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Abstract
With the increasing complexity of robotic systems, system robustness and efficiency are harder to achieve, since they are
determined by the interplay of all of a system’s components. In order to improve the robustness of such systems, it is
essential to identify the system components that are crucial for each task and the extent to which they are affected by other
components and the environment. Such knowledge will help developers to improve their systems, and can also be directly
utilized by the systems themselves, for example, to detect failures and thereby correctly adjust the system’s behavior.

In this article a method of system interdependence analysis is presented. The basic idea is to learn and quantita-
tively evaluate the coherence between performance indicators of different system components, as well as the influence
of environmental parameters on the system. To validate the proposed approach, system interdependence analysis is
applied to the navigation system of an autonomous mobile robot. Its navigational methods are presented and suitable
indicators are derived. The results of using the method, based on experimental data from an extended field experiment,
are given.
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1. Introduction

Autonomous robotic systems are used to carry out tasks in
partially known or unknown environments where they con-
stantly encounter situations that require decision-making
capabilities under perceptual uncertainty. This uncertainty
can lead to undesired system behavior. However, the
consequential series of internal reactions that cause the
observed behavior is often unclear, since it results from
the interaction of various system components. As a con-
sequence, in order to ensure robustness and reliability
of such autonomous robots, it is important to identify
the crucial environmental and system component indica-
tors that reflect the system’s overall behavior. The iden-
tification of the mutual interdependencies allows conclu-
sions to be drawn about the influence of these indica-
tors on the system’s behavior. Such knowledge is, for
example, valuable for design choices, since the factors
that contribute most to the variability of the system’s
behavior can be identified and it can be determined if
these require additional research to strengthen system
robustness. Additionally, this information can be used to
enable autonomous systems to avoid failures by predict-
ing the effects of actions and correctly adjusting their
behavior.

Most of the current autonomous robots are complex sys-
tems designed for specific applications. They usually con-
sist of components that can be separated into three cate-
gories according to their purpose. Perceptual components
are responsible for building an environment representation,
for example, in the form of a map, and also for localiz-
ing the robot. This representation is then used by planning
components to calculate a plan of actions such as the tra-
jectory of the robot. Finally, the chosen plan is executed
and progress is monitored by task execution components.
It is obvious that sensing, planning and execution are inter-
connected. Although performance indicators have been pro-
posed for each of these domains, it is still hard to assess the
effect that environmental parameters, or variations of the
performance of specific system components, have on the
rest of the system.
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This article describes a generic method to tackle this
problem. A probabilistic model of the interdependencies
between system components, such as perception, planning
and execution, is learned, which leads to a mathemati-
cal model of the system that enables the determination of
the crucial components with respect to robustness within
a system. In this paper, performance is expressed as sys-
tem stability against external and internal influences. In
principle, such a model can also be derived by examin-
ing the deterministic interdependencies within the system.
However, with increasing system complexity – more com-
ponents and higher interconnectivity between them – the
derivation of a deterministic model is hard. In this regard,
a learned model facilitates design choices without the need
to fully examine the deterministic interrelations in the sys-
tem. It also provides a way of verifying existing deter-
ministic system models and to identify relations that have
not been modeled. Furthermore, the knowledge gained can
be integrated into the online reasoning process of the sys-
tem itself to enhance its autonomy. The presented analysis
is applicable to any robotic system for which the compo-
nents of interest are observable. For these, it identifies the
best interdependence model that explains the data retrieved
from the system. The presented analysis is illustrated by the
application of the method to the navigation system of the
Autonomous City Explorer (ACE) robot.

This article is organized as follows. Section 2 summa-
rizes existing work on robotic performance evaluation. In
Section 3, the system interdependence analysis method is
presented. Section 4 gives a sample case study for the ACE
robot, including the description of the ACE project, the
navigational methods used and the identification of suit-
able indicators for interdependence analysis. In Section 5,
results from system analysis applied to the ACE robot are
presented.

2. Related work

The existence of literature focusing on the performance
evaluation of autonomous systems confirms the importance
of such methods. Qualitative evaluation criteria of robotic
systems have been proposed in Crandall and Goodrich
(2003). These approaches focus on task objective and social
measures to identify the efficiencies of both robot and
human. In Huang et al. (2004) an evaluation framework
for characterizing the autonomy of unmanned vehicles by
considering mission complexity, environmental difficulty
and Human Robot Interaction (HRI) is presented. However,
in order to apply these concepts to embodied autonomous
robots and compare their performance with other exist-
ing systems and different environments, benchmarks and
quantitative performance evaluation criteria are required.

Benchmark scenarios, such as the DARPA Grand Chal-
lenge (DARPA, 2007) and RoboCupSoccer (RoboCup,
2009), are used to compare the performance of autonomous

systems. A similar way to provide reproducibility of envi-
ronmental conditions is to standardize test arenas for mobile
robots (Jacoff et al., 2002). However, such benchmarks can-
not provide a comparison of robotic systems applied to
different scenarios. For example, it is not possible to com-
pare a robot that was built to operate in a home environment
(Srinivasa et al., 2008) with autonomous vehicles, which are
supposed to navigate through an urban environment (Urm-
son et al., 2008). Scenario-dependence is so strong that
the winning vehicle of the first DARPA Grand Challenge
(Thrun et al., 2006) would not have been able to take part in
the second challenge, since the scenario changed from the
desert to an urban environment. Furthermore, standardized
benchmark scenarios result in an intensified development of
robotic systems for these specific situations. A problem in
this respect might be the adaptation of algorithms to these
specific situations to allow for the cost of generality.

Further approaches introduce quantitative metrics to
evaluate robot performance and the influence of the envi-
ronment during navigation missions. Several metrics are
proposed in Munoz et al. (2007) to characterize path quality.
The entropy and compressibility of the environmental infor-
mation are used in Anderson and Gang (2007) to estimate
the complexity of an environment. This method can also
be used to identify attractor points. The relation between
the environment and the performance of a robotic system
is learned in Held et al. (2006), using a Dynamic Bayesian
Network. This way the coherence among the metrics and
also the environment is identified. To what extent the perfor-
mance of one system component influences the quality of
another is determined in Lampe and Chatila (2006), where
the degree of autonomy of a robot is evaluated by com-
bining task performance with world complexity. However,
the evaluation is based only on simulated data assuming
complete knowledge of the environment.

The method presented in the next section uses a Bayesian
Network (BN) for coherence identification and extends it to
a formal method, which allows the quantitative determina-
tion of the interdependence among all pairs within a set of
arbitrary indicators.

3. System interdependence analysis

In this section a method for system interdependence anal-
ysis is proposed. It allows the determination of the degree
of interaction between specific system components and its
influence on the system’s overall performance.

The proposed approach is illustrated in Figure 1. As the
robot operates, system outputs are monitored and perfor-
mance indicators for the system components are calculated.
The indicator values are used offline to learn the structure
of the BN that best reflects the system data gathered, and to
train its parameters. BNs are a network-based framework
for representing and analyzing models involving uncer-
tainty. They find application in several fields ranging from
intelligent decision support aids, to data fusion, 3D-feature
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Fig. 1. Flow chart of the proposed system interdependence analysis.

recognition, intelligent diagnostic aids, automated free text
understanding and data mining.

The learned BN structure identifies the coherence
between the performance indicators computed from the
system outputs, that is, the extent to which the indicators
are associated with each other. In order to quantitatively
evaluate this coherence between indicators from different
system components, information-theoretic analysis is per-
formed on the parameters of the learned BN. The calculated
quantitative relation can then be used to adjust the online
functionality of the robot to the situation. This is illustrated
by the dashed line in Figure 1. Section 3.4 gives a brief
description of how this can be achieved. However, a more
detailed discussion is beyond the scope of this article but
can be found in Rohrmüller et al. (2010).

In the following the determination of indicators, the cal-
culation of relevant data, the structure learning and the
information-theoretic analysis are described.

3.1. Component performance evaluation for
autonomous robotic systems

Before a model can be learned a set of component indi-
cators needs to be specified, which reflects the state of the
components of the autonomous robot as well as its envi-
ronment. Therefore, for each component of interest at least
one representative indicator needs to be chosen. In princi-
ple, these indicators can be arbitrarily chosen by the system
designer, for example, based on design knowledge or expe-
rience, thus there is no fixed set of universal indicators.
Rather, the choice should be based on the properties of the
system in question. In general, a good starting point is to
select indicators that reflect the performance of the compo-
nents. As already stated in Section 1, here performance is

understood as system stability against external and internal
influences.

In the literature, suitable performance measures have
been established for various methods and problems. For
example, planning algorithms are commonly measured with
respect to solution quality or required time, such as in Ross
et al. (2008), Van den Berg et al. (2006) and LaValle (2006).
While perception algorithms typically use statistical crite-
ria, for example, as in Christensen and Förstner (1997) and
Roy et al. (1999).

Nevertheless, the indicator selection is not crucial for the
performance of the analysis, since inappropriate indicators
are identified because they have no or only weak interde-
pendencies with the other indicators. This means that these
indicators provide no information about the parts of the
system represented by the other indicators, but, of course,
they might be still relevant for the analysis of the relevant
components.

When the set of indicators is defined, the system out-
put data, which is required to compute the indicator val-
ues, needs to be gathered. This is simply done through
various experimental runs under appropriate environmen-
tal conditions. During these runs, all system data of inter-
est is recorded by sampling with a fixed rate. The latter is
assumed to be the same for all data of interest and should
be chosen with respect to the dynamics of the system and
the environment. Thereafter the gathered data is processed
offline and the indicator values, which provide the basis for
the model learning, are derived.

Before the model can be learned, the indicator data needs
to be discretized. The number of intervals used for the dis-
cretization of the indicator values should not be too low,
in order to maintain the contained information. However, if
there are too many intervals, the probability distributions
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are too flat, and this makes the determination of mutual
interdependencies hard. This similarly applies to the rate
of sampling, as it requires discretization in the tempo-
ral domain. A possible solution for selecting the size of
the intervals is to use an entropy-based approach, such as
in Clarke and Barton (2000).

3.2. Learning BN structures

As discussed previously, in order to find out whether and to
what extent performance indicators of system components
interact with each other, a BN is learned from system out-
puts and suitable performance indicator values. The topol-
ogy of the network is unknown beforehand, but the system
is fully observable by the data. In order to find the network
structure that best models the data, a search through the
space of possible structures is performed using a likelihood
heuristic.

BNs are well-established tools for representing uncertain
relations between several random variables (Russell and
Norvig, 2002). They demonstrate several advantages over
other knowledge representation and probabilistic analysis
tools by providing a simple way to visualize the structure of
a probabilistic model. This structure can be used to design
and motivate new models. Also insights into the properties
of the model, including conditional independence proper-
ties, can be obtained by inspection of the graph. Uncer-
tainty is handled in a mathematically rigorous yet effi-
cient and simple way, by using Bayesian statistics. Com-
plex computations, required to perform inference and learn-
ing in sophisticated models, can be expressed in terms of
graphical manipulations, in which underlying mathematical
expressions are carried along implicitly.

A BN is an annotated Directed Acyclic Graph (DAG),
which encodes a joint probability distribution over the set
X = {X1, . . . , Xn} of random variables. Formally, it is a
tuple B = 〈G, �〉, where G is a DAG whose vertices corre-
spond to the random variables. A DAG implies conditional
independence of each variable Xi and its non-descendants,
given its set of parents Pa( Xi). � represents the set of
parameters that define the transition between nodes. It con-
tains a value θi,j,k = p( Xi = ki|Pa( Xi) = ji) for each possi-
ble value ki of Xi and each possible set of values ji of Pa( Xi).
The conditional probability distribution of each node is
represented in a Conditional Probability Table (CPT).

In case there is no a priori transition information avail-
able, the space of possible DAGs is super-exponential in n,
the number of variables described, and is given, according
to Robinson (1977), by

g( n) =
n∑

k=1

( −1)k+1

(
n

k

)
2k(n−k)g( n − k) . (1)

So the complexity of an exhaustive search is given by
O( cg( n) ), where c is a term expressing the operations
required to evaluate a single structure. Figure 2 shows the
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Fig. 2. Course of complexity with an increasing number n of
indicators: for an exhaustive (e) and for the K2 (k) search. For
simplicity c = 1.

rapid growth of g( n) with increasing n, which illustrates
that an exhaustive search is problematic for less than ten
indicators. Therefore, to reduce the number of graph struc-
tures examined to a tractable number while still allowing
for good solutions, various tools are used, for example,
sampling-based methods, such as the Markov Chain Monte
Carlo (MCMC) search (Murphy, 1999), are widely used.
MCMC takes randomly sampled structures from the space
of possible DAGs and evaluates them. The number of sam-
ples is chosen to be large enough that the search converges.
The acceptance ratio is used as a convergence indicator
for the search. This is the fraction of proposed samples
with likelihood accepted by the approximation algorithm,
divided by the number of samples that are rejected. Even
though there is no guarantee that MCMC will find the opti-
mal solution, its major benefits are controllable complexity
and that it does not get stuck in local optima.

The Bayesian Information Criterion (BIC) (Schwarz,
1978), which is a function of the log likelihood of the
structure according to the training data, penalized by the
complexity of the structure, is used as a scoring function to
evaluate the structures.

If a sequential ordering of the indicators is available,
an alternative search algorithm is applicable: the well-
established local greedy search algorithm K2 (Cooper and
Herskovits, 1992). The ordering implies that nodes are
dependent on preceding nodes and is used to initialize the
K2 search. The search starts from an empty set of nodes.
Parents are added incrementally – according to the ordering
– and the node whose addition increases the score of the
resulting structure the most, is kept. The maximum number
of parents can be constrained by an upper bound. The algo-
rithm stops adding parents to a node when it is no longer
possible to increase the BIC score of the structure. In the
worst case, without an upper bound, the complexity of K2
is O( mn4r) = O( cn4), where m is the number of data sam-
ples and r the maximum number of values of any indicator.
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K2 is beneficial in the sense of its comparably low com-
plexity, as shown in Figure 2. The major drawback is the
requirement for an initial node ordering, which is not avail-
able in general and also biases the solution. For a robotic
system, the ordering could be retrieved from information
about the sequential structure or causal relation of the indi-
cators, for example, it could be deduced from the system
design. Alternatively, the node ordering can be calculated
from the solution of the MCMC search – by placing par-
ents first and children subsequently – to further improve the
result of the latter.

The presented search algorithms have been chosen due
to their good tradeoff between complexity and solution
quality. Furthermore, in combination they require no ini-
tial information. There are many other search methods
in the literature and their possible benefits are still to be
investigated.

From the search, the structure with the highest BIC score
is used for further analysis. It provides a first qualitative
view of the mutual interactions among the indicators.

In the following, information-theoretic criteria are used
to evaluate the coherence between the indicators within the
learned network.

3.3. Information-theoretic criteria

The BN structure itself does not provide a quantitative mea-
sure of indicator interdependence. In order to derive the
latter, information-theoretic criteria (Cover and Thomas,
1991) are applied. Once the structure of the net is learned,
the CPTs can be computed using the experimental data. For
each pair of indicators Xi, Xj, the mutual information

I( Xi, Xj) =
∑

j

p( j)
∑

ki

p( ki|j) log
p( ki|j)
p( ki)

(2)

is derived. Intuitively, mutual information measures the
information that Xi and Xj share, that is the extent that
knowledge about one of them reduces the uncertainty about
the other. For instance, if two variables are independent then
knowledge about one of them does not give any informa-
tion about the other. Consequently their mutual information
is zero.

In order to make comparisons between different pairs of
variables a distance metric is required. In this respect the
joint entropy

H( Xi, Xj) = H( Xi|Xj) +H( Xj) (3)

is calculated, where H( X ) = −∑
k∈X p( x) logp( x) is the

entropy of the random variable X . The joint entropy mea-
sures the overall uncertainty of the two variables. The final
distance metric is then derived using

0 ≤ η( Xi, Xj) = I( Xi, Xj)

H( Xi, Xj)
≤ 1, (4)

H(X ) H(Y )

I(X, Y)

H(X, Y)

H(X |Y) H(Y |X)

Fig. 3. The relation between mutual information I( X , Y ) and joint
entropy H( X , Y ).

which corresponds to the ratio of mutual information and
joint entropy. The relation of I( X , Y ) and H( X , Y ) is illus-
trated in Figure 3. It can be proven (Cover and Thomas,
1991) that η satisfies all properties of a metric such as
the triangle inequality, non-negativity and symmetry. If two
variables are independent then η( Xi, Xj) = 0, whereas when
the variables are fully dependent and knowledge about the
one completely reduces the uncertainty about the other
η( Xi, Xj) = 1.

By computing η, the interdependence, within a set of
indicators, between any pair is determinable, no matter
whether there exists a direct connection in the BN or not.

3.4. Online applicability

The essential motivation of the presented method is to iden-
tify the system components that are crucial for the robust-
ness and efficiency of a robot. The information gained can
be utilized during system operation. This can be either
achieved via a system redesign by the developer or by
explicit incorporation into the online decision-making.

In this respect, the method enables also a reverse interpre-
tation, that is, observations about the robot’s internal state
can be used to make predictions and estimations about the
current environmental situation. This way, the robot is able
to assess the situation and the effect that changes in per-
formance indicators of specific system components have
on the rest of the system. Such information can be traced
back into the online system operation and used for behavior
selection, any kind of online learning techniques, and the
parameterization of adaptive controllers.

In Rohrmüller et al. (2010) the analysis is applied to a
set composed of scenario-specific costs, task-specific costs
and task-specific parameters. The identified metric inter-
dependencies are utilized to estimate the scenario-specific
cost of a task, which is required by planning components to
reason about which action to perform next. The interdepen-
dencies are further used by execution components to adapt
task-specific parameters in order to react to changes in a
dynamic environment.

Since the scope of this article is system interdepen-
dence analysis, the online applicability of the information
gained is not discussed any further. Instead, the method is
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Fig. 4. Two scenes from the field experiment in the Deutsches Museum.

demonstrated by using it for the ACE robot, for which a
performance indicator set is determined in the next section.

4. Case study for the ACE robot

We demonstrate system interdependence analysis using the
ACE mobile robot. In the following, the robot’s navigation
system is described and suitable indicators are determined.
Hence, a system structure typical for most autonomous
robots is used. System components are classified as percep-
tion, planning or execution components. Before deriving the
appropriate indicators for the ACE robot an overview of the
system is provided and the important system components
are analyzed.

4.1. Overview of the ACE project

The ACE project aims to combine autonomous navigation
with human–robot interaction. A robot has been developed
that is capable of navigating in an unknown urban environ-
ment, based only on information extracted through interac-
tion with passers-by and its local perception capabilities. A
detailed description of the system is given in Bauer et al.
(2009).

In 2008 two major field experiments were conducted with
the robot. In an outdoor experiment the robot managed to
find its way from the Technical University of Munich to the
central square of Munich, without any prior map knowledge
or GPS information. In the second experiment the robot
was part of a museum exhibition, as shown in Figure 4.
The demonstration was successfully performed without any
algorithmic modifications to the system, which indicates the
suitability of the navigation subsystem for both indoor and
outdoor settings.

During these experiments the robot was faced with var-
ious difficult situations, where it had to navigate through

crowded and narrow places. These environmental condi-
tions had an observable influence on the robotic motion,
such as more frequent turns or stops, for example. By apply-
ing the method of Section 3 their influence on the navigation
system of the robot can be identified.

The navigational methods used and suitable indicators
are presented next.

4.2. Indicators for perception module
performance

In order to navigate safely to a defined goal, the ACE robot
must be capable of localizing itself, generating a repre-
sentation of the environment and finding a drivable path
through it. This section describes the approaches used for
Simultaneous Localization and Mapping (SLAM).

For the SLAM problem, the ACE project uses a grid-
based approach with particle filters. Particle filters allow the
approximation of arbitrary probability distributions, mak-
ing them more robust to unpredicted events that cannot be
modeled, such as small collisions, which often occur, espe-
cially in outdoor environments. Furthermore, grid-based
SLAM does not rely on predefined feature extractors, which
are dependent on the assumption that the environment
exhibits a known structure. Therefore, in cluttered out-
door environments the grid-based approach provides a more
robust and accurate mapping. More details of the SLAM
implementation that was deployed on the robot can be found
in Lidoris et al. (2009).

The most likely occupancy grid map mb of the envi-
ronment is calculated by the SLAM module. In order to
integrate traversability information, such as the presence
of curbs, the grid mb is fused with the grid mn retrieved
from the traversability assessment (Bauer et al., 2009), to
obtain the combined 2.5D grid mc. The resulting 2.5D
grid mc is sent to the path-planning module, which uses

 at Technical University of Munich University Library on November 10, 2016ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


Lidoris et al. 607

it to assess obstacles from the SLAM module and non-
traversable regions detected by the inclined laser range
finder for path planning.

Perceptual indicators describe the uncertainty of the posi-
tion and environment model of the robot. For a mobile
robot, such a model is commonly represented by a map.
Map uncertainty can be measured by the entropy Hm of the
map. For an occupancy grid m this is given, as in Stachniss
et al. (2005), by

Hm = −r2
∑

l∈m

−p( l) logp( l) +( 1 − p( l) ) logp( 1 − p( l) ),

(5)
where l is a cell, p( l) the occupancy probability of l and r
the resolution of m.

Pose uncertainty

HP = H( p( Xt|Zt, Ut) ) ≈ 1

t

t∑

j=1

H( p( xt|zt, ut) ), (6)

is given as an average over the uncertainty of the different
poses along the path as proposed in Roy et al. (1999).

Finally, map information INFO( mt−1‖mt) has been pro-
posed in Held et al. (2006) as a measure of the local com-
plexity of a map. It is defined as the relative entropy of mt−1

with respect to mt, where mt is the local map at time t. The
local map mt is extracted from the occupancy grid m, by
taking an area 10 m×10 m around the robot. mt−1 is the cor-
responding spatial part of the map at the previous time step.
The relative entropy

Dl( pt−1( l) ‖pt( l) ) = pt−1( l) ×log
pt−1( l)

pt( l)
, (7)

for cell l is also known as Kullback–Leibler divergence. By
taking the sum of the symmetric form

infol( mt−1‖mt) = Dl( pt−1( l) ‖pt( l) ) +Dl( pt( l) ‖pt−1( l) )

2
,

(8)

the relative quantity of information around the robot

INFO( mt−1‖mt) = 1

N

∑

l∈mt

infol( mt−1‖mt) (9)

is derived similar to Held et al. (2006), where N is a
normalization factor.

Equations (5), (6) and (9) can be used to calculate three
indicators for the perception modules of ACE.

The next part describes the method and indicators for the
planning module.

4.3. Indicators for planning module
performance

The planning components of a robotic system are responsi-
ble for reasoning about the appropriate actions to be taken

next. For a mobile robot, a path planning module is needed,
which generates safe paths to a specified goal. The path
planner of the ACE robot is described in detail in Lidoris
et al. (2009).

In order to assess the quality of a path planning mod-
ule, its generated paths are examined with regard to sev-
eral quantitative indicators. Below a set of indicators is
proposed, which are applicable to most path planning
approaches.

Probably the most intuitive indicator is the path length
sp, since it is usually minimized. Indicators that character-
ize the complexity of the planned path are the number nw

of waypoints w in the path, relative to the Euclidean dis-
tance to the goal, the variance var( ∠( w1, φr) ) of the angular
deviation

∠( w1, φr) =
∣∣∣arctan( w1

y , w1
x) −φr

∣∣∣ ∈ [0, π ] (10)

between the next waypoint w1 and the robot’s orientation φr,
and the cumulative sum of the angular deviation

cad =
nw∑

i=1

∠( wi, wi−1) (11)

between consecutive w in the path, where arctan( w0) = φr.
Finally, the number of waypoints nv that satisfy a maximum
clearance constraint are considered. This can be calculated
by using, for example, distance transformation algorithms
(Cuisenaire, 1999).

These metrics can be applied to any global planner that
generates paths consisting of a sequence of waypoints. The
planning approach used by ACE performs an A* search
on a hybrid graph composed of nodes extracted from a
bounding box structure and a Voronoi graph. Since Voronoi
graphs belong to the family of distance transformation algo-
rithms, the corresponding waypoints satisfy the maximum
clearance constraint.

Next the execution module is considered, which is
responsible for a safe drive along the computed path.

4.4. Indicators for execution module
performance

Once the next action of the robot has been chosen by the
planning components, it needs to be transformed to motion
commands that must be carried out by the robot actuators
in a coordinated manner. This is the responsibility of the
task execution components. For example, the planner of a
mobile robot will choose an intermediate target in the form
of a waypoint. The execution components of the robot are
responsible for generating controls for the wheel motors
such that the target is safely reached.

The execution components of the ACE robot obtain
global waypoints from the planning module, described
in the previous section. These are given as input to the
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Table 1. Overview of proposed performance indicators.

Category Indicators

Perception
Hm = map uncertainty (5)
HP = pose uncertainty (6)
INFO( mt−1‖mt) = rel. quantity of

information (9)

Planning

sp = path length
nw = #of waypoints
var( ∠( w1, φr) ) = variance of angular

deviation
cad = cumulative sum of angular

deviation (11)
nv = #of maximum clearance waypoints

Execution
vr = robot’s velocity
var( φr) = variance of robot’s orientation

obstacle avoidance module, which generates motor com-
mands for the mobile platform. This module takes into
account dynamic obstacles in the vicinity of the robot
and ensures safe local navigation. A method similar to
Philippsen and Siegwart (2003) is used to generate smooth
and safe robot trajectories.

The execution efficiency of a performed navigation task
can be evaluated by observing the execution time and
the smoothness of the path, or, more specifically, the
robot’s speed vr and the variance of the robot’s orientation
var( φr).

4.5. Performance indicators at a glance

All aforementioned indicators are summarized in Table 1.
The indicators are grouped into the three categories accord-
ing to the system component they characterize. Even though
the indicators have been chosen to represent the internal
system state of the navigational components of the ACE
robot, some of them have been described in the litera-
ture and they all are directly applicable to any mobile
robot that performs SLAM and plans the path that it
drives along.

The performance indicators discussed in this section are
now evaluated using experimental data gathered by the ACE
robot.

5. Experimental results

In order to validate the proposed method, system interde-
pendence analysis has been performed using the ACE robot,
based on data gathered during the outdoor experiment that
was described in Section 4.1. Next the behavior of the robot
in two sample situations is described, followed by the results
of system interdependence analysis.

5.1. Behavior of the ACE robot in two
sample situations

The overall route of the robot during the experiment is
illustrated in Figure 5.

Data chunks from two representative situations were used
for system interdependence analysis. Figure 6 shows two
typical scenes. The first situation shows navigation on a
sidewalk in a less populated area. The occupancy grid
map calculated by the robot is shown in Figure 5(a). The
second situation is a typical example of navigation in a
densely populated pedestrian zone. The calculated occu-
pancy grid map is given in Figure 5(b). Both occupancy
grids have been overlaid with satellite images taken from
Google Earth to illustrate the accuracy of the maps, which
have a resolution of 15 cm.

Figure 7 shows the output of the planning module for
two sample scenes encountered during the experiment (left)
and the corresponding outputs of the path planner (right). In
scene (a), the robot is located in a narrow sidewalk passage
and in scene (b) it is in a highly populated street, where the
direction of travel may be blocked by people.

The right-hand side of Figure 7 shows details of the
occupancy grid, which is transformed to C-Space and used
for path planning. The transformation is indicated by the
dark blue regions around obstacles (black). Replanning was
performed at 2 Hz.

In Figure 7(a2), the Voronoi graph (blue line), which
traverses the free space (white), and resulting path (three
parallel red lines) can be seen. The path shown illustrates
the advantage of the dual path planning approach. The first
two waypoints (red dots) correspond to nodes retrieved
from the Voronoi graph. All other waypoints correspond to
nodes from the visibility graph, which is not shown here for
clarity. While the path would proceed straight to the corner
of the obstacle in the bottom (below the second waypoint) if
only the bounding boxes were used, the extension with the
Voronoi graph keeps the robot in the center of the narrow
sidewalk leading to maximal clearance from obstacles.
However, the passage in the area of the third and fourth
waypoint is closer than the preferred obstacle distance
used for the Voronoi graph. To drive through this area, the
ACE robot needs to get as close to the obstacles as possi-
ble. This is enabled by using the nodes from the bounding
boxes. The solid red center line indicates the actual path
through free C-Space. The dashed red lines on the left
and right indicate the path through free space (i.e. without
C-Space transformation), sized appropriately for the robot’s
width.

Figure 7(b) shows the robot in a crowded street where
its direct route is blocked. In this situation the computed
path consists of nodes from the bounding boxes. People are
passed as close as possible, instead of taking a huge detour
around them as would be the case if utilizing the Voronoi
nodes.
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64 m 64 m

263 m

Fig. 5. Downtown area of Munich. The route (∼ 1.5 km) of the robot from the Technical University of Munich to Marienplatz is
indicated by the yellow line. (a)–(b): Parts of the map generated by the SLAM module during navigation that correspond to the
two representative situations, which were chosen for interdependence analysis. The occupancy grids have been overlaid with satel-
lite images taken from Google Earth to illustrate the accuracy of the maps. The squares mark the positions of the scenes shown in
Figure 7.

These sample situations indicate the impact of a dynamic
environment on the system’s behavior. Its quantitative influ-
ence will be evaluated in the rest of this section.

5.2. System interdependencies of the
ACE robot

Several considerable differences exist between the two
scenes shown in Figure 6. In the first scene, which is
referred to as Sidewalk, the robot is confined by the narrow
sidewalk but the dynamic characteristics of the environment

are low. In the second scene, referred to as Pedestrian zone,
the environment is extensive but primarily characterized by
high dynamics and local complexity. This can be noticed
from the indicator values, introduced in Section 4, which
have been sampled in both scenes at 2 Hz. Some of the val-
ues are shown in Figure 8. For example, in the Pedestrian
zone the map uncertainty Hm and robot orientation variance
var( φr) have mean values that are 43% and 45% higher,
respectively. The same applies to their variance which is 6.3
and 6.5 times higher in the Pedestrian zone. Intuitively this
can be explained by the lower dynamics in the Sidewalk. In
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Fig. 6. Two representative situations, which were chosen for interdependence analysis. (a) Navigation on a sidewalk in a less populated
district. (b) Navigation in a densely populated pedestrian zone

Fig. 7. Two different scenes encountered during the experiment (left) and the corresponding outputs of the path planner (right).
(a) shows the robot in a narrow sidewalk and (b) in a crowded place. The coordinate raster (black lines) has a cell size of 5 m×5 m
and is used for illustrative purposes.
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Fig. 8. Discretized indicator (vertical axis) values extracted from experimental data, for two different environments. The dashed line
indicates the transition between the environments. The horizontal axis shows the consecutive sample number.
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Fig. 9. Acceptance ratio versus the number of MCMC steps.
The MCMC search converges since the acceptance ratio does not
change after 2000 steps.

contrast, the speed of the robot vr is on average the same.
This is due to the fact that the robot’s speed was limited by
design for safety reasons.

Before the structure of the BN is learned, the data must
be discretized and transformed into a predefined number
of states. For the following results a discretization of three
steps was used for all indicators.

As described in Section 3.2, in order to learn the structure
of the BN that describes the interaction between indicators,

the space of possible DAGs needs to be searched and the
most likely structure identified using a scoring function.
However, the space of possible DAGs is super-exponential
with the number of variables described. In the presented
case study ten indicators have been identified, leading to
a search space with 4.2 × 1018 graphs, which cannot be
searched exhaustively.

Therefore, an MCMC search was performed on the pre-
processed data to calculate the node order for the BN.
In Figure 9 the acceptance ratio versus the number of
MCMC steps is illustrated. In order to converge to the most
likely graph 2000 steps are needed. The resulting order-
ing is [HP, nw, Hm, sp, var( φr) , nv, cad, var( ∠( w1, φr) ),
INFO, vr].

Using this ordering, the K2 algorithm generated the final
BN, which has an improved BIC score of about approxi-
mately 6% and is shown in Figure 10. The resulting BN
indicates a lot of interdependencies between the indica-
tors but cannot express the intensity of these relations. For
that reason information-theoretic criteria are applied, as
described in Section 3.3.

The learned structure was utilized to train a BN with all
the data. Sequential Bayesian parameter updating was per-
formed and the respective CPTs were calculated for the net-
work. An implementation based on the Bayes Net Toolbox
for MATLAB (Murphy et al., 2001) was used. The distance
metric given by Equation (4) is calculated for each possible
pair of indicators. The results are illustrated in Figure 11 by
the solid line.
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cad var(∠(w1,φr))

vr

var(φr)

Fig. 10. Directed Acyclic Graph (DAG) learned with MCMC and
K2, showing the relationships between the perceptual (rectangles),
planning (ellipses) and execution (hexagons) indicators.

A strong interdependence of Hm on HP, cad, var
( ∠( w1, φr) ) and var( φr) is observed. The relation between
Hm and HP is obvious, since without map knowledge it is
impossible for the robot to localize itself. Also the influ-
ence of Hm on the planning indicators is intuitive, since the
path quality is directly dependent on the map used. Map
knowledge influences the planned path and therefore the
motion of the robot, as reflected by the dependency between
Hm and var( φr). Furthermore, nw is strongly interconnected
to nv and sp, which can be ascribed to the fact that all of
them are indicators for the complexity of the calculated
path.

The indicators INFO and vr show no influence from and
to other indicators. This means that these indicators can-
not give any information about the internal system state or
the influence of the environment on the system. The com-
plexity of the system and the application domain cannot be
captured by simple and purely local indicators. More specif-
ically the velocity of the robot has been limited by design
for safety reasons in most situations. It would be dangerous
to allow sudden accelerations or fast speeds for the robot,
in the proximity of people. Therefore, it is logically consis-
tent that the influence from other indicators is found to be
insignificant. The proposed analysis identifies, in this case,
a design choice of the system.

In order to assess the environmental influence on the indi-
cators, two additional BNs were trained using the data from
the Sidewalk and Pedestrian Zone examples, respectively. A
comparison of η, which is also shown in Figure 11, reveals
the differences for the two scenes. A stronger influence of
Hm on var( ∠( w1, φr) ) and var( φr) in the Pedestrian Zone is
identified. The presence of moving people results in higher
map uncertainty, less directed, with a more variable planned
path and consequently more complex robot motion. On the
other hand, nv is more strongly related to nw in the Sidewalk
scene. In this specific situation the robot has to navigate
through narrow passages, where a maximum clearance path
is desired. Consequently, the nodes of the Voronoi graph are
more frequently used.
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Fig. 11. Learned dependency values η( Xi, Xj) (vertical axis) for
all indicators, where the ith graph shows the dependencies of indi-
cator i to all indicators j (horizontal axis). Since η( Xi, Xi) = 1,
these values were skipped for illustrative purposes.

More detailed information about the influence of specific
indicators can be extracted from the learned BNs by exam-
ining the marginal distributions of the indicators of interest
while setting other indicators to specific values. This way
the behavior of specific system components can be pre-
dicted for various environments and the robustness of the
system can be evaluated.

This is shown for the influence of Hm on HP and var( φr).
Figure 12 shows the marginal distributions, which are cal-
culated from the learned BN by applying Bayesian infer-
ence, for all assigned values of Hm. When map uncertainty
increases, HP also increases. The learned BN captures the
interconnection between localization and mapping, which
constitutes the SLAM problem. When perceptual uncer-
tainty increases, the motion of the robot becomes more
variable as indicated by the uniformly distributed predicted
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Fig. 12. The marginal distributions of the dependent indicators
HP and var( φr) as calculated from the learned BN, for assigned
values of Hm.

states of var( φr). However, it can be seen that even with
high uncertainty it is predicted that the variance of the
robot’s motion will not be unacceptably high for most situ-
ations. Therefore, the planning algorithms can be expected
to be robust even with uncertain environment models. Such
information is very useful for making design choices. For
example, if it was predicted by the learned BN that even
with low perceptual uncertainty the generated path of the
robot will be very variable, then the system designer would
have to reconsider the planning algorithms. In the case of
ACE, it has been determined that the performance of all
system components is sufficient in both environments.

In summary, the interdependence analysis of system state
indicators and the environment identified map uncertainty
Hm as an indicator with a very strong influence on the sys-
tem. Consequently, the intuitive assumption is verified that
knowledge of the environment – in this case map knowledge
– is a crucial factor for the robustness of an autonomous
robotic system. Also it is shown that simpler and local
complexity indicators such as vr and INFO cannot charac-
terize the behavior of the ACE robot. In general, by using
the proposed method for system analysis, several indicators
can be tested in respect to their representation ability. By
using the learned BN and inference techniques, predictions
can be made about the behavior of performance indicators
given the values of others as evidence. However, the results
of the analysis reflect only the system interdependencies
in the examined environments and for the executed tasks.
Even though these may provide an indication of the system’s
behavior in different environments or for different tasks, a

direct transfer is not coherent in general. Instead, new sys-
tem data needs to be gathered followed by a reapplication
of the analysis.

6. Conclusion and future work

A method for system interdependence analysis has been
introduced. It aims at learning and quantitatively eval-
uating the coherence between performance indicators of
different system components of autonomous robots, as well
as the influence of environmental parameters on the sys-
tem. The presented approach allows the identification of
the limitations of an autonomous robotic system. The com-
plexity of the environment determines the requirements for
the robotic hardware and algorithms necessary to perform a
given task. Conversely, the capabilities of a robotic system
define the environments where it can operate and the tasks
it can handle. In this respect the knowledge gained is use-
ful for system redesign, and also during system operation.
This way the robot can anticipate failures, by predicting the
effects that its actions would have and correctly adjusting
its behavior. The proposed analysis provides an alternative
to deriving the deterministic system model, which may be
quite hard for complex systems, or it can be used to verify
the latter.

To validate the proposed approach, component per-
formance indicators for the navigation system of the
autonomous mobile robot ACE were derived and system
interdependence analysis was performed based on experi-
mental data from an extended field experiment. For this spe-
cific system, it has been shown that some of the proposed
indicators have very strong representational capabilities, for
example, the map uncertainty. At the same time indicators
have been proved to be unsuitable for the mutual perfor-
mance evaluation of the system’s components, for example,
the robot’s speed. Furthermore, the influence of the envi-
ronment on the performance indicators has been identified.
Such knowledge is primarily useful for the improvement of
the examined system itself but it is also transferable to sim-
ilar systems, at least qualitatively. A quantitative transfer
would be only valid under identical circumstances, which is
hard to guarantee for practical systems.

Further steps should concentrate on the generality of
indicators, in the sense that some of them are suitable for
representing the performance of systems designed for other
purposes. This would allow the specification of application-
independent benchmark tests with respect to system robust-
ness, in order to facilitate system comparability. Concern-
ing the method itself, different algorithms for the BN
structure search may be evaluated, for example, to see
whether they provide a better tradeoff between complex-
ity and solution quality. This would improve the scalability
of the approach. Additionally, instead of a static network,
a dynamic Bayesian network may be learned, which would
also allow the examination of temporal interdependencies
of dynamic systems. The discretization also has scope for
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future research. For example, methods to determine an opti-
mal discretization; networks with continuous nodes may
also be considered.

Acknowledgments

This work is supported in part within the DFG excellence initia-
tive research cluster Cognition for Technical Systems – CoTeSys
(www.cotesys.org) and the EU STREP project IURO (www.iuro-
project.eu). The authors would like to thank Dr Kühnlenz and the
rest of the ACE team for their support during the field experiments.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

Anderson G and Gang Y (2007) A proposed measure of environ-
mental complexity for robotic applications. Proceedings of the
International Conference on Systems, Man and Cybernetics,
Montreal, pp. 2727–2732.

Bauer A, Klasing K, Lidoris G, Mühlbauer Q, Rohrmüller F, Sos-
nowski S, Xu T, Kühnlenz K, Wollherr D and Buss M (2009)
The Autonomous City Explorer: towards natural human–robot
interaction in urban environments. International Journal of
Social Robotics 1(2): 127–40.

Christensen HI and Förstner W (1997) Performance character-
istics of vision algorithms. Machine Vision and Applications
9(5-6): 215–18.

Clarke E and Barton B (2000) Entropy and MDL discretiza-
tion of continuous variables for Bayesian belief networks.
International Journal of Intelligent Systems 15(1): 61–92.

Cooper G and Herskovits E (1992) A Bayesian method for
the induction of probabilistic networks from data. Machine
Learning 9(4): 309–47.

Cover T and Thomas J (1991) Elements of information theory.
John Wiley & Sons.

Crandall J and Goodrich M (2003) Measuring the intelligence of
a robot and its interface. Proceedings of Performance Metrics
for Intelligent Systems (PerMIS), Gaithersburg.

Cuisenaire O (1999) Distance transformations: fast algorithms
and applications to medical image processing. PhD thesis, Uni-
versite Catholique de Louvain, Louvain-la-Neuve, Belgium.

DARPA (2007) Urban challenge – rules.
Held J, Lampe A and Chatila R (2006) Linking mobile robot

performances with the environment using system maps. Pro-
ceedings of the International Conference on Intelligent Robots
and Systems, Beijing.

Huang H, Messina E, Wade R, English R, Novak B and Albus
J (2004) Autonomy measures for robots. Proceedings of the
International Mechanical Engineering Congress & Exposition,
Anaheim.

Jacoff A, Messina E and Evans J (2002) Performance eval-
uation of autonomous mobile robots. Industrial Robot: An
International Journal 29(3): 259–67.

Lampe A and Chatila R (2006) Performance measure for the eval-
uation of mobile robot autonomy. Proceedings of the Interna-
tional Conference on Robotics and Automation, Orlando.

LaValle SM (2006) Planning Algorithms. Cambridge, UK:
Cambridge University Press. Available at http://planning.
cs.uiuc.edu/.

Lidoris G, Rohrmüller F, Wollherr D and Buss M (2009) The
Autonomous City Explorer (ACE) project – mobile robot nav-
igation in highly populated urban environments. Proceedings
of the International Conference on Robotics and Automation,
Kobe.

Munoz N, Valencia J and Londono N (2007) Evaluation of
navigation of an autonomous mobile robot. Proceedings
of the Workshop on Performance Metrics for Intelligence
Systems, Washington.

Murphy K (1999) Bayesian map learning in dynamic environ-
ments. Advances in Neural Information Processing Systems.

Murphy K, et al. (2001) The Bayes net toolbox for MATLAB.
Computing Science and Statistics 33(2): 1024–34.

Philippsen R and Siegwart R (2003) Smooth and efficient obstacle
avoidance for a tour guide robot. International Conference on
Robotics and Automation, Taipei.

Robinson R (1977) Counting unlabeled acyclic digraphs. Combi-
natorial Mathematics V 622/1977: 28–43.

RoboCup (2009) Robocupjunior soccer rules 2009.
Rohrmüller F, Kourakos O, Rambow M, Brščić D, Wollherr
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