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A B S T R A C T

Halophiles, like Halomonas elongata, show great biotechnological potential, es-
pecially concerning the production of compatible solutes. Since the metabolic
details, which lead to its production, remain unclear, a thorough analysis is re-
quired. The scope of the thesis is to elucidate certain aspects of the metabolism
of H. elongata applying mathematical modeling.

Due to the absence of large data sets, which leaves a great number of de-
grees of freedom, the analysis is characterized by the sequential application of
constraint-based techniques, which reduce the dimensionality of the parameter
space. Since the genome of H. elongata is known, the workflow is initiated by
metabolic reconstruction, followed by a stoichiometric analysis of the resulting
metabolic network via Flux Balance Analysis, which indicates the major paths
through the network, leading to ectoine production. The analysis if followed by
a thermodynamic feasibility analysis of the resulting flux distributions, which
moreover returns information concerning feasible metabolite concentrations.
The framework is finally completed by the reduction of the model via ther-
modynamic shortening and the utilization of the gained insights in building a
stable dynamical model.

The application of the workflow has produced a series of models that were
able to identify optimal pathways, as well as thermodynamic bottlenecks. These
models are furthermore comparable with fermentation data. The results show
that a sequential application of constraint-based techniques already provides
great insights into the metabolic network of an organism, even without the
availability of large data sets.

iii





The challenge in mathematical modeling:
... not to produce the most comprehensive descriptive model
but to produce the simplest possible model that incorporates

the major features of the phenomenon of interest.

— Howard Emmons [73]
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1
I N T R O D U C T I O N

The present thesis deals with the organism Halomonas elongata and intends to
contribute to a quantitative understanding of its metabolism with the help of
mathematical modeling. The aim is to formulate a model of the metabolism,
concerning the product ectoine, which could furthermore be used to guide
the design of improved strains able to achieve higher yields and also produce
ectoine efficiently from a wider spectrum of raw materials.

The organism in question is H. elongata, a halophilic γ-proteobacterium, see
Figure 1 (a), which is commonly found in hypersaline environments with salt-
concentrations exceeding 0.5 mol/l, like the salt lake in Figure 1 (b) [58, 153].
In order to survive, the organism is bound to establish an osmotic equilibrium
by synthesis and/or import of the compatible solute ectoine [48]. Since compat-
ible solutes protect proteins, membranes and even whole cells against denat-
uration, inactivation and inhibition by heat or hyperosmotic stress, they turn
out to be very useful for biotechnological applications, especially with respect
to cosmetics. Ectoine is superior in its protective abilities, in particular against
UV radiation. For this reason it is produced annually on a scale of tons with
its producer strain H. elongata [153]. Due to its industrial importance, it is nec-
essary to gain a deeper understanding of the mechanisms in H. elongata, which
lead to ectoine production. The development of a mathematical model, which
is able to further elucidate the understanding of the metabolism of H. elongata,
with a view to guide the way to experimental improvements of the organism
with respect to product yield, is the focus of the present thesis.

(a) (b)

Figure 1: H. elongata (a) [97] and its habitat (b) [166].

H. elongata is still a relatively unknown organism. Therefore, the amount of
information available is manageable. Due to Schwibbert et al. [153], the com-
plete genome of the bacterium has been sequenced and the ectoine metabolism

1



2 introduction

identified and characterized. Furthermore, data concerning fermentation exper-
iments and enzyme assays are available, although not yet published. For this
reason, the resulting mathematical model should be able to be combined with
the fermentation data and based on its analysis able to propose further experi-
ments.

Since the amount of available data is marginal, many different models can fit
all available data. Therefore, instead of inferring one such model, a workflow is
established, which connects different modeling techniques in a sequential way
to gain further insights and reduce the degrees of freedom before analyzing
any data. The framework includes the following tools:

stoichiometry In a first step, the metabolic network is analyzed with re-
spect to mass conservation via Flux Balance Analysis (FBA), since this tech-
nique requires little information concerning enzyme kinetics or metabolite con-
centrations. Consequently, one obtains an idea of the flux distributions within
the network, the maximal production yields and the maximal possible P:O ra-
tio.

thermodynamics Subsequently, the flux distributions are analyzed from an
energetic perspective, which adds further restrictions to the analysis and ver-
ifies, if the flux distributions are feasible. The tools used in this step are the
Network-Embedded Thermodynamic (NET) analysis and the Max-min Driving
Force (MDF) algorithm, complemented by the Specific Ion interaction Theory
(SIT), which allows the thermodynamic analysis at elevated salt concentrations.

dynamics The analysis is concluded by a consideration of regulation within
the network, which follows a significant model-reduction with help of the
newly developed method, Thermodynamic shortening. The tool used in the defini-
tion of the dynamical model is the Biochemical Systems Theory (BST). Another
possible method would be the well-known parameter estimation [13]. Since this
method depends on the available data sets and only mirrors the conditions un-
der which the data have been generated, it has been discarded as too specific.

The mentioned tools yield qualitatively different information, which are able
to reduce the degrees of freedom significantly, if taken together. This smooths
the way for a subsequent application of the available experimental data. The
challenge of this workflow approach lies in the initial selection and subsequent
integration of the methods described above. The framework has been published
in 2015 in [155]. Around the same time, the group of Hatzimanikatis published
a paper, which is concerned with the same problem and in which they choose
a similiar approach [10]. The fact that other groups work on the same problem
emphasizes how relevant the topic is.



introduction 3

The thesis is composed of three parts: The first part (Material and Methods)
reviews existing analytic methods, starting out with metabolic reconstruction,
followed by the application of tools from thermodynamics and finally methods,
which allow the analysis of a dynamical model. In order to combine them in a
functional workflow, a certain missing tool had to be developed in the course of
this work. It is further described at the beginning of the second part (Results).
The chapters discuss the application of the newly developed workflow with
respect to the metabolism of H. elongata to shed light on distinctive features of
the network, like the absence of the fructose-1,6-biphosphate phosphatase or
the presence of a sodium-translocating version of complex I in the respiratory
chain, in addition to the classical proton-dependent one.
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2
M E TA B O L I C R E C O N S T R U C T I O N A N D S T O I C H I O M E T R I C
C O N S T R A I N T S

In order to build a mathematical model of the metabolism of H. elongata, the
genome, as presented by Schwibbert et al. [153], has to be examined. This ex-
amination is needed to gain insight into the different gene products and their
relation to each other. The process, called metabolic reconstruction, allows the
modeler to obtain a first impression of the metabolic structure. A general pro-
tocol for this process has been written by Thiele and Palsson [169]. Several sci-
entists work on software to find automated, or at least semi-automated, ways
to cope with this task but so far they have not yet come up with a flawless tool.
Thus, the community is left with manual evaluations of such an automated
reconstruction [50, 169]. For this reason, the initial task of this project consists
of the manual evaluation of key genes of the genome of H. elongata and the
subsequent formulation and analysis of the obtained metabolic structure.

2.1 annotation

The process of metabolic network reconstruction generally begins with the au-
tomatic annotation of relevant genes, which identifies all open reading frames
(ORFs) of the genome [137]. These are the genes, which encode a protein or
functional RNA. Schwibbert et al. [153] already used automatic annotation
strategies to find the ORFs of H. elongata and to identify their gene products.
This step is followed by a manual evaluation.

The most reliable evaluation approach is a database search for homologs [84].
Essentially this means the identification of similar sequences in other better
understood genomes in publicly available databases. Since mutations in the
genome have likely appeared, ORFs do not have to be completely identical. For
sequences to be called homologous and biological relevant, they need to fulfill a
certain criteria: The similarity score of the alignment shall not be improvable by
the addition or dismissal of any letters, representing nucleotides or aminoacids.
Such an alignment is called high-scoring segment pair (HSP) and is the aim of a
homology search.

In order to find homologs, one can either consider the DNA or the protein
sequence, but the latter has several distinct advantages and therefore might
lead to a greater sensitivity. Two of the most common advantages of protein
sequences are: First, that statistical significance can be accomplished with much
shorter sequences, because there are more amino acids than nucleotides, and
therefore fewer repetitions of certain patterns. Second, it is less likely for an
amino acid to be replaced during evolution, than for a nucleotide.

7
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The manual annotation of the genome of H. elongata is therefore done on
the protein level, with help of the database UniProt, which is an useful tool to
find homologs to known ORFs. UniProt [31] is the largest protein-database and
combines the data from Swiss-Prot, TrEMBL (computer-annotated supplement
to Swiss-Prot) and PIR (Protein Information Resource). It is updated regularly
and moreover makes use of the Basic Local Alignment Search Tool (BLAST),
which is the most widely used and fastest sequence-alignment tool so far [84].
Although BLAST uses a solid statistical foundation, it still produces false pos-
itives, as well as false negatives. One could try to improve the search result
by only considering hits with very high statistical significance, to eliminate the
false positives but this would also result in missing numerous homologs. There-
fore, it seems more reasonable to check the outcome of the search manually and
decide on the most reasonable homolog. This causes the genome annotation to
be the rate limiting step in most genome projects.

Once a homologous sequence is found, the corresponding encoded protein
can be identified, thus detecting the homologs of the ORFs and at the same
time their potential function in the genome as well.

Despite significant improvements, genome annotation is far from perfect and
may contain multiple incorrect or misleading outcomes, due to automatic an-
notation. Moreover, UniProt records include functional predictions, which have
been neither published in a scientific journal nor experimentally confirmed.
Therefore, all findings need to be reviewed case by case to increase reliability
when identifying the best match. For purposes of the present work, the focus of
the manual evaluation is on the ORFs for the central metabolism of H. elongata,
for which a descriptive mathematical model is developed.

As an illustration of the complexity consider an actual example. It is com-
monly accepted that E. coli and H. elongata are close relatives. The annotation
for ORF Helo_3010 of H. elongata using BLAST in Uniprot results in a 54 %
match with the phosphoenolpyruvate carboxylase of E. coli (strain K12). There
are better matches with other organisms available (for example H. salina at 90.6
%) but given the close relationship, E. coli has the advantage to be experimen-
tally well understood. Thus, there is a significant likelihood that the enzyme of
the homolog is already functionally characterized. This is indeed borne out, the
enzyme of the homolog has been characterized in the laboratory and is there-
fore the best annotation match for Helo_3010 [63], supporting the conclusion
that the gene Helo_3010 probably encodes the phosphoenolpyruvate carboxy-
lase in H. elongata as well.

2.2 stoichiometric constraints

The identification of the gene products and their relations goes hand in hand
with their conversion into a mathematical representation to be useable for com-
putation of network and/or physiological capabilities [50]. This is the basis for
a genome-scale model. Schwibbert et al. reconstructed the basic structure of
the metabolism of H. elongata for a core-model in [153]. This existing model has
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been extended and modified in the course of this project as described in the
results section (Chapter 6).

Following the metabolic reconstruction, the next important step is the de-
ployment of a large range of computational tools to analyze functional net-
work properties [137]. In a perfect world one could utilize a dynamic mathe-
matical model to reflect the time dependency of the available data. Unfortu-
nately, the necessary mechanistic details and kinetic parameters for this ap-
proach are rarely available for large-scale networks, as stated by Klamt and
Stelling [81] and Beard and Qian [19]. Therefore, one may focus on the eval-
uation of systemic properties instead, for instance with a methodology called
constraint-based modeling, which deals, among others, with the stoichiometry of
the metabolic network [50, 137]. This approach does not require detailed ki-
netic parameters or a-priori knowledge of concentrations or fluxes but is able
to include them in form of constraints, if available [19]. It has proven to be an
effective strategy for predicting the physiological response of microorganisms
[98] and metabolic capabilities [90]. Constraint-based modeling takes advan-
tage of physiochemical constraints such as mass balance, energy balance, and
flux limitations to describe the potential behavior of an organism [78]. In this
respect, one assumes that the organism will reach a steady state that satisfies
the physiochemical constraints under any given environmental condition. To
identify such a steady state, an optimization is carried out, which has to sat-
isfy the given constraints [154]. One form of constraints, which can be derived
directly from the metabolic reconstruction, are stoichiometric constraints, since
the reconstruction gives information with respect to the interplay of metabo-
lites and reactions. This information is collected in the stoichiometric matrix, as
will be explained in the following.

2.2.1 The stoichiometric matrix

The stoichiometric coefficients of the metabolites in question are typically rep-
resented by a stoichiometric matrix (nxm), whose n rows correspond to the
metabolites and the m columns reflect the reactions of the network and there-
fore the chemical transformations caused by the enzymes [30, 119, 137]. In this
way, the stoichiometric matrix describes the structural relationships between
the network components. This matrix is quite important because it represents
the translation of biological knowledge into mathematical terms [96]. A metabo-
lite, which takes part in the jth-reaction as a substrate, has a negative entry and
a metabolite, which takes part as a product, has a positive entry in the jth-
column. As an example, one may consider the following network with five
metabolites and four reactions:

X0 X1 X2 X3 X4
v1 v2 v3 v4
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The stoichiometric matrix in this case would be:

S =



v1 v2 v3 v4
X0 −1 0 0 0

X1 1 −1 0 0

X2 0 1 −1 0

X3 0 0 1 −1
X4 0 0 0 1


The metabolites in a stoichiometric matrix can be divided into internal and

external species [81]. The external species are thought to be sinks or sources,
which might physically lie outside of the cell and take only part in a single reac-
tion. They are the reason, why the stoichiometric coefficients of a reaction may
only have positive or only negative signs, when external species are ignored by
removing their rows. In the example above, the external species are X1 and X4.
The rest are internal species.

Once the stoichiometric matrix has been determined, mass balances involving
internal species can be represented as follows (vectors are marked by arrows
and matrices are written in bold) [87, 96]:

d−→x
dt

= S−→v (−→x ) − µ
−→x (1)

−→x (nx1) is a vector of intracellular metabolite concentrations, while −→v (−→x )
(mx1) is a flux vector depending on named metabolites and µ represents the
specific growth rate of the cell. Because the dilution term µ

−→x is much smaller,
than S−→v , in the context of this work, it can be disregarded. Equation 1 is the
dynamic mass balance equation and it describes the evolution of the concentra-
tion of each metabolite, xi, over time. The intracellular reaction mechanisms of
metabolic networks are still unknown, thus one usually reverts to the assump-
tion that the internal species are in a pseudo-steady state, because the time
scales inside the cell are much faster, than outside. Therefore, the following
formula (the law of mass conservation) applies for the internal species [96]:

S−→v = 0 (2)

Equation 2 describes the space, which includes every feasible flux distribu-
tion. This space can be further restricted by, e.g., the definition of lower bounds
for irreversible reactions, like ~v > 0 or additional upper bounds concerning the
capacity of fluxes, as ~v 6 vmax. As displayed in Figure 2, the possible solution
space decreases with every addition.

The stoichiometric matrix, without external species, can be characterized by
four fundamental subspaces: the (right) null space, the left null space, the row
subspace and the column subspace [87]:

• The row subspace indicates temporal changes of variables and therefore
enables the formation of pool variables. Its dimension is r (the rank of
the stoichiometric matrix), which is usually smaller than n, because S
typically does not have full rank.
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Figure 2: In addition to Equation 2 one can add further restrictions, like the irreversibility of cer-
tain reactions and/or maximum capacity constraints, derived from enzyme or trans-
port capacities, resulting in a decreased solution space [96].

• The column space indicates the weight of each rate in the velocity vector
and can be used for model reduction. Its dimension is also r.

• The null space indicates the stationary flux maps, the ones, which fulfill
Equation 2. Its dimension is m− r.

• The left nullspace describes the conservation conditions and therefore the
time invariants. A conservation equation is the weighted sum of a metabo-
lite concentration, which stays constant. Its dimension is n− r.

2.2.2 Flux Balance Analysis (FBA)

There are several constraint-based approaches with respect to stoichiometric
modeling, like convex analysis or metabolic flux analysis. One of the most well
known examples is the Flux Balance Analysis (FBA) [96, 172, 173]. In this case,
the constraints are predefined through the underlying biochemical network.
FBA makes it possible to calculate the flow of metabolites through a metabolic
network and thereby allows for the prediction of the growth rate of an organ-
ism or the rate of production of other metabolites of interest [119], because it is
assumed that cells have evolved to achieve an optimal behavior owing to evo-
lutionary pressure [96]. That is, cells tend to regulate their fluxes towards an
optimal flux distribution. A central aspect of FBA is to find such optimal flux
distributions via linear programming.

In order to apply FBA, one has to take the list of stoichiometrically balanced
biochemical reactions from the metabolic reconstruction and convert them into
a mathematical model by forming the stoichiometric matrix, as is typical for
a constraint-based approach (see Figure 3 for an overview). Growth can be
incorporated through a single reaction, which represents the consumption of
the precursors for biomass production (yellow column in Figure 3). The green
columns represent the exchange reactions, which stand for the flow of certain
metabolites in and out of the cell. FBA, as a constraint-based method, follows
the law of mass conservation. This homogeneous system of linear equations
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demands that the production and consumption of an internal metabolite must
cancel each other out.

Figure 3: (a) Metabolic reconstruction provides insights into the network structure. (b) This
reconstruction is converted into a mathematical model by forming the stoichiomet-
ric matrix. Growth is incorporated with an additional reaction (yellow column). Ex-
change reactions (green columns) represent the flow in and out of the cell. (c) At
steady state, the flux through each reaction is given by Equation 2. (d) In order to
build the optimization problem, an objective function needs to be defined, like one
for growth-maximization. (e) Linear programming is used to maximize or minimize
the objective function to identify an optimal flux distribution [119].

As a metabolic network usually has more reactions, than metabolites, it is un-
derdetermined and therefore there is more than one solution, an issue that has
been addressed by Kelk et al. [79]. One has to choose an objective, a metabo-
lite/product, which is supposed to be optimized, such as biomass. The objec-
tive function Z can be any linear combination of fluxes: Z = −→c T · −→v , where
−→c is a vector of weights. With the use of linear programming, it is possible
to identify a flux distribution, which is a minimization or maximization of the
objective function, as long as the problem is feasible. In order to get a biologi-
cally feasible solution, one can constrain the reaction directions of the known
irreversible reactions. In case that a reaction is irreversible forward, the flux has
to be positive (v > 0), if it is irreversible backward, the flux is negative (v 6 0).
The reversible reactions stay unconstrained and if a reaction should not take
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part in the optimization, its upper and lower bound are set to zero. Despite
all the constraints, the space of possible flux distributions can be quite large,
as outlined exemplarily through the blue region in Figure 3 (e) [119] but the
single optimal flux distribution in this simple example is highlighted through
a little dot in the upper right corner.

A typical formulation of such an optimization problem is the following ex-
ample. It describes the optimization of biomass, where the upper and lower
bounds of the fluxes are defined by ~vL and ~vU:

max Z = vbio

s.t:

S~v = ~0

~vL 6 ~v 6 ~vU (3)

In general, one should also define an upper bound for the uptake of some
limiting nutrient (vin), like glucose, to avoid the solution to be infinite growth.
Then, all the fluxes have to be seen as yields, because their values depend on the
limiting nutrient, which is the input of the system and the vector of solutions
becomes the vector of yields. The kth entry would be: Yk,in = vk

vin
. There exists a

disagreement between the usage of optimal yields or optimal rates, as stated by
Schuster, Pfeiffer, and Fell [149], e.g. rate maximization matches experimental
results for the energy production pathway in S. cerevisiae better, while yield
maximization reproduces the experimental observations in E. coli. Throughout
this work, the flux distributions will be seen as vectors of yields.

Both the uptake of some input or the output can be constrained. Therefore,
one can set a certain minimal constraint for the production of, for example,
biomass and optimize the production of another metabolite or even the uptake
of some limiting nutrient. This way, it is possible to ensure, for instance, the
same biomass production as in Equation 3, if its maximal growth value (vmaxbio )
is used as constraint in Equation 4 but with minimal uptake of glucose (vin).
This reformulation of a linear problem is often used in trade-off analysis [34]
and it is also a well established method in multi-criteria programming [165].

min Z = vin

s.t:

S~v = ~0

~vL 6 ~v 6 ~vU

vmaxbio 6 vbio (4)

A solution to the problem, as formulated in Equation 4, can be interpreted as
the flux distribution that is able to achieve a pre-established growth rate, while
making the most efficient use of the input [155].

Another relevant element of FBA is the determination of the importance of
single reactions for the overall system performance by studying knock-out mu-
tations [81]. Here, certain reactions are constrained to have a zero-flux to gain
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insight into the new direction of the system-fluxes and to determine how this
affects the objective: Is the optimal value diminished or not affected at all? Ed-
wards and Palsson [43], for instance, studied knock-out mutations to identify
optimal growth phenotypes of the metabolism of E. coli for different growth
conditions.

Therefore, using FBA on metabolic networks rather aims at constructing a
model, which is capable of predicting the phenotype, which will be expressed
under certain circumstances, than to determine the flux distribution, which fits
a certain data set [96].

Despite its utility, FBA does have limitations: If a model includes closed cy-
cles, FBA solutions exhibiting a net flux around such a cycle can contradict
Kirchhoff’s second law for electric circuits, because it is a thermodynamically
infeasible loop. These cycles are sets of reactions, which carry a flux around
and therefore are ’perpetual motion machines’ [40]. Luckily, this problem can
be prevented by formulating a new optimization problem, which keeps the
optimal value of the actual objective fixed, while minimizing the sum of the
absolute values of the fluxes (−δ 6 −→v 6 δ, δ > 0). This formulation makes use
of the L1-norm. The method actually aims to approximate a flux distribution
that minimizes cellular investment into enzymes. As a side effect, the infeasi-
ble loops vanish, as stated by Desouki et al. [40, 70, 148]. The loopless COBRA
algorithm by Schellenberger, Lewis, and Palsson [147], developed in 2011 in-
volving mixed-integer programming, is another alternative to address inherent
FBA limitations.

The usage of the FBA method enables great insights into the topology of
a network. Nevertheless, it can only provide a limited validity in its predic-
tions, because it does not usually take regulation into account (except rFBA –
regulatory Flux Balance Analysis [51]) and moreover dismisses reactant con-
centrations and any form of gradients. Furthermore, because of the underdeter-
mined nature of the stoichiometric matrix, a FBA solution is only one of many,
so-called degenerated, solutions [161, 181]. There can be many more solutions,
which satisfy the conditions but are difficult to predetermine. For this reason,
further constraints are needed to deal with the general lack of knowledge on
kinetic parameters and reaction mechanisms [90] and to restrict the potential
solution space. A first approach would be the incorporation of the first law
of thermodynamics, termed energy conservation. This law states that the over-
all driving force through internal cycles must be zero [68]. Furthermore, the
second law of thermodynamics can be included as well [16, 132, 182]. In this
way, it is possible to determine feasible reaction directions, and facilitate the in-
troduction of metabolite concentrations [19], as demonstrated in the following
papers: [15, 16, 69, 90, 133]. The procedure will be explained in the subsequent
chapter.
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T H E R M O D Y N A M I C S

Most interactions in biological networks, such as diffusion, mass transport,
protein-protein interactions and free energy of biotransformations, are gov-
erned or driven by thermodynamics, which reveals that its consideration in
mathematical modeling is critical [162]. During the last 16 years, the appli-
cation of thermodynamics with respect to entire metabolic networks has in-
creased significantly. This is due to the fact that during this period the number
of annotated genome sequences has grown tremendously, which made their
examination possible in the first place [12]. Several approaches have been de-
veloped during that time. The most common are the network-embedded ther-
modynamic analysis (NET-analysis) [90, 184], the energy balance analysis (EBA)
[16, 17] and the thermodynamics-based flux analysis (TFA) [68]. Each one will
be explained in a short discourse, followed by a discussion concerning the
method-choice with respect to this work.

The EBA approach by Beard and Qian, controls the directionality and the
bounds of the fluxes due to the use of the second law of thermodynamics,
which is stating that each internal reaction with non-zero flux must dissipate
energy [15]. It moreover utilizes constraints for metabolite concentrations [12,
17]. In contrast, NET and TFA analysis, while constraining the fluxes through
the use of the second law of thermodynamics as well, use the value of the Gibbs
energy as a linear function of the logarithms of the metabolite concentrations
(or activities) instead of a constant or continuous variable. They moreover value
the necessity of adjusting the Gibbs energies to physiological conditions, like
variabilities in pH or ionic strength, because not all metabolites appear in the
same cell compartment and thus may be exposed to different conditions. In
this respect, Maskow and Stockar [100] elaborate that feasible pathways could
falsely be labeled as infeasible or vice versa without careful consideration of
physiochemical conditions. In contrast to EBA, TFA and NET-analysis both
consider the transmembrane ion transport, which makes them more compre-
hensive [74, 184]. However, the approaches are not completely equivalent: First,
NET uses linear programming, while TFA uses mixed-integer linear program-
ming (MILP); second, the NET approach requires a predetermination of the
directionality of the fluxes, while TFA considers all fluxes as bidirectional. For
this reason, Ataman and Hatzimanikatis [12] prefer the TFA approach and con-
sider EBA and NET as special cases of TFA. Nevertheless, the NET approach
has been the method of choice in the present work. Henry et al [68] and Ataman
et al [12] named several reasons, why TFA should be preferred over NET but
none of them applies here: Neither is the core-model incomplete, nor does it
bother that the flux directions have to be predefined. On the contrary, it is in fact
convenient, because the flux distributions of the FBA are to be tested for their
thermodynamic feasibility, which involves their directionalities. Furthermore,
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MILP is not needed, considering the size of the core-model. It can be analyzed
easily via linear programming. Finally, because the possibilities of the network
should be analyzed to the fullest, it seems reasonable to determine the feasible
ranges of the Gibbs energies, as it is characteristic for the NET approach [90].

3.1 network-embedded thermodynamic analysis (net-analysis)

As already mentioned, flux distributions FBA returns, will be tested for thermo-
dynamic feasibility to be able to distinguish between biologically feasible and
non-feasible FBA solutions and to gain insight into the control mechanisms
of the cell. For this reason, it is very important to examine the network in its
entirety, because the energies of the reactions are coupled.

(a) (b)

Figure 4: (a) displays how the downward motion of the bigger box releases potential energy
that can do mechanical work. The potential energy, made available by spontaneous
downward motion, is an exergonic process (pink) and can be coupled to the ender-
gonic upward movement of a smaller box (blue). (b) shows the same principals with
respect to chemical reactions: In reaction 1, the formation of glucose 6-phosphate
yields a product of higher energy, than the two substrates. This is therefore an ender-
gonic reaction and cannot react spontaneously. In reaction 2, the breakdown of ATP
is highly exergonic and can therefore drive an endergonic reaction, when the two
reactions are coupled, as can be seen in Reaction 3 [110].

To illustrate this point, consider the mechanic example in Figure 4 (a). At the
top of the plane sits a box, which has a certain amount of potential energy, be-
cause of its elevation. It tends to slide downwards, which offers the possibility
to couple it to a smaller box, which is needed to move upwards but cannot
do it on its own. The energy available to carry out this task is the Gibbs energy,
∆rG. This concept can be applied to chemical reactions as well: Each reactant
contains a certain amount of potential energy, related to the nature and number
of its bounds. If a reaction occurs spontaneously, it releases Gibbs energy, if the
substrates have a higher free energy as the products. Such a reaction is called
exergonic and the decline in Gibbs energy from substrate to product has a nega-
tive value (∆rG < 0). The alternative are endergonic reactions, which require an
energy input to proceed (∆rG > 0). As shown in Figure 4 (b), it is possible to
couple endergonic and exergonic reactions to drive otherwise unfavorable re-
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actions [110] Therefore, it is critical to consider the network as a whole, instead
of single reactions, to make energy coupling possible [90].

Before the algorithm can be explained in its complexity, some basics have
to be established. As mentioned above, a prerequisite for the NET-analysis is
the knowledge of the directions of the fluxes. These directions can be gained
from FBA with application of the signum function (in short sign) on the flux
distribution vector, resulting in the so-called signvector. The signum function
translates positive values to 1 and negative values to -1. Zero stays the same
[19], see Figure 5 for an example.

(a) (b)

Figure 5: The signum function extracts the sign of any real number. Forward fluxes of (a) are
translated to 1 and backward fluxes to −1 in (b).

Moreover, the compartment conditions need to be defined, that is the pH,
ionic strength (abbreviated by I) and membrane potential (∆V) in the differ-
ent cell compartments, which will be needed to correct the formation Gibbs
energies (see Section 3.1.1) later on.

The Gibbs energy of a reaction j can be calculated from the Gibbs energies of
formation (∆fG) of the species involved in the reaction:

∆rGj =
∑
i

sij∆fGi (5)

whereas sij are the stoichiometric coefficients of S.

3.1.1 Gibbs energy of formation

Assuming that the metabolite concentration is spatially invariant and that tem-
perature and pressure are constant, it is possible to define a single Gibbs energy
of formation (∆fG) for each metabolite species, which is valid throughout a sin-
gle cell compartment [53].
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The Gibbs energy of formation of a species i is defined as

∆fGi = ∆fG◦i + R T ln(ai) (6)

∆fG◦i is called the standard Gibbs energy of formation. It is the Gibbs energy
change, when a mole of the species in its standard state (in the ideal aqueous
solution at 1 mol/l), is formed from its elements in their reference state. A
superscript circle is used to designate a standard condition [1, 53]. R is the uni-
versal gas constant (in J/mol K−1) and T is the absolute temperature (in K). ai is the
activity of a species i, and it’s given by ai = γixi, where γi is the activity coefficient
and xi the concentration. The activity coefficient accounts for the deviations
from ideal behavior of the system [28]. Because equilibrium concentrations are
easier to measure, than activities, a possible reformulation of Equation 6 is
[100]:

∆fGi = ∆fG◦i + R T ln(xi)︸ ︷︷ ︸
ideal ∆fG

+ R T ln(γi) (7)

The first two terms form the Gibbs energy of formation under ideal condi-
tions (ideal ∆fG), meaning in distilled water, that is γi = 1, I = 0. The last term,
R T ln(γi), is the correction term of the Gibbs energy of formation for ionic
strength. In general, one uses the extended Debye-Hückle term (s. Section 3.4)
for γi, in combination with the common logarithm (base 10), but this term only
applies for relatively low values of ionic strength. This issue will be explained
in greater detail in Section 3.4. Equation 7 can be rewritten in a way that the
standard Gibbs energy of formation (∆fG◦) and the activity coefficient term
(R T ln(γ)) are combined in one term to ∆fG0i . The superscript zero accentuates
that the standard Gibbs energy of formation is now a function of ionic strength
[53]:

∆fGi = ∆fG0i + R T ln(xi) (8)

∆fGi not only needs to be corrected for ionic strength but for the pH of the
compartment as well, which demands a transformation of ∆fG0i . Since protons
are then incorporated through the pH, they are not considered as reactants [74].
Using the extended Debye-Hückle equation (as described in see Section 3.4), the
conversion factor ln 10 (log→ ln) and a legendre transformation, one gains the
standard transformed Gibbs energy of formation (the transformation is indicated by
an additional accent) [1]:

∆fG ′0i = ∆fG0i + R T nHi log(10)pH −
2.91482 (z2i − nHi)

√
I

1+ 1.6
√

I
(9)

With nHi being the number of protons and zi being the charge of the species.
∆fG ′0 replaces ∆fG0i in Equation 8 and one gains the formula for the transformed
Gibbs energy of formation (∆fG ′).
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So far, the term species has been used, instead of reactant or metabolite, because
reactants are considered to be made up of sums of particular species, the so-
called pseudo isomers. For example, ATP exists as several distinct species, which
are assumed to be rapidly interconverted [1]:

ADP3− ⇔ HADP2− ⇔ H2ADP− ⇔ H3ADP (10)

Each one of this different species has its own ∆fG0i . Alberty measured several
species but not quite enough for the core-model of H. elongata [72]. Certain re-
actions can be combined to eliminate some of the unknown reactants albeit not
all. The standard Gibbs energies of formation have to be collected from some-
where else. The only other possibility is the use of estimated values, which have
been provided by the Group contribution (GC) and Component Contribution (CC)
Method, whereas the second method is an enhancement of the first [72, 114].
The GC Method deals with the molecular structures of the different species. It
decomposes the species into a set of smaller molecular substructures, whose
Gibbs energies of formation can be estimated. Afterwards, the species is com-
posed again and the Gibbs energies of formation of the species is the sum over
the Gibbs energies of formation of its substructures [72]:

∆fG0est =

Ngr∑
i=1

ni∆grG0i (11)

∆fG0est is the estimated ∆fG0, ni is the number of instances of group i in
the molecular structure and Ngr is the number of different groups for which
∆grG0i is known. Noor et al. [114] developed the CC Method after realizing
that the error rate of the GC is too high. He therefore combined it with a
second method, which he terms the Reactant Contribution (RC) Method. This
method was developed 1957 by Burton [86]. It is based on experimental data
and manages to calculate unknown energies out of known ones applying the
first law of thermodynamics [114]. The CC Method splits each reaction into
two independent reactions. One of these sub-reactions is calculated with RC, if
enough data are available, the other is calculated using GC. They are combined
subsequently giving the value of the RC Method more weight.

At this stage, all Gibbs energies of formation of the different species of a
reactant are known and corrected for pH and ionic strength (see Equation 9),
and one can finally calculate the standard transformed Gibbs energy of formation of
the reactant k, respective its pseudo isomer group [1]:

∆fG ′0k = − R T log

Niso∑
i=1

exp

(
−
∆fG ′0i

R T

) (12)

whereas Niso is the number of different species of reactant k. This aggregation
is feasible, because, when pseudo isomers are in equilibrium, they have the
same chemical potential [1].
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Only one more element is missing to be able to understand the algorithm, the
consideration of the ion transport through the membrane. By default, metabo-
lites that are present in different cell compartments cannot exchange unless
a respective transport process is defined in the model [184]. In order to in-
clude the Gibbs energy of transport processes, two forces of the membrane
have to be considered: the proton motive force, which accounts for the effect of
the pH gradient of the membrane and the membrane potential, which accounts
for the transfer of charged molecules from the inside of the cell to the outside
(⇒ ∆V < 0). Where protons travel through the membrane, the Gibbs energy
has to be corrected for the proton motive force, which releases energy, as well
as the membrane potential, which costs energy. The transport of other charged
molecules, like sodium, is determined by the membrane potential.

Transport protons (∆pHG) : s (R T ln 10∆pH− z F∆V)

Transport sodium (∆VG) : − s z F∆V

∆rG
′
Transport = ∆VG+∆pHG (13)

s represents the stoichiometric coefficient of the cation, while F is the Faraday
constant, z stands for the charge, ∆pH is the difference in pH (pHintracellular
- pHextracellular) and ∆V (Vintracellular - Vextracellular) represents the difference in
electric potential. Corresponding to Henry, Broadbelt, and Hatzimanikatis [68],
the ∆V of E. coli can be estimated as follows:

∆V = 33.33 ·∆pH− 143.33 (14)

whereas the term 143.33 represents the effect of the different ions.
These terms have to be added to the Gibbs energy of a reaction, if transport-

processes are taking place, as in the case of the ATPase.

3.1.2 The algorithm

Now, the actual algorithm of the NET-analysis will be considered. It is dis-
played in Equation 15. As already mentioned, the objective is to gain an idea
of the ranges the Gibbs energy of each reaction can exhibit. To arrive at the
boundary conditions, the Gibbs energy is minimized and maximized to get
the feasible interval. As one can see in the second line, the transport is added
to the (transformed) Gibbs energy. If no transport takes places, the value of
∆rG ′Transport is zero. Because a certain reaction direction has to be tested for
feasibility, the Gibbs energy has to be multiplied with the sign. The second
law of thermodynamics demands for this product to be negative and −∆rG ′

is termed the Driving force of a reaction [102]. The third line corresponds to
the transformed Gibbs energy of formation, which has been discussed in detail
already. The last constraints are the boundaries for the concentrations of all
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metabolites, which usually are fixed between 0.1 µmol/l and 10 mmol/l, with
the exception of metabolites like H2O [14, 68, 111].

min/max∆rG ′k
(∆rG

′
j +∆rG

′
Transport,j) · sign(vj) < 0

∆rG
′
j =

∑
i

sij∆fG ′i (15)

s.t:

∆fG
′
i = ∆fG

′0
i + R T ln(xi)

xmin 6 xi 6 xmax

These minimizations and maximizations of the Gibbs energies are done for
each reaction. At first, they are done without enforcing any directions on the
reactions (all signs are zero), which returns one set of intervals for the Gibbs en-
ergies of all reactions. The process is repeated with directions, as defined in the
signvector, which returns a second set of intervals for the Gibbs energies of all
reactions. The procedure results in two sets of intervals for each reaction. The
intervals without enforced direction are naturally wider, because the system is
less restricted.

Figure 6: Gibbs energy intervals from the NET method, applied to the reactions of glycolysis,
ordered from the import of glucose to lactate production. The light blue intervals
represent the intervals in case that no reaction directions are given. The dark blue
ones represent the intervals, which result, if all reactions are enforced to proceed
in forward direction. The dashed white lines display the interval, which indicates
closeness to thermodynamic equilibrium.

As an exemplary output, consider Figure 6. The light blue bars indicate the
possible Gibbs energy intervals due to the provided concentration ranges. The
darker blue bars display the thermodynamically feasible ranges after introduc-
ing reaction directions. It is obvious that all reactions were enforced to only
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move in a forward direction (negative Gibbs energy). The dashed white lines in-
dicate the closeness to thermodynamic equilibrium. The interval they describe
is [-2.5; 2.5] kJ/mol [18].

If a reaction displays a Gibbs energy, which is not close to thermodynamic
equilibrium (|∆rG ′| > 2.5 kJ mol−1) and therefore has a significant driving force,
it can be assumed that an active regulation of the corresponding enzyme has a
significant effect on the pathway [68, 184].

In Figure 7 one can see the effect of reaction directions on the possible Gibbs
energies of formation of the metabolites A, B, C and D. Because the energy
through the network only flows from a higher to a lower level, the ranges are
quite restricted [90].

Figure 7: Illustration of the mutual thermodynamic interdependencies of reactions in a net-
work. Possible ranges for the reactant’s Gibbs energies of formation, taking into ac-
count only the concentration ranges of the metabolites (A-D), are shown with con-
fined vertical bars. Owing to the provided flux directions and the cooperative action
of the reactions in the network, however, the thermodynamically feasible ranges are
smaller, which is highlighted by the bold parts of the bars. A flux can only flow from
a higher to a lower level of Gibbs energy of formation. The space between the dis-
played planes consists of the thermodynamically feasible Gibbs energies of formation
and, thus, describes the feasible concentration space [90].

The algorithm, as displayed in Equation 15, can also be used for the opti-
mization of the logarithms of the metabolite concentrations. As before, two
optimizations are executed, a minimization and a maximization but this time
of each metabolite instead of each reaction. Therefore, a plot, as Figure 6, can
also be drawn for the logarithms of the metabolite concentrations. It is even pos-
sible to let the optimization of the concentrations follow the optimization of the
reactions, to be able to use the Gibbs energy intervals as additional constraints.
In this way, one can couple both optimizations directly [90].
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3.1.3 Standard transformed Gibbs energy

The standard transformed Gibbs energy, which is the Gibbs energy, when all con-
centrations equal 1 mol/l (⇒ ln x = 0), is given by [1]:

∆rG ′0j =
∑
i

sij∆fG ′0i +∆rG ′Transport,j

= − R T ln(K ′eq) (16)

It follows:

K ′eq = e−
∆rG ′0

j
R T (17)

K ′eq is the equilibrium constant, which represents the ratio between the con-
centrations of products and substrates in equilibrium [2]. Thus, in equilibrium,
it is also defined as:∏

j

|xj|
si,j
0 = K ′eq,i (18)

3.2 max-min driving force (mdf)

The insight into the ranges of the Gibbs intervals and the metabolite concen-
trations is already an improvement of the analysis but an interesting question
is, if a point estimate for a single solution of a given thermodynamic setting
is feasible. Would it be possible to sample individual values out of the inter-
vals for each reaction and each metabolite? It can be argued that this approach
would neither be feasible, nor an optimal choice. Noor et al. [111] already pro-
vided a solution for this, although their motivation was a different one. They
determined that, if a reaction reaches thermodynamic equilibrium (|∆rG ′| 6 2.5
kJ mol−1 [18]), exponentially more enzyme counterproductively catalyzes the
reverse reaction, since it applies that the Gibbs energy is proportional to the
logarithm of the ratio of forward (vf) and reverse flux (vb) [18]:

∆G = − R T log
vf
vb

(19)

Therefore, being in thermodynamic equilibrium reduces the net rate at which
the reaction proceeds. This results in the need for a higher enzyme level to keep
the net flux up, which in turn is quite costly for the cell, since the production
of additional enzymes costs ATP. Noor et al. therefore developed an algorithm,
which shifts the Gibbs energies of the reactions as far away from thermody-
namic equilibrium as possible by maximizing their driving forces. This method
allows the ranking of different pathways for their cost efficiency and to deter-
mine the rate limiting reactions of a pathway. Moreover, it results in a ther-
modynamically feasible solution-vector and is therefore added to the analysis
framework. This algorithm, which is termed Max-min Driving Force, will be
explained in detail in the following.
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In order to maximize the driving forces of all reactions, one uses the mini-
mum over all reaction driving forces (namely B) as an optimization goal and
maximizes it, within the predefined concentration limits, which shifts it as far
away from equilibrium as possible. The algorithm is also based on linear pro-
gramming, see Equation 20.

maxx,B B
s.t:

− sign(−→v ) · (
−−→
∆rG

′0 + R T · ST · ln−→x ) > B (20)
xmin 6 xi 6 xmax
B free

The NET (Equation 15) and the MDF algorithm are directly related, since it
applies that (see Equation 16):

−−→
∆rG

′0 + R T ·ST · ln−→x =
−−→
∆rG

′+
−−→
∆rG ′Transport

Therefore, all solutions of the MDF algorithm are embedded in the intervals
calculated by NET-analysis, as can be seen in Figure 8.

B

Figure 8: The figure displays a solution of the NET (as before in Figure 6) and the MDF al-
gorithm. The small white bars are the MDF solution. The smallest distance to the
equilibrium is the optimal minimal driving force (B), indicated by the red bar.

In case of the MDF algorithm only one optimization is done, instead of
several for each reaction and each metabolite. It results in a solution vector,
which consists of Gibbs energy values for all reactions and concentrations for
all metabolites. A solution for the Gibbs energies with the MDF algorithm can
be found in Figure 8. The small white bars are the Gibbs energies, which result
from the maximization of B. The value of B represents the smallest distance
from the thermodynamic equilibrium, illustrated through the red bar.
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Another way to display B can be seen in Figure 9 (a). B is the minimal driving
force of the pathway and therefore the smallest step in the energy-flow dia-
gram, it identifies the bottleneck-reactions of a network. The enzymes, which
catalyze these reactions, will constrain the activity of the pathway, unless they
are present either in high concentrations or especially fast catalysts [111].
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Figure 9: (a) shows that B represents the bottleneck of a pathway, because it identifies the reac-
tion with the lowest driving force. (b) displays a MDF solution with wide boundaries
concerning concentrations. The differences in driving force are more or less the same
in each step. This solution is therefore weighted as the most economic, because of the
lowest possible enzyme investment.

Another finding of the group Elad Noor’s was that, if the concentration lim-
its are reasonable wide, the solution of the MDF algorithm results in Gibbs
energies, which are quite similar to one another (see the supplementary infor-
mation of [111]), as displayed in Figure 9 (b). If the limits are narrow, one gets
a solution as in (a), where some bottlenecks exist with low Gibbs energies and
some reactions are highly exergonic.

Figure 10 displays an example of a small linear pathway. ∆rG ′0 is assumed
to be zero for both reactions and the reactions are irreversible forward for the
sake of simplicity. The application of the MDF algorithm, under the assumption
that the concentration intervals are [1; 10] kJ/mol, produces two inequalities,
which need to be solved. In order to maximize B, X3 needs to have the lowest
concentration possible, therefore X3 = 1 kJ/mol and X1 needs to be as high as
possible and therefore 10 kJ/mol. The optimal concentration for B lies beneath
both curves in Figure 10 and is maximal, where both curves intersect. Therefore,
the Gibbs energies of both reactions are equal.

The finding of the uniform distribution of ∆rG can be associated with the
design principle of metabolic simplicity [103, 104], which has been confirmed to
play a role in metabolic pathway architecture [112]. This principle indicates that
a metabolic conversion will be carried out by using the shortest pathway possi-
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Figure 10: The figure displays the application of the MDF method on a linear pathway with
only two reactions. This results in the equalization of two inequalities in order to
calculate the maximal B and therefore the Gibbs energies. The calculation shows
that the optimal solution can be found, if both Gibbs energies are exactly the same,
as long as the concentration limits of X2 are not violated (indicated through the blue
area). y2 is the logarithm of X2.

ble. The justification is that two pathways, which perform the same conversion,
exhibit the same overall Gibbs energy. The shorter pathway will have higher
driving forces in each step and therefore needs less enzyme to keep up a high
flux, which is more energy efficient.

The MDF principle will now be applied to a real life example, the ammonia
assimilation.

Ammonia assimilation

Ammonia assimilation in bacteria is known to be mediated mainly by two
mechanisms: First, the reductive amination of α-ketoglutaric acid to yield gluta-
mate, catalyzed by glutamate dehydrogenase (GDH) and, second, formation of
glutamine from glutamate and ammonium, catalyzed by glutamine synthetase
(GS), followed by the transfer of the amidegroup to α-ketoglutaric acid, catal-
ysed by glutamate synthase (GOGAT), which results in the net-synthesis of
one glutamate molecule. The sum of the GS/GOGAT system corresponds to
the GDH equation with the addition of the hydolysis of one ATP, see Figure 11.

Some bacteria seem to possess only the second mechanism, others, like E. coli,
exhibit both [23, 65]. In order to find out which pathway is superior, one could
apply FBA and would get that it is the GDH-pathway, because it saves ATP
for other processes. The metabolic simplicity principle would lead in the same
direction but it has been shown that E. coli, e.g., prefers the GS/GOGAT system.
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Figure 11: The two typical systems for ammonia assimilation. The GDH pathway needs only
one enzyme, the GS/GOGAT system needs two and moreover hydrolyzes one ATP.

Only GS/GOGAT Extra costs

Figure 12: The figure can be divided in three parts. In the first part, GDH is thermodynamically
unable to carry any flux in forward direction in contrast to the GS/GOGAT system.
In the second part, GDH can carry flux but with very high costs, at least as long as it
is in the dark green part, which basically means the reaction is close to equilibrium.
The lighter green part allows for it to carry flux with less cost but still is close to
equilibrium and therefore still the minor choice. Eventually both pathways converge
and are both good choices for ammonia assimilation.

The results of the application of the MDF method are displayed in Figure 12.
Detailed calculations can be found in [155].

The figure shows the Gibbs energies of the two pathways in dependency on
the ammonia concentration (in mol/l). The darker green line is the sum of
both Gibbs energies of the GS/GOGAT system, the other line stands for the
Gibbs energy of the GDH pathway. The figure can be divided in three parts. In
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the first part, for low ammonia concentrations, GDH exhibits a positive Gibbs
energy and is therefore not able to execute the forward direction, whereas the
GS/GOGAT system performs the conversion easily. In the second part of the
figure, GDH is able to proceed in forward direction but the reaction is still
quite close to thermodynamic equilibrium, which means high enzyme costs.
Therefore, it is still better for the cell to use the GS/GOGAT system. Both curves
converge at high ammonia concentrations, which allows for the GDH to be
used. Therefore, the GS/GOGAT system is a clear adaption to environments,
which are poor in ammonia.

3.3 driving force vs . catalytic efficiency of enzymes

In order to clarify the role of thermodynamics and the importance of driving
forces, the example of a reversible Michaelis Menten reaction will be analyzed,
showing how the driving force can drastically change the efficiency of enzyme
catalysis.

There are different ways of describing the rate law (v(−→x )) of a reaction, like
the Michaelis Menten description of irreversible enzymatic reactions, which
has been introduced by Victor Henri [67] and rationalized by, among others,
Michaelis and Menten in 1913 [105]. The irreversible rate law has been further
developed by Haldane to describe reversible reactions [33]: reversible Michaelis
Menten kinetics [113]. Haldane already noticed an inherent dependency between
the kinetic parameters of a reaction and its thermodynamics, as stated by Noor
et al. In [113] they use this insight to rewrite the reversible Michaelis Menten
kinetics in a way, which clearly shows this dependency.

The original reversible Michaelis Menten kinetics equation describes the fol-
lowing mechanism:

E + S
k1⇀↽
k2

ES
k3⇀↽
k4

EP
k5⇀↽
k6

E + P (21)

E is the amount of free enzyme, S and P represent substrate and product con-
centration and ES and EP are the enzymes, which carry substrate or product.

By assuming steady state of intermediate complexes, one can calculate the
appropriate rate law:

v = E
k+cat

S
KS

− k−cat
P

KP

1 + S
KS

+ P
KP

= Ek+cat

S
KS

1 + S
KS

+ P
KP

(
1 −

P
S
k−cat/KP
k+cat/KS

)
(22)

whereas the kcat values are the maximal forward and backward rates per
unit of enzyme and KS and KP are the Michaelis constants [113]. Under the as-

sumption that a reaction has reached equilibrium, the relation k+cat/KS
k−cat/KP

is called
Haldane relationship, which states:

k+cat/KS
k−cat/KP

= K ′eq (23)
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K ′eq is a thermodynamic constant, called the equilibrium constant, which has
already been defined. Because of the definition of the Gibbs energy and Equa-
tion 16, it applies that [113]:

v = Ek+cat ·
S

KS

1 + S
KS

+ P
KP

·
(
1 − e

∆rG
′

R T

)
︸ ︷︷ ︸

1−θ

= k+cat E (1− θ)︸ ︷︷ ︸
effective enzyme

·
S

KS

1 + S
KS

+ P
KP

(24)

θ denotes the thermodynamic term, which describes the distance to equilibrium
(θ = e∆rG

′0/RT+ln(P/S)). For a reaction vi with j reactants it therefore applies [27,
122]: ∏

j

|xj|
si,j
0 = θi K ′eq,i (25)

which is a reformulation of Equation 18. Equation 18 can be seen as the spe-
cial case in which equilibrium is reached and θ equals one. (1− θ) is bounded
between 0 and 1. The rate law is written in the direction S → P, but can easily
be written in the reverse direction.

Even without knowledge of the concrete mechanisms of the reaction or the
numerical values of the parameters, much can already be understood from
Equation 24. The product k+cat E (1 − θ) describes the fraction of the enzyme,
which actually catalyzes productively. It therefore establishes the minimal a-
mount of enzyme that can sustain a certain flux [52]. The effective enzyme
(k+cat E (1− θ)) increases monotonically but not linearly with distance to equi-
librium, compare Figure 13. The notation ∆Gx indicates the Gibbs energy at
which the enzyme can operate up to x% of its Vmax.

It can clearly be seen that a driving force of more or less 8 kJ/mol is already
enough for an enzyme to operate close to 100% of its Vmax, which signifies that
a minimal driving force of 8 kJ/mol with the MDF algorithm is sufficient to
ensure an efficient pathway [155].

Considering Equation 24 once more, it is obvious that the reversible Michaelis
Menten equation is not independent of the product concentration, in contrast
to the irreversible one. However, it can become independent under certain con-
ditions: Assuming the driving force of a reaction is very high and the backward
flux therefore negligible, results in θ ≈ 0, but the rate law still depends on the
product concentration in the denominator of the κ-term. Only if P � Kp holds,
are the reversible and irreversible Michaelis Menten kinetics equivalent [113].

3.4 ionic strength (sit)

As already mentioned before, the Gibbs energies of formation of each species
have to be corrected for ionic strength to make sure the Gibbs energy for the



30 thermodynamics

16 14 12 10 8 6 4 2 0
∆G (kJ/mol)

0.0

0.2

0.4

0.6

0.8

1.0

1
−

Θ

∆G95∆G99

Figure 13: When ∆G is similar enough to R T (typically assumed to be 2.5 kJ/mol for biochem-
ical reactions), 1− θ decreases rapidly, since θ = exp(∆rG

′

RT ). ∆G95% and ∆G99% are
the affinities at which the enzyme can operate at 95% and 99% of its Vmax respec-
tively.

overall reaction is corrected as well, because the interactions of the molecules
and ions in a solution have to be accounted for. This correction can have many
different appearances. Debye and Hückle in 1923 were the first to define such a
correction term, which suggested that the forces, which cause deviations from
ideality of solutions are due to long range interionic attractions between ions of
different charge [28, 36–38]. Ions coordinate themselves in solution and build
clouds of molecules of contrary charge around themselves, which brings more
stability. Debye and Hückle therefore developed an equation, which relates the
activity coefficient of a salt with the ionic strength and ionic charge (z), al-
though it can only be applied for very dilute solutions (I < 0.001 mol/l [64])
and is independent of the chemical nature of the ions and their size. The cor-
rection term, in dependence on the ionic strength (I), is defined as:

− logγ = A z2
√

I (26)

A is a function of temperature and equals 0.509 (
√

kg
mol) at 25

◦C. In most pro-
cesses and procedures much higher concentrations of electrolytes are required.
Therefore, the Debye-Hückle equation was refined and became the extended
Debye-Hückle equation, which includes an ion size parameter:

− logγ =
A z2

√
I

1+ B a
√

I
(27)

B is another constant and a is the sum of the radii of the two ions of the
electrolyte, which has to be treated as an empirical parameter [28]. If the solu-
tion contains more than one electrolyte it is thermodynamically inconsistent to
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use this equation for calculating activity coefficients [62]. Besides, it can only
be applied, if the ionic strength of the solution lies in-between 0.05 and 0.25

mol/l. Higher ionic strengths, as presented in the habitat of H. elongata, require
a more complex approach.

Higher ionic strengths are covered with more sophisticated equations, like
the one developed by Pitzer [123–130, 159, 160], whose motivation was to be
able to predict activity coefficients in multicomponent electrolyte solutions. The
basis was the extended Debye-Hückle equation, which was completed by terms,
which represent short range interactions, as well as triple ion interactions [3, 28].
Still, it cannot be used to describe the behavior of systems involving nonionic
substances, because it does not take into account interactions between electrons
of the ions leading to chemical bonding between them [28].

Alternatively, one can use the Specific Ion Interaction Theory (SIT) [3, 59], which
is equivalent to Pitzer [59, 60] but differs in the form of the denominator in the
Debye-Hückle term.

An extensive comparison of the SIT and Pitzer formulations of the ion inter-
action approach can be found in references [45, 60], as well as in chapter 9 of
[3]. The key problem, when using Pitzer for ion-complexes, is to determine the
concentration dependence of the coefficient for short range forces. This requires
experimental data at low ionic strength.

The SIT approach has clear advantages, as outlined in [allard1997av]:

• Robustness in analyzing experimental data from diverse sources

• Capacity to provide good estimates of activity coefficients

• Simplicity of use

• Possibility, by using charge/ion size correlations, to estimate unknown
values for its parameters, the so-called ion interaction coefficients.

The different approaches for the calculation of the activity coefficient of NaCl
can be found in Figure 14.

The formula for the SIT approach is the following:

log(γj) = −
A z2j
√

I

1+ 1.5
√

I
+
∑
k

ε(j,k, I)mk (28)

In the first approximation of the virial expansion, only one interaction term is
used to describe the non-electrostatic interactions between two species; the in-
teraction parameters (ε) are considered to be independent of the ionic strength
and for a given pair of ions to be independent of the presence of other ions.
This is the basis for the Specific Ion Interaction Theory developed by Bronsted,
Guggenheim and Scatchard. The specific ion interaction parameters are empir-
ical, and have to be determined experimentally, either from activity coefficient
data or from equilibrium constants [59]. mk are the molalities. The value 1.5
kg1/2·mol−1/2 was proposed by Scatchard [146]. It was found that this value
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Figure 14: A comparison of Debye-Hückel, extended Debye-Hückel, SIT and Pitzer approaches
concerning NaCl with varying ionic strength (in mol/l). One can see the similarity
of SIT and Pitzer, as mentioned in [59, 60].

minimizes the ionic strength dependence of ε between I = 0.5 and 3.5 mol/l. It
is an empirical parameter, which is correlated to ε.

Two main assumptions form the basis of SIT [allard1997av]: 1. The ionic
medium ions will make the main contribution to the value of logγj for the
reactions ions. This often makes it possible to simplify the summation, so that
only ion interaction coefficients between the substrates/products in the chemi-
cal reactions and the ionic medium ions are included.
2. According to the Bronsted principle of specific interactions, the ion interac-
tion coefficients ε are expected to be small for ions of the same charge sign.
Similarly, they should be small for interactions between uncharged species and
electro-neutral combinations of ions [24]. The rationale behind this is that ions
of the same charge sign are usually separated from each other due to electro-
static repulsion and therefore ε would be small.

For the sake of simplicity, it is convenient to assume the interaction coeffi-
cients for uncharged species to be zero [61, 71], which generally fits (CO2 is an
exception [3]).

Another important variable is the activity of water: Equilibria involving H2O
as a reactant or product require a correction for the activity of water, aH2O:

logaH2O = −
φMH2O

∑
kmk

ln 10
(29)

φ is the osmotic coefficient, whose values for single electrolytes have been
compiled by various authors, like [136]. In mixed electrolytes with several com-
ponents at high concentrations, it may be necessary to use Pitzer’s equation. A



3.4 ionic strength (sit) 33

table of the different activities of water, depending on the concentration, can be
found in [59]. In seawater a correction is most likely and a sufficiently good ap-
proximation may be obtained by considering NaCl as the dominant electrolyte.





4
D Y N A M I C S

The constraint-based analysis tools presented so far (FBA, thermodynamics)
have a number of significant advantages. First, they are linear, which makes
them easy to handle even in case of large systems. Second, the amount of
information needed is reasonably small [155]. Still, they draw an incomplete
picture of the metabolism, because they omit regulation, which is a key feature
in metabolic networks. The tool kit has to be completed by the inclusion of an
analysis tool for dynamics, which allows the introduction of kinetics into the
model. This is not trivial, the components of biochemical networks often co-
operate in ill-characterized ways, almost always containing nonlinearities [176].
Since it is not possible to find an exact mathematical description of biochemi-
cal processes, approximations have to suffice [175]. The idea is to approximate
the rate law. One could try a linear approximation but this solution would not
be valid for a wide range of concentration values. A better choice are nonlin-
ear approximations, which are in fact valid over a much wider range. In order
to be useful, they must be based on the essential nonlinearity of the rate law
but still be simple enough to allow mathematical treatment [144]. Common
nonlinear approximations of the rate law, which are used frequently, are the
Michaelis Menten and the Hill equation. Since they are quite complex, they
are inpracticable with respect to larger reaction systems. The information nec-
essary to describe a mathematical model using this type of equations is often
unavailable or incomplete. It would be desirable to use a method, which helps
to identify key regulatory interactions, without being tied to a certain choice of
function shapes and parameter values [94]. For instance, for Michaelis Menten-
like reactions it is not enough to know which metabolite or effector inhibits a
particular reaction but also what type of inhibition is present [175]. A frame-
work, which is easy to apply, is the Biochemical systems theory (BST), which
has been proposed by Michael Savageau in 1969 [140–142]. This framework gets
by with qualitative knowledge about variables and the reactions they influence.
Its basics will be explained in the following section.

4.1 biochemical systems theory

BST is based on nonlinear approximations of the rate law, which can be achieved
by the linear approximation of reaction kinetics in logarithmic coordinates. Re-
action kinetics describe an instantaneous temporal change in concentration of
substrate or product [175]. Taking the logarithm of the rate law allows for an ap-
proximation, which is easy to treat mathematically, because it generates straight

35
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lines and therefore retains the nonlinear properties [87, 144]. The following Tay-
lor approximation around an operating point x0 results in:

log(v) = log(v0) +
∂ log(v)
∂ log(x)

∣∣∣∣
0

· (log(x) − log(x0))

= f · log(x) + log(γ) (30)

whereas f describes the slope of the rate (v) vs. the corresponding variable (x)
in a log-log plot and γ represents the intercept. For an illustration, see Figure 15.

log(x)

log(v)

f

log(γ)

Figure 15: Illustration of the relationship of γ and f in a log-log plot

From Equation 30 follows:

log(γ) = log(v0) − f · log(x0) (31)

In rectangular coordinates Equation 30 represents a power law, approximat-
ing the rate law at the operating value of the relevant concentration [144]:

v = γ · xf (32)

γ is the apparent rate constant for the reaction, which can be positive or neg-
ative, depending on the flux: If it is a synthesis reaction, γi,j would be positive,
if it is a degradation reaction, γi,j is negative. f is the apparent kinetic order with
respect to x. In general, the rate law depends on several concentration variables,
which can still be approximated and described by a power law:

v = γ xf11 xf22 · · · x
fn
n

= γ

n∏
i=1

xfii (33)

Savageau [144] stated that the curvilinear nature of a power law function
makes it a perfect candidate for nonlinear approximations, because it conforms
to the actual rate law over a much wider range of concentration values.

As illustrated by Equation 1 in Chapter 2, the change in concentration can
be described as a linear combination of fluxes that either produce or consume
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each component. These fluxes can be replaced by the power law approximation
of the rate laws, which yields:

ẋi = γi,1

n∏
j=1

x
fi,j,1
j + γi,2

n∏
j=1

x
fi,j,2
j + ... + γi,k

n∏
j=1

x
fi,j,k
j , for i = 1, ...,m

=

Pi∑
k=1

αi,k

n∏
j=1

x
gi,j,k
j −

Ni∑
k=1

βi,k

n∏
j=1

x
hi,j,k
j , for i = 1, ...,m (34)

A system of this form is called a generalized mass action (GMA-) system. All
GMA-system equations have the same mathematical form but differ in their
parameters. Thus, Equation 1 is a GMA-system as well.

Because the fluxes can be divided into production and degradation processes,
one can use αi,k and βi,k as the production and depletion rate constants for such
a classification, instead of the γi,j. The kinetic orders fi,j,k are also renamed into
gi,j,k and hi,j,k, consistent with the classification. Therefore, the parameters αi,k
and gi,j always refer to production or synthesis, whereas βi,k and hi,j always re-
fer to degradation or loss. The first subscript (i) represents the affected variable,
the second (j) stands for the effecting variable. If a kinetic order is positive, it
indicates an activating effect of xj on xi, if it is negative, it represents an inhibit-
ing effect. If it is zero, xj does not have any effect [175]. The number of influxes
into xi is Pi, the number of effluxes if Ni. Each one of the n metabolites of
Equation 1 can be written in such a way.

Another kind of system, which uses power laws as well, but only one degra-
dation and one depletion term per metabolite, is called an S-system. The S
stands for synergism:

ẋi = αi
n∏
j=1

xgi,jj −βi

n∏
j=1

xhi,jj , i = 1, 2, ...,m (35)

The positive term is an aggregation of all synthesis fluxes, while the nega-
tive one aggregates all degradation fluxes [87]. In case of a GMA model, the
fluxes are not aggregated together but each flux is approximates separately
[176]. Although the functional representations at branch points are different in
the GMA and S-system forms, the dynamics of the resulting models are often
rather similar [176] and they are exactly the same at the operating point [175].

In biochemical system theory, one distinguishes three main entities: The de-
pendent variables, representing components, which are affected by the system
and whose values can change (e.g. intermediates or products); furthermore, in-
dependent variables, which represent unaffected components, such as enzymes.
They are typically assumed constant during an experiment; and last but not
least, parameters, such as kinetic orders and rate constants, which reflect the
structure of a system and are constant in general. The distinction between de-
pendent and independent variables always depends on the focus of the analysis.
The term independent variable normally has a different meaning in mathemat-
ics but since the only independent variable in mathematical sense is time, there
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is no ambiguity in reusing the term for all the variables, which are not affected
by the system, that is, which are independent of it [175].

A pathway composed of many metabolites is represented by a collection of
differential equations for the dependent variables. The independent variables
stay constant. Still, they take part in the equation system, because they may
affect the dependent variables. An example system, which will play a role in the
subsequent chapter, is displayed in Figure 16. It consists of three dependent and
two independent metabolites, four reactions and one inhibition (represented
by x

g1,3
3 ). In this case the S- and GMA-system representation are exactly the

same, because each dependent metabolite has only one in- and one efflux, as
represented in Equation 36.

x1 x2x0

v1
v2

x3

v3 v4

x4

Figure 16: BST example with five metabolites, four reactions and one inhibition.

ẋ1 = v1 − v2 = α1 x
g1,0
0 x

g1,3
3 −β2 xh2,1

1 xh2,2
2

ẋ2 = v2 − v3 = α2 x
g2,1
1 x

g2,2
2 −β3 xh3,2

2 (36)

ẋ3 = v3 − v4 = α3 x
g3,2
2 −β4 xh3,4

3 xh4,4
4

Studying the map of the pathway shows that the degradation of x1 constitutes
the same process as the synthesis of x2, although the terms β2 xh2,1

1 xh2,2
2 and

α2 x
g2,1
1 x

g2,2
2 appear to be quite different. The same applies for the conversion

from x2 to x3. The precursor-product relationships, which describe the equivalence
of such terms, impose constraints on the choice of the parameter values. It
therefore has to apply that α2 = β2, α3 = β3, h2,1 = g2,1, h2,2 = g2,2 and
h3,2 = g3,2 [175].

Therefore Equation 36 can be rewritten to:

ẋ1 = α1 x
g1,0
0 x

g1,3
3 −β2 xh2,1

1 xh2,2
2

ẋ2 = β2 xh2,1
1 xh2,2

2 −β3 xh3,2
2 (37)

ẋ3 = β3 xh3,2
2 −β4 xh3,4

3 xh4,4
4
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Connection between BST and thermodynamics

As mentioned above, there are different ways of describing the rate law of
a reaction. In addition to the power law, other rate equations exist, e.g. the
Michaelis Menten description of irreversible enzymatic reactions, as well as the
reversible Michaelis Menten kinetics, both mentioned in Section 3.3:

v = Ek+cat ·
S

KS

1 + S
KS

+ P
KP

·
(
1 − e

∆rG
′

R T

)
= V+ · κ · (1− θ) (38)

V+ denotes the capacity term, κ is a saturation fraction and θ is the thermody-
namic term, which has been introduced already. κ and (1− θ) are both bounded
between 0 and 1.

Kinetic orders
(
∂ ln(v)
∂ ln(x)

)
are very often referred to as elasticities in the context

of Metabolic Control Analysis (MCA) [66, 75], which is a sister discipline to BST.
These two can easily be translated into one another. Noor et al. [113] calculated
the kinetic order of the rate law, as defined in Equation 38 with respect to the
substrate concentration and gained the following insight:

gv
S =

∂ ln(v)
∂ ln(S)

= κ+
θ

1− θ
(39)

This can be interpreted as follows: At low driving forces, the kinetic order is
dominated by the thermodynamic contribution, θ

1−θ . The kinetic order can there-
fore be determined without knowing any of the kinetic constants. Compare
Figure 17, which shows the change in θ

1−θ at decreasing driving force.

The kinetic order gi,j can therefore be defined as

gi,j = gki,j − si,j
θ

1− θ
(40)

si,j will be negative for substrates (compare Equation 39) and positive for
products. gki,j is the kinetic contribution and matches κ. It is bounded between
zero and one for Michaelis Menten-type kinetics and between zero and the Hill
coefficient for allosteric rate laws [155, 163].

Therefore, for reactions far away from equilibrium (|∆rG| � 2.5 kJ/mol), the
influence of thermodynamics on the kinetic orders can be ignored, because the
thermodynamic contribution tends to zero.

4.2 steady state analysis

The dynamic behavior of a model can only be analyzed, when the system of dif-
ferential equations is solved and evaluated. Still, many important aspects at or
close to a steady state can be analyzed with much simpler methods. These are
actually of great importance, because most metabolic networks operate close to
a steady state [175]. For this reason, the present section will be concerned with
the calculation of the steady state of a given system.
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8 7 6 5 4 3 2 1 0
∆G(kJ/mol)

10-2

10-1

100

101

102

Θ
/(

1
−

Θ
)

Figure 17: Change in the thermodynamic contribution, θ
1−θ , in logarithmic coordinates, with

varying Gibbs energy. The dark blue area illustrates the part in which the thermo-
dynamic and kinetic contribution are comparable, if one assumes Michaelis Menten-
type kinetics, because then they both lie in between 0 and 1. Allosteric enzymes have
kinetic contributions of magnitudes between 0 and 4, which is highlighted through
the light blue area for an thermodynamic contribution between 1 and 4 [155, 163].

The steady state describes the situation, where the temporal change in con-
centration of the metabolites equals zero. Therefore, ẋ = 0, compare Equation 2.
This does not mean that nothing is happening in the pathway. Material is still
flowing through the systems but there are no temporal net-changes. The fluxes
are in balance [175].

Considering, for instance, an S-system, it applies that:

0 = αi

n∏
j=1

xgi,jj −βi

n∏
j=1

xhi,jj , i = 1, 2, ...,m (41)

This equation can be rearranged with the help of the logarithm (ln(x) = y):

αi

n∏
j=1

x
gi,j
j = βi

n∏
j=1

xhi,j
j (42)

ln(αi) +
n∑
j=1

gi,j ln(xj) = ln(βi) +
n∏
j=1

hi,j ln(xj) (43)

n∑
j=1

(gi,j − hi,j) yj = ln
(
βi
αi

)
(44)
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Some variables can be merged in order to simplify the system: ai,j = gi,j−hi,j
and bi = ln

(
βi
αi

)
. It follows:

n∑
j=1

ai,j yj = bi, i = 1, 2, ...,m (45)

In matrix notation: A~y = ~b

Therefore, in spite of being a fully nonlinear system, the steady state of a
S-system is the solution of a linear equation. The coefficients of dependent and
independent variables can be partitioned in two matrices, AD and AI, respec-
tively and it applies:

AD ~yD + AI ~yI = ~b (46)

Simple linear algebra can then be used to solve ~yD as a function of the in-
dependent variables and the parameters of the system. There exists a unique
steady state, if the determinant of the quadratic matrix AD is non-zero, other-
wise there can be infinite steady states [87].

4.3 sensitivity analysis

Sensitivity analysis is a framework, which allows the examination of a sys-
tem’s response to different influences. Typically, two types of influences can be
present [175]: First, persistent changes in the numerical values of independent
variables, which can be caused by a change in environment. The system may
therefore assume a new steady state. The relative change of a system prop-
erty due to such a scenario is called logarithmic gain and represents a measure
for the robustness of a model. Second, permanent changes in system parame-
ters (kinetic orders or rate constants), which is the consequence of a structural
change in the system due to a mutation or disease and results in altered en-
zyme activity. The change of a system property due to structural change is
called sensitivity.

There exist, among others, the following four different types of logarithmic
gains and sensitivities, which allow testing the quality of a model in steady
state:

• Logarithmic gain of a steady state concentration with respect to a change
in an independent variable

• Logarithmic gain of a flux with respect to a change in an independent
variable

• Sensitivity of a steady state concentration with respect to a change in a
parameter

• Sensitivity of a flux with respect to a change in a parameter

The calculation of these logarithmic gains and sensitivities will be explained
below.
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logarithmic gain of a metabolite The relative change in a variable cor-
responds to an absolute change in its logarithm [175]:

ẋ(t)
x(t)

=
d
dt

ln(ẋ(t)) = ẏ(t) (47)

whereas y(t) = ln(x(t)).
The logarithmic gain of the steady state of a dependent variable xi with re-

spect to a change in an independent variable xj, L(xi, xj), can therefore be de-
fined as:

L(xi, xj) =
∂ ln(xi)
∂ ln(xj)

=
∂yi
∂yj

(48)

Because a dependent variable is usually influenced by several independent
variables, it is convenient to summarize the different logarithmic gains in a ma-
trix (L(xD, xI)). The line i contains all logarithmic gains of a dependent variable
xi. For a system with p dependent and q independent variables, the matrix
would exhibit the dimension pxq.

logarithmic gain of a flux The flux in power law representation has been
defined in Equation 33. A change in an independent variable xj has two effects
on a flux vi. The first one is a direct, the second an indirect one, caused by the
changes in the metabolites as a response to the change in xj [175]. This results
in:

L(vi, xj) =
∂ ln(vi)
∂ ln(xj)

= fi,j +
n∑
k=1

fi,k L(xk, xj) (49)

These logarithmic gains, L(v, x), can also be summarized in a matrix, which
would have n rows and q columns in case of n fluxes and q independent
variables in the system.

sensitivity of a metabolite The changes in parameters, which are ana-
lyzed via the sensitivities, are not persistent ones, as for the logarithmic gains,
but permanent ones. Such a change might be the availability of a new enzyme,
which increases the speed of certain reactions and therefore alters the rate con-
stants. As in case of the logarithmic gains, the calculation of the sensitivities
starts out with the calculation of the steady states, see Section 4.2, and more-
over uses partial derivatives. The calculation of the sensitivities of a steady state
concentration with respect to change in rate or kinetic constants differs from
each other. Thus, they have to be considered separately [175].

Sensitivity with respect to rate constants For the sensitivity of the de-
pendent metabolite xi with respect to the rate constant αj, it applies that:

S(xi,αj) =
∂ ln(xi)
∂ ln(αj)

= −
∂ ln(xi)
∂ ln(βj)

(50)
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The matrix, which includes all sensitivities with respect to the rate constants
is S(x,α), which equals −S(x,β).

Sensitivity with respect to kinetic orders The sensitivity of the depen-
dent metabolite xi with respect to kinetic orders (gj,k or hj,k) can be calculated
as follows:

S(xi, gj,k) =
∂ ln(xi)
∂ ln(gj,k)

=
∂xi
∂gj,k

gj,k
xi

(51)

sensitivity of a flux The sensitivities of a flux with respect to different
groups of parameters are considered independently as well.

Sensitivity with respect to rate constants The sensitivity of a flux vi
with respect to changes in rate constants (αp or βp) is given by:

S(vi,αp) =
∂ ln(vi)
∂ ln(αp)

=
∂vi
∂αp

αp

vi

=


1+

n∑
j=1

fi,j S(xj,αp), ifp = i

n∑
j=1

fi,j S(xj,αp), ifp 6= i

(52)

Sensitivity with respect to kinetic orders The sensitivity with respect to
changes in the kinetic orders (gj,k or hj,k) is:

S(vi, gj,k) =
∂ ln(vi)
∂ ln(gj,k)

=
∂vi
∂gj,k

gj,k
vi

(53)

4.4 mathematically controlled comparison

The concepts introduced in the previous section are very helpful for the exami-
nation of the quality of a system but their potential is not completely exploited.
They can also be used to compare different kinds of systems to figure out which
is superior with respect to functional effectiveness measures. Michael Savageau,
who developed the biochemical systems theory, analyzed different kinds of de-
sign principles with respect to unbranched pathways to uncover, if variations in
design happened by chance or if they might have been selected for functional
reasons. A design principle, as defined by Savageau, is a rule that characterizes
a feature of a class of systems, such that the discovery of the rule allows one not
only to understand known instances but also to predict new instances within
the class [145, 150]. Comparing different classes is not an easy task, since two
objects of the same class can already exhibit differences in their quality. One
therefore needs a systematic approach.

A first step would be the definition of the classes, which are about to be com-
pared. The alternatives should differ from the reference in only a single process
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that therefore becomes the focus of the analysis. The reference class could be
an unbranched pathway with only irreversible reactions, e.g., the alternative
could be designed accordingly, except for a feedback inhibition of the first re-
action by the end product [144]. The definition is easily done with power law
models, because information about the kind of inhibition, e.g., is not necessary.
Furthermore, a protocol has to be established, which allows the comparison
of this kind of classes, such as the Mathematically Controlled Comparison (MCC)
[5–9, 144]. According to MCC, the classes must be equivalent on two levels:
internal and external.

internal equivalence Since a process is modified, while building the al-
ternative from the reference class, the parameters (kinetic parameters, rate con-
stant) of this single reaction may differ as well. All other parameters should
stay the same, which is defined as internal equivalence. The notation will be that
a parameter (p) of the alternative system will be indicated by a prime: p ′. Thus,
internal equivalence is expressed in the condition p = p ′, which has to apply
for all parameters which are not taking part in the process of interest.

external equivalence With internal equivalence, most parameters are equal
between the reference and alternative classes. The remaining parameters rep-
resent degrees of freedom, which need to be eliminated. This can be done by
ensuring that the systemic behaviors of both classes are identical to an external
observer [150]. This is called external equivalence. Typically, the steady state val-
ues, fluxes and selected logarithmic gains are forced to be equal, which allows
the determination of parameters of the alternative class as a function of the
parameters in the reference class. Such constraints are imposed until all free
parameters of the alternative class are determined, which eliminates all differ-
ences that are not inherent to the class but only characteristic of some particular
cases.

Subsequently, measures of functional effectiveness, relevant to the biological
context of these designs are determined and used to compare the classes and
determine their remaining differences [150]. These measures of functional ef-
fectiveness are clarified in the following subsection. MCC therefore provides
qualitative statements about the superiority of one design over the other with
respect to certain characteristics but it cannot provide a quantitative one. If one
wishes to know how much better one design is, the analysis has to be exe-
cuted with specific values for the parameters involved. Given that these often
are not available, Alves and Savageau sampled them from distributions repre-
senting prior knowledge about the likely ranges of their values and afterwards
analyzed them through statistical approaches [5–9, 150].

They examined, among others, the performance of an unbranched pathway
with feedback inhibition of the first reaction by the end-product and inter-
changed the position of a single irreversible reaction within the pathway, which
otherwise only exhibits reversible reactions [9]. Applying different criteria of
functional effectiveness (see the following subsection), their analysis revealed
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that the best position for an irreversible step within this pathway, would be the
first. Moreover, they concluded that a fully reversible pathway is more stable
and robust, than a fully irreversible one, although it is possible to optimize its
performance with a single irreversible step in the beginning of the pathway.

Criteria of functional effectiveness

The comparison of different pathway designs has been clarified but on what
grounds? What are the criteria, which should be fulfilled by a pathway to be
considered superior? Why is end-product inhibition the most prevalent pattern
of control in biochemical networks [7, 144]? Savageau listed and discussed dif-
ferent kinds of quantitative criteria, which can be considered in unbranched
metabolic pathways, to answer such questions. Important ones are the follow-
ing [6, 9, 144]:

• A biochemical pathway should be robust, which means insensitive to fluc-
tuations in the parameter values, which concerns the sensitivities of the
steady states and the fluxes (see Section 4.3).

• The flux through the pathway should be responsive to changes in demand
for the final product, which ensures that the amount of material flowing
is directly coupled to the metabolic needs. This concerns the logarithmic
gain L(v, xn+1).

• The system should respond quickly to environmental changes, requiring
short transition times.

• The steady state of the system should be dynamically stable following
small perturbations in the concentration variables or would otherwise be
dysfunctional.

The stability of a steady state is an especially interesting criteria, which will
be considered further. Four factors exhibit a great influence, according to Sav-
ageau: The strength of feedback inhibition, the number of reactions in the path-
way, the degree of equality of the kinetic orders and the alternative patterns of
feedback inhibition.

strength of feedback inhibition and pathway length Savageau com-
pared unbranched pathways of different length and with different strength of
end-product inhibition.

As it turned out, a shorter pathway, i.e. one of only three steps, allows for
higher feedback signals, than one with more steps, without losing stability. This
can be seen in Figure 18. On the left, the systems stay stable until the strength
of the feedback signal turns 4 or higher. In case of a pathway with more steps,
like one with 10 (panel on the right), the system already starts oscillating with a
feedback signal of about 0.8. Therefore, in order to ensure stability, the pathway
should either be quite short or it should not allow for high feedback signals,
because it will not be able to actively regulate the system any longer.
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3 step pathway 10 step pathway

Figure 18: Strength of feedback inhibition vs. stability. The longer the pathway, the easier does
a feedback signal cause instability [143].

equalization of kinetic parameters Another possibility to stabilize a
system is the control of the kinetic parameters. If these parameters are very
different in value for each reaction, they promote stability. This finding actually
makes great sense, because it means that some of the reactions occur at much
faster rates. That is, these reactions are irrelevant for the system’s temporal be-
havior and thus the pathway may be considered to have fewer reactions, than
it actually does, from a kinetic point of view. This effect is termed kinetic short-
ening. The different time scales will be especially important in the following
section.

alternative patterns of control As already mentioned, the most preva-
lent pattern of control in biochemical networks is the feedback inhibition. Sav-
ageau [6, 144] examined the different possibilities of feedback control in an
unbranched pathway and concluded that the end-product feedback inhibition
of the first reaction is the one closest to the boundary of instability. Savageau
concluded that stability might be an important criteria for selection but it does
not necessarily have to be maximized. Stabilization beyond the degree neces-
sary for survival might even be a disadvantage, because it makes the system’s
temporal response to change very sluggish.

4.5 model reduction via time hierarchies

As one can imagine, methods, like MCC, might become extremely complicated
as soon as more complex chemical reaction systems are analyzed. Biological
systems often involve tens or even hundreds of reactants participating in a
multitude of reactions and occur on a broad spectrum of time scales (denoted
as hierarchies) [183]. Analysis of such detailed models are hindered by different
factors: First, they include a great number of mostly unknown kinetic param-
eters; second, these models are often inherently stiff due to widely different
orders of magnitude of the values of the kinetic parameters; finally, it is a sig-
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nificant computational challenge to simulate such a model [57, 177]. To facilitate
this task, a reduction of the model, which still captures the time evolution of
species composition with sufficient accuracy is required. Different approaches
exist: One is the reduction via time-scale analysis, useful for models with fast
and slow reactions and can be applied to linear as well as non linear models.
Vora and Daoutidis developed a method, which is based on singular pertur-
bation analysis and which allows the systematic identification of independent
quasi-steady-state constraints for the fast reactions of a system. All fast reac-
tions are thus assumed to be in quasi-steady-state. In the end one obtains a
model of the slow dynamics, which is independent of the fast reaction rate
expressions and moreover non-stiff. Naturally, the approach leads to a change
of variables, which results in linear combinations of metabolite concentrations,
whose dynamics evolve only slowly.

The system of equations can be divided into slow (s) and fast (f) variables, as
follows:

ẋ = Ss ~vs + Sf ~vf (54)

with p fast and q − p slow reactions [87]. A reaction can be described by
vi = γi · hi(xj), where γi is the rate constant for the i-th reaction (compare
Equation 32) and hi(xj) is a non-linear function describing the dependence of
the reaction rate on the concentration of the j-th reactant. According to singular
perturbation theory, the characteristic time constant of a reaction i is ti = 1/γi.
A small time constant indicates that the reaction proceeds rapidly, a big one
the contrary [57]. A reaction can be classified into fast or slow on the basis of
this time constant, which can be calculated for systems close to steady state, if
their time scale is not already known from literature. To accomplish this, the
eigenvalues of the linearized model (ẋ = J x, J is the Jacobi matrix of the system)
have to be calculated and it applies that ti = 1/|Re(λi)| [87].

Because the rate vector consists of a large (γ) and a small term (hf(xj)), the
system is stiff, which can be overcome by scaling vf with a single parameter (ε),
which then contains the stiffness. With singular perturbation arguments, the
quasi-steady-state conditions for the fast reactions can then be determined and
the fast modes can be eliminated from Equation 54 by a change of variables: a
vector of fast reactions (zf) in the slow time scales replaces vf [57].

ẋ = Ss ~vs + Sf ~zf (55)

In a next step, the system is reduced via a coordinate change: ~P = C~x. It
applies:

~̇P = C ~̇x
= C Ss ~vs + C Sf ~zf (56)

Because the variables ~P are not yet true slow variables, as long as zf is present,
C has to be taken from the left null space (see Chapter 2) of Sf. This decouples
the slow dynamics from the fast reaction rates zf.
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The paper of Gerdtzen, Daoutidis, and Hu includes the application of the
method. One example concerns the central carbon metabolism in erythrocytes.
The original model contains 20 metabolites and 25 reactions. Seven of the re-
actions are identified as fast, which includes reversible, as well as irreversible
reactions. By applying the reduction method, five reactions were eliminated
and only 13 pools (~P) of metabolites were left.

It has been pointed out that constraint-based methods, as FBA and thermody-
namics, can be combined and further used to gain insight to build and analyze
a dynamical model. The combination of these constraint-based methods did
not present any difficulties, as has been shown with the ammonia assimilation
example in Chapter 3. Still, kinetic parameters are usually not known, which
complicates the transition from stoichiometry to dynamics. Therefore, an addi-
tional method will be introduced in Chapter 5, which will help to bridge the
gap. It has been published in [155].
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5
T H E R M O D Y N A M I C S H O RT E N I N G

5.1 introduction

To derive a dynamic model, which is able to mirror experimental results cor-
rectly, is still a difficult task in case of biological systems. This is caused by
(among others) the lack of techniques to measure kinetic parameters on a large
scale. Therefore, it seems reasonable to constrain the possible values of the com-
ponents to eliminate any parameter combination, which is not feasible. Subse-
quently, one can concentrate on identifying likely evolutionary strategies and
possible ways to achieve them, which will reduce the amount of possible states
even further. This approach makes sense, because physics and chemistry con-
strain all theoretically possible phenotypes, which are available to evolution
and only ’successful’ strategies prevail on the long term [157]. The workflow is
illustrated in Figure 19.
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Figure 19: A sequential workflow from metabolic reconstructions to dynamic models. Each of
the three techniques featured here incorporates different kinds of information into
the process. This information can be of two kinds: different types of data, shown
in the upper part of the figure, and evolutionary considerations at different levels,
shown in the lower part of the figure. Furthermore, the results of each step are fed
to the next. The flux distributions provided by FBA can be used as an input to
thermodynamics and the results of both approaches can be translated to parameters
for a dynamic model, which can be formulated and analyzed according to BST and
MCC.

As has been mentioned, being close to or far from equilibrium has a great
effect on a reaction. If a reaction is close to thermodynamic equilibrium, the
forward and backward direction of a reaction are nearly equal, which elimi-
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nates the net-flux and results in higher costs with respect to enzyme investment.
The opposite case is a reaction, which is far away from equilibrium. Assuming
its Gibbs energy is negative, it follows that the backward flux is almost non-
existent and the reaction is considered as irreversible forward. These two are
extreme cases, which can be considered on the pathway level as well: An un-
branched pathway, whose reactions are close to thermodynamic equilibrium,
versus an unbranched pathway, whose reactions are far away from equilibrium.
The dynamics of the first version have already been elaborated by Michael
Savageau, as described in the previous chapter, while the second is less well
understood. The system is clearly more complicated. It is already known that
the kinetic orders are dominated by the thermodynamic contribution, which
tends to infinity, if thermodynamic equilibrium is approximated, and therefore
counters possible perturbations of substrate and product, see Figure 17. Since
the ratio of product and substrate tends to the equilibrium constant, it is pos-
sible to establish a method, which simplifies the pathway in a way, which is
similar to the one described in Section 4.5, utilizing thermodynamic data.

5.2 thermodynamic shortening

The topic model reduction has already been mentioned in Section 4.5. Although
the presented method has its advantages, it cannot be denied that it also has
some disadvantages. First, the fast reactions have to be determined, which re-
quires information from literature or the calculation of the eigenvalues and
eigenvectors from, e.g., a parameter estimation analysis. Second, one introduces
extra algebraic conditions via the quasi-steady-state assumption, which con-
strain the system. An alternative reduction, which is based on the idea of time
hierarchies, is thermodynamic shortening. It is introduced by the means of the
unbranched pathway example from before (Chapter 4), see Figure 20, which is
followed by a short discussion about the differences of the two model reduction
methods.

x1 x2x0

v1
v2

x3

v3 v4

x4

Figure 20: Unbranched pathway with feedback inhibition and a single reversible step.

Thermodynamic shortening uses a classification of the reactions similar to
Gerdtzen but instead of fast and slow reactions, it considers reactions, which
are far from or close to thermodynamic equilibrium. It is possible that this
division matches the one based on time hierarchies, but not necessarily. The ad-
vantage of thermodynamic shortening lies in the possibility to use the results of
the Max-min Driving Force algorithm, concerning the distance to equilibrium.
Moreover, it enables the reformulation of the model in a reduced form, which
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will be consistent with the behavior of the full network, as was the case for the
time hierarchy reduction.
x0 and x4 are independent variables, while all the other state variables are

dependent.

Defining Equation 1 for the dependent variables results in:

ẋ1 = v1 − v2
ẋ2 = v2 − v3
ẋ3 = v3 − v4 (57)

Assuming that reaction v2 is in thermodynamic equilibrium, one can reorder
the reactions, as has been done for the time hierarchies:

~̇x = Sirr ~virr(~x) + Seq ~veq(~x) (58)

irrmeans irreversible, while eq stands for reversible, respective in equilibrium. It
should be noted that ~x includes all variables, dependent as well as independent.
The dependent variables can be further differentiated into free (~xF) and bound
variables ( ~xB), which are connected via the equilibrium constant: If a reaction
is in thermodynamic equilibrium, the equilibrium constant, K ′eq (θ = 1), can be
calculated and used to express the bound variable of the reaction through the
free variable (as well as the independent variables, if present in the reaction):
K ′eq = x2

x1
.

Therefore the concentration of reactant x2 can be calculated from the product
of the substrate concentration x1 and the equilibrium constant, since no inde-
pendent variables are taking part in this example reaction. That is, x2 is then
defined as a bound variable, which depends on the free variable x1. The other
way around is equally possible. One therefore might define ~xB as [x2], which
can be calculated with help of the equilibrium constant, which in turn follows
from the standard Gibbs energy (see Equation 17) and the concentrations of
the free [x1, x3] and independent metabolites [x0, x4]. This can be defined as
follows, in logarithmic coordinates:

log( ~K ′eq) = −ST
eq,F log(~xF) + ST

eq,B log( ~xB) + ST
eq,I log(~xI) (59)

It follows:

log( ~xB) = −(ST
eq,B)

−1 ·
[
ST

eq,F log(~xF) + ST
eq,I log(~xI) − log( ~K ′eq)

]
(60)

Because Equation 60 is a power law, it can easily be used to eliminate xB and
yet preserve the structure of the system.

As has been done for the reduction of the time hierarchies, one defines a new
variable P, which is a linear combination of the former variables and therefore
called pool. It applies that:

~̇P = C Sirr ~virr(~x) + C Seq ~veq(~x) (61)
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The pools must be defined, such that the fluxes ~veq vanish, since they become
internal fluxes. This is important because the net-fluxes of ~veq are zero in equi-
librium, which forces the in- and effluxes to be zero as well, in line with mass
balance, if ~veq remains. In order to achieve that, C has to be chosen from the
left null space of Seq. It remains:

~̇P = C Sirr ~virr(~x) (62)

Applying the method on the example yields the following results:

P1 = x1 + x2

= (1+ K ′eq,2) x1 (63)

P2 = x3

Ṗ1 = v1 − v3
Ṗ2 = v3 − v4 (64)

As one can see in Equation 63, the pools are only dependent on the free
metabolites. The bound ones are replaced, whereas one has to keep in mind that
the fluxes still depend on the dependent, as well as the independent metabo-
lites in Equation 64. Only two differential equations are left. The pool diagram,
which displays all interconnections, looks as follows:

X0 P1 P2

X4

v1 v3 v4

As can be seen in Equation 34 and 35, the differential equations of a dynamic
model are supposed to depend on themselves and the parameters. Because the
fluxes of the equation system 64 are still dependent on the old variables, it has
to be further transformed. The aim is to gain a system, which is dependent on
the pools themselves.

So far, the fluxes are dependent on the dependent and independent metabo-
lites, as has been seen in Equation 33:

vi = γi
∏
j

x
fBi,j
B j

∏
k

x
fFi,k
F k

∏
l

x
fIi,l
I l (65)

The parameters f can be combined in a single matrix Fx, which describes the
effect of the metabolites on the fluxes. In this example Fx looks as follows:

Fx =


x2 x1 x3 x0 x4

v1 0 −fF1,1 −fF1,3 fI1,0 0

v3 fB3,2 0 −fF3,3 0 0

v4 0 0 fF4,3 0 fI4,4

 (66)
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The rows of the matrix correspond to the remaining fluxes (v2 is not present
anymore) and the columns correspond to the bound, the free and the indepen-
dent metabolites. In this case, it is assumed that all products have a negative
effect (−f) on their synthesis reaction, while all substrates are expected to have
a positive effect (+f). The inhibiting effect of x3 on v1 is expressed through −fF1,3.
If more known regulatory effects exist they can easily be added to the matrix.

Since Fx consists of all the derivatives of the logarithms of the fluxes with
respect to the metabolites, it can be written as follows:

Fx =
∂ log v
∂ log x

= V−1 ∂
−→v
∂
−→x

X (67)

V−1 and X are diagonal matrices with the irreversible fluxes, respectively the
metabolites as diagonal elements.

As has been indicated, the fluxes should not be dependent on the dependent
metabolites anymore, but on the pools and the independent metabolites:

vi = γ̃i
∏
j

p
f
p
i,j
j

∏
l

x
fIi,l
I l (68)

and for the fpi,j it shall apply that:

F ′P = V−1 ∂
−→v
∂
−→
P

P (69)

P is a diagonal matrix with the pools as diagonal elements.

In order to be able to calculate Equation 68, ∂
−→v
∂
−→
P

needs to be calculated (~P
represents a vector of the pools):

∂−→v
∂
−→
P

=
∂−→v
∂
−→xF
∂
−→xF
∂
−→
P

+
∂−→v
∂
−→xB
∂
−→xB
∂
−→xF
∂
−→xF
∂
−→
P

=

[
∂−→v
∂
−→xF

+
∂−→v
∂
−→xB

XB
∂ log−→xB
∂ log−→xF

XF
−1
]
∂
−→xF
∂
−→
P

=

[
∂−→v
∂
−→xF

+
∂−→v
∂
−→xB

XB
∂ log−→xB
∂ log−→xF

XF
−1
] (

∂
−→
P

∂
−→xF

)−1

(70)

The change in-between the last two steps of Equation 70 is valid: It applies

that d
−→
P = ∂

−→
P

∂−→xf
d−→xf and therefore d−→xf =

[
∂
−→
P

∂−→xf

]−1
d
−→
P . Since it also applies that

d−→xf = ∂
−→xF
∂
−→
P
d
−→
P , one can conclude that:

[
∂
−→
P

∂−→xf

]−1
= ∂

−→xF
∂
−→
P

.

In order to complete the calculation, the single components of Equation 70

need to be determined:

∂−→v
∂
−→xF

= V FxF XF
−1 (71)
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∂−→v
∂
−→xB

= V FxB XB
−1 (72)

whereas XF
−1 and XB

−1 are diagonal matrices, which contain the reciprocals
of the free and bound metabolites as diagonal elements.

From Equation 60 it follows that:

∂ log−→xB
∂ log−→xF

= −(ST
eq,B)

−1 ST
eq,F (73)

The vector of pools can be differentiated as follows:

∂
−→
P

∂−→xF
= CF + CB

∂−→xB
∂−→xF

= CF + CBXB
∂ log−→xB
∂ log−→xF

XF
−1 (74)

Therefore, F’P can be calculated as:

F ′P = [FxF , FxB] ·

[ IF
∂
−→
P

∂
−→xF

]
XF

−1 ·

[
[CF, CB]

[
IF

XB
∂ log−→xB
∂ log−→xF

XF
−1

]]−1
· P


︸ ︷︷ ︸

U

(75)

=


f
p
1,1 f

p
1,2

f
p
3,1 f

p
3,2

0 f
p
4,2

 (76)

Because the fluxes of the pools still depend on the independent variables, it
applies that:

FP =


P1 P2 x0 x4

v1 f
p
1,1 f

p
1,2 fI1,0 0

v3 f
p
3,1 f

p
3,2 0 0

v4 0 f
p
4,2 0 fI4,4

 (77)

Now, that the fluxes are only dependent on the pools and the independent
variables, the differential equation system 64 can be rewritten as follows:

Ṗ1 = γ̃1 P
f
p
1,1
1 P

f
p
1,2
2 x

fI1,0
0 − γ̃3 P

f
p
3,1
1 P

f
p
3,2
2

Ṗ2 = γ̃3 P
f
p
3,1
1 P

f
p
3,2
2 − γ̃4 P

f
p
4,2
2 x

f
p
4,4
4 (78)

The γ̃i can be calculated based on Equation 31, that is, they are dependent
on the independent metabolites, if vi depends on them. Thus, the terms for the
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independent metabolites in the differential equations cancel out. x
f
p
4,4
4 in Ṗ2, for

instance, cancels out, since the same term appears in the denominator of γ̃4.

The following subsection deals with a direct comparison of both presented
model reduction approaches on the basis of a simple example. This compar-
ison shall illustrate the similarities and discrepancies between their resulting
classifications.

Comparison of thermodynamic shortening and model reduction via time hierarchies

In this section the two approaches are compared with respect to their catego-
rization on the basis of a simple example, which can easily be calculated and
analyzed. Consider the unbranched pathway:

X0 A B
vin v1 vout

Table 1 lists the different cases, which are about to be examined and sums
up the results. Vmax refers to the velocity of equation v1, while θ refers to its
distance to equilibrium.

The rate laws are defined by power laws:

vin = kin · B−g

vout = kout · B
v1 = kf

1 A − kr
1 B (79)

The steady states can be calculated as follows:

Ȧ = vin − v1
= kin · B−g − kf

1 A + kr
1 B

Ḃ = v1 − vout
= kf

1 A − kr
1 B − kout · B

= kf
1 A − (kr

1 + kout)B

which results in:

|A|0 =
kin

(
kin
kout

) −g
g+1

+ kr
1

(
kin
kout

) 1
g+1

kf
1

|B|0 =

(
kin
kout

) 1
g+1
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Thermodynamic shor-
tening applicable

θ � 1 θ ≈ 1

Time hierarchies
Vmax ↑ conflict with veq = vf = v1

applicable assumption

Vmax ↓ veq = vf = ∅ veq 6= vf

Table 1: Comparison of both reduction methods, based on different assumptions concern-
ing reaction v1. Vmax ↑ means that Vmax > vin, vout, while Vmax ↓ stands for
Vmax 6 vin, vout. Since θ ≈ 1 means that v1 is close to thermodynamic equilibrium,
the reduction via thermodynamic shortening is only applicable, if this holds. Further-
more, the reduction via time hierarchies can only be applied, if Vmax ↑.

It therefore applies that:

|B|0
|A|0

=

(
kin
kout

) 1
g+1

kf
1

kin

(
kin
kout

) −g
g+1

+ kr
1

(
kin
kout

) 1
g+1

(80)

=
kf
1

kout + kr
1

(81)

In the following, four different scenarios are discussed: The scenarios, in
which it is assumed that v1 is a fast reaction (Vmax > vin, vout) and a reduction
via time hierarchies therefore possible, but at the same time the reaction is as-
sumed to be either close (θ ≈ 1) or far from equilibrium (θ � 1). As well as the
scenarios that v1 is assumed to be slow but also close or far from equilibrium.
This discussion sheds light on the question, if the subsequent classifications of
the two reduction methods are the same and under which circumstances. The
fact that the system is able to be reduced via thermodynamic shortening, even
if the reduction via time hierarchies would not apply (Vmax ↓, θ ≈ 1), points
out that the newly developed reduction method is a valuable addition to the
existing reduction methods.

• Vmax > vin, vout and θ� 1:
It applies that kf

1 � kin and kf
1 � kout and therefore:

|B|0
|A|0

=
1

kout
kf
1

+
kr
1

kf
1

≈
kf
1

kr
1

= Keq

It follows that the results contradict the assumption, since v1 is not sup-
posed to be in equilibrium. Therefore, it can be followed that the fast
reaction has to be in equilibrium.
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• Vmax 6 vin, vout and θ� 1:
It applies that kf

1 � kin and kf
1 � kout and therefore:

|B|0
|A|0

=
kf
1

kout

≈ 0

Thus, v1 is considered as a slow reaction, which is also not close to equilib-
rium. Both approaches would result in the same classification and neither
of them would be able to reduce the system any further.

• Vmax > vin, vout and θ≈ 1:

If v1 is in equilibrium, it applies that k
f
1
kr
1
= Keq and therefore:

|B|0
|A|0

=
kf
1

kout + kr
1

=
1

kout
kf
1

+ 1
Keq

If Vmax > vin, vout applies, then kf
1 → inf and therefore |B|0

|A|0
→ Keq

Thus, v1 is considered a fast reaction, which is also close to equilibrium.
Both approaches return to the same classification and are both able to
reduce the system.

• Vmax 6 vin, vout and θ≈ 1:
In this case, v1 is in equilibrium but it does not apply that kf

1 → ∞. Still,
it is nevertheless possible to gain |B|0

|A|0
→ Keq, if kout → 0:

|B|0
|A|0

=
kf
1

kout + kr
1

→ Keq

Thus, v1 is considered a slow reaction, which is also close to equilibrium.
The approaches gain different classifications with respect to the reactions
at hand. Only thermodynamic shortening is able to reduce the system.

In conclusion, it has been seen that both reduction methods may result in the
same flux-classification but they as well may not, depending on the conditions.
In any case, although it has been concluded in the example system that the
fast reaction needs to be in thermodynamic equilibrium, this does not apply
universally. Irreversible reactions might as well be fast, as can be seen in the
example in [57].

The inclusion of thermodynamics into the process of dynamical model-building
has been shown to be a powerful tool to reduce the number of equations.
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5.3 economic vs . responsive design

The two extreme cases of a given pathway, the fully irreversible and fully re-
versible pathway, have two biological significant phenotypes: The responsive
and the economic design. They are both based on reasonable ideas but still very
opposed in their properties. The economic design aims to be as cost efficient
as possible by investing the least amount of enzyme, following the principle
of the Max-min Driving Force, with enzymes working at saturation and few
inhibitors, see Figure 21 (c). The alternative pathway design aims at the best
performance, fulfilling the criteria of functional effectiveness (see Chapter 4).
As has been stated before, the best performance can be achieved, when an un-
branched pathway exhibits a first irreversible step, followed by steps close to
thermodynamic equilibrium, which desensitizes the pathway with respect to
changes in certain enzymes [9]. The robustness and stability can be further in-
creased by thermodynamic shortening of the pathway, since a shorter pathway
is in general more robust [144]. Furthermore, the design allows for a higher
feedback signal, which reduces the amount of ’working’ enzyme even further.
The two contrary designs are considerable as two extremes in a trade-off (see
figure Figure 21 (b)) and it might very well be that pathways alternate between
both, depending on the circumstances.

As long as the demand is low, the flux stays low as well and therefore can be
kept with a reasonable amount of enzymes, even if they operate at a fraction of
their Vmax (compare Equation 24), which corresponds to the responsive design.
However, as soon as the demand increases, the cell needs to be prepared to
respond quickly with an increase in flux to raise production. This scenario
shifts the reactions further away from equilibrium and therefore closer to the
economic design.
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Figure 21: The circles in (a),(c) schematically show the reduction of enzyme activity, due to
different causes. In white, the fraction of the enzyme that is actually catalyzing the
reaction forward. In grey the fraction that is inactive due to allosteric inhibition (or
more exactly the fraction in which the total activity is reduced). In black, the fraction
of activity that is lost due to the flux of the reverse reaction or due to insaturation of
the enzyme; (b) shows the two alternative pathways in performance space and the
trade-off between them; (c) displays a more detailed depiction of the two modes of
operation: The economic variant carries a high flux and all its enzymes are operat-
ing close to their Vmax due to weak inhibition and distance to equilibrium. In the
responsive variant, the first enzyme is inhibited and two of the reactions are close
to equilibrium. The efficiency of the enzymes is much lower but so is the flux they
have to carry.
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The remaining chapters will focus on the application of the presented meth-
ods on the model of H. elongata. To start out, a stoichiometric model of the
organism is needed and will be discussed in Chapter 6.



6
T H E M E TA B O L I C R E C O N S T R U C T I O N O F H . E L O N G ATA

The model used in this thesis is based on a core-model, published by Schwib-
bert et al. in 2011 [153]. The following sections will introduce the organism H.
elongata and its product ectoine and will furthermore outline the model of its
metabolism, which has evolved since 2011.

6.1 Halomonas elongata

As mentioned, Halomonas elongata (type strain DSM 2581
T) is a halophilic γ-

proteobacterium, commonly found in environments too inhospitable for most
organisms [153]. The bacterium is closely related to another halophilic pro-
teobacterium, Chromohalobacter salexigens [11], of the family Halomonadaceae
(69% sequence identity), such that it was assumed to be one and the same until
recently.

Halophilic organisms live in saline environments, such as salt lakes, coastal
lagoons and man-made salterns with more than 0.5 mol/l NaCl concentration
[58]. Some can even survive entrapment in salt rock [179]. Given the prefer-
ences, they are challenged by two stress factors, low water potential and high
inorganic ion concentrations. The higher water potential inside the cell causes
water efflux to abolish the water gradient. This would cause most cells to shrink
and die. H. elongate, however, uses one of two known osmoadaption mecha-
nisms to cope with fluctuations in the osmolarity of the growth medium: The
organic-osmolyte mechanism.

6.1.1 Salt-in cytoplasm vs. organic-osmolyte mechanism

The two known mechanisms for osmoadaption are the salt-in-mechanism and
the organic osmolyte mechanism [46, 58, 85, 153].

salt-in cytoplasm mechanism The salt-in mechanism was discovered in
Halobacteria [91] and seems to be the typical archaeal strategy of osmoadaption
[39, 80, 92, 168]. Although the environment of halophilc organisms contains
great amounts of NaCl, sodium (Na+) is not accumulated in the cell. The organ-
isms instead allow potassium (K+) to float in until the molar concentrations are
balanced with its counter ion, chlorid (Cl−) [44, 93]. There are, however, some
anaerobic halophilic bacteria known to accumulate either K+ or Na+, depend-
ing on the growth phase [117, 134]. The saline cytoplasm requires that most of
the enzymes in the cells are enriched in acidic amino acids and, at the same
time, they are strictly dependent on K+ and or Na+ for activity [46].

63
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organic-osmolyte mechanism The organic-osmolyte mechanism is wide-
spread among bacteria and eukarya and also present in some methanogenic
archaea [91]. These organisms keep the cytoplasm to a large extend free of
KCl and the design of the cells interior remains basically unchanged [101, 138,
174], although they allow for a short-term influx of K+ after a sudden increase
in salinity [85]. This cation serves as a cellular messenger and activates the
accumulation of highly water-soluble organic compounds (like sugars, poly-
ols, amino acids and/or amino acid derivatives) by either de novo synthesis
or by uptake from the environment. These enable the maintenance of the os-
motic equilibrium with the environment [135]. Because the organic compounds
do not disturb the cell’s metabolism, they are called ’compatible solutes’ [25].
Compatible solutes effectively stabilize proteins and even whole cells by mit-
igating detrimental effects of freezing, drying and high temperatures [22, 95].
The most common compounds are the amino acid derivatives glycine-betaine
and ectoine [116, 135] and more procaryotes are able to synthesize the latter,
than the former, e.g. H. elongata [56, 135, 156]. Some bacteria can also use ec-
toine as an energy source [171] or to stabilize whole cells against stresses, such
as UV radiation or cytotoxins [26, 55, 77, 83]. This property makes ectoine a
valuable ingredient for health and skin care products.

Concluding, halophiles, which use the organic-osmolyte mechanism, are more
flexible, given the wide range of salt concentrations in which they can prosper
(3 to 30%) [174].

The ability of halophilic organisms to withstand extreme stress factors at-
tracts interest from the scientific community and establishes significant utility
for processes and applications in biotechnology. Organic osmolytes, such as ec-
toine, establish osmotic equilibrium and stabilize biological structures. Already
in the early 1990’s novel biotechnological processes were successfully devel-
oped using halophilic bacteria, such as H. elongata, as producing strains for
organic osmolytes [91].

6.1.2 Ectoine

Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) (Figure 22) is
a compatible solute of high interest for the pharmaceutical and cosmetic in-
dustry. Examples include protection of organisms, organs, tissues, cells or the
organic building blocks thereof from chemical radicals and oxidatively active
compounds [152]; prevention and treating of gastrointestinal and amyloidal
diseases [151]; and stabilization of skin moisture content [107].

Ectoine was first discovered in the extremely halophilic phototrophic bac-
terium Ectothiorhodaspira halochloris [56] and has been characterized by 13C-
NMR spectroscopy, mass spectrometry and infrared spectroscopy (IR). Because
it dissolves in water quite easily (up to 6 mol/l water at 4°C), it possesses a non-
ionic character at physiological pH-values and hence meets the requirements
for an organic osmolyte [121].
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Figure 22: Ectoine (C6H10N2O2) [158]

The production of ectoine through the organic-osmolyte mechanism prevents
the cell from being shrunk by osmosis. This allows halophilic organisms to
live in environments with very high salt concentrations (10 times higher than
sea water), without disturbing the cell’s metabolism, even at high cytoplasmic
concentrations. For instance, H. elongata can tolerate salt concentrations well
above 10% (1.7 mol/l) NaCl [153].

ectoine synthesis Ectoine is the main compatible solute of H. elongata [156].
It is synthesized from L-aspartic-4-semialdehyde, which is an important synthesis-
intermediate in the aspartate family of amino acids [115, 121, 153].

Figure 23: Ectoine synthesis [115]

The ectoine synthesis consists of three steps, as displayed in Figure 23: L-
aspartic-4-semialdehyde (ASA) is converted into L-2,4-diaminobutyrate (DABA)
via transamination and DABA is in turn converted to N-γ-acetyl-diaminobutyrate
(ADABA) by acetylation with acetyl coenzyme A (AcCoA), which then yields
ectoine by circularization. The three enzymes involved in this are DABA amino-
transferase, DABA acetyltransferase, and ectoine synthase in order of reaction
[115]. Ectoine can also be utilized as both a carbon and a nitrogen source by H.
elongata. The doeABCD (degradation of ectoine ABCD) genes are responsible
for its degradation [153].

The following sections deal with the metabolic network of H. elongata.

6.2 basic model

The corner stones of the model for H. elongata have been laid by the automatic
and manual annotation of Schwibbert et al., with the help of the KEGG and
BRENDA database. They built a so-called core-model, which reflects the con-
version of glucose to ectoine, without the incorporation of growth, because
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they aimed to explore the different metabolic options to produce ectoine via
FBA. The core-model is the product of the careful reduction of a richer model
with several reactions, which are not relevant for ectoine production from a
sugar-source. Similar models exist for organisms which are highly related to H.
elongata, for example E. coli. However, in order to explore some newly identi-
fied metabolic differences, the model has been adjusted. A map of the metabolic
pathways is displayed in Figure 24.
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Figure 24: Pathway map of the core-model. The grey reactions and metabolites are included in
the model but are only active in case that growth is considered. They therefore play
a minor role. All other reactions are displayed in light blue, while the metabolites
are displayed in dark blue. Most reactions are named like their KEGG identifiers.
The long versions of the metabolite names, as well as the model equations can be
found in Appendix B.

The subsequent sections deal with important aspects of the core-model of H.
elongata.
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6.3 anaplerotic reactions

Since the product, ectoine, could not be produced without the use of at least
one of the anaplerotic reactions, they play a major role in the metabolism of
H. elongata. Moreover, the importance has already been pointed out in [153].
Therefore, their role will be examined in this analysis.

The anaplerotic reactions of H. elongata are the oxaloacetate decarboxylase (OAD)
(EC 4.1.1.3, rn:R00217), the PEP carboxylase (PEPC) (EC 4.1.1.31, rn:R00345) and
the malic enzyme (MAE) (EC 1.1.1.38, rn:R00214). They count as anaplerotic re-
actions, because they appear to replenish carbon in the TCA-cycle, compare
Figure 24. The single reactions are explored below.

6.3.1 Oxaloacetate Decarboxylase (OAD)

The oxaloacetate decarboxylase is a membrane-bound pump, which imports
sodium into the cell:

Pyruvate + 2Naout + CO2 =⇒ Oxaloacetate + 2Nain + H2O

This fact is quite important when it comes to FBA, because the sodium has
to be exported again, which requires energy. However, because it follows the
conversion of PEP to pyruvate, two ATPs per glucose molecule can be gained
initially. This issue will be explained in more detail in the following chapter.

In contrast to H. elongata, E. coli does not exhibit any form of OAD, which is
an important difference between the two organisms.

6.3.2 PEP Carboxylase (PEPC)

The model includes two enzymes, which catalyze the direct interconversion
of PEP and oxaloacetate: The PEP carboxylase and the PEP carboxykinase (EC
4.1.1.49, rn:R00341). The PEP carboxylase transforms pyruvate to oxaloacetate
and therefore participates in the production of ectoine from sugar:

PEP + CO2 =⇒ Oxaloacetate + Phosphate

The PEP carboxykinase is assumed to catalyze the reverse direction, since the
forward direction is kinetically unfavorable for this enzyme [153, 185].

6.3.3 Malic Enzyme (MAE)

The malic enzyme connects pyruvate with malate, which is then processed to
oxaloacetate via the malate dehydrogenase (EC 1.1.1.37, rn:R00342). As in the
case of OAD, two ATP units are gained with the interconversion from PEP
to pyruvate beforehand. This enzyme is usually known to catalyze the reverse
direction but the FBA done by Schwibbert et al. [153] assumed that the forward
direction would be energetically preferable. To test, if this hypothesis is actually
thermodynamically feasible, is one of the objectives of this work. The reaction
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is defined as follows:

NADPH + CO2 + Pyruvate + H =⇒ NADP + Malate + H2O

Not only the direction of the reaction differs to the enzyme used by E. coli
but also the cofactors. Instead of NAD and NADH it is, based on personal
communications from Viktoria Kindzierski, assumed that NADP and NADPH
are used.

6.3.4 Glyoxylate Shunt (GLX)

There exists a fourth option to replenish the TCA-cycle: The glyoxylate shunt
(rn:R00479, rn:R00472). These enzymes represent a short-cut through the TCA-
cycle and because some of the carbon is lost before it reaches oxaloacetate, the
GLX is not considered a real anaplerotic reaction but rather like an anaplerotic
strategy, which is nevertheless important.

6.4 phosphofructokinase (pfk vs . ppi-pfk)

Glucose can be metabolized in different ways. Common in bacteria is the Embden-
Meyerhof-Parnas pathway. Other organisms prefer the Entner-Doudoroff path-
way, which is similar with respect to the overall scheme, see figure Figure 25.
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The Entner-Doudoroff pathway is versatile. Different organisms exhibit dif-
ferent expressions: Besides the constitutive pathway (e.g. in Z. mobilis), there
exist the linear pathway (e.g. in E. coli) and the cyclic pathway (e.g. in Pseu-
domonas) [32]. The annotation raised the question, if H. elongata uses the linear
or the cyclic pathway. They differ in the way glycolysis is executed. In the case
of the linear pathway, the Entner-Doudoroff pathway is only used for metabo-
lization of certain carbohydrates, as gluconate, while the ordinary carbohydrate
metabolism proceeds via the Embden-Meyerhof-Parnas pathway. In the case of
the cyclic pathway, the core of the central carbohydrate metabolism is formed
by the Entner-Doudoroff pathway and the Embden-Meyerhof-Parnas pathway
is used in the reverse direction. The basic model was initially built with the lin-
ear pathway but experimental evidence has been generated that indicates the
presence of the cyclic version. The difference lies in the phosphofructokinase.
The ’normal’ one is an ATP-dependent enzyme (PFK) (EC 2.7.1.11, rn:R04779).
An alternative is represented by the pyrophosphate-dependent phosphofruc-
tokinase (PPi-PFK) (EC 2.7.1.90, rn:R00764). One hint that indicates it could be
the second enzyme has been given by the closest relative of H. elongata: Chromo-
halobacter salexigens. This bacterium exhibits the PPi-PFK and utilizes therefore
a cyclic pathway. Another hint has been given by the absence of the D-fructose-
1,6-bisphosphate phosphatase (FBPP, F6P + Pi <===> FBP + H2O) (EC 3.1.3.11,
rn:R00762), which usually accompanies PFK. This enzyme is needed to catalyze
the reverse direction, since the PFK is highly unlikely to progress backwards.
The two PFK options are defined by the following reactions:

PFK: F6P + ATP =⇒ FBP + ADP

PPi-PFK: F6P + PPi⇐⇒ FBP + Pi

If the ATP-dependent PFK is missing in the metabolism, it indicates that
the Embden-Meyerhof-Parnas pathway cannot proceed in a forward direction,
because the PPi-PFK catalyzes the reverse direction. The Embden-Meyerhof-
Parnas pathway is therefore not an option to metabolize the sugar-source,
which only leaves the Entner Doudoroff. Thus, certain precursors, which are
needed for biomass production are not build. This is overcome by the backward-
catalysis of the Embden-Meyerhof-parnas pathway. For that reason, this version
of the pathway is called cyclic [32].

6.5 respiratory chain

The respiratory chain of H. elongata matches the one of E. coli in most parts.
However, H. elongata has one additional channel, the sodium-motive
NADH:ubiquinone oxidoreductase (EC 1.6.5.8, C1Na) [21]. This channel is sim-
ilar to NDH-1-type NADH:ubiquinone oxidoreductase (EC 1.6.5.3, complex I
or C1), which is also present in E. coli. They both translocate protons across the
inner membrane per molecule of oxidized NADH, helping to build the elec-
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trochemical potential difference used to produce ATP. C1
Na exports two pro-

tons and two sodium molecules instead of four protons, as C1 does, compare
Figure 26. It is for instance needed to export the sodium, which is imported
through OAD. The same applies for the two antiporters (the orange channels
in named figure). Complex III and IV have been combined to C3-4.
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Figure 26: The respiratory chain. The blue channels are the complexes II-IV of the respiratory
chain, as well as the ATPase. Complex III and IV have been combined to one: C3-4.
The dark green channel is complex I (C1), the light green channel is the additional
complex I channel in H. elongata, which exports sodium out of the cell. The an-
tiporters, responsible for the exchange of protons and sodium are marked in orange.
The inputs to this module are FADH2 and NADH, while FAD and NAD serve as
outputs.

6.5.1 P:O ratio

The P:O ratio of an organism describes the number of ATP-molecules, which
can be obtained by oxidative phosphorylation per molecule of oxygen. This
parameter cannot be derived from the genome annotation.

The current model does not fix the P:O ratio but allows it to manifest itself
through the flux distribution in the FBA. Its value can be extracted from the
FBA by means of the ratio of the fluxes ATP load and C3-4. To prevent the P:O
ratio from having an unreasonably high value it can be controlled by either
the reaction proton leak, which simulates a proton leak into the cell, or by the
antiporters.

6.5.2 Glucoseimport

The original model assumed that glucose, as well as fructose, are imported
through the PTS-system. New annotation results, however, show that the PTS-
system is only used for fructose. Glucose is imported directly and afterwards
phosphorylated to α-D-glucose-6-phosphate through the glycokinase-reaction
(EC 2.7.1.2, rn:R00299).

6.5.3 Quinones

The original basic model did not differentiate between the different kinds of
quinones and always used ubiquinone/ubiquinol. However, it is now known
that, e.g. E. coli, uses menaquinone/menaquinol as well [4, 170]. Its presence
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in H. elongata should therefore be considered and analyzed. In general, aerobic
gram-positive bacteria contain menaquinone, most gram-negative types con-
tain ubiquinone, but a few gram-negatives, like E. coli, contain roughly equal
amounts of both quinones [120]. The difference between both quinones is the
redox potential: Menaquinone has a very low redox potential (-74 mV) com-
pared to that of ubiquinone (100 mV) [54]. They both mediate the electron
transport reactions in the respiratory chains of bacteria. Because a preference
for either quinone is not yet clear, all reactions, which use ubiquinone so far
(which includes the reactions of the respiratory chain) have been defined again
with menaquinone/menaquinol. The glucose dehydrogenase, which is a mem-
brane bound enzyme concerning the Entner Doudoroff, accepts electrons from
the pyrroloquinoline quinone (PQQ), which in turn interchanges electrons with
menaquinone or ubiquinone, dependending on the growth conditions [88].

Moreover, the succinate dehydrogenase reaction (EC 1.3.99.1, rn:R00412) had
to be changed because so far it used FAD/FADH2 as substrate/product, which
is not possible because they are covalently bound to the enzyme. Ubiquinone/u-
biquinol or menaquinone/menaquinol are actually substrate and product and
therefore the reaction changes to [110]:

Succinate + Q =⇒ Fumarate + QH2

Succinate + MQ =⇒ Fumarate + MQH2

All reactions, which are newly defined with menaquinone/menaquinol, in-
stead of ubiquione/ubiquinol are marked by m, like rn : R00412m.

6.5.4 Additional reactions without gene assignment

Some processes, like the consumption of ATP for the maintenance of the cell,
are not modeled. Nevertheless, they are accounted for through the addition of
extra reactions. One such reaction, which describes the ATP-hydrolysis is the
ATP load. Another one is called Proton leak. This reaction is a proxy for all
reactions, which cause a proton influx, while skipping the respiratory chain,
like uncoupling agents.

Moreover, a transhydrogenase reaction has been added to account for the in-
terconversion of NADH and NADPH. E. coli, e.g., has two transhydrogenase
versions, the UdhA and the PntAB. One is soluble and the other is mem-
brane bound and therefore proton-translocating [139]. Recent annotation re-
sults showed that H. elongata only owns the PntAB transhydrogenase, which is
therefore incorporated into the model with its KEGG-code rn:R00112:

NADPH + NAD+ + Hin ⇐⇒ NADP+ + NADH + Hout

NADH and NADPH are quite different function wise, because NADH serves
energy-production as the main respiratory cofactor and can be recovered through
the TCA-cycle, while NADPH attends anabolic reduction reactions (i.e. biosyn-
thesis). NADPH can be recovered via the Pentose-Phosphate-Pathway, the isoc-
itrate dehydrogenase and the transhydrogenase reaction.
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6.6 incorporation of biomass production into the model

The core-model of H. elongata consists of the main elements for ectoine produc-
tion from sugar but it does not take into account the possibility of cell growth,
which is a typical objective of every cell. Ectoine production and cell growth
are competitive and cannot be satisfied equally at the same time. Therefore the
comparison of both goals becomes an interesting point to pursue. In order to
do so, the reactions for the precursors of biomass and the growth reaction it-
self have to be introduced. Several precursors for biomass production are build
in the glycolysis but not all. Because the exact composition of the biomass of
H. elongata is not known so far, this analysis will be mostly based on E. coli,
which is also gram-negative and thus a well-studied representative. Where in-
formation on the composition of certain biomass precursors is available, they
are modified to reflect H. elongata.

The biomass of a bacterial cell is primarily build up from seven components
[109]:

• Protein (55%)

• DNA (3.1%)

• RNA (20.5%)

• Lipids (9.1%)

• Carbohydrates (2.5%))

• Peptidoglycan (2.5%)

• Lipopolysaccharides (3.4%)

These components have to be broken down into their precursors, until all in-
terconnections between the core-model and the new components are identified
and linked. This is essential for the subsequent use of FBA.

The procedure has been roughly pictured by Feist et al. in Figure 27. As
one can see, the units change from mmol/g Dw to g/g Dw as soon as the
macromolecular level is reached (Dw stands for dry weight). This is due to the
fact that biomass cannot be measured in mmol/g Dw. The units therefore have
to be adjusted.

In the following, the different precursors of biomass will be considered, the
exact calculations and reactions can be found in the appendix. The components,
which add up to biomass as depicted in Figure 28.

6.6.1 Protein

The proteins consist of amino acids, connected to the core-model through metabo-
lites as oxaloacetate, which is the precursor of the aspartate family. Figure 29

summarizes the different connections.
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Figure 27: Procedure to gain the biomass composition according to Feist et al. [50]. In a first
step, (a), the macromolecular weight percent contribution for each component needs
to be determined. The data with respect to E. coli can be found in [109]. Each macro
molecule is then broken down into its building blocks (b) (BOF stands for biomass
objective function). These building blocks in turn are also broken down to establish
a connection to the existing core-model (c).

The synthesis reactions of the amino acids have been looked up in the KEGG
database and been compared with the stoichiometries in other E. coli models
[131, 167]. It was thereby implied that the two organisms would not be dis-
tinguishable with respect to their amino acids. Neidhardt published a table,
which depicts the content of each amino acids in a general protein (in mol
%) [109]. The reaction, which has been introduced to reflect this relation is
BmAminoacidreaction. Stephanopoulos provided the formula to calculate 1 g of
protein per g Dw [164], which is based on the molecular weights of the compo-
nents:

39.1 mmol ATP + 9.1 mmol Aminoacids =⇒ 1 g Protein + 39.1 mmol ADP +
39.1 mmol Pi

6.6.2 DNA and RNA

DNA, as well as RNA, are composed of nucleotides. Again, the synthesis reac-
tions have been looked up in KEGG but also in Lehninger. The formulas are
therefore once more based on E. coli, given the close relationship to H. elon-
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Figure 28: Pathway map for biomass synthesis. Metabolites are once again displayed in dark
blue, while reactions are displayed in light blue.

gata. It can be adjusted easily as soon as new data indicate differences. Again,
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Figure 29: The amino acid families and their connection to the core-model of H. elongata [35].
Green: Aspartate-family; Yellow: Pyruvate-family; Orange: Glutamate-family; Blue:
Aromatic-family; Purple: Serine-family.

Stephanopoulos provided formulas to calculate 1 g of DNA and RNA per g Dw.
The new reaction formulas are BmDNAreac and BmRNAreac (see appendix).

The following subcomponents of biomass provided a greater challenge.

6.6.3 Lipids

The basis of most lipids is acetyl-CoA because it is needed to assemble fatty
acids. Depending on the length of the chain and the kind of carbon bounds,
one distinguishes different kinds of fatty acids. The active form is called acyl-
CoA, which is a generic term, like amino acids. The proportion of each fatty
acid in acyl-CoA had been collected in [131]. All fatty acids have been incorpo-
rated in one single reaction, BmAcyl-CoAreaction. To finish the process of lipid
biosynthesis, the fatty acids have to be provided with their head groups. The
final phospholipids are phosphatidylethanolamine (PE), phosphatidylglycerol (PG)
and cardiolipin (CL). Pramanik and Keasling provided a phospholipid compo-
sition as well but in this case, data from H. elongata exist [178]. Because the
synthesis reactions of PE, PG and CL are already calculated in g/g Dw, no
further conversions are necessary.
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6.6.4 Carbohydrates

The carbohydrate, which is considered, is glycogen. Glycogen consists of glu-
cose. The exact amount used for glycogen production can be calculated: Be-
cause glucose has a molecular weight of 180 g/mol, 1 g of glycogen consists of
5.55 mmol glucose. The synthesis reaction therefore is:

5.55 mmol (Glucose + ATP - ADP - Pi) =⇒ 1 g Glycogen

6.6.5 Peptidoglycan

Peptidoglycan is a polymer, which forms a layer outside the plasma mem-
brane of most bacteria. It usually consists of N-acetylglucosamine (NAG), N-
acetylmuramic acid (NAM), Meso-diaminopimelate and different amino acids
[99]. The composition of the amino acids differs from organism to organism.
The one of H. elongata can also be found in [178]. The amino acids present in
the peptidoglycan of H. elongata are leucine, glycine, glutamate and alanine.
The calculation of the synthesis reaction can be found in the appendix.

6.6.6 Lipipolysaccharides

Lipopolysaccharides are a major component of the membrane of gram-negative
bacteria. Its structur varries among different kinds of bacteria. Because there is
no information available on its composition within H. elongata, E. coli is used
as a reference [167]. The derivation of the molecular mass and the synthesis
equation is displayed in the appendix.

6.6.7 Biomass synthesis

With all precursors available in g/g DW it is possible to define the synthesis
equation of biomass, which is called BmGrowth. The formula can be derived
from [109]:

0.031 DNA + 0.205 RNA + 0.55 protein + 0.091 lipids + 0.025 carbohydrates +

0.025 peptidoglycan + 0.034 lipopolysaccharides =⇒ 1 g biomass

Without the incorporation of biomass, the core-model consists of 79 reactions
and 80 metabolites. The inclusion of biomass increases the number of reactions
to 154 and the number of metabolites to 160.
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F L U X B A L A N C E A N A LY S I S ( F B A )

Flux Balance Analysis is a suitable way to start the mathematical analysis of
a biochemical system, because it provides insight into the processes within a
network, without demanding too much information in advance. It allows the
modeler to gain an idea of the capabilities of a system, e.g. the theoretical pro-
duction limits, based on the model. The model of H. elongata, with biomass
production included, is analyzed under different perspectives: First, with re-
spect to ectoine production; second, with respect to growth to get an idea of
how much carbon of the sugar-source could theoretically be used for biomass
production. Third, ectoine is considered as a part of biomass, which shifts the
focus to its influence on biomass production. Finally, a variable, proton leak,
is examined, which allows the comparison with experimental data. The com-
parison of the two different glycolytic pathways is an objective throughout the
whole FBA analysis. The anaplerotic reactions play an important role with re-
spect to growth and ectoine production. Therefore, their role is examined as
well.
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Figure 30: The figure displays a shortened pathway version (EMP pathway used), which lies
the focus on the anaplerotic reactions and energy production.
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Figure 30 displays all the reactions of interest in different colors. These colors
will keep their meaning throughout the chapter. The glycolytic pathway variant
displayed is the Emden-Meyerhof-Parnas pathway. The Entner-Doudoroff path-
way variant looks similar but the flux, coming from glucose, would end up in
phosphoenolpyruvate (PEP), following glyceraldehyde-3-phosphate (GAP), as
well as pyruvate, compare Figure 24. The reactions of interest stay the same.

7.1 maximization of ectoine production

In the first analysis, the focus is on ectoine maximization alone and growth is
not considered. As has been explained in the materials and methods part, it
is possible to define certain constraints in FBA to see how the system behaves
under these conditions. The objective (ectoine maximization) stays the same
throughout this section. The value of the input, glucose, has to be fixed to al-
low for a certain flux through the network. For purpose of this analysis, the
input-flux is set to 100 mmol/(g Dw h), which stays the same throughout the
whole thesis and will serve as a reference for the yields. It is known that a cell
needs a certain amount of energy to maintain its status quo. This requirement
is represented by the ATP load reaction as discussed in the previous chapter.
Limiting this reaction restricts, among others, the ATP demand of the cell. In
this way, the optimization problem can be further constrained, which offers the
possibility to gain an idea of the influence of the ATP load on the choice of di-
rection through the whole network. In each optimization the ATP load reaction
is given a value between zero and 800 mmol ATP/100 mmol Glc, although it
is known that a cell usually does not need more than 10 mmol ATP/100 mmol
Glc to stay alive [118]. For each fixed ATP load value (vfixATP) an optimization
is executed and the values of the fluxes of interest are saved and afterwards
depicted in a stacked area plot, which shows how the carbon flows through the
pathway.

The optimization problem is formulated as follows:

max Z = vectoine

s.t:

S~v = ~0

~vL 6 ~v 6 ~vU

vfixATP 6 vATP (82)

An exemplary stacked area plot of such an optimization is depicted in Fig-
ure 31 (a). The x-Axis displays the varying ATP load (in mmol ATP/100 mmol
Glc). The y-Axis represents the fluxes the carbon takes on its way through
the network. It can either end up in ectoine production through one of the
anaplerotic reactions or is burned to satisfy the ATP load, which is represented
by the black arrows in Figure 30 or the black area in (a). Note for clarifica-
tion: The respiratory chain, which satisfies the ATP load, is activated through
NADH, which in turn is gained through the reactions marked in black in Fig-
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ure 30. These reactions also use up carbon for CO2-production. Therefore, they
represent the usage of carbon for energy production.
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Figure 31: (a) is an exemplary stacked area plot, which explains the concept for ectoine opti-
mization for different ATP load values (in mmol ATP/100 mmol Glc); (b) displays
the flux distributions, which result, if malic enzyme is able to perform the transition
from pyruvate to malate. For each ATP load value (per 100 mmol Glc) MAE is the
superior flux-choice, if the ectoine-yield is maximized.

As can be seen in Figure 30, the anaplerotic reactions all flow into oxaloac-
etate, which has only one effluxes, one which ends up in ectoine. That is, the
fluxes of the green, blue, red and cyan arrows add up to the value of the yel-
low one, which represents the amount of the produced ectoine. Because the
carbon has to flow through at least one of the colored reactions to account for
ectoine maximization, the stacked area plot does not exhibit white areas. In
this way, each vertical line, which can be drawn in such a plot, accounts for an
optimization with fixed ATP load, the value is represented by the x-coordinate
and reflects how much of the carbon ends up in ATP production (in carbon-
mol %) and how much flows through either of the anaplerotic reactions and
ends up in ectoine production. The line drawn in Figure 31 (a) can be inter-
preted as follows: 90% of the carbon influx flows through PEPC and ends up
in ectoine production, 10% have to be burned to satisfy the ATP load of 400

mmol ATP/100 mmol Glc. The glyoxylate shunt is something special, because
it serves energy as well as ectoine production. Therefore, part of its flux will
add up to the yellow line, while part of it will be above, serving energy produc-
tion.

Optimizing the EMP pathway for glycolysis results in the stacked area plot
displayed in Figure 31 (b). It shows the flux distributions without any extra
constraints. As can be seen , independent of the ATP load, malic enzyme seems
to be the superior anaplerotic reaction for ectoine production. As long as the
ATP load stays below 100 mmol ATP/100 mmol Glc, almost all the glucose is
catabolized to ectoine, which is represented through the yellow line. As soon as
this threshold is crossed, the carbon is further needed to satisfy the other ATP
consuming reactions of the cell, represented through the increasing black area.
Alternative solutions are possible, for instance is PEPC an acceptable alternative
to MAE, as long as the ATP load reactions is fixed on a relatively low value.
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Solutions, which are equally optimal with respect to their objective, are called
degenerated. They are difficult to find, because FBA only returns one solution
in each optimization, while there usually exist thousands of equally optimal
solutions. It is hard to tell with FBA alone which solution is more reasonable
and closer to reality.

As has been shown, malic enzyme appears to be the superior option when it
comes to ectoine production, according to FBA. Still, it is known that the other
anaplerotic reactions are important and need to be analyzed in more detail as
well. The FBA results indicate that MAE is the preferred anaplerotic reaction,
which does not allow for the examination of the other anaplerotic reactions. To
accommodate the analysis, mutants are defined, which lack the ability to use
malic enzyme. One such mutant is the malic mutant. To analyze the differences
between OAD and PEPC as well, two double mutants are defined: the malic
OAD mutant and the malic PEPC mutant.

0 100 200 300 400 500 600 700 800
ATP load

0

20

40

60

80

100

Fl
u
x
 (

%
 C

-m
o
l 
g
lu

co
se

)

Malic mutant (EMP pathway)

(a)

0 100 200 300 400 500 600 700 800
ATP load

0

20

40

60

80

100

Fl
u
x
 (

%
 C

-m
o
l 
g
lu

co
se

)

Malic mutant (ED pathway)

(b)

Figure 32: Figure displaying stacked area plots for the pathways with inactivated malic enzyme.
(a) shows the stacked area plot, which has been created with the model, which uses
the EMP pathway; (b) displays the stacked area plot, which has been achieved with
the model, which uses the ED pathway.

Figure 32 displays the flux distributions of the malic mutant in case that ei-
ther EMP or ED is active. It can be seen that OAD seems superior to PEPC,
because it is the only remaining anaplerotic reaction at high ATP load values.
This is caused by the ATP, which is gained through the PEP to pyruvate re-
action. One might wonder, why OAD and malic enzyme are not equivalent,
since both follow this reaction. The reason is sodium, which gains access to
the cell, when OAD is active. As mentioned already, these cations have to be
exported again, but the process is coupled to an import of protons. This proton-
influx reduces the amount of protons, which are available to produce ATP with
the ATPase. Thus, the export of the sodium indirectly costs energy. The exact
amount lost depends on the membrane protein used to export the sodium. The
different options are the sodium dependent complex I (C1

Na) of the respira-
tory chain and two antiporters, which exchange sodium with protons: the 1:2
Na+/H+ antiporter (Napump21) and the 2:3 Na+/H+ antiporter (Napump32),
see Figure 33.
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Figure 33: Sodium economy: The use of OAD is coupled to an import of two sodium cations,
which have to be exported again. Three different options exist, which entail different
costs (in red) with respect to energy. The respiratory chain, on the right, is the most
energy-efficient option to export sodium (the colors correspond to the ones from
Figure 26). The two antiporters (in orange) import protons and therefore are not
very energy-efficient. The ATPase needs to import three protons to produce one
ATP molecule.

The more efficient option is the respiratory chain, which uses C1
Na instead

of C1. Because the proton-export is divided in half, if C1
Na is used instead of

C1, the ATPase misses out on two of three protons per sodium-pair. Thus, the
energy deficit equals 2

3 ATP. The two antiporters exhibit a worse balance: The
antiporter Napump32 exchanges the sodium-pair with three protons and there-
fore costs one ATP. The antiporter Napump21 makes the same exchange with
four protons and therefore exhibits the highest opportunity costs, because the
deficit is more than one ATP molecule. For this reason, the best case scenario is
the use of C1

Na and although the step from PEP to pyruvate results in the gain
of one ATP, the export of sodium costs 2

3 of it, which leaves an overall gain of
1
3 ATP. The use of malic enzyme does not cost any ATP units and is therefore
superior.

In the course of the analysis, a ranking could be established: Malic enzyme,
catalyzing the reaction from pyruvate to malate, is the best option to produce
ectoine, because of the extra ATP gained in the step from PEP to pyruvate. The
next best option is the use of OAD, which still gains 1

3 of an ATP unit. OAD
is followed by PEPC, which lacks the step from PEP to pyruvate and therefore
the gain of any ATP. The worst option is the glyoxylate shunt, because it does
not offer any extra energy, but rather costs carbon in the TCA cycle, which
cannot be used for ectoine production. Nevertheless, the glyoxylate shunt is a
good choice for energy production, if only little carbon needs to be invested to
satisfy the ATP load, as can be seen in Figure 34.

In this case, malic enzyme and PEPC are inactivated, which means that PEPC
is no possible choice for a low ATP load anymore, as has been the case in
Figure 32. Thus, OAD has to be used but this goes along with the use of the
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Figure 34: Malic PEPC mutant with active EMP pathway. Only OAD is left as an anaplerotic
reaction. To use this enzyme, the respiratory chain has to be activated, in order
to export sodium in the most efficient way. Therefore, some carbon needs to be
burned, which can be achieved in a cheaper way by the use of the TCA shortcut:
the glyoxylate shunt. As soon has the ATP load increases, more carbon needs to be
burned and the shortcut is insufficient to satisfy the demand.

respiratory chain to export sodium. It lowers the ectoine-yield from the start.
Instead of using the reactions marked in black, which would cost more carbon,
the shortcut through the glyoxylate shunt is taken. Therefore, only 2 instead of
6 carbons are consumed in each turn. This is only valid, as long as the amount
of energy needed is small. As soon as a certain threshold is reached, the energy-
demand and therefore the NADH-demand is too high and more carbon has to
be consumed.

As has already been indicated, the Embden-Meyerhof-Parnas and the Entner-
Doudoroff pathway are compared as well. As can be seen in Figure 32, the flux
distributions are slightly different, although the ranking stays the same. Still,
the Entner-Doudoroff does not gain as much energy as the Embden-Meyerhof-
Parnas. The energy supply is only half [52]. Therefore, the ectoine-yield is 1-2%
lower throughout all considered pathway versions, which indicates that the
ED pathway is inferior. This finding raises the question why H. elongata would
prefer the ED over the EMP pathway. This question will be followed up in the
thermodynamics.

7.2 maximization of biomass production

The next focus of the FBA is the biomass maximization. In order to be compara-
ble to the former results, the same reactions as before are considered, although
one has to keep in mind that their flux might be lower. Moreover, not the whole
carbon flux will be depicted, resulting in white areas, because a major part ends
up in biomass without the use of the anaplerotic reactions. The constraints for
ATP load and glucose input stay the same as before.

As can be seen in Figure 35, the flux through the anaplerotic reactions is
much lower, than before. As mentioned, a significant amount of carbon takes
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Figure 35: Optimization of biomass with an active EMP pathway. (a) wildtype; (b) malic mu-
tant; (c) malic OAD mutant; (d) malic PEPC mutant. The brown line represents the
biomass-yield with respect to the amount of glucose fed (100 mmol/g Dw, respective
18 g/g Dw). The biomass production cannot be depicted in mmol Dw/mmol Glc,
because it cannot be measured that way. It is measured in g Dw/g Glc, which results
in a yield considering gram. The maximal yield is 0.67 g Dw/g Glc, according to the
analysis. The change in yield is depicted in brown.

other routes through the network to end up in biomass. Because there are so
many, they cannot be displayed all together, resulting in a large unfilled white
space. The yellow line, which showed how much ectoine has been produced, is
replaced by a brown one, which represents the biomass-yield with increasing
ATP load. The maximal value is 0.67 g Dw/g Glc. At an ATP load of 800 mmol
ATP/100 mmol Glc, the yield is decreased by 20% to 0.54 g Dw/g Glc. As can
be seen in the different figures, the mutants have no effect on the biomass-yield,
the decrease is always the same. Moreover, because more precursors are needed
for biomass production, more energy must be invested, which results in an
increased CO2 production, as represented by the black area. The ranking stays
the same, although the glyoxylate shunt does not serve as an alternative flux
anymore. Interestingly, the malic mutant ceases the use of PEPC. Previously
PEPC was used as long as the energy demand was low and it was possible to
prevent the use of the respiratory chain, which costs carbon. In this case, the
respiratory chain is already needed for biomass production. Thus, it does not
cost more carbon to use OAD at low ATP load.
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The same analysis has been repeated with the Entner-Doudoroff pathway,
instead of Embden-Meyerhof-Parnas and again, a 2% lower yield resulted. Fig-
ure 36 (a) represents the change in biomass in g Dw/g Glc, scaled by the molec-
ular weight of glucose, with the use of the EMP pathway, while (b) displays the
ratio of the optimal values, which results from the use of the ED or the EMP
pathway. As one can see, the value is close to 1, because the difference is low,
but it increases a bit with increasing ATP load. The flux profile stays the same,
independent of the pathway choice. Therefore, the stacked area plots of the
ED-version are not displayed.
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Figure 36: (a) displays the production of biomass in g Dw/g Glc, if the EMP pathway is active,
while (b) illustrates the ratio between the production with the ED and EMP pathway.

7.3 optimization of biomass production with ectoine content

incorporated

The previous analysis considered ectoine and biomass production as indepen-
dent of each other. In fact, ectoine is part of biomass, although its exact content
is not known, because it varies with the salt concentration of the medium. Lit-
erature supports an assumption of up to 20% [42]. In order to examine the
whole spectrum, the fraction parameter, α, is introduced as a variable. In the
following, the ATP load reaction is set to 10 mmol ATP/100 mmol Glc, which
appears to be a reasonable estimation, since similar values have been measured
for E. coli [118]. Still, ATP is produced with the ATPase for synthesis reaction,
etc.. The formula, which represents the incorporation of ectoine (in g), is the
following [42]:

(1−α) biomass + α ectoine = biomass with ectoine

α is varied between zero and one and therefore between the two possible
extremes of the formula: Biomass contains either no ectoine or consists only
of ectoine. The flux distributions from before for an ATP load of 10 mmol
ATP/100 mmol Glc can be found at the boundaries of the new stacked area
plots. The principle stays the same, the carbon flux through the anaplerotic
reactions and the energy production are displayed in C-mol % glucose, as well
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Figure 37: Stacked area plots for biomass optimization (including ectoine) with the EMP path-
way active. (a) wildtype; (b) malic mutant; (c) malic OAD mutant; (d) malic PEPC
mutant. The variable (α) is the ectoine-content fraction. The boundaries display the
extreme cases of no ectoine or only ectoine in biomass. The results with the ED
pathway are quite similar.

as the ectoine production (yellow line). The results for the EMP pathway are
displayed in Figure 37. If compared with the ED pathway, one would see that
the energy investment of the ED pathway is always higher, than for the EMP
pathway, while the ectoine-yield stays lower. Moreover, as could already be
seen in Figure 32, OAD is even more important in the case of the ED pathway,
than in case of the EMP. All the flux of the anaplerotic reactions, which is above
the yellow line, is the one, which flows into biomass, everything below flows
into ectoine.

Another direct comparison of the EMP and ED pathway can be found in
Figure 38. Again, α is the variable, which means the left boundary in (a) rep-
resents the optimal biomass production without the inclusion of ectoine, while
at the right boundary the optimal value for ectoine production (in g Dw/g Glc)
is reached. The overall yield of ectoine is 0.78 g ectoine/g Glc and the overall
yield of biomass without ectoine content has been 0.67 g Dw/g Glc. (b) dis-
plays the ratio between the optimal values with the ED and EMP pathway and
one can see that this ratio stays below 1 but is not significantly affected by the
change in ectoine content.
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Figure 38: (a) displays the production of biomass with ectoine content in g Dw/g Glc, if the
EMP pathway is active, while (b) illustrates the ratio between the production with
the ED and EMP pathway. As one can see in (a), the higher the ectoine content, the
more product in g Dw/g Glc. The fraction of ectoine does not have a great effect on
the difference between EMP and ED pathway. The EMP pathway still ensures more
product but this does not change depending on ectoine.

So far, the resulting yields have been quite high, since they are the maximal
theoretical yields. The following section incorporates the regulation via the pro-
ton leak to link the theoretical yields with experimental results of fermentation
experiments.
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7.4 proton leak and comparison with experimental data

The P:O ratio of the model can be regulated via the proton leak (in mmol
H+/100 mmol Glc), allowing the adjustment of the FBA by lowering the op-
timal output to gain results, which are closer to experimental results. Recent
experiments (not yet published) have shown that the yield of biomass includ-
ing ectoine is 0.5 g Dw/g Glc at a salt concentration of 1 mol/l.

0 1000 2000 3000 4000 5000 6000
Proton leak

0

20

40

60

80

100

Fl
ux

 (%
 C

-m
ol

 g
lu

co
se

)

Wildtype

(a)

0 1000 2000 3000 4000 5000 6000
Proton leak

0

20

40

60

80

100

Fl
ux

 (%
 C

-m
ol

 g
lu

co
se

)

Malic mutant

(b)

0 1000 2000 3000 4000 5000 6000
Proton leak

0

20

40

60

80

100

Fl
ux

 (%
 C

-m
ol

 g
lu

co
se

)

Malic OAD mutant

(c)

0 1000 2000 3000 4000 5000 6000
Proton leak

0

20

40

60

80

100

Fl
ux

 (%
 C

-m
ol

 g
lu

co
se

)

Malic PEPC mutant

(d)

Figure 39: Optimization of ectoine production in dependence on a proton leak (in mmol
H+/100 mmol Glc) into the cell (EMP pathway). As depicted, the proton leak has a
significant effect on the ectoine optimization and the use of the anaplerotic reactions.

Figure 39 shows the effect of the proton leak on ectoine optimization with
an active EMP pathway. The results for the ED pathway are similar and not
displayed. The malic enzyme looses its superior position with increasing proton
leak, when optimizing for ectoine. It actually changes direction from malate to
pyruvate, possibly to help the transhydrogenase exporting protons with the
supply of NADPH. PEPC becomes more important, than before and is also
superior with respect to OAD, because OAD lowers the export of protons with
the use of the sodium-translocation C1. OAD is only considered as an option, if
malic enzyme and PEPC are not available and even then, the glyoxylate shunt
seems to be the superior choice.

What about biomass including ectoine? The paper from Doetsch et al. in-
cludes a figure, which displays the ectoine content in biomass for different salt
concentrations. At a salt concentration of 1 mol/l, the ectoine content is about
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Figure 40: Optimization of biomass containing 7.1% ectoine in dependence on the proton leak
(EMP pathwy).

7.1%. Therefore, the α from before is set to 0.071 and biomass, including ec-
toine, is optimized again. This time the proton leak is used as a variable to see,
if it is possible to lower the theoretical biomass yield from 0.67 g Dw/g Glc
to 0.5 g Dw/g Glc (marked by an orange dotted line). Figure 40 shows that a
proton leak of about 3000 mmol H+/100 mmol Glc seems to be sufficient. The
preferences with respect to the anaplerotic reactions stay the same as in the
other sections and the production of CO2 is much higher. The similar results
for the ED pathway are not displayed.

For a thorough examination, the maximal P:O ratio is calculated, dependent
on the proton leak. Therefore, the ATP load reaction, which represents the need
for ATP of the cell, is maximized for every proton leak and its value is set in
proportion to the usage of the oxygen, represented by the flux through C3-4.
The resulting ratio is illustrated in Figure 41 (a) where the proton leak of 3000

mmol H+/100 mmol Glc, which ensures a theoretical biomass-yield of 0.5 g
Dw/g Glc, is marked by a red dotted line. The resulting maximal P:O ratio is
2.6. Plotting the results of the EMP and ED pathway against each other, results
in (b), showing that the proton leak indeed has an effect on the ratio of EMP
and ED pathway. It drifts further apart.
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Figure 41: P:O ratio. (a) displays the P:O ratio for different proton leaks, while (b) depicts the
difference between the results with EMP and ED pathway.

As mentioned previously, the FBA serves as an easy start in the mathemati-
cal modeling process of the metabolism of H. elongata. It predicts that the EMP
pathway is overall better, than the ED pathway, although the difference is mi-
nor. MAE, if processing from pyruvate to malate, is the superior option to
produce ectoine, independent of the glycolytic pathway. The next best option
is OAD, then comes PEPC. One can theoretically gain 0.78 g ectoine/g Glc or
0.67 g Dw/g Glc but it has to be kept in mind that these are very optimistic
assumptions. Constraining the P:O ratio via the proton leak reaction, lowers
the biomass yield to values, which are compareable with experimental data.

The question remains, why H. elongata would exhibit the PPi-PFK instead
of a normal PFK and if malic enzyme is actually able to catalyze the reaction
from pyruvate to malate. Moreover, the flux distributions in general should be
checked for their thermodynamic practicability. It has been explained in the
previous section that ubiquinone and menaquinone are both included in the
model, because it was not clear which one might be present or if both are
present, as it is the case in E. coli. This question is not answerable with FBA,
because FBA does not differentiate between them.

These matters will be discussed in the following chapter. The thermodynamic
analysis will not be able to consider the whole core-model with biomass in-
cluded, because the formation energies for the macro molecules are not avail-
able so far. Therefore, mostly the basic model, without growth, will be consid-
ered in the following. However, the last section will deal with a growth related
flux distribution, whose active fluxes, which have already been matched with
formation energies, will be analyzed thermodynamically.

The sign vectors of the FBA have to be updated with respect to the transhy-
drogenase in order to be analyzed thermodynamically. This reaction should
not be restricted in the thermodynamics, because it would not allow for certain
ratios of NAD

NADH or NADP
NADPH . Moreover, it sometimes causes unrealistic solutions

in the FBA, which would invalidate the thermodynamics.





8
T H E R M O D Y N A M I C R E S U LT S

The metabolism of H. elongata is largely unknown, which provokes several ques-
tions concerning the functionality. These will be examined in greater detail
from an energetic point of view in the course of this chapter. Some have al-
ready been looked into from a stoichiometric angle but not all. For instance,
the differences between the goals of ectoine and energy production have not
been considered yet.

The following analysis will initially concentrate on differences in certain mod-
ules of the network, like the advantages of a sodium-translocating complex I
(C1

Na) in the respiratory chain. From there it will evolve to questions concern-
ing the overall metabolism.

8.1 respiratory chain : complex i and quinones

The respiratory chain is a very important module in H. elongata, because it
provides energy, which is needed for synthesis reactions, like the synthesis
of proteins, etc.. Thus, gaining insight into the processes and composition of
this module is fundamental for the understanding of the whole metabolism.
The respiratory chain of H. elongata contains two versions of complex I: One,
which is only proton-translocating (C1) and one, which translocates sodium as
well (C1

Na). These two channels are compared with respect to their thermody-
namic properties. The analysis is coupled with a comparison of the ubi- and
menaquinone, since quinones play an important part as electron shuttles in the
respiratory chain. At first, the two complexes are compared via FBA. This anal-
ysis is followed by a thermodynamic analysis, which uses the flux distributions
as signvectors.

In order to illustrate the differences between the two complexes, the analysis
focuses on a subnetwork, the respiratory chain, as displayed in Figure 26. This
module includes the ATPase, the antiporters and the different complexes. In
order to analyze the differences between the two complex I versions, the mod-
ule is extended by two reactions: First, the ATP load reaction, which serves as
a measure of ATP production and which has been explained before; second, a
new reaction (Na+-intake), similar to the proton leak reaction, which mirrors
all processes, which cause a sodium-intake of the cell, e.g. through OAD (see
Figure 33). This reaction will serve as a variable in FBA. Instead of glucose, the
inputs to the subnetwork are 100 mmol/(g Dw h) FADH2 and 100 mmol/(g
Dw h) NADH, while FAD and NAD serve as outputs, compare Figure 26.

A first comparison of the two complexes is done via FBA. The objective used
is the maximization of the ATP production, which is represented by the ATP
load reaction, to gain insight into how much energy could be produced. As has
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Figure 42: Flux distribution of the respiratory chain with varying sodium-intake. At low Na+-
intake, C1 is the superior channel, since it ensures a higher proton export for the
ATP production. With increasing intake, C1

Na gains importance, since the sodium
needs to be exported again.

been done in the previous chapter, the objective function is optimized several
times, in dependency on a given variable: The sodium-intake flux (in mmol
Na+/100 mmol NADH). The sodium-intake is chosen as a variable, since H.
elongata thrives in high salt environments and certain substances, like compati-
ble solutes, can only be imported, if coupled to sodium. Moreover, this accom-
modates processes, which import sodium into the cell, like the reaction cat-
alyzed by OAD. Both complex I versions are active in the analysis. The fluxes
in Figure 42 display the yields in dependence on 100 mmol NADH/(g Dw
h). Figure 42 shows the development of the fluxes, as the proton-motive-force
and the sodium-motive-force are built. As one can see, the classical version
of complex I is superior, if sodium is not entering the cell, since it ensures a
higher ATP production due to the greater proton export. As soon as the cell
starts to take sodium in, the sodium-translocating complex I is used. Its flux in-
creases with increasing intake till it replaces the classical complex I completely
at an intake of 200 mmol sodium/100 mmol NADH. In general, the ATP pro-
duction decreases with increasing sodium-intake, since sodium needs to be
exported in addition to protons. The slope becomes even steeper as soon as
the antiporters are needed as well, because the amount of electrons available
to serve the respiratory chain does not stay above the electron-influx through
the sodium-uptake anymore. Because the usage of 1 mmol NADH/(g Dw h)
pushes two electrons through the membrane, this threshold lies at 200 mmol
sodium/100 mmol NADH. The usage of the antiporters has higher opportunity
costs, as has been explained in Figure 33 and therefore the decrease in ATP pro-
duction is more significant. Since the Napump32 is still the superior antiporter,
Napump21 stays inactive. The more the uptake increases, the more flux needs
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to be channeled through the mentioned antiporter, since the respiratory chain
would need more electrons to increase the flux through C1

Na.

An interesting fact, which is not displayed here, is that as soon as the sodium-
intake is higher, than 120 mmol Na+/100 mmol NADH, the ATP production of
the respiratory chain with only C1

Na would outperform the one with only C1.
The reason is the ATP-balance: C1 might export two protons more, than C1

Na

in each turn, but since C1 would need the help of an antiporter to export any
sodium and since the use of the antiporter causes an uptake of 3 protons, the
balance is negative. The subnetwork with C1

Na does not rely on the antiporter
as long as enough electrons are available (see above). Therefore, the module
with C1 is more productive at low sodium-intake, while the module with C1

Na

outperforms C1 at higher intake.

To further examine the differences between both channels, a thermodynamic
analysis is executed. It is expected that C1

Na exhibits other advantages besides
being more effective at higher sodium intake. Moreover, the question arises,
why H. elongata should have two antiporters, if one does not seem to be needed.
This might have thermodynamic reasons as well. A possible explanation would
be that the superior antiporter looses its ability to perform the exchange reac-
tion in forward direction under certain conditions. The analysis of the two
subnetwork-versions, one with only C1 and one with only C1

Na, is separately
executed with ubiquinone and menaquinone, which might be equivalent con-
cerning FBA but due to their different redox potentials are expected to exhibit
differences with respect to thermodynamics. The module using ubiquinone will
be examined first.

8.1.1 Quinones

The proton- and sodium-translocating modules are analyzed with respect to
their feasibility under varying conditions. The conditions, which would be con-
trollable by a experimentalist, are the pH outside of the cell, the salt concen-
tration in the medium and the membrane potential, since it depends on the
pH-difference of the cell (see Equation 14). The reaction directions used for
this analysis follow from FBA. They are applied in the NET algorithm, which
returns intervals for the Gibbs energies and metabolite concentrations. These
intervals are of minor interest in the present analysis. It suffices to know which
combination of the mentioned conditions result in feasible solutions. In order
to examine the behavior under the predefined conditions, intervals are defined
for all of them: The pH outside of the cell is varied between [5; 8], the salt
concentration takes on values between [0.1; 2] mol/l and the membrane poten-
tial varies between [-200; -50] mV, dependent on the ∆pH. The internal pH is
fixed at a value of 7.6, which is reasonable for H. elongata. The ionic strength
changes with a varying NaCl. The internal ionic strength is considered to be
constant 0.25 mol/l [174]. Each combination of the varying conditions is then
tested with the NET algorithm and saved, if it turns out to be a feasible one.



94 thermodynamic results

The feasible combinations for a salt concentration of 0.1 mol/l or 2 mol/l, if
only ubiquinone shuttles the electrons, are displayed in Figure 43.
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Figure 43: Comparison of the adaptability of the two enzymes (C1 and C1
Na) of the respiratory

chain to different environmental conditions (salt concentration of 0.1 mol/l vs. 2

mol/l). The dark brown intervals belong to the module, which translocates protons,
as well as sodium (C1

Na) and the lighter brown ones belong to the module, which
only builds a proton-motive-force (C1).

The left panel shows the results for a salt content of 0.1 mol/l (= 0.1 M),
while the right panel shows the results for 2 mol/l (= 2 M) salt. Both panels
display the feasible combinations of pHout and membrane potential for the two
module-versions, the one, which uses C1 (light brown intervals) and the one,
which uses C1

Na (dark brown intervals). Each external pH can be matched
with an interval concerning the potential, since the term, which accounts for
the influence of ions in Equation 14 has been varied between [35; 290] mV, to
account for a membrane potential range of [-200; -50] mV in case of each pH. As
one can see, the intervals with respect to the membrane potential are in general
larger, if the sodium-dependent channel is present, at least for an external pH
below 7. This can be explained with the proton-motive-force: The greater the
pH difference, the lower the tendency for protons to leave the cell. This offers
the sodium-dependent channel an advantage, since it exports fewer protons. It
can therefore be concluded that this module is compatible with a stronger po-
tential at lower pHout. Comparing the two plots with each other indicates that a
change in NaCl has a significantly greater effect on C1

Na, than C1, because the
dark brown intervals become shorter with increasing salt (compare the right
panel). One might expect the subnetwork with the sodium-translocating sys-
tem to have an advantage at high external pH, since alkaliphiles are supposed
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to rely on the sodium-motive-force [108]. In order to be true for this system, a
sodium-dependent ATPase would have to be added. So far its existence in H.
elongata has not been confirmed. Considering the figure in general, it appears
that a higher pH outside of the cell is accompanied by a more negative mem-
brane potential, which is not surprising, since this has already been established
in E. coli [63, 186]. The vertical line at -120 mV indicates the typical membrane
potential of E. coli, which serves as a reference value [106].
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Figure 44: The adaptability of the antiporter Napump32 for ubiquinone. The intervals are al-
most exactly the same as before.

As mentioned, the role of the 1:2 Na+/H+ antiporter is unclear so far. Thus
another thermodynamic analysis is executed, using the same varying condi-
tions as before. This time signvectors are used, which exhibit active antiporters.
The principle is the same as before, the different conditions are varied and
the feasible combinations of pH and membrane potential displayed. Figure 44

shows that the feasible combinations are almost exactly the same as before. The
only difference can be found at a pH of 8. The feasible interval turned out to
be smaller. It can be concluded that the 2:3 antiporter does not loose its ability
to proceed in a forward direction. The same applies for the 1:2 antiporter (re-
sult not displayed). Thus it is still unclear what role the inferior antiporter has.
Considering the Gibbs intervals has at least shown that the 1:2 antiporter has a
lower tendency to change direction, than the 2:3 antiporter.

The analysis is repeated. This time with mena- instead of ubiquinone. Com-
paring Figure 45 with Figure 43 shows that the respiratory chain with ubiquinone
can operate at much wider potential ranges with respect to both versions of
complex I. Especially at high salt, which is rather compatible with biological
observations. Therefore, it seems reasonable to assume that it is more likely for
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Figure 45: Comparison of the adaptability of the two enzymes to different environment condi-
tions in case that menaquinone is used. The dark brown intervals belong to C1

Na

and the lighter brown ones to C1

ubiquinone to shuttle the electrons in the respiratory chain of H. elongata, than
menaquinone. It is conceivable that both are present but menaquinone will be
excluded in the remaining part of the analysis, since it might cause infeasibili-
ties.

8.1.2 Respiratory chain with MDF

Given the importance of the respiratory chain, a further analysis from another
angle is executed, the enzymatic costs of the pathway, determined by the Max-
min Driving Force algorithm. This might offer new insights into the compari-
son of the effects of the proton-motive-force and the sodium-motive-force. This
time the ratios between the major cofactors, ATP

ADP and NAD
NADH , are also included

in the analysis, which constrains the thermodynamic analysis further. These
ratios are very important, since they ensure the upkeep of certain gradients.
Moreover, constraining the ratios, rather than the absolute co-factor concentra-
tions, is better, since they are more conserved in many cases [111]. In general,
it seems that ATP

ADP appears to lie in an interval of [3; 10], while NAD
NADH should

lie in an interval of [10; 20] [20, 68, 100, 111]. Since one has to choose certain
values for both ratios, the values proposed by Henry et al. are assumed as fixed
constrains. This might not be applicable in case of the whole core-model, but a
small module, like the respiratory chain, is easier to constrain. The constraints
are: ATP

ADP = 3.2 and NAD
NADH = 19.
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Figure 46: Comparing the respiratory chain with C1 (a) and C1
Na (b). Plotted are the minimal

driving force solutions for varying membrane potential and pHout.

As before, the different external parameters are varied but this time the min-
imal driving force values (B) are collected and plotted in Figure 46. (a) belongs
to the module, which builds the proton-motive-force, (b) represents the subnet-
work, which builds the sodium-motive-force as well. The x-Axis is the mem-
brane potential (in mV), while the y-Axis displays the minimal driving force
values for each external pH (indicated through the colors red, green and blue).
The effect of the salt concentrations can be seen by comparison of the plots
within the same row. Obviously, the complex I, which only translocates pro-
tons, is not affected by sodium and therefore is not affected by an increase in
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salt concentration. Thus, only one figure is displayed in (a). This does not ap-
ply for the system with C1

Na (Figure 46 (b)). In general it seems that the higher
the external salt concentration, the lower the minimal driving force, since the
maximal B values become smaller and therefore closer to equilibrium. Only at
a pHout = 8 does B stay the same, more or less independent of the salt con-
centration. Moreover, a lower external pH allows for higher minimal driving
force values, which makes the system pathway cheaper. In general, the min-
imal driving force values seem to be higher in case of the respiratory chain,
which builds the sodium-motive-force. Therefore, it turns out to be the cheaper
pathway variant. Interestingly, one can once more see the strong correlation
between membrane potential and external pH.

Comparing the plots concerning the system with C1 with respect to the dif-
ferent pH values, is seems that a pHout of 7 is the best fit, since it allows for
a wide interval concerning the membrane potential and includes the reference
potential -120 mV. An optimal value for optimal operation seems to be the
combination of pHout = 7 and ∆V = −155 mV. This potential is higher in mag-
nitude, than the reference value but as has been stated before, the membrane
of H. elongata is different to the one of E. coli with respect to the lipid composi-
tion and the peptidoglycan. The ions cannot go through as easily, which might
allow for a potential of -155 mV.

In case of the respiratory chain with C1
Na, the conditions are different: a pH

of 6 ensures a higher minimal driving force, than a pH of 7, independent of the
sodium concentration. This also means a lower magnitude with respect to the
membrane potential, which might not be reasonable in nature, due to the fact
stated above. If one chooses a pHout of 7 instead, the minimal driving force still
exhibits higher or comparable values to the one in (a). In general, the possible
bottleneck values are quite high for both systems, since the subnetwork is small.
Figure 13 displayed the dependence of the productivity of an enzyme on the
driving force of the reaction it catalyzes. It has been illustrated that a driving
force of more or less 8 kJ/mol is already enough for an enzyme to operate
close to 100% of its Vmax. Therefore, it is not necessary to limit the optimal
feasible ranges of the membrane potential to just the peaks of each curve. A
wider interval can be allowed.

Concluding, one can say that C1
Na in general offers higher magnitudes with

respect to Gibbs energies but is also counteracted by higher external sodium
concentrations.

8.2 pfk vs . ppi-pfk

As has been explained before, H. elongata exhibits the PPi-PFK (rn:R00764) in-
stead of the ATP-dependent PFK (rn:R04779), which has a major consequence
concerning the kind of glycolysis used. In this section the differences between
both PFKs with respect to reversibility are examined via consideration of an-
other subnetwork: The glycolysis from α-D-glucose-6-phosphate to lactate
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The analysis is initiated by a comparison via FBA. As in Chapter 7, the ATP
load is used as a variable, ectoine is maximized and the optimized values are
collected for both pathway versions and then displayed in Figure 47. One ver-
sion uses the PFK, the other the PPi-PFK, which is assumed to be reversible.
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Figure 47: Ectoine production with PFK or PPi-PFK active for varying ATP load. As can be
seen, the yield is higher in case of the PPi-PFK.

As it turns out, the pathway variant, which uses the PPi-PFK allows for
higher product-yields, than the PFK. However, this only applies, if the enzyme
actually is able to catalyze the forward direction, as the PFK does. This will be
checked in the following.

The thermodynamic analysis is executed also using the MDF algorithm but
without changing the external conditions of the cell: The membrane potential
is fixed near the reference value of E. coli (-123 mV), since it is calculated via
Equation 14 with an internal pH of 7.6 and an external pH of 7. The external
salt concentration is set to 1 mol/l.

An initial analysis compares the thermodynamic profile of the pathway with
either PFK, catalyzing the forward direction, see Figure 48 (a). The Gibbs ener-
gies of all reactions, as calculated by the MDF algorithm, are summed up and
the change in driving force from one reaction to the next is displayed as steps.
One can easily see that the PFK is energetically more favorable in the forward
direction, than the PPi-PFK, since its cumulative driving force (∼ 95 kJ/mol) is
much higher. The step size of the PFK is higher as well, when comparing the
step sizes of the reactions marked in blue. Moreover, it can be seen that the
MDF algorithm provides a solution in which the step size from one reaction to
the other is mostly conform. This generally applies for small modules, like the
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Figure 48: Energetical profiles of the general glycolysis moving in forward (a) and backward
direction (b) (gluconeogenesis), in order to compare which direction is more likely
for which PFK. It can be seen that the PFK has a higher tendency to catalyze the
forward and the PPi-PFK the backward direction. The reactions can be found in
Figure 24, the formulas are displayed in Appendix B.
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glycolysis module in which the boundaries of the concentrations do not differ
too much from each other.

A second analysis is concerned with the backward catalysis. In this case the
pathway starts with oxaloacetate instead of lactate, because it marks the start
of gluconeogenesis. All direction signs from the previous analysis are switched.
Figure 48 (b) shows that the pathway with the PFK has a much lower ten-
dency to catalyze the backward direction, than the one with the PPi-PFK (com-
pare the blue marked areas). The cumulative driving force of the PPi-PFK is
much higher (∼ 140 kJ/mol), which makes sense, since the PFK is in general
assumed to be irreversible forward and is therefore attended by D-fructose-
1,6-bisphosphate phosphatase (FBPP), which catalyzes the backward direction
instead.

Is is concluded that glycolysis with PFK present has a higher tendency to
catalyze the forward direction, while glycolysis with PPi-PFK has a higher ten-
dency to execute the backward direction. Since the gene for the PPi-PFK has
been found in the genome but the gene for the phosphatase has not, it seems
even more likely that the PPi-PFK is a substitute and that H. elongata uses the
cyclic Entner-Doudoroff pathway.

The comparison of the two glycolytic variants will take place in the following
section. Furthermore, the model will be considered as a whole, instead of single
sub-modules.

8.3 emp vs . ed

The experimental and homologous results so far indicate that H. elongata makes
use of the Entner-Doudoroff pathway in forward direction to catabolize sugar
and that it uses the Embden-Meyerhof-Parnas pathway in backward direction
for certain synthesis reactions, compare Figure 25. As has been seen in the
chapter concerning FBA, the ED pathway does not produce as much ATP as
the EMP and therefore produces less product. This raises the question why an
organism would actually use the ED pathway. Flamholz et al. and Klingner
et al. [52, 82] followed up on this issue. Flamholz et al. proposed that the use
of the ED pathway might be beneficial from a thermodynamic point of view,
while Klingner et al. discovered that strains of marine bacteria, which use the
ED pathway, exhibit a more robust resistance against oxidative stress, which
is typical for this environment. The current section executes a thermodynamic
comparison of both pathway versions.

The analysis is similar to the one in the previous section. Again, a membrane
potential of -123 mV and a pHout of 7 is used. The external sodium concentra-
tion is varied between 0.1 mol/l, 1 mol/l and 2 mol/l, which results in three
different curves in each of the following plots. The plots display the thermody-
namic profile again. In the course of this analysis the whole core-model (with-
out biomass) is examined via FBA and MDF algorithm but only the reactions
of interest, meaning the ones from EMP and ED pathway are displayed, as
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Figure 49: Displaying the comparison of EMP and ED pathway, influenced by the different
external sodium concentrations. The second row displays the difference between
the Gibbs energies of the reactions to identify those, which are mostly influenced
and how by the change of the sodium concentration. The reactions can be found in
Figure 24, the formulas are displayed in Appendix B.
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shown in Figure 49. This time the two versions of complex I are not examined,
since the EMP pathway cannot be optimized without C1. The reactions, which
overlap in both pathways are highlighted in blue, while the reactions, which
belong either to the EMP or the ED pathway are highlighted in red or yellow.
The results for the varying salt concentrations in the first row are indicated
through different line styles, as can be seen in the legend. The first row of
Figure 49 displays the thermodynamic profile, while the second row displays
how the Gibbs energies of the reactions (represented by ∆Gx) are affected by the
difference in salt concentrations (as indicated by the lowercase x). The dotted
line, for instance, represents the difference in Gibbs energy at 0.1 mol/l and 1

mol/l salt, compare the legend.
As can be seen in the first row, the ED pathway is indeed thermodynamically

more favorable, because the cumulative driving force is significantly higher
(170 kJ/mol in case of 1 mol/l salt). It can therefore be assumed that ED is
the cheaper pathway with respect to enzyme costs. Moreover, the increase in
salt seems to have a positive effect on the thermodynamics in both versions,
although the effects seems to be higher in case of the EMP pathway. This is
caused by an improvement of the Gibbs energy of the glucoseimport reaction, as
well as the reactions of the respiratory chain in case of the EMP pathway and
the OAD, due to an increase of the ionic strength outside of the cell, which facil-
itates the import of sodium. Moreover, the difference between ∆G0.1 and ∆G1.0
is higher, than between ∆G1.0 and ∆G2.0, since the change in salt-content is also
10-fold, as can be seen in the plots in the second row: The driving force change
in case of the dotted line is much greater, than the dashed one. The differ-
ence in-between the height of the steps of neighboring reactions indicates how
much they are affected by the change in salt. With respect to the ED pathway,
the glucoseimport reaction, as well as reactions rn:R05605 (2-dehydro-3-deoxy-
phosphogluconate aldolase) and rn:R00658 (phosphopyruvate hydratase) are
mostly affected. One can also see that only rn:R00703 (lactic acid dehydroge-
nase) is negatively influenced by the shift in concentration. For EMP, reaction
rn:R01015 (triose-phosphate-isomerase) is affected significantly. Still, this result
has to be considered carefully because the Max-min Driving Force exhibits de-
generated solutions as well, since its based on a linear optimization, as FBA,
and the bottleneck reactions can lie in some other part of the pathway.

In Figure 50 one can find the Gibbs intervals from the NET algorithm and
the Max-min Driving Force solution from the thermodynamic profiles. The first
plot contains the reactions, which are common in both plots and marked al-
ready as such in Figure 49 by the blue background. The second plot contains
the remaining reactions of each pathway. The dashed white lines indicate the
area, in which a reaction is assumed close to equilibrium (|∆rG| 6 2.5 kJ/mol).
As one can see, the Max-min Driving Force solutions of the EMP reactions are
clustering close to zero, which causes the huge difference between ED and EMP.
The ED pathway has four big drops, the EMP only two.
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Figure 50: Comparison of the Gibbs energy intervals of EMP and ED pathway. The upper plot
contains all the common reactions of both pathways. The lower plot contains the
reactions, which are specific for each pathway. The ones with the red background
belong to the EMP pathway, while the ones with the yellow background belong to
the ED pathway. The white lines mark the closeness to thermodynamic equilibrium,
as has been explained before.
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Going forward, all analysis attempts will use flux distributions, which use
the cyclic ED instead of the EMP pathway.

The following section will deal with the question, if malic enzyme is actu-
ally able to catalyze the forward direction, as indicated by the FBA, or if this
solution is not thermodynamically feasible after all.

8.4 malic enzyme

As discussed in Chapter 7, if malic enzyme (MAE) actually belongs to the
anaplerotic reactions and catalyzes the reaction from pyruvate to malate, it
ensures the highest ectoine-yield. So far, malic enzyme is only known as cat-
alyzing the backward direction. Therefore, the flux distribution gained by FBA
will be checked for thermodynamic feasibility. Although the whole basic core-
model (without biomass) will take part in the FBA and NET-analysis, only the
reactions belonging to the anaplerotic reactions and the TCA-cycle will be dis-
played. The results can be found in Figure 51.
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Figure 51: Solution, where the malate dehydrogenase (rn:R00342) is forced to go forward and
MAE is left free. One can see that it is nevertheless only catalyzing the opposite
direction. The reaction formulas are displayed in Appendix B.

The thermodynamic analysis exhibits feasibility problems with respect to the
malate dehydrogenase (rn:R00342) and MAE. Both reactions are supposed to
catalyze the forward direction, as determined via FBA. The malate dehydroge-
nase exhibits problems to move in forward direction as can be seen in Figure 51.
The darker blue interval is very small and the MDF solution is in thermody-
namic equilibrium. This reaction is a thermodynamic bottleneck in general
[111]. It turns out that it is thermodynamically not possible to couple malic
enzyme and malate dehydrogenase in forward direction. The NET algorithm
only returns a feasible solution, if the reaction direction of malic enzyme is
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not restricted. The result of this analysis is displayed in Figure 51 and one can
see that malic enzyme has a clear tendency to go backwards. This is true for
an external salt concentration of 1 mol/l and 2 mol/l. The external pH was
chosen to be 7, which resulted in a membrane potential of -123 mV. For as
yet unexplained reasons, the NET algorithm cannot find a feasible solution at
an external salt concentration of 0.1 mol/l, at least not for the chosen pHout.
The analysis has been repeated for different combinations of pHout, membrane
potential and salt concentration again, but in all cases, the malic enzyme has
to catalyze the backward direction. Furthermore, the activity of malic enzyme
has been tested in the laboratory. The enzyme showed low activity in case of
catalysis from pyruvate to malate, which serves as further evidence.

Therefore, the malic enzyme has the same purpose in H. elongata, as it does
in other organisms: To be a workaround for the malate dehydrogenase, in case
it proceeds in backward direction. Based on this insight, the following sections
will not consider malic enzyme as an anaplerotic reaction anymore. The flux
distributions of interest with respect to ectoine optimization are now the ones
using OAD, PEPC or the glyoxylate shunt.

The subsequent chapter will deal with different goals of the cell and how
they affect the thermodynamics.

8.5 ectoine- vs . energyoptimization (with ammonia assimilation)

Two different goals of the cell will be compared with respect to thermody-
namics: The aim to produce as much energy as possible for all the different
energy-dependent processes and the aim to produce ectoine in order to protect
the cell from hyperosmotic shock. In a first step, two different flux distributions
are obtained via FBA. The flux distribution, which serves ectoine maximization,
uses the Entner-Doudoroff pathway to process glucose and the OAD-enzyme
as an anaplerotic reaction, if available. The flux distribution, which serves en-
ergy maximization is obtained with the objective max ATP load and does not
use the anaplerotic reactions at all, instead it takes advantage of the TCA cycle.
Certain reactions of the model are not active in either one of the two flux distri-
butions obtained. Therefore, a reduced version of Figure 24 has been created, as
can be found in Figure 52. This figure will be the focus throughout this section.

Both flux distributions obtained are translated to signvectors and analyzed
thermodynamically. Again, the co-factor ratios, as proposed by Henry et al.,
are used ( ATP

ADP = 3.2, NAD
NADH = 19 and NADP

NADPH = 1.2) and the external conditions
varied, while using the MDF algorithm to find feasible solutions.

Figure 53, displays the flux distribution of ectoine (a) and energy (b) opti-
mization for an ATP load of 10 mmol ATP/100 mmol Glc (a good estimate
supported by the literature [118]). The differences between the proton translo-
cating (C1) and the sodium-dependent complex I (C1

Na) are still of interest.
Therefore, they are compared as well. The optimizations, which are displayed
in Figure 53, e.g., exhibit an inactivated C1

Na but active C1. An interesting flux
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Figure 52: Reduced version of Figure 24. Only the reactions, which are relevant for ectoine or
energy optimization are displayed.

with respect to ectoine optimization is the flux, which allows the cell to im-
port ammonia. The present system has two of those, the glutamate (GDH) and
the alanine dehydrogenase (Ala-DH). There is no difference between those two
concerning FBA, that is the resulting flux distribution always exhibits a flux
through the same enzyme, the GDH. In order to compare the thermodynamic
results with the ones obtained with the alanine dehydrogenase, the glutamate
dehydrogenase will be inactivated in certain cases.

8.5.1 Only proton-translocating channel active (C1Na inactive)

As can be seen in Figure 53, all reactions, which exhibit a flux in the FBA are
black and the stronger the flux, the thicker the arrow. It is obvious that those
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Figure 53: Comparison of the ectoine- (a) and energy-fluxes (b) for an ATP load of 10 mmol
ATP/100 mmol Glc and with C1 active in the FBA. The TCA cycle is obviously more
important for energy production.
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two cell goals result in quite different flux distributions. The ectoine opimiza-
tion makes the least use of the TCA cycle possible, because its use would burn
up carbon, which would in turn not be available for ectoine production. The
energy optimization favors the burning of carbon, because it results in energy
production. Moreover, the ammonia assimilation takes no part in this process.
Now, what does the thermodynamic analysis reveal? Do the feasible conditions
of both objectives overlap?
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Figure 54: Comparison of the MDF solutions for ectoine (a) and energy (b) optimization with
only C1 active in the flux distributions.
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In Figure 54 one can find the feasible thermodynamic boundary conditions
for both flux distributions. (a) displays the conditions for the ectoine optimiza-
tion for different salt concentrations. (b) shows the same for the energy opti-
mization. As has been done before for Figure 46, the different external condi-
tions have been varied and if a feasible solution of the MDF algorithm existed,
it has been saved and displayed. The external pH has been varied between 6,
7 and 8. As can be seen in the legend: A pHout of 6 is not feasible in case of
the whole network, at least not for a membrane potential between -100 mV
and -200 mV, and therefore not displayed. The reason is the import of glucose.
The formation energies for glucose in- and outside of the cell are corrected for
the respective pH. This, in combination with the concentration intervals chosen
(see Section B.4), results in a positive Gibbs energy and therefore in a backward
catalysis. The problems with non-alkaline pH have been discovered before by
Noor’s group [111]. They found out that it also has a negative effect on the
TCA-cycle.

As has been seen before, a higher pHout of 8 goes along with higher magni-
tudes of membrane potential. Therefore, the feasible intervals of pHout equal
7 or 8 are almost completely different. This was already obvious in Figure 46

and is confirmed here for the whole model and moreover with respect to two
different cell goals. The first thing, which catches the eye is the maximal possi-
ble B-value. The energy optimization offers values, which are almost twice the
size of the ones, offered by ectoine optimization. Moreover, the maximal value
is not reached for only one membrane potential value but for a whole range,
in contrast to the peaks in Figure 46. The values of B are also much smaller,
than before. Independent of the cell goal, the bottlenecks of the pathway oper-
ate close to thermodynamic equilibrium. They are mainly residing in the TCA
cycle and furthermore in its in- and effluxes in case of the ectoine optimization.
A higher salt concentration seems to have a positive effect on both cell goals,
if the external pH is 7. The feasible range concerning the membrane potential
in combination with an external pH of 7 seems to be more or less the same
for both goals. In case of an external pH of 8, they differ: The energy opti-
mization seems to be unaffected by the different salt concentrations at a pHout

of 8, whereas the feasible membrane potential decreases with increasing salt
concentration in case of the ectoine optimization and the same pH.

8.5.2 Only the proton- and sodium-translocating channel active (C1 inactive)

To be able to compare the gained results with the ones, which would come
out of the system with C1

Na, the analysis is repeated. Most of the figures of
the present and the following section are displayed in Appendix C but referred
to in the main text. The resulting conclusions are still presented in detail. As
can be seen in Figure 70, the ectoine production has actually a higher yield,
if C1

Na is active, instead of C1 but at the same time, the energy production
displays a lower yield, than before. Therefore, in the FBA, C1

Na is preferred
for ectoine production, since OAD is active and imports sodium, which has to
be exported again (the ATP load is still fixed at 10 mmol ATP/100 mmol Glc),
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while the proton-translocating channel is preferred for energy production, since
it ensures a higher export of protons.

Figure 71 shows the thermodynamic feasibility ranges. As before and in all
the following figures, an external pH value of 6 is not feasible for a membrane
potential in-between -100 mV and -200 mV. The maximal B-values stay the
same as before, meaning that the bottlenecks of the system optimizing energy
are still close to equilibrium, but not as close as the ones in case of the system
with ectoine production. The intervals are quite similar to before but they are
wider with respect to energy optimization at a pHout of 7 at low salt concentra-
tions. This is interesting, considering that in this case the FBA would result in
a flux distribution with active C1 rather, than an active C1

Na. Considering the
pathway serving ectoine optimization, the MDF algorithm indicates that C1

Na

has certain advantages at low salt concentrations with respect to an external
pH of 7, which backs up the FBA. The results concerning an external pH of 8

stay exactly the same, independent of the optimization-goal of the cell.

8.5.3 Both complex I versions active

So far the two complex I versions have only been considered independent of
each other. In a next step both enzymes are kept active during the FBA but as
expected, the algorithm chooses the best of the two options: In case of ectoine
optimization and an ATP load of 10 mmol ATP/100 mmol Glc, only C1

Na is
active, while the algorithm results in a non-zero C1-flux in case of energy opti-
mization, because more protons are exported for energy production. Therefore,
the results are the same as displayed in Figure 70 (a) and in Figure 53 (b),
which leaves the thermodynamic results unchanged as well. Still, the question
remains, if the FBA algorithm would result in a different flux distribution, if the
ATP load would be set higher. This is the case with ectoine optimization, as can
be seen in the stacked area plot 55, which is similar to the ones in Chapter 7.
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Figure 55: The fluxes of C1 and C1
Na in case of ectoine optimization and under varying ATP

load (in mmol ATP/100 mmol Glc). As can be seen, the importance of C1 (yellow
area) increases with increasing ATP load.
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With increasing ATP load, the cell cannot cover the ATP-shortage alone with
C1

Na but starts to use both enzymes simultaneously and increases the use of C1

with increasing ATP load, because it yields more ATP, as long as the net-influx
of sodium is not constrained at the same time (compare Figure 42). Again, two
flux distributions are compared, the one with an ATP load of 10 mmol ATP/100

mmol Glc, which has been analyzed already and one with an ATP load of 600

mmol ATP/100 mmol Glc, which uses C1 as well as C1
Na, see Figure 72 in the

appendix for a comparison of the flux distributions.

The resulting signvectors are analyzed thermodynamically as well, which is
displayed in Figure 73 in the appendix. The thermodynamic analysis shows
that the addition of C1 has an effect at low and high salt: In low salt situations,
the feasible range of the membrane potential at a pHout of 7 decreases, while
in case of high salt environments, the feasible range at a pHout of 8 increases
marginally.

8.5.4 Ammonia assimilation

The network exhibits two ways to import ammonia. Therefore, a comparison
of both possibilities might offer insights into the preferences of the organism. It
has already been shown that from a stoichiometric view they appear the same,
which always results in flux distributions with active glutamate dehydrogenase
(GDH) flux. Therefore, in order to examine the effect, the GDH is inactivated
and the resulting flux distributions are analyzed with the MDF algorithm. This
is only done for the objective ectoine optimization, because ammonia assimila-
tion does not play a role in energy optimization. Again, both versions of com-
plex I are compared. Figure 74 in the appendix displays both flux distributions,
with GDH inactivated. The FBA is otherwise not altered (compare Figure 53 (a)
and Figure 70 (a)).

Figure 56 shows that the inactivation of the glutamate dehydrogenase affects
the thermodynamic feasibility significantly. In case of low salt, low pHout val-
ues are not feasible anymore and the feasible interval at a pHout=8 is much
smaller, than before. With higher salt, the conditions get better but it is still
worse, than with the GDH. First, the improvement is caused by the use of
OAD, which imports sodium. The higher the sodium concentration outside of
the cell, the easier the import of sodium into the cell, which has a positive effect
on the overall driving force. Second, the improvement is caused by the change
in Gibbs energy of Glucoseimport, which has a higher tendency to catalyze the
forward direction. It could be assumed that glucose is not imported alone but
might undertake a symport with sodium. This possibility has been tested but a
symport with sodium does not improve the glucose import enough to ensure a
forward catalysis at low salt and a pHout of 7. The usage of ATP or the import
of protons does not improve the Gibbs energy either.

One can still see that the variant with C1 is a little better at high salt concen-
trations, at least for a pHout of 7. The feasible ranges at an external pH of 8,
are not affected at all by the choice between the two complex I versions. Inter-
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Figure 56: Comparison of the MDF solutions of the flux distributions with only the proton-
translocating or sodium-translocating channel active and with the glutamate dehy-
drogenase inactive.

estingly, enzyme assays done in the lab showed that Ala-DH has a very high
activity, which indicates its importance. Maybe it is an enzyme, which is used
especially at high salt concentrations.

In a next step, the flux distributions at an ATP load of 10 mmol and 600

mmol ATP/100 mmol Glc are compared, to examine if the results differ, when
Ala-DH is used. The flux distributions can be seen in Figure 75, which are
quite similar to Figure 72. It follows the thermodynamic analysis. The first row
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in Figure 76 corresponds to Figure 56 (b), because in both cases only C1
Na is

active. One can see that the addition of C1 has no effect on the feasibility range
in case of an external pH of 7 but does have a positive effect for an external
pH of 8 and at higher salt concentrations, which is the same effect as before
with active glutamate dehydrogenase (compare Figure 73). Still, the feasibility
ranges are much smaller, than in case of an active GDH.

The following can be concluded:

• A pHout=6 is not feasible in case of the basic core-model for neither of
the two optimization-goals of the cell, since it does not allow the forward
catalysis of the glucoseimport.

• The minimial driving force is higher with respect to energy optimization
but both flux distributions exhibit reactions close to thermodynamic equi-
librium, due to bottlenecks in the TCA cycle.

– Ectoine optimization:

* Active GDH:

· The FBA-algorithm results in a flux distribution, which ex-
hibits an active flux of the sodium translocating channel, as
long as the ATP load of the cell is low.

· At low salt, the flux distribution, with active C1
Na exhibits a

wider membrane potential range at a pHout of 7, than the
one, which uses the proton-translocating channel (compare
Figure 54 (a) with Figure 71 (a) for low salt).

· Simultaneously, at high salt, the membrane potential ranges
are quite the same for a pHout of 7. Thus, the choice of com-
plex I does not affect the thermodynamics.

· With increasing salt, the feasible membrane potential range
for pHout=8 becomes smaller, independent of the choice of
complex I version.

· The simultaneous use of the proton-translocating and the proton-
and sodium-translocating channel has a positive effect on the
membrane potential at high salt but a negative one at low salt
(compare Figure 73 (a) with (b)).

* Active Ala-DH:

· The thermodynamic feasibility is negatively affected, especially
at low salt

· The differences between C1 and C1
Na vanish almost completely

– Energy optimization:

* At low salt, the flux distribution, with an active sodium-dependent
channel exhibits a wider membrane potential range in combina-
tion with pHout=7, than the one with C1 (compare Figure 54 (b)
and 71 (b)).
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* At high salt, the membrane potential ranges are exactly the same
with either C1 or C1

Na.

* The thermodynamically feasible range of the membrane potential
is not affected by the salt concentration in case of an external pH
of 8.

In a next step, the anaplerotic reactions (besides malic enzyme) are compared
with each other to see, if the thermodynamic analysis agrees with the ranking
of the FBA or if it draws a different picture.

8.6 anaplerotic reactions (with ammonia assimilation)

This present section compares the different in silico mutants, which have been
defined in the FBA. The wildtype, as presented in the FBA, will not play a
role anymore, because malic enzyme is now defined as catalyzing the back-
ward reaction. Therefore, this new defined wildtype replaces the malic mutant.
Both produce the same flux distributions in the FBA. One might notice that
the previous section already discussed the new wildtype. It remains the malic
OAD mutant, which is now called the OAD mutant. The malic PEPC mutant
corresponds to the new defined wildtype, since OAD is superior with respect
to stoichiometry. To further analyze the glyoxylate shunt, another mutant is
defined, the OAD PEPC mutant, which misses OAD as well as PEPC. The
methods from the previous section are repeated with the objective of ectoine
optimization and the results compared.

8.6.1 OAD mutant

The OAD mutant will make a start, which means that OAD is inactivated.
As in the last section, the effects of proton-dependent and proton- as well as
sodium-translocating complex are compared with each other. As one can see
in Figure 57, the difference in yield between the flux distributions with C1

and C1
Na is significantly higher, than in case of the wildtype, respective the

PEPC mutant. If the proton-dependent channel is inactivated, the system skips
the whole respiratory chain, besides the ATPase and makes use of anaerobic
respiration, because the sodium, which would be pumped out through C1

Na,
would have to be pumped in again, which costs energy. The yield of ectoine is
much lower, than before (52.06 mmol/100 mmol Glc) and an ATP load above
120 mmol ATP/100 mmol Glc cannot be satisfied. If C1 is active, the yield of
ectoine stays high, which shows that it is quite important for the cell to have
the proton-dependent channel, if OAD is not available for some reason. Now,
which kind of insights can be gained through a thermodynamic analysis? As
expected, the anaerobic solution is more exergonic, because the system exhibits
less fluxes and is therefore less restricted. Interestingly, the thermodynamic fea-
sibility clearly improves with increasing salt concentration. Still, it is not an
optimal solution, because of the low ectoine-yield. The version with the proton-
dependent channel is quite similar to the result of the wildtype (see Figure 54
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Figure 57: (a) shows the flux distribution of the OAD mutant for an ATP load of 10 mmol
ATP/100 mmol Glc in case that C1

Na is active but C1 not. Still, C1
Na exhibits no

flux and the flux distribution reveals that the system uses anaerobic respiration. (b)
displays the flux distribution in case that C1 is active.
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Figure 58: MDF solutions for the OAD mutant, which is forced to dismiss either C1 (a) or C1
Na

(b). As can be seen in (a), the lower the yield, the higher the B value.

(a)), although the OAD mutant is a little better with respect to high salt and an
external pH of 8.

In case that both, C1 and C1
Na, are active in the FBA, it is not surprising

that the resulting flux distribution only uses the proton-translocating complex,
independent of the ATP load, which corresponds to the results in Figure 57 (b).
The thermodynamic analysis stays the same as well (see Figure 58 (b)).
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8.6.2 OAD PEPC mutant

When OAD and PEPC are inactivated simultaneously, the glyoxylate shunt is
used instead. Again, the two versions of complex I are compared. First, the
system without C1 and second the system, which exhibits C1 and C1

Na. In the
second case, the FBA channels no flux through the channel, which builds the
sodium-motive force, because OAD is not available. The results show that the
case with only C1

Na is the worst so far. The additional inactivation of PEPC
therefore has a great effect on the efficiency of the system. No product is pro-
duced, see Figure 77. In case that the proton-motive force building channel is
active, product can still be produced, although the product yield is much lower,
than before. This is caused by the fact that carbon has to be burned in order to
use the glyoxylate shunt.

Looking at the thermodynamics, it is obvious that there exists a trade-off be-
tween ectoine-yield and exergonism: Bmax is much higher, than before and the
feasible ranges are quite wide, see Figure 78. Still, the solution is not acceptable,
since the yield is so low. Considering (b), one recognized the same solution as
with the OAD mutant and C1 active (compare with Figure 58 (b)). Therefore,
the knockout of PEPC in addition to OAD does not have any effect on the ther-
modynamics, if C1 is active, although it has an effect on the FBA: A lower yield
of ectoine. Therefore, the glyoxylate shunt is still only the last resort, when it
comes to ectoine production.

In a next step the effect of the ammonia assimilation with Ala-DH is ana-
lyzed.

8.6.3 Ammonia assimilation

The GDH is again inactivated in the FBA to gain a better understanding of the
importance of the Ala-DH. As it turns out, the use of Ala-DH is not advanta-
geous, confirming earlier results.

At first the OAD mutant is considered. Because the OAD mutant gener-
ally prefers the proton-translocating channel over the proton- and sodium-
translocating channel, as has been seen in Section 8.6.1, the effect of using
C1

Na is compared with allowing both enzymes to be active at once. In case
the proton-motive force building complex is not available, the system settles
for anaerobic fermentation again, as displayed in the appendix in Figure 79 (a)
(compare with Figure 57). The ammonia assimilation is done via Ala-DH. The
thermodynamic analysis shows that the minimal driving force value is smaller,
than with the use of GDH. Even if C1 is active in the FBA (resulting in Figure 79

(b)), the value of B decreases a little, from 0.26 kJ/mol to 0.23 kJ/mol (compare
Figure 58 with Figure 80 (b)).

In case of the PEPC OAD mutant, the inactivation of C1 results in the same
flux distribution, as in Figure 77, because ammonia assimilation is not taking
place. The thermodynamic analysis is therefore the same as before. However,
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if C1
Na is inactivated, the FBA settles for a flux distribution similar to the one

in Figure 77 (b), displayed in Figure 81 (a). The thermodynamic results, as
displayed in Figure 81 (b), are comparable with Figure 78 (b) but the minimal
driving force is again smaller.

The following can be concluded:

• Active GDH:

– OAD mutant

* The FBA returns a flux distribution with anaerobic respiration
in case that only C1

Na is active and the ectoine-yield is only 0.5
mmol/mmol Glc. If C1 is active, the yield is still high.

* The B-values in case of the C1
Na version are higher, since the sys-

tem is less restricted. However, it is obvious that the OAD mutant
depends on C1, due to the FBA results.

– OAD PEPC mutant

* Since OAD is still inactivated, C1 is the first complex I choice. The
additional inactivation of PEPC further accentuates this point.

* The additional inactivation of PEPC has no effect on the thermo-
dynamics, if C1 is active.

– The thermodynamic analysis does not reveal which anaplerotic reac-
tion is preferable, although the FBA does.

• Active Ala-DH:

– The thermodynamic feasibility is again negatively affected

8.7 biomass

The available thermodynamic data does not cover the whole network of the
core-model containing biomass but it is still possible to take a flux distribution,
which ensures biomass maximization and analyze the thermodynamic feasibil-
ity of those reactions, which take part in the basic core-model (without biomass
included). These results can then be compared with the ones gained with ec-
toine optimization, for instance with respect to the EMP and ED pathway.

As can be seen in Figure 59, the thermodynamic profile with respect to the
ED pathway stays almost completely the same as in Figure 49. Only the step
sizes of rn:R05605 and rn:R00703 are affected. The driving force of rn:R05605

becomes higher, while the driving force of rn:R00703 becomes smaller. The
overall driving force is a bit higher. The step size in case of the EMP pathway
changes as well. The driving force in general is smaller but the step sizes from
rn:R01015 on are not that balanced anymore. The positive effect of sodium stays
the same, although its not as significant as before.

Another possible analysis is the comparison of the proton- and sodium-
translocating channels in the respiratory chain. As has been done before for
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Figure 59: Glycolysis-comparison of the core-model with biomass and proton-translocating
complex I, compare Figure 49 for further information.
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Figure 60: (a) Fluxes of biomass optimization with C1 active. During biomass optimization,
more fluxes are active, than actually displayed but in order to be comparable with
Figure 53, etc., the reactions are left out. (b) shows the corresponding MDF solution
at different conditions.
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ectoine optimization, two FBAs have been executed. In both cases, glucose is set
to 100 mmol/g Dw and the ATP load is assumed to be 10 mmol ATP/100 mmol
Glc. In one case only the proton-translocating channel is active, in the other the
proton- and sodium-translocating one. The flux distribution in case of an ac-
tive C1

Na channel behaves odd, due to a great import of protons through the
transhydrogenase, and therefore its analysis is excluded. The flux distribution
with active C1 can be seen in Figure 60 (a). It is analyzed with the MDF al-
gorithm, while membrane potential, pHout and salt content in the medium are
varied, as has been done before for ectoine and energy optimization. The result-
ing feasible membrane potential intervals for the different pH values and salt
contents can be found in (b). As can be seen, the optimal value for B is much
higher, than for the ectoine or energy optimizations. The feasible membrane
potential intervals from before are included in the ones for biomass optimiza-
tion. Moreover, the salt content does not seem to have a great effect on the
thermodynamic analysis. Therefore, it seems that the biomass-extension makes
the system thermodynamically advantageous.

In conclusion, it has been shown that the Entner-Doudoroff pathway has its
advantages with respect to thermodynamics, which answers the question, why
H. elongata uses it. Moreover, the malic enzyme could be excluded as a pos-
sible anaplerotic reaction. Several analysis have been performed with respect
to the comparison of C1 and C1

Na. As it turns out, the sodium-translocating
channel has its advantages, since it allows more flexibility with respect to dif-
ferent membrane potential. However, the question of the thermodynamically
superior anaplerotic reaction could not be answered so far. The analysis of a
growth-optimizing flux distribution revealed that the inclusion of biomass in
the model improves the thermodynamics.

The upcoming chapter describes the application of the reduction via ther-
modynamic shortening for the core-model without biomass and analyzes the
resulting dynamic model with respect to stability.
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D Y N A M I C S

The processes described in this chapter concern the application of thermody-
namic shortening with respect to the model of H. elongata. The procedure re-
sults in a dynamic model, which is based on the steady state fluxes from FBA
and the concentration values of the MDF algorithm. The model is subsequently
analyzed with respect to its stability behavior and the dependencies of the ma-
trices Fx and FP.

9.1 from constraint-based to dynamic modeling

Since the main scope of the thesis is the improved understanding of ectoine
metabolism, the dynamical analysis will be restricted to the basic core-model,
which lacks biomass production. Such a model can, for instance, be used to
reflect the situation of an osmotic upshock, which results in the termination
of growth and the initiation of ectoine production. Because the core-model not
only includes glycolysis, TCA-cycle and ectoine production, but also the respi-
ratory chain, as well as the synthesis of certain amino acids, such as serine and
threonine, the total number of reactions reaches 79, accompanied by 69 depen-
dent and 11 independent metabolites. The reduction of such a system to a size,
which can be analyzed dynamically, is a challenge, since dynamically relevant
information must not be lost. Two possible reduction approaches have already
been discussed: the reduction based on time hierarchies (see Chapter 4) and
thermodynamic shortening, which has been developed in the context of this
work (see Chapter 5). It represents the preferred option since no extra algebraic
constraints are necessary and the results of the thermodynamic analysis come
into use.

The procedure begins with the application of FBA, which uses ectoine maxi-
mization as the objective and considers the ATP load to be 10 mmol ATP/100

mmol Glc. The resulting flux distribution is translated into a signvector and
analyzed via the MDF algorithm. The external conditions used are the follow-
ing: The NaCl concentration is chosen to be 1 mol/l, the pHout is 7 and the
membrane potential is set to -123 mV. Certain ratios for the cofactors are de-
fined, the values are taken from Henry et al. It is known, that most reactions
of glycolysis and TCA-cycle are generally in thermodynamic equilibrium [110,
180]. The Gibbs energies of mentioned reactions have therefore been bound be-
tween [-2.5; 2.5] kJ/mol [18]. The remaining irreversible reactions of glycolysis
and TCA-cycle are the glucokinase (rn:R00299), the PFK (rn:R04779/rn:R00764),
the pyruvate kinase (rn:R00200), the citrate synthase (rn:R00351), the oxoglu-
tarate dehydrogenase (rn:R08549), the malate dehydrogenase (rn:R00342) and
the isocitrate dehydrogenase reaction (rn:R00236 + rn:R01899).
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Figure 61: The pathway map is similar to Figure 24. However, all reactions, which are inactive
in the flux distribution following ectoine optimization are displayed in grey. The
metabolites, which are grey, are defined as independent metabolites. The active re-
actions and metabolites are displayed in blue.

The results are subsequently evaluated: Only the active fluxes are relevant,
the reactions, which show no flux in the flux distribution, are therefore dis-
carded and displayed in grey in Figure 61. This reduces the number of reactions
to 36. Metabolites, which took only part in such reactions are then defined as
independent and displayed in grey as well. They have to stay in the model, be-
cause they might have a regulatory effect on the remaining reactions, although
they do not take part as substrate or product anymore. Furthermore, metabo-
lites, like co-factors or in- and outputs are defined as independent metabolites
as well, since they are constants. This procedure results in 29 dependent and
51 independent metabolites. The thermodynamic analysis provides a classifica-
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tion, with respect to the distance to equilibrium, which can be used in thermo-
dynamic shortening: The reactions, whose Gibbs energies lie in-between [-2.5;
2.5] kJ/mol are defined as reversible, all others are classified as irreversible.
The 36 remaining reactions can therefore be divided into 16 reversible and 20

irreversible reactions. Values for the metabolite concentrations and equilibrium
constants are also obtained. The K’eq will be needed to calculate the bound
metabolites (compare Equation 60).

As has been explained before, certain metabolites can be pooled together, see
Section 4.5 and 5.2. The procedure results in 13 pools, which are going to be
the new variables of the dynamic model:

• P0 = α-D-Glucose-6-phosphate

• P1 = L-2,4-Diaminobutyrate

• P2 = Succinyl-CoA + CoA

• P3 = Oxalosuccinate + cis-Aconitate + Isocitrate + Citrate

• P4 = N-γ-Acetyldiaminobutyrate

• P5 = Acetyl-CoA

• P6 = 2-Oxoglutarate + Glutamate

• P7 = Pyruvate + Succinyl-CoA + Succinate + L-Aspartic-4-semialdehyde +
4-Phospho-L-aspartate + Oxaloacetate + Fumarate + Malate + L-Aspartate

• P8 = 3-Phospho-glycerate + 2-Phospho-D-glycerate + PEP + Glyceraldehyde-
3-phosphate + 1,3-Bisphospho-D-glycerate

• P9 = 6-phospho-D-gluconate

• P10 = KDPG

• P11 = 6-phospho-D-gluconolactone

• P12 = Glucose
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An illustration of such a pool can be found in Figure 62. It displays the pool
P3, which concatenates a part of the TCA-cycle. Dependent metabolites, which
are not connected to others via a reversible reaction, cannot be pooled together
and therefore define a single pool, as can for instance be seen in case of pool
P0.
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Figure 62: Visualization of pool 3.

Since 16 reactions are close to thermodynamic equilibrium, the dimension
of −→x B is 16, which leaves 13 free metabolites. The bound metabolites can be
calculated with the help of the equilibrium constants, see Equation 60. The
dimension of −→x I is 51. The matrix Fx can be built as has been explained in
Section 5.2. Its dimension is 20x80. Each substrate is expected to have a positive
effect on its reaction, while each product is expected to have a negative effect,
which makes the pathway reversible. It might initially seem odd that a product
of an irreversible reaction influences the reaction, but as has been discussed in
Section 3.3, the product only loses influences, if P � Kp holds. Furthermore, it
is known from Kadir et al. [76] that NADH has a negative effect on the citrate
synthase. This fact is therefore included as an additional constraint. The exact
values of the kinetic parameters are unknown, but the range is established [163]:
It is assumed that most kinetic parameters are in a range of [-1; 1]. This fact
enables the use of ensemble modeling, that is to sample the values of the kinetic
parameters randomly [89]. The sign of the parameter depends on its effect. An
activating effect goes along with a positive kinetic order, while an inhibiting
effect is represented by a negative kinetic order. Allosteric regulations, as the
effect of NADH on the citrate synthase, are expected to take on values between
[-2; 2]. The part concerning the dependent metabolites ([FxB , FxF]) has been
drawn as a color plot in Figure 63. One can see the different metabolite sections
and identify the influence of each metabolite group: A positive influence is
indicated in brown, a negative one in orange. The allosteric inhibition would
be colored in orange but since NADH is an independent metabolite, it is not
displayed.
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Figure 63: Matrix [FxB , FxF ] as a color plot.

Thousands of Fx matrices can be sampled, its values are uniformly distributed.
For each of this matrices, the matrix FP can be calculated, which in turn can be
used to calculate the system of differential equations of the pools (the reaction
names of the model are replaced by short forms to simplify the reading):

Ṗ0 = − v15 + v18
Ṗ1 = v3 − v5
Ṗ2 = − v2 + v5 + v7
Ṗ3 = − v1 + v7
Ṗ4 = − v4 + v5
Ṗ5 = v2 − v5 − v7
Ṗ6 = v1 − v8
Ṗ7 = v0 − v2 − v3 − v7 + v8 + v14
Ṗ8 = − v0 + v14
Ṗ9 = − v13 + v16

Ṗ10 = v13 − v14
Ṗ11 = v15 − v16
Ṗ12 = − v18 + v19 (83)

As has been done before, a pool diagram can be drawn, which displays all
interconnections of the different pools, see Figure 64.
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Figure 64: Pool diagram for the core-model. The arrows indicating regulation are excluded due
to the complexity of the diagram.

Replacing the rate laws by power laws, depending on the pools, the differen-
tial equation system becomes:

Ṗ0 = − γ̃15 Pf15,0
0 Pf15,11

11 + γ̃18 Pf18,0
0 Pf18,12

12

Ṗ1 = γ̃3 Pf3,1
1 Pf3,2

2 Pf3,6
6 Pf3,7

7 − γ̃5 Pf5,1
1 Pf5,2

2 Pf5,4
4 Pf5,5

5 Pf5,7
7

Ṗ2 = − γ̃2 Pf2,2
2 Pf2,5

5 Pf2,7
7 + γ̃5 Pf5,1

1 Pf5,2
2 Pf5,4

4 Pf5,5
5 Pf5,7

7 + γ̃7 Pf7,2
2 Pf7,3

3 Pf7,5
5 Pf7,7

7

Ṗ3 = − γ̃1 Pf1,3
3 Pf1,6

6 + γ̃7 Pf7,2
2 Pf7,3

3 Pf7,5
5 Pf7,7

7

Ṗ4 = − γ̃4 Pf4,4
4 + γ̃5 Pf5,1

1 Pf5,2
2 Pf5,4

4 Pf5,5
5 Pf5,7

7

Ṗ5 = γ̃2 Pf2,2
2 Pf2,5

5 Pf2,7
7 − γ̃5 Pf5,1

1 Pf5,2
2 Pf5,4

4 Pf5,5
5 Pf5,7

7 − γ̃7 Pf7,2
2 Pf7,3

3 Pf7,5
5 Pf7,7

7

Ṗ6 = γ̃1 Pf1,3
3 Pf1,6

6 − γ̃8 Pf8,2
2 Pf8,6

6 Pf8,7
7

Ṗ7 = γ̃0 Pf0,2
2 Pf0,7

7 Pf0,8
8 − γ̃2 Pf2,2

2 Pf2,5
5 Pf2,7

7 − γ̃3 Pf3,1
1 Pf3,2

2 Pf3,6
6 Pf3,7

7

−γ̃7 Pf7,2
2 Pf7,3

3 Pf7,5
5 Pf7,7

7 + γ̃8 Pf8,2
2 Pf8,6

6 Pf8,7
7 + γ̃14 Pf14,2

2 Pf14,7
7 Pf14,8

8 Pf14,10
10

Ṗ8 = − γ̃0 Pf0,2
2 Pf0,7

7 Pf0,8
8 + γ̃14 Pf14,2

2 Pf14,7
7 Pf14,8

8 Pf14,10
10

Ṗ9 = − γ̃13 Pf13,9
9 Pf13,10

10 + γ̃16 Pf16,9
9 Pf16,11

11

Ṗ10 = γ̃13 Pf13,9
9 Pf13,10

10 − γ̃14 Pf14,2
2 Pf14,7

7 Pf14,8
8 Pf14,10

10

Ṗ11 = γ̃15 Pf15,0
0 Pf15,11

11 − γ̃16 Pf16,9
9 Pf16,11

11

Ṗ12 = − γ̃18 Pf18,0
0 Pf18,12

12 + γ̃19 Pf19,12
12 (84)
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The γ̃i are calculated via Equation 31 with the help of the steady state fluxes
and the steady state concentrations. Their denominators do not exhibit indepen-
dent metabolites, since these canceled out, as has been explained in Chapter 5.
The kinetic parameters are collected in matrix FP.

The interdependence of the matrices F’x and FP will be examined in the fol-
lowing section.

9.2 interdependence of the parameter matrices

It has been shown in Equation 75 that FP can be directly calculated from F’x
(=[FxF , FxB]). Both matrices are linked by matrix U, which is a (29x13)-matrix
with full rank. Therefore, the distributions of the parameters of F’x and FP
are related as well. The question is how. The parameters of the original Fx are
uniformly distributed and mostly in the interval [-1; 1], but how does this affect
FP?

Figure 65: Matrix F’P as a color plot. Most parameters show clear tendencies with respect to
their sign.

1000 sets of parameters of FP are calculated with Equation 75 and afterwards
examined. As it turns out, most parameters of FP are uniformly distributed as
well but they tend to have a certain sign and stay mostly either in the interval
[-1; 0] or [0; 1], see Figure 65. Two parameters are not uniformly but triangular
distributed: fP3,6 and fP8,2. They both lie in the interval [-1; 1], see the histograms
in Figure 66.
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Figure 66: Histograms of two FP parameters: fP3,6 and fP8,2.

These results allow to sample the values for FP directly, without the need for Fx
first.

The subsequent section will analyze the dynamics of two different pathway
designs in unreduced and reduced form with respect to their stability behavior.

9.3 stability analysis

Chapter 5 listed some of the criteria, which should be fulfilled by a biochem-
ical system. One of those is stability, because it is essential for survival. To
understand the interplay between kinetics and thermodynamics, one consid-
ers the simplest possible system able to sustain the fluxes, provided by FBA.
For this purpose, all allosteric modulations are set to zero and only the action
of substrates and products are considered as influences on reactions. As seen
before, there are two alternative strategies. On the one hand, the efficiency of
the enzymes can be maximized by minimizing the inhibition that the reactions
undergo by its products (economic design). On the other hand, a pathway can
response better to changes in supply or demand, when reactions respond to
both, substrates and products (responsive design). In order to compare these
strategies, 1000 models of each type have been sampled and the eigenvalues
of their Jacobian matrices analyzed for stability (absence of eigenvalues with
positive real parts). The results are displayed in the subsequent figures.

In the left panel of Figure 67, a scatter plot of all eigenvalues is displayed,
normed by the maximal eigenvalue of each system. It can be seen that the
systems exhibit a great amount of eigenvalues with positive real part (displayed
in white). Practically each system exhibits at least one eigenvalue with positive
real part, considering the histogram in the right panel. It turns out that these
systems are almost never stable.
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Figure 67: The left panel displays a scatter plot of the eigenvalues of each reversible system.
The eigenvalues of each system are scaled and furthermore sorted in increasing
order and color coded accordingly. The right panel reveals the distribution of the
number of positive eigenvalues in each system. There are usually about six or seven
positive eigenvalues.

A similar analysis for the irreversible case shows a clear tendency towards
more stable systems. The results are displayed in Figure 68. The left panel
exhibits the normed eigenvalues of the systems, which seem to be mostly neg-
ative. The right panel confirms this assumption: The systems tend to exhibit
less eigenvalues with positive real part, than before. More or less 40% of the
irreversible systems turn out to be stable.
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Figure 68: The left panel displays a scatter plot of the eigenvalues of each irreversible system.
The eigenvalues of each system are again scaled and furthermore sorted in increas-
ing order and color coded accordingly. The right panel reveals the distribution of
the number of positive eigenvalues in each system. As can be seen, the number of
positive eigenvalues is low.

Although it may be counter intuitive, it has been shown that a fully irre-
versible step at the beginning of a pathway increases its stability [9]. The ra-
tional for this being that the product inhibition on a sequence of consecutive
reactions is dynamically equivalent to a feedback inhibition, which is known to
cause instability in long pathways [144]. Of course, the extrapolation from sim-
ple pathways to full networks is not straight forward, which explains the need
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to generalize concepts, such as thermodynamic shortening to such complex
cases.

As it turns out, applying thermodynamic shortening on either of the two dif-
ferent system designs, improves their stability significantly. 10% of the reduced
reversible and 99.9% of the reduced irreversible systems turn out to be stable.

Figure 69 depicts the dynamics of such a stable shortened system in response
to a bolus of glucose. The pools have been normalized by their steady state val-
ues, while the initial point of the simulation has been the steady state solution
of the pools, with one exception, pool 12, which represents glucose. Its normal-
ized steady state value has been changed to five, to cause a disturbance of the
system. As can be seen, the yellow line, which represents pool 12, decreases to
its steady state, while all other pools are shortly disturbed but return to their
steady state as well. The simulation serves as a proof of concept, leaving ad-
ditional degrees of freedom for selection, such as logarithmic gains or realistic
time scales.
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Figure 69: Simulation of a stable reduced system in response to a bolus of glucose. The pools
are normalized by their steady state values.

In conclusion, it has been shown that the workflow is functional and able to
return a stable dynamic model. The explained method shows great potential as
a starting point to dynamic models. The inclusion of experimental data and re-
alistic time scales would cause further improvements of the method. Moreover,
the stochastic approach concerning the distributions can be combined with the
one from Michael Savageau, concerning MCC, to apply further criteria of func-
tional effectiveness, besides stability [5–9, 150].
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The aim of the present work has been to improve the understanding of the
metabolism of H. elongata with the help of mathematical modeling. The idea
was to reduce the uncertainty of the system and to discard unsound hypothe-
sis a priori, before applying any experimentally based information. Thus, the
need for a framework emerged, which combines different kinds of modeling
approaches in a sequential manner and hence reduces the degrees of freedom.
As can be seen in the results section, the workflow has successfully been estab-
lished and applied with respect to H. elongata. A short outline of the gained
insights into the metabolism will be summarized below:

stoichiometry The stoichiometric analysis confirmed the great influence of
the anaplerotic reactions, especially on ectoine production. Moreover, a ranking
of these reactions could be established. It has been shown that the variation of
the proton leak reaction lowers the product yields to values, which are compa-
rable with fermentation data and therefore biologically more realistic.

thermodynamics The thermodynamic analysis helped clarifying the evolu-
tionary success of the Entner-Doudoroff pathway in so many bacteria [82], as
well as the physiological role of the PPi-PFK. Furthermore, it has been revealed
that MAE is not viable as an anaplerotic reaction, pinpointing how limitations
of FBA can be overcome by a subsequent thermodynamic analysis. It has also
been shown that a sodium-dependent complex I enables H. elongata to tap
the sodium gradient to provide exergonism, where is needed, enhancing the
metabolism. The comparison of the flux distributions of ectoine- and energy-
optimization revealed that both exhibit thermodynamic bottlenecks. In addi-
tion, the Ala-DH reaction seems to improve with increasing salt-concentration.

dynamics The model has been reduced with thermodynamic shortening and
the information from FBA and MDF, which successfully bridges the gap be-
tween constraint-based and dynamic modeling. In addition, it has been possi-
ble to obtain stable dynamic models, especially with the reduced system. The
results demonstrate the success of the established framework, which already
limits the possible dynamics of the system. Moreover, the interdependencies of
the matrices Fx and FP have been revealed.

The current dynamic analysis considers only single steady states. However,
the cell switches between different states, like energy- and ectoine-production.
Instead of analyzing them independently, as has been done so far, they should
be linked and the transition in-between those states should be analyzed with
the application of an additional approach: The Design Space Analysis [49].

133
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Moreover, the statistical MCC-version of Michael Savageau [5–9, 150] can be
applied to the present dynamical model to examine the regulation more closely.
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a.1 biomass composition

The section contains most of the calculations done with respect to biomass
composition. The part about the proteins is missing, because the calculations
are easily done with the proportions already given ([109, 164]). The glycogen
synthesis is left out as well, because it has already been calculated in the main
text.

a.1.1 DNA

The formulas for DNA and RNA synthesis have been provided by Stephanopou-
los et al. [164] but as a test, the calculations are repeated.

The amount percent (in µmol/g DW) have been given by Neidhardt. The
molecular mass (in g/mol) for each nucleotide is known as well, see Table 2.

This way, the molecular mass of DNA can be calculated:

0.2465dAMP + 0.2465dTMP + 0.253dCMP + 0.253dGMP = 326.63 g/mol
= 0.3266 g/mmol

Because the DNA synthesis involves the investment of energy, the overall
reaction can be calculated as follows:

3.4ATP+ 0.25dAMP+ 0.25dGMP+ 0.25dTMP+ 0.25dCMP =⇒ 3.4ADP+ 3.4Pi+ 1 mmolDNA

3.4ATP+ 0.25dAMP+ 0.25dGMP+ 0.25dTMP+ 0.25dCMP =⇒ 3.4ADP+ 3.4Pi+ 0.33 gDNA

1
0.33 (3.4ATP+ 0.25dAMP+ 0.25dGMP+ 0.25dTMP+ 0.25dCMP− 3.4ADP− 3.4Pi) =⇒ 1 gDNA

The results are similar enough that there exists no conflict in taking the given
formulas ([109, 164]).

Metabolite Amount percent (µmol/g DW) proportion Molecular mass (in g/mol)

dAMP 24.7 0.2465 331.2

dCMP 25.4 0.253 307.2

dGMP 25.4 0.253 347.2

dTMP 24.7 0.2465 322.2

Table 2: Molecular mass of DNA components
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Metabolite Amount percent (µmol/g DW) proportion Molecular mass (in g/mol)

AMP 165 0.262 347.2

CMP 126 0.2 323.2

GMP 203 0.322 363.2

UMP 136 0.216 324.2

Table 3: Molecular mass of RNA components

a.1.2 RNA

The procedure is the same as with the DNA. The sources stay the same as well,
see Table 3:

The molecular mass of RNA:

0.26AMP+ 0.2CMP+ 0.32GMP+ 0.22UMP = 342.584 g/mol

= 0.3426 g/mmol

Because the RNA synthesis involves the investment of energy as well, the
overall reaction can be calculated as follows:

2.4ATP+ 0.26AMP+ 0.2CMP+ 0.32GMP+ 0.22UTP =⇒ 2.4ADP+ 2.4Pi+ 1 mmolRNA

2.4ATP+ 0.26AMP+ 0.2CMP+ 0.32GMP+ 0.22UTP =⇒ 2.4ADP+ 2.4Pi+ 0.34 gRNA

1
0.34 (2.4ATP+ 0.26AMP+ 0.2CMP+ 0.32GMP+ 0.22UTP− 2.4ADP− 2.4Pi) =⇒ 1 gRNA

a.1.3 Lipids

a.1.3.1 Acyl-CoA

In order to calculate the mass of the Acyl-CoA, its synthesis equation is needed.
For that the proportions from Pramanik [131] are used. But these are in g% not
mol% and they therefore have to be recalculated (it is known that they are g%,
because the reference of the paper included unidentified lipids, which cannot
be given in mol).

The molecular mass is calculated as follows (compare Table 4):

0.38
256

+
0.11
254

+
0.18
282

+
0.03
228

+
0.08
226

+
0.16
270

+
0.01
284

+
0.06
296

= 3.8 · 10−3 g/mol

= 3.8 g/mmol

And with this, the synthesis equation can be calculated in mmol:
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Metabolite Molecular mass (in g/mol) Total fatty acid (in g%)

Palmitoyl 256 38.23

Palmotoleoyl 254 10.74

Oleoyl 282 17.91

Myristoyl 228 2.68

Myristoleoyl 226 7.7

Heptadecanoyl 270 16.11

cis-Vaccenoyl 284 0.9

Nonadecenoyl 296 5.73

Table 4: Molecular mass and composition of fatty acids

Metabolite Molecular mass (in g/mol)

Acyl 22.97

Serine 105.09

Glycerol-3-phosphate 172.07

Table 5: Molecular mass of PE components

0.38
256 Palmitoyl-CoA + 0.11

254 Palmitoleoyl-CoA + 0.18
282 Oleoyl-CoA +

0.03
228 Myristoyl-CoA + 0.08

226 Myristoleoyl-CoA + 0.16
270 Heptadecanoyl-CoA +

0.01
284 cis-Vaccenoyl-CoA + 0.06

296 Nonadecenoyl-CoA =⇒ 1 g Acyl-CoA

0.38
256 Palmitoyl-CoA + 0.11

254 Palmitoleoyl-CoA + 0.18
282 Oleoyl-CoA +

0.03
228 Myristoyl-CoA + 0.08

226 Myristoleoyl-CoA + 0.16
270 Heptadecanoyl-CoA +

0.01
284 cis-Vaccenoyl-CoA + 0.06

296 Nonadecenoyl-CoA =⇒ 3.8 mmol Acyl-CoA

0.38
256·3.8 Palmitoyl-CoA + 0.11

254·3.8 Palmitoleoyl-CoA + 0.18
282·3.8 Oleoyl-CoA +

0.03
228·3.8 Myristoyl-CoA + 0.08

226·3.8 Myristoleoyl-CoA + 0.16
270·3.8 Heptadecanoyl-CoA +

0.01
284·3.8 cis-Vaccenoyl-CoA + 0.06

296·3.8 Nonadecenoyl-CoA =⇒ 1 mmol Acyl-CoA

a.1.3.2 Phosphatidylethanolamine (PE)

The synthesis equation of PE is [110] (see Table 5):

2Acyl + Serine + Glycerol-3-phosphate = 323 g/mol

= 0.32 g/mmol
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Thus, its molecular mass in g is:

2Acyl-CoA+ Serine+Glycerol-3-phosphate+ 3ATP =⇒ 2CoA+ 3AMP+ 3PPi+CO2+ 1 mmolPE

2Acyl-CoA+ Serine+Glycerol-3-phosphate+ 3ATP =⇒ 2CoA+ 3AMP+ 3PPi+CO2+ 0.32 gPE

1
0.32 (2Acyl-CoA+ Serine+Glycerol-3-phosphate+ 3ATP− 2CoA− 3AMP− 3PPi−CO2) =⇒ 1 gPE

a.1.3.3 Phosphatidylglycerol (PG)

The synthesis equation of PG is [110] (see Table 5):

2Acyl + 2Glycerol-3-phosphate = 390.088 g/mol
= 0.39 g/mmol

Thus:

2Acyl-CoA+ 2Glycerol-3-phosphate+ 3ATP+H2O =⇒ 2CoA+ 3AMP+ 3PPi+CO2+ 1 mmolPG

2Acyl-CoA+ 2Glycerol-3-phosphate+ 3ATP+H2O =⇒ 2CoA+ 3AMP+ 3PPi+CO2+ 0.39 gPG

1
0.323 (2Acyl-CoA+ 2Glycerol-3-phosphate+ 3ATP+H2O− 2CoA− 3AMP− 3PPi−CO2) =⇒ 1 gPG

a.1.3.4 Cardiolypin (CL)

The synthesis equation of CL originates from Lehninger ([110]):
CL: 2 PG =⇒ CL + Glycerol

4Acyl-CoA+4Glycerol-3-phosphate+6ATP+2H2O =⇒ CL+Glycerol+4CoA+6AMP+6PPi

The molecular mass in g/mmol is (see Table 5):

4Acyl + 4Glycerol-3-phosphate = 780.176 g/mol
= 0.78 g/mmol

Thus:

4Acyl-CoA+ 4Glycerol-3-phosphate+ 6ATP+ 2H2O =⇒ 4CoA+ 6AMP+ 6PPi+Glycerol+ 1 mmolCL

4Acyl-CoA+ 4Glycerol-3-phosphate+ 6ATP+ 2H2O =⇒ 4CoA+ 6AMP+ 6PPi+Glycerol+ 0.78 gCL
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1
0.78 (4Acyl-CoA+ 4Glycerol-3-phosphate+ 6ATP+ 2H2O− 4CoA− 6AMP− 6PPi−Glycerol) =⇒ 1 gCL

The formula for the lipid composition is taken from the Vreeland-paper [178]:

0.074 CL + 0.42 PG + 0.383 PE + unknown =⇒ 1 g Lipids

Because the paper has another metabolite, the unknown lipids, the propor-
tions of PE, PG and CL do not sum 1 g, thus the proportions have to be recal-
culated, keeping the relations to one another. Therefore:

0.08 CL + 0.48 PG + 0.44 PE =⇒ 1 g Lipids

a.1.4 Peptidoglycan

In order to calculate the mass of the peptidoglycan, its synthesis equation is
needed, as well as the synthesis equations of the presursors. These can be
achieved from Pramanik [131]:

UDPGA (UDP-N-Acetylglucosamine):
β-D-Fructose-6-phosphate + AcetylCoA + Glutamine + UTP =⇒ CoA + UDPGA
+ PPi + Glutamate

UDPAM (UDP-Acetylmuramate):
PEP + NADH + UDPGA + H =⇒ NAD + Pi + UDPAM

ASPSA (Aspartate-β-semialdehyde):
ATP + NADPH + H + L-Aspartate =⇒ ADP + NADP + Pi + ASPSA

DAP (L,L-2,6-Diaminopimelate):
Succinyl-CoA + Pyruvate + NADPH + ASPSA + H + Glutamate =⇒ Succinate
+ CoA + α-Ketoglutarate + NADP + DAP

The synthesis equation for peptidoglycan cannot be taken as well, because
the composition in H. elongata is quite different from the one in E. coli [178].
The mentioned paper offers the precursors of peptidoglycan, as well as their
molar ratios. In this case the ones for a NaCl-concentration of 3.4 mol/l have
been taken, because these seem to be most convenient and it is mentioned that
the ratios don’t really change with salt. Subsequently, they have been recalcu-
lated in a way that makes everything dependent on UDPGAM instead of DAP.
Subsequently, the molecular mass can be calculated:

Peptidoglycan:
UDPGAM + UDPGA + 2

3 DAP + 3
5 Leucine + 4

15 Glycine + 5
3 Alanine + Gluta-



142 appendix

Metabolite Molecular mass (in g/mol)

GA 221.21

GAM 293.3

Alanine 89.1

Glutamate 147.13

Leucine 131.18

Glycine 75.067

DAP 190.296

Table 6: Molecular mass of peptidoglycan components

mate + 5 ATP =⇒ 5 ADP + 5 Pi + 2 UDP + Peptidoglycan

Thus:

GAM+GA+ 2
3 DAP+ 3

5 Leucine+ 4
15 Glycine+ 5

3 Alanine+Glutamate = 1035.726 g/mol

= 1.036 g/mmol

So 1.04 g of peptidoglycan corresponds to 1 mmol of peptidoglycan.

Therefore:

UDPGAM + UDPGA + 2
3 DAP + 3

5 Leucine + 4
15 Glycine + 5

3 Alanine +

Glutamate + 5ATP =⇒ 5ADP + 5Pi + 2UDP + 1 mmolpeptidoglycan

UDPGAM + UDPGA + 2
3 DAP + 3

5 Leucine + 4
15 Glycine + 5

3 Alanine +

Glutamate + 5ATP =⇒ 5ADP + 5Pi + 2UDP + 1.04 gpeptidoglycan

1
1.04 UDPGAM + 1

1.04 UDPGA + 2
3·1.04 DAP + 3

5·1.04 Leucine + 4
15·1.04 Glycine +

5
3·1.04 Alanine + 1

1.04 Glutamate + 5
1.04 ATP − 5

1.04 ADP − 5
1.04 Pi − 2

1.04 UDP

=⇒ 1 gpeptidoglycan

a.1.5 Lipopolysaccharides

In order to calculate the mass of the lipopolysaccharides, its synthesis equation,
as well as the synthesis equations of the presursors are needed. These can be
derived from Taymaz-Nikerel [167], the numbers in brakets are the equation
numbers of the source:
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Malonyl-CoA (214,222):
Acetyl-CoA + ATP + HCO3 (=CO2)⇐⇒ ADP + H + Malonyl-CoA + Pi

Dodecanoyl-CoA (215,217):
5 Malonyl-CoA + Acetyl-CoA + 15 H + 10 NADPH =⇒ 5 CO2 + 5 CoA + 5

H2O + 10 NADP + Dodecanoyl-CoA

3hmrs-CoA (R-3-hydroxy-myristoyl-CoA) (213):
Dodecanoyl-CoA + Malonyl-CoA + 2 H + NADPH =⇒ CO2 + CoA + NADP +
3hmrs-CoA

CMPKDO (CMP-3-deoxy-D-manno-octulosonate) (42,160,164,163):
PEP + Ribulose-5-phosphate + 2 H2O + CTP =⇒ PPi + 2 Pi + CMPKDO

u23ga (UDP-2,3-bis(3-hydroxytetradecanoyl) glucosamine) (199,196,195):
UACGAM + 2 3hmrs-CoA + H2O =⇒ Acetate + 2 CoA + H + u23ga

ADPHEP-L,D (ADP-L-glycero-D-manno-heptose) (29,193,174,173,172,170):
β-D-Fructose-6-phosphate + 2 ATP + Erythrose-4-P + H2O =⇒ADP + Glyceraldehyde-
3-phosphate + PPi + Phosphate + ADPHEP-L,D

UDP-Glucose (208):
α-D-Glucose-6-phosphate + H + UTP =⇒ PPi + UDPGlucose

CDPETN (CDP-Ethanolamine) (rn:R02055,rn:R07376,rn:R01468,rn:R02038):
ATP + Serine + CTP⇐⇒ ADP + PPi + CO2 + CDPETN

Lipopolysaccharides (206,184,194,161,176,177,185):
2 u23ga + ATP + H2O + 4 CMPKDO + Dodecanoyl-CoA + Myristoyl-CoA + 3

ADPHEP-L,D + 2 CDPETN + 2 UDP-Glucose =⇒ UMP + 15 H + 3 UDP + 4

ADP + 4 CMP + 2 CDP + 2 CoA + Lipopolysaccharides

ACP is often used in the paper but this acyl-carrier-protein is just an inter-
mediate step and therefore discarded. Instead the CoA-versions are used. This
explains little discrepancies in the equations and the source.

The molecular weight of the lipopolysaccharides can be calculated as follows:

2 23ga+ 4KDO+Dodecanoyl+Myristoyl+ 3ADPHEP-L,D+Ethanolamine+ 2Glucose = 4931.74 g/mol

= 4.932 g/mmol

So 4.9 g of lipopolysaccharides corresponds to 1 mmol of lipopolysaccha-
rides.

Therefore:
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Metabolite Molecular mass (in g/mol)

Glucosamine + Myristic + Dodecanoyl (=23ga) 607.86

KDO 238.19

Dodecanoyl 200.32

Myristoyl 228.38

ADPHEP-L,D 617.36

Ethanolamine 61.08

Glucose 180.16

Table 7: Molecular mass of lipopolysaccharides components

2 u23ga + ATP + H2O + 4CMPKDO + Dodecanoyl-CoA + Myristoyl-CoA +

3ADPHEP-L,D + 2CDPETN + 2UDP-Glucose =⇒ UMP + 15H + 3UDP +

34ADP + 4CMP + 2CDP + 2CoA + 1 mmol lipopolysaccharides

2 u23ga + ATP + H2O + 4CMPKDO + Dodecanoyl-CoA + Myristoyl-CoA +

3ADPHEP-L,D + 2CDPETN + 2UDP-Glucose =⇒ UMP + 15H + 3UDP +

34ADP + 4CMP + 2CDP + 2CoA + 4.9 g lipopolysaccharides

2
4.9 u23ga + 1

4.9 ATP + 1
4.9 H2O + 4

4.9 CMPKDO + 1
4.9 Dodecanoyl-CoA +

1
4.9 Myristoyl-CoA+ 3

4.9 ADPHEP-L,D+ 2
4.9 CDPETN+ 2

4.9 UDP-Glucose− 1
4.9 UMP−

15
4.9 H− 3

4.9 UDP− 34
4.9 ADP− 4

4.9 CMP− 2
4.9 CDP− 2

4.9 CoA =⇒ 1g lipopolysaccharides
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b.1 basic model

Glycolysis and Gluconeogenesis

Name Formula

Glucoseimport Glucoseout ===> Glucose

rn:R00299 ATP + Glucose ===> α-D-Glucose-6-phosphate + ADP

rn:R04779

β-D-Fructose-6-phosphate + ATP ===> β-D-Fructose-1,6-bisphosphate

+ ADP

rn:R00764

β-D-Fructose-6-phosphate + PPi <===> β-D-Fructose-1,6-bisphosphate

+ Phosphate

rn:R02740 α-D-Glucose-6-phosphate <===> β-D-Fructose-6-phosphate

rn:R01070

β-D-Fructose-1,6-bisphosphate <===> Glyceraldehyde-3-phosphate

+ Glycerone-phosphate

rn:R01015 Glyceraldehyde-3-phosphate <===> Glycerone-phosphate

rn:R01061

NAD + Glyceraldehyde-3-phosphate + Phosphate <===> NADH

+ 1,3-Bisphospho-D-glycerate + H

rn:R01512 ATP + 3-Phospho-glycerate <===> ADP + 1,3-Bisphospho-D-glycerate

rn:R01518 2-Phospho-D-glycerate <===> 3-Phospho-glycerate

rn:R00658 2-Phospho-D-glycerate <===> PEP + H2O

rn:R06620 Glucose + PQQ ===> D-glucono-1,5-lactone + PQQH2

Quinonereacm PQQH2 + MQ <===> PQQ + MQH2

Quinonereac PQQH2 + Q <===> PQQ + QH2

rn:R01519 D-glucono-1,5-lactone + H2O ===> D-gluconate

rn:R01737 ATP + D-gluconate ===> ADP + 6-phospho-D-gluconate

rn:R02036 6-phospho-D-gluconate <===> KDPG + H2O

rn:R05605 KDPG <===> Glyceraldehyde-3-phosphate + Pyruvate

rn:R00835

α-D-Glucose-6-phosphate + NADP ===> 6-phospho-D-glucono-lactone

+ NADPH

rn:R02035 6-phospho-D-glucono-lactone + H2O ===> 6-phospho-D-gluconate

Table 8: Glycolysis and Gluconeogenesis
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TCA cycle

Name Formula

rn:R00351 Oxaloacetate + Acetyl-CoA + H2O ===> CoA + Citrate

rn:R01325 Citrate <===> cis-Aconitate + H2O

rn:R01900 cis-Aconitate + H2O <===> Isocitrate

rn:R00268 Oxalosuccinate + H2O <===> 2-Oxoglutarate + CO2
rn:R01899 Isocitrate + NADP <===> Oxalosuccinate + NADPH + H

rn:R08549

NAD + CoA + 2-Oxoglutarate + H2O ===> NADH + Succinyl-CoA

+ CO2 + H

rn:R00405 ADP + Succinyl-CoA + Phosphate <===> ATP + Succinate + CoA

rn:R00412 Succinate + Q <===> Fumarate + QH2
rn:R00412m Succinate + MQ <===> Fumarate + MQH2
rn:R01082 Fumarate + H2O <===> Malate

rn:R00342 NAD + Malate <===> Oxaloacetate + NADH + H

rn:R00341 Oxaloacetate + ATP + H2O ===> PEP + ADP + CO2
rn:R00479 Isocitrate <===> Glyoxylate + Succinate

rn:R00472 Glyoxylate + Acetyl-CoA + H2O ===> Malate + CoA

rn:R00621 TPP + 2-Oxoglutarate + H2O <===> 3-Carboxy1hydroxypropyl-ThPP + CO2

Pyruvate metabolism

rn:R00199 ATP + Pyruvate + H2O ===> PEP + AMP + Phosphate

rn:R00200 PEP + ADP ===> ATP + Pyruvate

rn:R00209

NAD + CoA + Pyruvate + H2O <===> NADH + Acetyl-CoA

+ CO2 + H

OAD Pyruvate + 2 Naout + CO2 ===> Oxaloacetate + 2 Na + H2O

PEPC PEP + CO2 ===> Oxaloacetate + Phosphate

MAE NADPH + Pyruvate + CO2 + H <===> NADP + Malate + H2O

rn:R00710 NAD + Ethanal + H2O <===> Acetate + NADH + H

rn:R00316 Acetate + ATP <===> Acetyladenylate + PPi

rn:R00236 CoA + Acetyladenylate <===> Acetyl-CoA + AMP

rn:R00703 NAD + L-Lactate <===> NADH + Pyruvate + H

Ammonia assimilation

GDH NADH + 2-Oxoglutarate + NH3 + H <===> NAD + Glutamate + H2O

rn:R00258 2-Oxoglutarate + L-alanine <===> Pyruvate + Glutamate

Ala-DH NAD + L-alanine + H2O <===> NADH + Pyruvate + NH3

Table 9: TCA cycle, pyruvate metabolism and ammonia assimilation
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Glycine, serine and threonine metabolism

Name Formula

rn:R01513

NAD + 3-Phosphoglycerate <===> 3-Phosphohydroxypyruvate

+ NADH + H

rn:R04173

Dexfosfoserine + 2-Oxoglutarate <===> 3-Phosphohydroxypyruvate

+ Glutamate

rn:R00582 Dexfosfoserine + H2O ===> Serine + Phosphate

rn:R00220 Serine ===> Pyruvate + NH3
rn:R00945 Glycine + 5,10-Methylene-THF + H2O <===> Tetrahydrofolate + Serine

rn:R00751 L-Threonine <===> Glycine + Ethanal

rn:R01466 O-Phospho-L-homoserine + H2O <===> L-Threonine + Phosphate

rn:R01771 L-Homoserine + ATP ===> ADP + O-Phospho-L-Homoserine

rn:R01773 L-Homoserine + NAD <===> NADH + L-Aspartic-4-semialdehyde + H

rn:R06977

Glutamate + L-Aspartic-4-semialdehyde <===> L-2,4-Diaminobutyrate

+ 2-Oxoglutarate

rn:R02291

L-Aspartic-4-semialdehyde + NADP + Phosphate <===>

4-Phospho-L-aspartate + NADPH + H

rn:R00480 L-Aspartate + ATP ===> ADP + 4-Phospho-L-aspartate

rn:R00355 L-Aspartate + 2-Oxoglutarate <===> Oxaloacetate + Glutamate

Table 10: Glycine, Serine and Threonine metabolism

Respiratory chain

Name Formula

C1 NADH + Q + 4 H ===> NAD + QH2 + 4 Hout
C1m NADH + MQ + 4 H ===> NAD + MQH2 + 4 Hout
C1
Na NADH + 2 Na + Q + 2 H ===> NAD + 2 Naout + QH2 + 2 Hout

C1
Nam NADH + 2 Na + MQ + 2 H ===> NAD + 2 Naout + MQH2 + 2 Hout
C2 FADH2 + Q ===> FAD + QH2

C2m FADH2 + MQ ===> FAD + MQH2
C3-4 QH2 + 0.5 O2 + 4 H ===> Q + 6 Hout + H2O

C3-4m MQH2 + 0.5 O2 + 4 H ===> MQ + 6 Hout + H2O

ATPase ADP + 3 Hout + Phosphate ===> ATP + H2O + 3 H

Napump32 2 Na + 3 Hout ===> 2 Naout + 3 H

Napump21 Na + 2 Hout ===> Naout + 2 H

Table 11: Respiratory chain
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Ectoine metabolism

DoeA Ectoine + H2O <===> N-α-Acetyldiaminobutyrate

DoeB
N-α-Acetyldiaminobutyrate + H2O ===> Acetate + L-2,4-Diamino-

butyrate

rn:R06978

L-2,4-Diaminobutyrate + Acetyl-CoA ===> CoA

+ N-γ-Acetyl-diaminobutyrate

rn:R06979 N-γ-Acetyl-diaminobutyrate ===> Ectoine + H2O

Additional reactions

ATP load ATP + H2O ===> ADP + Phosphate

rn:R00127 ATP + AMP <===> 2 ADP

rn:R00112 NADH + Hout + NADP <===> NAD + NADPH + H

leak Hout ===> H

Table 12: Ectoine metabolism and additional reactions

b.2 including biomass into the model

Additional reactions needed for the synthesis of biomass precursors

Name Formula

rn:R00014 Pyruvate + TPP <===> 2-α-Hydroxyethy-TPP + CO2

rn:R00149

2 ATP + NH3 + CO2 + H2O <===> 2 ADP

+ Carbamoylphosphate + Phosphate

rn:R01528

6-phospho-D-gluconate + NADP <===> NADPH + Ribulose-5-

phosphate + CO2 + H

rn:R01056 Ribulose-5-phosphate <===> Ribose-5-phosphate

rn:R01049 ATP + Ribose-5-phosphate <===> AMP + PRPP

rn:R01067

β-D-Fructose-6-phosphate + 3-Phospho-glycerate <===>

Xylulose-5-phosphate + Erythrose-4-P

rn:R01529 Ribulose-5-phosphate <===> Xylulose-5-phosphate

rn:R01655 5,10-Methylene-THF + H2O <===> 10-Formyl-THF + H

rn:R02016

NADP + Thioredoxin <===> NADPH

+ Thioredoxindisulfide + H

rn:R00188 AMP + Phosphate <===> PAP + H2O

H2Ssynthesis
2 ATP + 3 NADPH + Thioredoxin + 3 H + SO4 <===> ADP + 3 NADP

+ H2S + Thioredoxindisulfide + PAP + PPi + 3 H2O
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AICAR-synthesisreac
5 ATP + PRPP + 10-Formyl-THF + CO2 + 2 H2O

+ 2 Glutamine + L-Aspartate + Glycine ===> Tetrahydrofolate

+ 5 ADP + Fumarate + AICAR + PPi + 5 Phosphate + 2 Glutamate

Chorismate-
2 PEP + ATP + NADH + Erythrose-4-P + H ===> NAD

synthesisreac + ADP + Chorismate + 4 Phosphate

IMPreac 10-Formyl-THF + AICAR ===> Tetrahydrofolate + IMP + H2O

SAdenosylreac
ATP + S-Adenosyl-L-homocysteine + 5-Methyl-THF

+ 2 H2O <===> Tetrahydrofolate + S-Adenosyl-L-methionine

+ Adenosine + PPi + Phosphate

Adenosinereac ADP + AMP <===> ATP + Adenosine

5_MethylTHFreac
5,10-Methylene-THF + NADPH + H <===> NADP

+ 5-Methyl-THF

Glycerolreac
ATP + NADH + Glycerol + H ===> NAD + ADP

+ Glycerone-phosphate

UDPGAreac
β-D-Fructose-6-phosphate + Acetyl-CoA + Glutamine

+ UTP ===> CoA + UDPGA + PPi + Glutamate

UDPAMreac
PEP + NADH + UDPGA + H ===> NAD + UDPAM

+ Phosphate

ASPSAreac
ATP + NADPH + H + L-Aspartate ===> ADP + NADP

+ ASPSA + Phosphate

DAPreac
Succinyl-CoA + Pyruvate + NADPH + ASPSA + H

+ Glutamate ===> Succinate + CoA + 2-Oxoglutarate + NADP

+ DAP

MalonylCoAreac
ATP + Acetyl-CoA + CO2 ===> ADP + Malonyl-CoA

+ Phosphate + H

DodecanoylCoAreac
Acetyl-CoA + 10 NADPH + 5 Malonyl-CoA + 15 H ===> 5 CoA

+ 10 NADP + Dodecanoyl-CoA + 5 CO2 + 5 H2O

3hmrsCoAreac
NADPH + Malonyl-CoA + Dodecanoyl-CoA + 2 H ===> CoA

+ NADP + 3-hmrs-CoA + CO2

CMPKDOreac
PEP + Ribulose-5-phosphate + 2 H2O + CTP ===> CMPKDO + PPi

+ 2 Phosphate

u23gareac UDPGA + 2 3-hmrs-CoA + H2O ===> Acetate + 2 CoA + u23ga + H

ADPHEPreac
β-D-Fructose-6-phosphate + 2 ATP + Erythrose-4-P + H2O ===>

ADP + Glyceraldehyde-3-phosphate + ADPHEP + PPi + Phosphate

UDPglucosereac α-D-Glucose-6-phosphate + H + UTP ===> UDP-Glucose + PPi

Ethanolaminereac ATP + Serine + CTP <===> ADP + CDP-Ethanolamine + PPi + CO2

Table 13: Additional reactions needed for the synthesis of biomass precursors.
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Nucleotide synthesis

Name Formula

AMPreac
ATP + IMP + L-Aspartate ===> ADP + AMP + Fumarate

+ Phosphate

GMPreac
NAD + ATP + IMP + 2 H2O + Glutamine ===> NADH

+ AMP + GMP + PPi + H + Glutamate

UMPreac
Oxaloacetate + 5 ATP + NADPH + Ribose-5-phosphate

+ 2 NH3 + H ===> 5 ADP + NADP + UMP + H2O

CMPreac
Oxaloacetate + 7 ATP + NADPH + Ribose-5-phosphate

+ 3 NH3 + H ===> 7 ADP + NADP + CMP + H2O

dAMPreac
3 NAD + 9 ATP + 5,10-Methylene-THF + 3-Phospho-glycerate

+ 2 NADPH + Ribose-5-phosphate + 5 NH3 + CO2 + H2O ===>

Tetrahydrofolate + 3 NADH + 9 ADP + 2 NADP + dAMP + H

dGMPreac
3 NAD + 11 ATP + 5,10-Methylene-THF + 3-Phospho-glycerate

+ NADPH + Ribose-5-phosphate + 5 NH3 + CO2 + 2 H2O ===>

Tetrahydrofolate + 3 NADH + 11 ADP + NADP + dGMP + 2 H

dTMPreac
Oxaloacetate + 5 ATP + 5,10-Methylene-THF + 3 NADPH + Ribose-

5-phosphate + 2 NH3 + 3 H ===> Tetrahydrofolate + 5 ADP

+ 3 NADP + dTMP + 3 H2O

dCMPreac
Oxaloacetate + 7 ATP + 2 NADPH + Ribose-5-phosphate

+ 3 NH3 + 2 H ===> 7 ADP + 2 NADP + dCMP + 2 H2O

Additional amino acids

Argininereac

2 ATP + NADH + AcetylCoA + NADPH + Carbamoylphosphate

+ NH3 + 2 H + L-Aspartate + Glutamate ===> Acetate + NAD

+ ADP + CoA + AMP + Fumarate + NADP + PPi + 2 Phosphate

+ Arginine

Asparaginereac ATP + NH3 + L-Aspartate ===> AMP + PPi + Asparagine

Cysteinereac Acetyl-CoA + H2S + Serine ===> Acetate + CoA + Cysteine

Glutaminereac ATP + NH3 + Glutamate ===> ADP + Phosphate + Glutamine

Histidinereac
2 NAD + ATP + PRPP + 3 H2O + Glutamine ===> 2 NADH

+ 2-Oxoglutarate + AICAR + 2 PPi + Phosphate + 2 H + Histidine

Isoleucinereac
NADPH + 2-α-Hydroxyethy-TPP + H + Glutamate + L-Threonine

===> TPP + 2-Oxoglutarate + NADP + NH3 + H2O + Isoleucine

Leucinereac
NAD + 2 Pyruvate + Acetyl-CoA + NADPH + Glutamate ===> NADH

+ CoA + 2-Oxoglutarate + NADP + 2 CO2 + Leucine

Lysinereac
ATP + NADH + Succinyl-CoA + Pyruvate + NADPH + 2 H

+ L-Aspartate + Glutamate ===> NAD + Succinate + ADP

+ CoA + 2-Oxoglutarate + NADP + CO2 + Phosphate + Lysine
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Methioninereac

ATP + NADH + 5,10-Methylene-THF + Succinyl-CoA + NADPH

+ H2O + 2 H + Cysteine + L-Aspartate ===> Tetrahydrofolate

+ NAD + Succinate + ADP + CoA + NADP + Phosphate

+ Methionine + Serine

Phenylalaninereac
Chorismate + Glutamate ===> 2-Oxoglutarate + CO2 + H2O

+ Phenylalanine

Prolinereac
ATP + NADH + NADPH + 2 H + Glutamate ===> NAD + ADP

+ NADP + H2O + Phosphate + Proline

Tryptophanreac
PRPP + Chorismate + Glutamine + Serine ===> Glyceraldehyde

-3-phosphate + Pyruvate + PPi + CO2 + 2 H2O + Tryptophan

+ Glutamate

Tyrosinereac
NAD + Chorismate + Glutamate ===> NADH + 2-Oxoglutarate

+ CO2 + H + Tyrosine

Valinereac
2 Pyruvate + NADPH + H + Glutamate ===> 2-Oxoglutarate

+ NADP + CO2 + H2O + Valine

Aminoacidreaction

0.06 Arginine + 0.05 Asparagine + 0.02 Cysteine + 0.05 Glutamine

+ 0.02 Histidine + 0.05 Isoleucine + 0.08 Leucine + 0.06 Lysine

+ 0.03 Methionine + 0.03 Phenylalanine + 0.04 Proline + 0.01

Tryptophan + 0.03 Tyrosine + 0.08 Valine + 0.1 L-alanine + 0.05

L-Aspartate + 0.05 Glycine + 0.05 Glutamate + 0.04 Serine + 0.05

L-Threonine ===> Aminoacids

Lipid synthesis

Name Formula

AMPreac
ATP + IMP + L-Aspartate ===> ADP + AMP + Fumarate

+ Phosphate

Glycerol-3-phosphatereac
NADH + Glyceraldehyde-3-phosphate + H ===> NAD

+ Glycerol-3-phosphate

Palmitoyl-CoAreac
7 ATP + 8 Acetyl-CoA + 14 NADPH + 14 H ===> 7 ADP

+ 7 CoA + 14 NADP + Palmitoyl-CoA + 14 H2O

Palmitoleoyl-CoAreac
7 ATP + 8 Acetyl-CoA + 14 NADPH + 14 H ===> 7 ADP

+ 7 CoA + 14 NADP + Palmitoleoyl-CoA + 14 H2O

Oleoyl-CoAreac
NAD + 8 ATP + 9 Acetyl-CoA + 16 NADPH + 15 H

===> NADH + 8 ADP + 8 CoA + 16 NADP + Oleoyl-CoA

+ 15 H2O

MyristoylCoAreac
6 ATP + 7 Acetyl-CoA + 12 NADPH + 12 H ===> 6 ADP

+ 6 CoA + 12 NADP + Myristoyl-CoA + 12 H2O

MyristoleoylCoAreac
6 ATP + 7 Acetyl-CoA + 12 NADPH + 12 H ===> 6 ADP

+ 6 CoA + 12 NADP + Myristoleoyl-CoA + 12 H2O

HeptadecanoylCoAreac
S-Adenosyl-L-methionine + Palmitoleoyl-CoA ===>

S-Adenosyl-L-homocysteine + Heptadecanoyl-CoA
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cis-VaccenoylCoAreac
8 ATP + 9 Acetyl-CoA + 16 NADPH + 16 H ===> 8 ADP

+ 8 CoA + 16 NADP + cis-Vaccenoyl-CoA + 16 H2O

NonadecenoylCoAreac
SAdenosylLmethionine + Oleoyl-CoA ===> S-Adenosyl-

L-homocysteine + Nonadecenoyl-CoA

Acyl-CoAreaction

0.39 Palmitoyl-CoA + 0.11 Palmitoleoyl-CoA + 0.17

Oleoyl-CoA + 0.03 Myristoyl-CoA + 0.09 Myristoleoyl-CoA

+ 0.16 Heptadecanoyl-CoA + 0.01 cis-Vaccenoyl-CoA

+ 0.01 Nonadecenoyl-CoA ===> Acyl-CoA

PEreaction
9 ATP + 3 Glycerol-3-phosphate + 6 Acyl-CoA + 3 Serine ===>

6 CoA + 9 AMP + PE + 9 PPi + 3 CO2

PGreaction
8 ATP + 5 Glycerol-3-phosphate + 5 Acyl-CoA + 3 H2O ===>

CoA + 8 AMP + PG + 8 PPi

CLreaction
8 ATP + 5 Glycerol-3-phosphate + 5 Acyl-CoA + 3 H2O ===>

5 CoA + 8 AMP + 1 Glycerol + CL + 8 PPi

Biomass synthesis

Name Formula

Proteinreac
39.1 ATP + 9.1 Aminoacids ===> 39.1 ADP + Protein + 39.1

Phosphate

DNAreac
11 ATP + 0.8 dAMP + 0.8 dGMP + 0.8 dTMP + 0.8 dCMP

===> 11 ADP + DNA + 11 Phosphate

RNAreac
7 ATP + 0.8 AMP + 0.9 GMP + 0.8 UMP + 0.6 CMP ===>

7 ADP + RNA + 7 Phosphate

Lipidreac 0.4 PE + 0.5 PG + 0.1 CL ===> Lipids

Glycogenreac 6 ATP + 6 Glucose ===> 6 ADP + Carbohydrates + 6 Phosphate

Peptidoglycanreac
5 ATP + 1 UDPGA + 1 UDPAM + 0.6 DAP + 0.6 Leucine + 2

L-alanine + 0.3 Gly + 1 Glutamate ===> 5 ADP + Peptidoglycan

+ 5 Phosphate + 2 UDP

LPSreac

0.2 ATP + 0.2 Dodecanoyl-CoA + 0.8 CMPKDO + 0.4 u23ga +

0.6 ADPHEP + 0.4 UDPGlucose + 0.4 CDPEthanolamine + 0.2

Myristoyl-CoA + 0.2 H2O ===> 0.8 ADP + 0.4 CoA +

Lipopolysaccharides + 0.2 UMP + 0.8 CMP + 3 H + 0.6 UDP

+ 0.4 CDP

Growth
0.03 DNA + 0.2 RNA + 0.6 Protein + 0.1 Lipids + 0.03

Carbohydrates + 0.03 Peptidoglycan + 0.03 Lipopolysaccharides

===> Biomass

Table 14: Nucleotide synthesis, additional amino acid reactions, lipid biosynthesis and biomass
synthesis.
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b.3 abbreviations with respect to metabolites

Abbreviations

Abbreviation Metabolite Abbreviation Metabolite

3hmrs-CoA R-3-hydroxy-myristoyl-CoA γ-N-acABA Nγ-Acetyl-diaminobutyrate

3PG 3-Phospho-glycerate GAP Glyceraldehyde-3-phosphate

4PAsp 4-Phospho-L-aspartate Glclactone D-glucono-1,5-lactone

5-Methyl-THF 5-Methyltetrahydrofolate Glu Glutamate

6PGlclactone 6-phospho-D-gluconolactone Gluconate D-gluconate

6PGluconate 6-phospho-D-gluconate Gly Glycine

AcCoA AcetylCoA Glycerol-3-P Glycerol-3-phosphate

ADPHEP ADP-mannoheptose HomoSer L-Homoserine

aKG 2-Oxoglutarate IMP Inosinic acid

Ala L-Alanine IsoCIT Isocitrate

α-N-AcABA
N-α-Acetyldiaminobutyrate KDPG 2-Keto-3-deoxy-6-

phosphogluconate

ASA L-Aspartic-4-semialdehyde LPS Lipposaccharid

Asp L-Aspartate MAL Malate

ASPSA L-Aspartate 4-semialdehyde MeTHF 5,10-Methylene-THF

CDPEthanolamine CDP-Ethanolamine MQ Menaquinone

cisACO cisAconitate MQ2 Menaquinol

CIT Citrate OAA Oxaloacetate

CL
Cardiolypin OHPyr 3-Phosphonooxy-

pyruvate

CMPKDO CMP-2-Keto-3-deoxyoctanoate PA Phosphatidyl acid

DABA
L-2,4-Diaminobutyrate PAP Phosphoadenosine

phosphate

DAP
L,L-2,6-Diaminopimelate PE Phosphatidyl ethano-

lamine

DHAP Glycerone-phosphate PEP Phosphoenol-pyruvate

F6P β-D-Fructose-6-phosphate PG Phosphatidyl glycerol

FBP
β-D-Fructose-1,6-bisphosphate P-homoSer O-Phospho-L-

homoserine

FUM Fumarate PhosphoSer Dexfosfoserine

G6P
α-D-glucose-6-phosphate PQQ Pyrroloquinoline

quinone
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PQQH2
Reduced pyrrolo- SucCoA Succinyl-CoA

quinoline quinone

PRPP
Phosphoribosyl THF Tetrahydrofolate

pyrophosphate

Pyr Pyruvate Thr Threonine

Q Quinone TPP Thiamine diphosphate

QH2
Quinol u23ga UDP-2,3-bis(3-hydroxy-

tetradecanoyl) glucosmine

Ribose-5-P Ribose-5-phosphate UDPAM UDP-Acetylmuramate

Ribulose-5-P Ribulose-5-Phosphate UDPGA UDP-N-Acetylglucosamine

Ser Serine UDPGlucose UDP-glucose

SUC Succinate

Table 15: Abbreviations

b.4 concentration intervals
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Boundaries for metabolite concentrations

Metabolite Lower bound Upper bound

CO2 [68] 0.0001 0.0001

Glucose 10
−7

0.02

Glucoseout 0.03 0.03

Glutamate 10
−7

0.1

H2O 1 1

L-Aspartic-4-semialdehyde 6 10
−8

0.015

Na [100, 174] 0.04 0.25

Naout [0.1; 1; 2] [0.1; 1; 2]

NH3 [68] 0.019 0.019

O2 [41, 68] 8.2 10
−6

6.5 10
−4

Oxalosuccinate 6 10
−8

0.015

Phosphate [29, 47] 0.05 0.2

PPi 0.001 0.1

Table 16: Special bounds for metabolite concentrations (in mol/l). The general limits are [10
−7;

0.015] mol/l





C
F I G U R E S B E L O N G I N G T O C H A P T E R 8

Several figures have been produced with respect to Section 8.5 and Section 8.6,
which can’t be displayed in the main text due to a shortage of space but might
nevertheless be interesting to the reader. These figures are all together displayed
here.

c.1 ectoine- vs . energyoptimization

The first figures concern the ectoine and energy optimization with respect to
the model, in which C1 is inactive but C1

Na is active. The flux distributions are
displayed in Figure 70. The resulting thermodynamically feasible ranges are
displayed in Figure 71.

Figure 72 compares the flux distributions gained via ectoine optimization
in case of an ATP load of 10 mmol or 600 mmol ATP/100 mmol Glc. The
thermodynamic comparison can be found in Figure 73.

Figure 74 displays the flux distributions with either C1 or C1
Na active and

GDH inactivate in the FBA. Therefore only Ala-DH can be used for ammonia
assimilation.

The comparison of Figure 72 has been repeated in Figure 75. This time with-
out the use of the GDH. The thermodynamic comparison can be found in Fig-
ure 76.

c.2 anaplerotic reactions

Figure 77 displays the flux distribution of the PEPC OAD mutant in case that
only C1

Na or both version of complex I are active in the FBA. The thermody-
namic analysis is displayed in Figure 78.

In case that the GDH is inactive, the following flux distibutions can be gained
with C1

Na active or both active: see Figure 79. The thermodynamic analysis is
displayed in Figure 80

Figure 81 displays the outcoming in case of an inactivation of OAD, PEPC
and GDH.
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Figure 70: Comparison of the ectoine- (a) and energy-fluxes (b) for an ATP load of 10 mmol
ATP/100 mmol Glc, with only C1

Na active in the FBA. The ectoine production is
increased in comparison with Figure 53, while the energy production is decreased.
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Figure 71: Comparison of the MDF solutions for ectoine (a) and energy optimization (b) with
only C1

Na active in the flux distributions.
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Figure 72: (a) shows the flux distribution of the ectoine optimization for an ATP load of 10

mmol ATP/100 mmol Glc, as in Figure 70 (a), where only C1
Na is active. (b) displays

the flux distribution for an ATP load of 600 mmol ATP/100 mmol Glc, where both
enzymes are active simultaneously. The ectoine yield is lower in the second case,
because carbon is needed for ATP production.
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Figure 73: (a) shows the feasible ranges for the ectoine optimization under the condition that
C1
Na is used, which matches the first row of Figure 71. (b) displays the feasible

ranges in case that both enzymes are active at once in the flux distribution.
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Figure 74: Comparison of the ectoine maximizations for an ATP load of 10 mmol ATP/100

mmol Glc, with either C1 (a) or C1
Na (b) active and with the GDH shut off.
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Figure 75: (a) shows the flux distribution of the ectoine optimization for an ATP load of 10

mmol ATP/100 mmol Glc, where only C1
Na is active and GDH is inactive. (b) dis-

plays the flux distribution for an ATP load of 600 mmol ATP/100 mmol Glc, where
both enzymes are active simultaneously and the GDH still inactive.
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Figure 76: (a) shows the MDF solutions for the ectoine optimizing flux distribution under the
condition that C1

Na is used and GDH inactive. (b) displays the solutions in case
that both enzymes are active at once but the GDH still inactive.



C.2 anaplerotic reactions 165

G
6P

FB
P

Ac
Co

A
O

AA

Is
oC

IT

aK
G

SU
C

FU
MM

AL

Ec
to

in
e

G
ly

ox
yl

at
e

Py
r

PE
P

G
AP

AD
P

AT
P

N
AD

N
AD

P

N
AD

H

N
AD

PH

G
lu

La
ct

at
e

4 
H

4 
H

3 
H

AT
P

N
AD

N
AD

H

3 
H

2 
N

a

2 
H

N
AD

N
AD

H
2 

N
a

2 
N

a

6P
G

lu
co

na
te

KD
PG

6P
G

lc
la

ct
on

e

G
lu

co
se

[o
ut

]
G

lu
co

se

7
.5

0.
0

0.
0

0.
0

1
0
.0

7
.5

Py
r

Al
a

N
H
3

N
H
3

0.
0

2
.50.
0

0.
0 0.
0

0.
0

0.
0

7
.5

7
.5

7
.5

7
.5

7
.5

7
.5

7
.5

0.
0

0.
0

1
5
.0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

(a)

G
6P

FB
P

Ac
Co

A
O

AA

Is
oC

IT

aK
G

SU
C

FU
MM

AL

Ec
to

in
e

G
ly

ox
yl

at
e

Py
r

PE
P

G
AP

AD
P

AT
P

N
AD

N
AD

P

N
AD

H

N
AD

PH

G
lu

La
ct

at
e

4 
H

4 
H

3 
H

AT
P

N
AD

N
AD

H

3 
H

2 
N

a

2 
H

N
AD

N
AD

H
2 

N
a

2 
N

a

6P
G

lu
co

na
te

KD
PG

6P
G

lc
la

ct
on

e

G
lu

co
se

[o
ut

]
G

lu
co

se

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

0.
0

0.
0

1
0
0
.0

1
0
0
.0

2
0
0
.0 0.
0

1
2
8
8
.8
9

3
3
.3
3

Py
r

Al
a

N
H
3

N
H
3

0.
0

1
0
0
.0

1
2
5
5
.5
6

0.
0

6
6
.6
7

0.
0

4
0
0
.0

3
3
3
.3
3

6
6
.6
7

0.
0

1
0
0
.0

1
3
3
.3
3

0.
0

0.
0

6
6
.6
7

6
6
.6
7

1
3
3
.3
3

6
6
.6
7

6
6
.6
7

0.
0

0.
0

0.
0

(b)

Figure 77: (a) shows the flux distribution for the PEPC OAD mutant in case that C1
Na is active

in the FBA but C1 not for an ATP load of 10 mmol ATP/100 mmol Glc. However,
C1
Na does not exhibit a flux (b) displays the flux distribution in case that both

complex I versions are active but only C1 exhibits a flux.
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Figure 78: (a) shows the conditions in case of anaerobic respiration. (b) displays the conditions
in case that both enzymes were active in the FBA, but only C1 exhibits a flux.
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Figure 79: (a) shows the flux distribution of the OAD mutant for an ATP load of 10 mmol
ATP/100 mmol Glc in case that C1

Na is active but C1 not. (b) displays the case that
both are active during FBA but in both cases, C1

Na shows no flux. The glutamate
dehydogenase is inactive.
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Figure 80: (a) displays the feasible ranges of the OAD mutant for an ATP load of 10 mmol
ATP/100 mmol Glc in case that C1

Na is active but C1 not, during FBA. The sec-
ond shows the opposite. In both cases, the glutamate dehydogenase is inactive. The
anaerobic respiration causes a higher exergonism.
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Figure 81: (a) displays the flux distribution of the PEPC OAD mutant in case that only C1 is
active for an ATP load of 10 mmol ATP/100 mmol Glc, while the glutamate dehy-
dogenase is inactive; (b) shows the minimal driving force solution for the displayed
flux distribution.
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