ N , where N = M . While the magic parameters have been selected by the
MagicFT algorithm, the Chebyshev nodes are given by a model independent construction
using a set of construction points equidistantly spaced on the semicircle as indicated in
the figure. Interestingly, both sets are similarly distributed over the (normed) parameter
space.
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Figure 5.17 Left: The first five basis functions q1, . . . , q5 as constructed by the MagicFT
algorithm in the Black&Scholes call option setting of this study. Each qi consist of a
linear combination of Fourier integrands evaluated over Ω = [0, 75]. The intersections
with the Ω axis mark the location of magic points z∗m. The magic points accumulate
close to the origin indicating the strongest variations among all Fourier integrands in the
set U there. Right: The first five Chebyshev polynomials T1, . . . , T5 evaluated over their
domain [−1, 1].

Finally, we apply both methods to compute prices for a large discrete set of volatility
values σk, k ∈ {0, . . . , 1500}, on an equidistant grid,

σk = σmin +
k

1500
(σmax − σmin) , k ∈ {0, . . . , 1500}, (5.84)

spanning the whole parameter space. Figure 5.18 depicts the results of the pricing ac-
curacy study. Prices of both the MagicFT algorithm and the Chebyshev method are
compared to Matlab’s blsprice routine. The accuracy of both methods is similar. In-
tersections of both error curves with the σ axis or, put differently, points of perfect pricing
results identify the position of magic parameters or Chebyshev nodes, respectively.
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Figure 5.18 Pricing errors in both methods for 1501 volatility values. The magnitude
of the error is the same for both methods and of order 10−6. Intersections of the solid
curve with the σ axis mark the location of a magic parameter. Similarly, σ values at the
intersection of the dashed curve with the σ axis are associated with the location of the
respective Chebyshev node in the normed parameter space. Both magic parameters and
(appropriately scaled) Chebyshev nodes have been additionally highlighted.

5.6 A review of the interpolation operator

We take a closer look at the interpolation operator IM that we used for the interpolation
of Fourier integrands above. During the offline phase it iteratively interpolates basis
function candidates to identify the one which is worst represented by the basis functions
that have already been constructed. During the online phase it allows the approximate
evaluation of functions on the domain Ω.

To meet both expectations satisfactorily, the interpolation operator must be evaluable
quickly for each admissible function and for arbitrary points on the domain. At first
sight, the linear dependence of the operator on the individual basis functions grants this
feature immediately. On second thought, however, we recognize that each basis function
itself depends recursively on the basis functions previously generated. The interpolation
operator IM inherits this structure which in general prevents fast evaluation calls espe-
cially for large values of M . In this section we illustrate the problem sketched above
in more detail and comment on the fact why this topic was not an issue in our imple-
mentation above. We explain why nevertheless it becomes an issue when dim(Ω) > 1.
Therefore we resolve the recursive dependence of the operator IM on the basis functions
in the final section of this chapter.

For convenience, Algorithm 2 restates the Empirical Interpolation method of Maday
et al. (2009) that we already described in detail in Section 5.1 above.
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Algorithm 2 Empirical Interpolation (EI)

1: Let Ω ⊂ Rd be a bounded domain
2: Let P be some parameter space
3: Let further U be a set of parametric functions
4: U = {u(p) : Ω→ R, p ∈ P}
5: function Interpolation Operator IM (u)(ξ)
6: return IM (u)(ξ) =

∑M
j=1 u(ξj)θ

M
j (ξ)

7: with
8: θMj (ξ) =

∑M
i=1

(
BM

)−1

ij
qi(ξ), BM

ij = qj(ξi),

9: where the set of magic points TM = {ξ1, . . . , ξM} ⊂ Ω and the set of basis
functions {q1, . . . , qM} are recursively defined by

10: u1 = arg max
u∈U

‖u‖L∞

11: ξ1 = arg max
ξ∈Ω

|u1(ξ)|

12: q1(·) = u1(·)
u1(ξ1)

13: and for M > 1 by
14: uM = arg max

u∈U
‖u− IM−1(u)‖L∞

15: ξM = arg max
ξ∈Ω

|uM (ξ)− IM−1(uM )(ξ)|

16: qM (·) =
uM (·)−IM−1(uM )(·)

uM (ξM )−IM−1(uM )(ξM )

Algorithm 2 is stated continuously. In numerical applications, however, it is implemented
discretely, instead. For that matter, several simplifications are introduced. We state
these simplifications in the univariate case, d = 1. Then, instead of a continuous domain
Ω we consider a discrete subset Ωdiscr. = {ω1, . . . , ωN} ⊂ Ω and instead of the continuous
parameter set P we introduce a discrete subset Pdiscr = {p1, . . . , pK} ⊂ P. As a conse-
quence of these changes, U is replaced by Udiscr = {~ui = (u(pi)(ω1), . . . , u(pi)(ωN )) | pi ∈
Pdiscr, i ∈ {1, . . . ,K}} ⊂ RN with |Udiscr| = |Pdiscr| = K. Consequently, all resources of
the algorithm become discrete and finite, as Algorithm 3 shows.

The optimization steps in line 14 and line 15 of Algorithm 3 fully consist of finding
maxima on discrete sets and thus do not rely on special optimization routines. For
N,K ∈ N, the set of basis functions ~qi, i ∈ {1, . . . ,M}, can be constructed by iteratively
considering all K basis function candidate vectors ~ui ∈ Udiscr, i ∈ {1, . . . ,K}, and all N
magic point candidates ωi ∈ Ωdiscr, i ∈ {1, . . . , N}, or all N components of the involved
vectors, respectively.

Remark 5.14 (Advantages of the discrete implementation)
For d = 1 using the discrete Algorithm 3 to approximate its continuous analogon, yields
satisfying results for N and K large enough such that the parameter domain Ω and
the parameter set P are represented reasonably well by their discrete counterparts, see
the numerical results in Section 5.5 above where we present the results of applying the
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Algorithm 3 Discrete EI algorithm, d = 1

1: Let Ωdiscr. be a finite, discrete set in R, |Ωdiscr.| = N ∈ N, Ω = {ω1, . . . , ωN}
2: Let Pdiscr. be some finite parameter set in R, |Pdiscr.| = K ∈ N
3: Let further Udiscr. be a finite set of parametrized vectors on Ωdiscr., |Udiscr.| = K ∈ N
4: function Discrete Interpolation Operator Idiscr

M (~u)

5: return IdiscrM (~u) =
∑M

i=1 αi(~u)~qi
6: with αi ∈ R, i ∈ {1, . . . ,M}, depending on ~u and given by
7: Q~α = (~u(ι1), . . . , ~u(ιM )), Q ∈ RM×M , Qij = ~q

(ιi)
j

8: where the set of magic indices {ι1, . . . , ιM} ⊂ {1, . . . , N} and the set of basis
vectors {~q1, . . . , ~qM} are recursively defined by

9: ~u1 = arg max
~ui∈Udiscr, i=1,...,K

max
j=1,...,N

∣∣∣~u(j)
i

∣∣∣
10: ι1 = arg maxj=1,...,N

∣∣∣~u(j)
1

∣∣∣
11: ξ1 = ωι1
12: ~q1 = 1

~u
(ι1)
1

~u1

13: and for M > 1 with ~ri = ~ui − IdiscrM−1(~ui), i ∈ {1, . . . , N}, by
14: ~uM = arg max

~ui∈Udiscr, i=1,...,K
max

j∈{1,...,N}

∣∣∣~r(j)
i

∣∣∣
15: ιM = arg max

i=1,...,N

∣∣∣~r(i)
M

∣∣∣
16: ξM = ωιM
17: ~qM = 1

~r
(ιM )

M

(
~uM − IdiscrM−1(~ui)

)

(discrete) EI algorithm to Fourier pricing. In the application we considered, the main
advantages of implementing the EI algorithm discretely consisted in a fast offline phase,
low storage costs and in avoiding the numerical misidentification of global maxima in
line 14 and line 15 by considering the whole (discrete) domain in line 14, instead. In our
experiments for the one-dimensional case, d = 1, we thus observe good results regarding
both approximation accuracy and numerical cost.

The advantages sketched in Remark 5.14 are empirically validated by our numerical
pricing experiments in Section 5.5, above. Unfortunately, these advantages vanish, when
the dimensionality of the problem increases to d > 1.

Remark 5.15 (Disadvantages of the discrete implementation for d > 1)
The discrete Algorithm 3 can be naturally extended for the multivariate case, d > 1,
by replacing vectors with matrices. For d > 1, however, the tradeoff between N and
K large enough to provide Ωdiscr and Udiscr with enough richness and N and K small
enough such that the numerical cost remains bearable can in general hardly be maintained.
The antagonism between approximation precision and acceptable numerical complexity
arises. This antagonism consists of two aspects, storage and computational speed. The
requirements to the physical storage in the discrete setting outlined above are of order Nd ·
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K, when the pool of basis function candidates Udiscr is explicitly constructed and stored to
select the basis function candidates ~ui, i ∈ {1, . . . ,M}, from. Assuming reasonable values
for N and K, this threshold is exceeded in our experiments for d = 2, by far. One can
avoid these demands to physical storage by evaluating in step M each of the K− (M −1)
remaining basis function candidates in Udiscr and their interpolation iteratively over Ωdiscr

and storing the respective maximum absolute value maxj∈{1,...,N} |~r
(j)
· | of all components

for each residual ~r·. This approach results in a number of function evaluations of order
Nd · K in each step of identifying the next basis function ~qM . As a consequence, the
offline phase is prolonged considerably with respect to computational time.

We conclude that the discrete implementation provided by Algorithm 3 for approximat-
ing the continuous Empirical Interpolation method described in Algorithm 2 reaches its
limits of feasibility when d > 1. To avoid both, the indicated storage requirements and
the alternative of processing a large amount of function evaluations during the offline
phase one needs to implement the Empirical Interpolation method not discretely but
continuously, instead.

5.7 Non-recursive empirical interpolation

From the description of the Empirical Interpolation in Algorithm 2 we understand, that
the definition of the interpolation operator IM introduces a recursive pattern into the
definition of the interpolating basis functions qi, 1 ≤ i ≤M , as defined in line 16.

In a discrete implementation of the algorithm, this recursion is seamlessly adopted. As
we see in line 17, each basis function vector ~qM depends on ~uM and all previously selected
basis function vectors ~qi, i ∈ {1, . . . ,M−1}. Thus, recursively, each basis function vector
~qM depends on all previously selected basis function candidates ~ui, i ∈ {1, . . . ,M},
but the precise design of that recursive dependence is hidden and of no relevance to a
proper functioning of the discrete implementation. Once the basis function vectors ~qi,
i ∈ {1, . . . ,M}, have been computed, they can be stored and each of their components
can be accessed, directly. In other words, each basis function vector ~qi, i ∈ {1, . . . ,M},
can be evaluated over Ωdiscr immediately. An application of the discrete Interpolation
Operator IdiscrM of Algorithm 3 thus consists of solving an equation system and adding a
(weighted) sum of vectors.

In a continuous implementation, this feature is lost. A numerical evaluation of a (weighted)
sum of ui ∈ U , i ∈ {1, . . . , N}, for some N ∈ N at some ξ ∈ Ω on a continuous Ω relies on
the evaluation of each individual ui, i ∈ {1, . . . , N}, at ξ ∈ Ω and the subsequent com-
position of the (weighted) sum. The interpolation operator IM of Algorithm 2 consists
of such a weighted sum of ui, i ∈ {1, . . . ,M}. By its definition in line 6, the evaluation
of IM (u) at ξ ∈ Ω relies on the evaluation of θMj at ξ for all j ∈ {1, . . . ,M}. By their
definition in line 8, each of these θMj relies on the evaluation of qi, i ∈ {1, . . . ,M}. While
by line 12, q1 only depends on u1, each of the other basis functions qi with 2 ≤ i ≤M is
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defined via an evaluation of both ui and an additional call to the interpolation operator
Ii−1.

This recursion therefore numerically complicates the process of identifying uM during
the offline phase, especially for large values of M . Then, a naive call of IM triggers a
recursion that comes at an immense numerical cost.
Remark 5.16 (Complexity of the recursive interpolation operator IM(·))
Let M ∈ N and consider the recursive interpolation operator of Algorithm 2. Let u ∈ U
and ξ ∈ Ω. For an evaluation of IM (u)(ξ), the interpolation operator calls the chosen
basis functions qi, i ∈ {1, . . . ,M}. By its definition in line 12, q1 depends on u1 only,
while each of the other qi, i ∈ {2, . . . ,M}, depends on ui and Ii−1(ui), letting the inter-
polation operator reappear. Thus, each qi, i ∈ {2, . . . ,M}, depends multiply on all qj,
j ∈ {1, . . . , i− 1}. The scheme of this recursive dependence of IM on the basis functions
qi, i ∈ {1, . . . ,M}, is visualized in Figure 5.19 for the case of M = 4. Ultimately, an
evaluation of IM (u)(ξ) translates into evaluations ui(ξ), i ∈ {1, . . . ,M}, where due to
the recursive definition of the operator, each ui will be evaluated several times at ξ and
the results will be weighted and summed up. In total, a naive, recursive call of IM (u)(ξ)
results in

M∑
k=1

#{elementary function evaluations triggered by qk} =

M∑
k=1

2k−1 = 2M − 1

elementary function evaluations of the ui, i ∈ {1, . . . ,M}, which were chosen during the
offline phase of the algorithm.

As Remark 5.16 underlines, the fully recursive Empirical Interpolation operator IM (·) is
numerically unfeasible. Due to its recursive structure, naive evaluations of the operator
result in computation times that increase exponentially in M . Especially in a non-
discrete implementation of the algorithm in combination with optimization routines for
lines 14 and 15, this runtime behavior diminishes the practical value of the algorithm in
its current form.

A closer look at the definition of the interpolation operator IM (·) reveals, that for given
u ∈ U and ξ ∈ Ω we do not have to expand each qk, k ∈ {1, . . . ,M}, multiple times until
the level of the elementary function evaluations ui, i ∈ {1, . . . , k}, in order to evaluate
IM (u)(ξ). Instead, once qk(ξ), k ∈ {1, . . . ,M}, is computed, we store this function value.
For the evaluation of qk+1(ξ) we then only need to compute uk+1(ξ), access all previously
stored values q1(ξ), . . . , qk(ξ) and add them in the correct way,

qk+1(ξ) = c (uk+1(ξ)− Ik(uk+1)(ξ))

= c

uk+1(ξ)−
k∑
i=1

k∑
j=1

(Bk)−1
ij uk(ξj)qi(ξ)


= c

(
uk+1(ξ)−

k∑
i=1

αiqi(ξ)

)
,

(5.85)
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Figure 5.19 Visualization of the complexity of the (fully recursive) Empirical Interpo-
lation operator IM (·) of Algorithm 2 for M = 4. Evaluating IM (u)(ξ) for some u ∈ U
and some ξ ∈ Ω results in function calls qi(ξ), i ∈ {1, . . . ,M}, which ultimately trans-
late into elementary function evaluations ui(ξ), i ∈ {1, . . . ,M}. A rectangularly boxed
ui, i ∈ {1, . . . ,M}, denotes such a function call of ui at ξ. Due to the special kind of
recursive dependence of each basis function qk, k ∈ {2, . . . ,M}, on all previous basis
functions ql, l ∈ {1, . . . , k− 1}, the number of elementary function calls generated by qk
increases exponentially in k.

with c = 1/ (uk+1(ξk+1)− Ik(uk+1)(ξk+1)) and αi =
∑k

j=1(Bk)−1
ij uk(ξj), i ∈ {1, . . . , k}.

By this approach, the recursive structure of 5.19 is reduced to a linear relation shown in
5.20.

Remark 5.17 (Complexity of the semi-recursive interpolation operator IM(·))
Let M ∈ N, u ∈ U and ξ ∈ Ω. For the computation of IM (u)(ξ) we need only

M∑
k=1

#{elementary operations to derive qk(ξ)} =
M∑
k=1

k =
M(M + 1)

2

elementary operations when intermediary results qk(ξ) are saved, once they are computed.
This reduced the complexity of evaluating the Empirical Interpolation operator signifi-
cantly, as 5.20 demonstrates. Note, however, that these intermediary results all depend
on a ξ ∈ Ω that needs to be fixed beforehand. For a repeated evaluation of IM (u)(ξ) for
different values ξ ∈ Ω, the semi-recursion depicted in 5.20 needs to be resolved, repeatedly,
for each such ξ ∈ Ω individually.

Saving intermediary results in the evaluation of IM (u)(ξ) for given u ∈ U and ξ ∈ Ω
reduces the complexity of recursion of the interpolation operator significantly, as Re-
mark 5.17 and Figure 5.20 demonstrate. This already allows continuous implementa-
tions of the algorithm with optimization routines looking for optimal u ∈ U and ξ ∈ Ω
that maximize the quantities in lines 14 and 15 in iteration M of the offline phase. By
such a continuous implementation, storage limitations as mentioned in Remark 5.15 are
avoided. Yet, for given u ∈ U , the quantities in this semi-recursive conception of the
interpolation operator IM (·), depend on ξ ∈ Ω, see Equation (5.85). Thus, a repeated
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Figure 5.20 Visualization of the complexity of the (semi-recursive) Empirical Interpo-
lation operator IM (·) when intermediate results are saved. Again we chose M = 4. The
recursive definition of each qk(ξ) is resolved only once and the result is stored. As a
consequence, the exponentially recursive scheme of 5.19 reduces dramatically. Each ui,
i ∈ {1, . . . ,M}, is evaluated only once.

evaluation of IM (u)(ξ), the interpolated version of some u ∈ U at different ξ ∈ Ω can
become numerically costly, as well. This is the case for example, when the numerical
evaluation of an integral of a function containing IM (u) is concerned.

Therefore, we are interested in a non-recursive representation of the basis functions qk,
1 ≤ k ≤ M . By this we mean a representation of each qk, 1 ≤ k ≤ M , in terms of
a weighted sum of ui, 1 ≤ i ≤ k, with explicitly given coefficients. If we were able to
evaluate the interpolation operator IM without relying on a recursive evaluation of all
qk, 1 ≤ k ≤M , in a numerically stable way, we could further speed up the offline phase
considerably.

We introduce some quantities that will play the key roles in deriving a non-recursive
expression for the interpolation operator IM and discuss some of their properties. Let
M ∈ N and define

r1 = u1(ξ1),

rM = uM (ξM )− IM−1(uM )(ξM ), M > 1,
(5.86)

and

w̃
(j)
i =

w
(j)
i

ri
, 1 ≤ i, j ≤M, (5.87)

with
w

(j)
i =

((
BM

)−1
uj(~ξ

M )
)
i
, 1 ≤ i, j ≤M, (5.88)

the i-th component of the vector generated by multiplying the inverse of BM with the
j-th function uj to be selected from the pool U in line 14 evaluated at all magic points.
Note that w(j)

i is in a sense independent ofM . This property is inherited from BM being
a lower triangular matrix (and thus (BM )−1 being a lower triangular matrix, as well).
Additionally, with M ′ ≥ M , by definition, BM

ij = BM ′
ij for i, j ≤ M and BM ′

ij = 0 for
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i ≤M , M < j ≤M ′,

BM ′ =



0 . . . 0
BM 0 . . . 0

0 . . . 0

q1(ξM+1) . . . qM (ξM+1) 1
. . . 0

...
...

. . . 0
q1(ξM ′) . . . qM (ξM ′) . . . qM ′−1(ξM ′) 1


,

and since BM is a lower triangular matrix we equivalently have (BM )−1
ij = (BM ′)−1

ij for
i, j ≤M and (BM ′)−1

ij = 0 for i ≤M , M < j ≤M ′, as well.

Consequently, for i, j ≤M ≤M ′ we have

w
(j)
i =

((
BM

)−1
uj(~ξ

M )
)
i

=

((
BM ′

)−1
uj(~ξ

M ′)

)
i

. (5.89)

The w(j)
i , i, j ≤ M , play a key role in the non-recursive representation of the basis

functions qi, i ≤ M . Due to property (5.89) each w(j)
i , i, j ≤ M , needs to be computed

only once during the offline phase and can then be stored and reused as BM grows during
the iterative process of finding the basis functions qk, k ≥ 1.

Lemma 5.18 (Representing qk using the w(j)
i )

Using the definition of the w(j)
i , i, j ≤M , that we just introduced and defined in (5.88), we

can rewrite the definition of the Empirical Interpolation basis functions qk, 1 ≤ k ≤ M ,
to

qk(ξ) =
1

rk

(
uk(ξ)−

k−1∑
i=1

w
(k)
i qi(ξ)

)
, (5.90)

for all ξ ∈ Ω.

Proof
Let ξ ∈ Ω. For k = 1, the sum in (5.90) equals zero and the claim obviously holds by
definition of q1 in line 12. Let now 2 ≤ k ≤ M and q̃k(ξ) = rkqk(ξ) with rk as given in
the algorithm. By the relation in line 16 we have

q̃k(ξ) = uk(ξ)− Ik−1(uk)(ξ)

= uk(ξ)−
k−1∑
j=1

uk(ξj)θ
k−1
j (ξ)

= uk(ξ)−
k−1∑
j=1

uk(ξj)
k−1∑
i=1

(Bk−1)−1
ij qi(ξ)

= uk(ξ)−
k−1∑
i=1

k−1∑
j=1

(Bk−1)−1
ij uk(ξj)

 qi(ξ),

(5.91)
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where we simply inserted the quantities defined in Algorithm 2. The expression given
by the sum

∑k−1
j=1(Bk−1)−1

ij uk(ξj) for some 1 ≤ i ≤ k − 1 in (5.91) can be interpreted as
component i of the result of a matrix-vector multiplication,

k−1∑
j=1

(Bk−1)−1
ij uk(ξj) =

(
(Bk−1)−1uk((ξ1, . . . , ξk−1))

)
i
. (5.92)

By (5.89), the result of (5.92) is independent of k,(
(Bk−1)−1uk((ξ1, . . . , ξk−1))

)
i

=
((
BM

)−1
uk(~ξ

M )
)
i

= w
(k)
i , (5.93)

by the definition of w(k)
i in (5.87). Inserting (5.93) into (5.92) and the result into (5.91)

proves the claim. �

Lemma 5.18 provides us with the starting point for resolving the recursive definition of
the Empirical Interpolation basis functions qk, 1 ≤ k ≤ M , of line 16. Before we are
able to state and prove a non-recursive representation of the basis functions we prove
the following auxiliary Lemma 5.19.

Lemma 5.19 (Auxiliary lemma)
Let M ∈ N. Let w̃(j)

i , 1 ≤ i, j ≤ M be given by (5.87). Define further for all 1 ≤ j <
k ≤M

c
(k)
j = w̃

(k)
k−j −

j−1∑
i=1

w̃
(k−i)
k−j c

(k)
i (5.94)

recursively. Then for k < M the relation

i−1∑
j=1

c
(k+1−i+j)
j w̃

(k+1)
k+1−i+j =

i−1∑
j=1

w̃
(k+1−j)
k+1−i c

(k+1)
j (5.95)

holds for all i ∈ {1, . . . , k}.

Proof
We prove (5.95) by induction over i ∈ {1, . . . , k}.

For i = 1 there is nothing to show since both sides of (5.95) turn into empty sums with
value 0. To provide an intuition about the structural relation between the two sums in
(5.95), we additionally validate the equation for i = 2. Then, (5.95) holds if

c
(k+1−2+1)
1 w̃

(k+1)
k+1−2+1 = w̃

(k+1−1)
k+1−2 c

(k+1)
1

which is equivalent to
c

(k)
1 w̃

(k+1)
k = w̃

(k)
k−1c

(k+1)
1 . (5.96)

By the definition of c(k)
j in (5.94) we have c(k)

1 = w̃
(k)
k−1 and c(k+1)

1 = w̃
(k+1)
k which proves

the induction assumption.
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For the induction step we assume the claim (5.95) to hold for all 1 ≤ i′ ≤ i for some
1 ≤ i < k and prove it for i+ 1, that is we show

i∑
j=1

c
(k−i+j)
j w̃

(k+1)
k−i+j =

i∑
j=1

w̃
(k+1−j)
k−i c

(k+1)
j . (5.97)

By invoking on both sides the definition of c(k−i+j)
j or c(k+1)

j , respectively, as given by
(5.94), we conclude that (5.97) is equivalent to

i∑
j=1

[
w̃

(k−i+j)
k−i −

j−1∑
l=1

w̃
(k−i+j−l)
k−i c

(k−i+j)
l

]
w̃

(k+1)
k−i+j

=
i∑

j=1

w̃
(k+1−j)
k−i

[
w̃

(k+1)
k+1−j −

j−1∑
l=1

w̃
(k+1−l)
k+1−j c

(k+1)
l

]
.

(5.98)

We expand the multiplication in the outer sums of (5.98) and separate them, transform-
ing the equality to

i∑
j=1

w̃
(k−i+j)
k−i w̃

(k+1)
k−i+j −

i∑
j=1

w̃
(k+1)
k−i+j

j−1∑
l=1

w̃
(k−i+j−l)
k−i c

(k−i+j)
l

=
i∑

j=1

w̃
(k+1−j)
k−i w̃

(k+1)
k+1−j −

i∑
j=1

w̃
(k+1−j)
k−i

j−1∑
l=1

w̃
(k+1−l)
k+1−j c

(k+1)
l .

(5.99)

Let us consider the first, single sums on both sides of (5.99). Inverting the order of
summation in the sum on the left reveals that the two leading individual sums on boths
sides of (5.99) are identical,

i∑
j=1

w̃
(k−i+j)
k−i w̃

(k+1)
k−i+j =

i∑
j=1

w̃
(k−i+[i+1−j])
k−i w̃

(k+1)
k−i+[i+1−j] =

i∑
j=1

w̃
(k+1−j)
k−i w̃

(k+1)
k+1−j . (5.100)

Therefore, (5.99) holds if

i∑
j=1

w̃
(k+1)
k−i+j

j−1∑
l=1

w̃
(k−i+j−l)
k−i c

(k−i+j)
l =

i∑
j=1

w̃
(k+1−j)
k−i

j−1∑
l=1

w̃
(k+1−l)
k+1−j c

(k+1)
l . (5.101)

We apply the induction assumption to each summand of the inner sum on the right hand
side of (5.101). We can do so, since by our induction assumption the claim

i′−1∑
j=1

c
(k+1−i′+j)
j w̃

(k+1)
k+1−i′+j =

i′−1∑
j=1

w̃
(k+1−j)
k+1−i′ c

(k+1)
j (5.102)
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is validated for all i′ ∈ {1, . . . , i}. The summation variable j on the right hand side of
(5.101) assumes values j ∈ {1, . . . i} and thus takes the role of i′ in (5.102). Consequently,
we invoke the induction assumption and conclude, that the claim holds if

i∑
j=1

w̃
(k+1)
k−i+j

j−1∑
l=1

w̃
(k−i+j−l)
k−i c

(k−i+j)
l =

i∑
j=1

w̃
(k+1−j)
k−i

j−1∑
l=1

c
(k+1−j+l)
l w̃

(k+1)
k+1−j+l. (5.103)

In order to finally prove equality (5.103), we rearrange the order of summation on the
right hand side of (5.103). To that extent we introduce for i ∈ N the set

Ii = {(j, l) ∈ N2 | j ≤ i, l ≤ j − 1} (5.104)

and the mapping m on Ii by

m : (j, l) 7→ (i+ 1− j + l, l), ∀(j, l) ∈ Ii, (5.105)

and denote by mn((j, l)) the projection of m((j, l)) onto the n-th component, n ∈ {1, 2},
for all (j, l) ∈ Ii. We have m(Ii) = Ii, since with (j, l) ∈ Ii we have i + 1 − j + l ≤ i
if and only if l ≤ j − 1 which is true by definition of Ii. Thus, the mapping m maps Ii
onto itself, m(Ii) = Ii, and it does so bijectively with m−1 = m. The effect that the
mapping m has to the order of summands is visualized in Table 5.3 and Table 5.4.

j
l = 1 2 3 i− 1

2 1

3 2 3

4 4 5 6

...
. . .

i (i− 1)(i− 2)/2 + 1 . . . i(i− 1)/2

Table 5.3 Visualization of the queue of non-zero summands on the right hand side of
(5.103). The number in each of the boxes denotes the position of the summand belonging
to the respective (j, l)-tuple in the sum.

We prove equality (5.103) by continuing on the right hand side of (5.103) and applying
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j
l = 1 2 3 i− 1

2 (i− 1)(i− 2)/2 + 1

...

i− 2 4 ·

i− 1 2 5

i 1 3 6 . . . i(i− 1)/2

Table 5.4 Visualization of the queue of non-zero summands on the right hand side of
(5.103) after the order of summation has been changed by applying mapping m. The
numbers in the boxes denote the previous position of the respective summand in the
sum, compare Table 5.3.

mapping m to change the order of summation,

i∑
j=1

w̃
(k+1−j)
k−i

j−1∑
l=1

c
(k+1−j+l)
l w̃

(k+1)
k+1−j+l

=
∑

(j,l)∈Ii

w̃
(k+1−j)
k−i c

(k+1−j+l)
l w̃

(k+1)
k+1−j+l

=
∑

(j,l)∈Ii

w̃
(k+1−m1((j,l)))
k−i c

(k+1−m1((j,l))+m2((j,l)))
m2((j,l)) w̃

(k+1)
k+1−m1((j,l))+m2((j,l))

=
i∑

j=1

j−1∑
l=1

w̃
(k+1−[i+1−j+l])
k−i c

(k+1−[i+1−j+l]+[l])
[l] w̃

(k+1)
k+1−[i+1−j+l]+[l]

=

i∑
j=1

j−1∑
l=1

w̃
(k−i+j−l)
k−i c

(k−i+j)
l w̃

(k+1)
k−i+j

=
i∑

j=1

w̃
(k+1)
k−i+j

j−1∑
l=1

w̃
(k−i+j−l)
k−i c

(k−i+j)
l ,

which coincides with the left hand side of (5.103) and thereby finishes the proof of the
lemma. �

With Lemma 5.19 we are able to derive the non-recursive representation for the Empirical
Interpolation basis functions qk, 1 ≤ k ≤M .
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Lemma 5.20 (Non-recursive representation of qk)
Let M ∈ N. Let ui, i ≤M , be given by line 14, w̃(j)

i , i, j ≤M , as defined in (5.87) and
rk, 1 ≤ k ≤ M as given by the algorithm. Then, each of the basis functions qk, k ≤ M ,
defined by line 16 and selected during the offline phase of the Empirical Interpolation
method as described in Algorithm 2 depends non-recursively on ui, 1 ≤ i ≤ k, and
follows the formula

qk(ξ) =
1

rk

uk(ξ)− k−1∑
j=1

c
(k)
j uk−j(ξ)

 , ∀ξ ∈ Ω, 1 ≤ k ≤M, (5.106)

with recursively given coefficients

c
(k)
j = w̃

(k)
k−j −

j−1∑
i=1

w̃
(k−i)
k−j c

(k)
i , j ∈ {1, . . . , k − 1}. (5.107)

Proof
Let ξ ∈ Ω. We prove the claim by induction over k. For k = 1 we have

q1(ξ) =
u1(ξ)

r1
(5.108)

which is true by definition of q1 in line 12.

For the induction step, we assume the claim (5.106) to hold for all k′ with 1 ≤ k′ ≤ k
for some k < M . For the sake of notational convenience we omit the ξ in the following.
We use the recursive formula for qk+1 provided by Lemma 5.18 and state

qk+1 =
1

rk+1

(
uk+1 −

k+1−1∑
i=1

w
(k+1)
i qi

)
. (5.109)

In the sum of (5.109), the qi, i ≤ k, are summed up. For each qi, i ≤ k, however, the
induction assumption holds. We thus replace the qi terms in (5.109) by the appropriate
term given by (5.106) and proceed with

qk+1 =
1

rk+1

(
uk+1 −

k∑
i=1

w
(k+1)
i qi

)

=
1

rk+1

uk+1 −
k∑
i=1

w(k+1)
i

 1

ri

ui − i−1∑
j=1

c
(i)
j ui−j


=

1

rk+1

uk+1 −
k∑
i=1

w̃
(k+1)
i

ui − i−1∑
j=1

c
(i)
j ui−j

 ,

(5.110)
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where we used the definition of w̃(k)
i = w

(k)
i /ri, ∀1 ≤ i, k ≤M in the last step. Comparing

the result of (5.110) to the claim in (5.106) we conclude that we have to show that

k∑
i=1

w̃
(k+1)
i

ui − i−1∑
j=1

c
(i)
j ui−j

 =

k∑
j=1

c
(k+1)
j uk+1−j (5.111)

to finish the proof. In the following we rewrite the left hand side of (5.111) such that each
ui, 1 ≤ i ≤ k, appears only once in the sum and then prove the claim by a comparison
of the respective coefficients. For the left hand side in (5.111) we trivially have

k∑
i=1

w̃
(k+1)
i

ui − i−1∑
j=1

c
(i)
j ui−j

 =
k∑
i=1

w̃
(k+1)
i ui −

k∑
i=1

w̃
(k+1)
i

i−1∑
j=1

c
(i)
j ui−j . (5.112)

Inverting the order of summation in the first sum of (5.112) gives

k∑
i=1

w̃
(k+1)
i ui =

k∑
i=1

w̃
(k+1)
(k+1)−iu(k+1)−i. (5.113)

The second sum in (5.112) can trivially be written as

k∑
i=1

w̃
(k+1)
i

i−1∑
j=1

c
(i)
j ui−j =

∑
(i,j)∈Ik

w̃
(k+1)
i c

(i)
j ui−j (5.114)

with
Ik =

{
(i, j) ∈ N2 | 1 ≤ i ≤ k, 1 ≤ j ≤ i− 1

}
, (5.115)

as already defined in (5.104) earlier with only slight labeling differences. Therefore, we
may change the order of summation in (5.114) by applying the mapping m of (5.105) to
get

k∑
i=1

w̃
(k+1)
i

i−1∑
j=1

c
(i)
j ui−j =

∑
(i,j)∈Ik

w̃
(k+1)
i c

(i)
j ui−j

=
∑

(i,j)∈Ik

w̃
(k+1)
m1(i,j)c

(m1(i,j))
m2(i,j) um1(i,j)−m2(i,j)

=

k∑
i=1

i−1∑
j=1

c
(k+1−i+j)
j w̃

(k+1)
k+1−i+juk+1−i.

(5.116)
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5.5.5 Comparison with Chebyshev interpolation

Inserting (5.116) together with (5.113) into (5.112) we have

k∑
i=1

w̃
(k+1)
i

ui − i−1∑
j=1

c
(i)
j ui−j


=

k∑
i=1

w̃
(k+1)
i ui −

k∑
i=1

w̃
(k+1)
i

i−1∑
j=1

c
(i)
j ui−j

=
k∑
i=1

w̃
(k+1)
k+1−iuk+1−i −

k∑
i=1

i−1∑
j=1

c
(k+1−i+j)
j w̃

(k+1)
k+1−i+juk+1−i

=
k∑
i=1

w̃(k+1)
k+1−i −

i−1∑
j=1

c
(k+1−i+j)
j w̃

(k+1)
k+1−i+j

uk+1−i.

(5.117)

Thus, recalling (5.111), in order to finish the proof of claim (5.106), we need to show
that

k∑
i=1

w̃(k+1)
k+1−i −

i−1∑
j=1

c
(k+1−i+j)
j w̃

(k+1)
k+1−i+j

uk+1−i =

k∑
i=1

c
(k+1)
i uk+1−i (5.118)

which holds if the coefficients of each ul, 1 ≤ l ≤ k coincide on both sides of (5.118). We
thus prove equality (5.118) by validating

w̃
(k+1)
k+1−i −

i−1∑
j=1

c
(k+1−i+j)
j w̃

(k+1)
k+1−i+j = c

(k+1)
i , ∀i ∈ {1, . . . , k}. (5.119)

By the definition of c(k+1)
i in (5.94), (5.119) is equivalent to

w̃
(k+1)
k+1−i −

i−1∑
j=1

c
(k+1−i+j)
j w̃

(k+1)
k+1−i+j = w̃

(k+1)
k+1−i −

i−1∑
j=1

w̃
(k+1−j)
k+1−i c

(k+1)
j , ∀i ∈ {1, . . . , k},

which trivially is equivalent to

i−1∑
j=1

c
(k+1−i+j)
j w̃

(k+1)
k+1−i+j =

i−1∑
j=1

w̃
(k+1−j)
k+1−i c

(k+1)
j , ∀i ∈ {1, . . . , k}. (5.120)

Equation (5.120) holds by Lemma 5.19, which finishes the proof of the claim. �

Remark 5.21 (On the non-recursive representation of qk)
Lemma 5.20 resolves the recursive dependence of each qk, 1 ≤ k ≤M , on uj, 1 ≤ j ≤ k,
and provides us with a weighted sum of uj, 1 ≤ j ≤ k, with explicitly known coefficients,
instead. These coefficients are defined recursively. The lemma thus shifts the recursive
pattern in the definition of the basis functions qk, 1 ≤ k ≤ M , from the functions uj,
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5.5.5 Comparison with Chebyshev interpolation

1 ≤ j ≤ k, onto coefficients consisting of c(k)
j , 1 ≤ j < k. Theoretically, the formula

for qk in (5.90) provided by Lemma 5.18 coincides with the expression (5.106) provided
by Lemma 5.20. Numerically, however, the latter is far more appealing. Each basis
function qk, 1 ≤ k ≤ M , may now be evaluated continuously with each uj, 1 ≤ j ≤
M , appearing only once thus avoiding the necessity of exponentially many elementary
function evaluations as outlined by Remark 5.16. The points on the domain Ω for which
the basis function qk shall be evaluated must not be known beforehand, rendering the result
of Lemma 5.20 superior over the semi-non-recursive solution described by Remark 5.17.

Corollary 5.22 (Non-recursive interpolation operator IM)
Let u ∈ U and M ∈ N. Then

IM (u)(ξ) =

M∑
j=1

cjuM+1−j(ξ), ∀ξ ∈ Ω, (5.121)

with

cj = w̃M+1−j −
j−1∑
i=1

w̃
(M+1−i)
M+1−j ci, j ∈ {1, . . . ,M}

where

w̃i =

(
(BM )−1u(~ξM )

)
i

ri
, 1 ≤ i ≤M,

the analogon to the w̃(j)
i , 1 ≤ i, j ≤ M , as defined in (5.87) with ri, 1 ≤ i ≤ M , given

by (5.86).

Remark 5.23 (New Challenges for the optimization routine)
During the offline phase of the Empirical Interpolation algorithm, at iteration M in
line 16, a basis function qM is defined via the solution to the optimization problem of
line 14. Since the algorithm represents functions u ∈ U at the magic points ξi, 1 ≤ i ≤
M − 1, perfectly, the domain {u(ξ) − IM−1(u)(ξ) | ξ ∈ Ω} becomes increasingly uneven
for each u ∈ U for increasing values of M . Consequently, the identification of both u ∈ U
and ξ ∈ Ω that maximize |u(ξ) − IM−1(u)(ξ)| becomes more and more challenging. For
increasing values of M , the risk of running into local minima during the optimization

max
u∈U , ξ∈Ω

|u(ξ)− IM−1(u)(ξ)| (5.122)

thus rises.
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A Integration of special periodic functions

Integrals of univariate integrable functions f : R+ → R over the semi-infinite integration
range [0,∞) are usually numerically approximated by cutting of the integration range
at a value N ∈ R beyond which the absolute value of the integrand becomes sufficiently
small and the value of ∫ ∞

N
f(x) dx ≈ 0

becomes negligible. In some cases, however, the value of N is very large. Then, cutting
off the integral at N means either having to deal with a large numerical effort to compute∫ N

0 f(x) dx or accepting a significant error in the integral value by choosing Ñ � N as
cut-off point, alternatively. In this appendix, we introduce an approximate integration
procedure for functions f of a special kind that avoids disregarding the function beyond
the cutoff pointN . Instead, the approach takes knowledge of the structure of the function
f into account in order to improve the approximation of the whole integral value as
such.

A.1 An introduction of the integration method

The integration method we are about to present is taylormade for a special kind of
functions. After a brief definition, this section states the main result and gives a proof
of the lemma.

Definition A.1 (Periodic function)
Let g : R+

0 → R such that there exists a constant p ∈ R+ such that g(x) = g(x + p) for
all x ∈ R+

0 . Then we call g a periodic function and we call p the period of g.

Lemma A.2 (Approximate integration of special periodic functions)
Let f : R+ → R, f ∈ L1(R+), be given by

f(x) =
g(x)

xk
, ∀x ∈ R+,

for some periodic function g with period p ∈ R+ and some 1 < k ∈ N. Assume further
that ∃C ∈ R+ such that

|g(x)| ≤ C, ∀x ∈ [0, p]. (A.1)
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Then, for any j ∈ N,

V :=

∫ ∞
0

f(x) dx = V
N(j)
cut + V

N(j)
series + E(j)

≈ V
N(j)
cut + V

N(j)
series,

(A.2)

where N(j) = pj for j ∈ N, V N(j)
cut denotes the integral of f up to N(j),

V
N(j)
cut =

∫ N(j)

0
f(x) dx, (A.3)

and V N(j)
series is given by

V
N(j)
series = I(j)jk

(
ζ(k)−

j−1∑
m=1

1

mk

)
, (A.4)

wherein I(i), i ∈ N, is the integral of f over period i,

I(i) =

∫ N(i+1)

N(i)
f(x) dx, (A.5)

and ζ(·) denotes the Riemann zeta function,

ζ(s) =

∞∑
m=1

1

ms
,

defined for s ∈ {z ∈ C | <(z) > 1}, confer Laurinčikas (1996). Furthermore, the error
term E(j) in (A.2) decays as fast to zero as j 7→

∑j
m=1

1
mk

approaches its limit ζ(k).

Proof
Fix 1 < j ∈ N. Define

Ĩ(m) = I(j)
jk

mk
, m ∈ N. (A.6)
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We compute

V =

∫ ∞
0

f(x) dx =

∫ N(j)

0
f(x) dx+

∫ ∞
N(j)

f(x) dx

= V
N(j)
cut +

∞∑
m=j

∫ N(m+1)

N(m)
f(x) dx

= V
N(j)
cut +

∞∑
m=j

I(m)

= V
N(j)
cut +

∞∑
m=j

Ĩ(m) +
∞∑
m=j

(
I(m)− Ĩ(m)

)
= V

N(j)
cut + I(j)jk

∞∑
m=j

1

mk
+
∞∑
m=j

(
I(m)− Ĩ(m)

)

= V
N(j)
cut + I(j)jk

(
ζ(k)−

j−1∑
m=1

1

mk

)
+ E(j),

with error term

E(j) =

∞∑
m=j

(
I(m)− Ĩ(m)

)
.

We show that E(j)→ 0 for j →∞. Clearly,

|E(j)| ≤
∞∑
m=j

∣∣∣I(m)− Ĩ(m)
∣∣∣ . (A.7)

Further, for m ∈ N we have∣∣∣I(m)− Ĩ(m)
∣∣∣ =

∣∣∣∣I(m)− jk

mk
I(j)

∣∣∣∣
=

∣∣∣∣∣
∫ N(m+1)

N(m)

g(x)

xk
dx− jk

mk

∫ N(j+1)

N(j)

g(x)

xk
dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ N(j+1)

N(j)

g(x)

(x+ (m− j)p)k
dx− jk

mk

∫ N(j+1)

N(j)

g(x)

xk
dx

∣∣∣∣∣ (A.8)

=

∣∣∣∣∣
∫ N(j+1)

N(j)

g(x)

xk

(
xk

(x+ (m− j)p)k
− jk

mk

)
dx

∣∣∣∣∣
≤ max

x∈[N(j),N(j+1)]

∣∣∣∣ xk

(x+ (m− j)p)k
− jk

mk

∣∣∣∣ ∫ N(j+1)

N(j)

∣∣∣∣g(x)

xk

∣∣∣∣dx, (A.9)
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where we used in (A.8) that g is a periodic function. We find

max
x∈[N(j),N(j+1)]

∣∣∣∣ xk

(x+ (m− j)p)k
− jk

mk

∣∣∣∣ = max
δ∈[0,1]

∣∣∣∣ ((j + δ)p)k

((j + δ)p+ (m− j)p))k
− jk

mk

∣∣∣∣
= max

δ∈[0,1]

∣∣∣∣ (j + δ)k

(m+ δ)k
− jk

mk

∣∣∣∣ (A.10)

=

[
max
δ∈[0,1]

(j + δ)k

(m+ δ)k

]
− jk

mk
.

Since m ≥ j and k > 1, [0, 1] 3 δ 7→ (j + δ)/(m + δ) is monotonically increasing and
thus assumes its maximum value in δ = 1. Continuing in (A.10) we thus get[

max
δ∈[0,1]

(j + δ)k

(m+ δ)k

]
− jk

mk
=

(j + 1)k

(m+ 1)k
− jk

mk
≤ 1

mk

(
(j + 1)k − jk

)
. (A.11)

Consequently, taking (A.9) – (A.11) into account,∣∣∣I(m)− Ĩ(m)
∣∣∣ ≤ 1

mk

(
(j + 1)k − jk

)∫ N(j+1)

N(j)

∣∣∣∣g(x)

xk

∣∣∣∣ dx. (A.12)

Analyzing the integral in (A.12) we have by assumption (A.1) that∫ N(j+1)

N(j)

∣∣∣∣g(x)

xk

∣∣∣∣ dx ≤ max
x∈[0,p]

|g(x)|
∫ (j+1)p

jp

1

xk
dx

≤ C

∫ (j+1)p

jp

1

xk
dx

= − C 1

k − 1

[
1

xk−1

](j+1)p

jp

= − C 1

(k − 1)pk−1

[
1

(j + 1)k−1
− 1

jk−1

]
,

(A.13)

where we again used the periodicity of g in the first step. We combine the results from
(A.12) and (A.13) to find∣∣∣I(m)− Ĩ(m)

∣∣∣ ≤ −C 1

mk

1

(k − 1)pk−1

[
(j + 1)k − jk

] [ 1

(j + 1)k−1
− 1

jk−1

]
. (A.14)

260



A Integration of special periodic functions

Elementary calculations yield

−
[
(j + 1)k−jk

] [ 1

(j + 1)k−1
− 1

jk−1

]
=

[
1

jk−1
− 1

(j + 1)k−1

] [
(j + 1)k − jk

]
= (j + 1)

(
j + 1

j

)k−1

− j − (j + 1) + j

(
j

j + 1

)k−1

= j

((
j

j + 1

)k−1

+

(
j + 1

j

)k−1
)
− (2j + 1) +

(
j + 1

j

)k−1

= j

[(
j

j + 1

)k−1

+

(
j + 1

j

)k−1

− 2

]
+

[(
j + 1

j

)k−1

− 1

]

= j

( j

j + 1

)k−1

+

[(
1 +

1

j

)j] k−1
j

− 2

+

[(1 +
1

j

)j] k−1
j

− 1


≤ j

[
1 + exp

(
k − 1

j

)
− 2

]
+ exp

(
k − 1

j

)
− 1

=

(
exp

(
k − 1

j

)
− 1

)
(j + 1),

(A.15)

where we used that (1 + 1/j)j converges to e from below for j →∞. By l’Hôpital’s rule,

j 7→
(

exp

(
k − 1

j

)
− 1

)
(j + 1)→ (k − 1) (A.16)

for j →∞ from above. Therefore, there exists j ∈ N such that(
exp

(
k − 1

j

)
− 1

)
(j + 1) ≤ (k − 1) max{2, 1/C}. (A.17)

Let j ∈ N be large enough such that (A.17) holds. Then

|E(j)| ≤
∞∑
m=j

∣∣∣I(m)− Ĩ(m)
∣∣∣

≤ C max{2, 1/C} 1

pk−1

∞∑
m=j

1

mk

=
max{1, 2C}

pk−1

(
ζ(k)−

j−1∑
m=1

1

mk

)
,

which proves the lemma. �
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A.2 Numerical experiments

In this section, we apply the approximation method presented in Lemma A.2 onto the
integration of an example function. We will investigate the approximation of the as-
sociated integral in depth to provide an intuitive understanding of the approximation
technique as well as demonstrate its approximation power. Let f be given by

f(x) :=
cos(x)(1− cos(x))2

x2
(A.18)

and thus consider the integral

V =

∫ ∞
0

f(x) dx. (A.19)

Note the resemblance of function f in (A.18) with the integrands we considered in Sec-
tion 3.4 of Chapter 3, for example the first integrand in expression (3.143) in Corol-
lary 3.34. Therein, we were confronted with the challenge of computing the entries of
a stiffness matrix expressed as integrals of highly oscillating functions. The integration
method of Lemma A.2 has been originally developed with that application in mind and
shows the relevance of the result in the context of finance and beyond.

Recall that functions of form (A.18) can be approximately integrated over a finite domain
using Filon’s formula, see for example Abramowitz and Stegun (2014). Our integration
range, however, is (semi-)infinite which is why Filon’s formula does not apply, here.
The graph of f is shown in Figure A.1. With the definition of the integrand f in
expression (A.18) and the setting of Lemma A.2 in mind we set

g(x) = cos(x)(1− cos(x))2, (A.20)
k = 2 (A.21)

and g is a periodic function in the sense of Definition A.1 with period p = 2π. The
periodic influence of g on f is clearly visible in Figure A.1. The oscillations that endure
infinitely and the relatively slow decay lead to unsatisfactory results when the integration
range is simply cut off while a high accuracy of the resulting integral value shall be
reached. The integration approximation method introduced by Lemma A.2 circumvents
this issue. It integrates f up to a chosen cut off point N = jp, j ∈ N, exactly and
approximates the integral value beyond that point. To that extent it approximates f for
x ∈ Im := [mp, (m+ 1)p], j ≤ m ∈ N, by

f jm : x 7→ f(x− (m− j)p) j
k

mk
=

g(x)

(x− (m− j)p)k
jk

mk
, (A.22)

which leads to the approximation of the associated integral of f over Im, I(m) =
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Figure A.1 Graph of example integrand f of Equation (A.18) evaluated over three
different subintervals of the semi-infinite integration range. One observes the repeat-
ing structure that is exploited by the method of Lemma A.2 for the (approximative)
integration of f over R+. The exact value of the integral is

∫∞
0 f(x) dx = −π

4 .
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Figure A.2 Left: f evaluated over the interval I = [p · 150, p · 153] = I150 ∪ I151 ∪ I152

and its piecewise approximation by f j150, f
j
151 and f j152, respectively, as defined in (A.22),

with a small value of j = 10. Right: The respective absolute error.

∫
Im
f(x) dx, by Ĩ(m) =

∫
Im
f jm(x) dx. Using the periodicity of g we get

Ĩ(m) =

∫
Im

f jm(x) dx

=

∫
Im

g(x)

(x− (m− j)p)k
dx

jk

mk

=

∫
Ij

g(x)

xk
dx

jk

mk

= I(j)
jk

mk
,

(A.23)

compare the definition (A.6) at the beginning of the proof of Lemma A.2. The approx-
imation outlined in (A.23) together with the involvement of the periodicity of g thus
builds the cornerstone of the whole method. The relation between f and its approx-
imation on Im by f jm for some j ≤ m ∈ N is illustrated in Figures A.2 and A.3 for
both a small value of j and a large value of j. As expected, given j1 < j2 ≤ m, the
approximation of f on Im by f j2m is more precise than the one provided by f j1m .

Let us now turn back to the approximation of the integral V = V (f) of (A.19). The
exact value of this integral is V = −π/4. We choose increasing values of j ∈ N and
compare the new approximation method to an integration with integration range cut off
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Figure A.3 Left: f evaluated over the interval I = [p · 150, p · 153] = I150 ∪ I151 ∪ I152

and its piecewise approximation by f j150, f
j
151 and f j152, respectively, as defined in (A.22),

with a large value of j = 100. Right: The respective absolute error.

at the value N(j) = pj,

V
N(j)
cut :=

∫ N(j)

0
f(x) dx, (A.24)

V
N(j)
method := V

N(j)
cut + V

N(j)
series , (A.25)

with V N(j)
series defined by

V
N(j)
series = I(j)jk

(
ζ(k)−

j−1∑
m=1

1

mk

)
, (A.26)

as in (A.4) of Lemma A.2.

We approximate the integral of f as given by (A.18) over R+ and compare the error decay
of the new approximation method for increasing values of j ∈ N as described to the re-
sult yielded by simply cutting off the integration range. Figure A.4 illustrates the results.

The slow decay of f in x which we observed in Figure A.1 results in a slow decay of
V
N(j)
cut to the true value of V = −π/4. In contrast, exploiting the knowledge of the

special structure of f containing a periodic function g allows faster convergence of the
approximated integral value V N(j)

method in j.
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Figure A.4 Empirical study of the error decay for the approximative integration of f
given by (A.18) over R+. We compare the results for two methods. First, we simply cut
off the integration range as in (A.24) at N(j) = pj for different values of j. Secondly, we
approximate the function f or rather its integral beyond the cut off point N(j) by the
new approximation method as described by Lemma A.2. The results for both methods
indicate a convergence to the true integral value that is V = −π/4.
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B General features of magic point
interpolation

We add some aspects of the magic point interpolation method from Chapter 5. The
Magic Point Interpolation algorithm satisfies some immediate properties, which are iden-
tified by Barrault et al. (2004) and Maday et al. (2009) and summarised in the sequel.
The content of this appendix has been presented in Gaß et al. (2015), already.

Exact interpolation at magic points For all functions u ∈ U , the interpolation is exact
at the magic points, in the sense that for every m = 1, . . . ,M

Im(u)(z∗j ) = u(z∗j ) for all j ≤ m. (B.1)

This property holds by construction of qm. Note that qm(z∗j ) = 0 for j < m.

Magic points as maxima The basis function qm is maximal at the magic point z∗m i.e.

qm(z∗m) = 1 = sup
z∈Ω
|qm(z)|. (B.2)

The matrix BM is invertible By construction, the quadratic matrix BM ∈ RM×M , in-
troduced in (5.6) as

BM
jm = qm(z∗j )

for all j,m = 1, . . . ,M is a lower triangular matrix with unity diagonal. Its inverse
thus exists.

Coefficients of Im equal to those of Im+1 The coefficients αmj = αmj (u) of the inter-
polation Im(u) =

∑m
j=1 α

m
j qj of u do not depend on m, i.e. for all i < m and j ≤ i

it holds that
αmj = αij . (B.3)

This can be seen from the triangular structure of the defining linear system for
αm = (αmj )j=1,...,m,

Bmαm = bm (B.4)

with bmj = u(z∗j ). By this representation we also get the linearity of Im, for all
u, v ∈ U ,

Im(u+ v) = Im(u) + Im(v). (B.5)

Idempotence Let 1 ≤ m ≤ M . Since Im(v) = v for all v ∈ span{q1, . . . , qm} we have
for all u ∈ U ,

Im(Im−1(u)) = Im−1(u). (B.6)

267



C Gronwall’s Lemma

We provide a proof of a version of Gronwall’s lemma. The lemma exists in surprisingly
many shapes and forms. They all share the key idea of resolving an implicitly entan-
gled estimate where the quantity that shall be estimated appears on both sides of the
inequality. The first proof for resolving such inequalities is attributed to Thomas Hakon
Gronwall who published his result in Gronwall (1919). The version of the lemma that
we are interested in plays a key role in the convergence estimate at the end of Chapter 3
and guarantees the final step in the proof of the statement therein. In this appendix, we
state and prove Gronwall’s result in the version of Lemma C.1.

Lemma C.1 (Gronwall’s Lemma)
Let y = (ym)m≥0, f = (fm)m≥0 and g = (gm)m≥0 be nonnegative sequences in R satisfy-
ing

ym ≤ fm +
∑

0≤j<m
gjyj , m ≥ 0. (C.1)

Then

ym ≤ fm +
∑

0≤j<m

fjgj ∏
j<i<m

(1 + gi)

 (C.2)

holds for all m ≥ 0.

We need the following auxiliary lemma for the proof of the lemma.

Lemma C.2 (Auxiliary lemma)
Let (gn)n≥0 be a nonnegative sequence in R+

0 . Let j ∈ N0 arbitrary but fix. Then

1 +
∑

j<k<m

gk
∏
j<i<k

(1 + gi) =
∏

j<i<m

(1 + gi) (C.3)

holds for all m > j.

Proof
We prove the Lemma C.2 by induction over m. The claim trivially holds for m = j + 1
due to an empty sum on the left and an empty product on the right. For the inductive
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step we compute

1 +
∑

j<k<m+1

gk
∏
j<i<k

(1 + gi)

=

1 +
∑

j<k<m

gk
∏
j<i<k

(1 + gi)

+

gm ∏
j<i<m

(1 + gi)

 . (C.4)

We insert the induction hypothesis into the left bracket of (C.4) to get1 +
∑

j<k<m

gk
∏
j<i<k

(1 + gi)

+

gm ∏
j<i<m

(1 + gi)


=

 ∏
j<i<m

(1 + gi)

+

gm ∏
j<i<m

(1 + gi)


= (1 + gm)

∏
j<i<m

(1 + gi) =
∏

j<i<m+1

(1 + gi)

which finishes the induction and proves the claim for all m > j. �

Proof (of Gronwall’s Lemma C.1)
We follow the proof of Holte, J.M. (2009) and derive the claim of Lemma C.1 by induction
over m. For m = 0 the claim trivially holds. Conducting the inductive step we get by
assumption (C.1) and then by inserting the induction hypothesis that

ym+1 ≤ fm+1 +
∑

0≤j<m+1

gjyj

≤ fm+1 +
∑

0≤j<m+1

gj

fj +
∑

0≤j∗<j

fj∗gj∗ ∏
j∗<i<j

(1 + gi)


= fm+1 +

∑
0≤j<m+1

(fjgj) +
∑

0≤j<m+1

gj
∑

0≤j∗<j

fj∗gj∗ ∏
j∗<i<j

(1 + gi)

 .

(C.5)

The summands of the double sum in the last line of (C.5) are shown in Table C.1. We
reorder summation in (C.5) to

∑
0≤j<m+1

gj
∑

0≤j∗<j

fj∗gj∗ ∏
j∗<i<j

(1 + gi)


=

∑
0≤j<m+1

(fjgj)
∑

j<k<m+1

gk
∏
j<i<k

(1 + gi).

(C.6)

The new summation order is illustrated by Table C.2. Consequently, combining (C.5)
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j Summand

0 −
1 g1[(f0g0)]
2 g2[(f0g0)(1 + g1) + (f1g1)]
3 g3[(f0g0)(1 + g1)(1 + g2) + (f1g1)(1 + g2) + (f2g2)]
...

...
m gm[(f0g0)(1 + g1) . . . (1 + gm−1) + (f1g1)(1 + g2) . . . (1 + gm−1) + · · ·+ (fm−1gm−1)]

Table C.1 The summands of the double sum in (C.5) before reordering.

j Summand

0 (f0g0)[g1 + g2(1 + g1) + g3(1 + g1)(1 + g2) + · · ·+ gm(1 + g1) . . . (1 + gm−1)]
1 (f1g1)[g2 + g3(1 + g2) + · · ·+ gm(1 + g2) . . . (1 + gm−1)]
...

...
m− 1 (fm−1gm−1)gm
m −

Table C.2 The summands of the double sum in (C.6) after reordering.

and (C.6) leads to

∑
0≤j<m+1

(fjgj)+
∑

0≤j<m+1

gj
∑

0≤j∗<j

fj∗gj∗ ∏
j∗<i<j

(1 + gi)


=

∑
0≤j<m+1

(fjgj)

1 +
∑

j<k<m+1

gk
∏
j<i<k

(1 + gi)

 .

Invoking the auxiliary Lemma C.2 finishes the induction and yields the claim. �
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