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approaches for strain-hardening material
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Abstract: A new metal forming process is described in which a slender part may be brought to a
prescribed �nal shape by means of an appropriate, pre-calculated motion of its free ends only.
Corresponding calculation schemes are presented for elastic/plastic material with strain hardening,
and these are illustrated by practical examples.
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NOTATION

a length of the rod
A point on the central trajectory: left end

(support)
b generalized bending (component)
B point on the central trajectory: right end

(support)
C point on the central trajectory: arbitrary
d…Q, z† multiplier function for plastic

deformation in the elastic/plastic
constitutive law

d generalized equivalent strain
d, d column matrix, component of generalized

strain
D point on the central trajectory: rear of the

plastic zone
e, e unit vector, component
f …Q†, f …Q† generalized yield criterion, yield potential
F, F column matrix, component of the force on

the cross-section
g…q† complementary yield potential
K, K compliance matrix, element
m coef�cient of the yield curve function
M, M column matrix, component of the

generalized moment on the cross-section:
in particular the bending moment

n coef�cient of the yield curve function
N normal force acting on the cross-section

O origin of coordinates �xed in space
P point on the central trajectory: front of

the plastic zone
q, q column matrix, component of generalized

strain
Q, Q column matrix, component of the

generalized stress on the cross-section
r ˆ OC, r radius vector, component
R distance from the cone axis
s arc length
t time
T torque on the cross-section
V transversal force on the cross-section
W, W column matrix, coordinate of the virtual

angular velocity
Y generalized yield limit: in particular the

limit torque

a scalar
a, a inclination angles of the conical spiral
g generalized shear (component)
D denoting an increment in the subsequent

quantity, for instance DzD

e, e column matrix, coordinate of the
generalized longitudinal or shear strain: in
particular the tension/compression
normal to the cross-section

z material longitudinal coordinate of the
central trajectory

y mathematical torsion of the central
trajectory

, W column matrix, coordinate of the
generalized bending and twist: in
particular the torsion

L rate of work per unit initial length
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D-85748 Garching, Germany.

641

C08903 # IMechE 2004 Proc. Instn Mech. Engrs Vol. 218 Part C: J. Mechanical Engineering Science
 at Technical University of Munich University Library on November 4, 2016pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


r apex angle of the cone
j rotation angle around the inward normal

to the cone

Subscripts

i, j, k referring to material bases �xed to the
cross-section, or counting components of
the generalized stress/strain ˆ 1, 2, 3

j0, k 0, l0 counting components of the generalized
stress/strain ˆ 1, . . . , 6

L referring to the plastic limit state
t referring to the tangent of the central

trajectory

k, l referring to the basis �xed in space ˆ x , y, z

Superscripts

A, B, C, D, O, P
referring to the corresponding points

e referring to elastic deformation
p referring to plastic deformation
0 referring to the initial time or value
? referring to the terminal state of the

forming process

* referring to the terminal position of D, for
example, to the rear of a permanent
plastically undeformed zone

1 INTRODUCTION

The elementary plane bending process in which a slender
part is gripped at both its ends by hands or by
appropriate tools, the motion of which leads to the
generation of the �nal shape, has been further developed
in several investigations (cf. references {1} and {2})
towards a new industrial forming process. The motions
of the clamping tools are calculated in advance using an
associated PC and are then fed into the control of the
machine drives. In this way a large number of prescribed
�nal shapes could be produced with fairly good
accuracy, and the reproduction accuracy is even better.
The lumped-mass approach presented in reference {3}
opens up an alternative way to pre-calculate the motion
of the clamping tools in particular under conditions of
dynamics, although it is currently still con�ned to the
primary problem (inverse to the one to be treated below)
where the motion of the end cross-sections is prescribed
while the �nal shape is searched for.

The generalization of the new metal forming process
to spatial forming has been theoretically proposed in
reference {4} and practically tested in reference {5},
although this process is still under investigation. For
instance, the numerical integration scheme for the basic
differential equations proposed in reference {4} is based

on an incremental approach unfortunately demanding a
numerical time differentiation. This may become a
source of numerical error, and so a �nite scheme was
used instead, although still without detailed description
in reference {5}. Such a �nite constitutive law may be
physically less correct than the incremental approach.
However, besides reduced numerical effort, it also leads
to a reduced numerical �uctuation because there is, in
contrast to the incremental procedure, no error accumu-
lation at the consecutive time steps. For plane bending,
the �nite scheme proved as suf�cient anyway {2}. There-
fore, in the present paper the still missing description of
the �nite integration scheme for spatial forming will be
presented. Moreover, this scheme can also be applied
successively in order to simulate the time steps of an
incremental approach. Based on the �nite scheme, the
spatial forming process will be illustrated by two exam-
ples, i.e. a similarly bent and twisted bar of rectangular
cross-section and a conical spiral of circular cross-section.

The integration methods to be developed are non-
standard in the following sense. Although the initial shape
and the �nal shape of the rod, i.e. the initial and the �nal
distributions of displacement and of rotation of the cross-
sections, are prescribed, the corresponding distribution of
the external load is not of primary interest. On the
contrary, the side condition holds, i.e. that there must not
be any load distributed along the part. Actually, external
loads are allowed at the end supports only. However, for
these supports a complete motion history has to be found,
bringing the part into the desired shape without any load
acting at other places. From previous publications
{1, 2, 4, 5} it is clear that this motion history has to be
based on a plastic zone moving from one end of the part,
to be called A, towards the other end, B, thus leaving the
plastically �nished region of the part behind, while the
plastically still undeformed region is in front of the
moving zone. This zone shrinks to one single cross-section
representing a plastic hinge if the generalized yield limit,
Y , is constant (ideal plasticity).

Subsequently it will be shown how this model can be
transformed into an adequate numerical scheme. Unfor-
tunately, a precise characterization of the possible shapes
thus attainable is not known as yet. However, experience
shows that a large variety of corresponding parts can be
produced, provided the length is limited in order to avoid
re-plasti�cation of the already �nished zone. A check of
this situation has also to be included in the software, while
other forming defects such as buckling of preferably thin-
walled rods, or the deformation of the cross-sections in
general, will not be discussed in this paper.

2 BASIC EQUATIONS

The slender part under consideration, brie�y referred to
as the rod, will be represented by a central trajectory AB
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consisting of points C and the corresponding cross-
sections, of which C is generally the geometrical centre
of gravity. Although in the forming machine generally
both clamping tools are driven {5}, it is for theoretical
considerations suf�cient to examine a cantilever with the
rigid support at A and the free end at B (Fig. 1). Then
the correct clamping in the machine requires no more
than a superimposed rigid body transformation. Here, s
represents the arc length (initially s0), a is the total
length (initially a0) and z is a material coordinate in the
constant limits, i.e. zA 4 z 4 zB. The unit vectors e1, e2,
e3 form a Cartesian tripod �xed to each cross-section
such that e1 points in the normal direction towards
growing s or z, while e2 and e3 de�ne the orientation of
the cross-section (accompanying tripod). Moreover,
there are Cartesian base vectors ex, ey, ez �xed in the
space with origin O. Correspondingly, various sets of
subscripts are introduced, i.e.

i, j, k ˆ 1, 2, 3, j0, k 0, l0 ˆ 1, 2, . . . , 6

k, l, . . . ˆ x , y, z

…1†

As in reference {4}*, the partial derivatives with respect
to time t or to the material longitudinal coordinate of
the central trajectory, z, will be denoted by ° or by 0

respectively, and the summation convention will be
applied. Then, the radius vector, r ˆ OC, the unit
tangent vector, et, and the arc length, s…z†, obey the
conditions

r ˆ rlel, s0 ˆ jr0j > 0

et ˆ dr
ds

ˆ r0=s0 ˆ …r0
k=s0†ek

…2†

The virtual angular velocity of the material cross-
sections, W, possessing the coordinates W j with respect
to the local base ej, is related to an observer, moving
with the virtual velocity z0 ˆ 1 along the then virtually
rigid rod. Therefore, if eijk ˆ +1 denotes the permuta-
tion tensor

e0
j ˆ W6ej ˆ eijk W iek where ej ˆ ejkek

et ˆ ejej ˆ ejejkek

…3†

ej or ejk being the coordinates of et or ej with respect to
the bases ej or ek respectively. For a �nite integration
scheme the generalized stress and strain are introduced

according to

Q ˆ ‰Q1, Q2, . . . , Q6ŠT ˆ ‰M, FŠT ˆ ‰M 1, M 2, M 3, F1, F2, F3ŠT
ˆ ‰T , M 2, M 3, N , V 2, V 3ŠT

d ˆ ‰d1, d2, . . . , d6ŠT ˆ ‰ , eŠT ˆ ‰W1, W2, W3, e1, e2, e3ŠT

ˆ ‰W, b2, b3, e, g2, g3ŠT

where the superscript T denotes transposition, F1 ˆ N
and F2 ˆ V 2, F3 ˆ V 3 denote the resultant normal and
transversal forces, M 1 ˆ T and M 2, M 3 denote the
resultant torque and the bending moments, e1 ˆ e is the
local tension, e2 ˆ g2 and e3 ˆ g3 are the shear compo-
nents, W1 ˆ W denotes the torsion and W2 ˆ b2 and W3 ˆ b3

denote bending. If the rate of work, L ˆ QTd°, is related
to rod elements of given initial length ds0 rather than to
the actual length ds, the strain rates deduced in reference
{4}have to be multiplied by ds=ds0 ˆ s0=s00 to yield

W°
k ˆ W °

k

s00 , e°
k ˆ …s0ek†°

s0 0 …4†

Then they become easily integrable with respect to time t
to yield

Wk ˆ W k ¡ W 0
k

s0 0 , ek ˆ s0ek ¡ s0 0e0
k

s00 …5a†

or

We
k ˆ W k ¡ W ?

k

s00 , ee
k ˆ s0ek ¡ s?0e?

k

s0 0 …5b†

where the superscript 0 refers to the initial state at time
t0, the superscript ? refers to the end of the forming
process after �nal unloading and the superscript e refers
to the elastic deformation superimposed on the plastic
deformation, the latter to be identi�ed by means of the
superscript p. Actually, the forming process starts with
elastic–plastic loading from the initial state {equation
(5a)}, while �nal unloading is assumed to be purely

Fig. 1 Central trajectory of slender part AB with arbitrary
point C and material cross-section, here rectangular.
DP is the plastic zone moving from support A to B.
The size and obliqueness of the cross-section are
exaggerated for the sake of clarity

* Erratum to reference {4}: replace w0
k , v0

k , o0
k and w°

k with
…w0†k , …v0†k , …o0†k and …w°†k respectively at the �rst possible positions
in equations (3), (4), (5), (7), (9) and (12), at the last possible position
on p. 1855, line 12 from the bottom, and twice on p. 1855, line 7 from
the bottom.
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elastic {equation (5b)}. Equilibrium along the rod is
expressed similarly to the equation two lines after (11) in
reference {4} in terms of

M 0
k ‡ eijk…W iM j ‡ s0eiFj† ‡ s0 0mk ˆ 0 …6†

F 0
k ‡ eijkW iFj ‡ s00pk ˆ 0 …7†

where the force or moment distributions, pk or mk, now
per unit initial length rather than per unit actual length,
may generally be disregarded under metal forming
conditions. The column matrices of total strain will be
decomposed into an elastic part and a plastic part
regarding (1) according to

d ˆ de ‡ dp ˆ ‰de
j0 ŠT ‡ ‰dp

j0 ŠT …8†
The generalized Hooke’s law will be assumed to hold for
the elastic part

de ˆ KQ, where K ˆ ‰Kj0k 0 Š ˆ ‰Kk 0 Š ˆ KT …9†
where K is the usual compliance matrix of the elastic rod.
Regarding the plastic part, the generalized equivalent
strain increment, d ¡ d 0 ˆ g…dp†, is introduced, where d 0

is the initial distribution of equivalent strain. Moreover,
the �ow potential f ˆ f …Q† and the yield criterion f ˆ
f …Q† are considered. All of these functions are mathe-
matically homogeneous {6}, obeying the relations

f …aQ† ˆ jaj f …Q† > 0, f …aQ† ˆ jaj f …Q† > 0

g…adp† ˆ jaj g…dp† > 0

g
qf

qQj0

� ´
: f

qg

qqp
j0

Á !
:1 if Q 6ˆ 0; dp 6ˆ 0, a 6ˆ 0

…10†
in which a is a scalar and g is uniquely determined via the
last identity by f, or vice versa, provided the functions
are continuously differentiable with a non-vanishing
gradient

qf
qQj 0

6ˆ 0,
qg

qqp
j0

6ˆ 0

everywhere, and if the hypersurfaces in the Q-space or in
the q-space respectively, i.e. f …Q† ˆ constant, f …Q† ˆ
constant and g…q† ˆ constant, are strictly convex; the �rst
of these is the generalized yield surface. Then the
generalized yield condition, the generalized �nite �ow
rule and its inverse may be expressed in terms of

f …Q† ˆ Y …d, z†, dp
j0 ˆ …d ¡ d

0† qf
qQj 0

Qj0 ˆ f …Q† qg

qdp
j0

…11†
Y 50 being the generalized yield limit, the temperature
dependence of which is not explicitly considered; Y may,
for instance, be chosen as a limit bending or torsion

moment. Here, d 0 represents a possible prestrain so that
d 0 ˆ 0 at a virgin rod. Because of strain hardening, Y is
strictly monotonically growing as a function of d , so that
Y may uniquely be inverted in terms of the function
d…Y , z†, from which another function d…Q, z† will be
constructed according to

d…Q, z† ˆ d…Y , z† ¡ d 0 ˆ d… f …Q†, z† ¡ d 050

if Y …d 0, z† 4 f …Q† …plastic state†
d…Q, z† ˆ 0

if f …Q† < Y …d0
, z† …elastic state†

…12†
Then the �nite elastic/plastic constitutive law may be
written, observing (8), (10) and (12), as

d ˆ KQ ‡ d…Q, z† qf …Q†
qQ

…13†

As d has been de�ned observing equations (5) in
different ways for the loading and the unloading state,
the latter is also covered by equation (13). Conversely, if
a plastic state of strain dp 6ˆ 0 is known, the generalized
stress Q follows from equations (10) and (11) according
to

Ql0 ˆ f …Q†
f …Q† f …Q† qg…dp†

qdp
l0

ˆ f …qg=qdp
k 0 †

f …qg=qdp
k 0 †

Y …d , z† qg…dp†
qdp

l0

ˆ Y …d , z†
f …qg=qdp

k 0 †
qg…dp†

qdp
l0

…14†

3 INTEGRATION SCHEMES

F igure 2 represents a typical �owchart. The initial
geometry of the rod may, for instance, be given by
means of the following quantities, the values of which
refer, just as an example, to an initially straight rod
according to

W 0
i : 0, e0

1 : 1, e0
2 : e0

3 : 0, s00
: a0

ejk ˆ 1 if j ˆ 1, k ˆ x or j ˆ 2, k ˆ y

or j ˆ 3, k ˆ z,

ejk ˆ 0 otherwise

…15†

while the �nal geometry may be prescribed in terms of
the distributions of W? and s?0e?, i.e. of d? {cf.
equations (5)}. In order to obtain a suf�cient amount of
control data for the machine drives, the integration has
to be carried out with a suf�cient number of time steps,
although each of these steps is �nite, i.e. related to the
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initial state or to the terminal state rather than to
previous steps. For this purpose, the meaning of the
material coordinate zD representing the position of the
rear point of the plastic zone, D, will be generalized to
become a dimensionless virtual time for the entire
forming process. The integration may be carried out
consecutively with the assumed number of discrete
values of zD . To this end, the forming process will be
subdivided into three phases:

1. ¡ 0:2 4 zD < 0, elastic/plastic pre-loading with
D : A.

2. 0 4 zD 4 z*, D moving from A to its �nal position
D* at which zD ˆ z* 4 zB.

3. z* < zD 4 z* ‡ 0:2, �nal elastic unloading with,
D : D*.

The limit + 0:2 has been chosen as arbitrary.
First of all, the limit stress QD ˆ QDA ˆ ‰QDA

i0 ŠT has
to be calculated for the left-hand support A by
substituting the corresponding prescribed plastic strain
d?A into equation (14). Then the integration steps
during phase 1 refer to the generalized stress

QD ˆ …1 ‡ 5zD †QDA at D ˆ A …16a†

and QD acts as the boundary value at D for the stress
distribution to be determined below. As, in equation
(16a), the proportional preloading may be replaced with
any other preloading procedure, the deformation
process is not unique during phase 1.

In phase 2 the assumed discrete values of zD refer to
different positions of D, where

dp ˆ d?…zD † at z ˆ zD if zA < zD 4 z* …16b†

is prescribed while the corresponding stress QD , acting
again as the boundary value, follows from equation (14).

This phase 2, most important for the forming process, is
unique.

To each value of zD the corresponding frontal point
P…z ˆ zP† of the plastic zone is determined, during
phases 1 and 2, regarding equation (16b), by checking
the solution of the differential equations to be for-
mulated below with respect to the condition

dp ˆ 0 at z ˆ zP provided zD 4 zP < zB and

d?…zD † 6ˆ 0

P ˆ B, i:e: zP ˆ zB if dp 6ˆ 0 for zD < z 4 zB

P ˆ D, i:e: zP ˆ zD if d?…zD † ˆ 0

…16c†

The loading process is �nished after zD has reached its
�nal position, denoted by z*. This coincides in most
cases with zB. However, it may be that the last section of
the formed rod will remain undeformed. In this event, z*

is the value of z at the rear of that undeformed section,
because, for reasons of continuity, d?…z*† ˆ 0 has to be
prescribed so that P ˆ D* is found from the third
equation of (16c). In the subsequent unloading phase 3,
assumed to be elastic, the stress QD*, belonging to D*,
will be reduced stepwise down to zero according to

QD ˆ f1 ‡ 5…z* ¡ zD †gQD* if D : D* …16d†

As this linear approach is arbitrary, unloading is not
unique.

During the loading process in phases 1 and 2, the
basic �rst-order differential equations for the general-
ized stress distribution Q consist of the equilibrium
conditions (6) and (7) in which W i and s0ei have been
replaced with dj0 …Q† ˆ dj0 …F, M† via equations (5a) and
(13) according to

F 0
k ‡ eijk W 0

i ‡ s0 0Wi…F, M†© ª
Fj ‡ s0 0pk ˆ 0 …17†

Fig. 2 Flow chart of the code for the �nite strain approach without the Bernoulli hypothesis
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M 0
k ‡ eijk W 0

i ‡ s00Wi…F, M†© ª
M j ‡ s00e0

i ‡ s00ei…F, M†© ª
Fj

¡ ¢
‡ s00mk ˆ 0 …18†

where pk and mk may generally be disregarded. At each
time step these equations have to be integrated
(numerically) along the rod under the boundary or end
conditions (16a) to (16d), i.e. mutually with the
geometric relations following from (2), (3) and (5)
according to

e0
jl ˆ eijk W 0

i ‡ s00Wi…F, M†¡ ¢
ekl

r0
l ˆ ekl s0 0ek …F, M† ‡ s00e0

k

¡ ¢
if z5zD

…19†

Here, the initial conditions r ˆ 0 and ej ˆ eA0
j at A have

to be observed, eA0
j representing the initial values of the

accompanying tripod. The elastic version of the above
differential equations, de®ned in equations (12), has to
be applied partly during phase 1, but always in front of
D and during phase 3. In the latter event, i.e. during
elastic unloading, equation (5b) has to be used rather
than equation (5a) in order to set up (17) to (19), so that
W 0

i and s0 0e0
k have to be replaced with W ?

i and s?0e?
k

respectively. After each integration step, the static
admissibility of the found stress solution has to be
checked along the entire rod according to

f …Q† 4 Y …d , z† …20†
where d ˆ d

0
in front of P.

In any phase or at any time, the above differential
equations deliver directly the position r ˆ rB and the
corresponding orientation of the cross-section ei ˆ eB

i
for the end support B. These are the relevant control
quantities of the system shown in F ig. 1.

Basically, the �nite integration scheme described
before may be applied, again incrementally, using the
same equations, but now stepwise in a successive
manner. The initial distributions (15) and d 0 ˆ 0 valid
for the virgin rod have to be replaced, for any step, with
the corresponding outcome of the foregoing step.
Consequently, the stepwise numerical errors add up.
Present practical experience shows that this is worse
than the error due to the physically less correct �nite
approach.

4 BERNOULLI HYPOTHESIS

As a special approach suf�cient for most applications,
the Bernoulli hypothesis is often introduced, according
to which f and f do not depend on F while

Kj 0l0 ˆ 0 if j0, l0 ˆ 4, 5, 6 so that ep : ee : 0

…21†

Under assumption (15), this means that et : e1 and
s : s0 : s? so that the cross-sections of the now
inextensible rod are permanently orthogonal to the
central trajectory. However, then the function g is no
longer uniquely determined by f via equations (10); in
particular, g may also depend in an arbitrary way on ep,
or otherwise more or less arbitrary boundary conditions
FD become possible for the normal and the shear forces
acting on the cross-sections. Although these forces are
of minor importance for the deformation of slender
rods, they may effect failure of the forming process
owing to re-plasti�cation. In the examples below, no
shear forces have been assumed at D, while the normal
force was used tentatively to minimize the work
generated at the supports.

5 EXAMPLES

Straight, untwisted rods from aluminium alloy AlMgSi
0.5 F22 (German standard designation, length a0 ˆ
100 mm) with rectangular cross-sections (3 mm610 mm
in directions 2 and 3 respectively) have been formed
by combined bending and torsion according to the
prescribed, �nal state of deformation given in F ig. 3.
The elastic moduli, i.e. E ˆ 65 000 N= mm2 (Young’s
modulus) and G ˆ 24 500N= mm2 (shear modulus)
as well as the moments of inertia of the cross-sections
are known, so that the compliance coef�cients, Kj0k 0 ,
could be formed regarding equations (21) in the usual
manner. The torsion yield curve, Y ˆ Y …d†, was deter-
mined experimentally; it can be approximated by the
formula

Y =Y
0 ˆ 1 ‡ m exp…nd† …22†

with Y
0 ˆ 2:94 N m, m ˆ 1:626 and n ˆ 0:167 mm, while

Fig. 3 Prescribed �nal deformation for a bent and twisted rod
with bendings b2 ˆ b?

2 and b3 ˆ b?
3 and torsion

W ˆ W?. Invariant arc length s and total length a
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the coef�cients in the following Bernoulli-type approach

f ˆ f ˆ
����������������������������������������������������

T
t

� ´2

‡ M 2

·2

� ´2

‡ M 3

·3

� ´2
s

g ˆ
���������������������������������������������������
tWp… †2‡ ·2bp

2

¡ ¢2‡ ·3b
p
3

¡ ¢2
q

, t ˆ 1

…23†

havebeen determined from simplebendingor torsion tests,
yielding

·2 ˆ M 2L

T L
ˆ 0:9, ·3 ˆ M 3L

T L
ˆ 3:0 …24†

where T L, M 2L and M 3L are the plastic limit moments
under torsion or bending. Then the parts shown in Fig. 4
have been obtained with a deviation from the prescribed
position of less than 1 per cent of the free end B related to
the rod length.

Moreover, applying approach (23), two conical spirals
(cf. the Appendix) have also been formed from straight
rods with initial lengths a0 ˆ a ˆ 759:5 mm or
954.4mm, using the same material as above, although
with a circular cross-section (6 mm diameter) so that the
yield curve parameters, i.e. Y

0 ˆ 4:07 N m, m ˆ
2:042, n ˆ 0:168 mm and ·2 ˆ ·3 ˆ 0:98, are different
from those above. Actually, two or nearly three wind-
ings could be formed without re-plasti�cation if the
support A were chosen at the lowest radius (distance
from the cone axis) R ˆ RA while B belonged to the
largest radius R ˆ R B. Remember that, at the cylindrical
spiral, less than one winding was admissible {5}!
Unfortunately, the forming accuracy of the conical
spirals is worse, i.e. approximately 2 per cent rather than
1 per cent. The apex angle of the spirals r and the

inclination angle a amounted to r ˆ 100 and a ˆ
10:1510 respectively. Then the angle a projected on to
a concentric cylinder of constant radius R , measured at
the considered point of the spiral, would just amount to
100; this follows from tan…a† ˆ tan…a† cos…r† or, if
h ˆ constant, from tan…a† ˆ h=…2pR†. The minimal
distances from the axis were R A ˆ 50 mm for the
shorter rod but R A ˆ 40 mm for the longer rod. The
distribution of the bending and torsion strains is given
by equations (34) in the Appendix under the assumption
that b2 ˆ b?

2 :W ?
2 =s0: 0 {cf. equation (5a)}so that the

�rst equation of (3) now becomes the F renet equation of
curve theory (cf. reference {7}) at which W ˆ W? ˆ
W ?

1 =s0 equals the mathematical torsion y of the central
trajectory while b3 ˆ b?

3 :W ?
3 =s0 is the curvature k. In

the accompanying tripod, e2 and e3 point in the
directions of the principal normal or of the binormal
of the trajectory. Corresponding spirals have also been
obtained experimentally; they are shown in Fig. 5.

6 CONCLUSIONS

By means of the forming process described in this paper,
a great variety of slender plane or spatial parts can be
produced with a good absolute, and an even better
reproduction, accuracy. Limits are imposed by the
uncontrollable re-plasti�cation of already �nished sec-
tions, provided the parts exceed a certain admissible
length, or by buckling, not examined in this investiga-
tion. The forming process is �exible and inexpensive
because it does not require any dies to be pre-
manufactured. Also, the surface quality is excellent,
although the production speed is still slow and the shape
sensitivity to material defects is high.

Fig. 4 Formed parts, the lower one corresponding to F ig. 2
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APPENDIX

Conical spirals (Fig. 6)

Assuming 0 < r < 90¯, identifying z with the polar
angle and introducing the distance from the central axis
R ˆ R …z† as a strictly monotonically growing smooth
function obeying R 0 > 0, the coordinates of the central
trajectory AB with respect to the base ex , ey , ez , �xed in
space, are obtained by the corresponding projections of
the position vector r…z† ˆ rlel according to

rx ˆ R …z† cos…z†, ry ˆ R …z† sin…z†
rz ˆ R…z† tan¡ 1 …r†, zA 4 z 4 zB

…25†

Consequently,

r0
x ˆ R 0 cos…z† ¡ R sin…z†, r0

y ˆ R 0 sin…z† ‡ R cos…z†
r0
z ˆ R 0…z† tan¡ 1 …r†

…26†

s0 ˆ
����������������������������������������
…r0

x †2 ‡ …r0
y†2 ‡ …r0

z†2
q

ˆ
������������������������������������
‰R 0= sin…r†Š2 ‡ R 2

q
…27†

Postulating the validity of the Bernoulli hypothesis and
�xing the orientations of the cross-sections by means of
the local tripod e1, e2, e3 temporarily so that e2 is an
inward normal to the cone, the unit tangent to the
trajectory, e1 ˆ et , is obtained from equations (2). Being
orthogonal to et as well as to any other tangent of the
cone, such as r, the inward normal e2 must obey
e1e2 ˆ 0, e2e2 ˆ 1, re2 ˆ 0 and eze2 > 0. This is ful�lled
by the unit vectors

e1 ˆ 1
s0 r0

x ex ‡ r0
yey ‡ r0

zez

²
e2 ˆ ¡ cos…r† cos…z†ex ‡ sin…z†ey

¡ ¢ ‡ sin…r†ez

e3 ˆ e16e2 ˆ 1
s0 R 0 sin…z†

sin…r† ‡ R cos…z† sin…r†
µ ¶

ex

�

‡
µ

¡ R 0 cos…z†
sin…r† ‡ R sin…z† sin…r†

¶

6ey ‡ R cos…r†ez

¼
…28†

Moreover, using equations (27) and (28) it is seen that

e ˆ ¡ sin…z†ex ‡ cos…z†ey , cos…a† ˆ e

e1 ˆ R
s0

sin…a† ˆ
���������������������
1 ¡ R

s0

� ´2
s

¡ sin…a†a0 ˆ R 0

s0 ¡ Rs00

…s0†2

a0 ˆ R
R 0

s00

s0 ¡ 1

� ´
sin…r†

…29†

Moving along the trajectory by the virtual time
increment dz causes virtual rotation of the cross-section,
W dz, to occur. For the special cross-sectional orienta-
tion of F ig. 6, this consists of the polar rotation dz
around the z axis and of a subsequent rotation da
around the negative normal to the cone, ¡ e2, so that
expressing the unit vector ez in terms of ej and observing
equations (28)

W ˆ ez ¡ a0e2 ˆ …ezej†ej ¡ a0e2

ˆ R 0

s0 tan¡ 1 …r†e1 ‡ sin…r† ¡ a0‰ Še2 ‡ R
s0 cos…r†e3

…30†

Fig. 6 Conical spiral AB de�ned on a virtual cone with apex
semi-angle r, inclination a (measured tangentially to
the cone) and lead h: e1 ˆ et is the tangent to the
spiral, e2 is the inward normal to the cone and e is the
tangent to the horizontal circle on the cone, radius R
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Now consider other orientations of the cross-sections.
For these, axes 2 and 3 are rotated around the tangent e1

by a possibly variable angle j ˆ j…z†, generating the
virtual rotation j0 dz. Therefore, W has to be replaced
with W ‡ j0e1, while coordinates 2 and 3 of W must be
transformed into rotated directions 2 and 3 according to
W 2 cos…j† ‡ W 3 sin…j† and ¡ W 2 sin…j† ‡ W 3 cos…j†.
Consequently, with account taken of equation (30) the
new coordinates of W become

W 1 ˆ R 0

s0 tan¡ 1 …r† ‡ j0

W 2 ˆ sin…r† ¡ a0‰ Š cos…j† ‡ R
s0 cos…r† sin…j†

W 3 ˆ ¡ sin…r† ¡ a0‰ Š sin…j† ‡ R
s0 cos…r† cos…j†

…31†

In particular, for the F renet tripod {7}, the components
of W have the form

W 1

s0 ˆ y …mathematical torsion†, W 2 ˆ 0

W 3

s0 ˆ k …curvature†
…32†

{cf. equations (5)}. Here, with account taken of
equations (31), the generic condition, i.e. the second
equation of (32), leads to

tan…j† ˆ s0

R
a0 ¡ sin…r†

cos…r†
j0 ˆ tan…j†

1 ‡ tan2 …j†
s00

s0 ¡ R 0

R
‡ a00

a0 ¡ sin…r†
µ ¶

…33†

F inally, the special case a ˆ constant will be addressed.
Here, with account taken of equations (31) and (32), equa-
tions (26) and (27) deliver R 0=R ˆ tan…a† sin…r† so that

R ˆ RA exp …z ¡ zA† tan…a† sin…r†£ ¤
s0 ˆ R

cos…a† , s ˆ R ¡ RA

sin…a† sin…r†
tan…j† ˆ ¡ tan…r†

cos…a† ˆ constant

W 1 ˆ ys0 ˆ sin…a† cos…r† ˆ constant

W 2 : 0

W 3 ˆ ks0 ˆ ¡ sin…r† sin…j† ‡ cos…a† cos…r† cos…j†
ˆ constant

…34†
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