
18

Combining different binary decision diagram
techniques for solving models with
multiple failure statesg
M Pock1,2,3*, O Malassé2,3, and M Walter1

1 Arts et Métiers Paristech, Metz, France
2 Technische Universität München, Lehrstuhl für Rechnertechnik und Rechnerorganisation, France
3 Centre de Recherche en Automatique de Nancy, France

The manuscript was received on 22 September 2009 and was accepted after revision for publication on 8 June 2010.

DOI: 10.1177/1748006XJRR284

Abstract: This article explains information flow diagrams (IFDs) in great detail. With these
models, scenarios leading to dangerous failures as well as spurious shutdowns can be gener-
ated, taking into account several failure modes for basic components. These scenarios can be
evaluated in a qualitative and quantified way. For an efficient solution different BDD-techniques
were combined, mainly zero suppressed BDDs and binary expression diagrams. It is shown how
these techniques were used for the model and how a large BDD is created by assembling several
smaller diagrams, so that even large and complex systems can be described and evaluated in a
compact and efficient way.

Keywords: safety modelling, binary decision diagrams, binary expression diagrams

1 INTRODUCTION

Assessing fail-safe systems is a difficult but impor-
tant task. Failures can have severe consequences such
as loss of life or grave injuries. Today, the assess-
ment is done by modelling the system and analysing
these models with simulation or analytical meth-
ods. There are several modelling methods used for
dependability analysis in general, some of them are
also used for fail-safe systems. These can be dis-
tinguished in two classes: combinatorial methods,
describing systems on a high level, and state-based
methods describing systems on a low level. Combi-
natorial methods such as fault trees can be used to
calculate the overall system failure probability for a
top event using basic system components and their
redundancy structure. They are easy to understand,
to use and to solve, but they cannot describe all
of the important properties of fail-safe systems in a
satisfying way. They cannot describe several failure

*Corresponding author: A3SI, ENSAM Metz, 4 Rue Augustine
Fresnel, Metz 57078, France.
email: Michael_Pock@gmx.de

modes or dependencies between subsystems or single
components.

State-based methods such as Petri nets or Markov
chains are much more powerful, but not very intu-
itive. Often it is not possible to create such a model in
a hierarchical way, and the model itself can get very
large even for small systems. Owing to these reasons,
modelling complex systems with such methods can be
quite unpractical and error-prone, besides the solu-
tion needs much more computing power. Therefore a
specialized method is presented for fail-safe systems
which combines intuitivity and important properties
of such systems.

A special problem for fail-safe systems is that they
have different failure modes. Conventional models
cannot take these into account properly, so a new
model has recently been presented: information flow
diagrams [1] (IFDs). These can describe fail-safe
systems and their different failure modes with one
hierarchical model which is both powerful and easy
to apply. In order to estimate the probability of failure
on demand (PFD) and the probability of spurious trips
(PFS) the widely used binary decision diagram (BDD)
techniques are employed. As the present model has

Proc. IMechE Vol. 225 Part O: J. Risk and Reliability

 at Technical University of Munich University Library on November 10, 2016pio.sagepub.comDownloaded from 

mailto:Pock@gmx.de
http://pio.sagepub.com/


Combining different BDD techniques for solving models with multiple failure states 19

certain properties, the conventional BDD methodol-
ogy has to be adapted. While BDDs in general just
support two modes (failed and working) for every
component, up to four have to be handled: failed dan-
gerously, failed non-dangerously, loss of signal, and
working. Furthermore, the construction process of
the BDD is optimized. Instead of transforming a large
Boolean model into a BDD, several smaller models are
combined. This will increase the efficiency of the BDD
construction enormously.

This article gives a detailed presentation of the used
BDD-techniques, including the variations of zero-
suppressed BDDs and binary expression diagrams
(BEDs). A description is given of how a combination of
different variants can be used to solve complex models
qualitatively and quantitatively.

This paper is organized as follows: section 2 briefly
presents IFDs. Section 3 explains different BDD-
techniques in general. In section 4, the application of
the BDD-techniques for IFDs is explained in detail.
Section 5 presents related work, followed by the
conclusions in section 6.

2 THE INFORMATION FLOW DIAGRAM

Information flow diagrams (IFD, [1]) were developed
to describe fail-safe systems with two failure modes.
With Boolean models such as fault trees, it would be
necessary to create two models for each one. Further-
more, these failure modes would not be stochastically
independent as a system can only be in one state at
one time. These dependencies have to be included in
the different models making modelling difficult and
error prone. The present paper focuses on two dif-
ferent events of the system, leading to two different
failure modes:

(a) dangerous incidents which could lead to acci-
dents (failure mode D);

(b) non-dangerous spurious trips (failure mode S).

For instance, an urgency shutdown for a chemical
reactor can be activated unnecessarily, leading to an
expensive unavailability of the whole chemical plant
(failure mode S). It is also possible that the reactor
is not shut down in a critical situation, which could
lead to an accident with severe material, personal,
or ecological damage (failure mode D). While both
scenarios are unwanted, their consequences are com-
pletely different, so it is necessary to analyse them
separately.

All scenarios leading to one of these two unde-
sirable events of the whole system for quantitative
and qualitative analysis are to be extracted. Especially
interesting are single points of failure and failure prop-
agation. These kinds of failures are often not obvious,
so they can be easily forgotten in a direct attempt

to create a fault tree. This problem will be solved
by a hierarchical approach. A directed block diagram
was used, representing the information flow through
the system for high level and special expressions for
low-level modelling.

2.1 Information flow diagram

For the IFD, we use different kinds of blocks which
represent different functional entities:

(a) WD blocks for watchdogs;
(b) SRC blocks as sources of information;
(c) DEC blocks for logical decisions;
(d) ST blocks for all other functions (storage of infor-

mation, transformation of information, self-tests,
etc.)

Blocks of the type WD are used especially for control
units with a watchdog. They have one input and one
output and can detect the absence of sensible infor-
mation in order to react accordingly afterwards by
forwarding default or special error values. SRC blocks
create the information which flows through the dia-
gram. They represent the sensors in the system and
have only one output. ST blocks (standard blocks) are
the most versatile blocks. They have one input and
one output, and they are used for all functional enti-
ties which cannot be represented by the other blocks,
e.g. the storage or the transformation of information.
The last type of blocks are DEC blocks. They represent
logical decision entities. They have several inputs and
one output, and describe the behaviour of multiple
interconnected sources of information. They do not
describe any physical entities.

One block in the diagram, normally a ST- or DEC-
block, can be marked as a final block. This block has
no output and is used to generate the failure scenar-
ios which will be described in the next sub section. An
example of an IFD for the example presented in ref-
erence [1] is shown in Fig. 1. There are blocks for the
different modules of the system, and some extra deci-
sion blocks. The information flows from the source
blocks to the final block in one general time step t . In
the source blocks, the sensors create the information
which will flow through the diagram. This information
proceeds to the successing blocks where it is pro-
cessed and proceeded further. The exchange between
the blocks is always faultless. In the blocks, faults can
occur or faulty states can be detected. This means,
that the state of signal can change within a block.
Three different erroneous states are distinguished for
the signals:

(a) a non-existent failure has been detected (safe
failure state S);

(b) an existent failure has not been detected (danger-
ous failure state D);

(c) a signal is lost (loss of signal failure state L).

Proc. IMechE Vol. 225 Part O: J. Risk and Reliability

 at Technical University of Munich University Library on November 10, 2016pio.sagepub.comDownloaded from 

http://pio.sagepub.com/


20 M Pock, O Malassé, and M Walter

Fig. 1 The IFD for an emergency stop system

To illustrate the presented model, the emergency stop
system of a chemical reactor (Fig. 1) will be used,
which is described in this section. This system should
stop the reaction if the temperature in the reactor
is becoming too high by stopping the inflow of the
chemicals.

The sensors S1 and S2 measure the current tem-
perature of the chemicals in the tank and transport
their results to the controller. The controller reads
this result via inputs In1 and In2 and will store these
values for synchronization in its memory (St1, St2).
To avoid a loss of information, the watchdogs Wd1
and Wd2 supervize the inputs. If an input is lost or
arrives too late, the watchdog will pass a default value
to the Voter. Afterwards, the Voter decides, if there
is a dangerous situation. If after the voting process
the control unit CU decides to shut down the system,
this information is proceeded to the output modules
Out1 and Out2 and passed to the motors M1 and M2
which get the order to close the valves V 1 and V 2. If at
least one of these valves is closed, the shutdown was
successful.

For this system, there are two possible kinds of
failures in general. Either the emergency system is
not available (dangerous failure), or it shuts down
the system in a safe state leading to a unneces-
sary unavailability of the whole reactor (spurious
shut-down).

A failure of the whole emergency system can be
caused by several different failures of its components.
These failures are classified as dangerous (D), non-
dangerous (S), or omission (L), which means that the
component does not have an output.

The sensors can either measure a value which is too
high (S), too low (D), or return no value at all (L). The
input modules can either lose the data of the sensors
(L) or change it to a higher (S) or lower (D) value. In
the memory the stored data can be distorted by a bit-
flip in either a dangerous (D) or non-dangerous (S)

way. It can happen that the watchdogs do not detect a
missing input (D), or that they report such a missing
input although there was one (S). The control unit can
decide to start a shutdown in a safe state (S) or to not
start a shutdown in a dangerous state (D). The output

modules can fail to give the orders to their motors to
close the valves (D), while the motors can fail to start
(D). Finally, the valves can be blocked in an open (D)

or closed (S) position.
It is possible to discriminate the single components

further, but in this section the explanation is limited
to the general outline of the system.

2.2 Low-level model

For each block in the high-level model a low-level
model is created. It defines three expressions for three
different failure modes: S for non-dangerous failures,
D for potential dangerous failures, and L for lost sig-
nals. For ST, SRC and WD blocks these expressions
consist of different types of subexpressions:

(a) general hardware or software failure state of a
component c: c = s with s ∈ {S, D, L, 0};

(b) bit-flip of a component c: bf (c);
(c) failure propagation of the predecessor block:

input(s) with s ∈ {S, D} for ST- and s ∈ {L} for
WD blocks

The failure modes S, D, and L are analogous to the fail-
ure modes of the high-level model, the mode 0 means
that no failure has occurred. For instance, the block
Store1 could be defined by the following expressions:

S(Store1) = (mem = S) ∨ (input(S) ∧ (mem = 0)) ∨
(input(D) ∧ (mem = 0) ∧ bf (m))

D(Store1) = (mem = D)∨ (input(D)∧ (mem = 0)) ∨
(input(S) ∧ (mem = 0) ∧ bf (m))

L(Store1) = (mem = L)

This means that the block Store1 is in state S if and
only if either the component mem is in state S, mem
is in state 0 and the predecessor block is in state
S or mem is in state 0, the predecessor block is in
state D and a bit-flip of the bit-flip component m
occurs. The expressions for D and L can be interpreted
analogously.

Decision blocks use other kind of expression than
ST, SRC, and WD blocks. A DEC block includes the
multiple predecessor blocks and their failure states

Proc. IMechE Vol. 225 Part O: J. Risk and Reliability

 at Technical University of Munich University Library on November 10, 2016pio.sagepub.comDownloaded from 

http://pio.sagepub.com/


Combining different BDD techniques for solving models with multiple failure states 21

to define its own failure states. For the final block
of the IFD shown in Fig. 1, the following rules are
chosen

S(Safe) : V 1 = S ∨ V 2 = S

D(Safe) : V 1 = D ∧ V 2 = D

L(Safe) : false

A spurious trip will occur if at least one of the two
valves will fail spuriously. A dangerous failure will only
occur if both valves will fail dangerously.

The present paper aims to generate all scenarios for
dangerous failures and spurious trips of the final block
which are equivalent to the according failures of the
global system. At first, two expressions S and D are
constructed. To extract these expressions, the expres-
sions D(Bf ) and S(Bf ) of the final block Bf are created
in order to connect them with the local expressions of
all the other blocks of the IFD. For ST and WD blocks
input(y) is substituted with the expression y of the
predecessor block. For DEC blocks with a predeces-
sor block B, B = y with y ∈ {S, D, L} is substituted
with the expression y(B). This is continued recur-
sively until the substitution process arrives at the SRC
blocks.

3 DECISION DIAGRAMS

It is quite obvious that using this method directly will
lead to an exponential growth of the global expres-
sions. This is a severe problem as it will limit the
usability of the proposed method. Therefore the size of
the created list has to be reduced. In order to reach this
aim the technique of BDD [2, 3], are used to control
the combinatorial explosion. The widely known BDDs
are often used in the domain of reliability analysis
[4–7] to avoid the combinatorial explosion. Multiple
variations of BDDs exist. In the current case, two dif-
ferent approaches will be combined: zero suppressed
BDDS (z-BDD) [8] and Boolean expression diagrams
(BED) [9]. In this section, a short overview of z-BDDs
and BEDs is given. Afterwards, an explanation is given
of why and how these techniques are used for our
special applications.

3.1 z-BDDs

z-BDDs are a modification of the widely used BDDs
and based on binary decision tree (BDT, [2]). A BDT is
a tree with:

(a) a finite set of Boolean variables Var with a given
order;

(b) a finite set of nodes VNT , each containing one
variable v ∈ Var as attribute;

(c) two different types of leaves V1 (One-Node) and V0
(Zero-Node);

(d) a root Vr ∈ VNT .

Every node has two children: a high child and a low
child.

A BDT can be converted into a BDD by applying two
reduction rules:

(a) equivalent nodes, i.e. nodes with identical chil-
dren and the same variable, are unified;

(b) a node v where the high and the low child are
identical (Don’t-Care-Nodes) are removed, their
parents are linked with the only child of v instead.

A BDD is an equivalent representation of the BDT, but
instead of a tree a directed acyclic graph (DAG) is used
to store the information which is much more memory
efficient than a tree.

For z-BDDs, other rules are applied:

(a) equivalent nodes, i.e. nodes with identical chil-
dren and the same variable, are unified;

(b) a node v with the node V0 as high child are
removed, their parents are linked with the low
child of v instead.

z-BDDs can lead to a significant size reduction
compared with a common BDD if there are a lot
of nodes with V0 as high child. Figure 2 shows a
BDT, a BDD, and a z-BDD of the Boolean expression
(a∧b∧c)∨(a∧c). All three diagrams are an equivalent
representation of the same expression.

3.2 BEDs

BEDs, originally used for verifying circuit implemen-
tations, are an expansion of BDDs. In general, BEDs

Fig. 2 A BDT (left), BDD (middle), and z-BDD (right) for the Boolean expression (a ∧ b ∧ c) ∨ (a ∧ c)

Proc. IMechE Vol. 225 Part O: J. Risk and Reliability

 at Technical University of Munich University Library on November 10, 2016pio.sagepub.comDownloaded from 

http://pio.sagepub.com/


22 M Pock, O Malassé, and M Walter

Fig. 3 Reduction rules for BEDs

are a BDD enriched with different kinds of operator
nodes for Boolean operations. For this paper just two
of them will be used: OR-Nodes and AND-Nodes. It
is possible to transform the BED into a BDD with
the same complexity as creating the BDD directly [9].
As BEDs are originally developed for standard BDDs
an alternation of the original transformation rules is
necessary, although leading to zero-suppressed BEDs
(ZBED). These rules are shown in Fig. 3.

4 APPLICATION FOR IFDS

For the problem of this article z-BDDs will be com-
bined with BEDs. Furthermore, advantage is taken of
several characteristics of the IFD in order to create a
decision diagram describing the whole model. First,

the method for serial IFDs with simplified assump-
tions is presented. Afterwards, extensions are intro-
duced for DEC blocks and general IFDs. Finally, the
quantitative evaluation is discussed.

4.1 Boolean interpretation of local expressions

Decision diagrams are used for representing Boolean
expressions. To apply them for describing IFDs, it is
necessary to transform the local expressions of the
blocks into Boolean expressions. Bit flip- and fault

test-resources can have two states, so it is no problem
to see them as simple Boolean variables. Hardware
resources, however, have four states. For these three
different Boolean variables (for example xS , xD, and
x0) can be defined for every resource x. Note that three
variables are enough, a variable xL is not necessary. As
x can only be in one state at one time, the value of
xL can be deduced from the values of the other three
variables. The expression xS1 ∧ xS2 = false holds for
S1 �= S2. The Input-expression will not be changed
at first. This will be replaced during the construction
process of the z-BDD.

After such a transformation the local expressions
are close to Boolean expressions, only the Input-
expressions remain. For example, {((x = S) ∧ bf (e)) ∨
(Input(S) ∧ (x = L))} is interpreted as (x0 ∧ xS ∧ xD ∧
e) ∨ (Input(S) ∧ x0 ∧ xS ∧ xD).

4.2 DDs for simple serial systems

In this subsection, two assumptions are made:

(a) the IFD does not contain any DEC blocks;
(b) each Boolean variable only occurs in the lists of

one block.

With these assumptions, it is very easy to use the
structuring of the IFD in order to create a z-BDD
very efficiently. It is possible to create a z-BDD for
the final block based on the local expressions. This
z-BDD can include two extra leaves (Input(S) and
Input(D)) in the case of ST-blocks, and one extra
leaf for WD blocks(Input(I )). These leaves can be
substituted using the following method:

CreateSerialZBDD(Block finalBlock, Mode x)
1 ZBDD global = CreateZBDD(finalBlock.getExpression(x));
2 Queue inputNodes = global.getInputNodes();
3 While (!inputNodes.isEmpty())
4 Node inputNode = inputNodes.getNext();
5 ZBDD local = CreateZBDD(getExpression(inputNode));
6 for all incoming edges e of inputNode:
7 e.setTarget(local.getRoot());
8 inputNodes.add(local.getInputNodes());
9 return global;

CreateBDD(Expression e) creates a local z-BDD for
the given expression e by decomposition. This method
will use already existing equivalent nodes in the global
z-BDD if possible. getInputNodes(ZBDD zbdd) returns
all Input-nodes of the ZBDD zbdd, and getExpression()
delivers the applicable expression.

An Input(x)-leaf is replaced by the root of the z-BDD
for the expression x of the predecessor block. If there
are multiple Input-leafs, the sub z-BDDs will also
share equivalent nodes. After substituting the Input-
nodes of one block, new Input-nodes can occur if
the predecessor block is not a SRC block. So the

Proc. IMechE Vol. 225 Part O: J. Risk and Reliability

 at Technical University of Munich University Library on November 10, 2016pio.sagepub.comDownloaded from 

http://pio.sagepub.com/


Combining different BDD techniques for solving models with multiple failure states 23

Fig. 4 A local z-BDD for the block mode S of Store1 (left) and the corresponding global z-BDD (right)

substitution has to be repeated recursively until it
arrives at the SRC block. An example is shown in
Fig. 4. As the z-BDD of the whole IFD contains 146
nodes, only the z-BDD of a small subsystem is shown
in order to demonstrate the algorithm. Note, how-
ever, that BDDs of such a size are no problem for a
computer.

The z-BDD for the mode S of the block Store1 from
Fig. 1 is used as an example. On the left side the
local z-BDD of this block is shown while the right side
depicts the global z-BDD after replacing recursively
all Input-nodes with the corresponding z-BDDs of the
predecessor blocks.

For each of the two global failure modes a z-BDD
is needed as these can only describe one kind of fail-
ure. But it is possible to create two different z-BDDs
which share equivalent nodes if possible, leading to
one z-BDD with two different roots.

The advantage of the method of modularly con-
structing the z-BDD is that globally it will only grow
linearly in size compared with the number of blocks.
After every block there are at most two non-trivial
leaves. Locally, however, it is still possible that a sub
z-BDD grows exponentially. But this should not cause
any problems as the local z-BDDs are normally quite
small and they can be created independently from the
z-BDDs of the other blocks. Overall this approach can
reduce the complexity enormously compared with
creating the z-BDD for the whole system without
splitting it into different blocks as the z-BDD will be

reduced regularly to at most two nodes on the same
level.

It was decided to choose z-BDDs rather than BDDs
as they are better suited for this application. For a
hardware resource x, three Boolean variables x0, xS ,
and xD are created. There are eight different possibili-
ties to set these variables as true or false. Four of them
(x0 ∧ xS ∧ xD, x0 ∧ xS ∧ x0, x0 ∧ xS ∧ xD, x0 ∧ xS ∧ xD)
are always invalid, however, as only at most one of
the variables can be true. So these four combina-
tions will always lead to N0 which can be reduced
in z-BDDs. Figure 5 shows the general structure of
a z-BDD and a BDD for three generic variables x0, xS ,
and xD. While a BDD needs up to seven nodes for
these three variables, a z-BDD needs at most three.
Besides, as the structure is known in advance, it is
possible to optimize the decomposition process. If
x0 has been set to true, setting xS or xD to true will
lead to the zero node followed by a reduction of the z-
BDD. Instead of creating a node which will be removed
immediately afterwards, xS and xD will be set to false
while x0 is set to true. In the end this will lead to
exactly the same z-BDD with less effort required to
create it.

4.3 DDs for DEC blocks

DEC blocks are specified by different expressions than
ST, WD, and SRC blocks. In order to transform these
expressions into z-BDDs ZBEDs are used. Similar to

Proc. IMechE Vol. 225 Part O: J. Risk and Reliability

 at Technical University of Munich University Library on November 10, 2016pio.sagepub.comDownloaded from 

http://pio.sagepub.com/


24 M Pock, O Malassé, and M Walter

Fig. 5 The structure of a z-BDD and a BDD for a generic hardware resource

non-DEC blocks, up to three ZBEDs are created, one
for every expression used in the block. The leaves of
the ZBED represent the predecessor blocks in a certain
state (S, D, I ) while operator nodes are used to link the
leaves according to the rule. The following algorithm
is used:

CreateZBED(Block decBlock, Mode x)
01 ZBED zbed = ExpressionToZBED(decBlock.getExpression(x));
02 Queue inputNodes = zbed.getInputNodes();
03 While (!inputNodes.isEmpty())
04 Node inputNode = inputNodes.getNext();
05 ZBDD local = CreateZBDD(getExpression(inputNode));
06 for all incoming edges e of inputNode:
07 e.setTarget(local.getRoot());
08 inputNodes.add(local.getInputNodes());
09 while minimisation is possible:
10 ApplyZBEDRules(zbed);
11 return zbed;

The linking process with the predecessors and the
successor block is similar to the method described
in section 4.2. The leaf representing the predecessor
block B in a certain state X is substituted with the
appropriate z-BDD for the expression X (B), while the
local ZBED for the expression for state X substitutes
the Input(x)-node of the successor. The expressions
of the DEC-block itself are transformed directly to a
ZBED, in which leaves represent the roots of the local
z-BDDs of the predecessor blocks, analogously to the
Input-nodes in serial diagrams. An example ZBED for
the expression X = S ∧ (Y = D ∨ Z = D) is shown in
Fig. 6.

The main difference between serial IFDs and IFDs
with DEC-blocks can be recognized in lines 9 and 10 of
the algorithm: before continuing the substitution, the
operator nodes are pushed down as far as possible in
order to transform the ZBED into a z-BDD. For reduc-
ing the ZBED to a z-BDD, there are two possibilities in
general:

(a) apply the reduction rules once after all local
z-BDDs and ZBEDs have been linked;

(b) apply the reduction rules iteratively always after
a new local z-BDD or ZBED has been added, and
stop this reduction at Input-nodes.

The second approach is used as the reduction rules
can already simplify the diagram significantly while
constructing it as soon as operator nodes are linked
to terminal nodes. Finally, all operator nodes will be
removed leading to a standard z-BDD.

Fig. 6 A local ZBED for the expression X = S ∧ (Y =
D ∨ Z = D)

Proc. IMechE Vol. 225 Part O: J. Risk and Reliability

 at Technical University of Munich University Library on November 10, 2016pio.sagepub.comDownloaded from 

http://pio.sagepub.com/


Combining different BDD techniques for solving models with multiple failure states 25

It is possible to apply Boolean operators directly
to z-BDDs, so theoretically it would not be neces-
sary to use the BED-technique. In this case, however,
it has a major advantage. In order to apply Boolean
operators directly, the whole sub z-BDD has to be
known including all substitutions. In this case, it
would not be possible to build the z-BDD block by
block, which is a severe disadvantage. In contrast, the
BED-technique allows efficient local substitutions to
be made.

4.4 DDs for general IFDs

In section 4.2 it was assumed that no component
will occur in more than one block. However, this
assumption is quite unrealistic for many systems, so
it is necessary to extend the presented algorithm in
order to allow for multiple occurrences of compo-
nents.

To be able to include such cases, the algorithm for
creating the z-BDD is extended. Overall, two attributes
are added to the z-BDD:

(a) an array localLists containing all local lists;
(b) a hash table compMap mapping components to

blocks in which they appear.

The construction of the z-BDD begins as in the sim-
ple case. The decomposition of the local lists starts
at the final block and ends with the source blocks.
The only difference is that before every decomposi-
tion of a variable the compMap is checked to find
other blocks which use it too. If there are other blocks
with the same variable, the decomposition is also
applied to copies of the local lists of these blocks,
stored in localLists. All descendants of the current
node will use these modified lists instead of the orig-
inal ones as soon as the blocks using these lists are
reached. In order to achieve this, every node stores
an array with pointers to the lists which have to be
used in the future. Children inherit these lists from
their parents and alter them only if their variable will
also occur in other blocks of the IFD. An example is
shown in Fig. 7 which represents the list LD for a small
serial system in which a component a occurs in two
blocks (C and A). The local expressions are defined as
follows

D(C) = (c = D) ∨ (input(D) ∧ (a = S) ∧ (c = S))

∨ (input(D) ∧ (a = 0))

D(B) = (b = D) ∨ (input(D) ∧ (b = 0))

D(A) = (a = D)

After setting the value of a to a specific value in block C ,
the list for block a is modified too. The following nodes
will use these modifications by linking to it using their
pointer arrays.

Fig. 7 A z-BDD for a serial system with multiple occur-
rences of one variable

4.5 Quantitative evaluation

A basic assumption for the quantitative evaluation of
z-BDDs in order to estimate the overall reliability is
that all variables used in the z-BDD are stochastically
independent. In the case of variables for hardware fail-
ure, however, this is not true. For each HW component
c there are three variables: c0, cS , and cD. Obviously, at
most one of them can be true, so dependencies have
to be taken into account.

The solution for this problem is to use conditional
dependencies. Let ct be the state of the variable at
the time t . The following probabilities are used for the
variables c0, cS , and cD.

(a) P(ct = 0) for c0;
(b) P(ct = S)|ct �= 0) = P(ct =S)

P(ct =S)+P(ct =D)+P(ct =L)
for cS ;

(c) P(ct = D|ct �= 0 ∧ ct �= S) = P(ct =D)
P(ct =D)+P(ct =L)

for cD.

To calculate the probabilities P(ct = s) with s ∈
{0, S, D, L}, a model for the component c and its differ-
ent failure modes has to be included. At the moment,
exponential distribution is assumed for component
failures. For each failure mode s a failure rate λs is
defined. With these given data, a Markov chain as
in Fig. 8 can be created. The probabilities P(ct =
s) = qs(t) can be calculated by solving the following

Proc. IMechE Vol. 225 Part O: J. Risk and Reliability

 at Technical University of Munich University Library on November 10, 2016pio.sagepub.comDownloaded from 

http://pio.sagepub.com/


26 M Pock, O Malassé, and M Walter

Fig. 8 A Markov chain modelling the component failures

differential equation system which can be attained
from the Markov chain

d
dt

q0(t) = −λSq0(t) − λDq0(t) − λI q0(t)

d
dt

qS(t) = q0(t)λS

d
dt

qD(t) = q0(t)λD

d
dt

qI (t) = q0(t)λI

Note that it is possible to alter the Markov chain, lead-
ing to a different differential equation system. It is also
possible to use other distributions such as Weibull. In
this case only the estimation of P(ct = s) has to be
altered, the rest of the algorithm does not need to be
changed.

5 RELATED WORK

Papadopoulos et al. [10] present a model also using
the information flow and several failure modes of
basic components such as omission faults or detected
faults. It is especially well suited to describe the
communication process in safety critical environ-
ments. It generates several fault trees in order to solve
the model, which also can be extended in order to
describe inter-component dependencies. However, it
supports only one global failure mode.

One of the present authors’ works [11] describes
SafeMe, a model based on reliability block diagrams
(RBDs) but capable of representing safety critical sys-
tems. It supports repair of failed components, but
it also takes into account delayed repairs or a total
destruction of the system owing to a catastrophic
failure. Furthermore, dependencies between single
components can be handled, too. It is solved by
automatically creating a single state-based model
equivalent to the high-level model.

Prescott et al. [12–14] present a technique for cre-
ating large BDDs by adding small local BDDs, which
is used for phased-mission systems. For each mission

phase a BDD is created in advance. These BDDs can be
changed while the mission is carried out, e.g. in case of
a component failure, leading to an on-the-fly estima-
tion of the overall mission success chance. For such an
application the BDD-creation process is easier than
for the current case, although, as whole branches of
the BDD can be cut off if they are impossible owing
to a component failure which had already happened.
In contrast, in the current application it is assumed
that all components are working at the beginning of
the analysis.

6 CONCLUSIONS AND OUTLOOK

In this paper, a model had been presented which
can represent several failure modes occurring in fail-
safe systems. Furthermore, a very efficient algorithm
is discussed for evaluating IFDs based on different
BDD techniques. By combining BEDs with z-BDDs, it
is possible to create z-BDDs even for general diagrams
in a very efficient way. Especially local properties are
used to improve the performance of the algorithms.

The presented approach is already implemented
and was used for modelling a remote redundancy sys-
tem [15]. In the future, further case studies will follow
in order to test the performance and the usability of
IFDs and their evaluation algorithms.

ACKNOWLEDGEMENTS

The authors would like to thank the French-Bavarian
centre for cooperation of universities (BFHZ-CCUFB)
and the Région Lorraine for their support of this work.

© Authors 2011

REFERENCES

1 Pock, M., Belhadaoui, H., Malassé, O., and
Walter, M. Efficient generation and representation of
failure lists out of an information flux model for model-
ing safety critical systems. In Proceedings of the European
Safety and Reliability Conference (ESREL 2008), 2008.
pp. 1829–1838 (Taylor & Francis Ltd).

2 Brace, K., Rudell, R., and Bryant, R. Efficient imple-
mentation of a BDD package. In 27th ACM/IEEE
Design Automation Conference, 1990, pp. 40–45 (IEEE,
New York).

3 Zang, X., Sung, N., and Triverdi, K. S. A BDD-based
algorithm for reliability analysis of phased-mission
systems. IEEE Trans. Reliability, 1999, 48(1), 50–60.

4 Ibanez-Llano, C., Melendez, E., and Nieto, F. Variable
ordering schemes to apply to the binary decisions dia-
gram methodology for event tree sequences assessment.
J. Risk Reliability, 2008, 222(1/2008), 7–16.

5 Rauzy, A. B. Some disturbing facts about depth-first
left-most variable ordering heuristics for binary decision
diagrams. J. Risk Reliability, 2008, 222(4/2008), 573–582.

Proc. IMechE Vol. 225 Part O: J. Risk and Reliability

 at Technical University of Munich University Library on November 10, 2016pio.sagepub.comDownloaded from 

http://pio.sagepub.com/


Combining different BDD techniques for solving models with multiple failure states 27

6 Contini, S. Quantification of fault trees containing
mutually exclusive events. J. Risk Reliability, 2008,
222(4/2008), 623–634.

7 Ibanez-Llano, C., Rauzy, A., Melandez, E., and Nieto,F.
Minimal cutsets-based reduction approach for the use
of binary decision diagrams on probabilistic safety
assessment fault tree models. J. Risk Reliability, 2009,
223(4/2009), 301–311.

8 Minato, S. Zero-supressed BDDs for set manipulation
in combinatorical problems. In 30th ACM/IEEE Design
Automation Conference, 1993, pp. 272–277 (ACM/IEEE).

9 Andersen, H. and Hulgaard, H. Boolean expression
diagrams. In 12th Annual IEEE Symposium on Logic in
computer science, 1997, pp. 88–111 (IEEE).

10 Papadopoulos, Y., Grante, C., Grunske, L., and
Kaiser, B. Continuous assessment of designs and re-use
in model-based safety analysis. In 16th IFAC World
Congress, 2005, Prague.

11 Walter, M. and Trinitis, C. Automatic generation of state
based dependability models: from availability to safety.
In Workshop Proceedings of the 20th International

Conference on Architecture of computing systems (ARCS
2007), 2007 pp. 47–54 (VDE-Verlag Berlin).

12 Presscott, D. and Andrews, J. A cause consequence
analysis approach to modelling multi-platform phased
missions. In Advances in Risk and Reliability Technology
Symposium, 2009, Loughborough, UK, pp. 419–437.

13 Prescott, D. R., Remenythe-Prescott, R., Reed, S.,
Andrews, J. D., and Downes, C. G. A reliability anal-
ysis method using binary decision diagrams in phased
mission planning. J. Risk Reliability, 2009, 223(2/2009),
133–143.

14 Prescott, D. R., Andrews, J. D., and Downes, C. G.
Multiplatform phased mission reliability modelling for
mission planning. J. Risk Reliability, 2009, 223(1/2009),
27–39.

15 Echtle, K., Kimmeskamp, T., Jaquet, S., Malassé, O.,
Pock, M., and Walter, M. Reliability analysis of a con-
trol systems built using remote redundancy. In Advances
in Risk and Reliability Technology Symposium, 2009,
pp. 335–346.

Proc. IMechE Vol. 225 Part O: J. Risk and Reliability

 at Technical University of Munich University Library on November 10, 2016pio.sagepub.comDownloaded from 

http://pio.sagepub.com/

	1 INTRODUCTION
	2 THE INFORMATION FLOW DIAGRAM
	3 DECISION DIAGRAMS
	4 APPLICATION FOR IFDs
	5 RELATED WORK
	6 CONCLUSIONS AND OUTLOOK

