
Technische Universität München

&

Excellence Cluster Universe

CP and other

Symmetries of Symmetries

Dissertation

by

Andreas Trautner

Physik Department T30e





Technische Universität München

Physik Department T30e

CP and other

Symmetries of Symmetries

Andreas Trautner
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As far as I see, all a priori statements in physics have their origin in symmetry.

Hermann Weyl, 1952





Abstract

This work is devoted to the study of outer automorphisms of symmetries (“symmetries of symme-
tries”) in relativistic quantum field theories (QFTs). Prominent examples of physically relevant
outer automorphisms are the discrete transformations of charge conjugation (C), space–reflection
(P) , and time–reversal (T). After an introduction to the Standard Model (SM) flavor puzzle,
CP violation in the SM, and the group theory of outer automorphisms, it is discussed how CP
transformations can be viewed as special outer automorphisms of the global, local, and space–
time symmetries of a model. Special emphasis is put on the study of finite (discrete) groups.
Based on their outer automorphism properties, finite groups are classified into three categories.
It is shown that groups from one of these categories generally allow for a prediction of CP vio-
lating complex phases with fixed geometrical values, also referred to as explicit geometrical CP
violation. The remainder of this thesis pioneers the study of outer automorphisms which are
not related to C, P, or T. It is shown how outer automorphisms, in general, give rise to relations
between symmetry invariant operators. This allows to identify physically degenerate regions in
the parameter space of models. Furthermore, in QFTs with spontaneous symmetry breaking,
outer automorphisms imply relations between distinct vacuum expectation values (VEVs) and
give rise to emergent symmetries. An example model with a discrete symmetry and three copies
of the SM Higgs field is discussed in which the rich outer automorphism structure completely
fixes the Higgs VEVs in their field space direction, including relative phases. This underlies the
prediction of spontaneously CP violating complex phases with fixed geometrical values, also re-
ferred to as spontaneous geometrical CP violation. It is concluded with an outlook, highlighting
the possible physical relevance of outer automorphisms for a wide field of future studies.

Zusammenfassung

Diese Arbeit befasst sich mit äußeren Automorphismen von Symmetriegruppen (“Symmetrien
von Symmetrien”) in relativistischen Quantenfeldtheorien. Bekannte Beispiele für physikalisch
relevante äußere Automorphismen sind die diskreten Transformationen der Ladungskonjugation
(C), Raumspiegelung (P), sowie der Zeitumkehr (T). Nach einer Einführung in das Flavor Puzzle
des Standardmodells der Elementarteilchenphysik (SM), in die CP Verletzung im SM und in die
Gruppentheorie von äußeren Automorphismen, wird dargelegt wie CP Transformationen als
spezielle äußere Automorphismen von globalen, lokalen und raum–zeit Symmetrien aufgefasst
werden können. Im Fokus stehen insbesondere endliche (diskrete) Gruppen, welche aufgrund
der Eigenschaften ihrer äußeren Automorphismen in drei Kategorien klassifiziert werden. Es
wird gezeigt, dass Gruppen aus einer dieser Klassen im Allgemeinen vorhersagekräftig sind im
Bezug auf die Werte von CP verletzenden komplexen Phasen. Die so erzeugte CP Verletzung
wird auch als explizite geometrische CP Verletung bezeichnet. Weiterhin werden erstmals äußere
Automorphismen untersucht die nichts mit C, P oder T zu tun haben. Es wird gezeigt, dass
äußere Automorphismen im Allgemeinen Relationen zwischen symmetrieinvarianten Operatoren
herstellen. Diese erlauben physikalisch äquivalente Regionen im Parameterraum von Theorien
zu identifizieren. In Theorien mit spontaner Symmetriebrechung stellen äußere Automorphismen
Relationen zwischen unterschiedlichen Vakuumerwartungswerten her und führen zu emergenten
Symmetrien. Als Beispiel wird ein Drei–Higgs–Modell diskutiert in welchem die relativen Werte
und komplexen Phasen der Higgs Vakuumerwartungswerte durch die reichhaltige Struktur der
äußeren Automorphismen gänzlich festlegt werden. Der zugrundeliegende Mechanismus erklärt
somit das Auftreten von spontaner CP Verletzung durch fixe geometrische komplexe Phasen.
Ein abschliessender Ausblick betont die mögliche Relevanz von äußeren Automorphismen für
viele weitere Anwendungsbereiche.
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1. Introduction

Understanding the asymmetry between matter and anti–matter in the observable universe
is one of the great unsolved questions in physics. If not due to arcane initial conditions,
the observed asymmetry should have a natural explanation which manifests itself also on
the level of fundamental interactions of particles and anti–particles. Indeed, it is well–
known that microscopic violation of the discrete symmetries of charge conjugation and
parity (CP) is a necessary condition for the creation of a macroscopic baryon asymmetry
in standard scenarios of the early universe [7].1

Astonishingly, the Standard Model (SM) of particle physics features a source of explicit
CP violation (CPV) [10, 11], which, however, does not suffice to explain the observed
baryon asymmetry [12] (cf. [13,14] for reviews). In fact, CPV in the SM only arises with
a minimum of three generations of matter fields (cf. e.g. [15]), while the QCD θ–term, as
alternative source of CPV in the SM, is absent by observation [16,17]. The origin of CPV
in the SM, therefore, is intimately related to the flavor puzzle and the strong CP problem.
Many ideas have been put forward in the endeavor to understand these puzzles but there
is presently no commonly accepted theory of flavor (cf. e.g. [18–22] for reviews). Arguably,
the theory of flavor should also be the theory of CP violation, as it must simultaneously
explain the origin of both phenomena in consistency with observations. Understanding
the origin of CPV, therefore, could give invaluable directions also for a solution to the
flavor puzzle and the strong CP problem.

In this thesis, CPV is studied from the bottom up, starting with a review of the SM
flavor puzzle and the strong CP problem. Facilitated by a pedagogical introduction to
outer automorphism transformations (“symmetries of symmetries”), the discrete trans-
formations of C, P, and T are identified as outer automorphism transformations of space–
time [23], gauge [24], and additional global symmetries. This allows for a novel and very
general definition of CP as a complex conjugation outer automorphism which maps all
present symmetry representations to their respective complex conjugate representations.
Subsequently, CP transformations are studied in models with discrete symmetries [25]
and it is found that CP outer automorphisms are not allowed in certain models based on
certain discrete groups [3]. Necessary and sufficient conditions are found for the appear-
ance of explicit (“geometrical”) CP violation by calculable complex phases [26,27]. These
complex phases are understood to originate from the complex Clebsch–Gordan (CG) co-
efficients of certain groups [3]. Therefore, there are settings in which explicit CPV is
understood to originate from the requirement of other symmetries. Also, certain settings
of spontaneous CPV [28] are studied in which the CP violating phases likewise originate
from complex CGs of certain groups [4] and, therefore, are calculable [29]. This is called
spontaneous geometrical CP violation [29].

1There are alternative scenarios for the creation of a baryon asymmetry which circumvent Sakharov’s
conditions [8, 9].
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1. Introduction

In general, CP transformations are only a special subset of all possible outer automor-
phisms, meaning that there can be others. The generality of the concept indeed suggests
that outer automorphism transformations also play a role in many other situations. In
this work, it is shown that outer automorphisms correspond to mappings in the parameter
space of a model and that stationary points of potentials always appear in representations
of the group of all available outer automorphisms [4]. These findings are demonstrated
based on a three Higgs doublet (3HDM) example model with ∆(54) symmetry [29]. Here,
outer automorphisms give rise to emergent symmetries and thereby explain the origin of
spontaneous geometrical CP violation.

The results presented in this thesis have to some extend already been covered in the
publications [3, 4]. Nevertheless, some results are new. This includes clarifying remarks
on the relation of so–called generalized CP transformations in a horizontal space, to CP
transformations which are outer automorphisms of a symmetry acting in such a horizontal
space. Furthermore, it is firstly remarked that discrete groups of the so–called type II B
necessarily give rise to so–called half–odd [30] or even more exotic CP eigenstates. Also, it
is noted that outer automorphisms can give rise to emergent symmetries in settings with
spontaneous symmetry breaking (SSB). Finally, also the very general definition of CP
as a complex conjugation (outer) automorphism is firstly published, while it is remarked
that this is merely a generalization of the findings in [23,24].

This work is held in the style of a review article and, in this sense, should serve as a
coherent and self–contained introduction for students and researchers interested in the
origin of CPV, its possible relation to the flavor puzzle, and the topic of outer automor-
phisms in general. The current knowledge on these topics is summarized and interesting
future directions are highlighted. Basic knowledge of quantum field theory, group theory,
and the structure of the SM is assumed. For brevity, many technical details have to be
skipped but an effort is made to highlight the crucial points in a coherent manner. Ref-
erences to the original literature are provided throughout, to facilitate further reading.
Advanced readers might be familiar with the content covered in the introductory parts
as well as with the machinery of outer automorphisms. For them, it is recommended to
skip directly to the respective point of interest. Whoever is mainly interested in CPV
from finite groups, the classification of finite groups according to their CP properties,
or the conditions for explicit geometrical CPV should skip to chapter 5. The topic of
spontaneous geometrical CPV is touched in 5.4.3 and treated in detail in 6.4. Who just
wants to learn about symmetries of symmetries themselves should consider the introduc-
tion in 3 and then skip directly to chapter 6 where their fascinating power is revealed in
a calculation of stationary points with emergent symmetries.

14



2. The Standard Model and CP
violation in Nature

2.1. The flavor puzzle

2.1.1. Repetition of families; masses and mixings

The Standard Model of particle physics is the best theory of Nature known to man. Being
a relativistic quantum field theory in 3+1 space–time dimensions, it successfully describes
the forces of electromagnetism, weak, and strong interactions by gauge symmetries. The
corresponding spin–1 gauge vector bosons arise as mediators of local transformations of
spin–1/2 fermion matter fields. The gauge symmetry of the Standard Model is

GSM = SU(3)c × SU(2)L × U(1)Y , (2.1)

where the first factor corresponds to the strong interaction, called color, and the last
two factors are the gauge symmetry of the electroweak (EW) interaction. In addition
to matter fermions and gauge vector bosons, the SM contains a third species, the so–
called Higgs field, whose vacuum expectation value (VEV) spontaneously breaks SU(2)L×
U(1)Y → U(1)EM. The spontaneous breaking of the EW symmetry explains why we
– living in the non–symmetric ground state of EW interactions – do not observe the
complete SU(2)L ×U(1)Y symmetry, but only electromagnetism with a massless photon,
massive matter fermions and weak interaction with massive gauge bosons. In addition, the
mechanism of SSB predicts the presence of the neutral Brout–Englert–Higgs scalar boson
corresponding to excitations around the VEV. With the much–anticipated discovery of
the Brout–Englert–Higgs boson at the LHC in 2012 [31, 32], the whole particle content
of the SM is now experimentally accessible, behaving in complete consistency with the
SM predictions. The only known phenomenon persisting a fully consistent gauge theory
description is gravity.

As a curiosity – since not required by any means of theoretical consistency but only
due to observation – all matter fields of the SM appear in three identical copies called
families or generations. The gauge representations of one generation of fermions is given
by

generation = (3,2)1/6 + (3,1)−2/3 + (3,1)1/3 + (1,2)−1/2 + (1,1)1 + (1,1)0 , (2.2)

and the complete SM field content is displayed in table 2.1. The convention used here is
such that all fields are introduced as left–handed Weyl spinors emphasizing that the SM

15



2. The Standard Model and CP violation in Nature

Names Fields GSM U(1)EM

M
at

te
r

(s
p
in

1 /
2
) Quarks (×3 families)

Q (uL dL) (3,2)1/6
2/3 −1/3

U u†R (3,1)−2/3 −2/3

D d†R (3,1)1/3
1/3

Leptons (×3 families)

L (νL eL) (1,2)−1/2 0 −1

E e†R (1,1)1 1

N ν†R (1,1)0 0

H
ig

gs

(s
p
in

0)

Higgs H (H+ H0) (1,2 )1/2 1 0

G
au

ge

(s
p
in

1)

Gluon g (8,1)0 0

W bosons W± W 0 (1,3)0 ±1 0

B boson B0 (1,1)0 0

Table 2.1.: The Standard Model fields and their gauge group embedding. A hypothetical
right–handed neutrino has been added to generate neutrino masses.

is a chiral theory.2 The classical formulation of the SM cannot explain the experimentally
observed family mixing in the lepton sector and its most plausible interpretation in the
form of non–zero neutrino masses [33].

Arguably, the most straightforward way to reconcile neutrino oscillations with the SM is
to introduce three gauge singlet fermions, typically referred to as right–handed neutrinos.
These give rise to Dirac and possibly also (lepton number violating) Majorana mass terms
for the neutrinos, thereby also allowing for the observed lepton mixing. For semantics,
note that when referring to the SM in the following it is meant the classical SM extended
by three right–handed neutrinos, and these states have already been included in (2.2).

As a result of the field content and gauge symmetries, the SM exhibits two accidental
global U(1) symmetries called Baryon (B) and Lepton number (L). The latter is broken
in case neutrinos acquire Majorana masses. A possible charge assignment for these sym-
metries is qB = +1/3 for all quarks, or qL = +1 for all leptons, respectively, while all
other fields remain neutral. Taken individually, both B and L are anomalous, i.e. violated
by quantum effects, while the combination B − L is anomaly free.

The flavor puzzle of the SM has many facets, with the very starting point being the
repetition of fermion families. The gauge kinetic terms of the SM admit the large global

2In this work a mixed notation of two and four component spinors is used where ΨL/R := PL/RΨ =
1
2 (1∓ γ5) Ψ is a Weyl spinor which can be treated as a Dirac spinor for notational convenience.

16



2.1. The flavor puzzle

flavor symmetry

GF = U(3)Q × U(3)U × U(3)D × U(3)L × U(3)E × U(3)N . (2.3)

That is, taken aside Yukawa couplings, there is no differentiation between the multiple
copies of each fermion, meaning that the gauge couplings are “flavor blind”. However,
taking into account the Yukawa couplings between Higgs field and fermions

−LYuk. = Q
i
H̃ yiju u

j
R +Q

i
H yijd d

j
R + L

i
H yije e

j
R + L

i
H̃ yijν ν

j
R + h.c. , (2.4)

where H̃ := εH∗ and it is implicitly summed over the flavor indices (i, j = 1, 2, 3), the
flavor symmetry is explicitly broken as GF → U(1)B × U(1)L. In this sense, smallness of
the Yukawa couplings yf (f = u, d, e, ν) is technically natural and has to be expected.

In general, yf are complex 3× 3 matrices in flavor space, which, however, feature many
redundant parameters. The number of independent physical parameters shall be counted
in the following. By singular value decomposition, also called bi–unitary diagonalization,
any of the matrices yf can be written in the form

yf = V f
L λf V

f†
R , where λf = diag(λf,i, . . . ) , (2.5)

with real and positive singular values λf,i, and unitary matrices V f
L and V f

R . By using this
form for all the yf in (2.4), it is straightforward to perform appropriate basis transfor-
mations in flavor space to eliminate redundant degrees of freedom from the Lagrangian.
Thus, working with the redefined fields (flavor indices are suppressed in the following)

Q′ = V u†
L Q , L′ = V e†

L L , (2.6)

u′R = V u†
R uR , e′R = V e†

R eR , (2.7)

d′R = V d†
R dR , ν ′R = V ν†

R νR , (2.8)

the Lagrangian changes its form to

−LYuk. = Q
′
H̃ λu u

′
R+Q

′
H
(
V u†

L V d
L

)
λd d

′
R+L

′
H λe e

′
R+L

′
H̃
(
V e†

L V ν
L

)
λν ν

′
R+h.c. . (2.9)

Here, the λf are diagonal, real, and positive matrices and the primes will be dropped in
the following. Inspecting (2.9), it makes sense to define the unitary CKM [10, 11] and
PMNS [34] matrices

VCKM := V u†
L V d

L , and UPMNS := V e†
L V ν

L . (2.10)

For n families of quarks, the CKM matrix is a n × n unitary matrix which generally
has n2 real parameters. Besides the already performed basis transformations it is in
addition possible to rephase the fields Qi

L, uiR, and diR by which one can remove (2n− 1)
unphysical3 phases from VCKM. Analogously, a rephasing of Li, eiR, and νiR could remove

3These phases are not entirely unphysical but are shifted to the θ parameter of QCD, as will be discussed
in detail below.
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2. The Standard Model and CP violation in Nature

(2n − 1) unphysical phases from UPMNS. Unphysical phase rotations of νiR, however, are
possible if and only if there are no Majorana mass terms for νR. If there were such
terms then only n phases of UPMNS are unphysical and there are n− 1 additional physical
“Majorana” phases.

In the SM with n = 3 families, a standard parametrization for the CKM matrix is given
by [17,35]

VCKM = diag
(
eiδu , eiδc , eiδt

)
V(θq12, θ

q
23, θ

q
13, δCKM) diag

(
1, eiδs , eiδb

)
, (2.11)

where the phases that can be absorbed by rephasing of the quark fields are explicitly
displayed for later convenience and V(θ12, θ23, θ13, δ) is given by

V =

 c12 c13 s12 c13 s13 e−iδ

−s12 c23 − c12 s23 s13 eiδ c12 c23 − s12 s23 s13 eiδ s23 c13

s12 s23 − c12 c23 s13 eiδ −c12 s23 − s12 c23 s13 eiδ c23 c13

 , (2.12)

with the abbreviations sij = sin(θij) and cij = cos(θij). The angles can be chosen in the
range θij ∈ [0, π/2] such that sij, cij ≥ 0, and δ ∈ [0, 2π]. The fact that there remains
a physical complex phase implies that generally V ∗CKM 6= VCKM. This is an unambiguous
sign of CPV in flavor changing processes as will be elucidated below.

In complete analogy it is possible to parametrize the PMNS matrix by

UPMNS = V
(
θ`12, θ

`
23, θ

`
13, δPMNS

)
diag

(
1, eiα/2, eiβ/2

)
, (2.13)

where, in contrast to the CKM matrix above, only the “right–handed” phases α, β ∈ [0, 2π]
have been explicitly displayed. In the Dirac neutrino case α and β can be absorbed by a
rephasing of the right–handed neutrino fields, in contrast to the Majorana neutrino case
where α and β are physical parameters.

The gauge symmetry of the SM generally prohibits mass terms for fermions. However,
the Higgs EW doublet field acquires a VEV

〈0|H |0〉 =
1√
2

(
0
v

)
, (2.14)

with v ≈ 246 GeV, thereby breaking SU(2)L × U(1)Y → U(1)EM. This mechanism of SSB
simultaneously explains the appearance of W± and Z boson masses and their ratio, as
well as the appearance of fermion mass terms. Plugging the Higgs VEV into (2.9) gives
rise to Dirac fermion mass terms of the form

Mf

(
f †L fR + h.c.

)
, (2.15)

where Mf has real and positive eigenvalues

mf,i = λf,i
v√
2
. (2.16)

Note that the down type quark masses as well as the neutrino masses are not diagonal
in (2.9). After the EW symmetry is broken, however, it is possible to diagonalize the

18



2.1. The flavor puzzle

respective mass terms by rotating dL, as well as νL, independently of their SU(2)L doublet
partners. In the basis

d′L = V †CKM dL , (2.17)

ν ′L = U †PMNS νL , (2.18)

all mass terms are finally diagonal. Note, however, that these rotations change the gauge
interaction terms with the W bosons,

g√
2
W+
µ (uL γ

µ dL) + h.c. =
g√
2
W+
µ (uL γ

µ VCKM d′L) + h.c. , and (2.19)

g√
2
W+
µ (νL γ

µ eL) + h.c. =
g√
2
W+
µ

(
ν ′L γ

µ U †PMNS eL

)
+ h.c. . (2.20)

This implies the presence of flavor changing interactions in both, quark and lepton sectors,
which are, in this basis, mediated by the W bosons.

In summary the threefold repetition of fermion generations in the SM leads to a rich
phenomenological structure that can be interpreted in terms of 4 × 3 fermion masses,
2 × 3 flavor changing mixing angles and two or, in the case of Majorana neutrinos, four
CP violating phases. Up to date best fit values for the experimentally determined param-
eters can be found in the PDG review [17] or from the global fits [36–39]. In summary,
all quark and charged lepton masses have been determined and it is well established that
they exhibit a strong hierarchy spanning about six orders of magnitude from the top
quark to the electron. In contrast, the absolute neutrino mass scale is currently unknown.
Nevertheless, there are stringent upper limits from cosmology pointing to the sub–eV
regime [40–42], putting the neutrino mass scale down at least by another six orders of
magnitude compared to the charged leptons. In consistency with a low neutrino mass
scale, neutrino oscillation experiments have determined the neutrino mass squared differ-
ences ∆m2

21 = 7.50+0.19
−0.17 × 10−5 eV2 and ∆m2

31(32) = 2.457+0.047
−0.047(−2.449+0.048

−0.047)× 10−3 eV2

for normal (inverted) ordering of the neutrino masses [39], also implying that at least two
neutrinos are massive.

The quark mixing angles have been pinned down to an enormous precision and show a
hierarchical pattern descending by an order of magnitude each from θq12 ≈ 0.23, over θq23,
down to θq13 corresponding to a CKM matrix with an almost unit matrix structure. The
complex phase of the quark sector has been determined as δCKM = 69.4± 3.4◦ [36]. This
proves that CP is violated in Nature. Altogether, the experimental data suggests that the
CKM mechanism, most likely, is the dominant source of the observed CPV in the quark
sector [43].

The lepton mixing angles are known to the precision of about a degree by now, except
for θ`23 whose best fit value is either ≈ 42◦ or ≈ 50◦, discriminating between normal and
inverted neutrino mass ordering. In contrast to the quark sector, the PMNS matrix shows
an almost anarchical structure with all entries being approximately of the same size. If
neutrinos are Dirac particles, then the only currently unknown parameter (besides the
overall mass scale) of the right–handed neutrino extended SM is the phase of the PMNS
matrix with a current best fit value of δPMNS = 306+39

−70(254+63
−62) [39]. It is very likely

that this parameter will be known to an acceptable precision within the next decade. If
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2. The Standard Model and CP violation in Nature

neutrinos are Majorana particles, then there are two additional phases α and β, which,
albeit difficult, could in principle be measured as well, cf. [44–48] and references therein.

In summary, as an experimental fact there is a clear pattern amongst the flavor param-
eters. On the one hand, the SM allows to consistently describe this pattern. On the other
hand, however, the reason for family repetition, for mass hierarchies, for the hierarchical
quark and anarchical lepton mixing, as well as the origin of CP violation is not known at
present. Despite many possible approaches for explanations, cf. e.g. [18–22] for reviews,
there is up to date no solution to the flavor puzzle.

2.1.2. The strong CP problem

The SM flavor puzzle has yet another aspect, commonly referred to as the strong CP
problem. Note that SU(3)c gauge invariance allows for the presence of a so–called θ–term

Lθ = θ
g2

32π2
Ga
µν G̃

µν,a , (2.21)

where Ga
µν is the gluon field strength and G̃µν,a := 1

2
εµνρσGa

ρσ its dual. This term is odd
under parity or time–reversal transformations and, therefore, violates CP. Consider now
a chiral fermion ΨL = PLΨ transforming in the fundamental representation of SU(3)c. It
can be shown that a chiral U(1) rotation of such a fermion

ΨL → eiαΨL , (2.22)

induces an anomalous transformation of the path integral measure [49,50]

DΨDΨ → DΨDΨ exp

{
−i

∫
d4x

α g2

32π2
Ga
µν G̃

µν,a

}
. (2.23)

Thereby, the “bare” parameter θ is shifted to θ − α, implying that θ by itself is not a
reparametrization invariant parameter.

Note that the rephasing transformations of quarks performed in order to remove phases
from the CKM matrix, for example the phases δu,c,t in (2.11), are exactly of the chiral
type discussed above. Hence, they induce shifts of θ. It can be shown by splitting the
unitary matrices V u

L,R and V d
L,R into their determinant (which is a complex phase) and an

SU(3) matrix, that general (chiral) basis rotations of the type (2.6) leave the quantity

θ := θ + arg det yu yd , (2.24)

invariant. The parameter θ, hence, is a reparametrization invariant physical parameter.
As it is not constrained by any otherwise unbroken symmetry, naively one would expect
|θ| ∼ O(1). Experimental upper bounds on the electric dipole moment (EDM) of the
neutron, however, imply that |θ| . 10−10 [16, 17]. While CP violation is well established
in flavor changing processes of quarks (i.e. involving the CKM matrix) and most likely
also present for leptons, flavor conserving CP violating processes like the neutron EDM
are highly suppressed, if existing at all. The reason for this suppression is unknown and
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2.2. Standard definition of C, P, and T

commonly referred to as the strong CP problem, which is an integral part of the flavor
puzzle.

It should be remarked that a term similar to (2.21) does not appear for the U(1)Y

and SU(2)L gauge factors of the SM for the following reasons. The θ term (2.21) can
be rewritten as a total derivative, which distinguishes gauge field configurations by a
winding number when integrated over the infinite volume boundary surface. For Abelian
gauge fields, however, all such configurations are equivalent, meaning that there is no
difference in winding number, and θU(1) does not exist, cf. e.g. [51]. In contrast, for SU(2)
gauge groups there could, in principle, exist a non–vanishing θ parameter. In the SM,
however, there is a possible anomalous (and therefore necessarily chiral) global symmetry
transformation, for example B + L, which allows to absorb θSU(2) in field redefinitions
without changing any other parameter of the Lagrangian. This demonstrates that the EW
θ angle is unphysical in the SM. This argument works whenever there is an anomalous
global symmetry rotating fermions that are charged under the gauge group which exhibits
the θ term. Therefore, this argument does not hold upon introducing B and L violating
terms, in which case the EW θ angle would become physical [52].

2.2. Standard definition of C, P, and T

In the previous section it has already been remarked that CP is violated in the SM.
This section serves to formally introduce the standard C, P, and T transformations and
investigate their implications.

The continuous transformations of boosts, rotations, and translations are forming the
“proper orthochronous” part of the Poincaré group. The representation theory of the
Poincaré group is based solely on these proper orthochronous transformation, meaning
that representation matrices are continuously connected to the identity and, therefore,
have det = +1. In addition, however, there are discrete transformations, acting as auto-
morphisms (which are in this case sometimes also called isometries) of the Poincaré group
which are represented by matrices with det = −1. The fact that these elements are not
continuously connected to the identity implies that the corresponding automorphisms are
outer [23]. Outer automorphisms will formally be introduced in section 3, and their action
on representations of the Poincaré group will be discussed in section 3.5.

Two well–known transformations that form outer automorphisms of the proper or-
thochronous Poincaré group are parity and time–reversal which act on the space–time
coordinates as

P : (t, ~x) 7→ (t,−~x) and T : (t, ~x) 7→ (−t, ~x) . (2.25)

Explicit matrices for the transformation xµ 7→ Λµ
νx

ν are given by

Pµν =


1
−1

−1
−1

 and Tµν =


−1

1
1

1

 , (2.26)
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P T C

ϕ(x) 7→ ±ϕ(Px) ±ϕ(T x) ϕ(x)

φ(x) 7→ ηP φ(Px) ηT φ(T x) ηC φ
∗(x)

Aµ(x) 7→ ε(µ)Aµ(Px) ε(µ)Aµ(T x) −Aµ(x)

Ψ(x) 7→ ηP βΨ(Px) ηT γ5 CΨ(T x) ηC C βΨ∗(x)

Table 2.2.: Action of the discrete transformations P, T, and C on real (pseudo–)scalar ϕ,
complex scalar φ, (gauge) vector Aµ, and Dirac spinor fields Ψ. See text for an explanation
of the symbols.

from which one immediately reads off that P−1 = P and T−1 = T. Hence, the corre-
sponding automorphisms are involutory, meaning that they square to the identity. In
the following Px ≡ (t,−~x) and Tx ≡ (−t, ~x) are used to denote parity or time–reversal
transformed coordinates, respectively.

One should note that multiple ways of implementing time–reversal have been pursued
in the literature, cf. e.g. [23,53] and references therein. In this work, time–reversal refers
to a transformation in the sense of Wigner [54]. This operation is implemented as an
anti–unitary operator on the Hilbert space, such that it does not flip the sign of the
Hamiltonian [51, 55]. This type of time reversal inverts the direction of momentum and
reverses spin, while conserving charge and handedness of all particles. Physically, this
corresponds to the classical intuition of “motion reversal”.

If a theory features complex representations then there is another possible discrete
(outer) automorphism transformation called charge conjugation. For additional inter-
nal symmetries, such as the automatically present global U(1) phase rotations of Dirac
spinor fields, this transformation corresponds to complex conjugation and flips the sign
of all charges. For general, possibly non–Abelian, internal symmetries charge conjugation
corresponds to mapping symmetry representations to their complex conjugate represen-
tations, which will in detail be discussed in section 3.5. For now the focus is on the action
of C, P, and T in the presence of just Abelian internal symmetries, such as for example
in the theory of Quantum Electrodynamics (QED).

The action of C, P, and T transformations on real and complex scalar, vector, and
spinor fields is summarized in table 2.2. Several remarks are in order:

• In order for a theory to be invariant under the action of P or T the complete
Lagrangian density must transform as

P−1 L (x) P = + L (Px) , or (2.27)

T−1 L (x) T = + L (T x) , (2.28)

such that the action S =
∫

d4xL (x) can be shown to be invariant by a change of
integration variables.

• There are free complex phases ηP, ηT, and ηC in the transformation of complex fields
due to the ubiquitous rephasing freedom.
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2.2. Standard definition of C, P, and T

• The function ε(µ) is defined as

ε(µ) :=

{
+1 , µ = 0 ,
−1 , µ = 1, 2, 3 .

(2.29)

• The transformation behavior of Aµ(x) under time–reversal may appear strange re-
garding (2.26). However, recalling that Aµ(x) is a (gauge–)vector potential it follows

directly from the physical requirement that ~E = ∂0
~A 7→ ~E under physical time–

reversal, where the transformation behavior of ∂µ directly follows from the transfor-
mation of the coordinate xµ. This is one manifestation of the Wigner time–reversal
transformation as “motion reversal”.

• The objects β and C are 4× 4 complex matrices which fulfill

β−1 γµ β = γµ† , (2.30)

C−1 γµ C = − (γµ)T , (2.31)

and

βT = β† = β−1 = β , (2.32)

CT = C† = C−1 = − C , with [β, C] = 0 . (2.33)

In general, β and C have a different index structure4 than the Dirac matrices γµ, but
similar to γ5 := iγ0γ1γ2γ3. Nevertheless, correct numerical solutions are obtained
by the identification

β = γ0 , and C = i γ2 γ0 , (2.34)

which holds in the Weyl (chiral) basis and in the Dirac basis for the gamma matrices.
With this solution one also has γ5C = γ1γ3 for the time–reversal transformation, and
recovers the usual definition of Ψ := Ψ†β = Ψ†γ0. For completeness, the explicit
form of all matrices is given in appendix A.

• Under the combined transformation CP a Dirac spinor transforms like

Ψ(x) 7→ ηCP CΨ∗(Px) . (2.35)

4A good reference to become acquainted with the details of two– and four–component spinor notation
is [51], whose notation also has loosely been followed here. Another highly recommended resource is [56].
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P T C

cs(~p) 7→ ηP cs(−~p) s ηT c−s(−~p) ηC ds(~p)

d†s(~p) 7→ −ηP d†s(−~p) s ηT d
†
−s(−~p) ηC c

†
s(~p)

Table 2.3.: Action of the discrete transformations P, T, and C on the particle annihilation
and anti–particle creation operators cs(~p) and d†s(~p), respectively.

The physical implications of the C, P, and T transformations can be understood after
investigating the mode expansion of the Dirac field operator

Ψ̂(x) =
∑
s=±

∫
d3p

(2π)3
√

2p0

{
ĉs(~p)us(~p) e−i p x + d̂†s(~p) vs(~p) ei p x

}
. (2.36)

Here and ĉs(~p) and d̂†s(~p) are the particle annihilation and anti–particle creation operators,
respectively, and us(~p) and vs(~p) denote orthogonal basis spinors. To be explicit, Fock
space operators have been denoted by a hat which will be dropped in the following. The
previously stated transformation behavior holds if and only if the Fock space creation and
annihilation operators transform as stated in table 2.3.

The transformations of creation an annihilation operators in table 2.3 explicitly show
that:

• The parity operation reverses the direction of momentum and exchanges left– and
right–handed spinors, thus, intuitively corresponds to a spacial reflection.

• The time–reversal operation reverses the direction of momentum and reverses the
spin, thus, intuitively corresponds to a reversal of all dynamics.

• The charge conjugation operation exchanges creation and annihilation operators of
particles and anti–particles.

Finally, under a sequential application of all three transformations one finds

(C P T)−1 Ψ(x) C P T = − ηCPT γ5 Ψ∗(−x) . (2.37)

This is the involution that in the most general sense provides the connection between
particles and anti–particles, equating their masses and decay rates [55]. It can be shown
under very general assumptions that CPT is a symmetry of any Lorentz invariant local
QFT [57]. The CPT theorem can easily be understood in the following way. Inspecting
the complete basis of possible Hermitean fermion bilinear operators listed in table 2.4,
one notes that any possible Lorentz invariant contraction of a bilinear with other fermion
bilinears, the derivative, or the gauge vector field also conserves CPT. Therefore, CPT is
automatically conserved if a theory is Lorentz invariant.

Nevertheless, note that in a more common language already the CP conjugate states
are referred to as anti–particles. This is because a CP transformation maps fields, and
in particular Weyl spinors, to their own complex conjugate, thereby providing a relation
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ΨΨ Ψγ5Ψ ΨγµΨ Ψγµγ5Ψ ΨσµνΨ ∂µ Aµ

P +1 −1 ε(µ) −ε(µ) ε(µ) ε(ν) ε(µ) ε(µ)

T +1 −1 ε(µ) ε(µ) −ε(µ) ε(ν) −ε(µ) ε(µ)

C +1 +1 −1 +1 −1 +1 −1

CPT +1 +1 −1 −1 +1 −1 −1

Table 2.4.: Transformation of (pseudo–)scalar, (pseudo–)vector and tensor fermion bilin-
ears as well as the partial derivative and the gauge vector field under C, P, and T.

between particles with opposite charge (e.g. lepton or baryon number) without referring
to any additional degrees of freedom or the need to invoke motion reversal. It is also the
CP conjugate states which can annihilate each other to a neutral gauge boson.

2.3. C, P, and CP violation in the Standard Model

So far, the discrete transformations have been discussed based on a Dirac spinor field.
The SM, however, is a chiral theory in the sense that individual left– and right–handed
Weyl fermions carry gauge quantum numbers in such a way that they cannot be paired
up into Dirac fermion representations.

The transformations C and P as discussed before, however, necessitate the exchange
of left– and right–handed components within a single Dirac spinor representation. That
is, these transformations are well defined transformations if and only if all Weyl fermions
can be paired up into Dirac spinors without conflicting other quantum numbers. Since
this is by construction not the case for chiral theories, both, C and P transformations,
are broken explicitly and “maximally” in the SM.

CP or T transformations, on the contrary, map a single Weyl fermion onto its own com-
plex conjugate or to itself, respectively, and are, therefore, well defined transformations
irrespective of whether a theory is chiral or not.

Both of the preceding statements have a very clear formulation in the group theoretical
language introduced in section 3, where C, P, and T are understood as outer automor-
phisms of all symmetries of a theory. Then it will also be possible to uniquely assign a
clear and well defined meaning to the term of “maximal” violation of a possible symmetry.
Namely, when it is broken by the field content, i.e. the symmetry representations, of a
model.

The fact that CP or T are well defined transformations of the SM does, of course, not
automatically imply that they are symmetries. A Lagrangian that gives rise to a real
action is schematically given by

L = cO(x) + c∗O†(x) , (2.38)

with some operator O and coupling c. By mapping each field to its complex conjugate,
also all operators in the Lagrangian O are mapped to their respective Hermitian conjugate
operators O 7→ O†. This, however, is a symmetry operation if and only if the couplings c
fulfill certain relations, typically constraining their complex phases.
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2. The Standard Model and CP violation in Nature

For example, in the SM in the basis of (2.9) and neglecting phases which can be absorbed
into θ, the only complex parameters are the phases of the CKM and PMNS matrix.
In this basis, performing a CP transformation on all fields corresponds to a mapping
VCKM 7→ V ∗CKM and UPMNS 7→ U∗PMNS (and θ 7→ −θ). Therefore, CP is a symmetry of the
SM if and only if VCKM and UPMNS are real (and θ = 0). The question of whether or not
CP is violated in the SM, thus, can only be answered experimentally. CP violation in the
quark sector has been experimentally observed [58,59] in decays and oscillations of K and
B mesons and is in broad consistency with the SM CKM mechanism [17]. Complementary
to CPV, the CPT theorem implies the violation of T which has also been experimentally
verified [60]. Even though CPV is a necessary condition for baryogenesis [7], the observed
amount of CPV does not suffice to explain the observed matter–anti matter asymmetry
of the universe [12], cf. e.g. the reviews [13,14]. The other possible sources of CPV in the
SM are either experimentally known to be highly suppressed (θ) or not yet experimentally
accessible (δPMNS).

An important point to note is that the discussion so far has been based on a specific
parametrization, i.e. a specific basis choice. Physics, of course, cannot depend on the
chosen mathematical formulation and has to be basis independent. Because of that it is
very useful to define basis invariant quantities. A basis invariant measure of the quark
sector CPV is the so–called Jarlskog invariant [61] (see also the earlier [62]) which can be
expressed as

J =
1

i
det
[
yu y

†
u, yd y

†
d

]
. (2.39)

In the mass basis, as obtained above, this takes the form

J =
1

i
det
[
V †CKM λu λ

†
u VCKM, λd λ

†
d

]
= 2 c12 c

2
13 c23 s12 s13 s23 sin (δCKM)×

×
(
m2
t −m2

c

) (
m2
t −m2

u

) (
m2
c −m2

u

) (
m2
b −m2

s

) (
m2
b −m2

d

) (
m2
s −m2

d

)
.

(2.40)

Under CP transformations δCKM 7→ −δCKM, for what reason also J changes its sign,
which is just the statement that J is CP odd. Therefore, the experimentally found non–
vanishing value of J is an unambiguous and basis independent sign of CPV. Indeed, as J
is the only CP odd basis invariant quantity in the classical SM (neglecting θ), a vanishing
of J would be a necessary and sufficient condition for CP conservation [63]. As manifest in
the expression (2.40) for J , sufficient conditions for CP conservation are (i) δCKM = 0, π;
but also (ii) there is a pair of mass degenerate quarks in either the up– or down–sector,
or (iii) the sine or cosine of any mixing angle vanishes. The fact that J is the only basis
invariant CP odd quantity implies that, in the classical SM, all rates for CP violating
processes are proportional to J . If the classical SM is amended by three right–handed
neutrinos, a CP odd invariant analogue to J appears in the lepton sector. In general,
the vanishing of individual CP odd basis invariants is only a necessary condition for CP
conservation [63, 64]. A sufficient condition for CP conservation is that all CP odd basis
invariants vanish.
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3. Group theoretical introduction to
outer automorphisms

After discussing the classical definitions of C, P, and T, the following sections will pave
the way to understand these transformations in a possibly more formal, yet certainly
more vivid, group theoretical language. An effort is made to use a physical language
and unnecessary mathematical details will be skipped whenever possible. Knowledge of
basic group theory is assumed, and the reader is reminded of the classical introductory
literature to the subject of group theory in physics, cf. e.g. [65–68]. The crucial parts
of group theory related to (outer) automorphisms are typically not entirely satisfactory
covered in the standard literature and, therefore, will briefly be introduced in this section.
The formal discussion will mostly be focused on the case of finite (discrete) groups which
will serve as benchmark throughout this work. As an explicit example, the complete
automorphism structure of the discrete group ∆(54) will be investigated in detail. In
addition, outer automorphisms of semisimple and compact Lie–algebras will briefly be
discussed, illustrated on the basis of the example SU(3). A more detailed treatment
of outer automorphisms of semisimple and compact Lie–algebras can be found in [24].
The discussion of outer automorphisms of the Poincaré (including the Lorentz) group
will mostly be reviewed and not performed in every detail. A more detailed treatment
of this case can be found in [23]. Most of the formalities discussed for finite groups
straightforwardly adapt also to the other cases and the analogies will be pointed out at
the appropriate places.

3.1. Definitions

For clarity the possibly not so well–known necessary terms are defined. For the definitions
of other group theoretical terms see any book on group theory, for example [65, 67, 68].
The focus is on finite groups.

Group homomorphism. Given two groups, G with multiplication • and H with mul-
tiplication ◦, a group homomorphism is a map h : G → H such that for all g1, g2 ∈ G

h(g1 • g2) = h(g1) ◦ h(g2) . (3.1)

A direct consequence of the definition is that the identity elements of G and H are
identified, and that inverse elements in G are mapped to inverse elements in H. Therefore,
a group homomorphism preserves the group structure.
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Automorphism group. A bijective group homomorphism G→ G is called an automor-
phism. All the automorphisms of a group themselves form a group (under composition)
called the automorphism group of G, Aut(G). Note that the automorphism group Aut(G)
contains all possible maps of a group G to itself, that is, it describes the symmetry prop-
erties of G.

Inner automorphism group. For each group element g, the conjugation map conjg :

h→ g h g−1 for all h ∈ G is an automorphism of G. Together, all automorphisms that can
be represented by such a conjugation map form the inner automorphism group Inn(G),
which is a subgroup of Aut(G).

Conjugacy classes. The set of elements of a group which are related by the conjugation
with a group element, that is by an inner automorphism, form a so–called conjugacy class.

Normal subgroup. A normal subgroup N ⊆ G is a subgroup of G that is invariant
under all inner automorphisms.

Quotient group. Let N be a normal subgroup of G. The set of all (left) cosets of N in
G, that is

G/N := {gN : g ∈ G} , (3.2)

where gN stands for the set of products of a group element g with all elements of N ,
forms a group on its own. G/N is called the quotient group of G by N . An easy way to
visualize the quotient group G/N is to simply identify all elements of N with the identity.

Center. The center of a group Z(G) is the set of elements in G which commute with
every other element. Z(G) always is a normal subgroup of G. Due to the fact that
conjugation with a group element g ∈ G leads to the trivial automorphism if and only if
g ∈ Z(G) it is clear that there is an isomorphism

Inn(G) ∼= G/Z(G) . (3.3)

Outer automorphism group. Any automorphism in Aut(G) which is not inner, that
is, which cannot be represented by the conjugation with a group element, is an outer
automorphism. Due to the fact that inner automorphisms Inn(G) form a normal subgroup
of Aut(G) the outer automorphism group can be constructed via

Out(G) := Aut(G)/Inn(G) . (3.4)

Note that outer automorphisms are strictly speaking not automorphisms but equivalence
classes of automorphisms. Colloquially speaking this means that each outer automorphism
contains all inner automorphisms.

Inner automorphisms, being represented by conjugation operations with group elements
themselves, always leave the conjugacy classes of a group invariant. In contrast, outer
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automorphisms typically (but not necessarily) interchange different conjugacy classes. For
explicit (matrix) representations of a group this implies that outer automorphisms may
interchange inequivalent representations, a fact that will later be explained in much more
detail.

A very useful, albeit mathematically not completely correct, way to think about outer
automorphisms Aa : G→ G is in form of a conjugation operation

Aa(g) = a g a−1 ∀g ∈ G , (3.5)

where a /∈ G. This is not entirely correct because there is formally no multiplication
defined between a and g.

Direct product. It is always possible to combine two groups to a larger group F via the
Cartesian product of the elements of G and G′ (i.e. ordered pairs (g, g′)) and the group
multiplication law in F defined by

(g, g′) (h, h′) := (g h, g′ h′) , (3.6)

where g, h ∈ G and g′, h′ ∈ G′. F ∼= G×G′ is called the direct product of G and G′.

Semidirect product. A more involved way of combining two groups is the semidirect
product. Let N and H be groups, and f : H → Aut(N) a group homomorphism from
H to the automorphism group of N with f(h) ≡ fh and fh(n) = h n h−1 ∀h ∈ H, n ∈ N .
The multiplication law of the semidirect product group G ∼= N of H can then be defined
via the Cartesian product

(n1, h1) (n2, h2) := (n1 fh1(n2), h1 h2) . (3.7)

In the following the subscript f will be dropped whenever the corresponding homomor-
phism is obvious from the context. The elements of G are uniquely given by nh where
n ∈ N and h ∈ H. Note that N is a normal subgroup of the semidirect product group.

Group presentation. A very intuitive way to define groups and understand the forma-
tion of direct and semidirect products of groups is via so–called group presentations. A
group presentation is given by a set of generators G(G) and a set of relations R(G) on
them. A group G then can be defined by

G := 〈G(G) | R(G)〉 . (3.8)

For example, an Abelian group of order n can be presented by a single generator a that
fulfills the relation an = e (e denotes the identity) and therefore,

Zn := 〈a | an = e〉 . (3.9)

Note that group presentations are typically not unique, not even in the number of genera-
tors or relations. Nevertheless, there are so–called minimal generating sets which contain
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a minimal number of generators and relations. For the combination of two groups N and
H, both the direct and the semidirect product group G can be presented by the union
of both sets of generators G(G) = G(N) ∪ G(H), and R(G) = R(N) ∪ R(H) + Rnew

relations. Here, Rnew are |Rnew| = |G(N)| × |G(H)| new additional relations between the
generators.

In case of a direct product, the generators of both groups commute by assumption,
implying that the additional new relations are trivial, i.e. of the type h n h−1 = n, ∀h ∈
H and ∀n ∈ N .

In contrast, for the case of a semidirect product there are new and non–trivial relations
of the type h n h−1 = fh(n). This allows one to understand why fh(n) must be a mapping
into the automorphism group of N . If it were not, the new relations would be in con-
tradiction with the, of course, still present relations R(N) of N , thereby invalidating the
whole construction.

3.2. Representation matrices of outer automorphisms

The action of outer automorphisms on group representations shall briefly be discussed in
the following. The notation is such that ρr(g) denotes the unitary matrix representation
of an abstract group element g in the representation r.

From the preceding subsection it is clear that automorphisms are transformations that
leave the structure of a group, i.e. the group algebra, invariant. Furthermore, it has
also been noted that outer automorphisms may induce non–trivial permutations among
the conjugacy classes of a group. As a consequence also class functions, such as the
characters of a representation, may be non–trivially permuted under the action of outer
automorphisms. However, the characters uniquely determine a representation (up to
equivalence, that is up to similarity transformations) [65]. Therefore, whenever an outer
automorphism induces a permutation of the characters, it will also induce a permutation
of inequivalent representations.

In general, for an (outer) automorphism that acts as u : g 7→ u(g) and maps a repre-
sentation r to a representation r′, the explicit representation matrix U of u is given by
the solution to

U ρr′(g)U−1 = ρr(u(g)) , ∀g ∈ G . (3.10)

This definition equally holds for inner and outer automorphisms, where for inner auto-
morphisms r ≡ r′ is automatically implied. Furthermore, note that the matrices U are
always defined only up to a phase and up to an element representing the center of G.
Equation (3.10) is a consistency condition in the sense that one can find a non–trivial so-
lution for U if and only if there exists an appropriate automorphism u(g). This statement
is proven in appendix B.
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3.3. Outer automorphisms of finite groups

3.3.1. Explicit example: ∆(54)

In order to become acquainted with the just introduced definitions, this section explicitly
demonstrates the step by step construction of the outer automorphism group and its
implications for the finite group ∆(54). Even though all of the computations can be
performed manually, the reader be reminded of GAP [69], a powerful computer code for
the work with finite groups, and the Discrete [70] package which provides a GAP–
Mathematica interface. In the SmallGroup catalogue of GAP, ∆(54) is included as
SG(54, 8).

A presentation for the group ∆(54) is given by

∆(54) =
〈
A,B,C

∣∣ A3 = B3 = C2 = (AB)3 = (AC)2 = (BC)2 = e
〉
. (3.11)

The group has 54 elements and its conjugacy classes are given by

C1a : {e} ,
C3a : {A,A2,BAB2,B2AB,BA2B2,B2A2B} ,
C3b : {B,B2,ABA2,A2BA,AB2A2,A2B2A} ,
C3c : {AB2,A2B,BA2,B2A,ABA,BAB} ,
C3d : {AB,BA,A2B2,B2A2,AB2A,A2BA2} ,
C2a : {C,AC,A2C,BC,B2C,ABAC,BABC,A2BA2C,AB2AC} ,
C6a : {BAC,A2BC,AB2C,B2A2C,B2ABC,BA2B2C,ABA2C,A2B2AC,AB2ABAC} ,
C6b : {ABC,BA2C,B2AC,A2B2C,A2BAC,BAB2C,AB2A2C,B2A2BC,BA2BABC} ,
C3e : {AB2ABA} , C3f : {BA2BAB} , (3.12)

and have been labeled by the order of their elements and a letter. The non–trivial ir-
reducible representations (irreps) of the group are the real representations 11 and 2i
(i = 1, 2, 3, 4), as well as the complex representations 31 and 32 and their respective
conjugates. The character table is shown in table 3.1.

The outer automorphism group of ∆(54) can be found via the construction outlined in
the last section.5 The starting point is the automorphism group. In a brute force way the
automorphism group can be obtained by successively mapping every generator to every
other element of the same order, while checking whether the group structure is preserved.
All maps that preserve the group structure are automorphisms. The outer automorphism
group is then given by the quotient of the automorphism group with respect to the inner
automorphism group. The inner automorphism group can be found by taking the quotient
group of ∆(54) with respect to its center, while the center of ∆(54) can straightforwardly
be found by checking commutation properties of group elements. For ∆(54) it is given by

5For manual computations in finite groups it is extremely useful and highly recommended to firstly
identify useful identities from the group algebra. For ∆(54) those relations are CA = A2C; CB = B2C;
BAB = A2B2A2; ABA = B2A2B2; BA2B = AB2A; A2BA2 = B2AB2.
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C1a C3a C3b C3c C3d C2a C6a C6b C3e C3f

1 6 6 6 6 9 9 9 1 1
∆(54) e A B ABA AB C ABC BAC AB2ABA BA2BAB

10 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 −1 −1 −1 1 1
21 2 2 −1 −1 −1 0 0 0 2 2
22 2 −1 2 −1 −1 0 0 0 2 2
23 2 −1 −1 2 −1 0 0 0 2 2
24 2 −1 −1 −1 2 0 0 0 2 2
31 3 0 0 0 0 1 ω2 ω 3ω 3ω2

31 3 0 0 0 0 1 ω ω2 3ω2 3ω
32 3 0 0 0 0 −1 −ω2 −ω 3ω 3ω2

32 3 0 0 0 0 −1 −ω −ω2 3ω2 3ω

Table 3.1.: Character table of ∆(54). The definition ω := e2π i/3 is used. The second line
gives the cardinality of the conjugacy class (c.c.) and the third line gives a representative
of the corresponding c.c. in the presentation specified in (3.11).

the subgroup Z3 which, in this presentation, is generated by the element AB2ABA. Since
performing these computations is very tedious, in practice it is much more convenient to
use computer codes such as GAP. A computer code which performs the computation of
the outer automorphism group in GAP is given in appendix C.1.

The automorphism structure of ∆(54) can be summarized as

Z(∆(54)) = Z3 , Aut(∆(54)) = SG(432, 734) , (3.13)

Inn(∆(54)) = (Z3 × Z3) o Z2 , Out(∆(54)) = S4 . (3.14)

The outer automorphism group of ∆(54) turns out to be S4, the permutation group of
four elements. A minimal generating set for S4 has only two elements, and the group can
be presented via

S4 =
〈
S,T

∣∣∣ S2 = T3 =
(
T2 S

)4
= e

〉
. (3.15)

A possible choice for the action of the outer automorphisms s and t on the group elements
of ∆(54) is given by

s : (A,B,C) 7→ (AB2 A,B,C) and t : (A,B,C) 7→ (A,ABA,C) . (3.16)

Stating the explicit action of s and t it is important to keep in mind that the outer
automorphism group S4 in this construction is not a group of automorphisms but of cosets
of automorphisms. This implies that an element of S4 is not a single automorphism, but
an outer automorphism that additionally contains all inner automorphisms. Nevertheless,
it is possible and useful for practical computations to choose one particular representative,
that is one particular inner automorphism, of each coset. This has been done in stating the
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3.3. Outer automorphisms of finite groups

explicit action (3.16). The results of the computations will not depend on the particular
choice as all other elements of the coset can be obtained by taking into account inner
automorphisms.

As another consequence of this, note that acting with the identity outer automorphism
of S4 on the group elements of ∆(54) does not necessarily refer to a conjugation with
the identity element of ∆(54). Instead, the trivial outer automorphism e of S4 refers to
every inner automorphism of ∆(54). The chosen presentation of S4 actually suffers from
this degeneracy because the composition (t2 ◦ s)4

only closes to an inner automorphism
of ∆(54) which corresponds to the conjugation with the group element C.

Physically most relevant is the action of outer automorphisms on the representations
of ∆(54) which shall be derived in the following. Knowing the explicit action of the outer
automorphisms on the group elements, equation (3.16), one can also track the action
on the characters of ∆(54), cf. table 3.1. Comparing the sequence of characters after
application of the outer automorphism to the original character table, it is possible to
sort out the permutation of representations under the action of the outer automorphism.
For example, for the outer automorphism s one can easily check that the last four columns
of the character table are permuted in such a way that 31 ↔ 31 and 32 ↔ 32. Therefore,
s corresponds to a complex conjugation outer automorphism for these representations.
Note that by the outlined procedure one has identified a symmetry of the character table
under simultaneous permutation of rows and columns. It is in general true that outer
automorphisms of finite groups correspond to some symmetry of the character table [25].
Nevertheless, this is generally not a one–to–one relation as there exist class–preserving
outer automorphisms, which do not permute characters.6

In order to obtain the explicit action of outer automorphisms on group elements (oper-
ators) and states (fields) it is – for the first time in this computation – necessary to specify
an explicit basis for the representations. A possible choice of representation matrices for
the triplet representation 31 is7

A =

0 1 0
0 0 1
1 0 0

 , B =

1 0 0
0 ω 0
0 0 ω2

 , C =

1 0 0
0 0 1
0 1 0

 , (3.17)

where here and in the following ω is defined as ω := e2π i/3. Even though not required,
it is highly recommended and very convenient to chose for 31 the respective complex
conjugate matrices. An explicit representation matrix of the outer automorphism then
can be obtained by solving the consistency condition (3.10). For the action of the outer
automorphism s the consistency condition takes the form

Us ρ31
(g)U−1

s = ρ31(s(g)) , ∀g ∈ ∆(54) . (3.18)

It is sufficient to solve this equations for the generators of ∆(54) to fix Us. Therefore, Us
is given by the simultaneous solution to

UsA
∗ U−1

s = AB2A , UsB
∗ U−1

s = B , and UsC
∗ U−1

s = C . (3.19)

6An example for a group that has a class–preserving outer automorphism is SG(32, 43) [71].
7The representation matrices of 32 can be chosen as A, B, and −C.
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Completely analogous, it is possible to find Ut as the explicit representation of the auto-
morphism t which, however, maps all triplet representations to themselves. Altogether
one finds

Us =

ω2 0 0
0 0 1
0 1 0

 and Ut =
i√
3

 1 ω2 ω2

ω2 1 ω2

ω2 ω2 1

 , (3.20)

with the explicit action on the triplet representations

s : 3i 7→ Us 3∗i , and t : 3i 7→ Ut 3i . (3.21)

As mentioned earlier, Us and Ut are only fixed up to a complex phase. Nevertheless,
for convenient computations the phase here is fixed by the requirement that Us and Ut
fulfill the group algebra of S4 (3.15) (up to inner automorphisms). Interestingly, all odd
permutations in S4 correspond to transformations that interchange complex conjugate
triplet representations, whereas all even permutations map the triplets to themselves.

In general, note that every transformation which fulfills the consistency condition, i.e.
is consistent with the original group algebra, can be used to enlarge the group by a
non–trivial semidirect product to a bigger group. An explicit construction of how to
construct this bigger group is outlined in the following. Again the outer automorphism
s of ∆(54) will be used as an example. From the preceding paragraphs it is clear that
s maps 31 ↔ 31. Consequently, if the corresponding transformation should be added to
the symmetry transformations of the group, it is clear that the bigger group will have a
six–dimensional representation that unifies 31 and 31. That is, the larger group H will
have some representation 6 that branches as 6→ 31 ⊕ 31 in the group G ⊂ H.

The construction of the group H as a matrix group will be discussed in the following.
A somewhat more mathematical treatment of this can be found in [25]. The basic idea is
to start with a reducible representation of G containing 31⊕31 and then add the explicit
action of the outer automorphism group. The main point is that elements of G only act on
the triplets separately, while elements of H which are not in G will interrelate the triplets.
This is manifest in the explicit form of the representation matrices. The representation
matrices of 31 ⊕ 31 in G are given by

A6 =

(
A 0
0 A∗

)
, B6 =

(
B 0
0 B∗

)
, and C6 =

(
C 0
0 C∗

)
. (3.22)

Together with the new matrix

S6 =

(
0 Us
U∗s 0

)
, (3.23)

these matrices define the group H. By putting the matrices into GAP, one finds that H =
SG(108, 17) and one confirms that this group has the corresponding 6–plet representation.
For completeness, note that the analogous construction for the extension of ∆(54) by T
results in the group SG(162, 10).
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21 22 23 24

A2i 12 Ω2 Ω2 Ω2

B2i Ω2 12 Ω2 Ω∗2
C2i S2 S2 S2 S2

Table 3.2.: Explicit matrices for the doublet representations of ∆(54), see (3.24) for a
definition of the matrices Ω2 and S2.

Finally, the behavior of the doublet representations of ∆(54) under outer automor-
phisms shall be discussed. A set of possible representation matrices for the doublets is
given in table 3.2, using the matrices

12 =

(
1 0
0 1

)
, Ω2 =

(
ω2 0
0 ω

)
, and S2 =

(
0 1
1 0

)
. (3.24)

The action on the doublet representations then is found to be

s :


21

22

23

24

 7→

S2 24

S2 22

23

S2 21

 , and t :


21

22

23

24

 7→


21

24

22

23

 . (3.25)

Consequently, the permutations of ∆(54) doublets under the outer automorphism group
(generated by s and t) correspond to all possible permutations of four elements. That is,
the four doublets form a 4–plet under the outer automorphism group S4.

Analogous to the construction of the 6–plet above it is possible to construct repre-
sentations which contain multiple copies of the two dimensional representations and the
corresponding groups by amending ∆(54) by outer automorphism.

Starting from a given group, it may be extended by one or multiple of its outer auto-
morphisms. The thereby resulting group will in general have new outer automorphisms
which were not present on the level of the original group. Conversely, it is also true that
subgroups sometimes have outer automorphisms which are neither part of the supergroup
nor part of any of its outer automorphisms. Altogether, thus, moving in a “stack” of su-
pergroups and subgroups, outer automorphisms may appear and disappear at any level.
This unpredictability of the appearance and disappearance of outer automorphisms seems
to be closely related to the so–called extension problem of finite groups, which is an es-
sential obstacle in the systematic classification of finite groups. This question will not be
discussed here any further.

The action of outer automorphisms on representations of finite groups can be summa-
rized as follows. In general, outer automorphisms act as a permutation of representations
of the same dimensionality. Whether or not such a permutation is possible is entirely
fixed by the structure of the group. Representations which are permuted by a specific
outer automorphism are merged to larger representations in the extended group, which
is obtained as the semidirect product of the original group with the corresponding outer
automorphism. Representations which are not permuted under the action of the outer
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automorphism, in general, are present in the extended group as well – but there appear
altogether n copies of them, where n is the order of the corresponding outer automor-
phism.

3.4. Outer automorphisms of continuous groups

In the last section some feeling for outer automorphism has been gained from the consid-
erations of finite groups. To obtain a complete picture including also the case of gauge
and space–time symmetries, outer automorphisms will briefly be discussed for the case
of continuous groups in the following. The focus will be on intuitive and picturesque
arguments and mathematical details will be skipped where they are unnecessary. A more
thorough treatment of some of the formalities can, for example, be found in [24,67,72–75].

Considering a Lie algebra L with elements x and y, an automorphism of the Lie algebra
is given by a linear mapping ψ : L→ L that respects the structure of the Lie algebra as

ψ([x, y]) = [ψ(x), ψ(y)] ∀x, y ∈ L . (3.26)

Choosing an explicit basis {xa} for the generators, the automorphism acts on the gener-
ators as

ψR : xa 7→ Rab xb . (3.27)

For compact Lie algebras8 one has the well–known

[xa, xb] = i fabc xc . (3.28)

Therefore, from condition (3.26) one finds that

Raa′ Rbb′ fa′b′c = fabc′ Rc′c (3.29)

must be fulfilled by R in order for it to be an automorphism.
By choosing an orthonormal basis {xa}, which obeys the normalization tr (xaxb) = kδab,

one finds that R must be an orthogonal matrix in order to conserve the norm and (3.29)
can be written as

Raa′ Rbb′ Rcc′ fa′b′c′ = fabc . (3.30)

Defining the adjoint map w.r.t. a Lie algebra element x ∈ L as

adx : y 7→ adx(y) := [x, y] ∀y ∈ L , (3.31)

one can show that it fulfills (3.26). The adjoint map defines an automorphism of L w.r.t.
to the element x via the mapping [24]

ψx(y) := eadx(y) = ex y e−x . (3.32)

8A semisimple Lie group G is compact if and only if its Lie algebra has a negative definite Killing form,
cf. e.g. [24]. The Lie algebras of compact Lie groups are called compact.
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Here the exponential of the adjoint map is meant as the power series in composition of
maps, and the last equality holds in case x and y are taken as explicit matrices, which is
always possible [76] (cf. also [74, exercise 3.14]). Automorphisms which can be written in
this way are called inner automorphisms of a Lie algebra, whereas all other automorphisms
are called outer.

Completely analogous to the conjugation map for finite groups, also for Lie groups L
there is the usual conjugation map

L 7→ AdA(L) := ALA−1 , (3.33)

with respect to any element A ∈ L, which corresponds to an inner automorphism of L.
One can show that (3.33) also corresponds to an inner automorphism of the corresponding
Lie algebra L of L (cf. e.g. [75, exercise 3.13]). In particular, AdA(x) = AxA−1 ∈ L for
all x ∈ L. Again, every automorphism that can be written in the form (3.33) is called an
inner automorphism, whereas an automorphism is called outer if this is not the case.

Note that the consistency condition (3.10) has a straightforward translation to the

elements of a Lie algebra. That is, for generators of a given explicit representation T
(r)
a

one can find matrices U and R such that

U T (r′)
a U−1 = Rab T

(r)
b , ∀a , (3.34)

if and only if there is an automorphism mapping r 7→ r′ with dim(r) = dim(r′).
For the adjoint representation, which is unique in its dimension and, therefore, always

mapped to itself, equation (3.34) nicely merges to (3.29). Consequently, all possible auto-
morphisms can readily be classified from the possible non–trivial mappings of the adjoint
to itself. Since the roots of a Lie algebra are the weights of the adjoint representation,
the root system of a Lie algebra completely reflects this symmetry. That is, the possible
automorphisms of a given Lie algebra can be obtained from the symmetries of the root
system.

Of highest interest for gauge theories are (semi)simple Lie groups. The corresponding
simple Lie algebras can be classified in terms of their root system ρ, which is commonly
done in the form of Dynkin diagrams. As argued above, the complete root system has
an automorphism group Aut(ρ) which is isomorphic to the automorphism group of the
corresponding Lie algebra Aut(L). The normal subgroup of inner automorphisms Inn(L)
corresponds to the so–called Weyl symmetry of the root system W , which consists of all
possible reflections of roots on hyperplanes perpendicular to each of the roots. In contrast,
the outer automorphism group Out(L) corresponds to ambiguities in the ordering of simple
roots. Therefore, it is isomorphic to the symmetry of the corresponding Dynkin diagram
SDyn.. In summary,

Out(L) ∼= Aut(L)/Inn(L) ∼= Aut(ρ)/W ∼= SDyn. . (3.35)

The Dynkin diagrams of all simple Lie algebras are shown in figure 3.1 and the corre-
sponding outer automorphism groups are readily obtained from them. In table 3.3 the
simple Lie algebras and the corresponding compact groups are summarized together with
their outer automorphism groups and the corresponding action on the representations.
While finite groups generally feature very rich structures of outer automorphisms, there
are only very few simple Lie groups with non–trivial outer automorphisms.
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Figure 3.1.: Dynkin diagrams of all simple Lie algebras. The outer automorphism group
of a Lie algebra is isomorphic to the symmetry of its Dynkin diagram. Figure taken
from [77] under the Creative Commons Attribution-Share Alike 3.0 Unported license.

Algebra Group Out Action on irreps

An>1 SU(n+ 1) Z2 r 7→ r∗

Dn=4 SO(8) S3 ri 7→ rj

Dn>4 SO(2n) Z2 r 7→ r∗

E6 E6 Z2 r 7→ r∗

all others e r 7→ r

Table 3.3.: List of all simple Lie algebras which have a non–trivial outer automorphism
group, together with their compact real forms. The last column lists the action on the
irreps of the corresponding group. All other simple Lie algebras (cf. figure 3.1) only have
the trivial outer automorphism group.

3.4.1. Explicit example: SU(3)

As an example, the Lie algebra su(3) of the compact simple Lie group SU(3) shall be
investigated with respect to its automorphism structure. It is convenient to work in a basis
with non–Hermitian generators in order to emphasize the connection to the symmetries
of the root system. The relation to the usual basis of Gell–Mann matrices, as well as
further details, are given in appendix D.1.

The generators of the fundamental representation are given by

HI =
1

2

1 0 0
0 −1 0
0 0 0

 , HY =
1

2
√

3

1 0 0
0 1 0
0 0 −2

 ,

E1
+ =

1√
2

0 1 0
0 0 0
0 0 0

 , Eθ
+ =

1√
2

0 0 1
0 0 0
0 0 0

 , E2
+ =

1√
2

0 0 0
0 0 1
0 0 0

 ,

E1
− =

1√
2

0 0 0
1 0 0
0 0 0

 , Eθ
− =

1√
2

0 0 0
0 0 0
1 0 0

 , E2
− =

1√
2

0 0 0
0 0 0
0 1 0

 .

(3.36)

The generators of the maximally commuting (Cartan) subalgebra ~H = (HI, HY) obey the
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α(1)

θα(2)

−α(1)

−θ −α(2)−α(2)

Figure 3.2.: Root system of su(3) in the basis (HI, HY).

commutation relations

[ ~H,E1
±] = ± (1, 0)T E1

± , [ ~H,E2
±] = ± 1

2

(
−1,
√

3
)T

E2
± ,

[ ~H,Eθ
±] = ± 1

2

(
1,
√

3
)T

Eθ
± .

(3.37)

One can read off the roots as (cf. e.g. [67])

α(1) = (1, 0)T , α(2) =
1

2

(
−1,
√

3
)T

, and θ =
1

2

(
1,
√

3
)T

. (3.38)

They are shown in figure 3.2. The symmetry group of the root system shall be analyzed in
the following, in order to find the complete automorphism group of su(3). As mentioned
above, inner automorphisms correspond to reflections of the root system on hyperplanes
perpendicular to any of the roots. With the above relations between generators and roots
it is straightforward to obtain the action of a given root reflection on the generators.

For example, the reflection on a plane perpendicular to α(1) corresponds to a mapping
of the generators as

u1 : E1
+ ↔ E1

− , Eθ
+ ↔ E2

+ , E2
− ↔ Eθ

− , HI 7→ −HI , HY 7→ HY. (3.39)

Numbering the generators as ~T := (E1
+, E

1
−, HI, E

θ
+, E

θ
−, E

2
+, E

2
−, HY), the corresponding

transformation matrix in the adjoint space is given by

Ru1 =



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1


. (3.40)
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Given the structure constants in this basis of the generators (cf. appendix D.1) it is
straightforward to check that (3.30) is fulfilled.9 Furthermore, the consistency condition
(3.34) here takes the form

U Ta U
−1 = (Ru1)ab Tb , ∀a , (3.41)

and is solved by

Uu1 =

 0 −1 0
−1 0 0
0 0 −1

 . (3.42)

As usual, Uu1 is only defined up to a phase which has been chosen as −1 here such
as to make det(Uu1) = 1. Nevertheless, any other phase choice would, in principle, be
admissible. The decisive criterion by which one can tell that u1 is an inner automorphism
is that u1 : r 7→ r and det(Ru1) = 1, i.e. representations are mapped to themselves and
R is contained in the adjoint representation.

Completely analogous, the reflection on a plane perpendicular to the root θ corresponds
to the mapping

uθ : E1
+ ↔ E2

− , E1
− ↔ E2

+ , Eθ
+ ↔ Eθ

− ,

HI 7→
1

2

(
HI −

√
3HY

)
, HY 7→ − 1

2

(√
3HI +HY

)
,

(3.43)

or equivalently

Rθ =



0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

0 0 1
2

0 0 0 0 −
√

3
2

0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

0 0 −
√

3
2

0 0 0 0 −1
2


. (3.44)

Again (3.30) is fulfilled and the consistency condition (3.34) is solved by

Uuθ =

 0 0 −1
0 −1 0
−1 0 0

 , (3.45)

where the free phase has been fixed to obtain det(Uuθ) = 1. Also uθ is inner by the
observation that uθ : r 7→ r and det(Ruθ) = 1.

9One should note that the basis choice (3.36) is not an orthonormal basis w.r.t. tr(TaTb). The matrices
R, therefore, are not guaranteed to be orthogonal in this basis and only the condition (3.29) must be
fulfilled for any automorphism.
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Taken together, Uu1 and Uuθ generate the complete inner automorphism group S3 of
the fundamental (3) space of SU(3) which is equivalent to all possible Weyl reflections of
the root system. The matrices Ru1 and Rθ generate the same group in the adjoint space.

There are, however, more possible symmetries of the root system which obey (3.30).
In particular, take the point reflection through the origin, which maps all roots to their
negative. Clearly, this is not a Weyl reflection. This transformation is also called the
contragredient automorphism [24]. The corresponding action on the generators of the
fundamental representation is given by

u∆ : E1
+ ↔ − E1

− , Eθ
+ ↔ − Eθ

− , E2
+ ↔ − E2

− ,

HI 7→ −HI , HY 7→ −HY .
(3.46)

Therefore, the mapping in the adjoint space is given by

R∆ =



0 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1


. (3.47)

The corresponding consistency condition (3.34) can not be solved for 3 7→ 3. However,
one can solve the condition if one takes u∆ as a mapping 3 7→ 3∗. The corresponding
consistency condition reads

U (−TT
a )U−1 = (R∆)ab Tb , ∀a , (3.48)

and it is simply solved for U = 1. This shows that u∆ is an outer automorphism, as
expected. One should not be confused by the fact that det(U) = 1, as there is again a
free phase in U . Rather, by observing that det(R∆) = −1, it is clear that R∆ cannot
be part of the adjoint space and the automorphism cannot be inner. That (3.46) is
indeed the complex conjugation automorphism is not obvious in the chosen basis (3.36).
However, rotating the adjoint space to the standard Gell–Mann basis one confirms that
u∆ is indeed the usual complex conjugation which transforms the Gell–Mann matrices [78]
as λ2,5,7 7→ λ2,5,7 and λ1,3,4,6,8 7→ −λ1,3,4,6,8 (cf. appendix D.1).

Together, u1, uθ, and u∆ generate the complete automorphism group of su(3), isomor-
phic to the symmetry of its root system and also isomorphic to the automorphism group of
SU(3). The group is the dihedral group D12 which is, without surprise, also the symmetry
group of a regular hexagon.
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3. Group theoretical introduction to outer automorphisms

3.5. Outer automorphisms of the Poincaré group

Completely analogous to the above cases of finite groups and compact Lie groups also the
proper orthochronous Poincaré group10 has outer automorphisms. The Poincaré group is
a Lie group which is non–compact, for what reason the discussion has to be led separately
from the preceding section. For the scope of this thesis, only a concise and mostly informal
treatment will be provided. A more thorough treatment including detailed derivations
of most of the presented results can be found in [23] and references therein. Practical
application of the Poincaré group outer automorphisms C, P, and T has already been
discussed in section 2.2. This section now serves to help interpret these transformations
as outer automorphisms, and furthermore, sets the stage for a more general definition of
what determines a physical CP transformation in section 4.2.

The Poincaré group is a semidirect product of the (proper orthochronous) Lorentz group
SO+(3, 1), containing boosts and rotations in Minkowski space–time, and the group of
four–dimensional translations. Outer automorphisms of the translational part are gener-
ated by dilatations xµ 7→ Rxµ(R 6= 0, 1) [23]. This type of outer automorphisms certainly
bears a lot of interest on its own, but it is beyond the scope of this work to discuss it.
Anyways, note that the scaling outer automorphism is involutory (meaning that it squares
to the identity) only for R = −1. In this case it actually corresponds to a combined ap-
plication of the P and T transformations given in (2.25). Indeed, there is a one–to–one
correspondence between involutory outer automorphisms of the Poincaré group and reflec-
tions in Minkowski space [23]. Fortunately, the possible reflections in Minkoswki space are
already exhausted by the transformations P and T. However, upon introducing functions
on the Poincaré group (i.e. representations) also complex functions (i.e. complex represen-
tations) arise. Complex representations are then forming two invariant subspaces under
the Poincaré group including the transformations P and T. These invariant subspaces can
be mapped onto each other by complex conjugation of the corresponding function, i.e. a
C transformation [23].

Let us now focus on the Lorentz part of the Poincaré group. The Lorentz group is
not simply connected for what reason its Lie algebra is also the Lie algebra of a bigger
group. This bigger group is SL(2,C) which is the double covering group of the Lorentz
group. Taking into account spinorial representations, the representations of the Lorentz
group are actually representations of SL(2,C). The corresponding Lie algebra sl(2,C) is
the complexification of the Algebra su(2). Therefore, there is an isomorphism sl(2,C) ∼=
su(2) ⊕ su(2). The representations of SL(2,C), hence, can conveniently be discussed as
the simultaneous representations of two SU(2)’s. It is well–known that the irreps of the
usual spin group SU(2) can be labeled by half integers, characterizing the spin of the
representation. The representations of the Lorentz group (more precisely of SL(2,C)),
thus, are conventionally labeled as a pair of two half integers (j, k) corresponding to
representations under the two SU(2) groups.

For definiteness, the two lowest non–trivial representations and their interplay under
outer automorphisms shall be discussed. This is the “left–handed” Weyl spinor χ in the

10The terms “proper” and “orthochronous” will be dropped in the following but they are implicit in any
mentioning of both, the Poincaré and Lorentz group.
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3.5. Outer automorphisms of the Poincaré group

representation (1
2
, 0) and the “right–handed” Weyl spinor ξ† in the representation (0, 1

2
).11

Each of these fields describes two real degrees of freedom. The dagger for ξ† is part of
the name. One should be very careful in noting that the respective Hermitian conjugated
fields are of the opposite “handedness” than the original fields. For example, χ 7→ χ† is
right–handed, whereas ξ† 7→ ξ is left–handed. This explains our notation: left–handed
fields are simply the ones without a dagger. The two real degrees of freedom per field, thus,
correspond to two possible helicity states. One should be careful however, because the two
helicity states cannot necessarily be turned into one another by a spin flip. This is the case
if the states are additionally charged under another conserved symmetry which could, for
example, be a U(1) lepton number. Then the two helicity states will have exactly opposite
charge under this U(1), and, therefore, cannot be turned into one another. Therefore, one
should really think of the four real degrees of freedom as {χ, χ†; ξ†, ξ}.

The analogy of the Poincaré group outer automorphism transformations C, P, and T
to the outer automorphism transformations of finite and compact Lie groups shall be em-
phasized in the following. The Dirac spinor Ψ has already been discussed in section 2.2.
It transforms in the (reducible) representation (1

2
, 0) ⊕ (0, 1

2
). Therefore, Ψ can be con-

structed out of the two fields χ and ξ† as

Ψ :=

(
χ
ξ†

)
. (3.49)

The action of C, P, and T on the Dirac spinor representation Ψ has been summarized in
table 2.2. The explicit transformation matrices of the outer automorphisms in this repre-
sentation can be read off as Cβ, β, and γ5C for C, P, and T transformations, respectively
(cf. appendix A). Furthermore, from (2.35) the explicit representation matrix for the CP
transformation is read off as C. The appearing free phases ηC,P,T,CP are understood from
the fact that representation matrices of outer automorphisms are, as always, only defined
up to a phase. To make the analogy to the preceding discussion manifest, note how the
γ–matrices transform under the respective operations:12

C : (C β) (−γµ)T (C β)−1 = Pµν γ
ν , (3.50)

P : β γµ β−1 = Pµν γ
ν , (3.51)

T : (γ5 C) (−γµ)∗ (γ5 C)−1 = Tµν γ
ν , (3.52)

CP : C (−γµ)T C−1 = γµ , (3.53)

Note the striking similarity to the consistency conditions (3.10) and (3.34).
Consider now the action of outer automorphisms on the four individual states {χ, χ†; ξ†, ξ}.

As seen before, outer automorphisms can – but do not have to – exchange representations
of the same dimensionality. Here, the transformation T does not permute any of the
fields, but as discussed in section 2.2, merely corresponds to motion reversal (the anti–
unitarity of the T operation explains why (3.52) involves an additional conjugation). In

11The explicit spinor indices are omitted because they are not needed for this discussion. The corre-
sponding indices would be restored as χa and ξ†ȧ.

12The γ–matrices are, of course, not the generators of the Dirac spinor representation. However, the
translation to the actual generators of this representation, Sµν = i

4 [γµ, γν ], is straightforward.
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χ
(L,−)

ξ†
(R,−)

χ†
(R,+)

ξ
(L,+)

CP CP

C C

P

P

Figure 3.3.: C, P, and CP transformation for the chiral Weyl fermions χ and ξ†. The
undersets denote the handedness and potential U(1) charge of the corresponding field.

contrast, the two order–two transformations C and P correspond to all possible pairwise
permutations of the four fields. The transformations are summarized in figure 3.3.

Note that C or P transformations by themselves only make sense for a complete Dirac
spinor. This is because these transformations are interrelating representations which are
not mutually complex conjugate. If there is only a single chiral Weyl fermion without
the corresponding counterpart, then C and P transformations are broken explicitly and
maximally, i.e. by the absence of representations. This is the case in the SM. It is empha-
sized that the only possible outer automorphism transformation for a single chiral Weyl
fermion is CP. Under CP each state is mapped to its own respective complex conjugate
state. This is also true for the Dirac spinor representation itself, as is clear already from
equation (2.35), and it can also be inferred for the generators of the Dirac representation
from (3.53).

In this sense, note that charge conjugation is not the complex conjugation outer auto-
morphism of the Lorentz group. In contrast, the transformation which maps each rep-
resentation to its own complex conjugate representation is CP. This observation will be
picked up shortly. First, however, this chapter shall be concluded by a remark advocating
the title of this work.

3.6. (Outer) automorphisms are symmetries of a
symmetry

It has been understood that automorphisms are all possible ways to map a certain symme-
try, i.e. the abstract generators of a group or the elements of the abstract group algebra,
to itself without changing the structure of the group. This justifies the term “symmetry
of a symmetry” for automorphisms.

In this group of automorphism transformations, the so–called outer automorphisms play
a special role. This is because, in contrast to inner automorphisms, outer automorphisms
cannot be represented by elements of the original symmetry group. Outer automorphisms,
therefore, are truly the non–trivial ways to map a symmetry to itself.
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4. CP as a symmetry of symmetries

4.1. CP as an (outer) automorphism of space–time and
gauge symmetries

After having discussed CP transformations and outer automorphisms largely separately,
it is only a short stroll to interpret the former as a special class of the latter. Let us start
doing this for the case of a gauge theory. Many technical details of this discussion can be
found in [24].

Consider a gauge theory with a compact semisimple non–Abelian gauge group. The
gauge part of the Lagrangian is given by

LG = − 1

4
Ga
µν G

µν,a , (4.1)

with the field strength tensor

Ga
µν = ∂µW

a
ν − ∂νW a

µ + g fabcW b
µW

c
ν . (4.2)

Furthermore, assume that there is a left–handed Weyl fermion ΨL charged under the
gauge group and transforming in a representation generated by matrices {Ta}. The gauge–
kinetic part of the fermion Lagrangian, hence, is given by

LF = i ΨL γ
µ
(
∂µ − i g TaW

a
µ

)
ΨL . (4.3)

The most general possible CP transformation then acts on the gauge and fermion fields
as (cf. table 2.2 and (2.35))

W a
µ (x) 7→ ε(µ)RabW b

µ(Px) ,

ΨL(x) 7→ ηCP U CΨ∗L(Px) .
(4.4)

To be as general as possible, the gauge fields are allowed to rotate in the adjoint space
of the gauge group parametrized by R, and the fermions are allowed to rotate in their
representation space of the gauge group parametrized by U , respectively. Furthermore,
possible rotations in the Dirac representation space of the Lorentz group are parametrized
by C. Here, C and U are general unitary matrices, while R can be chosen real due to the
reality of the gauge fields.

It is straightforward to show that the most general CP transformation (4.4) is a con-
served symmetry of the action if and only if

(i) : Raa′ Rbb′ fa′b′c = fabc′ Rc′c , (4.5)

(ii) : U (−TT
a )U−1 = Rab Tb , (4.6)

(iii) : C (−γµT) C−1 = γµ . (4.7)
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4. CP as a symmetry of symmetries

The first condition arises from the invariance of LG, the second condition arises from the
invariance of the fermion gauge coupling, and the last condition is required already by the
invariance of the fermion kinetic term. Furthermore, conservation of the terms quadratic
in the gauge fields requires R to be an orthogonal matrix, which can be traced back to
the orthogonality condition tr(TaTb) = k δab.

The conditions (i)–(iii), however, are well–known from the previous sections. They
imply that the CP transformation is an automorphism. More specifically, it has to be
an automorphism which maps all present symmetry representations to their respective
complex conjugate representation. This statement holds equally for gauge group and
Lorentz group representations. It is clear that the CP automorphism is outer for the
Lorentz group. For semisimple compact Lie groups, however, this automorphism may
be inner. This can be the case only if the corresponding group does not have complex
representations. Whenever there are complex representations present then the automor-
phism fulfilling (i) and (ii) has to be outer [24]. Also in [24], it has been shown that the
contragredient automorphism, corresponding to the root system inversion, always fulfills
(i) and (ii). Nevertheless, the conditions do not single out one particular automorphism.
The only requirement is that it must be a consistent automorphism which maps repre-
sentations to their complex conjugate, and so multiple automorphisms could in principle
be qualified. The existence of a single automorphism which fulfills (i)–(iii) is enough to
warrant CP conservation for the gauge kinetic terms. As the contragredient automor-
phism always exists for semisimple compact gauge groups, CP is automatically conserved
in the gauge kinetic terms. In addition, it has been shown that for semisimple Lie groups
one can always find a so–called CP basis in which U = 1 [24]. In the following it will,
therefore, without loss of generality always be assumed that U has been set to 1, i.e. a
CP basis has been chosen in the gauge group representation space of fermions.

Finally, note that if the field ΨL would, in addition, also transform in a representa-
tion of any other, say, global symmetry, then it is imperative that also the corresponding
representation of this global symmetry is mapped onto its own complex conjugate rep-
resentation. That is, also for all additional groups the CP transformation should be a
complex conjugation (outer) automorphism.13 This statement is sufficiently general that
one may actually use it as a definition of a physical CP transformation in the first place.

4.2. Definition of CP as a special automorphism

In the preceding section it has been demonstrated that the text–book CP transformation
is a complex conjugation (outer) automorphism of the space–time and gauge symmetry
of a relativistic quantum field theory. In turn, any conserved complex conjugation outer
automorphism warrants CP conservation. Therefore, it makes sense to identify these
two notions and define a physical CP transformation as a complex conjugation (outer)
automorphism of all present symmetries. This includes space–time, gauge, and global
symmetries.

13Strictly speaking this is true only for all fields which have some charge also under the SM gauge group,
or couple to the SM charged fields in some way.
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It should be noted that there have been advances to give a more precise definition of
CP, for example, defining it as an automorphism which reverses certain quantum num-
bers (cf. [24] and also [71]). Defining CP in such a way, however, is dependent on a
specific choice of inner automorphism accompanying the complex conjugation outer au-
tomorphism. If there is any one inner automorphism for which the corresponding outer
automorphism is conserved, however, then it is also conserved for all other choices of
accompanying inner automorphisms. Taking a specific inner automorphism, therefore,
certainly gives a sanity check and an intuition for the action of the CP transformation,
but it is not necessary to include it in the definition of the transformation in the first
place. In any case, the simple definition of CP as a complex conjugation automorphism
of all present representations, as advertised here, includes all known examples [3, 23, 24]
without contradiction. In particular, it also holds for additional global (possibly finite)
symmetry groups which are studied below.

The non–conservation of all possible14 complex conjugation outer automorphisms is a
necessary condition for CPV in a physical sense, for example as prerequisite for baryo-
genesis. In contrast, if there are multiple possible and distinct CP transformations, then
the conservation of any of these transformations gives rise to physical CP conservation.

4.3. Generalized CP transformations

Despite the now clarified fact that a physical CP transformation always corresponds to
a complex conjugation automorphism transformation of all present symmetries, there is
an additional subtlety worth mentioning. Many theories contain multiple identical copies
of fields in equivalent symmetry representations. Most prominently this is the case in
the SM, but it also happens, for example, in theories with multiple Higgs fields. In
general, there is some degeneracy in the distinction of these fields, typically reflected by
the freedom to perform a U(n) basis transformation in the so–called “horizontal” space
without changing physical observables. In the SM, the identical copies of representations
correspond to the repetition of fermion generations and the corresponding horizontal
rotations are simply the possible basis choices in flavor space. For multi–Higgs models,
the corresponding horizontal rotations mix the multiple Higgs fields and are referred to
as Higgs–basis rotations [64], cf. also [15,79].

For a proper physical CP transformation every field in a symmetry representation should
be mapped onto its own complex conjugate. Hence, all of the repeated fields spanning the
horizontal space should, in principle, be mapped to their own complex conjugate fields.
Nevertheless, due to the degeneracy in the horizontal space, it is always possible to amend
the complex conjugation map by an additional rotation in the horizontal space. Recall
that even for a single field there is an additional freedom in taking outer automorphisms
corresponding to the rephasing of each field. This freedom has already been taken care of
by amending the usual C, P, and T transformations by free phases ηC, ηP, and ηT, cf. ta-
ble 2.2. For the complex conjugation map of multiple fields in all identical representations,

14While for gauge theories and the Poincaré group the complex conjugation (outer) automorphism is
unique up to inner automorphisms this is not the case in general. For finite groups, for example, there
may be multiple distinct outer automorphisms fulfilling the definition.
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there can be more sophisticated transformations than just mapping each field onto its own
complex conjugate. Additionally to these “canonical” CP transformations, there can be
non–trivial rotations in the horizontal space which are typically called “generalized” CP
transformations. Generalized CP transformations have formally been introduced in [80]
and firstly been used in the context of left–right symmetric models [81, 82]. For a gener-
alized CP transformation one can think of the η phases as being promoted to matrices
that act in the horizontal space. Just as for the η phases, the existence of a single set
of matrices for which the corresponding generalized CP transformation is conserved is
sufficient to warrant CP conservation.

For definiteness consider the quark sector of the SM (see [83] for an analogous discussion
for the lepton sector). The most general possible CP transformation is given by [63,84]

Q 7→ UL CQ∗ , (4.8)

uR 7→ Uu
R C u∗R , (4.9)

dR 7→ Ud
R C d∗R , (4.10)

where UL, Uu
R, and Ud

R are general 3 × 3 unitary matrices acting in flavor space and
C is the charge conjugation matrix for fermions defined in section 2.2.15 In order for
the generalized CP transformation to be conserved, the Yukawa coupling matrices, as
introduced in (2.4), have to fulfill

U †L yu U
u
R = y∗u and U †L yd U

d
R = y∗d , (4.11)

or equivalently

U †L yu y
†
u UL = y∗u y

T
u and U †L yd y

†
d UL = y∗d y

T
d . (4.12)

Using the Jarlskog invariant J as defined in (2.39) it is straightforward to check that
J = −J = 0, i.e. CP is conserved as a consequence of these relations – just as it would
be for the particular “canonical” choice UL = Uu

R = Ud
R = 1.

4.3.1. New horizontal symmetries and exotic CP eigenstates

Even though very tempting, one can in general not regard generalized CP transformations
simply as canonical CP transformations amended by a basis rotation. This shall be
detailed in the following. Consider, for example, the behavior of UL under change of the
left–handed quark flavor basis. That is, assuming that (4.12) is solved by UL in one basis,
in a different basis Q′ = WLQ it is solved by

U ′L = WL ULW
T
L . (4.13)

Therefore, it becomes clear that UL generally cannot be absorbed in a basis redefinition
(because it rotates with WUWT, not with WUW †). However, using the freedom to

15For clarity, it is remarked that U of (4.4), which acts in the gauge representation space of each fermion,
has been set to 1 here.
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change the basis as in (4.13), it is possible to bring any unitary CP transformation matrix
U to a certain standard form which can be presented as [85](cf. also [55, Ch.2, App.C])

U = W †


Θ1

. . .

Θ`

1m

 W ∗ . (4.14)

Here, Θk are 2× 2 orthogonal matrices

Θk :=

(
cos θk sin θk
− sin θk cos θk

)
, (4.15)

with angles θk that are given by the pairwise appearing eigenvalues e±2 i θk of the matrix
UU∗. The angles θk can be constrained to lie in the range 0 ≤ θk ≤ π/2.

In contrast to the ubiquitous η phases or the arbitrary phase of U , a generalized CP
transformation does not automatically cancel if CP is applied twice. Therefore, the re-
quirement of a conserved generalized CP transformation will generally induce new linear
horizontal symmetries [86]. Applying the generalized CP transformation (4.8) twice one
finds that

Q
(C P)2

−−−→ UL U
∗
L Q =: VL Q . (4.16)

The matrix VL then acts as the generator of a new linear symmetry in the horizontal
space.

Typically, an enhancement of the linear symmetry is avoided by requiring that the CP
transformation acts as an involution on all fields, i.e. it squares to the identity U U∗ =
V = 1. This requirement is equivalent to the statement that one can find a so–called
“CP basis” in which U = 1, as can be seen from the discussion of the standard form of
U above and the fact that V in this form only has unity eigenvalues.

Nevertheless, this requirement is somewhat arbitrary if one is just after CP conserva-
tion, as any non–involutory, i.e. higher–order CP transformation would also warrant CP
conservation. Higher–order CP transformations have, for example, been considered in
two Higgs doublet models [87, 88]. Another particularly interesting example is a three
Higgs doublet model with a CP transformation of order 4 [30]. Furthermore, it has been
shown that some discrete groups (of the so–called type II B below) enforce higher–order
CP transformations on the representations [3].

In general, one should note that for higher–order CP transformations it is not possible
to attain a CP basis, as is clear from the standard form (4.14) of U and the fact that V =
UU∗ has non–unity eigenvalues. This opens up the phenomenologically unprecedented
possibility that there are eigenstates of CP which are neither CP even nor CP odd, but
CP “half–odd” [30]. That is, finding the eigenstates of an order 2 + 2n (n ∈ N) CP
operation U one may find states not only with eigenvalues ±1 but also with the “half–
odd” (or even “1/2n–odd”) eigenvalues (−1)1/2n.
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4.3.2. Generalized CP and existing horizontal symmetries

For the construction of generalized CP transformations in the previous section, the implicit
assumption has been made that there is no pre–existing structure in the horizontal space.
There is, however, the possibility to have a symmetry G acting in the horizontal space.
Sticking with the SM example of three fermion flavors for concreteness, G would be a
flavor or family symmetry. If there is a horizontal symmetry, not every generalized CP
transformation is admissible. In contrast, all possible CP transformations are given by
the complex conjugation automorphisms of all symmetries, and in particular of G, as
discussed in detail before. Of course, it would, in principle, always be possible to impose
any generalized CP symmetry – just as it is possible to impose any additional linear
symmetry. Nevertheless, this would generally enhance the symmetry in the horizontal
space, possibly up to the maximal U(n) symmetry of the gauge–kinetic interactions. In
such a construction it would then be unreasonable to speak of a G–symmetric model, for
what reason this possibility is discarded in the following. Therefore, the choice of possible
generalized CP transformations is limited to the explicit representation matrices of the
complex conjugation automorphisms of G.

The possible CP transformations, as automorphisms of all symmetries and in particular
G, of course, will also come with explicit representation matrices. For example, for the
case of spinor representations of the Lorentz group, the representation matrix of the CP
outer automorphism is C. For a generic horizontal space, this explicit representation
matrix is usually called U . The basis transformation freedom, which acts on the explicit
representation matrix U as in (4.13), can be used to rotate U to the standard form
(4.14). Depending on the order of U , this sometimes allows to rotate U to the identity
matrix, i.e. find a CP basis, as discussed above. For example, this is always the case
for all semisimple compact Lie groups [24, App. F] and for finite groups of the so–called
type II A below. Nevertheless, for many models the CP basis is often not the most
convenient choice to identify the physical states of a theory or to perform explicit higher–
order computations [3].

For general symmetry groups it is by far not guaranteed that a CP basis can be found.
Whether or not this is possible in a given model crucially depends on the properties of
the corresponding automorphisms of all the involved groups, and their representation
matrices for the present representations. In fact, while it follows from the requirement
UU∗ = V = 1 that the corresponding complex conjugation automorphism is an involu-
tory automorphism of the corresponding group the reverse statement is not true. That
is, even for complex conjugation automorphisms which act as an involution on the level
of the abstract symmetry groups, the explicit representation matrices can turn out to be
such that U U∗ = V 6= 1. In general it is true that the representation matrices U have to
be determined from the structure of all present symmetry groups and the corresponding
complex conjugation automorphisms. If a complex conjugation automorphism is involu-
tory one can show that the only non–trivial possibility besides V = 1 is that V = −1.
For higher order complex conjugation automorphisms necessarily more complicated forms
of V arise.

For the case of finite discrete groups, for example, it will be shown in the following that
there is a large class of groups for which U cannot be rotated away. In fact, whether or not
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this is possible will be one of the criteria by which discrete groups are classified. Whenever
a model is such that the CP transformation matrix U cannot be basis–rotated to the unity
matrix, it is implicit that states with exotic CP properties, such as the aforementioned
“half–odd” states, exist in a model. In the following discussion of CP automorphisms in
discrete groups it will be found that this situation always arises for groups of the so–called
type II B.
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In the previous sections it has been established that proper physical CP transformations
correspond to automorphisms which map all of the present symmetry representations of
a theory to their own respective complex conjugate representations. If there are complex
representations present, then the corresponding automorphism must be outer.

In this section, this situation shall be analyzed in depth for the case of finite groups.
Finite groups find applications in many models, in particle physics most prominently as
flavor symmetries, cf. e.g. [22, 89–91] for reviews. If there are finite groups present, then
CP transformations also have to be (outer) automorphisms of the finite groups. This has
firstly been shown in [25], where it has been missed, however, that CP transformations are
only a special subset of all outer automorphisms. As will be shown in the following, not all
finite groups allow for (outer) automorphisms that simultaneously map all representations
of the group to their respective complex conjugate representations. Whenever a finite
group with this property and a sufficient number of irreps is contained in a model, then
there is no possible (outer) automorphism corresponding to a CP transformation. This
implies that CP can never be a possible symmetry of such a model. In particular, there
will be complex couplings, originating from the Clebsch–Gordan coefficients (CGs) of the
group, which enter amplitudes in the form of CP violating weak phases.16 Interestingly,
phases that originate from finite groups are calculable and assume fixed “geometrical”
values, such as for example ω = e2πi/3. An example model will be presented where this
type of CP violating calculable weak phases are present, and a CP violating amplitude
will be calculated explicitly.

That “geometrical” CP violation originating from complex CGs of the group T′ could
be a possibility has firstly been speculated on in [26]. The group T′, however, allows
for a basis with real CGs [92], thus, cannot lead to this form of CPV [3]. Nevertheless,
explicit CPV from complex CGs, which nowadays is referred to as explicit geometrical
CP violation [27], is indeed possible as has firstly been demonstrated in [3]. There, also
necessary and sufficient conditions for the occurrence of this form of CPV have been
presented.

To proceed systematically, finite groups will first be classified according to their possible
CP outer automorphisms or, reversely stated, according to their ability to lead to CPV
from group theory. Then, it will be discussed how the assumption of certain finite groups
and their representations gives rise to explicit geometrical CP violation originating from
complex CGs. Finally, there will be some remarks towards the use of explicit geometrical
CP violation in possibly realistic flavor models.

16“Weak” here has nothing to do with the weak interaction but with the fact that the corresponding
phase differs from the one of the CP conjugate process. This is in contrast to “strong” phases which do
not change under CP and arise, for example, as the absorptive part of loop integrals if a certain process
is kinematically allowed [15]. The presence of weak phases is an unambiguous sign for CP violation.
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5.1. Classification of finite groups according to CP outer
automorphisms

This section provides a classification of finite groups according to their CP properties.
That is, finite groups shall be classified according to whether CP transformations are
possible in general. Groups which generally do not allow for CP transformations allow
for settings that give rise to calculable CP violating phases. It is possible to consider only
scalar fields for the following classification of finite groups since the additional space–time
transformation properties of a field do not matter for the discussion of its transformation
properties under the discrete group. An extension of the argument to higher spin repre-
sentations is straightforward, but it would not lead to new statements on the finite group.
The classification of finite groups in this manner has firstly been brought forward in [3],
where it is also discussed in somewhat more detail.

5.1.1. Properties of CP outer automorphisms

Assume that there is some scalar field φ in an irrep ri of a finite group G. Recall once
again that a proper physical CP transformation for the finite group is given by a com-
plex conjugation automorphism u which maps every present irrep ri to its own complex
conjugate representation ri 7→ r∗i ∼ ri. Therefore, the action on the field φ is given by

φ(x) 7→ Uri φ
∗(Px) , (5.1)

where Uri is the unitary representation matrix of the automorphism u. Because of that
Uri fulfills the consistency condition (3.10), which here takes the form

Uri ρ
∗
ri

(g)U †ri = ρri(u(g)) , ∀g ∈ G . (5.2)

Without loss of generality, a basis for ri has been chosen such that ρri(g) = ρ∗ri(g).
The integer i enumerates all irreps of G. In order to make model independent state-

ments, it will be assumed in the following that u is such that (5.2) holds for all ri simul-
taneously. Of course, it is not guaranteed that such an automorphism exist for a given
group, and whether it does or not will be decisive for the classification. In any case, the
existence of such an automorphism u allows to draw conclusions on its properties and the
properties of the group G which are elucidated in the following.

u must be class–inverting. Consider the characters of representations by taking the
trace of (5.2). One finds

χri(u(g)) = tr [ρri(u(g))] = tr [ρri(g)∗] = χri(g)∗ = χri(g
−1). (5.3)

Since (5.2) and, therefore, also (5.3) has been required to be valid for all i, one finds that
u must be a class–inverting automorphism.17

17A class–inverting automorphism u maps every group element g to another group element u(g) which
is part of the same conjugacy class as g−1, i.e. u(g) = h g−1 h−1 for some h ∈ G.

54



5.1. Classification of finite groups according to CP outer automorphisms

Remarks on the order of u. Applying the automorphism transformation u twice, φ
transforms as

φ
u2

7−→ Uri

(
Uri φ

∗(P2 x)
)∗

= Uri U
∗
ri
φ(x) =: Vri φ(x) ∀ i . (5.4)

Vri is a unitary matrix that can be related to the automorphism v = u2. Therefore,
imposing the CP transformation u as a symmetry has the immediate consequence that
also φ 7→ Vri φ is imposed as a symmetry transformation. Being the square of a class–
inverting automorphism, v = u2 is class–preserving.

There are three logical possibilities for the square of u:

(i) u2 = v = id, is the identity automorphism, or

(ii) u2 = v is a non–trivial inner automorphism, or

(iii) u2 = v is a class–preserving outer automorphism.

The three cases will be examined in the following.

(i). The order of the automorphism u is at most two, i.e. u squares to the identity and,
therefore, is called an involutory automorphism. Counterintuitively, this does not imply
that Vri = 1. In contrast, another possibility is that Vri = −1.18 Indeed, it is true that
Vri = ±1 if and only if u is involutory which will be shown in the following.

Applying the consistency condition (5.2) for the group element u(g) while bringing all
Uri ’s to the other side one finds

ρri(u(g)) = UT
ri
ρri(u

2(g))∗ U∗ri = UT
ri
ρri(g)∗ U∗ri ∀ g ∈ G and ∀ i , (5.5)

where in the last step it has been used that u is involutory. This reproduces the consistency
condition (5.2) for u, but with the transposed matrices UT

ri
. Due to the fact that ρri is

an irrep one can then use Schur’s lemma to show that

UT
ri

= eiα Uri ∀ i . (5.6)

The only possible solutions for this are α = 0 or α = π, meaning that Uri is either
a symmetric or an anti–symmetric unitary matrix, respectively. Consequently, Vri =
Uri U

∗
ri

= ±1.
To prove the reverse direction, assume that all Vri = ±1. Inserting (5.2) into itself one

finds

ρri(u
2(g)) =

(
Uri U

∗
ri

)
ρri(g)

(
Uri U

∗
ri

)†
= ρri(g) ∀ g ∈ G and ∀ i . (5.7)

Being true for all irreps by assumption, it follows that u2(g) = g for all g in G. Therefore,
the order of u can only be one or two which shows that u is involutory. This completes
the proof that Vri = ±1 if and only if u is involutory.

18That u squares to the identity or to an inner automorphism has also been employed in [93]. However,
that u2 = id can also imply Vri

= −1 has been missed.
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5. CP and discrete groups

This discussion shows that even though u squares to the identity it is possible that G
gets amended by an additional Z2 symmetry upon imposing u as a CP symmetry. This
is possible if and only if there is a representation ri with Vri = −1 present in the model.
The assignment of the Z2 charges to the fields of a model then is uniquely fixed and given
by the signs of the Vri .

The case of an involutory automorphism u is the most important case for the classifica-
tion of finite groups and the consequences of Vri being +1 or −1 will be further discussed
below.

(ii). The second possibility is that u2 = v is an inner automorphism. As an illustration,
note that this case may always be attained by amending an involutory automorphism u
(case (i)) by some inner automorphism b such that u ◦ b does not square to the identity
automorphism anymore. As the additional application of an inner automorphism corre-
sponds to an already preserved symmetry transformation, the automorphism u ◦ b can be
regarded physically equivalent to the automorphism u.

Thus, applying this in reverse, the question whether case (ii) yields anything new in
comparison to case (i) can be answered by checking whether one can always find an inner
automorphism which relates u to an involutory automorphism u′ with u′ ◦ b = u. It has
been proven explicitly for the majority of cases that any class–inverting automorphism
that squares to an inner automorphism is related by an inner automorphism to a class–
inverting involutory automorphism. A proof exists for groups of odd order, automorphisms
of odd order, and for automorphisms of order ord(u) = 4n+ 2 for some integer n [3]. The
only case withstanding an explicit proof so far is for automorphisms of ord(u) = 4n.

Alternatively, one may also argue that any outer automorphism, by definition, actually
corresponds to a coset of automorphisms, i.e. trivially contains all inner automorphisms.
In this regard, any outer automorphism u2 = v, with v inner, is by all means equivalent
to the case that u2 = id, due to the fact that the outer automorphism id already contains
all inner automorphisms. Nevertheless, upon requiring u as a symmetry, G may still be
enhanced by an Abelian factor in analogy to case (i).

(iii). The last logical possibility is that u2 = v is a non–trivial (necessarily class–
preserving) outer automorphism itself. Then, there appears an additional generator h
with an explicit representation ρri(h) = Vri . It can be shown that h does not commute
with every group element of G, and, hence, extends G to the larger semi–direct product
group H = G ov Zh, where Zh is the cyclic group generated by h. Consequently, upon
imposing u as a CP symmetry, terms which are allowed by G but prohibited by H are
forced to be absent from the Lagrangian. Since v is class–preserving, it does not interre-
late inequivalent representations such that the representation content of H coincides with
the one of G. Nevertheless, upon imposing the CP transformation u, complex conjugate
representations are merged as usual.

As a remark, note that case (iii) seems to be rare among groups and, even though there
is presently no general argument for its absence, no example group is known for this case.
A GAP scan for class–inverting automorphism that square to a class–preserving outer
automorphism yields a negative result for groups up to order 150 (with the exception of
some groups of order 128 which have not been checked) [3].
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5.1. Classification of finite groups according to CP outer automorphisms

In summary, a valid physical and model independent CP transformation is given by a
class–inverting (outer, if G has complex irreps) automorphism u of G.

The requirement of u being conserved, sometimes enforces other discrete symmetries as
well. In case that G needs to be extended by symmetries in addition to u, the correspond-
ing symmetry actions follow from the class–preserving automorphism u2. The correspond-
ing action on the representations of G, therefore, does not result in any new relations be-
tween inequivalent representations, besides, of course, the interrelation of ri ↔ ri

∗ which
is induced by u itself.

One may argue that whenever a non–trivial enlargement of G is necessary, the CP prop-
erties of a model should be studied from the “top–down”, i.e. by the investigation of the
enlarged symmetry group. This is, of course, justified whenever CP is an exact symmetry.
However, since it is known that CP is violated in Nature, the presentation here has been
oriented towards the “bottom–up” perspective. That is, possible CP transformation have
been investigated without necessarily requiring them to be conserved. It has been shown
that a group does not have to be extended by additional symmetries upon requiring u to
be a CP symmetry if u corresponds to a class–inverting automorphism of order 2 that can
be represented by symmetric matrices Uri for all i. In the next section the consequences
of the existence of such an automorphism are further discussed.

5.1.2. The Bickerstaff–Damhus automorphism

This section establishes an interesting connection between the existence of proper physical
CP transformations and the possibility to find a basis for G in which all CGs are real.

According to a theorem by Bickerstaff and Damhus [92], all CGs of G are real if and
only if there exists an automorphism u such that

ρri(u(g)) = ρri(g)∗ ∀ g ∈ G and ∀ i . (5.8)

With the methods of the preceding section it is straightforward to show that such an
automorphism is class–inverting and involutory. Note that both, equation (5.8) and the
fact that CGs are real, are basis dependent statements.

By using the behavior of U in (5.2) under basis rotations, i.e. U → V UV T cf. sec-
tion 4.3.1, it is possible to rephrase the Bickerstaff–Damhus theorem in a basis indepen-
dent manner. Namely, there exists a basis in which all CGs of G are real if and only if
there is an automorphism u which fulfills

ρri(u(g)) = Uri ρri(g)∗ U †ri , with Uri unitary and symmetric, ∀ g ∈ G and ∀ i . (5.9)

Interestingly, these are precisely the conditions that have been found above for the ex-
istence of a proper physical CP transformation which does not lead to an extension of
the finite group. In what follows, an automorphism u which satisfies equation (5.9)
will be referred to as a Bickerstaff–Damhus automorphism (BDA). To repeat, a BDA is
a class–inverting involutory automorphism which fulfills the consistency condition (5.2)
with symmetric unitary matrices Uri .

The basis in which the CGs can be chosen real is exactly the CP basis for which all
Uri in equation (5.9) are unit matrices, i.e. for which equation (5.8) is achieved. Since
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5. CP and discrete groups

orthogonal basis transformations do not change the form of (5.8) this equation actually
defines a whole set of bases with real CGs.

As a remark, note that there can be several different BDAs which fulfill equation (5.8)
for different bases. The different BDAs generally will not be related by inner automor-
phisms. For example, a group which has two, in this sense distinct, BDAs is SG(32, 43) [3].
Nevertheless, when (5.8) is fulfilled in a certain basis, the corresponding automorphism u
is unique.

It can be shown that non–Abelian groups of odd order do not admit BDAs [3]. There-
fore, odd order non–Abelian groups do not admit a basis with completely real CGs.

5.1.3. The twisted Frobenius–Schur indicator

As a central part of the classification, a basis independent method is presented in the
following which allows to determine if a given finite group allows for a model independent
physical CP transformation, i.e. whether G admits a class–inverting involutory automor-
phism. On the side, a basis independent algorithm is given that allows one to determine
whether a group allows for real CGs. All statements of this section can be proved by the
use of well–known Schur orthogonality relations (see e.g. [68, p. 37]), and an explicit form
of the proofs has been given in [3].

Recall the well–known Frobenius–Schur indicator (FSI)(c.f. e.g. [68, p. 48]) which is
defined by

FS(ri) :=
1

|G|
∑
g∈G

χri(g
2) =

1

|G|
∑
g∈G

tr
[
ρri(g)2

]
, (5.10)

where |G| is the order of the group G. The FSI is used to determine whether a represen-
tation of a finite group is real, pseudo–real, or complex, since it evaluates to

FS(ri) =


+1, if ri is a real representation,
0, if ri is a complex representation,
−1, if ri is a pseudo–real representation.

(5.11)

Completely analogous to the FSI, there is the so–called twisted Frobenius–Schur in-
dicator (FSu) [92, 94] which additionally depends on an automorphism u. The twisted
Frobenius–Schur indicator for an irrep ri and an automorphism u is defined by

FSu(ri) :=
1

|G|
∑
g∈G

χri(g u(g)) =
1

|G|
∑
g∈G

tr [ρri(g) ρri(u(g))] . (5.12)

The definition of the FSu is such that for u ≡ id one recovers the original FSI. The
FSu then can be used to determine the nature of an automorphism u. In fact, for an
automorphism u one can show that [3]

FSu(ri) =


+1 ∀ i, if u is a Bickerstaff–Damhus automorphism,
+1 or − 1 ∀ i, if u is class–inverting and involutory,
6= ±1 for some i, if u is not class–inverting and/or not involutory.

58



5.1. Classification of finite groups according to CP outer automorphisms

order |G|
of G is odd

G has
class–inverting
involutory

automorphisms

G has only
irreps of odd
dimension

there is an
automorphism u
with all FSu’s
equal to +1

no yes

no

there exists a basis
with real CG’s

there exists no basis
with real CG’s

yes no yes

no yes

Figure 5.1.: A possible algorithm to determine whether a finite non–Abelian group G
allows for a basis with real Clebsch–Gordan coefficients (figure taken from [3]).

(5.13)

The twisted Frobenius–Schur indicator FSu vanishes for at least one irrep if u is not
class–inverting.

On the other hand, if u is class–inverting, one can show that [3]

FSu(ri) =
1

dim ri
tr
(
Uri U

∗
ri

)
=

1

dim ri
tr (Vri) . (5.14)

It has been shown above that Vri = ±1 if and only if u is involutory, where plus(minus)
signals a(n) (anti–)symmetric representation matrix Uri . Therefore, FSu = ±1 for all
irreps ri if and only if u is a class–inverting involutory automorphism. Here, FSu(ri) = +1
applies if the corresponding transformation matrices Uri are symmetric, while FSu(ri) =
−1 applies to the anti–symmetric case.

It is important to note that the FSu can vanish for automorphisms of order larger than
two even though they are class–inverting. In this case, it is possible to define an extended
version of the indicator, which again has the property to be ±1 for all irreps in the class–
inverting case and 0 for some irrep otherwise. The nth extended twisted Frobenius–Schur
indicator is defined by

FS(n)
u (ri) :=

(dim ri)
n−1

|G|n
∑

g1,...,gn∈G

χri

(
g1 u(g1) · · · gn u(gn)

)
, (5.15)

where n = O(u)/2 for even and n = O(u) for odd–order automorphisms. The first
extended twisted Frobenius–Schur indicator FS(n=1)

u is identical to FSu.
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5. CP and discrete groups

Due to the fact that a group allows for a basis with real CGs if and only if it has a BDA
it is possible to use the FSu in order to develop an algorithm to determine whether this
is the case for a given (non–Abelian) group. A possible strategy to do this is shown in
figure 5.1. One should note here, that in principle only the very last step (mid, bottom)
is necessary to make the decision. The other steps, however, may be faster to compute.
It should be remarked that Abelian groups always have a BDA, hence, always allow for
real CGs.

A computer code to automatically compute the twisted Frobenius–Schur indicator with
the aid of GAP is given in appendix C.2.

5.1.4. Classification of finite groups

Finally, the insights of the previous sections can be used to categorize finite groups into
three classes according to their CP properties. This task can be performed basis indepen-
dently with the aid of the twisted Frobenius–Schur indicator. To do this, the indicator
must be calculated for all involutory automorphisms uα of the specific finite group G.19

A GAP code which automatizes this computation can be found in [3].

There are three types of groups:

Type I: The group G does not have a class–inverting automorphism. Therefore, not all
irreps can simultaneously be mapped onto their respective complex conjugate irrep,
implying that the group does not allow for the definition of a model independent
CP transformation. Equivalently, for each automorphisms uα of G there exists at
least one representation ri for which FS(n)

uα (ri) = 0. Type I groups do not allow for
a basis in which all CGs are real.

Type II: There is at least one automorphism u of G which is class–inverting, that is,
it maps all irreps to their respective complex conjugate representations. Based on
this automorphism it is possible to define a model independent proper physical CP
transformation. There are two sub–cases:

Type II A: There exists a Bickerstaff–Damhus automorphism, i.e. G has a class–
inverting involutory automorphism that can be represented by unitary and
symmetric matrices U . Therefore, G has a CP basis in which all CGs are real.
For the BDA all FSu’s are +1.

Type II B: Even though there exists a class–inverting automorphism it is either not
involutory or it is involutory but cannot be represented by symmetric matrices
U . This automorphism can be used to define a model independent proper
physical CP transformation. However, upon imposing CP as a symmetry the
group G is extended by additional transformations arising from UriU

∗
ri

= Vri .
20

19More precisely, one would have to calculate the nth twisted FS(n)
u for all automorphisms. The difference,

however, is only relevant for groups of the case (iii) of section 5.1.1 for which there is no known example.
20It is not excluded that Vri is actually part of the group to begin with. In this case the group would not

have to be extended. There is no known example for such a case, and it is presently not clear whether
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Hence, there is no CP basis and there exist, in general, “half–odd” or even more
exotic CP eigenstates. For the according class inverting automorphism some
of the FSu’s are −1 while all others are +1. There is no BDA, and, hence, no
basis in which all CGs are real.

group G with
automorphisms u

there is a
u for which
no FS(n)

u is 0

Type II: u defines
a physical CP
transformation

there is an
involutory u
for which all
FS(1)

u are +1

Type II A: there is
a CP basis in which

all CG’s are real

Type II B: there
is no basis in which

all CG’s are real

Type I: generic
settings based on
G do not allow

for a physical CP
transformation

no

yes

yes

no

Figure 5.2.: Algorithm to distinguish between the three types of groups via the twisted
Frobenius–Schur indicator FS(n)

u . The integer n is n = O(u)/2 for even and n = O(u) for
odd order of u (figure taken from [3]).

An algorithm to classify a given group as one of the three types is illustrated in figure 5.2.
Some examples for groups of each type are listed in table 5.1.

There is a possible caveat due to the fact that these statements are made in the most
general, model independent way. Note, that in a specific model it may be possible to
define a proper physical CP transformation even if the model features a discrete group
of the type I, i.e. even though there is no class–inverting automorphism. This is the
case whenever the representation content of a model is chosen such that there is an
automorphism of G which maps all present representations to their respective complex
conjugate representation. Whenever one defines a model based on a type I group in such
a way that a CP outer automorphism is possible, i.e. omits certain representations, this
model is called non–generic. In contrast, a setting is called generic, if the representation
content is unconstrained in this way. These statements will become clearer after studying
the explicit example of a generic setting in section 5.4.1 and the example of a non–generic
setting in section 6.4.

this case is possible at all. All of the type II B groups investigated in this work have to be extended
upon requiring CP conservation.
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5. CP and discrete groups

G Z5 o Z4 T7 ∆(27) Z9 o Z3

SG (20,3) (21,1) (27,3) (27,4)

(a) Examples for type I groups.

G S3 Q8 A4 Z3 o Z8 T′ S4 A5

SG (6,1) (8,4) (12,3) (24,1) (24,3) (24,12) (60,5)

(b) Examples for type II A groups. All Abelian groups are of this type.

G Σ(72) ((Z3 × Z3) o Z4) o Z4

SG (72,41) (144,120)

(c) Examples for type II B groups.

Table 5.1.: Examples for each of the three types of groups: Type I (a), type II A (b), and
type II B (c), with their typical names and GAP SmallGroups library ID.

The following sections give one example each for groups of the type II A, type II B,
and type I. It will be shown how CP transformations can(not) be constructed for each
of the groups and how CPV can arise. Type II A groups in this respect most closely
resemble the well–known case of continuous Lie groups and, therefore, will be treated
first. Secondly, the related type II B groups will be discussed where CP transformations
exist but have to be generalized, i.e. CP transformations will always be accompanied by
non–trivial representation matrices U . Lastly, an example toy model will illustrate how
explicit geometrical CP violation follows from the assumption of a type I symmetry. For
the most interesting case of type I groups, it will also be illustrated how spontaneous
geometrical CP violation arises. A different case of spontaneous geometrical CP violation
will be treated in much more detail, also based on a much more interesting example model,
in section 6.4.

5.2. Type II A groups: “Nothing special”

5.2.1. Explicit example: T′

An example for a group of type II A is the group T′. T′ is listed in the SmallGroup
catalogue of GAP as SG(24, 3). A presentation for T′ is given by

T′ =
〈
S,T

∣∣ S4 = T3 = (ST)3 = e
〉
. (5.16)

Besides the trivial singlet the group has two non–trivial one–dimensional, three two–
dimensional, and one three–dimensional irrep. More details on the group can be found in
[3] where also different basis conventions used in the literature are discussed and compared.

The group T′ has a unique involutory and class–inverting outer automorphism, which,
therefore, swaps every representation with its respective complex conjugate representa-
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5.2. Type II A groups: “Nothing special”

r 10 11 12 20 21 22 3

FSu(r) 1 1 1 1 1 1 1

Table 5.2.: Twisted Frobenius–Schur indicators of the automorphism (5.17) of T′.

tion. A possible representation of this outer automorphism21 is given by

u : (S,T) 7→ (S3,T2) , (5.17)

and it acts on the irreps of T′ as

u : 1i → U1i 1i
∗ , 2i → U2i 2i

∗ , 3 → U3 3∗ . (5.18)

The explicit transformation matrices Uri of u can be deduced from the following argu-
ments. The twisted Frobenius–Schur indicators for u are displayed in table 5.2. From the
fact that all FSu’s are +1 one concludes that u is a BDA. That is, u is class–inverting,
involutory, and has symmetric representation matrices. Consequently, T′ admits a basis
with real CGs. This basis is also the CP basis in which all representation matrices of u
are unit matrices of dimension dim(ri), i.e. Uri = 1dim(ri).

An explicit form of the representation matrices in the CP basis is given by

S3 =
1

3

−1 2 2
2 −1 2
2 2 −1

 and T3 =

1 0 0
0 ω 0
0 0 ω2

 (5.19)

for the triplet representation, as well as by

S2i = − i√
3

(
1
√

2√
2 −1

)
and T2i = ωi

(
ω2 0
0 ω

)
(5.20)

for the doublet representations 2i (i = 0, 1, 2). It is straightforward to check that in this
basis

S∗r = S3
r and T ∗r = T 2

r (5.21)

are fulfilled for every representation. Therefore, the Bickerstaff–Damhus condition (5.8)
is fulfilled in this basis. The corresponding real CGs can be found in [90] and will not be
stated here.

Therefore, any setting based on the group T′ (and possibly other space–time and con-
tinuous internal symmetries) allows for the definition of a CP transformation. In the T′

space, this CP transformation is based on the outer automorphism u (5.17). Only in the
CP basis this transformation acts trivially as ri 7→ ri

∗. In any other basis the accord-
ing, generally non–trivial, representation matrices of u have to be taken into account.

21As always, one particular choice of inner automorphism has been made to state the explicit action of
the outer automorphism. While all other possible choices of inner automorphisms are admissible as
well, they would only differ by a symmetry transformation and, therefore, be physically equivalent.
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5. CP and discrete groups

They can be obtained by basis–transforming Uri as in (4.13). It will generically lead
to inconsistencies if the representation matrices Uri are not properly taken into account.
For example, naively applying the map ri 7→ ri

∗ without taking into account the Uri ’s
generically maps T′ invariants in the Lagrangian to non–invariants, cf. [3, 25]. However,
the existence of u as a consistent CP outer automorphism implies that a consistent CP
transformation for T′ exists in any basis, as has just been demonstrated.

5.2.2. CP violation for type II A groups

Nevertheless, the mere existence of a consistent CP transformation does, of course, not
imply that CP is conserved. In this section, therefore, the CPV properties of models based
on type II A groups shall be analyzed. In addition to a discrete group G, the models under
discussion can have the usual space–time and continuous internal symmetries without
affecting any of the conclusions.

It will be demonstrated that models based on type II A groups behave, with respect
to their CP transformation properties, just as models which are based on semisimple Lie
groups such as, for example, SU(n). This can be attributed to the fact that both, compact
Lie groups as well as type II A groups, allow for involutory complex conjugation (CP)
outer automorphisms which are, in the so–called CP basis, represented by unit matrices.

For definiteness, consider two fields x and y transforming in irreps r(x) = rx and r(y) =
ry of G and assume that they can be contracted to the trivial singlet representation. This
contraction can be written as

(x⊗ y)10
= Cαβ xα yβ = xT C y , (5.22)

where α and β are the vector indices of x and y, and Cαβ denote the CGs of this contrac-
tion. For the last equality the vector indices of x, y, and C have been suppressed, i.e. a
matrix–vector notation has been introduced. Requiring the action to be real, the pres-
ence of (5.22) in a Lagrangian generically requires also the presence of the corresponding
complex conjugate contraction, reading

(x⊗ y)∗10
= C∗αβ x

∗
α y
∗
β = x†C∗ y∗ . (5.23)

Including arbitrary complex couplings c, a G symmetric Lagrangian schematically would
contain

L ⊃ c
(
xT C y

)
+ c∗

(
x†C∗ y∗

)
. (5.24)

In general, the conjugation outer automorphism, i.e. the CP transformation will act on
each, x and y, according to

ri 7→ Uri ri
∗ . (5.25)

For groups of type II it is guaranteed that such a transformation exists. Under the action
of this transformation the above Lagrangian is transformed to

L 7→ L ′ ⊃ c
(
x† UT

rx C Ury y
∗)+ c∗

(
xT U †rx C

∗ U∗ry y
)
. (5.26)
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However, for groups of type II A there exists a CP basis in which Uri = 1dim(ri), and
in which the CGs are real numbers. Working in this basis, the transformed Lagrangian
reads

L ′ ⊃ c
(
x†C y∗

)
+ c∗

(
xT C y

)
. (5.27)

Comparing this with the original form (5.24), one concludes that CP is a symmetry of
this setting if and only if

c ≡ c∗ . (5.28)

Therefore, a conserved involutory CP transformation, as always present in settings with
type II A symmetry, generally requires real couplings. More precisely formulated, the
requirement for CP conservation in type II A groups is that one can find a basis in which all
couplings are real. Arbitrary basis choices and rephasings of field may give rise to so–called
spurious phases [15], which, however, can always be absorbed by basis transformations
(i.e. field redefinitions) if CP is conserved. This argument is straightforwardly extended
to an arbitrary number of fields, where any operator is mapped to its Hermitian conjugate
operator as long as the transformation (5.25) is applicable.

Consequently, CP can be violated in settings with type II A groups only if a sufficient
number of field redefinitions is not possible, such that some of the complex phases of
couplings become physical. A very accessible presentation of criteria for when such a
situation arises (that is, a systematic way of counting rephasing degrees of freedom vs.
complex couplings) is given in [95]. This type of CPV, for example, is present in the
SM. The situation in type II A groups, therefore, is very reminiscent to the well–known
settings with continuous groups: CP transformations are always possible, they generically
constrain the phases of couplings, and can be violated explicitly only if there are more
complex phases in couplings than what can be absorbed by rephasings. However, whether
or not this mechanism really leads to CPV in possibly realistic theories cannot be decided
from a theoretical point of view, but must be clarified by experiments. In this sense, this
type of CPV can never be predictive.

5.3. Type II B groups: Non–trivial CPV and CP half–odd
states

5.3.1. Explicit example: Σ(72)

An example for a group of the type II B is the non–Abelian group Σ(72) which is listed
in the GAP SmallGroups library as SG(72, 41). A minimal generating set for Σ(72) is
given by

Σ(72) =
〈
M,P

∣∣∣ M4 = P4 = (MPMP)3 =
(
PMP2M

)3
(MP)2 PM2 = e

〉
. (5.29)

The group Σ(72) has three one–dimensional (11−3), a two–dimensional (2), and an eight–
dimensional (8) irrep. The character table of the group is shown in table 5.3. More details
of Σ(72) are given in appendix D.2.
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C1a C3a C2a C4a C4b C4c

1 8 9 18 18 18
Σ(72) e M2P2 M2 MP P M

10 1 1 1 1 1 1
11 1 1 1 1 −1 −1
12 1 1 1 −1 1 −1
13 1 1 1 −1 −1 1
2 2 2 −2 0 0 0
8 8 −1 0 0 0 0

Table 5.3.: Character table of Σ(72). The second line gives the cardinality of the conju-
gacy class (c.c.) and the third line gives a representative of the corresponding c.c. in the
presentation specified in (5.29).

r 10 11 12 13 2 8

FSid(r) 1 1 1 1 −1 1

Table 5.4.: Twisted Frobenius–Schur indicators for the identity automorphisms of Σ(72).

The group Σ(72) is peculiar in the sense that every conjugacy class contains along with
an element g also the inverse element g−1. This is equivalent to the fact that all characters
of the group are real. Groups with this property are called ambivalent. Therefore, even
though the outer automorphism group of Σ(72) is the symmetric group22 S3, none of the
outer automorphisms is class–inverting. On the other hand, for ambivalent groups, every
inner automorphism is class–inverting. It is, thus, possible to use the identity automor-
phism to define a consistent model–independent CP transformation. The corresponding
twisted Frobenius–Schur indicators reduce to the ordinary Frobenius–Schur indicators and
they are shown in table 5.4. The value FSid(2) = −1 signals that the two–dimensional
representation is pseudo–real, and therefore, transforms with an anti–symmetric matrix
under this complex conjugation automorphism. Altogether, this discussion shows that
Σ(72) does not have a BDA, and, therefore, also no basis in which all CGs can be chosen
real.

The CP transformation based on the class–inverting and involutory identity automor-
phism acts as

(M,P) 7→ (M,P) y 1i 7→ 1i
∗ , 2 7→ U2 2∗ , 8 7→ U8 8∗ . (5.30)

As usual, the explicit representation matrices are found by solving the corresponding
consistency condition (5.2). Using the basis specified in appendix D.2 as well as the
identity automorphism one finds

U2 =

(
0 1
−1 0

)
, and U8 = 18 . (5.31)

22The outer automorphism group Out(Σ(72)) = S3 acts on the representations as permutation of the
one–dimensional representations 11−3.
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From U2U
∗
2 = V2 = −12 it immediately follows that, upon imposing CP to be conserved,

a model based on Σ(72) will pick up an additional Z2 symmetry acting trivially on all
representations besides the 2 on which it acts as V2 = −1.23 Furthermore, the appearance
of U2 with U2U

∗
2 = −12 immediately signals the presence of CP half–odd states, cf.

section 4.3.
There is another peculiarity related to type II B groups and their behavior under CP

transformations. There are two possible ways to contract the 8 with itself to form a 2

(8⊗ 8)21
and (8⊗ 8)22

, (5.32)

where the respective CGs are given in appendix D.2. Naively, one would expect that
the two “composite” doublets 21 and 22 should transform in the same way under CP as
the “elementary” doublet 2. But this is not the case. While the transformation of the
elementary 2 is given in (5.30), the composite doublets transform under the action of the
complex conjugation automorphism as

21 7→ U2 2∗2 and 22 7→ − U2 2∗1 . (5.33)

That is, the two composite doublets are permuted under the action of the complex con-
jugation automorphism. Furthermore, the composite doublets transform trivially under
the additional Z2 symmetry, in contrast to the elementary 2 which picks up a sign.

5.3.2. CP violation for type II B groups

As for groups of the type II A, the mere existence of a consistent CP transformation
is, of course, not enough to warrant CP conservation. In the following, the non–trivial
consequences of requiring CP conservation in models with type II B groups shall be
investigated and contrasted to the type II A case.

Consider, for example the Σ(72) invariant Lagrangian

L ⊃ c1

(
2⊗ (8⊗ 8)21

)
10

+ c2

(
2⊗ (8⊗ 8)22

)
10

+ h.c. . (5.34)

Imposing CP here requires non–trivial relations amongst the previously unrelated coup-
lings c1 and c2, i.e. operators are not necessarily mapped onto their own Hermitian con-
jugate but may be non–trivially permuted. In fact, the relation on the couplings in (5.34)
is such that all terms must identically vanish in order for CP to be conserved. This can
also be seen directly from the fact that the terms in (5.34) are odd under the additionally
appearing Z2 symmetry.

This shows the crucial difference between type II A and type II B groups. For groups
of the type II A one can always, that is independently of a specific model, find a CP
basis in which field operators, and therefore couplings, are mapped to their own complex
conjugate. In contrast, for a generic model based on a type II B group such a basis
does not exist. Therefore, CP conservation generally enforces non–trivial relations among

23Strictly speaking, the simultaneous presence of both, the faithful 8 and the 2, is required that the Z2

extension appears. The resulting group after requiring CP then is SG(288, 892), which is of type II B.
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otherwise unrelated couplings. This also implies that operators which are charged under
the additionally appearing linear symmetry (generated by V ) are forced to vanish if CP
is to be conserved. Note that this does not show that the conservation of the additional
linear symmetry is sufficient for CP conservation, and this is generally not expected to be
the case.

Altogether, the origin of CPV in type II B groups G can be different than in the con-
tinuous case. CP violation can be tied to certain operators which are permuted under the
action of the CP transformation, and the conservation of an additional linear symmetry
beyond G is a necessary condition for CP conservation. For all operators which are un-
charged under the additional symmetry and mapped to their own Hermitian conjugate
the CP transformation acts as in the type II A or continuous symmetry case, that is,
CP conservation restricts the phases of the corresponding couplings. Therefore, also for
type II B groups it can only be decided experimentally whether or not CP is violated,
and if so, by what magnitude.

Deeply related to the peculiar effects which arise in type II B groups is the fact that
some composite states transform differently under the CP transformation than elementary
states with the same G representation. This shall be discussed more generally in the
following.

5.3.3. Transformation of mesons and constituents

Consider again two generic fields x and y transforming in irreps r(x) = rx and r(y) = ry
of G. In contrast to (5.22) above, take the contraction of x and y to an unspecified irrep
rz. In what follows, (x⊗ y)rz will be referred to as a “meson” and x and y are called the
“constituents”. This contraction can be written as[

(x⊗ y)rz
]
µ

= Cµ,αβ xα yβ = xT Cµ y , (5.35)

where α and β denote the vector indices of x and y, and Cµ,αβ are the CGs for the µth

component of the resulting representation vector of z. In the last step again a vector–
matrix notation has been used.

The complex conjugation automorphism acts on representations as

ri 7→ Uri ri
∗ . (5.36)

As a result, the transformation of the meson can be derived from the transformation of
its constituents,[

(x⊗ y)rz
]
µ

= xT Cµ y 7→ x† UT
rx Cµ Ury y

∗ . (5.37)

However, the representation rz itself also transforms under the automorphism according
to (5.36), such that one may consider the transformation of the meson as[

(x⊗ y)rz
]
µ
7→ (Urz)µν

[
(x⊗ y)∗rz

]
ν

= (Urz)µν
[
x†Cν

∗ y∗
]
, (5.38)

where in the last step the conjugate of (5.35) has been used.
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From the comparison of (5.37) and (5.38) one finds that a meson transforms in consis-
tency with its constituents if and only if

UT
rx Cµ Ury = (Urz)µν Cν

∗ . (5.39)

In general, this condition does not have to be fulfilled even if the matrices Urx , Ury , and
Urz are representations of a class–inverting automorphism and solve the corresponding
consistency condition (5.2). For example, in section 5.3.1 the contractions (8⊗ 8)2i of
Σ(72) have been discussed which do not transform like an elementary 2 under the auto-
morphism, i.e. they do not obey equation (5.39).

The existence of an automorphism for which matrices which solve (5.2) also satisfy
(5.39) is a non–trivial property of a group.24 In the following it shall be investigated under
what conditions (5.39) can be solved. For simplicity, the treatment here is restricted to
class–inverting and involutory automorphisms, remarking that similar considerations of
general automorphisms would certainly be a worthwhile pastime.

To start, it should be noted that there are many redundancies which can obscure
possible solutions of (5.39) in any basis. For example, there are arbitrary (unphysical)
global phase choices possible in the definition of

• the CGs (one global phase for each (x⊗ y)rz);

• each of the explicit transformation matrices Urx , Ury and Urz .

Therefore, a specific basis choice will be made to analyze whether or not (5.39) can be
solved. In particular, the standard form of generalized CP transformations by Grimus
and Ecker [85], as already discussed in section 4.3, will be used. Due to the restriction to
class–inverting and involutory automorphisms the matrices Uri are all either symmetric
or anti–symmetric. Therefore, all of the unitary transformation matrices can be written
in the form

U = W ΣW T , (5.40)

with unitary W and

Σ =



Σ+ = 1 , if U is symmetric,

Σ− =


1

−1
. . .

1
−1

 , if U is anti–symmetric.
(5.41)

The matrices W then can easily be absorbed by a unitary basis change

ri → W †
ri
ri , ρri(g) → W †

ri
ρri(g)Wri ∀ g ∈ G . (5.42)

24A group is, up to isomorphism, defined by its CGs [96].
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In the new basis equation (5.39) takes the simple form

ΣT
rx C

′
µ Σry = (Σrz)µν (C ′ν)

∗
, (5.43)

where C ′µ denotes the basis transformed CGs.

For type II A groups, where one has class–inverting involutory automorphisms with
symmetric matrices (BDAs), all Σri are equal to the identity matrix and the chosen basis
is the CP basis in which all CGs are real [92]. Therefore, (5.43) is trivially fulfilled. This
statement then, of course, holds for all other bases as well. Therefore, for type II A
groups, mesons always transform in consistency with their constituents under the BDA.

In contrast, for type II B groups it strictly depends on the symmetry properties of
Σrx , Σry , and Σrz whether (5.43) can be solved. If both Σrx and Σry are symmetric
(S) or anti–symmetric (AS), Σrz has to be S as well, while for the mixed case Σrz has
to be AS in order for (5.43) to be fulfilled. Whenever the group structure gives rise
to other contractions, the corresponding mesons do not transform in consistency with
fields in the analogous elementary representation. Put another way, this means that
even though the meson transforms as the elementary representation rz under the action
of the group G, the meson transforms differently than the elementary representation rz
under the action of automorphisms of G. The group Σ(72) provides an explicit example
for such representations. Namely, in the S × S contraction 8 ⊗ 8, the representation 2
appears twice. Since 2, however, transforms AS under the contraction it is impossible
that (8⊗ 8)2i transforms in the same way as the elementary 2 of Σ(72). Indeed, as
pointed out in section 5.3.1, the action of the automorphism is such that it permutes the
representations 21 and 22, which is clearly distinct from the transformation behavior of
the elementary 2.

The fact that there are representations which transform equally under G but differently
under automorphisms can be used to classify (composite) representations of G according
to their transformation behavior under the automorphism. This is particularly relevant
for composite trivial singlets, i.e. contractions which would appear in a G invariant La-
grangian. This fact has so far went unnoticed but it could have far reaching, mostly
unexplored, implications some of which will be touched in the following sections and
chapters, and some of which will be commented on at the end of this work.

To conclude the discussion of type II groups, it is remarked once more that the relation
between real CGs and the possibility of having a proper physical CP transformation is
not one–to–one. That is, there are groups (type II B) which do not allow for a basis
with real CGs even though they allow for class–inverting and involutory automorphisms
which can be used to define CP. Typically, however, groups without real CGs have to
be extended by additional symmetries upon requiring CP to be a symmetry. It has not
been investigated whether these additional symmetries prohibit all potentially complex
coupling coefficients and this certainly would be an interesting task to do. Also, it has
been discussed that type II B groups generally feature composite states which transform
differently under CP than elementary states in the same G representation. In the next
section, finally, groups will be discussed which generally are inconsistent with physical CP
transformations. These groups never allow for a basis with real CGs.
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5.4. Type I groups: CP violation from a symmetry
principle

5.4.1. Explicit example: ∆(27)

In the following sections it will be demonstrated that groups of the type I generically give
rise to settings in which CP is violated by calculable complex phases originating from the
CGs of the group.

An example for a type I group is ∆(27) which can be presented as

∆(27) =
〈
A,B

∣∣ A3 = B3 = (AB)3 = e
〉
. (5.44)

The group has eleven irreps out of which nine are one–dimensional (10,11−8) and the
remaining two form a pair of complex conjugate triples (3,3). Further details of the group
can be found in appendix D.3, and also [3]. The outer automorphism group of ∆(27) is
GL(2, 3) ≡ SG(48, 29), which is of order 48, and therefore, bigger than the group itself.
Nevertheless, there is no automorphism which simultaneously maps each representation of
∆(27) to its respective complex conjugate representation. This can easily be checked by
computing the twisted FSu for all automorphisms. Nevertheless, there are automorphisms
which map a subset of irreps to their complex conjugate representations, thereby allowing
for model dependent physical CP transformations in so–called non–generic settings (cf.
the discussion in section 5.1.4). To provoke explicit geometrical CP violation it is, thus,
crucial to include a sufficient amount of irreps in a model such that no complex conjugation
automorphism is possible.

5.4.2. CP violation in a toy model based on ∆(27)

Let us consider a toy model based on the symmetry group ∆(27). The model contains
three complex scalars X, Y and Z transforming as 11, 13 and 18, as well as two fermion
triplets Ψ and Σ, each transforming as 3 under ∆(27). Furthermore, in order to distinguish
Ψ and Σ, a U(1) symmetry is introduced under which Y is neutral, Ψ has charge qΨ, Σ
has charge qΣ, and X and Z both have charge qX = qZ = qΨ−qΣ 6= 0. The renormalizable
interaction Lagrangian is given by25

Ltoy = gX

[
X11 ⊗

(
Ψ ⊗ Σ

)
12

]
10

+ gZ

[
Z18 ⊗

(
Ψ ⊗ Σ

)
14

]
10

+ hΨ

[
Y13 ⊗

(
Ψ ⊗ Ψ

)
16

]
10

+ hΣ

[
Y13 ⊗

(
Σ ⊗ Σ

)
16

]
10

+ h.c. . (5.45)

In components the Lagrangian can be written as

Ltoy = Gij
X X ΨiΣj +Gij

Z Z ΨiΣj +H ij
Ψ Y ΨiΨj +H ij

Σ Y ΣiΣj + h.c. . (5.46)

25A possible cubic coupling Y 3 is not displayed because it is irrelevant for this discussion.
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Figure 5.3.: Tree level and one–loop diagrams contributing to the decay Y → ΨΨ.

In the basis specified in appendix D.3, where also the relevant CGs are given, the Yukawa
coupling matrices take the form

GX = gX

 0 1 0
0 0 1
1 0 0

 , GZ = gZ

 0 0 ω
ω2 0 0
0 1 0

 , and (5.47)

HΨ/Σ = hΨ/Σ

 1 0 0
0 ω2 0
0 0 ω

 . (5.48)

Here gX , gZ , hΨ, and hΣ are complex couplings and ω := e2π i/3.

There are multiple ways to prove that CP is violated by geometrical phases in this
model. For example, consider the decay Y → ΨΨ. It is no contradiction to the appearance
of CPV that neither a U(1) charge asymmetry nor a left–right asymmetry is produced by
this decay, and distinguishing between Y and Y ∗ is possible by measuring their respective
branching fractions to the final states ΨΨ and ΣΣ. Interference between tree–level and
one–loop diagrams (figure 5.3) gives rise to a CP asymmetry

εY→ΨΨ :=

∣∣Γ(Y → ΨΨ)
∣∣2 − ∣∣Γ(Y ∗ → ΨΨ)

∣∣2∣∣Γ(Y → ΨΨ)
∣∣2 +

∣∣Γ(Y ∗ → ΨΨ)
∣∣2 , (5.49)

which is proportional to

εY→ΨΨ ∝ Im [IX ] Im
[
tr
(
G†X HΨGX H

†
Σ

)]
+ Im [IZ ] Im

[
tr
(
G†Z HΨ GZ H

†
Σ

)]
∝ |gX |2 Im [IX ] Im [ω hΨ h

∗
Σ] + |gZ |2 Im [IZ ] Im

[
ω2 hΨ h

∗
Σ

]
. (5.50)

Here IX = I(MX ,MY ) and IZ = I(MZ ,MY ) denote phase space factors and the loop
integral, which are non–trivial functions of the masses of X and Y , and Z and Y , respec-
tively. Assuming that the process is kinematically allowed, the imaginary parts of IX and
IZ provide so–called strong phases (cf. the discussion in footnote 16). Being a physical
observable, εY→ΨΨ is of course invariant under rephasing of the fields and the particular
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basis choice. Indeed, the CP violating weak phases are governed by

Im
[
tr
(
G†X HΨGX H

†
Σ

)]
= 3 |gX |2 Im [IX ] Im [ω hΨ h

∗
Σ] and (5.51)

Im
[

tr
(
G†Z HΨ GZ H

†
Σ

)]
= 3 |gZ |2 Im [IZ ] Im

[
ω2 hΨ h

∗
Σ

]
, (5.52)

which are CP odd basis invariants [97] completely analogous to the Jarlskog invariant
(2.39). Therefore, either one of them being non–zero is generally a sufficient condition for
CPV.

The geometrical phase ω in the Yukawa coupling coefficients originates from the complex
CGs of ∆(27) and enters the CP odd basis invariants as a CP violating phase. Therefore,
this model and similar ones discussed in [3] are the first examples of explicit geometrical
CP violation [26,27]. Nevertheless, the predictivity of the geometrical phase ω is limited
in this toy model by construction. This is because another CP odd phase ϕ := arg(hΨ h

∗
Σ)

is present. In this sense, this model also has a “plain old” source of explicit CP violation
simply due to the fact that there are not enough rephasing degrees of freedom to render
all couplings real.

More recently, also models have been constructed whose only source of explicit CP
violation is a geometrical phase [27,98]. These models, therefore, are predictive w.r.t. the
explicitly CP violating weak phase. Since the discussion there is solely based on CP odd
basis invariants, no CP violating process has been explicitly discussed so far. Simply due
to the length of the corresponding invariants, however, it seems very likely that one has
to go at least to the two–loop level to explicitly identify such a process. In any case, also
these models are based on the type I group ∆(27) and explicit geometrical CP violation
arises because there is no possible class–inverting automorphism [3].

5.4.3. Spontaneous geometrical CP violation with calculable phases

There is one peculiar spot in the parameter space of the above model which deserves
more attention. Note that the CP asymmetry of the Y decay vanishes for the special
choice of parameters (i) MZ = MX , (ii) |gX | = |gZ |, and (iii) ϕ = 0. In fact, it is not
only for this particular process, but CP will globally be conserved in this model for this
choice of parameters. This can be understood by realizing that it is possible to enhance the
“flavor” symmetry ∆(27) by a specific outer automorphism to the bigger group SG(54, 5),
thereby enforcing the specific values of parameters above. However, it is stressed that
CP conservation is not imposed in this symmetry enhancement. Nevertheless, CP is
accidentally conserved at the level of the bigger group. This can be understood from the
fact that SG(54, 5) is of type II A, and the fact that at the level of SG(54, 5) there are
enough rephasing degrees of freedom to absorb all complex parameters.

The outer automorphism w of ∆(27) which extends the group to SG(54, 5) (cf. ap-
pendix D.3 for details) acts as

X
w←→ Z , Y

w7−→ Y , Ψ
w7−→ Uw Σc and Σ

w7−→ Uw Ψc , (5.53)

with Uw stated in equation (D.19).26 This transformation is consistent with the U(1)

26The standard definition Ψc := CΨ
T

= C βT Ψ∗ is used here.
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symmetry (for the choice qΣ = −qΨ) and naturally ensures relations (i)–(iii), thereby also
granting the absence of CPV.

At the level of SG(54, 5), the previously separate fields X and Z are combined to a
doublet, and Ψ and Σc are combined to a hexaplet. Y still transforms in a non–trivial
one–dimensional representation. There are then enough field rephasings possible to render
all coupling phases unphysical, showing that the class–inverting involutory automorphism
of SG(54, 5) is an automatic CP symmetry of the setting. Since relations (i)–(iii) are
fulfilled due to an additional symmetry, they are also stable under renormalization group
running [3].

The stage is now set to demonstrate the spontaneous breaking of CP by calculable
phases. Introducing a U(1) neutral scalar field φ in the real non–trivial one–dimensional
representation of SG(54, 5), the symmetry is spontaneously broken to ∆(27) by the VEV
of φ. The field φ couples to the scalars X and Z and gives rise to a mass splitting after
SSB,

L φ
toy ⊃ M2

(
|X|2 + |Z|2

)
+

[
µ√
2
〈φ〉

(
|X|2 − |Z|2

)
+ h.c.

]
, (5.54)

where µ denotes a parameter of mass dimension 1. At the renormalizable level, φ does not
change the Yukawa couplings of X, Y , and Z. Furthermore, the VEV of φ will generally
also split the fermion masses, thereby making them distinguishable. Relations (ii) and
(iii), i.e. the equalities |gX | = |gZ | and hΨ = hΣ, are still valid after SSB while relation
(i) is destroyed by the VEV–induced mass splitting of MX and MZ . Consequently, at the
level of the residual ∆(27) symmetry there appears again the CPV decay asymmetry

εY→ΨΨ ∝ |gX |2 |hΨ|2 Im [ω] (Im [IX ]− Im [IZ ]) . (5.55)

In contrast to (5.50), however, the CP violating weak phase here is independent of the
couplings and fixed to a geometrical value, i.e. it is calculable.

This toy model exemplifies a simple recipe for the construction of models with pre-
dictable spontaneous CPV. Starting from a type II group GII, which contains (and can be
spontaneously broken down to) a type I group GI, CP conservation is required. By the
spontaneous breaking GII → GI, also CP will, at least generically, be broken. The above
example demonstrates that CPV phases then can be predicted. Whether or not this is a
general feature of such settings is unclear. Also note the peculiar nature of spontaneous
CPV here: The VEV by itself does not break CP directly but only gives rise to a mass
splitting which in turn destroys the previously possible CP transformation. Altogether
CPV can again be related to the fact that there is generally no CP transformation possible
at the level of ∆(27). The SSB construction, here, merely served as a way to isolate the
geometrical weak phase. To date, this toy example is the only known model where CPV
arises in this way and it would certainly be interesting to learn more about this particular
type of spontaneous geometrical CPV.

Note that due to their very similar CP transformation properties it would also be
possible to start this discussion with a continuous group such as SU(n) or SO(n) instead
of a discrete type II group. The general breaking of continuous to discrete groups has
been discussed in [99–102] and more specifically related to this situation in [103]. Most
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notably, for all investigated cases (including the breaking of SU(3) to ∆(27) or ∆(54)) it
has been found that the branching of representations from the continuous to the discrete
group is such that only highly non–generic settings arise in which CP is accidentally
conserved [103]. Nevertheless, so far there has been no general argument or even a no–go
theorem presented which would show that this mechanism of spontaneous CPV is excluded
in the breaking of continuous to finite groups and it would certainly be interesting and
worthwhile to explore this further.

Somewhat different models in which CP is violated spontaneously and geometrically
directly by the VEV have been known for a long time [29] and will be discussed in detail
in chapter 6. For these models as well, geometrical CPV ultimately originates from the
complex CGs of a type I group.

5.4.4. Action of other automorphisms, CP–like symmetries

Having an explicit example at hand, it shall also be explicitly demonstrated that not
every outer automorphism is suitable to define a physical CP transformation. Consider
for example the outer automorphism c which is in every detail discussed in D.3.

The only way in which c can act consistently with the symmetries of the ∆(27) example
model is

X
c7−→ X∗ , Z

c7−→ Z∗ , Y
c7−→ Y ∗ , Ψ

c7−→ C Σ , and Σ
c7−→ C Ψ , (5.56)

where C is given in (3.17), and the fermion U(1) charges are fixed as qΣ = −qΨ. Clearly,
this transformation acts like a charge conjugation on the U(1) because it maps fields
with opposite U(1) charges onto each other. Therefore, imposing c cannot be viewed as
an enhancement of the flavor symmetry. Nonetheless, c is not a physical CP symmetry
either, due to the fact that not all representations of ∆(27) are mapped to their complex
conjugate representations. In particular, c maps 3 7→ 3.

Requiring the transformation c to be conserved, hence, does not entail physical CP
conservation. This can be proved explicitly by noting that none of the relations (i)–(iii)
is fulfilled due to c, implying that the physical CP asymmetry of the Y decay, εY→ΨΨ is
still non–vanishing. Instead, imposing (5.56) enforces equality between the decay rates
of Y → ΨΨ and Y ∗ → ΣΣ. This type of exotic transformation has been termed “CP–
like symmetry” [3], as it acts in some but not all ways very similarly to a physical CP
transformation. This discussion explicitly shows that not every outer automorphism can
serve as a physical CP transformation.

To conclude the discussion of the example model, it has been shown that CPV with
calculable phases in type I groups, in particular ∆(27), exists solely due to the properties
of the symmetry group. That is, the absence of class–inverting automorphisms in type I
groups signals that CP violating complex phases originate from the CGs of the group. It
has been demonstrated how these phases can give rise to so–called explicit geometrical
CP violation. Furthermore, it has also been shown that it is possible to have settings in
which a CP conserving group gets spontaneously broken down to a type I group, for which
CP then is violated by calculable phases. Thus, for both cases – explicit or spontaneous
CP violation – it is possible to predict CP violating phases from group theory.
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5.5. Towards realistic models with discrete flavor
symmetries and drawbacks

Discrete flavor symmetries are a well motivated way to address the flavor puzzle (cf.
e.g. [89, 91, 104] for reviews). Besides reducing the number of parameters and thereby
increasing the general predictivity, non–Abelian discrete groups are able to predict cer-
tain geometrical values for mixing angles [105, 106]. Furthermore, in contrast to models
with continuous symmetries, spontaneously broken discrete groups do not suffer from
the appearance of massless Goldstone modes. Attractive scenarios for the origin of non–
Abelian discrete (flavor) symmetries include string theory [107–111] or the breaking of
non–Abelian continuous gauge symmetries [99–103]. Adding to this list of attractive fea-
tures, it has been shown in this work that discrete groups can predict geometrical values
for complex phases that violate CP explicitly and/or spontaneously.

Nevertheless, there are some drawbacks for models based on discrete groups. Namely,
to explain the observed structure of mixing and masses, groups typically have to be
broken completely in the quark sector [112,113] and possibly to some very limited partial
symmetries in the charged lepton an neutrino sectors [114–117]. Such a breaking of
discrete groups always gives rise to domain walls [118] which are not observed and have
to be argued away [119] (cf. [120]). Furthermore, it is technically difficult to achieve the
complete spontaneous breaking of a group in the first place, as global minima are typically
located at symmetry enhanced points.

A complete and elegant solution to the flavor puzzle based on discrete symmetries
is presently not available. Nevertheless, there are attractive candidates for an expla-
nation of the lepton sector flavor structure based on the residual symmetry approach.
The corresponding highly predictive models typically depend only on a single internal
parameter [121–127].

Regarding the improved knowledge on outer automorphisms and CP transformations
it also seems to be worthwhile to revisit the strong CP problem. However, based on the
most straightforward approaches, so far, only solutions have been found which could be
tracked back to variants of either left–right symmetric models (cf. e.g. [128]) or Nelson–
Barr type constructions [129,130]. A detailed account of the approaches taken has already
been given in [71] and will not be repeated here.
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Discussing (outer) automorphisms the focus so far has been on CP transformations, i.e. on
complex conjugation automorphisms. From the discussions in section 3, however, it is clear
that not all outer automorphisms are CP transformations. That is, CP transformations
are only a subset of all possible outer automorphisms and there are automorphisms which
are unrelated to CP. Examples demonstrating this have already appeared in section 3,
and in the context of a specific toy model in 5.4.3 and 5.4.4.

In this section, the implications of outer automorphisms shall be studied in a wider
context, without the restriction to complex conjugation transformations. At the begin-
ning, two logical possibilities are identified for the possible action of outer automorphisms
on a given physical model. The first possibility allows for a very general definition of
what “maximal” breaking of a given transformation means (including C and P in the
SM). The second possibility for the action of outer automorphisms is more subtle and will
subsequently be investigated in more detail. The implications of possible outer automor-
phisms on the parameter space of a model, as well as for the multiplicity and appearance
of stationary points of potentials, will be discussed in a general manner. As an exam-
ple, a three Higgs doublet model (3HDM) with ∆(54) symmetry will be presented which
features a rich structure of outer automorphisms. It will be shown how the knowledge
of outer automorphisms allows to identify physically redundant regions in the parameter
space of this model. Furthermore, it is demonstrated how the VEVs of the according,
generally involved, Higgs potential can be calculated by solving only a homogeneous linear
equation. Finally, it is explained how the large set of outer automorphisms in this setting
is related to spontaneous geometrical CP violation.

6.1. Possible action of outer automorphism
transformations

Form the discussion in section 3 it follows that outer automorphisms generally act as a
permutation of representations of the same dimensionality. That is, outer automorphisms
map symmetry representations to other other representations, ri 7→ rj. Therefore, there
are two logical possibilities for the action of an outer automorphism in a given model
which contains ri:

(i) rj is not part of the model.

(ii) Both, ri and rj, are included in the model.

In the first case, operators are mapped to other operators which are not present in the
model. As a result, this type of transformations maps a model to an inherently different
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model. The corresponding transformation can never be a symmetry transformation be-
cause it is broken by the representation content of the model. This type of breaking is
called “maximal”.

In the second case, present operators are generally mapped to other, equally present
operators. Hence, such a transformation can also be described as acting in the space of
couplings. The corresponding transformation, as outer automorphism, is not a symmetry
transformation by construction. Consequently, this type of outer automorphism looks like
a possible symmetry transformation which is, however, explicitly broken by the values of
some couplings.

There are two very well–known examples for each case:

(i) The P transformation in the SM: rL 7→ rR for all chiral spinors.

This transformation maps all chiral Weyl fermions to chiral Weyl fermions of the opposite
chirality without affecting the gauge group representation. For example, QL in (3,2)L

1/6

would be mapped to “QR” transforming as (3,2)R
1/6. Such a field QR, however, is not

part of the model. Therefore, parity is broken explicitly and maximally by the choice
of representations of the model. By the variety of outer automorphisms and representa-
tions, for example in discrete groups, it is straightforward to construct more examples for
maximally broken transformations, meaning that C and P are not special in this sense.

An example for the case (ii) is:

(ii) The CP transformation in the SM: r 7→ r∗ for all representations.

This transformation maps all operators to their respective Hermitian conjugate operators.
Alternatively, this can be described as mapping all couplings to their respective complex
conjugate couplings and, therefore, VCKM 7→ (VCKM)∗. Only experimentally, it is known
that CP is not a symmetry because δCKM 6= 0, π. Altogether, the SM CP transformation
is possible in principle but broken explicitly by the values of couplings.

By the variety of outer automorphisms it is clear that also for case (ii) one can find
many more examples in other models. Nevertheless, the complex conjugation automor-
phism acting as CP transformation is somewhat special. This is because if a complex
representation r is present, then the presence of r∗ cannot be avoided by the hermiticity
of the Lagrangian. Therefore, CP cannot be broken “maximally”, i.e. by the absence of
representations.27 Analogously to CP, also outer automorphisms which map ri 7→ ri, i.e.
each present representation to itself, cannot be broken maximally.

The possibility (i) of explicit and maximal breaking will not further be discussed here.
In contrast, the focus will be on the case (ii) for which some general results shall be
derived in the following.

6.2. Redundancies in parameter space

It shall be shown how outer automorphism transformations allow to identify physically
redundant regions in the parameter space of a model. This discussion can be led in a

27The way how CP is broken geometrically in models with type I symmetries, is not by the absence of
representations but by the absence of an adequate automorphism that maps ri 7→ ri

∗ (cf. section 5.4.1).
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very general manner including also gauge and fermion sectors. For clarity, however, let us
focus on the particularly simple example of a pure scalar potential. Consider a model with
multiple (Higgs) scalars which are charged under the SU(2)L × U(1)Y symmetry of the
SM.28 The multiple copies of the Higgs field φa (a = 1, . . . , n) span a new n–dimensional
“horizontal” space. In the most general form, the renormalizable scalar potential can be
written as

V (Φ, λ) = Yab
(
φ†a φb

)
+

1

2
Zab,cd

(
φ†a φb

) (
φ†c φd

)
. (6.1)

Here it is summed over repeated indices, the contraction in the internal SU(2) space is
implicit, Φ := (φ1, . . . , φn), and λ collectively denotes all of the potential parameters.
Hermiticity of the potential requires that

Yab = (Yba)
∗ , and Zab,cd = (Zba,dc)

∗ . (6.2)

Furthermore, due to the internal SU(2) structure,

Zab,cd = Zcd,ab . (6.3)

Consider now a symmetry G acting in the horizontal space with Φ transforming in a
representation rΦ. That is, there is a set of explicit representation matrices ρrΦ

(g), g ∈ G,
acting on Φ in the horizontal space while leaving the potential invariant. Having G as a
conserved symmetry, thus, amounts to requiring

V (ρrΦ
(g) Φ, λ) = V (Φ, λ) , ∀g ∈ G . (6.4)

These requirements fix the functional form of the potential in the sense that, imposing
(6.4), Y and Z have to fulfill the conditions

Yab =
[
ρ∗rΦ

(g)
]
aa′

Ya′b′ [ρrΦ
(g)]b′b , ∀g ∈ G , and

Zab,cd =
[
ρ∗rΦ

(g)
]
aa′

[
ρ∗rΦ

(g)
]
cc′
Za′b′,c′d′ [ρrΦ

(g)]b′b [ρrΦ
(g)]d′d , ∀g ∈ G . (6.5)

Therefore, some Yab and Zab,cd generally will be forced to vanish while others are related
to one another, analogous to (6.3). Illustratively, one should really imagine Y and Z as
n× n and n× n× n× n tensors, respectively, with most of their entries vanishing while
certain symmetric patterns of entries are non–vanishing and partly interrelated. The list
of scalar parameters λ then contains one entry for each independent non–zero component
of Y and Z.

Note that it is always possible to perform a U(n) basis change in the n–dimensional
horizontal space without any physical consequences. That is, physical observables must
be independent of the Higgs basis choice and can only depend on basis invariant quantities
derived from Y and Z, cf. e.g. [15, 64, 131, 132]. Settling to one specific basis, the scalar
parameters λ generally can take values within some domain, the so–called parameter space
of the model. Each of the distinct points in the parameter space generally gives rise to

28None of the arguments presented here depends on any of the chosen continuous internal symmetries.

79



6. Outer automorphisms beyond CP

different physical predictions of a model. Consequently, the parameter space is typically
restricted by physical requirements such as boundedness of the potential, the presence of
charge–conserving minima and so on.

Consider now the action of an outer automorphism u which maps the representation
rΦ to itself with an explicit representation matrix U . That is, U fulfills the consistency
condition (3.10) in the form

U ρrΦ
(g)U−1 = ρrΦ

(u(g)) , ∀g ∈ G . (6.6)

Acting with the outer automorphism on Φ in the potential, one finds that it transforms

V (Φ, λ) 7→ V (U Φ, λ) = V (Φ, λ′) , (6.7)

where λ′ collectively denotes the transformed parameters

Y ′ab = U∗aa′ Ya′b′ Ub′b , and

Z ′ab,cd = U∗aa′ U
∗
cc′ Za′b′,c′d′ Ub′b Ud′d . (6.8)

Due to the property (6.6) of U , it is straightforward to show that29

Y ′ab =
[
ρ∗rΦ

(g)
]
aa′

Y ′a′b′ [ρrΦ
(g)]b′b , ∀g ∈ G , and

Z ′ab,cd =
[
ρ∗rΦ

(g)
]
aa′

[
ρ∗rΦ

(g)
]
cc′
Z ′a′b′,c′d′ [ρrΦ

(g)]b′b [ρrΦ
(g)]d′d , ∀g ∈ G . (6.9)

That is, Y ′ and Z ′ have to fulfill (6.5) in exactly the same way as Y and Z. This can be
understood as a consequence of the fact that u leaves the set of all symmetry transforma-
tions invariant. In other words, u may permute all available symmetry transformations
but writing the symmetry transformations as a list {ρrΦ

}, u would not change the con-
tent of the list. This implies that the functional form of the potential, i.e. which entries
of Y and Z compared to Y ′ and Z ′ are non–zero, is unchanged under the action of the
automorphism u. Nevertheless, the non–zero entries cannot all coincide. That is, Y ′ 6= Y
and/or Z ′ 6= Z must hold. Otherwise u would not be an outer automorphism but an
inner automorphism, i.e. a symmetry transformation to begin with.

As a result of this discussion one notes that the outer automorphism is equivalent to
a mapping in the parameter space of the theory. That is, by the application of u one
moves the theory from a set of scalar parameters λ to a different set of scalar parameters
λ′ without changing the functional form of the potential. This, however, implies that the
two a priori physically distinct spots in the parameter space with values λ and λ′ are
related by a basis transformation. Namely,

V (Φ, λ′) = V (UΦ, λ) = V (Φ′, λ) , (6.10)

describes exactly the same physics for Φ′ := UΦ, as V (Φ, λ) does for Φ. The a priori
physically distinct spots in parameter space λ and λ′, thus, merely differ by a physically
meaningless relabeling of fields [4].

29For example: Y ′ = U†Y U
(6.5)
= U†ρ†Y ρU = U†ρ†UU†Y UU†ρU

(6.6)
= ρ′†Y ′ρ′ has to hold for all ρ′, that

is, for all ρ.
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For clarity, this should be contrasted to the behavior of the potential under general
Higgs–basis changes, which are sometimes also called reparametrization transformations
[64, 133, 134]. The physical predictions of a theory do, of course, not depend on the
specific way the Lagrangian is expressed. Therefore, it is always possible to perform a
field redefinition, i.e. to rewrite the Lagrangian in terms of new fields Φ̃ = UΦ with an
arbitrary unitary matrix U . The resulting potential

V (U−1Φ̃, λ) =: Ṽ (Φ̃, λ) , (6.11)

however, is in general a different function of its arguments than V . Consequently it is, in
general, impossible to pass on the difference in the functional dependence of Ṽ in compar-
ison to V to the scalar couplings λ. This is possible if and only if U is the representation
matrix of an outer automorphism transformation, in which case the functional form of
the potential is unchanged and one has

Ṽ (Φ̃, λ) = V (Φ̃, λ̃) . (6.12)

To sum up, outer automorphism transformations can be used to relate different regions
of the parameter space. For the complete discussion of the physical phenomenology of
a model it is, thus, sufficient to consider only a restricted region of the parameter space
from which the complete parameter space can be reached by outer automorphisms.

So far, only transformations u : rΦ 7→ rΦ have been discussed. The same argument,
however, also holds for any complex conjugation (CP) outer automorphism u : rΦ 7→ r∗Φ.
If such a CP transformation is not a symmetry, it is actually well–known that it maps
the theory to a different spot in the parameter space. In the simplest cases this implies
a mapping of all parameters to their respective complex conjugate parameters. The
resulting theory is physically equivalent to its pre–image in the sense that it describes the
same dynamics as before but for the CP conjugate set of fields. Whether one describes
the underlying physics with fields or their respective conjugates, however, is completely
arbitrary.

As a final remark, note that this discussion extends to gauge and fermion sectors of
a theory in a straightforward way. Furthermore, if there are otherwise indistinguishable
fields in representations r and r′, then this discussion also applies to outer automorphisms
u which map r to r′.

6.3. Outer automorphisms and VEVs

In the previous section it has been established that settings which allow for outer auto-
morphisms have physical degeneracies in the parameter space. In this section the presence
of outer automorphism transformations shall further be used to establish an interesting
relation between different stationary points of potentials. For this, assume that the po-
tential V (Φ, λ) has a VEV Φ0(λ) := 〈Φ〉 which is, in general, a continuous function of the
couplings λ. Therefore, for all values of λ one has

∇Φ V (Φ, λ)|Φ0(λ) = ∇Φ∗ V (Φ, λ)|Φ0(λ) = 0 , (6.13)
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where ∇Φ(∗) denotes the differentiation with respect to (φ1, . . . , φn) or the complex con-
jugate fields, respectively. Furthermore, assume that there is an outer automorphism of
the setting mapping Φ 7→ Φ′ = UΦ such that the potential fulfills (6.10), i.e. V (Φ′, λ) =
V (Φ, λ′).

The claim is that the potential V (Φ, λ) then has, besides Φ0(λ), also the stationary
point UΦ0(λ′). This assertion is proven by noting that [4]

∇Φ V (Φ, λ)|U Φ0(λ′) = U−1∇Φ V (U Φ, λ)
∣∣
Φ0(λ′)

= U−1∇Φ V (Φ, λ′)
∣∣
Φ0(λ′)

= 0 , (6.14)

and analogously for the derivative w.r.t. Φ∗. Here it has been used that U is invertible, the
second equality follows from (6.10), and the last equality is a direct consequence of (6.13).
In case the outer automorphism does not map rΦ 7→ rΦ but rΦ 7→ r∗Φ, i.e. Φ 7→ UΦ∗, a
completely analogous argument holds for the new stationary point UΦ∗0(λ′).

In summary, one concludes that if there is an outer automorphism transformation u
acting consistently with the symmetries and representations of a model then it is possible
to obtain new VEVs from a known one 〈Φ(λ)〉 simply by taking

〈Φ(λ)〉new =

{
U 〈Φ (λ→ λ′)〉 , if u : rΦ 7→ U rΦ , or

U 〈Φ (λ→ λ′)〉∗ , if u : rΦ 7→ U r∗Φ .
(6.15)

This implies that stationary points of potentials always appear in complete multiplets
of the available group of outer automorphisms.

Note that there is a very close similarity to the well–known so–called group orbits of
VEVs. That is, in close analogy to above one can prove that if 〈Φ(λ)〉 is a VEV of a
potential, then so is ρrΦ

(g)〈Φ(λ)〉, ∀g ∈ G. All stationary points which are obtained by
the action of all group elements on a given VEV form a so–called group orbit. Stationary
points, thus, always appear in complete permutation representation multiplets of the
symmetry group.

In complete analogy to the symmetry group orbit, an orbit of VEVs is defined by the ac-
tion of all possible outer automorphism transformations on a given VEV à la (6.15). Since
non–trivial outer automorphism transformations are always distinct from the symmetry
transformations this new orbit is, in fact, ‘perpendicular’ to the group orbit.

There is a close relation of the symmetry group orbit to the pattern of spontaneous
symmetry breaking. That is, G is spontaneously broken to a subgroup H ⊂ G, if and
only if the VEV is invariant under the action of H, i.e. ρ(g)〈Φ〉 = 〈Φ〉 ∀g ∈ H, and non–
invariant under elements of the coset G/H. The orbit stabilizer theorem (cf. e.g. [135, p.
80]) then yields the number of distinct but physically equivalent VEVs contained in the
group orbit as |G|/|H|. The VEVs in each orbit are physically equivalent because they
are only distinguished by a symmetry action, also implying that they break to isomorphic
subgroups. It is this presence of several isolated but equivalent minima which typically
gives rise to domain walls in the spontaneous breaking of discrete groups [118,120].

In complete analogy, there are now also the ‘perpendicular’ orbits of VEVs resulting
from the action of the outer automorphism group. Since physics does not change under
the application of a globally available outer automorphism transformation, also VEVs
belonging to the same outer automorphism orbit deserve to be called physically equivalent.
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If, however, the corresponding outer automorphisms are only available at the level of the
potential while being explicitly and maximally broken by other sectors of the theory, then
the stationary points will no longer be physically equivalent. Nevertheless, in this case one
may still use the available outer automorphisms of the potential to analyze the stationary
points.

Just as for the case of symmetry transformations, also the length of orbits under outer
automorphism transformations generally does not exhaust all outer automorphisms. That
is, just as for H ⊂ G, there is some subgroup OΦ ⊂ Out(G) of the outer automorphism
group which leaves a given VEV invariant. This is very interesting because it implies
that if a theory allows for outer automorphisms then the vacuum of the theory may have
additional (emergent) symmetries – recruited from the outer automorphism group. By
construction, these symmetries were not realized in the original Lagrangian, and they are,
therefore, not exact. Nevertheless, it is possible to construct scenarios in which the VEV
establishes the emergent symmetry in a complete sector of a theory, for which symmetry
breaking effects then only arise at higher order. This point has never been noted before
and it is conceivable that there are interesting applications of this mechanism of emerging
symmetries.

Altogether, in this section it has been shown that stationary points of a potential
only appear in multiplets which are permutation representations of the available outer
automorphism group. That is, with a given VEV one may simply apply (6.15) to obtain
others. Furthermore, as there generally are fixed points in the action of Out(G) on a given
stationary point, the vacua of theories with outer automorphisms can give rise to emergent
symmetries. In combination, both facts can be employed in order to compute stationary
points of potentials in a novel way. For instance, in section 6.4.4 it will be shown how
the VEVs of an example model can be computed by solving only a simple homogeneous
linear equation instead of a complicated system of coupled polynomial equations.

6.4. Explicit example: 3HDM with ∆(54) symmetry

6.4.1. The model

In order to illustrate and substantiate the findings of the last sections, this section provides
an explicit example for the presence of outer automorphisms beyond CP in quantum field
theories. The model under discussion is a 3HDM with ∆(54) symmetry. That is, in a
new horizontal space three copies of the SM Higgs field are assumed to transform like a
triplet representation of the group ∆(54). In foresight of this discussion, all possible outer
automorphisms of ∆(54) have already been derived in section 3.

The model under discussion is actually well–known in the literature as the 3HDM with
∆(27) symmetry introduced by Branco, Gerard, and Grimus [29]. It has been extensively
studied in the literature [25,136–146], because it is the prime example for the occurrence
of so–called spontaneous geometrical CP violation. The term spontaneous geometrical CP
violation refers to spontaneous CPV by relative complex phases of several VEVs, which
are independent of the exact values of couplings and, therefore, calculable directly from
the underlying symmetry of the model. Several efforts have been undertaken to improve

83



6. Outer automorphisms beyond CP

the understanding of geometrical CP violation in the original model [25,136,141], but also
for potentials of higher order [139] and in multi–Higgs models [140, 144]. Nevertheless, a
complete understanding of geometrical CPV and the origin of calculable phases has not
been achieved to date.

The approach which is used here closely follows [4]. It is different from previous treat-
ments in the literature and strongly motivated by the unavoidably present outer auto-
morphisms of the model.

To simplify the discussion, the internal SU(2)L structure will not be displayed and
H := (H1, H2, H3)T stands for a vector of three EW doublets transforming like a triplet 3
under ∆(54).30 The basis choice for the triplet representation can be found in section 3.3.1,
along with all other necessary group theoretical details. Even if just ∆(27) is required as
discrete symmetry, the actual discrete symmetry group of the Higgs potential turns out to
be ∆(54) [29,136–139]. This is because the continuous symmetries and the representation
content of the model are such that the ∆(27) potential has an accidental symmetry
corresponding to H 7→ CH, which automatically enlarges the discrete symmetry group
from ∆(27) to ∆(54) (cf. appendix D.3).

The scalar potential can be written as

V (H,~a) = −m2H†iHi + a0 I0(H†, H)+

+ a1 I1(H†, H) + a2 I2(H†, H) + a3 I3(H†, H) + a4 I4(H†, H) ,
(6.16)

where m denotes the mass term and ak (k = 0, .., 4) are five real quartic couplings corre-
sponding to the five real quartic invariants Ik(H

†, H). The quartic invariants are defined
as the five possible singlet contractions of (3⊗ 3)⊗ (3⊗ 3) in ∆(54):

I0(H†, H) :=
[(
H† ⊗H

)
10
⊗
(
H† ⊗H

)
10

]
,

I1(H†, H) :=
1√
2

[(
H† ⊗H

)
21
⊗
(
H† ⊗H

)
21

]
10

,

I2(H†, H) :=
1√
2

[(
H† ⊗H

)
23
⊗
(
H† ⊗H

)
23

]
10

,

I3(H†, H) :=
1√
2

[(
H† ⊗H

)
24
⊗
(
H† ⊗H

)
24

]
10

,

I4(H†, H) :=
1√
2

[(
H† ⊗H

)
22
⊗
(
H† ⊗H

)
22

]
10

.

(6.17)

The necessary CGs as well as the explicit form of the invariants is given in appendix D.4.
This way of writing the potential differs from the originally chosen form [29] or more
recently used forms [137, Eq. (14)] (cf. [4] for a detailed translation of parameters). While
the basis used for the ∆(54) (and ∆(27)) triplet generators is exactly the same in all
approaches, the difference lies in how the Lagrangian is written in terms of linear com-
bination of the quartic ∆(54) symmetry invariants. While, of course, any choice for the
basis of invariants is admissible, there is somehow no clear motivation for the chosen basis

30Due to the fact that C and −C only differ by a global phase it is completely irrelevant for the whole
discussion whether H is assumed to transform in 31 or 32 of ∆(54).
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in the space of invariants in [29] and [137]. In the formulation used here, the linearly inde-
pendent symmetry invariants are derived directly from the direct product decompositions
of the group. The benefit of this “derived” basis of symmetry invariants will become clear
upon considering the action of outer automorphisms.

In this parametrization the potential is bounded below if and only if [4]

0 < a0 + a` , for ` = 1, .., 4 . (6.18)

Assuming that the vacuum preserves the electric charge31 the doublet VEVs can be
parametrized as

〈0|Hi |0〉 ≡ 〈Hi〉 :=

(
0

vi e
iϕi

)
for i = 1, .., 3 , (6.19)

with vi > 0 and 0 ≤ ϕi < 2π. In a compact notation, the triplet of EW doublet VEVs
will be denoted by

〈H〉 = (v1 eiϕ1 , v2 eiϕ2 , v3 eiϕ3)T . (6.20)

A complete discussion of the analytical minimization of the potential can be found in [4].
Earlier analyses have already shown that this potential gives rise to very specific stationary
points with discrete physical phases [29, 136]. A careful analysis reveals that the minima
of the potential can be grouped into four distinct classes I− IV, with a representative of
each class given by [4, 139,147]

〈H〉I = v1

1
1
1

 , 〈H〉II = v2

ω1
1

 , 〈H〉III = v3

ω2

1
1

 , 〈H〉IV = v4

√3
0
0

 , (6.21)

where as usual ω := e2π i/3. Note that only the depth of each minimum depends on the
parameters of the potential as

|v`| :=
m√

2 (a0 + a`)
, for ` = 1, .., 4 , (6.22)

while the directions, including the relative phases, of the VEVs are fixed independently
of the potential parameters. Therefore, the direction of each of the VEVs, including the
relative phases, is stable under renormalization group (RGE) running [29]. Which of the
stationary points in equation (6.21) actually is the global minimum depends on the values
of the couplings a`. The stationary point with the smallest a` hosts the global minimum,
as the value of the potential at the different stationary points is V

(`)
min = −3

4
m4(a0 + a`)

−1.
For completeness, note that there is one more class of stationary points which can never

host the global minimum. These are given by

〈H〉V = v5 (0,−i,+i)T , (6.23)

31In fact, this assumption is automatically fulfilled by any global minimum of this potential, cf. [4, App.
B.1].
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with

|v5| =
m
√

3√
4 a0 + a1 + a2 + a3 + a4

. (6.24)

These types of stationary points typically correspond to saddle points, at which the po-
tential has the value V

(5)
sad = −3m4(4a0 + a1 + a2 + a3 + a4)−1.

Each of the distinct classes of stationary points I − V actually corresponds a whole
group orbit of physically equivalent stationary points which can be reached by acting on
any of the given vectors with all available symmetry transformations. Furthermore, the
overall global phase of each of the VEV triplets is physically meaningless since it can
always be shifted by a global hypercharge rotation.

As has been remarked before, physical quantities cannot depend on the chosen basis.
It is, therefore, useful to consider basis–invariant quantities. The lowest order CP odd
basis invariant quantity in this model can be written as [148]

I6 = − 9
√

3 (a1 − a2)(a1 − a3)(a1 − a4)(a2 − a3)(a2 − a4)(a3 − a4) . (6.25)

6.4.2. Action of outer automorphisms

The stage is now set to perform a complete analysis of the ∆(54) Higgs potential with
respect to the action of outer automorphism transformations. The complete outer auto-
morphism group of ∆(54) is S4, the permutation group of four elements. All the necessary
details to understand the following section have been derived in section 3.3.1. In partic-
ular, recall the outer automorphism transformation of ∆(54) triplets in (3.21), and the
corresponding transformation of doublets in (3.25). All elements of the outer automor-
phism group can be obtained as compositions of the generating outer automorphisms s
and t.

The only fundamental (i.e. non–composite) ∆(54) representation present in the 3HDM
example model is the triplet H in 3i. With respect to triplet representations the outer
automorphism group of ∆(54) splits into two kinds of transformations:

(i) Transformations which map 3i 7→ U 3i, and

(ii) Transformations which map 3i 7→ U 3∗i .

U here stands for an arbitrary representation matrix of the respective outer automor-
phism transformation which can for each specific case be obtained as solution to (3.10).
All representations which can be reached as an image of 3 under outer automorphism
transformations are automatically present in the model. Therefore, none of the transfor-
mations is broken maximally (cf. section 6.1) and the complete set of outer automorphisms
is available for the 3HDM example model.

One finds that there are in total 12 possible transformations of the first category (i)
corresponding to all even permutations of four elements in S4 (the identity, three trans-
formations of order two, and eight of order three). In the second category (ii), there are
12 possible transformations corresponding to all odd permutations of four elements in S4
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(six of order two and six of order four). For the second category this counting has been
done before and is consistent with the results of [93].

Consider now the action of the outer automorphisms on the triplet of Higgs doublets.
If a transformation (i) would be conserved, this would increase the linear symmetry of
the theory (which may accidentally also lead to CP conservation). In contrast, any trans-
formation (ii) would warrant CP conservation (and, if not involutory, increases the linear
symmetry in addition). However, as they are outer automorphisms, none of the above
transformations is a symmetry of the ∆(54) potential to begin with. Both types of trans-
formations generally map the theory to different spots in the parameter space and, hence,
can be treated on an equal footing.

Action on the parameters. In section 6.2 it has been shown that outer automorphism
generally act non–trivially on the couplings of a model, thereby allowing for the identifi-
cation of physically equivalent regions in the parameter space. Specifically for this model,
it is straightforward to infer the corresponding transformations of the couplings along the
lines discussed around (6.10).

This shall be illustrated with a few examples. The parameters m and a0 stay inert
under the action of all outer automorphisms. The transformation t, for instance, is of
category (i). Acting with t on the triplet H, i.e. mapping H 7→ UtH in (6.16) with Ut as
given in (3.20), is equivalent to the parameter mapping

(a1, a2, a3, a4) 7→ (a1, a3, a4, a2) . (6.26)

Following the discussion in section 6.2 this shows that a model with parameters (a1, a2, a3, a4)
is physically equivalent to a theory with parameters (a1, a3, a4, a2). That is, a model with
the second set of parameters makes w.r.t. the fields (UtH) exactly the same physical
predictions as a model with the first set of parameters w.r.t. the fields H.

Another example for an outer automorphism of the category (i) is given by the trans-
formation s ◦ t−1 ◦ s ◦ t. This transformation is equivalent to the parameter mapping

(a1, a2, a3, a4) 7→ (a2, a3, a1, a4) . (6.27)

Again, this transformation identifies parameter regions which are physically equivalent.
Let us now discuss outer automorphisms of the category (ii). A priori, all outer auto-

morphisms which map 3 to 3∗ are possible physical CP transformations of this model.
That is, any of these transformations, if conserved, warrants the vanishing of all CP odd
basis invariants. Consider, for example, the outer automorphism s. It is straightforwardly
confirmed that this transformation is equivalent to the mapping

(a1, a2, a3, a4) 7→ (a3, a2, a1, a4) . (6.28)

In this case this implies that a theory with parameters (a1, a2, a3, a4) describes, with
respect to H, precisely the same dynamics as a theory with parameters (a3, a2, a1, a4)
with respect to (UsH

∗). Furthermore, s is a CP symmetry of the theory if and only if the
couplings fulfill the relation a1 = a3.
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A supposedly very particular example is what can be called the canonical CP transfor-
mation in the chosen basis.32 On the triplets this transformation acts as 3 7→ U 3∗ with
U = 1. The corresponding outer automorphism transformation is given by s◦t−1◦s◦t◦s.
In parameter space this transformation corresponds to the mapping

(a1, a2, a3, a4) 7→ (a1, a3, a2, a4) . (6.29)

Also here, this implies that both parameter regions are physically degenerate and this CP
transformation is conserved if and only if a2 = a3. Indeed, this already hints at a more
general principle, namely, CP is conserved whenever (at least) two of the four parameters
(a1, a2, a3, a4) are equal.

Inspecting the contractions (6.17), one realizes that one could also have used the trans-
formation of the intermediate (composite) doublet representations, cf. equation (3.25),
involved in the construction of the quartic invariants in order to arrive at the results
(6.26)–(6.29). The complete set of outer automorphisms act as all possible permutations
of the four doublets 21−4 of ∆(54), corresponding also to all possible permutations of
the four individual ∆(54) invariants I1−4(H†, H). Consequently, the outer automorphism
group S4, being the full permutation group of four elements, also describes all possible
permutation of the four couplings a1−4.

The behavior of the symmetry invariants I1−4(H†, H) is also a prime example for the
remarks at the end of section 5.3.3. Even though composites here are transforming like
the elementary states, the derived ∆(54) symmetry invariants are clearly distinguished
by, and hence may be classified according to, their transformation behavior under the
outer automorphisms.

This shows the advantage of parametrizing the Lagrangian in terms of the derived
invariants: The independent invariants and, hence, also the couplings, are nicely permuted
under the action of the outer automorphism. In contrast, in the conventional forms of the
Lagrangian [29,137] separate invariants mix under the action of the outer automorphism.
This unnecessarily complicates the action on the couplings [4] and obscures the underlying
structure.

Altogether, the possible outer automorphism transformations indicate that the three
Higgs doublet potential with ∆(54) symmetry and a given set of parameters is physically
equivalent to every potential which can be obtained by any permutation of the four
parameters a1−4. This equivalence can be made explicit by a field redefinition for all
even permutations or by a complex field redefinition, i.e. a CP transformation, for all odd
permutations of the a1−4, respectively.

Action on the VEVs. From the discussion in 6.3 it is clear that the outer automorphisms
also act non–trivially on the stationary points of the potential. In fact, one can even use
outer automorphism to constrain – and in this specific case even fully compute – the form
of all stationary points of the potential. This will be detailed in section 6.4.4 below. For
now, the plain observation of how outer automorphisms act on the VEVs is sufficient.

32In fact, this transformation is nothing special. None of the order two CP transformations is distinguished
with respect to any other order two CP transformation. In particular, it only depends on the chosen
basis whether a given CP transformation would be called generalized or canonical.
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Consider, for instance, the outer automorphism transformation t. Acting with the
explicit representation matrix Ut in (3.21) on the triplets of stationary points in (6.21),
one finds that the VEVs are permuted as

I 7→ I and II 7→ III 7→ IV 7→ II . (6.30)

The capital roman numerals here denote the different types of VEVs as defined in (6.21).
Note, however, that the resulting vectors are only valid stationary points of the potential
if the arguments of their absolute values v`(a`) are also permuted in the same way. For
example, transforming

〈H〉II 7→ 〈H〉′II = Ut 〈H〉II|a2→ a3
= ω2 〈H〉III , (6.31)

only results in an actual stationary point of the potential if the argument of the modulus
of the VEV is also transformed consistently with the outer automorphism, i.e. a2 7→ a3.
For t, the complete transformation of parameters is stated in (6.26). This nicely agrees
with the permutations of the categories of VEVs in (6.30), corresponding to the general
rule (6.15).

It should be remarked, however, that (6.30) here only holds up to a global rephasing
of each of the VEVs in (6.21). This is not a general feature but merely an artifact of the
inital global phase choice for each to the VEVs in (6.21) to begin with. The arbitrary
global phases in (6.21) have been chosen such as to make the connection to the previous
discussions of this model in the literature. This is not necessary and in (6.45) below, for
example, global phases of the VEVs are chosen such that the transformations Us and Ut
and, therefore, all outer automorphisms, act as a permutation of the VEVs without the
need of an additional rephasing.

As another example, consider the transformation s. Because s maps 3i to 3∗i , the VEVs
in this case have to be conjugated in addition to the multiplication with Us and the formal
replacement of their moduli’s arguments. The action on a VEV then is given by

〈H〉I 7→ 〈H〉′I = Us 〈H〉∗I |a1→ a3
= − C 〈H〉III . (6.32)

This transformation permutes VEVs of the different types according to

I ←→ III , II 7→ II and IV 7→ IV , (6.33)

again completely consistent with the transformation of the parameters in (6.28).
As can be seen from (6.32), s again permutes the VEVs only up to a global phase. In

the same way as for t, this can be avoided by making a globally consistent phase choice for
all VEVs such as the one given in (6.45) below. In addition, however, the transformation
s permutes some of the VEVs only up to an inner automorphism c as apparent in (6.32).
As any of the categories of VEVs in (6.21) is, strictly speaking, only defined modulo inner
automorphisms to begin with, this is not an issue. In the systematic construction pre-
sented in section 6.4.4 the correct inner automorphisms appear automatically at the right
places. In a manual construction the appropriate inner automorphisms can, for example,
be inferred from the appearance of inner automorphisms in the doublet transformations
(3.25) while carefully taking into account the definition of the invariants (6.17).
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Altogether, the two transformations s and t generate all possible permutations of
the four classes of VEVs I − IV. That is, completely analogous to the four invariants
I1−4(H†, H) and the four corresponding potential parameters a1−4, also the four cate-
gories of stationary points I − IV transform as a 4–plet under the outer automorphism
group S4. This shows that each of the classes of stationary points I − IV is physically
equivalent as they conserve isomorphic subgroups.

In an analogous way one finds that the category V of stationary points (cf. (6.23))
transforms as a trivial singlet under the action of the outer automorphisms. That is, all
stationary points within V are always mapped back to a stationary points which are also
part of V. This is consistent with the transformation of (6.24) under the action of the outer
automorphism on the couplings. Since (6.24) contains a1−4 in a completely symmetric
manner, it is invariant under the permutations induced by the outer automorphism.

6.4.3. Physical implications

Parameter space degeneracies. As a direct consequence of the preceding discussion
the complete physical phenomenology of the potential is already contained in a restricted
region of the parameter space. Outer automorphisms, here, correspond to all possible
permutations of the parameters a1−4 implying that a possible choice for a set of physi-
cally non–degenerate parameters is a1 ≤ a2 ≤ a3 ≤ a4. All other regions of the parameter
space are physically equivalent because they can be related to this wedge by outer auto-
morphisms.

If and only if two or more parameters are equal, the conserved symmetry group of
the model is larger than ∆(54). Therefore, first consider the interior of the wedge,
a1 < a2 < a3 < a4. For this choice of parameters the symmetry of the model is exactly
∆(54) and CP is explicitly broken. If an order two CP symmetry should initially be con-
served two out of the four parameters a1−4 have to be equal. This statement follows from
the fact that CP transformations correspond to odd permutations of the four parameters,
and it can nicely be understood also by the means of the CP odd basis invariant (6.25).

If more than two out of the four parameters a1−4 are equal this automatically ensures
explicit CP conservation but also implies an enhancement of the linear symmetry of
the model. If there are two pairs of equal parameters the discrete symmetry of the
potential is enhanced from ∆(54) to G̃ := ((Z3 × Z3) o Z3) o Z4

∼= SG(108, 15). In case
three (or more) out of the four parameters are equal, then the symmetry is enhanced
to a continuous group. This is completely in agreement with the maximal “realizable”
symmetry Σ(36) ∼= G̃/Z3 of a 3HDM as found in [137,138].

Spontaneous geometrical CP violation. The possibility of spontaneous (geometrical)
CP violation in this model shall be discussed in the following. In general, CP is sponta-
neously violated by the vacuum of the Higgs potential if and only if there is no U fulfilling

〈H〉 = U 〈H〉∗ , (6.34)

while at the same time the transformation H 7→ UH∗ is a CP symmetry of the Lagrangian
(cf. e.g. [29]). In contrast, if there is a U which fulfills (6.34) without being a symmetry of
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the Lagrangian, this would be an emergent CP symmetry of the vacuum (cf. the discussion
in section 6.3).

Two important results from the preceding discussion are worth to be stressed again.
Firstly, each of the classes of stationary points I− IV is physically equivalent. Secondly,
one may without loss of generality focus on a wedge of the parameter space with hierar-
chical ordering of the parameters a1−4, as all other orderings of parameters are physically
equivalent.

In order to obtain a setting with spontaneous CP violation, CP, of course, has to be
a conserved symmetry to begin with. According to the previous discussion, this implies
that a pair of the parameters a1−4 must be equal. For definiteness, consider the CP trans-
formation induced by the outer automorphism s. All other order two CP transformations
can be obtained from s by the action of outer automorphisms, implying that they are
physically equivalent. Therefore, it is possible to focus on s without loss of generality.
The according CP transformation is a symmetry of the Lagrangian if and only if a1 = a3,
cf. (6.28). Furthermore, from (6.33) it follows that s permutes the VEVs of category I with
those of category III, while it leaves the VEVs of category II and IV invariant. From the
discussion after (6.22) it is clear that the global minimum of the potential is given by the
category of VEVs in (6.21) which features the smallest a`. Considering the phenomenol-
ogy of the global minimum of the theory in case the CP transformation s is conserved,
there are then two possible physically distinct scenarios: either a2 < a4 < a1 = a3, or
a1 = a3 < a2 < a4.33

In the first case, the global minima are given by VEVs of the category II (or IV, which
would not make a difference). As this category is invariant under the action of s, it is
always possible to find a transformation which solves (6.34) while at the same time being
also a symmetry of the Lagrangian. Consequently, CP is conserved by the Higgs VEV in
this case.

In the second case, the global minima are by VEVs of the categories I and III which
are not invariant under s implying that (6.34) cannot be fulfilled and this transformation
is spontaneously broken by the Higgs VEV. In order to claim that this also implies the
spontaneous violation of CP, however, one has to assure that there is no other CP sym-
metry of the Lagrangian which fulfills (6.34). Regarding the choice of parameters, this is
trivially achieved. Given that there is no equal pair of parameters besides a1 and a3 by
assumption, the only conserved CP symmetry at the level of the Lagrangian is s. Thus,
CP in this case is indeed spontaneously violated by the VEVs of categories I and III.
Spontaneous CP violation, here, is geometrical in the sense that all CP violating phases
are independent of the potential parameters and can be calculated from the necessarily
complex CGs of the symmetry group ∆(54) [3].

It may appear surprising that a triplet VEV of category I with only real entries, i.e.
no relative phases between the individual Higgs VEVs, can give rise to spontaneous CP
violation. Equally surprising may be the fact that a triplet VEV which does have fixed
relative phases between the Higgs VEVs, such as II, is CP conserving. However, as it

33In principle, one could also have a2 < a1 = a3 < a4 but concerning the behavior of the global minimum
this would be equivalent to the case a2 < a4 < a1 = a3. Also note that the relative ordering of a2 and
a4 is completely irrelevant for the discussion here.
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is clear from this discussion, spontaneous CPV always appears in a combination of an
initial CP transformation and a VEV. In case s is spontaneously broken by a VEV of the
category I, the geometrical phases are carried within the explicit transformation matrix
Us. For any specific CP transformation in this model, one may always perform a basis
transformation such that it is represented by U = 1. In the new basis, the geometrical
CPV phases would then reside in the VEV, whereas VEVs which do not lead to CPV
would be all real.34

As an aside, note that from the relation a1 ≡ a3 it follows directly that vacua of the
categories I and III are energy degenerate. This also follows from the fact that s has
been added to the symmetry transformations, because the vacua then are part of one and
the same group orbit. However, as the two vacua are, in principle, distinguishable, there
will be domain walls present after the spontaneous breaking [118]. This, of course, is
always the case if there are multiple isolated vacua related by discrete group operations.
The delicacy in this case is that the different domains have different properties also with
respect to CP.35

Another remark concerns the emergence of approximate symmetries in the vacuum of
the potential. The previous discussion shows that for each of the VEVs, there are always
non–trivial stabilizers originating from the group of outer automorphisms. Consider, for
example, a VEV of category I. While VEVs of this category spontaneously break the
transformation s, they are invariant under other outer automorphisms whose action only
involves the permutation of stationary points of the other categories. In this way also CP
could appear as an emergent symmetry.

Outer automorphisms and other sectors. In order to investigate outer automorphisms
in possibly realistic theories it is, of course, not sufficient to limit the focus only to the
Higgs potential. Therefore, it should be commented on the validity of the whole discussion
once the Higgs fields are coupled to other sectors of a model, such as the Yukawa couplings
to fermions.

Firstly, it is clear that if the new sector does not obey the full symmetry group of
the Higgs potential but only a smaller group, then the whole discussion can only be led
based on the outer automorphisms of that group. However, even if the symmetry is not
reduced by the addition of a new sector, the new sector generically will have fields in
representations other than the Higgses’. This typically reduces the number of available
outer automorphism transformations. That is, outer automorphisms which are available
at the level of the Higgs potential might be explicitly and maximally broken by the
additional representations (cf. section 6.1).

In particular, it may occur that parameter regions or VEVs, which are related by
outer automorphisms and, thus, seem to be physically equivalent at the level of the
Higgs potential, in fact give rise to distinct physical predictions of masses, mixings, and

34Alternatively, one may also consider the canonical CP transformation in the given basis which trans-
forms the parameters and VEVs according to (6.29). Fully consistent with our claims, this transfor-
mation is conserved by the “all–real” types of VEVs I and IV, and broken by the VEVs with relative
phases II and III.

35This may have interesting consequences for baryogenesis via tunneling processes as discussed in [9].
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CPV, etc. in the additional sectors. This, for example, is the case in models which
employ the ∆(27) symmetric potential for the explanation of fermion masses and mixing
patterns [142,143,145,146]. Even if the complete set of outer automorphisms then cannot
be used to identify necessarily physically equivalent parameter regions, it is still a powerful
tool to analyze the Higgs potential in order to find all possible VEVs and possible emergent
symmetries. Furthermore, all globally (i.e. for all sectors) available outer automorphism
transformations will still point to parameter space redundancies.

6.4.4. Computation of VEVs with outer automorphisms

Finally, to finish off the discussion of the 3HDM example with ∆(54) symmetry, it shall
be demonstrated how the knowledge about outer automorphisms of this setting can be
used in order to compute the stationary points of the potential.

Prequel. Stationary points of a potential are typically found directly by solving for
points of the potential with vanishing gradient. The plain three Higgs doublet potential
has 3 × 4 real degrees of freedom. Limiting the discussion to charge conserving minima,
one may use the parametrization of VEVs given in (6.19), thereby reducing the relevant
number of real degrees of freedom to 3× 2. Differentiating the potential with respect to
each of these, results in a system of six coupled cubic polynomial equations which has to
be solved in order to find the stationary points. The number of solutions, i.e. the number
of possible VEVs then is strictly bounded above by 36 = 729 [149]. In practice, the actual
bound will be more restrictive due to additional symmetries which have not been taken
into account in this counting. A complete analytical minimization of the 3HDM potential
with ∆(54) symmetry performed along these lines can be found in [4, App. B].

Complementary to the traditional minimization, the direction and relative phases of the
stationary points in the 3HDM with ∆(54) symmetry can also be computed by solving
only a homogeneous linear equation, as will be shown in the following. The modulus of a
specific stationary point is not fixed by the outlined procedure. Nevertheless, the moduli
can easily be computed subsequently by plugging one of the resulting stationary points
of fixed direction into the gradient of the potential.

Before starting the actual calculation, the underlying idea shall be outlined. In sec-
tion 6.3 it has been established that VEVs do not only form orbits under the symmetry
group G but, ‘perpendicular’ to that, also under the group of outer automorphism trans-
formations of the specific setting. This has explicitly been demonstrated for the 3HDM
example model in section 6.4.2, for which the group of available outer automorphisms
exhausts the full outer automorphism group Out(G). The crucial link to understand that
the four categories of VEVs I− IV in (6.21) form a single entity and are, at least on the
level of the potential, all physically equivalent, is the fact that VEVs of all types are part
of a single orbit under the action of the outer automorphism group.

If the corresponding orbits under the group and outer automorphism group are shorter
than |G| or |Out(G)|, respectively, then it is imperative that the corresponding VEVs
have stabilizers in G and Out(G). That is, each of the stationary points is an eigenvector,
also called fixed point, to one or more elements of G and Out(G). For the case of G this
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is not unusual, and it is well–known that the corresponding stabilizers in G form precisely
the subgroup which is left unbroken by the VEV. For the case of Out(G), however, this
is a new and non–trivial insight. Stabilizers in Out(G) do not correspond to unbroken
symmetries, as the operations in Out(G) are no symmetries of the Lagrangian to begin
with. Nevertheless, the VEVs have to be eigenvectors to some operations in Out(G). This
generally gives additional non–trivial restrictions on the possible form of the VEVs. In the
example discussed here, these conditions are so restrictive as to completely fix the form
and direction of the VEVs. In combination with the appearance of calculable phases, this
explains the origin of spontaneous geometrical CP violation.

The discussion here closely follows the analysis in [4]. Since it is the first analysis of this
kind, details have been taken into account probably a bit more thoroughly than necessary.
In particular, all outer and inner automorphisms are taken into account for completeness,
resulting in a very big group of transformations. However, this may not be necessary in
principle, as equivalent results also have been obtained by just working with the much
smaller outer automorphism group alone. Another possible simplification for the future
might be not to work with the whole set of stationary points and their permutations, as
here, but to exploit the fact that VEVs must be eigenvectors of elements in G and Out(G)
directly.

The ∆(54) example model will be used to illustrate this method in the following. The
presented method can straightforwardly be adapted to any other potential and it will be
commented on this below.

Computation of stationary points in the 3HDM ∆(54) example. Put aside, for the
moment, the existence of the global U(1)Y, i.e. the fact that VEVs can be re–phased
continuously, and focus on the orbits of stationary points only under discrete transfor-
mations. Together, symmetry and outer automorphism transformations are referred to
as equivalence transformations of the potential [4]. The group of equivalence transforma-
tions, therefore, describes the complete orbit of a stationary point. It can be constructed
as E ∼= Go Out(G).

For the ∆(54) example, E can be constructed by the combination of (3.11), (3.15), and
(3.16), implying that a possible presentation of the group is

E =
〈
A,B,C, S,T

∣∣A3 = B3 = C2 = (AB)3 = (AC)2 = (BC)2 = e ,

S2 = T3 =
(
T2S

)4
= e ,

TAT−1 = A , SAS−1 = AB2A ,

TBT−1 = ABA , SBS−1 = B ,

TCT−1 = C , SCS−1 = C
〉
.

(6.35)

E has order |E| = |G| × |Out(G)| = 1296 as expected, and is contained in the Small-
Group library of GAP as SG(1296, 2891). The orbit of a given stationary point φ ≡
〈H〉 is denoted by Φ, and is obtained from the (left–)action of all elements of E, i.e.
Φ := {pφ | p ∈ E} ≡ Eφ.
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The theoretically maximal total orbit length, i.e. the maximal number of distinct VEVs
which can be obtained from a given VEV by equivalence transformations, is given by the
total number of possible equivalence transformations |E| = 1296. However, the actual
orbit length can, of course, not exceed the upper bound on the total number of stationary
points which is here given by 729. Consequently, each VEV has to be a fixed point (i.e.
an eigenvector) of typically several equivalence transformations. That is, for each φ there
are several elements in E that leave φ invariant. Indeed, it is easy to show that for any
VEV φ, it is always a subgroup Eφ ⊂ E which leaves the VEV invariant. The crucial
factor which determines the size and shape of an orbit is Eφ, which is a priori unknown.
In the subsequent discussion everything is derived for general Eφ, and specific cases will
be treated in the end. If there are several distinct orbits of VEVs they are disjoint and
can be considered separately.

Note that G is by construction a normal subgroup of E. Consequently, the orbits of E
have a very special structure (e.g. [150, p. 12]). Namely, Φ splits under the action of the
normal subgroup G and can be written in the form

Φ =
(
← Gφ1 → , ← Gφ2 → , · · · , ← Gφn →

)T

. (6.36)

Here, the boxes correspond to equally–sized blocks which themselves contain G–orbits
of VEVs Gφi ≡ {gφi | g ∈ G}, which are obviously disjoint under the action of G. The
individual blocks have size r := |G|/|G ∩ Eφ| and the number of blocks is given by n :=
|E||G ∩ Eφ|/ (|G||Eφ|). By the orbit stabilizer theorem |Φ| = |E|/|Eφ| = r · n .

Under the action of elements in G, the VEVs are permuted transitively36 only within
the individual blocks. In contrast, under the action of elements in E which are not in G,
i.e. under the action of E/G ∼= Out(G), the blocks themselves are permuted transitively.
This is the precise mathematical formulation of the statement in section 6.3 that orbits
obtained from the outer automorphism group are ‘perpendicular’ to the G–orbits.

In the following, the transformation of Φ under E shall be investigated in detail. For
this, it is more practical to switch the presentation of E from (6.35) to a minimal gener-
ating set which is given by

P := T , and Q := (TS)2 (T−1 S)2 C (T−1 S)2 CA (T−1 B−1 TBA)4 . (6.37)

The explicit action of P and Q on the triplet representation then is given by

P =
i√
3

 1 ω2 ω2

ω2 1 ω2

ω2 ω2 1

 and Q =
i√
3

ω2 ω ω2

ω ω 1
1 ω ω

 . (6.38)

The transformation Q corresponds to a complex conjugation mapping of 3i 7→ Q3i
∗.

Therefore, it is more convenient to work with the representation 6i = 3i ⊕ 3i, as for
example also discussed above equation (3.22). The representation matrices of the minimal
generating set for the 6–plet representation then are given by

P6 =

(
P 0
0 P ∗

)
and Q6 =

(
0 Q
Q∗ 0

)
. (6.39)

36The action of a group G on a set X is called transitive if for any pair of elements x, y ∈ X, there is a
g ∈ G such that gx = y.
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The explicit action of E on a given triplet VEV φ can be obtained by letting all combi-
nations of the explicit representation matrices P6 and Q6 act on the vector (φ, φ∗)T.

However, letting a given transformation act on all possible VEVs φ simultaneously,
each φ ∈ Φ must be mapped bijectively to another VEV φ′ ∈ Φ. As a result, all possible
transformations must correspond to a permutation of the components of Φ. Due to the
fact that E acts transitively on Φ, this permutation is equivalent to the permutation of
elements of the coset space E/Eφ under the action of E by left–multiplication (e.g. [135,
p. 80]).37 Therefore, any set of VEVs Φ must correspond to a possible permutation
representation of E/Eφ (under left–action of E) for a given subgroup Eφ. The fact that
the explicit action of E on Φ has to be equivalent to one of these possible permutations is
a necessary condition on all VEVs with non–trivial stabilizer. These necessary conditions
shall be explicitly derived in the following.

The explicit action on every single VEV in a set of VEVs Φ is given by P6 and Q6 as
stated in (6.39) above. The action on the whole set Φ with |Φ| = r ·n then is simply given
by the |Φ|–fold direct sum (⊕) of these matrices

PΦ :=
r·n⊕
i=1

P6 , and QΦ :=
r·n⊕
i=1

Q6 . (6.40)

This action has to be consistent with a permutation of the VEVs in Φ. As noted above,
this permutation is equivalent to the permutation of elements of the coset space E/Eφ. For
a given subgroup Eφ this permutation representation can easily be obtained via GAP [69],
and a computer code which performs this task is given in appendix C.3. The matrices cor-
responding to the minimal generating set of this permutation representation are denoted
by ΠP and ΠQ. Altogether, thus, the permutation acts on Φ as

ΠΦ
P := ΠP ⊗ 16 , and ΠΦ

Q := ΠQ ⊗ 16 , (6.41)

where ⊗ denotes the Kronecker product of matrices. The additional six–dimensional space
here corresponds to of each of the VEVs (φ, φ∗)T which are being permuted.

For consistency, acting with either of the two transformations (6.40) or (6.41) on Φ has
to yield the same result, i.e.(

PΦ − ΠΦ
P

)
Φ = 0 , and

(
QΦ − ΠΦ

Q

)
Φ = 0 . (6.42)

These two homogeneous linear equations must be fulfilled by the orbit Φ of any admissible
VEV φ. That is, fulfilling (6.42) is a necessary condition for any VEV.

Note that the derivation of (6.42) requires to know the corresponding stabilizer sub-
group Eφ. However, Eφ is, in principle, only known in consequence of a given VEV.
Nevertheless, simply assuming a certain subgroup Eφ ⊂ E one may check whether a

37This equivalence is also used in the general construction of effective Lagrangians for spontaneously
broken continuous symmetries [151, 152]. There, however, only the action of the symmetry group is
considered in order to parametrize the vacua, whereas here, important additional information from the
outer automorphism group is taken into account.
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solution to (6.42) is even possible. Scanning over all subgroups in this way, one finds can-
didates for VEVs.38 Depending on the specific subgroup under assumption, the combined
rectangular matrix

M :=

(
PΦ − ΠΦ

P

QΦ − ΠΦ
Q

)
(6.43)

either has rank(M) = 6 |Φ|, implying that there is none but the trivial solution for Φ, or
rank(M) < 6 |Φ|, implying that there is a non–trivial solution for Φ. In the first case,
VEVs that conserve the assumed subgroup Eφ cannot exist, whereas in the second case
the solutions of (6.42) are candidates for orbits of non–trivial VEVs.

The only information used in order to arrive at (6.42) is the discrete symmetry group
of the potential as well as the group of available outer automorphism transformations,
which implicitly also contains information about the representation content of the model.
The derived constraints on the VEVs, hence, are independent of the precise form of the
potential and solving (6.42) simply reveals what (orbits of) VEVs are possible in principle.
In order to check whether a non–trivial solution of (6.42) really is a stationary point of the
potential one would still have to plug an element of Φ into the gradient of the potential.
This then also fixes any remaining free parameters, such as the modulus of the VEVs in
the case under discussion.

For the 3HDM example, scanning over the subgroups of E reveals that the largest sub-
groups which allow for a non–trivial solution to (6.42) are given by SG(18, 4), SG(18, 3),
and SG(48, 29).39 All other possible solutions are given by subgroups of these subgroups
which unavoidably allow for non–trivial solutions to (6.42) by construction, as they are
less or equally restrictive on Φ. The permutation representations corresponding to the
largest subgroups are labeled as 721, 722, and 27, respectively, and their minimal set of
generators is given in appendix C.3.

Solving (6.42) explicitly for the representation 721 one finds that

Φ72 =
(
Gφ1 , G φ2 , G φ3 , G φ4

)T

, (6.44)

where φ1−4 are representatives of the different blocks, which are given by

(φ1, φ2, φ3, φ4) =

−ω−ω
−ω

 v1,

−ω−1
−1

 v2,

 ω
ω2

ω2

 v3,

iω
√

3
0
0

 v4

 . (6.45)

Modulo the ubiquitous global U(1)Y rephasing, this exactly reproduces the four categories
of VEVs I − IV (6.21) found in the conventional way. In contrast to (6.21), the global
phase choice for the VEVs in (6.45) is consistent by construction, in the sense that the
VEVs permute under the outer automorphisms t and s as in (6.30) and (6.33) without the

38If the trivial stabilizer subgroup, i.e. a complete breaking of the discrete group, is admissible then (6.42)
does not impose any constraint on the corresponding VEVs.

39The scan can be limited to conjugacy classes of subgroups, as stabilizer subgroups of points on the
same orbit are conjugate to each other.
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need of any additional rephasing. The remaining free parameters are the moduli v`, which
can easily be obtained by plugging φ` into the gradient of the potential. The results, of
course, are the same as stated in (6.22).

An analogous computation for the stabilizer subgroup SG(18, 3) corresponding to the
permutation representation 722 yields a result which differs from (6.45) only by a global
phase. Therefore, this does not give rise to any new VEVs in the presence of a global
U(1)Y.

Instead, solving (6.42) for the permutation representation 27 results in

ΦT
27 =

(
Gφ27

)
, (6.46)

which only has a single block under the action of the outer automorphisms. A represen-
tative of this class of stationary points is given by

φ27 = v27

 0
−i
+i

 . (6.47)

Here, v27 is a free parameter which can again be fixed by plugging φ27 into the gradient
of the potential, resulting in (6.24).

Therefore, all VEVs have been found and the result is completely in agreement with
the analytical minimization of the potential. This completes the computation of VEVs
by means of the outer automorphism group.

Some comments are in order. There are other subgroups of E which also solve (6.42).
However, as mentioned above, all of them are also subgroups of the maximally allowed sub-
groups SG(18, 4), SG(18, 3), and SG(48, 29). Therefore, the corresponding equation (6.42)
can only be equally or less restrictive on the possible form of Φ. Indeed, by performing the
explicit computations, one finds that the form of Φ is less constrained if and only if the
corresponding subgroup Eφ is in the intersection of two or more of the maximally allowed
subgroups of E stated above. If, instead, the subgroup is only contained in one of the
maximally allowed subgroups, then the solution for Φ derived from Eφ is identical to the
solution of the parent group, implying that any φ ∈ Φ automatically conserves the parent
group. The fact that solutions for subgroups in the intersection of the maximally allowed
subgroups are less constrained must, of course, be expected due to the fact that the cor-
responding solution Φsub has to accommodate all otherwise mutually exclusive solutions
Φparent by fixing additional free parameters.

Due to the upper bound on the total number of stationary points, one can be sure
that there are no stationary points with trivial stabilizer. Thus, after having scanned
over all non–trivial subgroups of E one can be sure that all possible VEVs have been
found. Interestingly, the ∆(54) Higgs potential allows for all of the stationary points
which conserve the maximally allowed subgroups of E. Note that the method presented
here does not provide an explanation for why the potential realizes all those VEVs.

Nevertheless, one may speculate that the information on the available outer automor-
phism group, which, in fact, also contains information on the representation content, is
already enough to uniquely determine the VEVs in general. This conjecture is supported
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by recalling that all, the invariants in the potential, the parameters of the potential, as well
as the stationary points transform in the same representation, namely as a 4, under the
outer automorphism group S4 (cf. section 6.4.2). This 4–plet structure is a bit obscured
here, due to the fact that the inner automorphism have explicitly been taken into account.
Nevertheless, note that the 721–plet Φ72 (and equivalently 722) of E decomposes under
G as 721 = 181 ⊕ 182 ⊕ 183 ⊕ 184. Here, the 18` correspond to the G orbits, while the
set of 18–plets transforms as a 4–plet under the action of the outer automorphism of G.

The conjecture that VEVs under outer automorphisms either transform in the same
representation as the couplings or are invariant [4] holds true for all cases that have been
investigated. For example, it has been checked and confirmed that this method allows one
to find the also VEVs of the pure ∆(27) potential without any continuous symmetries.
Furthermore, applying this method to the 3HDM potential with A4 symmetry [141, 147]
rough bounds on the form of the VEVs were be obtained from the present Z2 outer auto-
morphism. Finally, for settings with no outer automorphism, as for instance in the 3HDM
with S4 symmetry, no additional constraints on the VEVs could be obtained in agreement
with expectation. Altogether, there is confidence that the method of computing, or at
least constraining, the form of stationary points by the use of outer automorphisms works
in general. After all, it is clear that VEVs of any potential which allows for outer auto-
morphism necessarily must be solutions to consistency equations analogous to (6.42).

Specifically for the example 3HDM with ∆(54) symmetry, the derived necessary condi-
tions on the stationary points are so restrictive as to completely fix their directions and
relative phases. The geometrical phases of the VEVs, hence, can be tracked back to the
complex CGs of the group. This is because the corresponding equation (6.42) involves
the representation matrices of the outer automorphisms, which themselves carry discrete
complex phases from the necessarily discrete complex phases of the CGs of ∆(54).

Even though there are presently no generally known sufficient conditions for the ap-
pearance of spontaneous geometrical CP violation, two conditions seem to be necessary
for the appearance of VEVs with calculable phases. Firstly, it seems to be required that
the VEVs only depend on a small number of potential parameters. This is equivalent to
saying that M in equation (6.43) should have close to maximal rank. By this requirement
it shall be guaranteed that any VEV can be brought to the form (v, 0, .., 0) by a Higgs–
basis rotation which is independent of the couplings. Secondly, in this new basis there
must be a CP transformation with fixed complex phases which is broken by this VEV.
Clearly, both of these conditions favor a large outer automorphism group. The appear-
ance of complex entries in the representation matrices of the CP outer automorphism,
furthermore, is deeply related to the complexity of the CGs. This last consideration,
therefore, favors groups of type I.

Altogether it should be noted that the understanding of spontaneous geometrical CP
violation generally is not yet as mature as the understanding of explicit geometrical CP
violation. The latter can be fully understood by the absence of a mutual complex conju-
gation outer automorphism for all representations [3].
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6.5. Future applications of outer automorphisms

The concept of outer automorphisms is as general as the concept of symmetry. Therefore,
whenever dealing with a physical setting based on a symmetry, it might be beneficial
to investigate whether this setting allows for outer automorphisms and consider their
physical implications.

In this work it has been shown that outer automorphisms correspond to mappings in
the parameter space of a theory, and that outer automorphisms can give rise to emergent
symmetries. The first property arises from the fact that operators which are symmetry
invariants generally are not outer automorphism invariants. Therefore, operators can be
classified, i.e. grouped into multiplets, according to their outer automorphism properties.
The second feature arises from the fact that outer automorphisms permute the one–point
correlation functions. Regarding these observations, it is not far–fetched to conjecture that
outer automorphisms could have wide–ranging applications beyond what is considered in
this thesis. Some very preliminary and naive thoughts are gathered here, as a possible
guideline for future explorations of outer automorphisms.

The classification of invariants in the SM effective field theory (EFT) according to he-
licity counting methods [153] explains certain non–renormalization features [154]. Clas-
sifying symmetry invariant operators by helicity counting, however, is analogous to clas-
sifying them according to the Lorentz group representations of their constituents. As
these representations are permuted by outer automorphisms one ought to think that also
the proposed classification of composite operators can be generalized according to the
transformation behavior of composite operators under outer automorphisms. Just as in
the 3HDM example, outer automorphisms can be a decisive criterion for the selection of
a convenient operator basis, for example, in recent systematic constructions of the SM
EFT [155,156].

From the observation that outer automorphisms give relations between the solutions
of a coupled system of polynomial equations, it is tempting to speculate that a similar
situation could arise in coupled systems of differential (renormalization group) equations.
Together with the fact that outer automorphisms are acting in the parameter space of
theories, there could be a deep relation between RGE flows, the anomalous dimension
matrix, and the outer automorphism structure. At least in the 3HDM example at hand,
it is clear that the outer automorphisms define the fixed boundaries of the RGE flow.
On these grounds, it would not be surprising if the construction of RGE invariants (cf.
e.g. [157–162]) could be systematized by the use of outer automorphisms. Furthermore, it
has also been noted that dilatations are outer automorphisms [23]. In this respect outer
automorphisms also seem to be a promising tool to address formal questions in scale or
conformally invariant theories [163].

From the fact that they permute one–point amplitudes, it seems likely that also multi–
point amplitudes are related by outer automorphisms. In this respect, reconsidering the
recent developments in on–shell scattering amplitudes in the light of outer automorphisms
could be a worthwhile pastime (cf. e.g. [164,165]).

Finally, note that emergent symmetries are an active field of study in modern condensed
matter physics (cf. e.g. [166–168]). In this context, it seems to be worthwhile to further
investigate the emergence of symmetries from the outer automorphism group of a model,
as proposed in this work.
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7. Summary and conclusion

Flavor mixing, masses, and explicit CP violation in the Standard Model all originate
from the Higgs Yukawa couplings. In addition, phases of the Yukawa couplings also enter
θ, thereby relating the flavor puzzle to the strong CP problem. This suggests that the
origin of flavor and the origin of CP violation could be closely related. Understanding the
possible origin of CP violation, thus, could give invaluable hints for the understanding
of the experimentally observed pattern of parameters in the flavor sector, including the
strong CP problem.

After reviewing the SM flavor puzzle and the strong CP problem, the standard defi-
nitions of C, P, and T have been recapitulated. It has been discussed how C and P are
explicitly and maximally violated by the absence of representations, while CP is explic-
itly violated by the non–vanishing CKM phase. Then, outer automorphism have been
introduced in a pedagogical manner, based on the discrete group ∆(54) and the compact
simple Lie group SU(3). A very general consistency condition, equation (3.10), has been
proposed which determines the representation matrices of automorphisms.

Following references [23] and [24] is has been shown that C, P, and T transformations
correspond to outer automorphisms of the space–time and gauge symmetries. It has been
argued that CP is the complex conjugation automorphism of the Lorentz group. Subse-
quently, a physical CP transformation has been defined as a complex conjugation (outer)
automorphisms which maps all present representations of all (space–time, local, global)
symmetries to their respective complex conjugate representations. Whenever a group has
complex representations, then a corresponding physical CP transformation necessarily is
an outer automorphism. This definition of a physical CP transformation is new, but a
straightforward generalization of the definitions of CP as the contragredient automor-
phism in simple Lie groups [24], or as a class–inverting automorphism in finite groups [3]
(cf. also [71]). Any transformation which fulfills the above condition equally qualifies as a
CP transformation, meaning that there is, in general, no unique CP transformation. For
example, in the 3HDM discussed in section 6.4 there are 12 possible distinct CP trans-
formations. A sufficient condition for physical CP conservation is that there is a single
unbroken physical CP transformation. Any such transformation, if conserved, causes all
CP odd basis invariants to vanish. Conversely, to have CP violated it is enough if there is
a single non–vanishing CP odd basis invariant, meaning that there must not be a single
conserved CP transformation.

The subtle difference between generalized CP transformations in additional horizon-
tal spaces and CP transformations as outer automorphisms has been clarified. If there
is a symmetry acting in a horizontal space, and one insists on not or only minimally
extending this symmetry, then CP transformations in the horizontal space have to be
automorphisms of that symmetry. In contrast, if the horizontal space is unconstrained or
it is not insisted on keeping the horizontal symmetry minimal, then any generalized CP
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transformation can be imposed in the horizontal space. In general, if the corresponding
CP transformation does neither square to the identity nor to a symmetry element then
the linear symmetry in the horizontal space is enhanced by requiring the CP transforma-
tion [86]. As a consequence, mass degenerate states [55] and CP half–odd [30] or even
more exotic eigenstates of CP appear.

While the possible automorphisms of the Poincaré group and compact semisimple Lie
groups have been known for some time, the systematic study of automorphisms of finite
(discrete) groups in a physical context is rather new [25]. In this work, it has been
shown that discrete groups can be classified into three disjoint types according to their
automorphism properties [3]. Systematically, this classification can be done via the twisted
Frobenius–Schur indicator (5.13).

Groups of type II A have a Bickerstaff–Damhus automorphism [92], which is a class–
inverting, involutory automorphism with only symmetric representation matrices. The
BDA simultaneously maps every representation to its own complex conjugate and squares
to the identity. Therefore, the BDA corresponds to a model independent physical CP
transformation which squares to the identity. Groups of type II A, hence, most closely
resemble the case of semisimple Lie groups: It is always possible to find a physical CP
transformation, and this transformation is broken explicitly if and only if there are com-
plex phases which cannot be absorbed by a rephasing of fields. Due to the fact that the
corresponding CPV phases have to be determined by experiment, this way of explicit CP
violation can never be predictive. A group is of type II A if and only if it allows for a
basis with purely real Clebsch–Gordan coefficients. This basis is also the CP basis.

Groups of type II B do have a class–inverting automorphism which suits to define a
physical CP transformation. Nevertheless, for generic settings this automorphism can
never be represented by only symmetric matrices and, therefore, never squares to the
identity for explicit representations. CP violation then can be tied to the presence of
certain operators which are charged under the additionally appearing linear symmetry.
Furthermore, CP half–odd or even more exotic states necessarily appear in generic models
based on type II B groups. Type II B groups do not allow for a basis with real Clebsch–
Gordan coefficients.

Presumably the most interesting category of discrete groups are those of type I. These
groups do not allow for automorphisms which simultaneously map all representations to
their complex conjugate representations. Therefore, if there are sufficiently many different
representations present, then CP is violated as a consequence of the type I group, simply
because there is no possible physical CP transformation. This has been demonstrated
by the computation of a decay asymmetry in an explicit example model based on the
group ∆(27). CP violation in groups of type I can be tracked back to the necessarily
complex Clebsch–Gordan coefficients, which enter CP odd basis invariants in the form
of CP violating weak phases [3]. The existence of this type of CP violation has first
been conjectured in [26], and it has been termed explicit geometrical CP violation in [27].
Necessary and sufficient criteria for the occurrence of explicit geometrical CP violation,
together with an explicit example model, have firstly been discussed in [3].

The physical relevance of CP outer automorphisms also motivates the general study
of outer automorphisms beyond C, P, or T. It has been argued that there are only two
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possibilities for the action of a general outer automorphism. Either, the outer automor-
phism is broken explicitly and maximally by the absence of representations. Or, the outer
automorphism is broken explicitly by the values of already present couplings. This allows
for a clear and precise definition of maximal breaking of a transformation (in agreement
with C and P in the SM). According to this notion of maximal breaking, CP can never
be maximally broken. Studying non–maximally broken outer automorphisms in general,
it has been argued that these transformations allow to identify physically equivalent re-
gions in the parameter space of models. Furthermore, it has been shown that VEVs form
orbits under the outer automorphism group, just as they do under the coset of broken
symmetry transformations. Consequently, VEVs are generally invariant under a subset
of outer automorphism, meaning that the vacuum of theories with outer automorphisms
can be more symmetric than the Lagrangian itself. This is a novel mechanism for the
origin of emergent symmetries.

A three Higgs doublet model with ∆(54) symmetry has been presented as an exam-
ple for a model with a rich outer automorphism structure. It has been explicitly shown
how the outer automorphisms permute couplings, and thereby allow to identify physically
equivalent regions in the parameter space. Furthermore, also the stationary points are
permuted under the action of outer automorphisms. This has been used in order to set
up necessary conditions on the VEVs which constrain their relative directions including
the relative phases. In the example model, these constraints are so restrictive as to com-
pletely fix the directions and phases of VEVs, thereby providing a reason for spontaneous
geometrical CP violation in this model [29].

In summary, in this thesis, the notion of CP transformations as particular outer auto-
morphism has been introduced in a coherent way. This insight has been used in order
to demonstrate that certain discrete groups allow to predict geometrical CP violating
phases from group theory. Even though a fully realistic model has not been fleshed out,
this work paves the way for model building with predictive CP violation. This could be
intimately related to a solution of the flavor puzzle, the origin of the baryon asymmetry,
or towards understanding the microscopic arrow of time. In addition, outer automor-
phisms beyond C, P, or T have firstly been studied. Besides simplifying the computation
of stationary points, it has been demonstrated that outer automorphisms are conceptually
and phenomenologically relevant to understand emergent symmetry including the origin
of spontaneous geometrical CP violation. As a consequence of this work, further studies
of outer automorphisms are appreciable and worthwhile.
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A. Dirac spinor representation matrices

For completeness, this appendix lists the explicit form of matrices for the Dirac spinor
representation of the Lorentz group. The notation of [51] is followed loosely, all statements
are made in the so–called chiral or Weyl basis.

A generic Dirac spinor is given by

Ψ :=

(
χa
ξ†ȧ

)
, (A.1)

with a left–handed Weyl spinor χa and a right handed Weyl spinor ξ†ȧ (a, ȧ = 1, 2).
In this basis, the γ–matrices are given by

γµ =

(
σµaċ

σµ,ȧc

)
, (A.2)

where σµ := (1, ~σ) and σµ := (1,−~σ), with the Pauli matrices

~σ =

((
1

1

)
,

(
−i

i

)
,

(
1
−1

))
. (A.3)

Furthermore, there appear the matrices

γ5 := i γ0 γ1 γ2 γ3 =

(
−δ c

a

δȧċ

)
, (A.4)

β =

(
δȧċ

δ c
a

)
, and C =

(
εac

εȧċ

)
=

(
−εac

−εȧċ

)
, (A.5)

with εac (ε12 = −1) being the total antisymmetric tensor in two dimensions.
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B. Proof of the consistency condition

It shall be proven that

U ρr′(g)U−1 = ρr(u(g)) , ∀g ∈ G , (B.1)

with unitary matrices U holds for all irreps r of G if and only if u(g) is an automorphism
of the group G. Here it is assumed that ρr(g) are matrix representations.

For the first direction, it must be shown that (B.1) holds if u : G→ G is an automor-
phism of the group G. Therefore, assume that u is an automorphism, i.e. u is a bijective
homomorphism, u(gh) = u(g)u(h). In order to deduce (B.1), one has to show that

ρr(u(g)) =: Γ(g) (B.2)

is a matrix representation itself, i.e. Γ(g) fulfills the group algebra. This is easily verified
by

Γ(g h) = ρr(u(g h)) = ρr(u(g)u(h)) = ρr(u(g)) ρr(u(h)) = Γ(g) Γ(h) . (B.3)

In the second step it has been used that u is a homomorphism, and in the third step it
has been used that ρr : G → GL(V ) as a representation is also a homomorphic map.
Therefore, one can write Γ(g) ≡ Uρr′(g)U−1, and the unitary matrices U are understood
as the freedom to chose a basis for the representation ρr′(g).

To prove the reverse direction it needs to be shown that if (B.1) holds, then u is an
automorphism of G, i.e. a bijective homomorphism G→ G. This is shown in three steps.
First it will be shown that u is injective, then it will be shown that u is surjective. Lastly,
the homomorphism property will be shown. In order to show that u is injective one needs
to show that

u(g) = u(g′) ⇒ g = g′ ∀g, g′ ∈ G . (B.4)

Applying the representation map to both sides of the equation u(g) = u(g′), then applying
(B.1) for g and for g′ on the two sides, one obtains

ρr′(g) = ρr′(g′) . (B.5)

Since (B.1) is assumed to hold for all irreps of G it will hold for at least one faithful
representation. It is enough that there is at least one faithful irrep r′ for which the
representation map ρr′ in (B.5) can be inverted. Performing the inversion on both sides
results in g = g′ thereby proving that u is injective. In order to prove that u is surjective
one needs to show that

∀g ∈ G ∃ g′ ∈ G : u(g′) = g . (B.6)
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This is most easily shown by constructing the element g′ explicitly. Taking (B.1) for g′

and a faithful (therefore, invertible) representation and requiring that u(g′) = g one finds
that

g′ = ρ−1
r′

(
U−1 ρr(g)U

)
. (B.7)

Lastly, the homomorphism property can be shown to be fulfilled by taking

ρr(u(g h)) = U ρr′(g h)U−1 = U ρr′(g) ρr′(h)U−1 =

= U ρr′(g)U−1 U ρr′(h)U−1 = ρr(u(g)) ρr(u(h)) =

= ρr(u(g)u(h)) .

(B.8)

Taken again for a faithful representation, it is possible to invert ρr on both sides thereby
showing that u is a homomorphic map. Together this shows that u is a bijective homo-
morphic map G→ G and, therefore, an automorphism. q.e.d.
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C. Computer codes

C.1. Outer automorphism structure of finite groups

A GAP [69] code to compute the automorphism group (AutG) of a finite group G (for
example ∆(54)), as well as its inner (InnG) and outer automorphism group (OutG) is given
by:

G:=SmallGroup(54,8);;

AutG:=AutomorphismGroup(G);;

InnG:=InnerAutomorphismsAutomorphismGroup(AutG);;

OutG:=AutG/InnG;;

IdGroup(OutG);

StructureDescription(OutG);

C.2. Twisted Frobenius–Schur indicator

A GAP code which computes the (first) twisted Frobenius–Schur indicator (FSu) for all
irreps with respect to a given automorphism aut of of a finite group G is given by:

twistedFS:=function(G,aut)

local elG,tbl,irr,fsList;

elG:=Elements(G);

tbl:=CharacterTable(G);

irr:=Irr(tbl);

fsList:=List(elG,x->x*x^aut);

return List(irr,y->Sum(fsList,x->x^y))/Size(G);

end;

For example, to print out all FSu’s for the group T′ (SG(24, 3)) one can use:

G:=SmallGroup(24,3);;

autG:=AutomorphismGroup(G);;

elAutG:=Elements(autG);;

for i in elAutG do Print(twistedFS(G,i)); od;

The fact that there is an automorphism u with FSu(r) = 1 for all irreps shows that T′ is
of type II. For a code to compute the nth twisted FSu see [71].
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C. Computer codes

C.3. Permutation representations

Assume E is a group with a subgroup Eφ. The action of the group via left–multiplication
on the coset E/Eφ defines a permutation representation. The following GAP code com-
putes the explicit permutation matrix (ΠP)−1 of a group element P ∈ E in this represen-
tation:

action:=ActionHomomorphism(E,RightCosets(E,E_lambda),OnRight);;

Pi_P_inverse:=Image(action,P);

For the group E = SG(1296, 2891) and the subgroup Eφ = SG(18, 4) this permutation
representation is denoted by 721 and a minimal generating (in cycles) given by

(Π721
P )−1 := (2, 9, 5)(4, 13, 33)(6, 17, 14)(7, 19, 15)(8, 22, 47)(10, 26, 24)(11, 28, 53)

(12, 31, 55)(16, 38, 58)(18, 40, 59)(20, 42, 60)(21, 44, 62)(23, 46, 65)

(25, 49, 66)(27, 51, 67)(29, 45, 64)(30, 54, 69)(32, 57, 35)(37, 52, 68)

(43, 61, 71)(48, 56, 70)(50, 63, 72) ,

(Π721
Q )−1 := (1, 59, 8, 56, 26, 72, 37, 44)(2, 33, 18, 63, 36, 68, 30, 46)

(3, 60, 25, 38, 9, 64, 35, 61)(4, 42, 19, 70, 11, 40, 17, 58)

(5, 62, 12, 28, 41, 67, 48, 22)(6, 65, 29, 52, 7, 69, 50, 32)

(10, 53, 20, 45, 34, 57, 23, 54)(13, 39, 55, 16, 49, 24, 71, 27)

(14, 47, 21, 51, 15, 66, 43, 31) .

(C.1)

For the subgroup Eφ = SG(18, 3) the permutation representation is denoted by 722 and
a minimal generating set is given by

(Π722
P )−1 := (2, 9, 5)(4, 13, 33)(6, 17, 14)(7, 19, 15)(8, 22, 47)(10, 26, 24)(11, 28, 54)

(12, 31, 55)(16, 38, 58)(18, 40, 59)(20, 42, 60)(21, 44, 63)(23, 48, 66)

(25, 50, 67)(27, 52, 68)(29, 45, 64)(30, 46, 65)(32, 57, 35)(37, 53, 69)

(43, 61, 71)(49, 56, 70)(51, 62, 72) ,

(Π722
Q )−1 := (1, 58, 29, 53, 23, 54, 42, 18)(2, 63, 22, 55, 33, 62, 31, 26)

(3, 47, 17, 52, 4, 71, 37, 49)(5, 60, 21, 68, 24, 38, 27, 61)

(6, 56, 13, 57, 15, 64, 48, 41)(7, 59, 30, 36, 8, 72, 35, 32)

(9, 50, 12, 70, 34, 46, 20, 51)(10, 40, 25, 44, 14, 67, 45, 43)

(11, 66, 19, 65, 28, 69, 16, 39) .

(C.2)

For the subgroup Eφ = SG(48, 29) the permutation representation is denoted by 27 and
has a minimal generating set

(Π27
P )−1 := (1, 4, 12)(2, 8, 20)(3, 9, 21)(5, 15, 24)(6, 16, 11)

(7, 17, 19)(10, 23, 25)(13, 27, 14)(18, 22, 26) ,

(Π27
Q )−1 := (1, 8, 25, 24, 14, 27, 26, 13)(2, 22, 15, 9, 11, 19, 16, 4)

(3, 10, 21, 12, 20, 17, 5, 6)(18, 23) .

(C.3)

110



D. Group theory

D.1. On the group SU(3)

All elements A ∈ SU(3) can be written in the form A = exp[i θaTa] where θa (a = 1, .., 8)
are real parameters and Ta are the eight 3 × 3 traceless matrix generators of the group.
A conventional basis choice for the generators of SU(3) is given by Ta = λa/2 with the
Hermitian Gell–Mann matrices [78]

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

(D.1)

The non–zero structure constants in the basis Ta = λa/2 are given by

fGM
123 = 1 , fGM

147 = fGM
165 = fGM

246 = fGM
257 = fGM

345 = fGM
376 =

1

2
,

fGM
458 = fGM

678 =

√
3

2
,

(D.2)

and all other fGM
abc which can be obtained from these by a (completely anti–symmetric)

permutations of the indices.
The generators used in section 3.4.1 are obtained from the Gell–Mann matrices as

HI =
1

2
λ3 , HY =

1

2
λ8 ,

E1
± =

1

2
√

2
(λ1 ± iλ2) Eθ

± =
1

2
√

2
(λ4 ± iλ5) E2

± =
1

2
√

2
(λ6 ± iλ7) .

(D.3)

The non–zero structure constants f cab in this basis are given by

f 1
13 = f 2

32 = f 3
21 = i ,

f 1
74 = f 2

56 = f 4
61 = f 5

27 = f 6
62 = f 7

15 =
i√
2
,

f 3
54 = f 3

67 = f 4
43 = f 5

35 = f 6
36 = f 7

73 =
i

2
,

f 8
54 = f 8

76 = f 4
48 = f 5

85 = f 6
68 = f 7

87 = i

√
3

2
.

(D.4)

111



D. Group theory

This is not an orthonormal basis and the structure constants are anti–symmetric only
w.r.t. permutations of the lower two indices.

The outer automorphism u∆ (as defined in (3.46)) in the Gell–Mann basis acts as

RGM
∆ = diag(−1,+1,−1,−1,+1,−1,+1,−1) (D.5)

in the adjoint space. The consistency condition, therefore, simply reads

−λT
a = ηa λa , (D.6)

with η2,5,7 = 1 for the complex, and η1,3,4,6,8 = −1 for the real symmetric Gell–Mann
matrices. This is precisely what is naively expected from a transformations which maps
A = exp[i θaλa/2] 7→ A∗. The Gell–Mann basis as well as the non–orthogonal bases for
the generators are both CP bases because U = 1.

D.2. On the group Σ(72)

The group Σ(72) is contained in the SmallGroups library of GAP as SG(72, 41). A
possible minimal generating set and the corresponding presentation have been given in
(5.29). The character table of the group is shown in table 5.3.

Explicit matrix representations for the generators for the two–dimensional representa-
tion can be chosen as

M2 =

(
0 1
−1 0

)
, and P2 =

(
−i 0
0 i

)
, (D.7)

and the generators of the eight–dimensional representation can be chosen as

M8 =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0


, and

P8 =
1

2



0 0 0 0 −1 −
√

3 0 0

0 0 0 0
√

3 −1 0 0

0 0 0 0 0 0 −1
√

3

0 0 0 0 0 0
√

3 1
2 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0

0 0 −1 −
√

3 0 0 0 0

0 0
√

3 −1 0 0 0 0


. (D.8)
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D.3. On the group ∆(27)

Some more details on Σ(72) can be found in [169] and [3] where, however, a different
(non–minimal) presentation has been used. The relation between the generators M,P
used in this work and the generators m, n, p which are used in [3] is given by

M = m , P = mnp2 m , (D.9)

m = M , n = PMP2 M , p = M2 P2 . (D.10)

The non–trivial direct product rules for the Σ(72) irreps are

2⊗ 2 = 10 ⊕ 11 ⊕ 12 ⊕ 13 , (D.11)

2⊗ 8 = 81 ⊕ 82 , (D.12)

8⊗ 8 = 10 ⊕ 11 ⊕ 12 ⊕ 13 ⊕ 21 ⊕ 22 ⊕ 81 ⊕ 82 ⊕ 83 ⊕ 84 ⊕ 85 ⊕ 86 ⊕ 87 , (D.13)

The subscript on the resulting higher–dimensional representations corresponds the fact
that even though they transform like the elementary irreps 8 and 2 under Σ(72), the
composite representations 8i and 2i can be distinguished by their different transformation
behavior under the outer automorphisms of the group.

The Clebsch–Gordan coefficients needed for the discussion in this work are given by

(x2 ⊗ y2)10
=

1√
2

(x1 y2 − x2 y1) ,

(x8 ⊗ y8)21 =
1

2

(
ix2 y1 − ix1 y2 − x6 y5 + x5 y6

ix4 y3 − ix3 y4 − x8 y7 + x7 y8

)
,

(x8 ⊗ y8)22 =
1

2

(
ix4 y3 − ix3 y4 + x8 y7 − x7 y8

−ix2 y1 + ix1 y2 − x6 y5 + x5 y6

)
. (D.14)

Other CGs can be found in [3].

D.3. On the group ∆(27)

The group ∆(27) is listed in the GAP SmallGroups library as SG(27, 3). It can be
presented by the two generators A and B fulfilling (5.44). The character table is given in
D.1.

By computing the FSu’s for all possible automorphisms, it is readily confirmed that
∆(27) is of type I, because it does not allow for any class–inverting automorphism. There-
fore, ∆(27) does in general not allow for a consistent model independent physical CP
transformation. However, since one can find outer automorphisms which simultaneously
map the triplet and at most two non–trivial one–dimensional representations to their re-
spective complex conjugate, consistent CP transformations are possible in non–generic
models with such a constrained field content.

The outer automorphism group of ∆(27) can be generated by the operations

s : (A,B) 7→ (AB2A,B) and t : (A,B) 7→ (A,ABA) , (D.15)
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D. Group theory

C1a C3a C3b C3c C3d C3e C3f C3g C3h C3i C3j

1 3 3 3 3 3 3 3 3 1 1
∆(27) e A A2 B B2 ABA BAB AB A2B2 AB2ABA BA2BAB

10 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 ω2 ω ω2 ω ω2 ω 1 1
12 1 1 1 ω ω2 ω ω2 ω ω2 1 1
13 1 ω2 ω 1 1 ω ω2 ω2 ω 1 1
14 1 ω2 ω ω2 ω 1 1 ω ω2 1 1
15 1 ω2 ω ω ω2 ω2 ω 1 1 1 1
16 1 ω ω2 1 1 ω2 ω ω ω2 1 1
17 1 ω ω2 ω2 ω ω ω2 1 1 1 1
18 1 ω ω2 ω ω2 1 1 ω2 ω 1 1
3 3 0 0 0 0 0 0 0 0 3ω 3ω2

3 3 0 0 0 0 0 0 0 0 3ω2 3ω

Table D.1.: The character table of ∆(27). As usual, ω = e2π i/3. The second line gives the
cardinality of the conjugacy class (c.c.) and the third line gives a representative of the
corresponding c.c. in the presentation specified in (5.44). An error appearing in the last
two columns of the analogous table in [3] has been corrected.

and is GL(2, 3), a group of order 48. Note the striking similarity to (3.16). Obviously,
there is a close relation between the groups ∆(27) and ∆(54). Namely, ∆(27) can be
extended by the outer automorphism c := (t2 ◦ s)4 ≡ conj(C) which acts as

c : (A,B) 7→ (A2,B2) , (D.16)

resulting in the group ∆(54) (cf. the action of C in the explicit presentation of ∆(54) in
(3.11)).

An explicit matrix representation of the triplet of ∆(27) is given by the matrices A and
B in equation (3.17). The explicit action of c on the triplet representations of ∆(27) is
given by

3 7→ C 3 , 3 7→ C 3 , (D.17)

where the matrix C has been stated already in (3.17). Furthermore, the action of c
exchanges all mutually complex conjugate one–dimensional representations of ∆(27),
thereby combining them to the real doublet representations of ∆(54) as 21 = (11,12),
22 = (13,16), 23 = (14,18), and 24 = (15,17). Therefore, ∆(27) is a normal subgroup
of ∆(54) and all outer automorphisms of ∆(27) are also available at the level of ∆(54),
where c becomes an inner automorphisms.

Another outer automorphism used in this work is w ≡ t2 ◦ s ◦ t which acts as

w : (A,B) → (BAB,B2) y 11 ↔ 18 , 12 ↔ 14 , 15 ↔ 17 , 3→ Uw 3∗ , (D.18)

with the explicit representation matrix for the triplets given by

Uw =

−ω2 0 0
0 −ω 0
0 0 −ω

 . (D.19)
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D.4. On the group ∆(54)

Note that w has been called u3 in [3].
The only non–trivial direct product of ∆(27) irreps relevant for this work is

x3 ⊗ y3 =
9∑
i=1

1i . (D.20)

The corresponding CGs in the basis (3.17) are

10 =
(x1 y1 + x2 y2 + x3 y3)√

3
, (D.21a)

11 =
(x1 y2 + x2 y3 + x3 y1)√

3
, 12 =

(x2 y1 + x3 y2 + x1 y3)√
3

,

13 =
(x1 y1 + ω x2 y2 + ω2 x3 y3)√

3
, 16 =

(x1 y1 + ω2 x2 y2 + ω x3 y3)√
3

,

14 =
(x2 y3 + ω x3 y1 + ω2 x1 y2)√

3
, 18 =

(x3 y2 + ω2 x1 y3 + ω x2 y1)√
3

,

15 =
(x3 y2 + ω x1 y3 + ω2 x2 y1)√

3
, 17 =

(x2 y3 + ω2 x3 y1 + ω x1 y2)√
3

.

The a priori free global phases here have been adjusted such that both, s and t act as
permutation of the given contractions without the need of any additional phase multi-
plication. This phase choice also ensures consistency with (D.22) and the corresponding
transformation behavior of the ∆(54) doublets under s and t, cf. equation (3.25).

D.4. On the group ∆(54)

The group ∆(54) is listed in the GAP SmallGroups library as SG(54, 8). A possible
minimal generating set and the corresponding presentation have been given in (3.11).
The character table of the group is shown in table 3.1. Explicit representation matrices
for singlet and doublet representations can be found in (3.24) and (3.17), respectively.

The CGs of ∆(54) relevant to this work are given by

(x2i ⊗ y2i)10
=

1√
2

(x1 y2 + x2 y1) ,(
x3i ⊗ y3i

)
10

=
1√
3

(x1 y1 + x2 y2 + x3 y3) ,

(
x3i ⊗ y3i

)
21

=
1√
3

(
x1 y2 + x3 y1 + x2 y3

x2 y1 + x1 y3 + x3 y2

)
,

(
x3i ⊗ y3i

)
22

=
1√
3

(
x1 y1 + ω x2 y2 + ω2 x3 y3

x1 y1 + ω2 x2 y2 + ω x3 y3

)
,

(
x3i ⊗ y3i

)
23

=
1√
3

(
x2 y3 + ω x3 y1 + ω2 x1 y2

ω x2 y1 + x3 y2 + ω2 x1 y3

)
,

(
x3i ⊗ y3i

)
24

=
1√
3

(
ω2 x2 y1 + x3 y2 + ω x1 y3

x2 y3 + ω2 x3 y1 + ω x1 y2

)
. (D.22a)
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D. Group theory

CGs for other contractions are listed in [170], where, however, a different labeling for
the representations is used. By computing the FSu’s for all automorphisms, it is readily
confirmed that ∆(54) is of type I according to the classification in section 5.1.4.

The CGs can be used in order to compute the invariants of the direct product 3⊗ 3⊗
3⊗ 3, as needed in section section 6.4.1. Using H = (H1, H2, H3) for the triplet, as well
as the Hermitian conjugate for 3 one finds

I0(H†, H) =
1

3

(
H†1H1 +H†2H2 +H†3H3

)2

,

I1(H†, H) =
1

3

[(
H†1H2H

†
1H3 +H†2H1H

†
2H3 +H†3H1H

†
3H2 + h.c.

)
+

H†1H2H
†
2H1 +H†1H3H

†
3H1 +H†2H3H

†
3H2

]
,

I2(H†, H) =
1

3

[(
ω2H†1H2H

†
1H3 + ω2H†2H1H

†
2H3 + ω2H†3H1H

†
3H2 + h.c.

)
+

H†1H2H
†
2H1 +H†1H3H

†
3H1 +H†2H3H

†
3H2

]
,

I3(H†, H) =
1

3

[(
ωH†1H2H

†
1H3 + ωH†2H1H

†
2H3 + ωH†3H1H

†
3H2 + h.c.

)
+

H†1H2H
†
2H1 +H†1H3H

†
3H1 +H†2H3H

†
3H2

]
,

I4(H†, H) =
1

3

[
H†1H1H

†
1H1 +H†2H2H

†
2H2 +H†3H3H

†
3H3

−H†1H1H
†
2H2 −H†1H1H

†
3H3 −H†2H2H

†
3H3

]
.

(D.23)

The definition of the Ik(H
†, H) is given in (6.17).
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“Stable Algebraic Spin Liquid in a Hubbard Model,” Physical Review Letters 110
no. 3, (Jan., 2013) 037201, arXiv:1208.5240 [cond-mat.str-el].

[168] P. R. S. Gomes, “Aspects of Emergent Symmetries,” Int. J. Mod. Phys. A31
no. 10, (2016) 1630009, arXiv:1510.04492 [hep-th].

[169] T. Damhus, “On the existence of real clebsch–gordan coefficients,” Journal of
Mathematical Physics 22 no. 1, (1981) 7–14. http:
//scitation.aip.org/content/aip/journal/jmp/22/1/10.1063/1.524757.

[170] J. Escobar, “Flavor ∆(54) in SU(5) SUSY Model,” Phys. Rev. D84 (2011) 073009,
arXiv:1102.1649 [hep-ph].

130

http://arxiv.org/abs/1510.07368
http://dx.doi.org/10.1007/JHEP10(2015)007
http://arxiv.org/abs/1507.00328
http://dx.doi.org/10.1103/PhysRevD.93.093006
http://dx.doi.org/10.1103/PhysRevD.93.093006
http://arxiv.org/abs/1603.04568
http://dx.doi.org/10.1142/9789814566254_0026
http://www.worldscientific.com/doi/abs/10.1142/9789814566254_0026
http://arxiv.org/abs/1308.1697
http://arxiv.org/abs/1308.1697
http://dx.doi.org/10.5170/CERN-2014-008.31
http://arxiv.org/abs/1310.5353
https://inspirehep.net/record/1261436/files/arXiv:1310.5353.pdf
http://dx.doi.org/10.1080/00018730310001642086
http://arxiv.org/abs/cond-mat/0207106
http://dx.doi.org/10.1103/PhysRevLett.110.037201
http://dx.doi.org/10.1103/PhysRevLett.110.037201
http://arxiv.org/abs/1208.5240
http://dx.doi.org/10.1142/S0217751X1630009X
http://dx.doi.org/10.1142/S0217751X1630009X
http://arxiv.org/abs/1510.04492
http://dx.doi.org/http://dx.doi.org/10.1063/1.524757
http://dx.doi.org/http://dx.doi.org/10.1063/1.524757
http://scitation.aip.org/content/aip/journal/jmp/22/1/10.1063/1.524757
http://scitation.aip.org/content/aip/journal/jmp/22/1/10.1063/1.524757
http://dx.doi.org/10.1103/PhysRevD.84.073009
http://arxiv.org/abs/1102.1649

	Introduction
	The Standard Model and CP violation in Nature
	The flavor puzzle
	Repetition of families; masses and mixings
	The strong CP problem

	Standard definition of C, P, and T
	C, P, and CP violation in the Standard Model

	Group theoretical introduction to outer automorphisms
	Definitions
	Representation matrices of outer automorphisms
	Outer automorphisms of finite groups
	Explicit example: 

	Outer automorphisms of continuous groups
	Explicit example: SU(3)

	Outer automorphisms of the Poincaré group
	(Outer) automorphisms are symmetries of a symmetry

	CP as a symmetry of symmetries
	CP as an (outer) automorphism of space–time and gauge symmetries
	Definition of CP as a special automorphism
	Generalized CP transformations
	New horizontal symmetries and exotic CP eigenstates
	Generalized CP and existing horizontal symmetries


	CP and discrete groups
	Classification of finite groups according to CP outer automorphisms
	Properties of CP outer automorphisms
	The Bickerstaff–Damhus automorphism
	The twisted Frobenius–Schur indicator
	Classification of finite groups

	Type II A groups: ``Nothing special''
	Explicit example: 
	CP violation for type II A groups

	Type II B groups: Non–trivial CPV and CP half–odd states
	Explicit example: 
	CP violation for type II B groups
	Transformation of mesons and constituents

	Type I groups: CP violation from a symmetry principle
	Explicit example: 
	CP violation in a toy model based on 
	Spontaneous geometrical CP violation with calculable phases
	Action of other automorphisms, CP–like symmetries

	Towards realistic models with discrete flavor symmetries and drawbacks

	Outer automorphisms beyond CP
	Possible action of outer automorphism transformations
	Redundancies in parameter space
	Outer automorphisms and VEVs
	Explicit example: 3HDM with  symmetry
	The model
	Action of outer automorphisms
	Physical implications
	Computation of VEVs with outer automorphisms

	Future applications of outer automorphisms

	Summary and conclusion
	Dirac spinor representation matrices
	Proof of the consistency condition
	Computer codes
	Outer automorphism structure of finite groups
	Twisted Frobenius–Schur indicator
	Permutation representations

	Group theory
	On the group SU(3)
	On the group 
	On the group 
	On the group 

	Bibliography

