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Universidad Politécnica de Madrid, Madrid / Spanien

Die Dissertation wurde am 23. Mai 2016 bei der Technischen Universität München eingereicht
und durch die Fakultät für Maschinenwesen am 07. Juli 2016 angenommen.





Abstract
Highly slender fiber- or rod-like components represent essential constituents of mechanical sys-
tems in countless fields of application and scientific disciplines such as mechanical engineer-
ing, biomedical engineering, material science as well as bio- or molecular physics. Examples
are high-tensile industrial ropes and webbings, fiber-reinforced composite materials or synthetic
polymer materials. On entirely different time and length scales, such slender components are
relevant when analyzing the supercoiling process of DNA strands, the characteristics of car-
bon nanotubes or the Brownian dynamics within the cytoskeleton of biological cells, a biopoly-
mer network of highly slender filaments that crucially influences biologically relevant processes
such as cell division and cell migration. Often, these slender components can be modeled as 1D
Cosserat continua based on a geometrically nonlinear beam theory. In all mentioned cases, me-
chanical contact interaction crucially influences the overall system behavior. In this thesis, me-
chanical models for very slender beams and their contact interaction are proposed on the basis
of the geometrically exact Kirchhoff-Love beam theory. From these models, novel finite element
formulations are derived that allow for an accurate, robust and efficient numerical simulation of
complex mechanical systems composed of highly slender fibers with arbitrary orientation.

Compared to other classes of geometrically nonlinear beam elements, geometrically exact beam
element formulations are characterized by a high degree of accuracy and computational effi-
ciency. While the existing representatives are almost exclusively based on the Simo-Reissner
theory of shear-deformable beams, the current thesis proposes novel finite element formulations
based on the geometrically exact Kirchhoff-Love theory of thin beams. The proposed formu-
lations are the first of this category that consider curved 3D beam geometries with anisotropic
cross-section shapes and fulfill fundamental mechanical properties such as observer invariance.
For finite elements derived from 3D Boltzmann continua such properties are standard. However,
the non-additivity and non-commutativity of the configuration space underlying geometrically
exact beams, which can be identified as a nonlinear manifold, requires special interpolation
strategies. Thereto, novel orthonormal rotation interpolation schemes are proposed that eventu-
ally yield two alternative beam elements based on a strong and a weak enforcement of the Kirch-
hoff constraint, respectively. It is confirmed analytically and numerically that these finite element
formulations offer considerable numerical advantages for the simulation of highly slender con-
tinua and yield an increased efficiency and robustness as compared to the existing counterparts
of Simo-Reissner type. Additionally, a reduced torsion-free beam element formulation is derived
from the general theory that results in considerably simplified and very efficient algorithms. The
extent of validity of this reduced formulation is strictly analyzed and shown to be relevant for a
variety of practical applications. The smooth geometry representation of the proposed formula-
tions can be regarded as highly beneficial for the development of robust beam contact algorithms.

Existing beam contact formulations can be categorized in point-based contact models that con-
sider discrete contact forces and line-based models that assume distributed contact forces. Line-
based formulations applied to slender beams represent accurate models in the range of small con-
tact angles, whereas the computational efficiency considerably decreases with increasing contact
angles. On the other hand, point-based formulations are very efficient in the regime of large con-
tact angles. However, based on an analytic criterion derived in this thesis, it is shown that these

i



models are inapplicable for a considerable range of small contact angles as consequence of non-
unique closest point projections. In order to combine the advantages of these two basic models,
a novel beam contact approach, denoted as all-angle beam contact (ABC) formulation, is pro-
posed. It employs a point contact formulation in the range of large contact angles and a newly
developed line contact formulation in the range of small contact angles. The latter is based on a
consistently linearized integration interval segmentation that avoids numerical integration across
strong discontinuities. This approach in combination with a smooth contact force law and the
proposed C1-continuous beam element formulations leads to a drastic reduction of the numer-
ical integration error, which in many cases only enables optimal convergence behavior under
uniform mesh refinement. The point and line contact model are smoothly connected by means
of a variationally consistent model transition approach. Based on a sound mechanical derivation,
two different transition laws are investigated and optimal algorithmic parameters are suggested.
The proposed ABC formulation is supplemented by a step size control of the nonlinear solver
allowing for displacement increments per time step that exceed the beam cross-section dimen-
sions and an efficient two-stage contact search based on dynamically adapted search segments.

For both the proposed Kirchhoff beam elements and the beam contact formulation, fundamen-
tal properties such as objectivity, conservation of energy and momentum as well as consistent
spatial convergence behavior are predicted theoretically and verified by means of suitable nu-
merical test cases. The combination of all the individual methodological constituents proposed
in this thesis results in accurate mechanical models for thin beams and their contact interaction.
The interplay of the developed algorithmic building blocks yields a highly efficient and robust
implicit simulation framework allowing for the analysis of physically relevant time scales in
complex mechanical systems composed of highly slender fibers with arbitrary orientation.
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Zusammenfassung
Hochschlanke faser- oder stabartige Komponenten sind essentielle Bestandteile mechanischer
Systeme in zahllosen Anwendungsfeldern und wissenschaftlichen Disziplinen wie etwa in den
Ingenieurwissenschaften, in der Medizintechnik, in den Materialwissenschaften oder in der Bio-
und Molekularphysik. Beispiele sind hochfeste Seile und Gewebe, faserverstärkte Verbund-
werkstoffe oder synthetische Polymerwerkstoffe. Auf gänzlich anderen Zeit- und Längenskalen
sind solche Komponenten etwa relevant zur Analyse des Supercoiling-Prozesses von DNA-
Strängen, der Eigenschaften von Carbon Nanotubes oder der Brownschen Teilchenbewegung im
Cytoskelett biologischer Zellen. Letzteres stellt ein biopolymeres Netzwerk aus schlanken Fila-
menten dar, welches biologisch relevante Prozesse wie Zellteilung oder Zellmigration entschei-
dend beeinflusst. Oft können diese schlanken Komponenten als 1D-Cosserat-Kontinua basierend
auf einer geometrisch nichtlinearen Balkentheorie modelliert werden. In allen genannten Fällen
wird das globale Systemverhalten entscheidend durch mechanische Kontaktinteraktion beein-
flusst. Ziel dieser Arbeit ist die Entwicklung mechanischer Modelle für sehr schlanke Balken
und deren Kontaktinteraktion auf Basis der geometrisch exakten Kirchhoff-Love Balkentheorie.
Ausgehend von diesen Modellen werden neuartige Finite Elemente Formulierungen abgeleitet,
welche die Voraussetzungen schaffen für eine akkurate, robuste und effiziente numerische Simu-
lation komplexer mechanischer Systeme aus hochschlanken Fasern beliebiger Orientierung.

Verglichen mit anderen Klassen geometrisch nichtlinearer Balkenelemente zeichnen sich ge-
ometrisch exakte Balkenelementformulierungen durch einen hohen Grad an Genauigkeit und
Recheneffizienz aus. Während die bestehenden Repräsentanten beinahe ausschließlich auf der
Simo-Reissner Theorie schubweicher Balken basieren, schlägt die vorliegende Arbeit neuartige
Finite Elemente Formulierungen basierend auf der geometrisch exakten Kirchhoff-Love Theo-
rie dünner Balken vor. Die entwickelten Formulierungen sind die ersten ihrer Art, welche für
gekrümmte 3D-Balkengeometrien mit anisotropen Querschnitten geeignet sind und gleichzeitig
grundlegende mechanische Prinzipien wie etwa Objektivität erfüllen. Vom 3D-Boltzmannkonti-
nuum abgeleitete Finite Elemente erfüllen diese Eigenschaften oft standardmäßig. Die Nicht-
Additivität und Nicht-Kommutativität des Konfigurationsraumes geometrisch exakter Balken,
welcher als nichtlineare Mannigfaltigkeit identifiziert werden kann, erfordert hingegen spezielle
Interpolationstechniken. Hierzu werden neuartige, orthonormale Rotationsinterpolationen vor-
geschlagen, welche schließlich in zwei alternativen Balkenelementformulierungen, basierend
auf einer starken beziehungsweise einer schwachen Erfüllung der Kirchhoff-Zwangsbedingung,
resultieren. Es kann sowohl analytisch als auch numerisch nachgewiesen werden, dass diese
Finite Elemente Formulierungen beträchtliche Vorteile in der Simulation hochschlanker Kon-
tinua bieten und in einer höheren Recheneffizienz und Robustheit resultieren als existierende
Varianten basierend auf der Simo-Reissner Theorie. Darüber hinaus wird eine reduzierte tor-
sionsfreie Balkenelementformulierung von der allgemeinen Theorie abgeleitet, welche zu stark
vereinfachten und sehr effizienten Algorithmen führt. Der Gültigkeitsbereich dieser reduzierten
Formulierung wird stringent analysiert. Außerdem wird gezeigt, dass dieser für viele praktische
Anwendungen relevant ist. Die glatte Geometriedarstellung der entwickelten Formulierungen
erweist sich als äußerst vorteilhaft für die Entwicklung robuster Balkenkontaktalgorithmen.
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Existierende Balkenkontaktformulierungen können in punktbasierte Kontaktmodelle, welche
diskrete Kontaktkräfte annehmen, und linienbasierte Modelle, welche verteilte Kontaktkräfte
annehmen, unterteilt werden. Linienbasierte Formulierungen angewendet auf schlanke Balken
stellen präzise Modelle im Bereich kleiner Kontaktwinkel dar, während die resultierende Re-
cheneffizienz mit zunehmenden Kontaktwinkeln erheblich abnimmt. Andererseits können punkt-
basierte Formulierungen als sehr effizient im Bereich großer Kontaktwinkel erachtet werden.
Allerdings kann anhand eines in dieser Arbeit abgeleiteten analytischen Kriteriums gezeigt wer-
den, dass diese Modelle aufgrund nicht eindeutiger Closest-Point-Projektionen innerhalb eines
beträchtlichen Bereichs kleiner Kontaktwinkel nicht anwendbar sind. Um nun die Vorteile dieser
beiden grundlegenden Modelle zu kombinieren, wird ein neuartiger Ansatz, bezeichnet als All-
Angle Beam Contact (ABC) Formulierung, vorgeschlagen. Diese Formulierung wendet eine
Punktkontaktformulierung im Bereich kleiner Kontaktwinkel sowie eine neu entwickelte Li-
nienkontaktformulierung im Bereich großer Kontaktwinkel an. Letztere basiert auf einer kon-
sistent linearisierten Integrationsintervall-Segmentierung, welche eine numerische Integration
über starke Diskontinuitäten hinweg vermeidet. In Kombination mit einem glatten Kontaktkraft-
gesetz und den entwickelten C1-stetigen Balkenelementformulierungen führt dieser Ansatz zu
einer drastischen Reduzierung des numerischen Integrationsfehlers, wodurch in vielen Fällen
erst ein optimales Konvergenzverhalten bei gleichmäßiger Netzverfeinerung ermöglicht wird.
Der glatte Übergang zwischen Punkt- und Linienkontaktmodell wird auf variationell konsistente
Weise gewährleistet. Basierend auf einer stringenten Herleitung werden zwei unterschiedliche
Modellübergangsgesetze untersucht und optimale algorithmische Parameter vorgeschlagen. Die
entwickelte ABC-Formulierung wird durch eine Schrittweitenregelung des nichtlinearen Lö-
sers ergänzt, welche Verschiebungsinkremente pro Zeitschritt ermöglicht, die die Balkenquer-
schnittsdimensionenen überschreiten. Der Algorithmus wird schließlich durch eine effiziente,
zweistufige Kontaktsuche basierend auf dynamisch angepassten Suchsegmenten komplettiert.

Sowohl für die vorgeschlagenen Kirchhoff-Balkenelemente als auch für die Balkenkontaktfor-
mulierung werden grundlegende Eigenschaften wie Objektivität, Energie- und Impulserhaltung,
aber auch konsistentes räumliches Konvergenzverhalten theoretisch sowie durch numerische
Tests verifiziert. Die Kombination all der einzelnen, in dieser Arbeit vorgeschlagenen metho-
dischen Bestandteile führt zu einem präzisen mechanischem Modell für dünne Balken und deren
Kontaktinteraktion. Das Zusammenspiel der entwickelten algorithmischen Komponenten liefert
ein hocheffizientes und robustes implizites Simulationswerkzeug, welches die Untersuchung
physikalisch relevanter Zeitskalen in komplexen mechanischen Systemen bestehend aus hoch-
schlanken Fasern beliebiger Orientierung ermöglicht.
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Nomenclature

Representation of scalars, tensors and other quantities

q,Q Scalar quantity, Euclidean norm of corresponding vectors q,Q
q,Q Tensor of order one or higher, matrix representation
q,Q Tensor object of 3D continuum mechanics
q Vector or matrix containing elementwise assembled discrete quantities
Q Vector or matrix containing globally assembled discrete quantities
Q Function space

Operators and symbols

⊗ Dyadic product
× Vector product
· Inner product

(.)T Transpose of a tensor
(.)−1 Inverse of a tensor or mapping
(.)−T Transpose of the inverse of a tensor
det(.) Determinant
In Identity tensor of dimension n× n
δ(.) Variation of a quantity (additive in all cases besides δθ and δΘ)
δo(.) Objective part of the variation of a quantity
∆(.) Finite increment of a quantity (additive in all cases besides ∆θ and ∆Θ)
||(.)|| Euclidean norm
||(.)||∞ Infinity norm
rv(.) Extraction of rotation vector from rotation tensor
εijk Levi-Civita-Symbol
δij, δij, δ

i
j Kronecker delta symbol

sr(.) Smallest rotation mapping
nl(.) Arbitrary function that depends on its arguments in a nonlinear manner
(̄.) Quantities associated with reference triad of smallest rotation mapping
(.)′ Derivative with respect to arc-length parameter s
˙(.) Time derivative

diag
[
.
]

Diagonal matrix
L(.) Linearization of a quantity
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Nomenclature

Superscripts and subscripts

(.)Ei Matrix representation of a tensor given in the basis Ei

(.)gi Matrix representation of a tensor given in the basis gi
(.)M Quantity associated with intermediate triad
(.)Mϕ Quantity associated with intermediate triad of spatial SR mapping
(.)Mϕ̂

Quantity associated with intermediate triad of temporal SR mapping
(.)SR Quantity associated with smallest rotation mapping
(.)FS Quantity associated with Frenet-Serret frame of a curve
(.)‖ Vector component parallel to centerline tangent or line contact contribution
(.)⊥ Vector component normal to centerline tangent or point contact contribution
(.)0 Quantity of initial configuration
(.)u Quantity at Dirichlet boundary
(.)σ Quantity at Neumann boundary
(.)int Contribution of internal forces
(.)ext Contribution of external forces
(.)kin Contribution of kinetic forces
(.)con Contribution of contact forces
(.)λε Contribution due to inextensibility constraint
(.)h Spatially discretized quantity, domain or function space
(.)∗ Changed quantity as consequence of a rigid body motion
(.)ref Reference solution for a quantity of interest
(.)a Quantity associated with axial tension mode
(.)s Quantity associated with shear mode
(.)t Quantity associated with torsion mode
(.)b Quantity associated with bending mode
(.)TAN Quantity associated with triad parametrization via nodal tangents
(.)ROT Quantity associated with triad parametrization via nodal rotation vectors
(.)bl Contact quantity associated with a bilateral closest point projection
(.)ul Contact quantity associated with a unilateral closest point projection
(.)c Contact quantity that is evaluated at the bilateral or unilateral closest points

Representation of spatial and material quantities in associated frames

q Spatial tensor
Q Material tensor
qi Components of spatial tensor when expressed in the frame e1, e2, e3

Qi Components of material tensor when expressed in the frame E1,E2,E3

Qi Components of spatial tensor when expressed in the frame g1,g2,g3

qg1 , qn, qb Components of a spatial vector q expressed in the Frenet-Serret frame
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Nomenclature

3D continuum mechanics

X(s) Initial position of cross-section point with convective coordinates s
x(s) Current position of cross-section point with convective coordinates s
xA Reference vector defining moment stress resultants
s Collection of convective coordinates describing material cross-section point
s1, s2, s3 Individual convective coordinates describing material cross-section point
P First Piola-Kirchhoff stress tensor
S̄ Second Piola-Kirchhoff stress tensor
σ Cauchy stress tensor
t1, t2, t3 Piola surface stress vectors
F Deformation gradient
E Cauchy-Green deformation tensor
C Material constitutive tensor of Saint-Venant-Kirchhoff material
gi,Gi Spatial and material covariant base vectors for i = 1, 2, 3
gi,Gi Spatial and material contravariant base vectors for i = 1, 2, 3

Large rotations and 1D kinematics

g1,g2,g3 Base vectors spanning the beam cross-section, also denoted as material triad
E1,E2,E3 Material base vectors of Cartesian frame
e1, e2, e3 Spatial base vectors of Cartesian frame
Λ Rotation tensor, material triad with base vectors g1,g2,g3

Λ̃ Relative rotation tensor between initial and current material triad
SO(3) Special orthogonal group
so(3) Set of skew symmetric tensors
TΛSO(3) Tangent space of SO(3) at Λ
S(a) Skew symmetric tensor with arbitrary axial vector a ∈ <3

exp(S(a)) Representation of rotation tensor with rotation vector a via exponential map
q Arbitrary primary variable for rotation parametrization
ψ Spatial (total) rotation vector
ψ Euclidean norm of rotation vector ψ
eψ Normalized rotation vector representing axis of rotation
Ψ Material (total) rotation vector
∆ψ,∆Ψ Spatial and material additive (finite) rotation vector increment
∆θ,∆Θ Spatial and material multiplicative (finite) rotation vector increment
δψ, δΨ Spatial and material additive rotation vector variation
δθ, δΘ Spatial and material multiplicative rotation vector variation
k,K Spatial and material curvature vector
w,W Spatial and material angular velocity vector
a,A Spatial and material angular acceleration vector
r Beam centerline curve
u Displacement of beam centerline curve
κ Mechanically relevant Frenet-Serret curvature vector of a curve
τ Mechanically relevant torsion of Frenet-Serret frame of a curve
κ̄ Geometrical Frenet-Serret curvature vector of a curve
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τ̄ Geometrical torsion of Frenet-Serret frame of a curve
r̄ Geometrical curvature radius of a curve
nFS Normal vector of Frenet-Serret frame of a curve
bFS Binormal vector of Frenet-Serret frame of a curve
T Transformation between additive and multiplicative variations δψ and δθ
t Non-unit tangent vector aligned to beam centerline
t Norm of non-unit tangent vector t
t̃ Non-unit tangent vector t normalized with t2

ϕ Relative angle between intermediate frame and material triad
Λ̄ Reference triad of smallest rotation mapping
ΛM Intermediate triad
TΘM1t Transformation matrix between the variations δΘM1 and δt
Tθt Transformation matrix between the variations δθ and δt
TM Transformation matrix between the variations (δt, δϕ) and (δθ, δt)
Tϕθ Transformation matrix between the variations δϕ and δθ
T̃ Transformation matrix between the variations (δt, δΘ1) and (δθ, δt)
ΛR Rigid body rotation
rR Rigid body translation

1D stress resultants, constitutive laws and balance equations

s Arc-length parameter on initial beam centerline
l Beam length in initial configuration
Ωl Beam arc-length domain
s̃ Arc-length parameter on current beam centerline
l̃ Beam length in current configuration
t Time
T Total simulation time
Γσ Neumann boundary of the beam
Γu Dirichlet boundary of the beam
C(r,q) Configuration of the beam with primary variable fields r and q

f̃ , m̃ Distributed external forces and moments per unit length
fρ,mρ Distributed inertia forces and moments per unit length
f̃ρ Sum of distributed inertia and external forces per unit length
m̃ρ Sum of distributed inertia and external moments per unit length
fσ,mσ Forces and moments at the Neumann boundary Γσ
f ,m Spatial force and moment stress resultants
F,M Material force and moment stress resultants
G(r,q) Weak form of the balance equations with primary variable fields r and q
L(r,q) Lagrangian of variational problem with primary variable fields r and q
γ,Γ Spatial and material deformation measures representing tension and shear
ω,Ω Spatial and material deformation measures representing torsion and bending
ε Axial tension
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H Material strain vector
Π̃int,Πint Length-specific and total hyperelastic stored energy function
Π̃kin,Πkin Length-specific and total kinetic energy
cm,CM Spatial and material rotational constitutive tensor
cf ,CF Spatial and material translational constitutive tensor
A Beam cross-section area
R Beam cross-section radius
ζ Beam slenderness ratio
ζele Element slenderness ratio
Ā2, Ā3 Reduced cross-section areas
I2, I3 Principal moments of inertia
I Principal moment of inertia for isotropic cross-sections
IT Torsional moment of inertia
IP Polar moment of inertia
E Young’s modulus
G Shear modulus
ν Poisson’s ratio
cρ,Cρ Spatial and material inertia tensor
ρ Mass density
l̃, l Length-specific and total linear momentum
h̃,h Length-specific and total angular momentum
fext,mext Total external forces and moments
ΠλΓ23

Lagrange multiplier potential for weak enforcement of Kirchhoff constraint
λΓ2, λΓ3 Lagrange multiplier fields for weak enforcement of Kirchhoff constraint
Πλε Lagrange multiplier potential for inextensibility constraint
λε Lagrange multiplier fields for inextensibility constraint
cε Scaling factor for augmented Lagrange type inextensibility constraint
c Wave speed
ω Eigenfrequency
<Mt> Spatially averaged norm of torsional moment
<Mb> Spatially averaged norm of bending moment
M̄t Spatially and temporally averaged norm of torsional moment
M̄b Spatially and temporally averaged norm of bending moment

Function spaces

U Trial space for translational and rotational primary variable fields
V Test space for translational and rotational primary variable fields
UλΓ23

Lagrange multiplier trial space for weak enforcement of Kirchhoff constraint
VλΓ23

Lagrange multiplier test space for weak enforcement of Kirchhoff constraint
Uλε Lagrange multiplier trial space for inextensibility constraint
Vλε Lagrange multiplier test space for inextensibility constraint
Uλc Lagrange multiplier trial space for line contact constraint
Vλc Lagrange multiplier test space for line contact constraint
Wm,2 Sobolev space of functions with square integrable derivatives up to order m
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Nomenclature

Spatial discretization

mr Highest derivative of centerline curve in weak form
mΛ Highest derivative of triad field in weak form
nele Number of elements
lele, h Initial length of a finite element
(.)i, (.)j Quantity associated with node i, j

(̂.)
i
, (̂.)

j
Primary solution variable associated with node i, j

(.)(e) Quantity associated with element e
(.)k Quantity evaluated at Newton iteration k
ξ Element parameter coordinate
Nr(ξ) General shape functions associated with centerline interpolation
L(ξ) Lagrange shape functions
Hd(ξ) Hermite shape functions associated with nodal positions
Ht(ξ) Hermite shape functions associated with nodal tangents
nr Number of element nodes associated with centerline interpolation
nr,tot Total number of nodes associated with centerline interpolation
Nq(ξ) General shape functions associated with rotation interpolation
nΛ Number of element nodes associated with rotation interpolation
nn Number of element nodes in the case nΛ = nr
nΛ,tot Total number of nodes associated with rotation interpolation
d̂i Nodal position vector
t̂i Nodal tangent vector
J(ξ) Element Jacobian
x̂ Vector containing all nodal primary variables of a finite element
X Vector containing all primary variables of the global problem
D Global vector of all primary variables relevant for centerline interpolation
nX Size of the vector X
r Element residual vector
R Global residual vector
k Element tangent stiffness matrix
K Global tangent stiffness matrix
δX, δR Tolerances to be fulfilled for Newton convergence
λ Load factor
niter,n Number of Newton iterations in time step n
niter,max Maximal admissible number of Newton iterations per time step
niter,tot Total number of Newton iterations during a simulation
L Elementwise matrix of Lagrange shape functions
H Elementwise matrix of Hermite shape functions
d̂ Elementwise vector of nodal primary variables of centerline interpolation
c Constant of Hermite interpolation
copt Optimal value for constant of Hermite interpolation
Λi
Mϕ̂,n

Nodal intermediate triad: SR mapping in time from Λi
Mϕ̂,n−1 to Λi

Mϕ̂,n

ϕ̂i Nodal relative angle associated with nodal intermediate triads Λi
Mϕ̂,n
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ΛMϕ,n(ξ) Intermediate triad field: SR mapping in space from ΛM,n(ξr) to ΛMϕ,n(ξ)
ϕh(ξ) Relative angle field associated with intermediate triad field ΛMϕ,n(ξ)
Λr Reference triad for triad interpolation
Φlh(ξ) Material relative rotation vector field employed for triad interpolation
ΦIJ Material relative rotation vector between nodes I and J
Ĩi(ξ) Shape function matrices of rotation vector-based triad interpolation
δθ̂θθ Elementwise assembly of nodal spin vectors
L‖ Elementwise matrix of Lagrange shape functions for interpolation of δΘ1

δΘ̂ΘΘ Elementwise assembly of nodal spin vector components δΘ̂i
1

∆Θ̂ΘΘ Elementwise assembly of the nodal multiplicative increments ∆Θ̂i
1

v... Elementwise auxiliary vectors for representation of discrete variations
r Constraint ratio
neq Number of equations
neq,c Number of constraint equations
nuk Number of unknowns
nG Number of Gauss integration points per element
nCP Number of collocation points
(̄.)(ξ) Re-interpolated field based on the values at discrete collocation points
||e||2rel Relative L2-error
||e||e,rel Relative energy error
umax Maximal displacement occurring in a simulation
k Polynomial order of interpolation function
T̃x̂ Elementwise transformation matrix between element variants TAN and ROT
T̃X Global transformation matrix between element variants TAN and ROT

Temporal discretization

∆t Time step size
∆t0 Initial time step size of load step adaption scheme
N Number of time steps
Nmin Minimal number of time steps required for convergence
N0 Initial number of time steps of load step adaption scheme
n Time step index
tn Time at time step n
(.)n Evaluation of a quantity at time tn
θ̃n+1 Spatial multiplicative rotation increment between time steps tn and tn+1

Θ̃n+1 Material multiplicative rotation increment between time steps tn and tn+1

ũn+1 Spatial (additive) displacement increment between time steps tn and tn+1

r̈mod Modified translational acceleration of Lie-Group generalized-α scheme
Amod Modified angular acceleration of Lie-Group generalized-α scheme
β, γ Parameters of Newmark’s method
αf , αm Parameters of generalized-α method
ρ∞ Spectral radius in the high-frequency limit
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Nomenclature

Beam contact

(.)(c) Quantity associated with contact element pair c
(.)1 Quantity associated with element 1 of contact pair (=slave for line contact)
(.)2 Quantity associated with element 2 of contact pair (=master for line contact)
ξ, η Parameter coordinates of element 1 or element 2 of a contact element pair
(.)p Parameter derivative of a quantity associated with element 1 or element 2
d(ξ, η) Distance function
dbl, g Bilateral minimal distance value and gap
ξc, ηc Bilateral closest point coordinates
dul(ξ), g(ξ) Unilateral minimal distance value and gap at position ξ
ηc(ξ) Unilateral closest point coordinate at position ξ
p1, p2 Orthogonality conditions to be solved for closet point projection
Πcε Penalty potential
fcε Penalty contact force vector
n Contact normal vector
ε Penalty parameter
Πcλ Lagrange multiplier potential for beam contact
λc Lagrange multiplier representing contact force
fcλ Lagrange multiplier-based contact force vector
α Contact angle enclosed by tangent vectors at contact point
z Cosine of contact angle defined by inner product of tangents
αmin Lower bound for contact angle in order to guarantee for unique CPP
β1, β2 Angle enclosed by contact normal and Frenet normal vectors 1 and 2

d̂12 Vector of all translational nodal primary variables of elements 1 and 2
µmax Maximal admissible ratio of cross-section to curvature radius
nII Number of contact integration intervals per slave beam element
nGR Number of integration points per integration interval
nGP Total number of integration points per slave element
Jc1 Total Jacobian required for integration of line contact forces
ξ1,i, ξ2,i Element parameter coordinates confining the integration interval i
ξ̄j Gauss point coordinate within a local integration interval
ξij Element parameter coordinate of integration point ξ̄j in interval i
(.)ij General quantity associated with integration point ξ̄j in interval i
wj Gauss weight associated with Gauss point coordinate ξ̄j
ηEP Master beam element parameter coordinates of physical beam endpoints
ξB Projection of ηEP on slave beam element
N j
λ1(ξ) Shape functions of discretized Lagrange multiplier field λch(ξ)

Nλ1(ξ) Elementwise assembly of shape functions N j
λ1(ξ)

λ̂j1 Nodal Lagrange multipliers
λ̂λλ1 Elementwise assembly of Lagrange multipliers λ̂j1
nλ Number of nodes per slave element for Lagrange multiplier interpolation
ĝj Averaged nodal gaps
λ̂jε1 Averaged nodal penalty forces
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gn Normalized gap
gmin Prescribed minimal value of gap
gn,min Prescribed minimal value of normalized gap
∆s̃GP Arc-length distance between two successive Gauss points
∆s̃GP,max Maximal admissible distance between two successive Gauss points
nGP,min Minimal admissible number of Gauss points per slave element
k... Safety factor
α1, α2 Shifting angles defining transition angle range of ABC formulation
ᾱ12 Mean shifting angle
k(α) Transition factor describing smooth model transition
fcε Scalar contact force
mcε Scalar contact moment
v1,v2 Auxiliary vectors for representation of discrete variations
rs Radius of spherical search boxes for first search stage
nseg Number of search segments per beam element
lseg Length of search segment
βmax Prescribed maximal deviation between straight search segment and centerline
rcyl Radius of cylindrical search boxes for second search stage
γ Intersection angle between two straight search segments
ḡ Gap value at which contact force becomes active for regularized penalty law
Π̃cε Penalty potential normalized by penalty parameter
Wcon Mechanical work contribution of contact forces
Wtot Total mechanical work
Etot Total system energy
∆Dmax Maximal displacement per time step

Abbreviations

ABC All-angle Beam Contact
AMG Algebraic MultiGrid method
ANS Assumed Natural Strains
CG Conjugate Gradient method
CJ Reissner-type beam element formulation by Crisfield and Jelenić
CP Collocation Point
CPP Closest Point Projection
CS Consistent Spin interpolation
DoF Degree of Freedom
EMM Energy-Momentum Method
FEM Finite Element Method
FS Frenet-Serret
GEMM Generalized Energy-Momentum Method
GMRES Generalized Minimal RESidual method
HSR Hermitian Simo-Reissner element
IE InExtensibility constraint
ILU Incomplete Lower Upper triangular matrix
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Nomenclature

IP Integration Point
IT IsoTropic element formulation
LBB Ladyshenskaya-Babuska-Brezzi condition
LU Lower Upper triangular matrix
MCS Minimally Constrained Strains
MWR Method of Weighted Residuals
PDE Partial Differential Equation
PMTPE Principle of Minimum of Total Potential Energy
PVW Principle of Virtual Work
RI Reduced Integration
ROT Triad parametrization via nodal ROTation vectors
SK Strong enforcement of Kirchhoff constraint
SPDE Stochastic Partial Differential Equation
SR Smallest Rotation
SSC Step Size Control of Newton-Raphson scheme
ST Small Tension
SV Reissner-type beam element formulation by Simo and Vu-Quoc
TAN Triad parametrization via nodal TANgents
TF Torsion-Free element formulation
WK Weak enforcement of Kirchhoff constraint
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1 Introduction

1.1 Motivation
In countless fields of application, mechanical systems are characterized by the prevalence of
slender fiber- or rod-like components. Often, these components crucially determine the mechan-
ical characteristics of the overall system such as anisotropic strength and stiffness properties or
relevant mechanisms of load transfer. While the rather descriptive notions of ”fibers” and ”rods”
might immediately be associated with slender or lengthy bodies featuring more or less transverse
flexibility, the more concise description for the class of mechanical components considered in
this thesis is given by the notion ”beams”. Mechanically, a beam is a structural model appro-
priate to describe the motion and deformation of bodies whose dimension in length direction
is much larger than the dimensions in transverse directions. Consequently, the applicability of
beam models can be evaluated by the ratio of length to lateral dimensions of a body, denoted as
slenderness or slenderness ratio. In this context, the mechanical model of ”ropes” represents the
extreme case of beams with negligible stiffness in transverse direction.

In classical engineering applications, such slender beam-like components arise for example
in form of lightweight construction frames, gear shafts or wheel axles in vehicles, cables, oil
pipelines or deep drilling rods. In contrast to these single-component systems, their is a variety
of technically relevant multi-component systems that crucially rely on the composition out of
a large number of slender components. Examples are classical ropes or textile webbings, high-
tensile industrial ropes and webbings, fiber-reinforced composite materials but also cellulose
fibers determining the characteristics of paper [67, 69, 135]. Typically, there are two distinctive
differences between the aforementioned single- and multi-component systems: Firstly, the men-
tioned multi-component systems typically consist of individual fibers with very high slenderness
ratio as compared to most of the single-component systems summarized above. Secondly, the
overall mechanical properties and the global system response of these multi-component systems
is essentially determined by fiber-to-fiber contact interaction and the resulting force transfer be-
tween individual fibers. Exactly these two aspects, the modeling of mechanical components with
highest slenderness ratios and their contact interaction will lie in the focus of this thesis. Mechan-
ical systems unifying these two aspects can be found in numerous modern fields of application
and are in the focus of several scientific disciplines that range far beyond the classical engi-
neering examples considered above: In the field of material science, slender components can for
example be identified in form of interconnected macromolecules occurring in synthetic polymer
materials, in novel fiber-based porous materials with tailored constitutive properties on the basis
of optimized fiber sizes, orientations and densities but also in fiber-based, acoustic and thermal
insulation materials [186, 240]. Arterial stents, tube-shaped devices on the basis of thin steel
wire structures, are employed in biomedical engineering in order to keep passage ways open
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in human blood vessels. They can be identified as further practical applications that crucially
rely on highly slender mechanical components and their contact interaction [94, 192]. Slender
constituents at entirely different length and time scales can be found in biological systems: As
examples, the fibers in biological tissue, muscle fibers or the filaments in biopolymer networks
have to be mentioned [61, 99, 198]. A representative of the latter kind is the cytoskeleton of
biological cells, which influences biologically highly relevant phenomena such as cell-division,
cell migration or intracellular transport and has led to considerable research effort in the field
of biophysics in recent years. Also the supercoiling process of DNA strands is crucially deter-
mined by the mechanical behavior of slender structures and their mutual interaction [236], and
has attracted the interest of countless scientists in the field of molecular physics. As last exam-
ple, the development of novel nano-materials is considered. One of the arguable most prominent
applications for beam models in this field and related disceplines such as electronics or optics
are carbon nanotubes [223]. While slenderness ratios above 103 are very common among the
examples mentioned so far, these carbon molecules yield slenderness ratios up to 109.

As compared to experimental investigations of such systems, the approach of mechanical model-
ing and numerical simulation offers a considerably increased degree of flexibility. For example,
parameter studies can be realized in a very efficient and flexible manner. Moreover, numerical
simulation schemes can be extended by additional functionalities allowing for example for sys-
tem optimization or inverse analysis, i.e. for a determination of certain system properties that
can not be measured otherwise on the basis of a known mechanical loading state and a measured
system answer. Finally, investigations on micro- and nano-scales as prevalent in the examples
of the last paragraph but also in vivo studies of biological systems are often very difficult, in
many cases even impossible, to be conducted in an experimental manner. Besides experiment
and numerical simulation, analytic approaches can be considered as third essential instrument of
system characterization. However, given the complexity of the systems and microstructures con-
sidered so far, analytic investigations are typically limited to very simple geometries and load
cases and are mostly based on considerably simplifying assumptions. Throughout this thesis,
the focus will lie on the development of accurate mechanical models as well as efficient and
robust numerical simulation tools. While the mechanical description of slender components and
their contact interaction will be based on geometrically nonlinear 3D beam models, the Finite
Element Method (FEM) will be employed in order to allow for a numerical solution of these
problems. Approximately, since the last fifty years, the FEM has been in the focus of method
developers and applicants and can meanwhile be regarded as the dominating numerical approxi-
mation scheme for the solution of partial differential equations (PDEs) of diverse origin, with its
roots lying in the field of solid and structural mechanics. Among others, the FEM benefits from
its sound mathematical foundation as well as the desirable properties of the resulting, discrete
system matrices, paving the way for efficient numerical solution schemes. Compared to alter-
native discretization techniques such as finite difference schemes, the FEM offers a high degree
of generality and geometrical flexibility, which can be regarded as very beneficial when com-
plex structures have to be modeled or when a coupling with further physical fields such as fluid,
thermal or electrical fields is required. Both aspects are relevant for many of the applications
mentioned above. In the following two sections, the state-of-the-art of existing methods as well
as the objective of the current thesis will be presented separately for the two core contents of this
thesis, which are finite element models for slender beams and for their contact interaction.
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1.2 Geometrically Exact Finite Element Formulations
for Nonlinear Beam Problems

The focus of this section lies on geometrically nonlinear, 3D beam formulations appropriate for
the modeling of complex systems of highly slender fibers. Especially, so-called geometrically
exact formulations based on a numerical realization by means of the finite element method are
considered. Moreover, the emphasis lies on formulations based on the so-called Kirchhoff-Love
theory of thin rods, which seems to be most suitable for the intended fields of application.

1.2.1 Fundamental approaches
Basically, two essential motivations for applying a beam theory instead of a 3D continuum me-
chanics theory for the modeling of slender bodies can be identified: In the early days of beam
theories, it was the accessibility of analytic solutions as for example ”Euler’s Elastica”, even for
large deformation problems, that motivated the development and application of one-dimensional
theories. Nowadays, it is the knowledge that the modeling of highly slender bodies via beam the-
ories yields considerably more efficient, but also more well-posed, numerical formulations as it
would be the case for 3D continuum theories. So-called induced beam theories can be regarded
as reduced 1D continuum theories consistently derived from the 3D theory of continuum me-
chanics under consideration of a basic kinematic constraint that reflects the deformation states
expected for slender bodies in a reasonable manner. Such 1D beam theories typically allow to
describe the motion and deformation of slender bodies in 3D space on the basis of proper kine-
matic, kinetic and constitutive resultant quantities. In the case of induced beam theories, these
resultant quantities can for example be derived via integration of 3D stress measures over the
beam cross-section. The 3D stress measures typically result from the constrained 3D displace-
ment field as well as standard 3D strain measures and constitutive relations. In this context, the
cross-section of a beam represents the collection of all material points sharing the same beam
length coordinate in the stress-free configuration. On the contrary, so-called intrinsic beam the-
ories directly postulate the 1D resultant quantities. These theories are internally consistent in
the sense that the resultant quantities as well as the 1D relations connecting these quantities
still fulfill essential mechanical principles such as equilibrium of forces and moments, conserva-
tion of energy or rather existence of work conjugated stress-strain pairs, observer invariance or
path-independence of conservative problems. Nevertheless, intrinsic beam theories are decou-
pled from the 3D continuum mechanics theory. Typically, the postulated constitutive constants
relating stress and strain measures are determined experimentally, while the constitutive con-
stants of induced beam theories follow directly from the corresponding 3D constitutive laws.
Such postulated constitutive laws based on experimentally determined constants are favorable
for applications where no 3D continuum foundation exists: Considering the low number of dis-
crete molecules distributed over the thickness of macromolecules as occurring for example in
biopolymer networks, DNA strands or carbon nanotubes - to come back to the applications men-
tioned above - no 3D continuum theory can be applied in a reasonable manner. Nevertheless,
it is well-established that these slender components can be described in good approximation by
1D continuum theories and associated experimentally determined constitutive constants [198].
Finally, a compromise between the induced and intrinsic theories considered so far are so-called
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semi-induced beam theories, where only the constitutive law is postulated and all the remaining
kinetic and kinematic relations are consistently derived from the 3D theory.

Based on the Bernoulli hypothesis of undeformed cross-sections and the work of Euler, the
“Kirchhoff beam” [125], proposed by Kirchhoff zu Heidelberg in 1859, was the first formula-
tion allowing for arbitrary initial curvatures and large three-dimensional deformations including
the states of bending and torsion. In 1944, this theory was enhanced by Love [153] to also ac-
count for small axial tension. A comprehensive historic overview of these early developments is
given in the work of Dill [64]. It was Reissner in 1972 for the two-dimensional case [183] and in
1981 for the general three-dimensional case [184], who completed the theory by two additional
deformation measures representing the shear deformation of the beam. While the 3D problem
statement of Reissner was still based on some additional approximations, Simo [204] extended
the work of Reissner to yield a formulation that is truly consistent in the sense of a semi-induced
beam theory. Thus, starting from a basic kinematic assumption, all kinetic and kinematic quan-
tities and relations are consistently derived from the 3D continuum theory, while the constitutive
law has been postulated. Originally, this theory has been denoted as geometrically exact beam
theory. Nowadays, it is also referred to as Simo-Reissner beam theory. According to the defini-
tion of Simo [204], also in this thesis, a beam theory is denoted as geometrically exact, if “the
relationships between the configuration and the strain measures are consistent with the virtual
work principle and the equilibrium equations at a deformed state regardless of the magnitude of
displacements, rotations and strains” ([58], p. 1126). For that reason, also the notation “finite-
strain beams” has been applied in the original work [204]. However, as later argued by several
authors (see e.g. [58]) and in accordance with corresponding derivations in the literature (see
e.g. [2, 3, 153]), a consistency of the geometrically exact beam theory and the 3D theory of con-
tinuum mechanics in the sense of a (fully) induced beam theory can only be assumed as long as
small strains are considered. The fulfillment of the basic kinematic assumption of rigid cross-
sections underlying the geometrically exact beam theory requires pointwise six (translational
and rotational) degrees of freedom in order to uniquely describe the (centroid) position and ori-
entation of the cross-sections. Consequently, this beam theory can be identified as 1D Cosserat
continuum [51], derived from a 3D Boltzmann continuum with pointwise three (translational)
degrees of freedom. While there exists a variety of beam theories that also consider in-plane as
well as out-of-plane cross-section distortion, the current thesis focuses on geometrically exact
beam formulations on the basis of the rigid cross-section assumption as applied by Simo and
Reissner. Furthermore, throughout this thesis, the notion Simo-Reissner theory will be preferred
since the notion geometrically exact beam theory, when following the definition presented above,
also applies to consistently derived shear-free formulations on the basis of the Kirchhoff-Love
theory. In the remainder of this thesis, the notion “shear-free” represents the opposite of ”shear-
deformable” and thus is equivalent to “vanishing shear strains”, but, of course, not to “vanishing
shear stresses”. Unfortunately, no absolute consensus concerning naming of the different beam
models presented so far can be found in the literature. For that reason, the following nomen-
clature, trying to be consistent with the most important representatives in the literature, will be
applied in this thesis: Geometrically nonlinear beam models capturing the modes of axial ten-
sion, torsion and bending and being appropriate for initially straight beams with isotropic cross-
section shapes are denoted as nonlinear Euler-Bernoulli beams. The extension to arbitrary initial
curvatures and anisotropic cross-section shapes is referred to as Kirchhoff-Love beam theory. Fi-
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nally, the (geometrically exact) supplementation by shear deformation modes is covered by the
Simo-Reissner theory. Euler-Bernoulli or Kirchhoff-Love formulations that neglect the mode of
axial tension are denoted as inextensible Euler-Bernoulli or Kirchhoff-Love variants. Finally, the
restriction of shear-free or shear-deformable theories to the geometrically linear regime yields
the well-known linear Euler-Bernoulli and Timoshenko beam models [219].

By identifying the configuration space underlying the geometrically exact beam theory as nonlin-
ear, differentiable manifold with Lie group structure and by pointing out important algorithmic
consequences resulting from the non-additivity and non-commutativity of the associated group
elements, the original work by Simo [204] and the subsequent work by Simo and Vu-Quoc [208]
laid the foundation for abundant research work on this topic in the following years. The static
beam theory [204, 208] has been extended to dynamics by Cardona and Geradin [43, 44] and by
Simo and Vu-Quoc [209]. The contributions of Kondoh et al. [127], Dvorkin et al. [71] as well
as Iura and Atluri [113] can be regarded as further pioneering works in this field. These contribu-
tions mark the starting point for the development of a large variety of geometrically exact beam
element formulations [60, 106, 111, 115, 117, 172, 195, 211] which basically differ in the type of
rotation interpolation (e.g. interpolation of incremental, iterative or total rotational vectors), the
choice of nodal rotation parametrization (via rotation vectors, quaternions etc.), the type of iter-
ative rotation updates (multiplicative or additive), or the time integration scheme applied to the
rotational degrees of freedom (e.g. based on additive or multiplicative rotation increments). Also
extensions of the geometrically exact beam theory to arbitrary cross-section shapes with shear
centers differing from the cross-section centroid can be found [92]. An overview of the most im-
portant developments at that time is exemplarily given in the text books of Crisfield [56] as well
as Geradin and Cardona [82]. An break in this development is given by the works of Crisfield
and Jelenić [58, 116], who have shown that none of the rotation field discretizations of the for-
mulations existent at that time could preserve both of the important properties objectivity and
path-independence (see also [110] for a discussion of this topic). Furthermore, in [58] and [116],
a new, objective and path-independent orthogonal interpolation scheme was proposed that di-
rectly acts on the rotation manifold and not on any of its rotation vector parametrizations as done
in the works before. This formulation was the starting point for the development of many alterna-
tive rotation interpolation strategies for geometrically exact beams that also preserve these prop-
erties. Among others, orthogonal interpolations of relative rotation vectors (see e.g. [84, 194])
or quaternions (see e.g. [83, 187, 246]), non-orthogonal interpolation strategies in combination
with modified beam models (see e.g. [27, 74, 190]) and non-orthogonal interpolation strategies
with subsequent orthogonalization (see e.g. [187]) can be identified. As reported in the original
work [58, 116], the rotation interpolation scheme proposed by Crisfield and Jelenić can exactly
represent the state of constant curvature. Thus, it can be interpreted as geodesic, i.e. shortest, con-
nection between two configurations on the rotation manifold. Consequently, these geodesic rota-
tion interpolation schemes represent the counterpart to linear interpolations of translational quan-
tities. The works [31, 32] as well as the recent contributions [194, 212, 213, 220] can be identi-
fied as further geometrically exact beam element formulations based on geodesic interpolations
of the rotational (and translational) primary variable fields. A 2D extension of these so-called
helicoidal interpolations to higher-order elements is given in [66]. A formulation with smooth
centerline representation based on an isogeometric collocation scheme is proposed in [226]. Be-
sides these purely displacement-based elements, also interpolation schemes directly acting at
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the strain level combined with a subsequent derivation of the position and rotation field via in-
tegration (see e.g. [220, 244, 245]) as well as mixed formulations [197] have been proposed.
Furthermore, a variety of contributions considering time integration of rotational variables can
be found in this context [17, 26, 35, 62, 86, 109, 119, 144, 189, 210].

While all the formulations presented above have been based on the finite element method, also
discrete representatives of Simo-Reissner beam formulations based on finite difference schemes
can be found in the literature [118, 136, 137, 145]. These are often denoted as discrete elas-
tic rods and based on the concept of discrete differential geometry (DDG). In the context of
finite element formulations for geometrically nonlinear beam problems, again, a variety of al-
ternatives to the geometrically exact formulations considered in the last two paragraphs can
be found. The maybe most prominent representatives of these alternatives are the corotational
method [55, 56, 59, 76, 81] as well as Absolute Nodal Coordinate (ANC) [200, 201] and solid
beam element [14, 79] formulations. The corotational technique was initially introduced by
Wempner [229] as well as Belytschko et al. [20, 21] and shows strong similarities to the ”natural
approach” of Argyris et al. [5]. The basic idea is to split the overall non-linear deformation into
a contribution stemming from large rotations and a part stemming from local deformations ex-
pressed in a local, ”corotated” frame. Often, the local deformation can be modeled on the basis of
first- (or second-) order theories such that the entire degree of nonlinearity is represented by the
rotation of the local frame. The basic idea of ANC beam element formulations is to employ stan-
dard shape functions as known from solid finite element formulations in order to interpolate the
3D displacement field within the beam. Instead of introducing a kinematic constraint and deriv-
ing a resultant 1D model, different polynomial degrees are typically applied for the interpolation
in beam length direction and in transverse directions. Numerical comparisons as performed e.g.
by Romero [187, 188] and Bauchau et al. [18] advocate geometrically exact beams in general,
and orthogonal triad interpolation schemes (see e.g. [58]) in particular, with regard to computa-
tional accuracy and efficiency. All in all, it can be stated that finite element formulations based
on the geometrically exact beam theory have become well-established in the meantime and can
arguably be regarded as state-of-the-art methods for the computational treatment of geometri-
cally nonlinear beam problems. Formulations of this category will be in the focus of this thesis.

In the context of the geometrically nonlinear Kirchhoff-Love beam theory, several discrete re-
alizations based on finite difference schemes have recently been proposed [1, 24, 25, 88, 140].
In contrast to the Simo-Reissner theory, also several works based on an analytic treatment of
Kirchhoff-Love beam problems exist in the modern literature [138, 202]. Interestingly, most
approaches of these two categories can be found in the field of bio- or molecular physics. Al-
though, the theoretical basis of shear-free Kirchhoff-Love beam formulations has a much longer
tradition than the Simo-Reissner theory of shear-deformable beams, there are only a few geomet-
rically nonlinear shear-free finite element representations, which have not reached the excellent
properties of geometrically exact Simo-Reissner formulations so far. In his recent works [6]
and [7], Armero and Valverde gave a historic overview of existing Kirchhoff finite elements
and pointed out their drawbacks. Accordingly, the first Kirchhoff type element formulations
have applied different interpolations (C0-continuous Lagrange polynomials for the axial dis-
placements and C1-continuous Hermite polynomials for the transversal displacements) to the
different displacement-components, which led to a loss of objectivity [6]. In later works, the
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objectivity could be preserved by employing e.g. trigonometric shape functions, but the corre-
sponding formulations were limited to the investigation of plane circular arches (see e.g. [10]
or [11]). A different approach was the development of framework or corotational shear-free
beams [57, 100–102, 141], a category of formulations, which naturally preserves the objectivity
of the continuous problem. As pointed out in [6], these types of Kirchhoff type formulations
often exhibit a comparatively poor accuracy; a fact, which can directly be traced back to the lack
of an exact representation of the kinematic quantities. A further critical issue relevant in the con-
text of thin Kirchhoff beams is membrane locking, a locking phenomenon given distinction to
by Stolarski and Belytschko [215]. In general, membrane locking denotes the inability of curved
structural elements, e.g. beams or shells, to represent the inextensibility constraint of vanishing
membrane / axial strains. For thin Kirchhoff beams, [77] was one of the first contributions in
which this effect was investigated by relating the beam slenderness ratio to the condition number
of the stiffness matrix, but without explicitly using the term locking. Diverse methods have been
proposed in the literature in order to avoid membrane locking of Kirchhoff rods. Amongst others,
these are the approaches of reduced / selective integration (see e.g. [168, 176, 177]), assumed
strains based on the Hu-Washizu functional (see e.g. [49, 121, 142]), assumed stresses based on
the Hellinger-Reissner functional (see e.g. [42, 168]) or penalty relaxation / stabilization tech-
niques in combination with membrane correction factors (see e.g. [154, 218]). Most of the works
considered so far are limited to 2D beam problems. A historic overview concerning the devel-
opment of Kirchhoff beam element formulations in general and the key issues of objectivity and
membrane locking in particular is given in the recent works of Armero and Valverde [6, 7].

The shear-free beam elements presented by now are typically based on additional kinematic as-
sumptions, thus not being consistent with the concept of geometrically exact beams. The number
of existing geometrically exact finite element formulations on the basis of the Kirchhoff-Love
theory is very limited. For example, the recent contribution of Sansour [196] proposes an energy-
momentum method for 2D, initially straight geometrically exact elements based on the nonlinear
Euler-Bernoulli theory. The first geometrically exact, 3D, large-deformation, shear-free beam el-
ements fulfilling also the essential requirement of objectivity have been proposed by Boyer [36]
and Weiss [227, 228]. In his recent work [37], Boyer extended the original formulation [36] for
the modeling of undersea cables. However, these geometrically nonlinear Euler-Bernoulli for-
mulations only treat the special case of beams with circular cross-sections and a straight initial
configuration, i.e. the case of beams with rotationally symmetric reference geometry denoted as
isotropic bending. This limitation simplifies the theory drastically, and already the modeling of
simple piecewise straight frames is difficult since no variables are available that determine the
cross-section orientation required for kinematic constraints at beam-to-beam joints. The more
recent contributions [238, 239] allow for anisotropic cross-sections but still focus on initially
straight beams. In addition to the restrictions mentioned so far, most of these geometrically
exact 3D element formulations did not consider the issue of membrane locking. Besides the
contributions considered by now, also global finite element and finite difference discretization
approaches for Kirchhoff beams can be found in the literature [25, 75, 236]. These are typically
based on a rotation or curvature interpolation strategy and a subsequent integration of the rotation
field along the entire beam length in order to yield an explicit beam centerline representation.
Unfortunately, these global approaches yield dense system matrices and not the desirable sparse
system matrices with small bandwidths as typical for standard FEM approaches.
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Due to these obvious limitations of existing shear-free finite element formulations, Armero and
Valverde developed plane and three-dimensional Kirchhoff-Love beam elements for arbitrar-
ily curved initial geometries that guarantee the fundamental properties of objectivity and ge-
ometrical exactness [6, 7]. However, these beam elements only cover the geometrically linear
case of infinitesimal deformations. On the other hand, in the very recent works of Greco et
al. [90, 91], some first steps towards geometrically nonlinear isogeometric Kirchhoff beam ele-
ments have been made. However, the proposed formulations have only been applied to geometri-
cally linear examples. Bauer et al. [19] adapted the ideas of Greco and facilitated an application
to geometrically nonlinear examples. Nevertheless, the important properties of objectivity and
path-independence have not been considered in the works of Greco and Bauer. Thus, it can be
concluded that none of the existing geometrically exact shear-free beam element formulations
of Kirchhoff-Love type is comparable to the existing shear-deformable formulations of Simo-
Reissner type in terms of generality and fulfillment of essential mechanical principles. Also de-
tailed comparisons and evaluations of these two categories of geometrically exact beam element
formulations when applied to general problems of slender beams are still missing.

1.2.2 Research objectives
The obvious backlog of existing shear-free beam elements as compared to existing geometri-
cally exact Simo-Reissner element formulations with their excellent properties is the motivation
for the development of geometrically exact, three-dimensional, large-deformation Kirchhoff-
Love beam element formulations accounting for arbitrary initial geometries and anisotropic
cross-section shapes and fulfilling essential mechanical principles such as objectivity and path-
independence. Of course, the ultimate objective of this thesis is not only to develop Kirchhoff-
Love beam element formulations that are comparable with the existing counterparts of Simo-
Reissner type. Instead, novel element formulations are proposed being advantageous in the range
of high slenderness ratios and for the modeling of beam contact interaction as compared to exist-
ing approaches. In the next two sections, the most important requirements and the novel scientific
contributions related to the beam element formulations proposed in this thesis are presented.

1.2.2.1 Specification of requirements

The following requirements are regarded as essential for accurate, efficient and robust beam el-
ement formulations applicable to the range of applications mentioned in the beginning:

1) Representability of general geometries and loads: In this thesis, 3D, large-deformation,
dynamic problems of thin beams with arbitrary initial geometries and anisotropic cross-section
shapes loaded by arbitrary point-wise and distributed forces and moments will be considered.
The proposed rotation interpolation schemes have to be capable of representing such general
scenarios without exhibiting any singularities for practically relevant configurations.

2) Geometrical exactness: As already mentioned in Section 1.2.1, the proposed beam element
formulations have to be geometrically exact in the sense that the derived deformation measures
are consistent with the virtual work principle and the equilibrium equations at any deformed
state independent of the magnitude of displacements, rotations and strains.
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3) Fulfillment of essential mechanical principles: The essential mechanical principles of ob-
jectivity, i.e. observer or frame invariance, as well as path-independence have to be preserved by
the employed discretization schemes. Further properties such as conservation of linear momen-
tum, conservation of angular momentum and conservation of energy for arbitrarily rough spatial
discretizations are very desirable for the proposed spatial interpolation schemes.

4) Fulfillment of general requirements on finite element discretizations: For all presented
finite element formulations, accuracy will be verified on the basis of proper reference solutions.
Expected optimal convergence rates will be investigated theoretically as well as numerically.
Furthermore, effective methods for the avoidance of membrane locking are required such that
no remaining locking-related deterioration of the spatial convergence behavior will be observed
for the resulting finite element formulations, even in the range of very high slenderness ratios.

5) Energy-stable time integration: The focus of this thesis lies on the development of spatial
finite element discretizations for geometrically nonlinear beam problems. The resulting finite
element formulations are combined with a finite difference time integration scheme for large
rotations recently proposed by Brüls and Cardona [40]. This implicit scheme allows for energy-
stable, second-order accurate time integration on the basis of optimized numerical dissipation
and can be identified as a Lie-group extension of the well-known generalized-α scheme.

6) Simple realization of essential boundary conditions and joints: Choices of nodal primary
variables, especially with respect to the rotation parametrization, are demanded that enable the
formulation of practically relevant Dirichlet boundary conditions but also of node-wise joints
between several beams without the need of additional constraint equations. Such joints will for
example be required for the modeling of complex microstructures. This is not standard for most
of the existing geometrically exact shear-free beam element formulations.

7) Avoidance of Lagrange multipliers and saddle point systems: Also existing geometri-
cally exact beam elements of Simo-Reissner type can be subjected to the Kirchhoff constraint
by means of additional Lagrange multiplier fields. Such a procedure typically results in saddle
point systems and the need of a special class of linear solvers or requires global condensation
strategies. While for comparison reasons, the additional enforcement of inextensibility by means
of Lagrange multipliers will be demonstrated, the standard (extensible) Kirchhoff-Love beam el-
ements considered in this work should neither rely on Lagrange multipliers nor should they yield
in saddle point systems. All required calculations have to be feasible in an element-local manner.

8) Suitability for high-performance computing: In the context of finite difference and finite
element discretizations of the Kirchhoff-Love beam theory, several schemes have been proposed
that rely on global strategies for the construction of the rotational field. Even though, these
schemes show otherwise desirable properties, they typically suffer from two elementary draw-
backs: Mostly, these schemes result in dense discrete system matrices and depend on a succes-
sive, i.e. serial, evaluation of the individual finite elements within a discretization. These two
properties make such formulations virtually impossible for high-performance computing. From
the finite element formulations proposed here, it is required to result in sparse system matrices
with small bandwidths and to be suitable for parallel computing element evaluation routines.
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While many of the (recently developed) beam element formulations of Simo-Reissner type are
conform with the standards presented so far, most of the existing geometrically exact shear-
free formulations fulfill only a few of these eight basic requirements. In the following, some
potential benefits of the shear-free formulations proposed in this thesis as compared to existing
Simo-Reissner type elements should be outlined. These advantages predominantly arise in the
range of high beam slenderness ratios and in beam-to-beam contact problems, thus, exactly in
scenarios prevalent in many of the practically relevant applications considered in Section 1.1.

1.2.2.2 Potential benefits of shear-free beam elements

1) Numerical benefits in the range of high slenderness ratios: The most essential difference
between the proposed Kirchhoff-Love and existing Simo-Reissner beam element formulations
lies in the neglect of shear deformation in the beam theory underlying the former category.
This property is independent from the chosen discretization strategy. Consequently, if otherwise
comparable interpolation strategies are applied, it can be assumed that the Kirchhoff type for-
mulations require less degrees of freedom in order to yield the same polynomial approximation
quality, and eventually the same discretization error level, since no additional primary variables
are required in order to represent shear deformation. Furthermore, in the range of very high slen-
derness ratios, the influence of the shear modes on the overall beam deformation is not only
negligible, it can also be very beneficial to abstain from these high stiffness contributions from a
numerical point of view: Mechanical problems of slender beams typically lead to stiff differen-
tial equations and ill-conditioned numerical problems deteriorating for example the performance
of time integration schemes, nonlinear solvers and linear solvers. The avoidance of the stiff shear
mode contributions can considerably improve the situation. Concretely, detailed numerical in-
vestigations on several numerical test cases involving highly slender beams will be considered.
These test cases will reveal a considerably improved performance of nonlinear solution schemes
when Kirchhoff type instead of Reissner type discretizations are employed. Similar trends will be
predicted - at least theoretically - for the behavior of linear solvers and time integration schemes.

2) Smooth geometry representation: The proposed finite element formulations for geometri-
cally exact Kirchhoff beams will be based on C1-continuous interpolations of the beam center-
line. These interpolations will eventually result in smooth beam-to-beam contact kinematics, a
property that is highly desirable in order to yield efficient and robust contact algorithms.

3) Derivation of reduced models: In addition to the full Kirchhoff model, also a special reduced
model, denoted as torsion-free beam theory, will be derived in a consistent manner starting with
the general theory. This torsion-free beam model will only be valid for special problem classes
concerning the beam geometry and the external loads. Of course, the development of such a
reduced formulation is not only warrantable from a theoretical point of view. Firstly, the geome-
tries and external loads in fields of applications such as the ones considered in Section 1.1 often
fulfill the requirements in order to apply these reduced models. Secondly, the finite elements re-
sulting from such a reduced model typically feature a simplified numerical implementation and
an increased computational efficiency. Concretely, the proposed torsion-free element formula-
tion will completely abstain from rotational degrees of freedom, a characteristic that drastically
simplifies many procedures within a finite element algorithm for geometrically exact beams.
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1.2.2.3 Proposal for geometrically exact finite element formulations based on
the Kirchhoff-Love theory of thin beams

In the development of geometrically exact Kirchhoff-Love beam elements fulfilling the require-
ments stated in the last subsections, considerable novel scientific contributions originated from
the current thesis. The most important are summarized in the following (see also [156, 157]):

• Up to the best of the author’s knowledge, the first Kirchhoff type beam element formu-
lations have been developed that fulfill all the requirements of Section 1.2.2.2, especially
the first formulations that fulfill the most essential requirements 1) - 4). Concretely, two
different Kirchhoff beam element formulations are proposed: i) The first formulation is
based on a strong enforcement of the Kirchhoff constraint. Employing the concept of in-
termediate triad fields, the space-continuous problem setting is consistently derived. For
spatial discretization, a novel orthonormal interpolation scheme is proposed that fulfills
the Kirchhoff constraint in a strong manner. ii) The space-continuous theory of the second
variant is based on a weak enforcement of the Kirchhoff constraint. The discrete real-
ization of the Kirchhoff constraint is based on a properly chosen collocation strategy. In
combination with the employed smooth centerline interpolation this strategy allows for a
complete avoidance of Lagrange multipliers. While this formulation in principle allows for
arbitrary rotation interpolations, the numerical realization performed in this thesis relies
on the well-known orthonormal, geodesic interpolation scheme proposed in [58]. The ful-
fillment of the essential properties 3) and 4) by these two finite element formulations are
verified analytically as well as numerically. Furthermore, for each of these two element
formulations, two different sets of nodal rotation parametrizations are proposed. One is
based on nodal rotation vectors and one on nodal tangent vectors. While these different
choices are shown to yield identical FEM solutions, they differ in the resulting perfor-
mance of nonlinear solvers and the effort required for the modeling of essential boundary
conditions and joints. The four finite element formulations resulting from a combination of
the two interpolation schemes and the two choices of nodal primary variables are subject
to detailed comparisons with respect to resulting discretization error levels and the perfor-
mance of nonlinear solution schemes. The applied smooth centerline interpolation is based
on Hermite polynomials. Detailed theoretical and numerical investigations are conducted
on the optimal choice of the required Hermite constant in the context of geometrically ex-
act beam formulations. Moreover, the concept of Minimally Constrained Strains (MCS) is
proposed in order to avoid membrane locking effects. This concept, based on the method
of assumed strains, is especially suited for smooth interpolation schemes with increased
continuity, but still of a very general nature. This fact lays the foundation for a possible
transfer of the method to other locking phenomena and to further structural members.

• A further original contribution of this thesis is the detailed and systematic numerical
comparison performed between (the most general representatives of) geometrically ex-
act Kirchhoff-Love and Simo-Reissner beam element formulations. Specifically, resulting
spatial convergence rates, discretization error levels as well as the performance of nonlin-
ear solution schemes are compared for different beam slenderness ratios. Also some first
comparisons with inextensible Kirchhoff type formulations are considered.
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• From the general Kirchhoff-Love theory, a reduced torsion-free theory as well as a cor-
responding beam element realization have been consistently derived that fulfill the same
essential properties 2) - 4) as the general element formulations as long as some strictly
specified limitations concerning external loads and initial geometry as compared to re-
quirement 1) are fulfilled. A special focus lies in stringently defining the extent of validity
of this torsion-free model and assessing possible model errors in a quantitative manner.
For cases where the limitations with respect to external loads and initial geometry are ful-
filled, it is shown theoretically and verified numerically that the derived torsion-free beam
element formulation can be applied without deteriorating the overall approximation qual-
ity. Concretely, as compared to the general Kirchhoff-Love formulations, the torsion-free
formulation yields i) correct results for static problems as well as ii) good approximations
for typical, low-frequency-dominated dynamic problems with a resulting overall model
error that decreases quadratically with increasing beam slenderness ratio.

• Up to the best of the author’s knowledge, the current work represents the first application
of a Lie group time integration scheme based on optimized numerical dissipation to geo-
metrically exact Kirchhoff-Love beam elements, and one of the first applications of such
a scheme to geometrically nonlinear beam element formulations at all.

1.3 Finite Element Formulations for Nonlinear
Beam-to-Beam Contact Problems

The focus of this section lies on geometrically nonlinear, 3D finite element formulations for
the mechanical modeling and numerical solution of beam-to-beam contact problems. Consider-
ing the potential practical applications presented in Section 1.1, especially the requirements on
numerical algorithms that result from high beam slenderness ratios as well as complex contact
configurations with arbitrary beam-to-beam orientations will be emphasized.

1.3.1 Fundamental approaches
Some recent contributions focusing on the analytical modeling of contact interaction between
thin fibers are for example the investigation of ropes with single- and bi-helical fiber substruc-
tures [235], the theoretical treatment of knot-mechanics [114], or the analysis of optimal topolo-
gies and packing densities in filamentous materials based on an implicit consideration of contact
[89]. While these analytic approaches enable a detailed analysis of special geometrical configu-
rations, there is an inevitable need for robust and efficient numerical simulation tools in order to
cover general cases of complex contact configurations relevant for many applications. Despite
the large number of publications considering geometrically nonlinear beam element formula-
tions and despite the obvious need for robust and accurate beam contact formulations in many
fields of application, there exists only a comparatively limited amount of literature focusing on
beam-to-beam contact interaction. On the contrary, intensive research work has been done in the
solid contact modeling of 3D continua within the last two decades. Important aspects in this field
of research are for example the investigation of different constraint enforcement strategies (La-
grange multiplier method, penalty method, augmented Lagrange method etc.), types of contact
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discretization (node-to-segment/collocation-point-to-segment, Gauss-point-to-segment, mortar-
like formulations), efficient contact search and active set strategies, procedures for Lagrange
multiplier condensation, accurate integration schemes and surface smoothing strategies. Exem-
plarily, the reader is referred to the monographs [139, 233] and the review articles [173, 231].

In contrast to contact formulations for 3D continua, which are typically based on a 2D contact
traction field acting on the contact surfaces, the arguably most popular beam contact formu-
lation originally proposed by Wriggers and Zavarise [234] models mechanical beam-to-beam
contact interaction by means of a discrete contact force acting at the closest point between the
two space curves representing the contacting beams (with circular cross-sections). This model,
in the following denoted as point-to-point contact formulation, results in an elegant and effi-
cient numerical formulation, which subsequently has been extended to frictional problems con-
sidering friction forces [237] as well as friction torques [129], rectangular beam cross-section
shapes [151, 152], smoothed centerline geometries [147], constraint enforcement via Lagrange
multipliers [146] instead of penalty-based constraint enforcement and adhesion effects [135].
Quite recently, it has been applied to self-contact problems [162] and extended to contact in-
teractions of beams with rigid surfaces [164, 165]. In [33, 34], the authors supplemented the
point-to-point contact formulation by additional electromechanical and thermomechanical ef-
fects. In [185], first steps towards a large-penetration beam contact formulation have been con-
sidered. The recent contribution [122], suggests a modified penalty-type force law in order to
implicitly take into account the cross-section deformation of the contacting beams. Very re-
cently, a beam-to-beam contact formulation has been proposed that is suitable for superelliptical
cross section shapes [163]. A detailed presentation of the general point-to-point contact model
can also be found in the textbooks [148] and [233]. One of the limitations of these point-to-point
contact formulations can be attributed to the question whether contact between beams enclosing
small contact angles, i.e. nearly parallel or entangled beams, should rather be modeled by means
of a distributed line force instead of a discrete point force from a mechanical point of view?
This question has been addressed by the recent publications [149] and [150], which propose
additional contact points located in the neighborhood of the closest point in order to somewhat
distribute the contact force in such configurations. A similar approach, however based on inte-
grated contact forces, has been proposed in [224, 225]. Unfortunately, these formulations still
rely on the existence of a locally unique closest point projection between the contacting beams.

It is precisely this requirement that represents the second and essential limitation of point-based
beam contact formulations. In very general scenarios, such as in the applications mentioned in
the beginning, where arbitrary beam-to-beam orientations can occur, a unique closest point pro-
jection cannot be guaranteed for all potential contact regions. Consequently, some mechanically
relevant contact points might be missed leading to large nonphysical penetrations or even to an
entirely undetected crossing of the considered beams. In complex systems of arbitrarily oriented
thin fibers, such undetected large penetrations do not only yield a nonphysical behavior, they can
considerably deteriorate the performance of nonlinear solution schemes or prohibit convergence
at all, even if such configurations only occur at individual spatial positions and single points
in time. In Konjukhov et al. [128, 129], the solvability of the relevant closest point projection
has already been investigated by means of geometrical criteria. Nevertheless, a mathematically
concise and practically easily realizable criterion is still missing. There are only a few alterna-
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tive beam-to-beam contact formulations available in the literature today that can overcome this
limitation. The perhaps most popular alternative is the formulation developed by Durville [67–
70, 221], which is based on a collocation-point-to-segment type formulation and the definition of
proximity zones on an intermediate geometry. A second alternative proposed by Chamekh et al.
[46, 47] is based on a Gauss-point-to-segment type formulation and has primarily been applied to
self-contact problems. What these two formulations have in common is that the contact forces are
assumed to be distributed along the two beams. Consequently, these types of formulations will
be denoted as line-to-line contact formulations in the following. These formulations, especially
the one proposed by Durville, have been proven to be very robust and applicable to complex
systems of thin fibers. Nevertheless, as compared to the variety of elaborate contact discretiza-
tion and constraint enforcement strategies available in the field of 3D solid contact mechanics,
there still seems to be a considerable potential for improvements with respect to resulting contact
discretization and integration errors or the fulfillment of smoothness conditions relevant for non-
linear solution and time integration schemes. Furthermore, even though, line contact approaches
yield accurate contact models in the entire range of possible contact angles, their computational
efficiency decreases considerably with increasing slenderness ratio. Especially in the range of
large contact angles, the number of contact evaluation points required by these approaches and
the resulting computational effort is prohibitively high as compared to point-based formulations.

1.3.2 Research objectives
The mentioned shortfalls of existing purely point-based and purely line-based beam-to-beam
contact models is the motivation to further improve these two individual models and eventually to
propose a novel unified beam-to-beam contact formulation that combines the desirable properties
of the two basic formulations while abstaining from their drawbacks. In Section 1.3.2.1, the most
important requirements for such a formulation are stated. Section 1.3.2.2 summarizes the novel
and original scientific contributions resulting from the realization of this formulation.

1.3.2.1 Specification of requirements

The two central requirements on overall beam contact algorithms are efficiency and robustness:
Especially when considering complex systems with a large number of contact interaction re-
gions and when applying higher-order geometrically exact beam elements, which enable low
discretization errors already for comparatively rough spatial discretizations, the overall com-
putational effort is typically dominated by the beam contact algorithms. As argued above, for
standard beam contact formulations this is especially true when high beam slenderness ratios
and arbitrary beam-to-beam orientations are involved. Thus, efficiency of the contact formula-
tion is a key factor. Furthermore, already the solution of nonlinear systems resulting from dis-
cretized problems involving very thin beams and highly nonlinear deformation states is numeri-
cally challenging. The consideration of an additional nonlinearity in form of contact interaction,
a physically non-smooth phenomenon, further intensifies the situation. Eventually, the implicit
treatment of complex, strongly interconnected systems of thin fibers, all of them mutually influ-
encing each other, requires a nonlinear solution scheme that is highly robust but still efficient. Of
course, the resulting formulations also have to provide a sufficient degree of accuracy required
for the intended modeling purposes. These basic demands will be concretized in the following.
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1) Representation of arbitrary contact configurations: Arbitrary configurations of highly
slender beams spanning the entire range of possible contact angles and especially including
configurations that involve endpoint-to-endpoint and endpoint-to-segment contacts have to be
representable by the proposed formulations. The fulfillment of this requirement is particularly
important in order to yield a robust behavior of the nonlinear solution scheme.

2) Accurate representation of small-angle regime: Especially in the range of small contact
angles, an accurate representation of the distributed line contact forces resulting from the in-
teraction of parallel or entangled beams is important. Simple point contact formulations will in
general not yield such a model quality. Nevertheless, the required accuracy has to be achieved in
an efficient manner allowing for sufficiently rough spatial contact discretizations.

3) Efficient representation of large-angle regime: In the range of large contact angles, an
accurate resolution of contact force distributions is of secondary interest, since the latter can be
modeled as point contact forces in good approximation. Consequently, this range should not be
covered with computationally expensive line-contact formulations that typically require a very
fine slenderness-dependent spatial contact discretization in the large-angle regime.

4) Smoothness: The proposed contact formulations have to guarantee that all spatial distribu-
tions and temporal evolutions of contact forces are sufficiently smooth. This smoothness require-
ment allows for a consistent linearization of all deformation-dependent quantities and for a robust
behavior of tangent-based nonlinear solvers within an implicit time integration scheme. Further
benefits occur in terms of increased energy stability of the applied time integration scheme and
a higher approximation quality of the resulting contact force distributions.

5) Reasonable time step sizes: The physical time scales relevant for many applications lead to
accumulated transverse displacements during a simulation that are typically by several orders of
magnitude larger than the beam cross-section dimensions. The simulation of such problems is
only feasible if the time step sizes can be chosen large enough such that the displacements per
time step clearly exceed the dimensions of the beam cross-section. Many existent formulations,
however, depend on displacements per time step that are smaller than the cross-section radius.

6) Efficient global contact search strategies: For systems involving a large number of beams,
efficient global search strategies based on tight bounding boxes are indispensable in order to
reduce the number of potential contact pairs where computationally expensive projections have
to be performed. Especially for higher-order beam elements that might be subject to highly non-
linear element deformations, the creation of tight bounding boxes is a demanding task.

7) Application of only one global nonlinear solution scheme: All nonlinearities resulting from
the beam element and from the beam contact formulation have to be captured within one global
Newton scheme. Especially, no additional fixed-point iteration schemes should be required.

8) Fulfillment of essential properties: Besides the suitability for arbitrary cross-section shapes,
all requirements of Section 1.2.2.2 have also to be fulfilled by the beam contact formulations.
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1.3.2.2 Proposal for a unified beam-to-beam contact approach: The All-angle
Beam Contact (ABC) formulation

In this thesis, a novel beam-to-beam contact formulation is proposed that fulfills the requirements
stated in the last section. The most important original scientific contributions underlying this
formulation are summarized in the following (see also [158, 159]):

• In this thesis, a mathematically concise and rigorous investigation of the existence of the
closest-point-projection required for point-to-point contact is performed. Up to the best
of the author’s knowledge, these investigations yield the first closed-form and general
analytic criterion that is valid for arbitrary contact configurations and that is based on
proper and easy-to-determine control quantities. Based on this analytic criterion, it can
be concluded that the standard point-to-point contact formulation is not applicable in a
considerable range of practically relevant contact configurations.

• An improved line-to-line beam contact formulation is proposed which is inspired by some
well-known and successful techniques from contact mechanics for 3D solids. The new
beam contact formulation is based on a Gauss-point-to-segment type contact discretization
and a penalty regularization of the contact constraint. Additionally, theoretical considera-
tions concerning alternative constraint enforcement strategies by means of Lagrange multi-
pliers and alternative contact discretizations based on mortar methods are made. However,
detailed theoretical and numerical investigations of these different approaches suggest the
penalty-based Gauss-point-to-segment formulation as the variant that is most suitable for
beam-to-beam contact and as the method of choice for the applications considered in
this thesis. In contrast to existing line-to-line beam contact formulations, the proposed
approach is extended by a consistently linearized integration interval segmentation that
avoids numerical integration across strong discontinuities. It is verified by means of suit-
able numerical examples that precisely this component in combination with a smoothed
contact force law and the applied C1-continuous beam element formulation leads to a
drastic reduction of the numerical integration error. This, in turn, improves spatial conver-
gence rates and in many cases only enables optimal convergence behavior under uniform
mesh refinement. Furthermore, a criterion is derived for the minimally required number of
Gauss points in dependence on the beam slenderness ratio and the contact angle.

• Based on these investigations on point and line contact models, it is concluded that, on
the one hand, the point-to-point contact formulation serves as sensible mechanical model
and very efficient numerical algorithm in the range of intermediate and large contact an-
gles while it is not applicable for small contact angles. On the other hand, the line-to-line
contact formulation provides a very accurate and robust mechanical model in the small-
angle regime whereas the computational efficiency dramatically decreases with increasing
contact angles. On the basis of these conclusions, a novel All-angle Beam Contact (ABC)
formulation is proposed that combines the advantages of point and line contact models
while abstaining from their disadvantages: The formulation is based on a standard point-
to-point contact formulation applied in the range of large contact angles while the scope
of small contact angles is covered by the newly developed line-to-line contact formula-
tion. Two different variants of a smooth model-transition procedure between the regimes
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of point and line contact are investigated, a variationally consistent transition on penalty
potential level and a simpler variant on contact force level. Both variants lead to exact con-
servation of linear and angular momentum, while only the variationally consistent variant
enables exact energy conservation. Based on analytic investigations, recommendations are
made concerning the optimal ratio between the two penalty parameters of the point and the
line contact, the required number of line contact Gauss points and the choice of the model
transition angle interval. All configuration-dependent quantities are consistently linearized
allowing for an application within implicit time integration schemes.

• The resulting formulation is supplemented by contact contributions of the beam endpoints,
whereas all existing contact formulations, no matter if point- or line-based, typically search
for minimal distance solutions only within the beams interior, but not for boundary min-
ima. On the basis of a suitable numerical example, it is shown that in many applications
these endpoint contact scenarios can appear with considerable frequency. Although, the
influence of these endpoint forces on the overall solution might be of secondary interest,
it is shown that neglecting these contributions will drastically reduce the robustness of the
nonlinear solution scheme in many cases and may even prohibit convergence at all. In
dynamic simulations, a neglect of these contributions can even prohibit energy stability.

• A step size control for the nonlinear solver is proposed, which allows for displacement
increments per time step that exceed the order of magnitude of the cross-section radius,
but still avoids the occurrence of undetected crossings of the contacting beams.

• Furthermore, a very efficient two-stage contact search algorithm based on dynamically
adapted search segments for each finite element is proposed. This algorithm does not only
result in a very tight set of potential contact pairs, but it also enables a subdivision into po-
tential point-to-point and potential line-to-line contact pairs. The latter property is essential
in order to fully exploit the efficiency potential of the proposed ABC formulation.

• Up to the best of the author’s knowledge, the current thesis represents the first work that
systematically investigates conservation properties, integration and discretization errors as
well as spatial convergence rates for beam-to-beam contact theoretically and via numerical
examples. Especially, a numerical test case suitable for line-to-line contact scenarios has
been designed and an analytic solution based on the Kirchhoff-Love theory has been de-
rived. This test case and the associated analytic solution can serve as valuable benchmark
for the proposed formulation but also for future beam-to-beam contact approaches.

• All the presented algorithmic components are tailored for the most challenging, but also
practically relevant, case of arbitrary discretization orders and lengths, which typically
leads to high element slenderness ratios and deformations. The employed global search
strategies are especially suited for higher-order geometrically exact finite elements, while
beam-to-beam contact search schemes typically applied in the literature, at least implicitly,
assume the simple case of straight beam elements. This high degree of generality is the
key for a beam-to-beam contact formulation that is based on a truly C1-continuous (and
not subsequently smoothed), geometrically nonlinear beam centerline representation.
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All in all, the interplay of these individual constituents will yield a novel beam-to-beam contact
formulation that combines a significant degree of robustness and universality in the treatment
of complex contact scenarios and arbitrary beam-to-beam orientations with high computational
efficiency, especially in the limit of extreme beam and element slenderness ratios.

1.4 Outline
Reflecting the core objectives of this thesis, its content can be subdivided into two main con-
stituents: The development of finite element formulations for the modeling of slender beams and
for the modeling of beam-to-beam contact. While Chapters 2 and 3 consider the space- and time-
continuous beam problem as well as its discrete counterpart, Chapter 4 focuses on the continuous
and discrete representation of beam contact. The detailed structure is given in the following.

Chapter 2 begins with a brief introduction in the so-called SO(3) group and supplies the reader
with some mathematical tools required for the treatment of large rotations. Afterwards, the geo-
metrically exact Simo-Reissner theory of shear-deformable beams is introduced. Having stated
the basic kinematic assumptions, the focus lies on deriving the strong and weak form of the
balance equations, 1D stress resultants, work-conjugated deformation measures and proper con-
stitutive relations. After having presented the Simo-Reissner theory, the degree of generality of
the considered beam models is reduced step by step throughout the chapter. Abstaining from the
shear-deformation mode yields the Kirchhoff-Love beam theory, based on strong or weak con-
straint enforcement. Then, the possibility of abstaining from the axial tension mode on the basis
of an inextensibility constraint is presented. Eventually, the chapter is completed by introducing
two reduced beam models: The isotropic beam theory is applicable to initially straight beams
with isotropic cross-sections. The torsion-free beam theory allows to additionally abstain from
the torsion mode in case certain restrictions concerning the external loads are fulfilled.

In Chapter 3, finite difference schemes for temporal discretization as well as finite element
schemes for spatial discretization are presented, with the focus lying on the latter. After briefly
introducing the basic concept of finite elements, novel interpolation strategies for the transla-
tional and rotational primary variable fields underlying the considered beam theories are pro-
posed. Moreover, the compliance of these interpolation schemes with fundamental mechanical
principles such as objectivity and path-independence or conservation of energy and momentum
is analyzed. Afterwards, from these interpolation strategies and the theory presented in the pre-
vious chapter, novel beam element formulations of different degree of generality are derived.
Eventually, the fulfillment of fundamental mechanical properties is verified numerically. More-
over, the performance of the proposed element formulations compared to standard formulations
known from the literature is evaluated on the basis of proper numerical test cases.

Chapter 4 is devoted to the development of beam contact formulations. In the beginning, the
basics of standard point contact formulations are presented and their limitations are investigated.
Thereupon, a novel line-to-line contact formulation is proposed. The benefits of this formulation
are analyzed, possible alternatives are discussed and, finally, also general limitations of line-
based models are highlighted. Based on the considered point and line contact model, a novel
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All-angel Beam Contact (ABC) formulation is derived. After discussing different variants of
this formulation and the optimal choice of the underlying parameters, the ABC formulation is
supplemented by some important algorithmic components concerning contact search, nonlinear
solution scheme, extended penalty force laws and the treatment of endpoint contact contribu-
tions. At the end of the chapter, basic properties of the developed line contact formulation and
of the novel ABC formulation are verified numerically. Eventually, four practically relevant ap-
plications are considered in order to verify the overall robustness and efficiency of the proposed
beam element and beam contact formulations and the interplay of the individual components.

Finally, Chapter 5 summarizes the most important results and accomplishments, but also gives a
brief outlook on future extensions of the proposed finite element formulations for slender beams
and their contact formulations. There, also potential future applications will be in the focus.
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2 Geometrically Exact Beam Theory
In this chapter, the essential concepts of geometrically exact beam theories, required for the
derivation of corresponding finite element formulations in the following chapter, will be derived.
One distinctive property of geometrically exact beam formulations is the presence of large ro-
tations within the associated configuration space. In order to provide the theoretical basis for
subsequent derivations, in the following Section 2.1, the SO(3) group of large rotations as well
as possible parametrizations will be introduced. In Section 2.2, the most general type of geo-
metrically exact beam formulations considered in this thesis, the Simo-Reissner theory of thick
(shear-deformable) beams, will be presented. The underlying continuum theory will be identi-
fied as a 1D Cosserat continuum exhibiting pointwise six degrees of freedom, three translational
and three rotational ones. Furthermore, also the relation between the 1D Cosserat continuum
theory and the 3D Boltzmann continuum theory will be addressed at this point. Subsequently,
in Section 2.3, the general theory will be restricted to the Kirchhoff-Love theory of thin (shear-
free) beams. There, different methodologies of imposing the Kirchhoff constraint of vanishing
shear strains in a strong or weak sense, but also the possibility of further restricting the theory by
means of additional inextensibility constraints, will be investigated. Finally, in Section 2.4, re-
duced variants of the general Kirchhoff-Love theory will be presented which represent the basis
for considerably simplified beam elements specified in the subsequent chapter. In this section,
the main focus will lie on investigating the range of applicability of these reduced theories.

2.1 The Rotation Group SO(3)
The category of beam theories considered throughout this thesis assumes the beam cross-sections
to be rigid. Consequently, the cross-section kinematics are point-wise uniquely defined by six
degrees of freedom, three translational ones representing the position vector of the cross-section
centroid and three rotational ones describing the cross-section orientation. Thereto, an orthonor-
mal triad consisting of the base vectors g1,g2,g3 ∈ <3 is attached on the beam cross-sections.
Furthermore, a right-handed inertial Cartesian frame E1,E2,E3 ∈ <3 associated with the ma-
terial configuration and a corresponding right-handed inertial Cartesian frame e1, e2, e3 ∈ <3

of the spatial configuration are introduced. Nevertheless, for simplicity, it is assumed that both
frames coincide, thus ei = Ei for i = 1, 2, 3. Now, the rotation from the global frame Ei onto
the local frame gi is described via the orthogonal transformation Λ ∈ SO(3) as follows:

gi = ΛEi with Λ = gj ⊗ Ej = (g1,g2,g3)Ej for i, j = 1, 2, 3. (2.1)

Throughout this thesis, the summation convention over repeated indices holds. Furthermore, no
distinction is made between co- and contravariant bases and no index notation with sub- and
superscripts for associated base vectors and components is applied as long as Cartesian systems
are considered. According to (2.1), rotations are linear transformations in <3, thus allowing for a
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corresponding matrix representation. Moreover, the columns of the matrix representation when
expressed with respect to the global (material) basis Ei are represented by the (spatial) base
vectors gi. Here and in the following, the index near a matrix (for example the index (.)Ei in
equation (2.1)) denotes the basis in which the associated tensor is represented. Furthermore,
from (2.1) it is obvious that Λ is a two-point tensor. In the context of geometrically exact beam
theories, Λ acts as push-forward operator (see e.g. [155]) between material and spatial objects.
From a rather mathematical point of view, the rotation tensor Λ can be identified as an element
of the Special Orthogonal group SO(3) of orthogonal transformations according to

SO(3) := {Λ ∈ <3×3|ΛTΛ = I3, det(Λ) = 1}, (2.2)

under the action of non-commutative multiplication SO(3)×SO(3)→SO(3),Λ3=Λ1Λ2 6=Λ2Λ1

with inverse element Λ−1 =ΛT and identity element I3. Here, det(.), (.)T and (.)−1 are the de-
terminant, transpose and inverse. I3 is a 3×3 identity matrix. The SO(3) group forms a smooth
differentiable manifold. Consequently, it can be classified as Lie group with tangent space

δΛ ∈ TΛSO(3) := {S(a)Λ|S(a) ∈ so(3)}. (2.3)

Here, so(3) denotes the set of skew symmetric tensors with S(a)b = a×b for a,b ∈ <3. The
isomorphism between so(3) and <3 enables a unique expression of S(a) ∈ so(3) by the vector
a ∈ <3 denoted as axial vector. By inserting the special choice Λ= I3 into (2.3) it can easily be
verified that so(3) can be identified as the tangent space to SO(3) at the identity:

so(3) := TISO(3) = {S(a)|S(a) = −S(a)T ∀ a ∈ <3}. (2.4)

In the nomenclature of Lie groups, so(3) is also denoted as Lie algebra of SO(3). The Lie group
SO(3) and its Lie algebra so(3) are related by the exponential map exp (.): so(3)→SO(3):

exp(S(a)) := I3+S(a)+
S(a)2

2!
+

S(a)3

3!
+... . (2.5)

So far, the rotation group SO(3) has been introduced without stating a specific parametrization
of the rotation tensor Λ. In the following two sections, two possible parametrizations, which will
be useful in the development of beam element formulations according to the Simo-Reissner and
Kirchhoff-Love theory, are presented. Further mathematical details about Lie groups in general
can e.g. be found in [30]. For fundamentals of the SO(3) group and the treatment of large ro-
tations, the interested reader is referred to [4] and [134] or also to [43, 111, 204, 208] for the
treatment of large rotations in the context of geometrically exact beam element formulations.

2.1.1 SO(3) parametrization via rotation vectors
In (2.1), the rotation tensor Λ ∈ <3×3 has been introduced without a specific parametrization.
However, it can be shown that only three of the nine components of the rotation tensor are inde-
pendent [4, 217], which is a direct consequence of the six orthonormality constraints present in
the SO(3). There exist various parametrizations of the rotation tensor such as rotation (pseudo-)
vectors, Euler angles or Rodrigues parameters that are based on a minimal set of three parame-
ters. Also four-parametric representations of the rotation tensor such as quaternions have proven
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to be very useful for practical purposes. Within this thesis, two different parameterizations will be
employed: The one presented in this section is based on rotation vectorsψ∈<3. In Section 2.1.2,
an alternative parametrization especially suited for Kirchhoff formulations is presented. The ro-
tation vector parametrization can explicitly be given via the well-known Rodrigues formula:

Λ(ψ) = exp(S(ψ)) = [I + sinψS(eψ) + (1− cosψ)S(eψ)S(eψ)] . (2.6)

Here, ψ = ||ψ|| represents the scalar rotation angle and eψ = ψ/||ψ|| the axis of rotation.
Throughout this thesis, ||(.)|| denotes the Euclidean norm in <3. As indicated by the notation
exp(S(ψ)), equation (2.6) represents a closed-form representation of the exponential map ini-
tially introduced in (2.5) of the last section. The equivalence of both representations can easily
be shown by making use of the series expansions of sin (.) and cos (.) (see e.g. [56]). The ro-
tation vector of a given rotation tensor can for example be extracted by employing Spurrier’s
algorithm [214]. In order to simplify notation, throughout this thesis the following abbreviation
rv(.) :=(S−1◦exp−1)(.) is used whenever this extraction shall be formulated explicitly:

ψ= rv(Λ) ⇔ exp(S(ψ))=Λ. (2.7)

However, it has to be noted that a unique extraction of the rotation vector is only possible within
the interval ψ ∈] − π, π]. If a subsequent rotation exp(S(∆θ)) by a finite angle ∆θ ∈ <3 is
superimposed onto the given triad Λ, the resulting triad Λn follows the relation:

Λn = exp(S(ψn)) = exp(S(ψ+∆ψ)) = exp(S(∆θ)) exp(S(ψ)) 6= exp(S(ψ+∆θ)). (2.8)

It has to be emphasized, that the rotation vectors associated with two successive rotations are
not additive, i.e. ψn 6= ψ + ∆θ (see e.g. [56] for the actual calculation of ψn), consequently
∆θ is commonly referred to as multiplicative rotation increment. Besides this non-additivity, the
nonlinear manifold SO(3) is also non-commutative with respect to multiplication of its elements.
In this context, one can formulate the counterpart to the left-translation update formula (2.8),
which is based on right-multiplication with a multiplicative rotation increment ∆Θ 6= ∆θ:

Λn = exp(S(ψn)) = Λ exp(S(∆Θ)) = exp(S(ψ)) exp(S(∆Θ)). (2.9)

When applying the compound rotation Λn according to (2.9), ∆Θ directly acts on a non-rotated,
material object, while ∆θ as appearing in (2.8) acts on a rotated, spatial object. Consequently,
∆Θ can be identified as the material counterpart of the spatial object ∆θ. With the help of the
transformation properties of the tensors S(.) and exp(S(.)) according to

ΛS(ψ̃)ΛT = S(Λψ̃) → Λ exp(S(ψ̃))ΛT = exp(S(Λψ̃)) ∀ ψ̃ ∈ <3, Λ ∈ SO(3) (2.10)

the two multiplicative rotation increments can be related by the following rule

Λn = Λ exp(S(∆Θ)) = Λ exp(S(∆Θ))ΛTΛ = exp(S(Λ∆Θ))Λ → ∆θ = Λ∆Θ. (2.11)

Thus, ∆θ and ∆Θ are related by the push-forward operator Λ. Replacing the finite rotation ∆θ
by the infinitesimal spatial quantity δθ, denoted as multiplicative rotation vector variation or spin
vector, yields the following expression for the variation of the rotation tensor Λ:

δΛ :=
d

dε

∣∣∣
ε=0

exp (εS(δθ))Λ = S(δθ)Λ or δgi = δθ×gi. (2.12)
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Thus, as already introduced in (2.3), the skew-symmetric matrix S(δθ) ∈ so(3) of the spin
vector describes infinitesimal variations δΛ of Λ within the tangent space TΛSO(3). Similarly
to (2.12), the variation δΛ can be expressed by the material spin vector δΘ = ΛT δθ:

δΛ :=
d

dε

∣∣∣
ε=0

Λ exp (εδΘ) = ΛS(δΘ). (2.13)

Expressing the spin vectors δΘ and δθ in the associated frames Ei and gi, respectively, yields:

δΘ = δΘiEi, δθ = δΘigi. (2.14)

Thus, the components of the spatial spin vector expressed in the local basis gi are identical to
the components of the material spin vector expressed in the global basis Ei. This relation also
holds for all the other pairs of spatial / material quantities considered in this thesis (see e.g.
[204]). Based on the defining equation (2.13) and the representation of skew-symmetric tensors
by means of the Levi-Civita-Symbol εijk, the components of S(δΘ) can be determined:

S(δΘ)=ΛTδΛ=(Ei⊗gi)·(δgj⊗Ej)= gTi δgj︸ ︷︷ ︸
=:Sij(δΘ)

Ei⊗Ej with Sij(δΘ) = −εijkδΘk. (2.15)

For later use, the components δΘi shall be expressed by gi and δgi. From (2.15), it follows:

δΘ1 = gT3δg2 =−gT2δg3, δΘ2 = gT1δg3 =−gT3δg1, δΘ3 = gT2δg1 =−gT1δg2. (2.16)

It has already been stated, that the finite rotations occurring e.g. in (2.8) are not additive. How-
ever, this holds even for the infinitesimal rotations, i.e. δθ 6=δψ. A relation between infinitesimal
additive and multiplicative increments is given by the tangent operator T according to

δψ =: Tδθ, T =
1

ψ2
S(ψ)S(ψ)T +

ψ/2

tan (ψ/2)

(
I− 1

ψ2
S(ψ)S(ψ)T

)
− 1

2
S(ψ). (2.17)

The inversion of (2.17), expressing multiplicative by means of additive increments, is given by:

δθ = T−1δψ, T−1 =
1

ψ2

(
1− sin (ψ)

ψ

)
S(ψ)S(ψ)T +

sin (ψ)

ψ
I+

1−cos (ψ)

ψ2
S(ψ). (2.18)

For details on the derivation of the transformations T and T−1, the interested reader is e.g. re-
ferred to [43, 56, 111, 209]. While the rotation vector parametrization presented so far represents
a well-known tool in the formulation of geometrically exact beam elements of Simo-Reissner
type, in the following section, an alternative parametrization of large rotations will be proposed
which offers some advantages in the description of Kirchhoff type beam element formulations.

Remark: Formally, one could also introduce the material rotation vector Ψ=ΛTψ. How-
ever, since ψ is an eigenvector of Λ = exp(S(ψ)) (and also of ΛT ) with eigenvalue one,
both variants are identical, i.e. Ψ=ΛTψ=ψ, and will not be further distinguished.
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2.1.2 SO(3) parametrization via ”smallest rotation” triads
The alternative parametrization considered in this section consists of four degrees of freedom
(t, ϕ) with t ∈ <3 and ϕ ∈ <. In the context of Kirchhoff beam element formulations presented
later in this work, t will be the non-unit tangent vector aligned to the space curve representing
the beam centerline. Due to the Kirchhoff constraint of vanishing shear strains, the first base
vector g1 of the cross-section triad Λ=(g1,g2,g3)Ei , can be expressed by this tangent vector:

g1 =
t

||t||
. (2.19)

Based on the tangent vector t and an arbitrary given triad ḡi, one can determine a triad gMi, in
the following denoted as interMediate or Medium triad (index M), that results when the triad ḡi
is rotated onto the tangent vector t via the “Smallest Rotation” (SR) as e.g. described in [56].
This mapping can be interpreted as the rotation of a given triad ḡi such that its first base vector
ḡ1 is rotated onto the given vector t and the corresponding rotation angle is minimized. Since
the associated rotation angle ∆θSR is perpendicular on the initial and on the resulting first base
vector, i.e. ∆θTSRḡ1 = ∆θTSRg1 = 0, the smallest rotation is commonly also denoted as ”rotation
without twist”. The resulting base vectors can be represented by the following expressions:

gM1 =g1 =
t

||t||
, gM2 = ḡ2−

ḡT2 g1

1+ḡT1 g1

(g1+ḡ1) , gM3 = ḡ3−
ḡT3 g1

1+ḡT1 g1

(g1+ḡ1) . (2.20)

In order to shorten notation, the abbreviation sr(.) is introduced for the SR mapping of (2.20):

ΛM := (gM1,gM2,gM3)Ei =: sr(Λ̄,g1) with Λ̄ := (ḡ1, ḡ2, ḡ3)Ei . (2.21)

In principle, the triad ḡi can be chosen arbitrarily, for example according to ḡi = Ei. How-
ever, by having a closer look at the equations above, one realizes that a singularity occurs for
1+ḡT1 g1 =0, i.e. when the vectors g1 and ḡ1 are antiparallel. Of course, in practical simulations,
the scenario g1 =−E1 can easily occur, resulting in a non-defined triad ΛM . Consequently, al-
ternative choices for the triad ḡi are required where this singularity will not occur. In the context
of a temporally discretized problem setting, the triad at a given time step tn could for example be
chosen as the intermediate triad at the subsequent time step, i.e. ḡi(tn)=gMi(tn−1), resulting in
an Updated Lagrangian type of formulation. In this case, the singularity can only appear, if the
rotation per time step exceeds 180◦. In general, reasonable time step sizes employed in practical
simulations will not allow for such large rotations per time step, thus recommending this choice
for ḡi. In Appendix A.1, it is shown that each mapping that defines a triad based on a given tan-
gent vector t contains a singularity. In this context, a singularity appearing at a rotation of 180◦

can be considered as an optimum since such a rotation already describes the maximal difference
in orientation two given triads can have. Subsequently to the definition of an intermediate triad
ΛM according to (2.21), the cross-section triad gi can be defined based on a relative rotation of
the intermediate triad ΛM with respect to the tangent t by an relative angle of ϕ:

Λ = exp(S(ϕg1))ΛM . (2.22)

Alternatively, this simple 2D rotation can also be noted for the individual base vectors:

g1 = gM1, g2 =gM2 cosϕ+ gM3 sinϕ, g3 = gM3 cosϕ− gM2 sinϕ. (2.23)
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Thus, the fourth degree of freedom (DoF) ϕ introduced above is simply the relative angle that
rotates the intermediate triad ΛM onto the frame Λ by means of a rotation with respect to the
tangent vector. Equations (2.20) and (2.22) uniquely define a triad Λ parametrized by the four
degrees of freedom (t, ϕ). Evidently, one of these four degrees of freedom, namely the norm
||t|| of the tangent vector, will not influence the triad orientation. However, as it will turn out
in the next sections, the non-unit tangent vector t is a quantity that directly results from the
beam centerline description. Thus, the only additional degree of freedom introduced in order to
describe the triad orientation is the relative angle ϕ and consequently, the proposed type of triad
parametrization is not redundant. For later use, also the spatial spin vector δθ shall be expressed
by means of additive increments (δt, δϕ) of the four parameters (t, ϕ). Therefore, this vector is
split into a component δθ‖ parallel to g1 and a component δθ⊥ perpendicular to g1 as follows:

δθ = δθ‖ + δθ⊥ = δΘ1g1 + δθ⊥. (2.24)

Throughout this thesis, the indices (.)‖ and (.)⊥ of a vector will denote the components of
the vector which are parallel or perpendicular to the vector g1, respectively. Taking advantage
of (2.12), the following relation can be derived for the variation of the vector g1:

δg1 = δθ × g1 = δθ⊥ × g1. (2.25)

Permutation of the orthogonal vectors occurring in (2.25) yields an explicit expression for δθ⊥:

δθ⊥ = g1 × δg1 =
t

||t||
× δ

(
t

||t||

)
=

t× δt
||t||2

=
g1 × δt
||t||

with δt ∈ <3. (2.26)

In a next step, equations (2.16) and (2.23) can be exploited in order to formulate δΘ1:

δΘ1 = gT3δg2 = gTM3δgM2 + δϕ =: δΘM1 + δϕ (2.27)

By variation of the basis vector δgM2 defined in (2.20), the tangential component δΘM1 of the
spin vector associated with the smallest rotation intermediate triad can be determined to:

δΘM1 =
(g1×ḡ1)T

1+gT1 ḡ1

δg1 =− ḡT1 S(g1)

1+gT1 ḡ1

δt

||t||
=:TΘM1tδt → δΘ1 =TΘM1tδt+δϕ. (2.28)

In the derivation of (2.28), use had been made of the fact that the base vectors of the triad Λ̄ do
not depend on the current configuration and the corresponding displacement state, i.e. δḡi = 0.
Inserting (2.26)-(2.28) into (2.24) yields the following expression for the spatial spin vector:

δθ = g1δϕ+
1

t

(
I− g1 ⊗ ḡT1

1 + gT1 ḡ1

)
S(g1)︸ ︷︷ ︸

=:Tθt

δt with g1 =
t

t
, t := ||t||. (2.29)

So far, the four degrees of freedom (t, ϕ) have been applied in order to uniquely describe a
tangent vector t, defined by its orientation and its length, as well as the orientation of a triad
Λ = (g1,g2,g3) aligned parallel to this tangent vector. In the following, these two geometric
entities, the non-unit tangent vector t and the triad Λ, shall be described by the alternative set of
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2.1 The Rotation Group SO(3)

four degrees of freedom (ψ, t). Here, ψ represents the rotation vector associated with the triad
Λ via the Rodrigues formula (2.6) and t := ||t|| is the norm of the tangent vector. It can easily be
derived, that the following transformations hold between these two sets of degrees of freedom:

Λ = exp(S(ψ)), g1 = ΛE1, t = tg1, exp(S(ϕg1)) = Λsr(Λ̄,g1)−1. (2.30)

Based on (2.30), the set (t, ϕ) can be calculated from (ψ, t) and the other way round. Next, also
a transformation rule between the variations (δt, δϕ) and the variations (δθ, δt) associated with
the set (ψ, t) shall be derived. The variation δt can directly be written in terms of δt:

δt = δ||t|| = tT

t
δt = gT1 δt. (2.31)

Combining (2.29) and (2.31) yields a transformation between the sets (δθ, δt) and (δt, δϕ):(
δθ
δt

)
=

(
Tθt g1

gT1 0

)
︸ ︷︷ ︸

=:T−1
M

(
δt
δϕ

)
. (2.32)

By using the auxiliary relations δt = δ(tg1) = δtg1 + tS(δθ)g1 = δtg1− tS(g1)δθ as well as
δϕ=gT1 δθ−δΘM1, the inverse transformation of (2.32) can be derived in an analogous manner:(

δt
δϕ

)
=

(
−tS(g1) g1

Tϕθ 0

)
︸ ︷︷ ︸

=:TM

(
δθ
δt

)
with Tϕθ =

(g1+ḡ1)T

1 + gT1 ḡ1

. (2.33)

Again, the mapping TM and the inverse T−1
M exist provided that g1 6=−ḡ1, i.e. for rotations per

time step which are smaller than 180◦. The mappings TM and T−1
M transform between multi-

plicative rotation increments and additive increments of the chosen parametrization. Thus, they
represent the analogon to the transformations T and T−1 in case of a rotation vector parametriza-
tion (see Section 2.1.1). Since the Kirchhoff constraint of vanishing shear deformation solely
influences the component δθ⊥ of the spin vector, it will in the following sections often be useful
to express only this component by additive increments δt, while the tangential spin vector com-
ponent δΘ1 instead of the additive increment δϕ is regarded as independent primary variable. In
this case, relations (2.32) and (2.33) simplify and yield the map between (δθ, δt) and (δt, δΘ1):(

δθ
δt

)
=

(
1
t
S(g1) g1

gT1 0

)
︸ ︷︷ ︸

=:T̃−1

(
δt
δΘ1

)
,

(
δt
δΘ1

)
=

(
−tS(g1) g1

gT1 0

)
︸ ︷︷ ︸

=:T̃

(
δθ
δt

)
. (2.34)

Again, T̃ and T̃−1 represent the corresponding mappings. Since these mappings solely trans-
form the component δθ⊥, they are independent from the actual definition of the triad ΛM . Con-
sequently, the index M has been omitted for the transformation matrices T̃ and T̃−1.
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2.2 Simo-Reissner Beam Theory
In this section, the fundamentals of the geometrically exact Simo-Reissner beam theory based on
the work of Reissner [183, 184] as well as Simo and Vu-Quoc [204, 208] will be presented. The
results of this section will provide an essential basis for the subsequent derivation of Kirchhoff
type beam formulations. As already explained in the beginning of this thesis, beam models can
be classified in intrinsic, induced and semi-induced beam theories. Based on this notion, the
geometrically exact Simo-Reissner beam theory can be identified as a semi-induced beam theory:
In [204], 1D representations of the strong and weak form of the balance equations based on
internal, external and inertia forces as well as work-conjugated strain measures have been derived
that are fully consistent with the 3D continuum theory. However, in contrary to a fully induced
theory, the constitutive relations are directly postulated on the 1D level. As already argued in
[58] and in accordance with derivations in [3], [153] or [172], a consistency of the geometrically
exact beam theories and the corresponding three-dimensional theory of continuum mechanics in
the sense of a fully induced beam theory can only be assumed as long as small local strains are
considered. In order to confirm this statement, in Section 2.2.5, a derivation of the constitutive
relations between 1D stress resultants and deformation measures from their 3D counterparts
is given. First, the basics of the geometrically exact Simo-Reissner beam theory in terms of
basic kinematic assumptions, strong and weak form of balance equations, stress resultants, work-
conjugated deformation measures and constitutive relations are presented in Sections 2.2.1-2.2.4.

2.2.1 Basic kinematic assumptions
Throughout this work, prismatic beams with anisotropic cross-section shape are considered. In
the initial (unstressed) configuration, the beam centerline, which is defined as the line connecting
the cross-section centroids, is described by the space curve s → r0(s) ∈ <3. Here and in the
following, the index 0 of a quantity refers to the unstressed, initial configuration. Furthermore,
s ∈ [0, l] =: Ωl ⊂ < is an arc-length parametrization of the curve and l ∈ < the beam length
in the initial configuration. The description of the initial configuration is completed by a field
of right-handed orthonormal triads s→ g01(s),g02(s),g03(s) ∈ <3 attached to the beam cross-
sections, with g01 being the unit tangential vector to the initial centerline, i.e

g01(s) ≡ r′0(s), (2.35)

and with the base vectors g02(s) and g03(s) coinciding with the principal axes of inertia of the
cross-section at s. Throughout this work, the prime (.)′ = d

ds
(.) denotes the derivative with

respect to the arc-length parameter s. The rotation from the global frame Ei onto the local frame
g0i(s) is described via the orthogonal transformation s→ Λ0(s) ∈ SO(3) as introduced in (2.1):

g0i(s) = Λ0(s)Ei with Λ0(s) = g0j(s)⊗ Ej for i, j = 1, 2, 3. (2.36)

The basic kinematic assumption of the geometrically exact Simo-Reissner theory allows to de-
scribe the initial spatial position of an arbitrary material point according to

X(s) = r0(s) + s2g02(s) + s3g03(s) with s=(s, s2, s3)T =(s1, s2, s3)T . (2.37)
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2.2 Simo-Reissner Beam Theory

where (s2, s3) represent convective coordinates describing the position of a material point within
the cross-section. In order to simplify the notation for subsequent derivations, the convective
coordinate vector s = (s1, s2, s3)T as well as the redundant name s1 := s for the arc-length s
has been introduced. The initial configuration s → C0 := (r0(s),Λ0(ψ0(s))) ∈ <3×SO(3)
of the beam is therefore uniquely defined by the initial position vector field r0(s) of the cross-
section centroids and the field Λ0(s) describing the initial orientation of the beam cross-sections.
Correspondingly, the deformed configuration of the beam centerline at time t∈< is represented
by the space curve s, t→ r(s, t) ∈ <3. However, as consequence of axial tension, s is not an
arc-length parametrization of the current deformed centerline r(s, t) any longer, thus leading to

||r′0(s)|| ≡ 1 but ||r′(s, t)|| 6= 1, (2.38)

in general. The orientation of the beam cross-section in the deformed configuration is specified
by the current orientation s, t → g1(s, t),g2(s, t),g3(s, t) ∈ <3 of the attached right-handed
orthonormal triad. The base vectors g2(s, t) and g3(s, t) are oriented along the same material
fibers, i.e. the principal axes of inertia of the cross-section, as the base vectors g02(s) and g03(s)
in the initial configuration. For that reason, gi(s, t) will also be denoted as material frame or
material triad in the following. The base vector g1(s, t) := g2(s, t)×g3(s, t) completes the triad.
The latter is perpendicular to the cross-section but in general not tangential to the deformed
centerline due to shear deformation. The current frame gi(s, t) is again characterized by

gi(s, t) = Λ(s, t)Ei with Λ(s, t) = gj(s, t)⊗ Ej for i, j = 1, 2, 3. (2.39)

Based on the basic kinematic assumption, the current spatial position of a material point reads:

x(s, t) = r(s, t) + s2g2(s, t) + s3g3(s, t). (2.40)

Together, equations (2.40) and (2.37) represent the Bernoulli assumption of rigid cross-sections.
The deformed configuration s, t→ C := (r(s, t),Λ(ψ(s, t))) ∈ <3×SO(3) is uniquely defined
by the current position vector field r(s, t) of the cross-section centroids and the field Λ(s, t) de-
scribing the current orientation of the beam cross-sections. According to Section 2.1, Λ(s, t) can
be represented by three rotation parameters (e.g. by a rotation vector ψ(s, t)), leading to point-
wise six, three translational and three rotational, degrees of freedom. The kinematic quantities
defining the initial and deformed configuration are illustrated in Figure 2.1.

Figure 2.1: Kinematic quantities defining the initial and deformed configuration of the beam.
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In order to simplify notation, the time argument t will be dropped in the following derivations.
Later in this section, the arc-length derivative of the base vectors gi(s) will be required in order
to define deformation measures. Similar to (2.12), this derivative can be formulated as

Λ′(s) = S(k(s))Λ(s) or g′i(s) = k(s)× gi(s), (2.41)

where k(s) is commonly referred to as spatial curvature vector. By means of the orthogonal trans-
formation Λ(s), it is straightforward to employ the material curvature vector K(s) :=ΛT (s)k(s):

Λ′(s)=S(k(s))Λ(s)=Λ(s)ΛT(s)S(k(s))Λ(s)=Λ(s)S(ΛT(s)k(s))=Λ(s)S(K(s)). (2.42)

From equations (2.41) and (2.42), explicit calculation rules for the curvatures can be derived:

S(k(s))=Λ′(s)ΛT (s), S(K(s))=ΛT (s)Λ′(s) K = KiEi, k = Kigi. (2.43)

In a similar manner, the spatial and material angular velocity vectors w and W are defined:

S(w(s))=Λ̇(s)ΛT (s), S(W(s))=ΛT (s)Λ̇(s) W = WiEi, w = Wigi. (2.44)

For completeness, the spin vectors, which have been introduced in Section 2.1, are repeated here:

S(δθ(s))=δΛ(s)ΛT (s), S(δΘ(s))=ΛT (s)δΛ(s) δΘ = δΘiEi, δθ = δΘigi. (2.45)

Throughout this thesis, the dot ˙(.) = d
dt

(.) denotes the derivative with respect to the time t.
For later use, some important relations between these quantities will be derived. In order to
shorten notation, the index s will often be omitted in the following. Applying the Young theorem

˙(Λ′)=(Λ̇)′ and making use of the vector identity S(a)S(b)−S(b)S(a)=S(S(a)b) yields:

d

dt

( Λ′︷ ︸︸ ︷
ΛS(K)

)
=ΛS(W)S(K)+ΛS(K̇)=̇

d

ds

( Λ̇︷ ︸︸ ︷
ΛS(W)

)
=ΛS(K)S(W)+ΛS(W′)

→ S(K̇)=S(W′)+S(K)S(W)−S(W)S(K) → K̇=W′−W×K.

(2.46)

In a similar manner, a relation between the spatial counterparts of K and W can be derived:

d

dt

( Λ′︷ ︸︸ ︷
S(k)Λ

)
=S(k)S(w)Λ+S(k̇)Λ=̇

d

ds

( Λ̇︷ ︸︸ ︷
S(w)Λ

)
=S(w)S(k)Λ+S(w′)Λ

→ S(k̇)=S(w′)+S(w)S(k)−S(k)S(w) → k̇ = w′ + w × k.

(2.47)

It is emphasized that the final relations (2.46) and (2.47) only differ by a ”-”. Similar relations
can be derived between (2.43) and (2.45) or between (2.44) and (2.45). The final results are:

k̇ = w′ + w × k, δk = δθ′ + δθ × k, δw = δθ̇ + δθ ×w,

K̇ = W′ −W ×K, δK = δΘ′ − δΘ×K, δW = δΘ̇− δΘ×W.
(2.48)

After having stated the basic kinematic assumptions of the geometrically exact beam theory, in
the following section, stress resultants and the strong form of equilibrium will be presented.
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2.2 Simo-Reissner Beam Theory

2.2.2 Stress resultants and strong form of equilibrium
With f̃ and m̃ denoting distributed external forces and moments per unit length and fρ and mρ

representing the force and moment contributions due to inertia effects, the strong form of the
equilibrium equations for the considered beam problem reads (see e.g. [3, 184, 204]):

f ′ + f̃ + fρ = 0,

m′ + r′ × f + m̃ + mρ = 0.
(2.49)

In (2.49), f and m represent the force and moment vector resulting from the internal stresses
acting on the beam cross-section area A. According to [204], these spatial objects are defined as:

f(s) :=

∫
A

P(s, s2, s3)·E1ds2ds3 =

∫
A

t1(s, s2, s3)ds2ds3,

m(s) :=

∫
A

(x(s, s2, s3)− r(s))︸ ︷︷ ︸
=:xA

×t1(s, s2, s3)ds2ds3.
(2.50)

In the definition (2.50), the first Piola-Kirchhoff stress tensor P has been introduced. Based on
the Piola surface stress vectors t1, t2 and t3, this two-point tensor can be formulated as follows:

P(s, s2, s3) = t1(s, s2, s3)⊗E1 + t2(s, s2, s3)⊗E2 + t3(s, s2, s3)⊗E3. (2.51)

It should be noted that a detailed introduction into 3D continuum mechanics lies beyond the
scope of the present work, which focuses on 1D continuum theories. For a thorough definition of
the Piola-Kirchhoff stress tensor P(s, s2, s3) and further objects defined in the field of 3D solid
continuum mechanics required in the subsequent Section 2.2.5, the interested reader is exem-
plarily referred to the text books of Bonet and Wook [29], Gurtin [93], Holzapfel [98], Marsden
and Hughes [155], Odgen [169] or Simo and Hughes [206]. Similar to 3D continuum mechan-
ics, also a material form of the 1D equilibrium equations can be derived. This is achieved by
inserting the material stress resultants F:=ΛTf and M:=ΛTm into the balance equations (2.49).

2.2.3 Weak form and objective deformation measures
In this section, the balance equations already given by the strong form (2.49) shall be transferred
into the associated weak form. In the following, it is assumed that the reader is familiar with the
Method of Weighted Residuals (MWR) and its mechanical interpretations as Principle of Virtual
Work (PVW) or as Principle of Minimum of Total Potential Energy (PMTPE). Details on these
principles can for example be found in the textbooks of Bathe [13], Hughes [103], Zienkiewicz
and Taylor [242] and Zienkiewicz [243]. Following the PVW, the admissible variations, i.e. in-
finitesimal small and arbitrary (additive or multiplicative) changes of the current configuration
s → δC := (δr(s), δθ(s)) ∈ <3×<3 that are compatible with the employed boundary condi-
tions are introduced. Here, δr(s)∈<3 represents the vector of (additive) virtual displacements
and δθ(s) ∈ <3 the vector of (multiplicative) virtual rotations, also denoted as spin vector. By
multiplication of (2.49) with δr and δθ and integration by parts, the spatial weak form is derived:

G=

l∫
0

(
δθ′Tm+(δr′−δθ×r′)

T
f−δθT(m̃+mρ)−δrT(f̃ +fρ)

)
ds−

[
δrTfσ

]
Γσ
−
[
δθTmσ

]
Γσ
=̇0. (2.52)
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Here, fσ and mσ denote external forces and moments at the Neumann boundary Γσ of the con-
sidered beam. According to the principle of virtual work, the variations of the (so far unknown)
deformation measures γ and ω being work-conjugated to the spatial stress resultants f and m
can be identified by means of work-pairing. If the spatial strong form (2.49) is chosen as basis
for this procedure, the spatial deformation measures γ and ω can be identified as

δoγ = δr′ − δθ × r′, δoω = δθ′, (2.53)

where the “objective variation” δo of an arbitrary vector a∈<3 is defined as the objective part
δoa :=δa−δθ×a (see e.g. [204]). The term δθ×a represents the variation of the base vectors:

δa = δaigi + aiδgi = δaigi︸ ︷︷ ︸
δoa

+ aiδθ×gi︸ ︷︷ ︸
δθ×a

. (2.54)

If the material counterpart of equation (2.49) is chosen as starting point (see e.g [58]), the varia-
tion of the (so far unknown) material deformation measures Γ and Ω being work-conjugated to
the material stress resultants F and M can be determined in an analogous manner:

δΓ = ΛT (δr′ + r′ × δθ) , δΩ = ΛT δθ′. (2.55)

Alternatively, the same results can be derived by starting with the spatial / material balance
equations of the 3D-continuum instead of the spatial / material 1D-resultant equation (see [204]).
It can be shown that the associated antiderivatives of the spatial differential quantities are:

γ=r′−g1, S(ω)=Λ′ΛT−ΛΛT
0Λ
′
0Λ

T =S(k)−S(ΛΛT
0k0) → ω=k−ΛΛT

0 k0. (2.56)

Similarly, the antiderivatives of the material differential quantities can be derived as:

Γ=ΛTr′−E1, S(Ω)=ΛTΛ′−ΛT
0Λ
′
0 =S(K)−S(K0) → Ω=K−K0. (2.57)

It is easy to verify that all of these deformation measures vanish for the stress-free initial config-
uration, i.e. when the relations Λ=Λ0, r′=r′0 and g1 =g01 =r′0 =Λ0E1 are valid. Mechanically,
the components of Γ represent axial tension (first component) and shear deformation (second
and third component). The components of Ω represent torsion (first component) as well as bend-
ing (second and third component). While the current and initial material curvature vector can be
subtracted directly in (2.57), a rotation of the initial spatial curvature vector k0 from the initial
basis g0i onto the current basis gi is necessary in (2.56) in order to fulfill objectivity.

Remark: In [204], the orientation of the material frame gi was described via a rota-
tion Λ̃ of the initial local frame g0i, thus Λ̃ := ΛΛT

0 = gi ⊗ g0i. The corresponding
pull-back mapping via Λ̃ is the one that naturally appears, e.g. in the initial spatial cur-
vature vector of equation (2.56) or when the corresponding spatial / material quantities
(e.g. spatial / material stress resultants) of the beam theory are deduced from their spa-
tial / material counterparts of 3D continuum mechanics (e.g. Cauchy stresses / 2nd Piola
Kirchhoff stresses, see Section 2.2.5). In this case, the components of spatial quantities
expressed in the current material frame gi are identical to the components of their material
counterparts expressed in the initial material frame g0i. This pull-back operation can be
interpreted as a rotation of spatial quantities from the current, curved beam configuration
onto the initial, curved beam configuration. By contrast, the pull-back operation via Λ
as applied here, or e.g. in [58], can be interpreted as a rotation of spatial quantities from
the current curved beam configuration onto a fictitious, in general not stress-free, straight
beam configuration, in which the material frame gi coincides with the global frame Ei.
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2.2.4 Constitutive relations
Finally, constitutive relations between the material stress resultants M and F and the deformation
measures Ω and Γ are required. The simplest constitutive law of this type and the one considered
in this thesis is represented by a length-specific hyperelastic stored energy function according to:

Π̃int(Ω,Γ)=
1

2
ΩTCMΩ+

1

2
ΓTCFΓ, M=

∂Π̃int

∂Ω
=CM ·Ω, F=

∂Π̃int

∂Γ
=CF ·Γ. (2.58)

Here, the material constitutive tensors CM and CF have the following diagonal structure:

CM = diag
[
CM1, CM2, CM3

]
Ei

and CF = diag
[
CF1, CF2, CF3

]
Ei
. (2.59)

In the following, diag
[
A,B,C

]
Ei

represents a diagonal matrix with entriesA,B,C ∈ <. Again,
the index Ei denotes the basis in which the associated tensor is represented. The six constitu-
tive constants CMi, CFi ∈ < can either be determined experimentally or derived from the 3D
continuum theory. If the latter approach is chosen (see e.g. Section 2.2.5), the constants can be
expressed by quantities related to the beam geometry and the hyper-elastic material law of the
3D-continuum. The simplest section constitutive model of this kind yields the relations

CM1 =GIT , CM2 =EI2, CM3 =EI3, CF1 =EA, CF2 =GĀ2, CF3 =GĀ3. (2.60)

Here, E and G are the Young’s modulus and the shear modulus, A, Ā2 and Ā3 are the cross-
section and the two reduced cross-sections, I2 and I3 are the two principal moments of inertia
and IT is the torsional moment of inertia. The push-forward of these material relations yields:

m = cm ·ω and f = cf ·γ
cm = diag

[
CM1, CM2, CM3

]
gi

and cf = diag
[
CF1, CF2, CF3

]
gi
.

(2.61)

Similarly to (2.58), the length-specific kinetic energy Π̃kin of the beam can be formulated:

Π̃kin(w, ṙ)=
1

2
wTcρw+

1

2
ρAṙTṙ, cρ = ΛCρΛ

T , Cρ=diag
[
ρ(I2+I3︸ ︷︷ ︸

=:IP

), ρI2, ρI3

]
Ei
. (2.62)

Here, ρ is the mass density, Cρ the material inertia tensor and w represents the spatial angular
velocity vector, which has already been introduced in (2.44). From the kinetic energy (2.62), the
spatial vectors of length-specific linear momentum l̃ and angular momentum h̃ can be derived:

l̃ :=
∂Π̃kin

∂ṙ
= ρAṙ, h̃ :=

∂Π̃kin

∂w
= cρw=ΛCρΛ

Tw=ΛCρW. (2.63)

Similar to the length-specific external forces f̃ and m̃, also the length-specific energies Π̃int and
Π̃kin and the length-specific linear and angular momentum l̃ and h̃ have been furnished with the
(̃.)-symbol. The total counterparts fext, mext, Πint, Πkin, l and h are obtained by integration:

fext :=

l∫
0

f̃ds+
[
fσ

]
Γσ
, mext :=

l∫
0

(
r× f̃ +m̃

)
ds+

[
r× fσ+mσ

]
Γσ
,

Πint :=

l∫
0

Π̃intds, Πkin :=

l∫
0

Π̃kinds, l :=

l∫
0

l̃ds, h :=

l∫
0

(h̃+r× l̃)ds.

(2.64)
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The additional subscript (.)ext has been applied to the integrated external forces and moments
in order to avoid a confusion with the stress resultants f and m. Furthermore, the origin of the
global coordinate frame has been chosen as reference point for the total external moment mext

and angular momentum h. These definitions will be required for subsequent derivations. Next,
based on (2.63), the inertia forces fρ and the inertia moments mρ yield (see e.g. [204]):

−fρ=˙̃l=ρAr̈, −mρ= ˙̃h=Λ [S(W)CρW+CρA]=S(w)cρw+cρa, a :=ẇ, A :=Ẇ.(2.65)

Similar to w=ΛW, also the angular accelerations are related via the push-forward operator:

a :=ẇ=
d

dt
(ΛW)=ΛS(W)W + ΛẆ=ΛẆ=:ΛA, since S(W)W=0. (2.66)

When the considered beam problem has to be discretized in time (see Section 3.1 for details), the
vectors w and a can either be directly employed in a time integration scheme [116, 209, 210] or,
alternatively, they can be expressed via the (additive) rate of the primary variableψ [43]. Similar
to (2.17), one can formulate the following relations in order to express w and a:

w = T−1ψ̇, a = Ṫ−1ψ̇ + T−1ψ̈. (2.67)

Finally, the problem setup presented in Sections 2.2.1-2.2.4 has to be completed by boundary
and initial conditions in order to end up with a well-defined initial boundary value problem:

r=ru, ψ=ψu on Γu, f = fσ, m=mσ on Γσ, Γσ ∩ Γu=∅, Γσ ∪ Γu={0, L}
r=r0, ṙ=v0, Λ=Λ0, w=w0 at t=0.

(2.68)

Based on a trial space (r(s, t),Λ(ψ(s, t)))∈U of functions with square-integrable first deriva-
tives satisfying (2.68) and an associated weighting space (δr(s), δθ(s)) ∈ V of functions with
square-integrable first derivatives satisfying δr=0, δθ=0 onΓu, the weak form (2.52) is equiv-
alent to the strong form (2.49) supplemented by the boundary conditions (2.68).

Remark: Two possible time integration schemes can be derived from the variants of
either employing W and A directly or expressing them via additive rates given by (2.67):

1) (ṙ, r̈,w, a)n+1 = f((r,Λ)n+1, (r,Λ)n, (ṙ,w)n, (r̈, a)n),

2) (ṙ, r̈, ψ̇, ψ̈)n+1 = f((r,ψ)n+1, (r,ψ)n, (ṙ, ψ̇)n, (r̈, ψ̈)n).
(2.69)

Here, the indices (.)n and (.)n+1 refer to two successive time steps of the time-discrete
problem and f(.) represents a typical finite difference time integration scheme (e.g. a
Newmark scheme). The first variant, i.e. time integration directly based on the angular
velocities and accelerations (see Section 3.1.2) can be considered as being more flexible
since it does not require any specific rotation parametrization. It can directly be applied
to Reissner type beam formulations as well as to Kirchhoff type beam formulations with
strong or weak Kirchhoff constraint enforcement without the need for further adaptions.
Due to this flexibility and the very simple and compact time integrator resulting from this
procedure, this will be the method of choice employed throughout this thesis.
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2.2 Simo-Reissner Beam Theory

Remark: Since the material triad field Λ(s) is fully defined via a rotation vector field
parametrization ψ(s), the trial space can also be formulated as (r(s, t),ψ(s, t)) ∈ U.

Remark: It is shown in Appendix A.2 how the strong and weak forms (2.49) and (2.52)
can alternatively be derived by means of variational principles (viz. the Hamilton
principle). The starting point for this procedure is the Lagrangian L =

∫
(Π̃kin−Π̃int)ds

based on the kinetic and hyperelastic energy according to (2.62) and (2.58).

Remark: In principle, the geometrically exact beam theory is capable of describing the
orientation of arbitrary cross-section shapes. Thus, it is not limited to the simple case of
isotropic shapes (such as circular or quadratic cross-sections), often denoted as kinetic
symmetry, as it is the case for many Kirchhoff type beam formulations that can be found
in the literature (see e.g. [36], [227] or [228]). However, with the introduction of the spe-
cific section constitutive laws chosen in this section, the following considerations will
from now on be confined to cross-section shapes whose center of shear coincides with
the cross-section centroid (e.g. bi-symmetric cross-sections). While the beam theory pre-
sented in Sections 2.2.1-2.2.3 remains valid for arbitrary cross-sections, some adaptions
of the constitutive law would be necessary if this confinement should be resigned.

2.2.5 Relation between 1D and 3D constitutive laws
The aim of the following considerations is to derive the constitutive laws (2.58)-(2.60) in a
consistent manner from the 3D continuum theory. Thereto, the deformation gradient F of the
3D position field subject to the kinematic constraints (2.40) and (2.37) of the geometrically
exact beam theory shall be derived. Subsequently, also the Cauchy-Green deformation tensor E
is required. These two objects can be formulated based on the following definitions:

E :=
1

2

(
FTF − I3

)
with F :=

∂x

∂X
=
∂x

∂s

∂s

∂X
= gi ⊗Gi. (2.70)

In order to evaluate the deformation gradient (2.70), (the non-orthonormal), covariant basis vec-
tors gi=∂x(s)/∂si and Gi=∂X(s)/∂si have to be determined from (2.40) and (2.37):

g1 =r′ + k× (s2g2 + s3g3) , g2 =g2, g3 =g3,

G1 =g01 + k0 × (s2g02 + s3g03) , G2 =g02, G3 =g03.
(2.71)

Furthermore, the associated contravariant base vectors Gi can be determined from the second
line of (2.71) via the definition GT

i G
j =δ ji , which yields after some algebraic manipulations:

G1 =
1

C
g01, G2 =g02+

K01s3

C
g01, G3 =g03−

K01s2

C
g01, C :=1−K03s2+K02s3. (2.72)

Making use of the relation r′=g1+γ according to (2.56) and inserting the first line of (2.71) as
well as (2.72) into (2.70) yields the following expression for the deformation gradient:

F=
1

C

[
g1+γ+k×(s2g2+s3g3)

]
⊗g01+g2⊗

[
g02+

K01s3

C
g01

]
+g3⊗

[
g03−

K01s2

C
g01

]
. (2.73)

Finally, by inserting (2.73) into (2.70), the individual components of the Cauchy-Green defor-
mation tensor can be determined. However, in order to gain further insight into the underlying
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2 Geometrically Exact Beam Theory

structure of the deformation gradient, the procedure suggested by Geradin and Cardona [82] (for
initially straight beams) as well as Linn et al. [145] (for initially curved beams) is employed by
slightly reformulating the expression (2.73) on the basis of the relative rotation tensor Λ̃ :=ΛΛT

0 .
By applying the auxiliary relation 1/C=1+(1−C)/C to the pre-factor of g1 and solving all the
products in (2.73), the deformation gradient can be reformulated according to:

F=Λ̃ (I3+H⊗g01) with H :=Hig0i, I3 =g0i⊗g0i, Λ̃=gi⊗g0i. (2.74)

The components of the vectorH , denoted as material strain vector in [82] and [145], read:

H1 =
1

C
[Γ1+(K2−K02)s3−(K3−K03)s2] ,

H2 =
1

C
[Γ2−(K1−K01)s3] , H3 =

1

C
[Γ3−(K1−K01)s2] .

(2.75)

Based on the deformation gradient (2.74), the Cauchy-Green deformation tensor can be derived:

E =
1

2C
[H⊗ g01 + g01 ⊗H ] +

HTH

2C2
g01 ⊗ g01. (2.76)

The result (2.76) has been consistently derived from the basic kinematic assumptions (2.40)
and (2.37) without any additional approximations. However, in order to finally end up with the
simple constitutive laws of the geometrically exact beam theory which is based on the quadratic
form (2.58), from now on, the following well-known assumption of small local strains is made:

Γi � 1 and R ·Ki � 1, R ·K0i � 1 for i=1, 2, 3. (2.77)

The assumptions (2.77) state that small local axial and shear strains are considered and that the
radii of initial and deformed centerline curvature have to be small as compared to the cross-
section radius R. In the following, a first-order approximation in these small quantities is con-
sidered by setting C ≈ 1 and neglecting the last, quadratic term in (2.76). Based on these small-
strain assumptions, the approximated Cauchy-Green deformation tensor reads

E ≈ Ē =
1

2
[H⊗ g01 + g01 ⊗H ] =: Ēijg0i ⊗ g0j. (2.78)

The components Ēij of the approximated Cauchy-Green deformation tensor Ē finally yield:

Ē11 = Γ1 + (K2 −K02)s3 − (K3 −K03)s2,

Ē12 = Ē21 =
1

2
(Γ2 − (K1 −K01)s3) ,

Ē13 = Ē31 =
1

2
(Γ3 + (K1 −K01)s2) ,

Ē22 = Ē33 = Ē23 = Ē32 = 0.

(2.79)

By applying a Saint-Venant-Kirchhoff material with corresponding material constitutive tensor
C = Cijklg0i ⊗ g0j ⊗ g0k ⊗ g0l, the 2. Piola-Kirchhoff stress tensor S̄ = S̄ijg0i ⊗ g0j can be
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2.2 Simo-Reissner Beam Theory

formulated component-wise based on the approximated Cauchy-Green deformation tensor Ē:

S̄11 = Ē(Γ1 + (K2 −K02)s3 − (K3 −K03)S2),

S̄22 = S̄33 = −νE11,

S̄12 = S̄21 = G (Γ2 − (K1 −K01)s3) ,

S̄13 = S̄31 = G (Γ3 + (K1 −K01)s2) ,

S̄23 = S̄32 = 0.

(2.80)

The scaled Young’s modulus Ē and the shear modulus G have been introduced according to

Ē :=
(1− ν)E

(1 + ν)(1− 2ν)
, G :=

E

2(1 + ν)
, (2.81)

where E is Young’s modulus and ν is Poisson’s ratio. From (2.80), it gets obvious that the
standard relations known in the geometrically exact beam theory in terms of vanishing in-plane
stress components S̄22 = S̄33 = 0 and of a constitutive parameter E in front of the normal stress
S̄11, only holds for the special case ν=0. This is a consequence of the kinematic assumption of
rigid cross-sections, which requires the existence of in-plane reaction forces in general. In order
to resolve these two putative contradictions for general cases ν 6=0, the constraint of rigid cross-
sections can be weakened by allowing for a uniform lateral contraction of the cross-section with
in-plane strain components Ē22 = Ē33 =−νE11 and for a proper in-plane warping field (see [145]
or [227] for further details). Alternatively, the approximation ν= 0 can be employed in the first
two lines of (2.80). In praxis, this slight inconsistency is often taken into account, which is not
unusual in the field of structural theories (see e.g. [3] or [126]). In the last step required to identify
the 1D section constitutive law, the material force resultants are determined by integration of the
stress vector t1 = S·g01 acting on a cross-section defined by the material normal vector g01. This
procedure is similar to that performed in the defining equations (2.50) of the stress resultants:

F̃ :=

∫
A

t1dA=

∫
A

[
E(Γ1+(K2−K02)s3−(K3−K03)s2)g01

+G (Γ2−(K1−K01)s3) g02+G(Γ3+(K1−K01)s2)g03

]
dA

=

 EA 0 0
0 GA
0 0 GA


g0i

·

 Γ1

Γ2

Γ3


g0i

= C̃F Γ̃.

(2.82)

M̃ :=

∫
A

xA× t1dA=

∫
A

(s2g02+s3g03)×
[
E(Γ1+(K2−K02)s3−(K3−K03)s2)g01

+G (Γ2−(K1−K01)s3) g02 +G (Γ3+(K1−K01)s2) g03

]
dA

=

 GIP 0 0
0 EI2

0 0 EI3


g0i

·

 K1 −K01

K2 −K02

K3 −K03


g0i

= C̃MΩ̃.

(2.83)

Here, the defintions of the moments of inertia of area I2 :=
∫
A
s2

3dA and I3 :=
∫
A
s2

2dA as well
as
∫
A
s3dA=

∫
A
s2dA=

∫
A
s2s3dA= 0 have been applied. As expected, (2.82) and (2.83) yield

37



2 Geometrically Exact Beam Theory

a constitutive law that is identical to the one postulated in (2.58). Comparable derivations based
on similar small-strain assumptions can e.g. be found in the original works of Kirchhoff [125]
and Love [153] in the context of shear-free beam formulations as well as in the current contribu-
tions [82, 120, 145] in the context of geometrically exact Simo-Reissner type formulations. As
mentioned in the remark at the end of Section 2.2.3, the presented derivation yields alternative
material objects F̃, C̃F and Γ̃ as well as M̃, C̃M and Ω̃ that are pulled-back to the curved, initial
reference configuration and not to the straight reference configuration as it was the case for the
material objects considered so far. However, the components of the alternative material objects,
e.g. F̃ =Fig0i, when expressed with respect to the ”curved”, local basis g0i are identical to the
components of the original material objects, e.g. F =FiEi, when expressed with respect to the
”straight”, global basis Ei. Accordingly, on the basis of the following push-forward operations,
also the 1. Piola-Kirchhoff stress tensor P and the Cauchy stress tensor σ can be determined.

P = FS, σ =
1

detF
FSFT . (2.84)

Starting with the 1. Piola-Kirchhoff stress tensor or with the Cauchy stress tensor, the spatial
stress resultants, e.g. f =Figi, can be derived similarly to (2.82) and (2.83). Since again only first-
order terms of the small strains (2.77) are relevant, it is sufficient to approximate the deformation
gradient, required for the push-forward, by neglecting the linear terms in the small strains (2.77):

F ≈ Λ̃ = gi ⊗ g0i, detF ≈ 1. (2.85)

Consequently, as already postulated in the sections before, the relevant pull-back / push-forward
operator is given by a rotation tensor Λ̃. If for the derivations above a 3D continuum formulation
with material strain and stress measures based on a straight reference configuration had been
applied, the resulting 1D material objects would be based on the global basis Ei and the total
rotation tensor Λ could be identified as the corresponding pull-back / push-forward operator.

Remark: As already mentioned above, in the derivations made in this section, the initial,
curved configuration has been considered as material reference configuration. In order to
remain consistent with the convention of representing spatial objects by small letters and
material objects by capital letters, the alternative notation Gi = g0i for the cross-section
triad in the reference configuration would have been appropriate. However, in order to
avoid confusions due to double declarations, this slight inconsistency has been accepted.

2.3 Kirchhoff-Love Beam Theory
In order to describe the configuration space of Reissner type beams, pointwise six degrees of
freedom are necessary, namely the three translational components of r(s) and three rotational
degrees of freedomψ(s), which parametrize the triad Λ(s). Now, in this chapter, the assumption
of vanishing shear strains is made, which can be assumed as a sensible approximation in the
range of highly slender beams (see e.g. [153]). Thus, the beam cross-sections spanned by the
local base vectors g2 and g3 have to remain perpendicular to the tangent vector t(s) := r′(s):

g2(s) · t(s) ≡ 0 and g3(s) · t(s) ≡ 0 or g1(s) ≡ t(s)

||t(s)||
. (2.86)
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2.3 Kirchhoff-Love Beam Theory

Principally, this so-called Kirchhoff constraint of vanishing shear deformations can be enforced
in a strong or in a weak manner. If the same parametrization (r(s),ψ(s)) as in the Reissner
case is chosen, additional fields of Lagrange multipliers λ2(s) and λ3(s) are necessary, in order
to integrate (2.86) into a constrained variational problem in a weak sense (see Section 2.3.5).
In the following sections, a parametrization consisting of 4 degrees of freedom (r(s), ϕ(s)) is
chosen, which fulfills the Kirchhoff constraint in a strong manner. As already introduced in
Section 2.1.2, the scalar-valued quantity ϕ(s) will describe the relative rotation between the
material frame gi(s) and an intermediate frame gMi(s) with respect to the tangent vector t(s)
according to (2.22). By means of (2.20), one example for a suitable intermediate frame gMi(s)
has already been given, the ”Smallest Rotation” intermediate frame. Nevertheless, the follow-
ing derivations are made in a rather general manner, which allows to insert arbitrary alternative
intermediate frame definitions gMi(s). In such a general manner, kinematic relations, strong
and weak form of the balance equations, deformation measures and stress resultants and finally
also the constitutive laws are formulated for the Kirchhoff case, thus providing the basis for the
corresponding Kirchhoff beam element formulation, which will be proposed in the subsequent
chapter. In Section 2.3.4, a brief excurse on the analytic treatment of Kirchhoff beams is pre-
sented. There, one possible alternative intermediate frame, the Frenet-Serret frame, is employed.
The resulting strong form of the balance equations based on this intermediate frame is ideal for
the analytic treatment of Kirchhoff beam problems and will for example be exploited in order
to derive analytic solutions for numerical examples presented in subsequent chapters. Finally,
in Section 2.3.5, the alternative of imposing the Kirchhoff constraint in a weak sense will be
presented, while Section 2.3.6 focuses on the weak enforcement of an inextensibility constraint.

2.3.1 Kinematics
Throughout the following sections, the Kirchhoff constraint (2.86) of vanishing shear strains is
strongly enforced based on the following representation of the material base vectors (see (2.23))

g1(s)=gM1(s) =
t(s)

||t(s)||
=

r′(s)

||r′(s)||
with t(s) = r′(s),

g2(s)=gM2(s) cosϕ(s)+gM3(s) sinϕ(s), g3 =gM3(s) cosϕ(s)−gM2(s) sinϕ(s),

(2.87)

where the centerline-aligned intermediate triad base vectors gMi(s)=gMi(r
′(s)) are completely

defined by the centerline field r(s) but not further specified for now (a possible example is given
by (2.20)). Now, the Kirchhoff constraint is incorporated by expressing the current configuration
s, t → C := (r(s, t),Λ(r(s, t), ϕ(s, t))) ∈ <3 × SO(3) via the new set of primary variables
(r(s, t), ϕ(s, t)). As a first step, the spatial and material curvature vector have to be expressed
in dependence of the intermediate triad base vectors and the relative angle ϕ(s). In analogy to
equations (2.24)-(2.27) and by replacing the variation δ(.) by the arc-length derivative (.)′, the
spatial curvature vector k as defined in equation (2.43) can be reformulated according to:

k = k‖ + k⊥ = K1g1 + S(g1)g′1 = (KM1 + ϕ′)g1 +
S(r′)r′′

||r′||2︸ ︷︷ ︸
=:κ

. (2.88)

39
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The component K1, representing the mechanical torsion, consists of two contributions: the
derivative ϕ′ of the relative angle and the torsion KM1 of the intermediate triad (see also (2.27)):

KM1 := gTM3g
′
M2 (2.89)

Furthermore, the Frenet curvature vector κ represents the curvature of the beam centerline r(s).
In components, the spatial as well as the material curvature vector read:

k =

 KM1 + ϕ′

gT2 κ
gT3 κ


gi

and K =

 KM1 + ϕ′

gT2 κ
gT3 κ


Ei

. (2.90)

The intermediate torsion KM1 is the only term in (2.90) that depends on the specific choice of
the intermediate triad. In order to keep the formulation general, at the moment, this term is not
further specified (by inserting concrete intermediate base vectors gM2 and gM3 into (2.89)). Be-
sides the curvature vectors, also the spin vector δθ has to be adapted to the Kirchhoff constraint.
By means of (the first three rows of) (2.34), the spatial spin vector is already expressed for the
case that the first base vector g1 of the material triad is described by a non-unit vector t. In the
case considered here, this vector t represents the tangent vector r′ to the beam centerline. For
completeness, the spatial spin vector with t = r′ and t = ||r′|| is repeated here:

δθ = δΘ1g1 + δθ⊥ = δΘ1g1 +
S(r′)δr′

||r′||2
= (δΘM1 + δϕ)g1+

S(r′)δr′

||r′||2
. (2.91)

In analogy to Reissner type beam formulations, the first component δΘ1 of the spin vector,
representing a multiplicative increment, will subsequently directly be employed in the weak form
and not further expressed via additive increments according to δΘ1 =δΘM1+δϕ. Consequently,
the admissible variations are s → δC := (δr(s),δθ(δr(s), δΘ1(s), r(s, t))) ∈ <3×<3 with the
new set of variational primary variables (δr(s), δΘ1(s)) defining the Kirchhoff case. Later, a
relation between the curvature and angular velocity components K1 and W1 will be required.
Left-multiplication of the first relation in the second line of (2.48) with ET

1 =(ΛTg1)T yields:

K̇1 =W ′
1+ġT1(g1×g′1), with ET

1(K×W)=gT1(k×w)=gT1(k⊥×w⊥)= ġT1(g1×g′1). (2.92)

In a similar manner, the following relations betweenK1,W1 and δΘ1 can be derived from (2.48):

K̇1 =W ′
1+ġT1(g1×g′1), δK1 =δΘ′1+δgT1(g1×g′1), δW1 =δΘ̇1+δgT1(g1×ġ1). (2.93)

Remark: From equations (2.88) and (2.91), the following similarities become obvious:

δθ =
(

1
||t||S(g1) g1

)( δt
δΘ1

)
, k =

(
1
||t||S(g1) g1

)( t′

K1

)
. (2.94)

An equivalent relation can also be formulated for the angular velocities (see (2.102)).

2.3.2 Deformation measures and stress resultants
Having defined kinematics that are compatible with the Kirchhoff constraint according to (2.86),
the deformation measures, constitutive relations and stress resultants presented in Section 2.2
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2.3 Kirchhoff-Love Beam Theory

can be adapted to the shear-free case. Inserting the constrained curvature vectors from (2.90)
into the deformation measures Ω and ω according to (2.56) and (2.57) yields

Ω =

 KM1+ϕ′−KM01−ϕ′0
gT2 κ− gT02κ0

gT3 κ− gT03κ0


Ei

and ω =

 KM1+ϕ′−KM01−ϕ′0
gT2 κ− gT02κ0

gT3 κ− gT03κ0


gi

. (2.95)

The objective variations of Ω and ω have a similar form as stated in (2.53) and (2.55), i.e.

δΩ = ΛT δθ′, δoω = δθ′. (2.96)

However, in the Kirchhoff case the constrained spin vector (2.91) has to be employed. By con-
struction, the shear components of Γ and γ in (2.56) and (2.57), vanish due to (2.86):

Γ = εE1 and γ = εg1 with ε := ||r′|| − 1. (2.97)

Here, the abbreviation ε has been introduced for the remaining component representing the axial
tension. In this case, also the corresponding objective variations of Γ and γ can be simplified:

δΓ = δεE1, δoγ = ΛδΓ = δεg1 with δε :=
δr′T r′

||r′||
= δr′Tg1. (2.98)

While the constitutive matrices CM and cm from (2.59) and (2.61) and the relations M = CMΩ
as well as m = cmω remain unchanged, the constitutive matrices CF and cf as well as the de-
formation measures Γ and γ can be simplified to a scalar factor, since the transverse components
f⊥ and F⊥ of the force stress resultants given by the following split relations

f = f‖ + f⊥ = F1g1 + f⊥ and F = F‖ + F⊥ = F1E1 + F⊥ (2.99)

cannot be determined via a kinematic and constitutive relation anymore. In this case, the stored
energy function of (2.58) and the corresponding constitutive relations simplify to:

Π̃int(Ω, ε)=
1

2
ΩTCMΩ+

1

2
EAε2, M=

∂Π̃int

∂Ω
=CMΩ=ΛTm, F1 =

∂Π̃int

∂ε
=EAε. (2.100)

The inertia forces fρ as well as the inertia moments mρ are identical to (2.65) and (2.66). Like
in the Reissner case, the spatial or material angular velocities w and W as well as the spatial
or material angular accelerations a and A can either be directly used in the employed time
integration scheme or they can be expressed via the (additive) rate of the primary variables
(r(s), ϕ(s)). For the latter approach, transformation matrices depending on the definition of the
employed intermediate triad (see e.g. T−1

M in (2.32) in the case of the SR intermediate triad) as
well as their time-derivatives are required in order to formulate relations similar to (2.67).

w = Tθtṫ + ϕ̇g1, a = Ṫθtṫ + Tθtẗ + ϕ̇ġ1 + ϕ̈g1. (2.101)

In the Kirchhoff case, a third variant can often be advantageous: Similar to the curvature vector
k (see (2.88)) and the spin vector δθ (see (2.91) or (2.34)), also the angular velocity w can be
split into a component tangential and a component perpendicular to the beam centerline

w=w‖+w⊥=W1g1+S(g1)ġ1 =W1g1+
S(r′)ṙ′

||r′||2
, a=Ẇ1g1+W1ġ1+S(g1)g̈1. (2.102)
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While the component w⊥ is fully determined by the primary variable r(s), W1 is not specified
any further, i.e. it is not expressed via r(s) and ϕ(s) and their time rates as done in (2.101).

Remark: Three possible time integration schemes result from the variants given above:

1) (ṙ, r̈,w, a)n+1 = f((r,Λ)n+1, (r,Λ)n, (ṙ,w)n, (r̈, a)n),

2) (ṙ, r̈, ϕ̇, ϕ̈)n+1 = f((r, ϕ)n+1, (r, ϕ)n, (ṙ, ϕ̇)n, (r̈, ϕ̈)n),

3) (ṙ, r̈,W1, Ẇ1)n+1 = f((r,Λ)n+1, (r,Λ)n, (ṙ,W1)n, (r̈, Ẇ1)n).

(2.103)

Here, the indices (.)n and (.)n+1 refer to two successive time steps of the time-discrete
problem and f(.) represents a typical finite difference time integration scheme (e.g. a
Newmark scheme). The second variant according to (2.101) represents the most specific
approach since the choice of a specific intermediate triad is needed for the matrix Tθt.
The third variant according to (2.102) requires no specific information concerning the
employed intermediate triad field, but is still based on the assumption that the Kirchhoff
constraint (2.86) is fulfilled in a strong manner. However, the first variant, i.e. time inte-
gration directly based on the angular velocities and accelerations (see Section 3.1.2) is the
most flexible one and does not require any specific rotation parametrization. It can directly
be applied to Reissner type beam formulations as well as to Kirchhoff type beam formu-
lations with strong or weak Kirchhoff constraint enforcement without the need for further
adaptions. Due to this flexibility and the simple and compact time integrator resulting
from this procedure, this variant will be employed throughout this thesis.

2.3.3 Strong and weak form
In this section, the spatial representation of mechanical equilibrium will be considered. Analo-
gous derivations can also be made starting with the material balance equations. In the following,
the notation will be simplified by summarizing external forces and moments as well as inertia
forces and moments according to f̃ρ := f̃+fρ and m̃ρ :=m̃+mρ. Now, the shear forces f⊥, which
provide no work contribution in the Kirchhoff case of vanishing shear deformations, have to be
eliminated. Thereto, (2.99) is exploited in order to split the vector valued moment equilibrium
equations, i.e. the second line of (2.49), into a component parallel to the tangent vector, i.e.

gT1 (m′ + m̃ρ + r′ × f) = gT1 (m′ + m̃ρ) = 0, (2.104)

and a component that is perpendicular to the centerline tangent vector g1 = t/||t||, i.e.

(m′ + m̃ρ + r′ × f)− gT1 (m′ + m̃ρ + r′ × f) t = (m′ + m̃ρ)⊥ + r′ × f⊥ = 0. (2.105)

In order to eliminate the shear forces, equation (2.105) is solved for the force component f⊥, viz.

f⊥ =
r′

||r′||2
× (m′ + m̃ρ)⊥ =

r′

||r′||2
× (m′ + m̃ρ) , (2.106)
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2.3 Kirchhoff-Love Beam Theory

in order to insert this expression into the force equilibrium equations (first line of (2.49)). To-
gether with equation (2.104), the following set of four differential equations can be formulated:

gT1 (m′ + m̃ρ) = 0,

f ′‖ +

[
r′

||r′||2
× (m′ + m̃ρ)

]′
+ f̃ρ = 0.

(2.107)

The set (2.107) is sufficient in order to solve for the four primary variables r and ϕ as soon
as the stress resultants f‖ and m are expressed by kinematic and constitutive relations from
Section 2.3.2. Multiplying (2.107) with the admissible translational and rotational variations δr
and δΘ1 and integrating along the beam gives the equivalent form of the equilibrium equations:

l∫
0

[
δrT

(
f ′‖ +

[
r′

||r′||2
× (m′ + m̃ρ)

]′
+ f̃ρ

)
+ δΘ1g

T
1 (m′ + m̃ρ)

]
ds = 0. (2.108)

A first integration by parts of the weighted residual (2.108) leads to the intermediate result:

l∫
0

[
δr′T
(
f‖+

r′

||r′||2
×m′

)
+(δΘ1g1)′Tm−δrT f̃ρ−δΘ1g

T
1m̃ρ+δr′T

(
r′

||r′||2
× m̃ρ

)]
ds

−

[
δrT fσ+δΘ1g

T
1mσ

]
Γσ

= 0.

(2.109)

The boundary force fσ has been derived by using (2.106). A second integration by parts yields

G=

l∫
0

[
δθ′Tm︸ ︷︷ ︸
δoωTm

+δr′Tg1F1︸ ︷︷ ︸
δεF1

−δrT f̃ρ−δθTm̃ρ

]
ds−

[
δrTfσ+δθTmσ

]
Γσ
=̇0, δθ=δΘ1g1+

r′×δr′

||r′||2
. (2.110)

In (2.110), the constrained spatial spin vector according to (2.91) has been identified and already
substituted with the symbol δθ. As indicated by the curly brackets in (2.110), the pre-factors of
the stress resultants m and F1 are represented by the objective variations δoω and δε according
to (2.96) and (2.98), underlining the geometrical exactness of the proposed Kirchhoff beam
formulation. One can verify that the same result (2.110) would be obtained by simply inserting
the constrained rotation vector variation of (2.91) into the weak form (2.52) of the Reissner
beam. Thus, by restricting the arbitrary rotation vector variations to the admissible variations,
which are kinematically consistent with the Kirchhoff constraint, the work contribution of the
shear forces vanish, i.e. the shear force components are eliminated from the weak form. Finally,
the problem setup has to be completed by proper boundary and initial conditions:

r=ru, g1 =g1u, ϕ=ϕu on Γu, f = fσ, m=mσ on Γσ, Γσ ∩ Γu=∅, Γσ ∪ Γu={0, l}
r=r0, ṙ=v0, ϕ=ϕ0,w=w0 at t=0.

(2.111)

Here g1u prescribes the orientation of the tangent vector and ϕu the orientation of the cross-
section with respect to a rotation around the tangent vector. How these conditions can be modeled
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2 Geometrically Exact Beam Theory

Weak Form:

l∫
0

[
δθ′Tm+δεF1−δrT f̃ρ−δθTm̃ρ

]
ds−

[
δrTfσ+δθ

Tmσ

]
Γσ
=0, δθ=δθ1g1+

S(r′)δr′

||r′||2
, δε=r′Tg1

Constitutive law:

m = diag
[
GIT , EI2, EI3

]
gi
· ω, F1 = EAε

Kinematic equations:

ω =
(
KM1+ϕ′−KM01−ϕ′0, gT2 κ−gT02κ0, gT3 κ− gT03κ0

)T
gi
, ε = ||r′|| − 1,

κ=
S(r′)r′′

||r′||2
, KM1 := gTM3g

′
M2,

g1 =
r′

||r′||
, g2 =gM2 cosϕ+gM3 sinϕ, g3 =gM3 cosϕ−gM2 sinϕ

Inertia terms and external loads:

f̃ρ= f̃ +fρ, m̃ρ=m̃+mρ, fρ=−ρAr̈, mρ=−[S(w)cρw+cρa]

Initial and boundary conditions:

r=ru, g1 =g1u, ϕ=ϕu on Γu, f = fσ, m=mσ on Γσ, Γσ ∩ Γu=∅, Γσ ∪ Γu={0, l}
r=r0, ṙ=v0, ϕ=ϕ0,w=w0 at t=0.

Table 2.1: Kirchhoff beam problem based on intermediate triads gM2(r) and gM3(r).

in practice is shown in Chapter 3. By introducing the trial space (r,Λ(r, ϕ)) ∈ U satisfying
(2.111) and the weighting space (δr, δθ(δr, δΘ1, r))∈V, with δr= 0, δΘ1 = 0 onΓu, the beam
problem is fully defined. For completeness, the spatial setting of the problem is summarized in
Table 2.1. It should be emphasized that only the concrete analytic expressions for gM2(r(s)) and
gM3(r(s)) depend on the specific choice of the intermediate triad definition.

Remark: According to (2.110), the spin vector δθ represents the work-conjugated kine-
matic quantity associated with the vector of external moments. In order to impose the
Kirchhoff constraint on the spin vector, it has been expressed by means of the four pri-
mary variables (r, ϕ) and the admissible variations (δr, δΘ1) (see (2.91)). Similar to the
spin vector itself, also external moments can be split up into components parallel and per-
pendicular to the tangent vector according to mσ = Mσ1g1 + mσ⊥. Thus, by multiplying
the external moment mσ with the constrained spin vector δθ according to (2.91), the ex-
ternal moment is projected into the variational equations related to δΘ1 (the component
Mσ1 parallel to the tangent induces twist modes) and into the variational equations related
to δr′ (the component mσ⊥ perpendicular to the tangent induces bending modes).
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2.3 Kirchhoff-Love Beam Theory

This projection is deformation-dependent and has to be considered in a consistent lin-
earization. Due to the one-to-one mapping between the spin vector δθ, as used for Reiss-
ner beams, and the primary variables r, ϕ, δr, δΘ1 (see (2.34)) considered here, the exter-
nal moment has the same physical meaning as for geometrically exact Reissner elements.

2.3.4 Intermediate triad based on the Frenet-Serret frame
While the construction of an intermediate triad field gMi(s) applicable for the proposed finite
element formulations is presented in Section 3.2.3.4, in this section, an intermediate triad field
is considered that is ideally suited for analytic purposes: The Frenet-Serret frame. The Frenet-
Serret frame seems to be a natural choice in order to describe mechanical curvature measures of
beams, since the Frenet-Serret frame itself is defined via the curvature of the space curve r(s).
In particular, the normal vector nFS(s) of the Frenet-Serret frame points towards the center of
curvature of r(s) at position s. For two given vectors g1(s) = r′(s)/||r′(s)|| and nFS(s), the
binormal vector bFS(s) completes the right-handed orthonormal triad at position s:

nFS :=
g′1
||g′1||

and bFS := g1 × nFS with g1 =
r′

||r′||
. (2.112)

From these definitions, the following expressions for the intermediate triad gMi can be derived:

gM2 = nFS =
||r′||

||r′ × r′′||
(
r′′−||r′||2(r′T r′′)r′

)
and gM3 = bFS =

r′ × r′′

||r′ × r′′||
. (2.113)

From (2.113), it becomes obvious that the binormal vector bFS is parallel to the curvature vector

κ = κbFS = κgM3, (2.114)

with κ = ||κ||. Using this relation, the deformation measures ω and Ω simplify slightly due to

gT2 κ = κ sinϕ and gT3 κ = κ cosϕ. (2.115)

After calculating the derivative g′M2, the torsionKM1 =gTM3g
′
M2 of this intermediate triad yields:

KM1 = τ :=
r′T (r′′ × r′′′) ||r′||
||r′ × r′′||2

. (2.116)

Remark: The definitions of κ and τ applied here differ from the common definitions
of the curvature κ̄ and torsion τ̄ of parametrized curves by a factor of ||r′|| = ε + 1.
This is due to the fact that the mathematical curvature and torsion are defined as angle
increments per arc-length increment of the considered curve. However, as consequence of
axial tension, the centerline parameter s considered here is an arc-length parameter of the
initial but not of the current centerline curve. The relation between an arbitrary parameter
s and an arc-length parameter s̃ of parametrized curves is given by ds̃ = ||r′||ds. Using
the common definitions of κ̄ and τ̄ yields the following relations:

κ̄ :=

∣∣∣∣∣∣∣∣dg1

ds̃

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣dg1

ds

∣∣∣∣∣∣∣∣ dsds̃ =
κ

||r′||
, τ̄ :=

∣∣∣∣∣∣∣∣dbFSds̃

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣dbFSds

∣∣∣∣∣∣∣∣ dsds̃ =
τ

||r′||
.

If axial tension is neglected (||r′||≡1), both curvature and torsion measures are identical.
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2 Geometrically Exact Beam Theory

With (2.113) and (2.116), the problem description in Table 2.1 is completed. In the following,
it will be shown that the Frenet-Serret intermediate frame can serve as an extremely useful tool
for the analytic treatment of large-deformation Kirchhoff beam problems. However, from a nu-
merical point of view, it has one considerable drawback, which makes it unfeasible for robust
algorithms: From (2.113) it becomes obvious that these base vectors are not defined for straight
curves, or more precisely, for curve segments with vanishing curvature, i.e. r′′=0. Furthermore,
since the third derivative of the primary variable r appears in (2.116), at least a C2-continuous
discretization of r would be desirable when considering the weak form of Table 2.1 based on the
Frenet-Serret intermediate triad. To overcome these drawbacks, alternative intermediate frames
based on the ”Smallest Rotation” mapping (Section 2.1.2) will be employed in Chapter 3.

Due to its natural curvature adaption, the Frenet-Serret frame seems to be an ideal tool for the
analytic investigation of Kirchhoff beam problems. Later, this tool will be used in order to derive
analytic reference solutions for numerical examples. For that purpose, the strong form of the
balance equations (2.107), based on a Frenet-Serret intermediate triad field, will be considered.
In the following, the components of this vector-valued strong form shall be formulated with
respect to the Frenet-Serret frame. Thus, the moment stress resultant, the external force vector
and the external moment vector have to be split into corresponding components:

m=:mg1g1+mnn+mbb, m̃ρ=:m̃ρg1g1+m̃ρnn+m̃ρbb, f̃ρ=: f̃ρg1g1+f̃ρnn+f̃ρbb. (2.117)

Projecting the vector-valued equation of (2.107) into the directions g1,n and b and using the
scalar equation of (2.107) directly yields the following set of four differential equations:

f ′g1
+

κ

1 + ε
(τmn +m′b + m̃ρb) + f̃ρg1 = 0,

−
(
τmn +m′b + m̃ρb

1 + ε

)′
− τ

1 + ε
(κmg1 +m′n − τmb + m̃ρn) + κfg1 + f̃ρn = 0,(

−τmb +m′n + κmg1 + m̃ρn

1 + ε

)′
− τ

1 + ε
(τmn +m′b + m̃ρb) + f̃ρb = 0,

m′g1
− κmn + m̃ρg1 = 0.

(2.118)

Furthermore, the following components of the stress resultants fg1 ,mg1 ,mn,mb can be derived:

fg1 = F1 = EAε,

mg1 = GIT (τ + ϕ′ − τ0 + ϕ′0) ,

mn = EI2 (κ sinϕ− κ0 sinϕ0) cosϕ− EI3 (κ cosϕ− κ0 cosϕ0) sinϕ,

mb = EI2 (κ sinϕ− κ0 sinϕ0) sinϕ+ EI3 (κ cosϕ− κ0 cosϕ0) cosϕ.

(2.119)

In the case of quasi-circular cross-sections, i.e. EI2 = EI3 =: EI , the initial material frame
g0i can be chosen as coinciding with the initial intermediate frame gM0i, thus ϕ0 ≡ 0, which
simplifies the bending moment components to mn = EIκ0 sinϕ and mb = EI (κ−κ0 cosϕ).
Equations (2.119) inserted into equations (2.118) give a system of four differential equations,
which determine the four unknowns ε, κ, τ and ϕ. With the definitions of ε, κ and τ as well as
appropriate boundary conditions, the curve r can be determined afterwards. Analytical formula-
tions comparable to (2.118) and (2.119) that can be found in the literature are mostly based on
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2.3 Kirchhoff-Love Beam Theory

the assumption of inextensible beam centerlines ε≡0 and / or quasi-circular cross-section shapes
characterized by EI2 = EI3 =: EI . Under these circumstances, equations (2.118) and (2.119)
coincide for example with the results derived by Drozdov et al. [65] for this specific case.

2.3.5 Weak enforcement of Kirchhoff constraint
In the last sections, the set of primary variable fields (r(s), ϕ(s)) has been chosen in a way such
that the Kirchhoff constraint (2.86) of vanishing shear strains is strongly fulfilled by construc-
tion. However, more flexibility in the subsequent discretization process (see Chapter 3) could be
gained by formulating a Reissner type beam problem, which allows for two independent inter-
polations for the centerline field r(s) as well as the triad field Λ(s), and by weakly enforcing the
Kirchhoff constraint of vanishing shear strains by means of additional constraint equations:

Γj(s) ≡ gTj (s)r′(s) ≡ 0 for j=2, 3. (2.120)

In order to integrate these constraint equations into the considered variational framework, the
latter has to be supplemented by an additional Lagrange multiplier potential of the form:

ΠλΓ23
=

l∫
0

(λΓ2(s)Γ2(s) + λΓ3(s)Γ3(s))ds. (2.121)

The Lagrange multiplier fields λΓ2(s) and λΓ3(s) introduced in (2.121) can be interpreted as
the shear force components F2(s) and F3(s), i.e. reaction forces which enforce the constraint of
vanishing shear strains along the beam centerline. Variation of the Lagrange multiplier poten-
tial (2.121) leads to the contribution of the Kirchhoff constraint to the weak form:

δΠλΓ23
=

l∫
0

(δλΓ2(s)Γ2(s)+δλΓ3(s)Γ3(s))ds+

l∫
0

(λΓ2(s)δΓ2(s)+λΓ3(s)δΓ3(s))ds. (2.122)

The first term in (2.122) represents the weak statement of the Kirchhoff constraint (2.120) while
the second term can be interpreted as the work contribution of the shear reaction forces. Sim-
ilar to the displacement primary fields, a proper trial space (λΓ2, λΓ3) ∈ UλΓ23

and a proper
weighting space (δλΓ2, δλΓ3) ∈ VλΓ23

have to be introduced which uniquely define the resulting
mixed beam formulation. The discrete realization of the finite element formulation with weak
enforcement of the Kirchhoff constraint will be presented in Section 3.5.

2.3.6 Kirchhoff theory of inextensible beams
As it will be further concretized in Section 3.3.4, the numerical advantages for subsequently
derived finite element formulations (see Chapter 3) resulting from a neglect of shear deformation
can be further increased by additionally abstaining from the axial tension terms, a deformation
mode which is often of secondary interest in the range of high slenderness ratios. A neglect of
axial tension means that the beam is subject to the following inextensibility constraint:

ε(s) ≡ ||r′(s)|| − 1 ≡ 0. (2.123)
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The Kirchhoff type beam formulation presented in the last sections was based on a set of primary
variable fields that fulfilled the Kirchhoff constraint of vanishing shear strains by construction
and without the need for additional constraint equations. In Section 3.6, it will be shown that in
general it is difficult to find a set of primary variables that fulfills the constraint ε(s) of an inex-
tensible beam centerline by construction. Therefore, in the following, it will be briefly described
how the inextensibility constraint can be integrated into the considered variational problem in
a weak sense. Similar to Section 2.3.5, the total potential associated with the Kirchhoff beam
problem has to be extended by a corresponding Lagrange multiplier potential of the form:

Πλε =

l∫
0

λε(s)ε(s)ds. (2.124)

In this case, the Lagrange multiplier field λε(s) represents the field of axial forces along the
beam, which are now of reaction force type. Variation of (2.124) leads to the contribution of
constraint (2.123) to the weak form of the Kirchhoff beam equilibrium equations:

δΠλε =

l∫
0

δλε(s)ε(s)ds+

l∫
0

δε(s)λε(s)ds. (2.125)

The first term in (2.125) represents the weak statement of the inextensibility constraint (2.123)
while the second term can be interpreted as the work contribution of the axial reaction forces.
Since (2.125) enforces vanishing axial strains along the beam, the contribution of the axial strains
to the weak form will not influence the final equilibrium configurations and can be neglected.
However, in Section 3.6, it is shown that a consideration of these contributions leads to a more
good-natured numerical problem resulting from spatial discretization. Thus, if both terms are
considered simultaneously, the corresponding axial force contribution to the weak form reads:

δΠλε =

l∫
0

δλε(s)ε(s)ds+

l∫
0

δε(s)(λε(s) + EAε(s))ds. (2.126)

As it will be illustrated in Section 3.3.4, a direct application of (2.126) would lead to the same
undesirable stiffness terms EA as the extensible Kirchhoff formulation. Thus, the axial tension
term, which does not influence the final solution, is scaled by an arbitrary constant factor cε:

δΠλε =

l∫
0

δλε(s)ε(s)ds+

l∫
0

δε(s)(λε(s) + cεEAε(s))ds. (2.127)

The factor cε can be chosen arbitrarily such that for example the performance of linear and non-
linear solvers is optimized without changing the final solution as compared to the pure Lagrange
multiplier case. Thus, in the terminology of constraint enforcement, the regularized constraint
equation (2.127) achieved by additionally considering the (scaled) axial tension terms can be
interpreted as an Augmented Lagrange type scheme. The resulting mixed problem statement is
completed as soon as a proper trial space λε ∈ Uλε and a proper weighting space δλε ∈ Vλε is
defined. The discrete realization of the inextensibility constraint will be presented in Section 3.6.
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2.4 Reduced Kirchhoff-Love Beam Theories
The Kirchhoff beam theory considered in Section 2.3 has been formulated as general as possible
and accounts for beams with anisotropic cross-section shape and arbitrary initial curvatures in
general 3D large deformation scenarios. In the following, some special cases concerning the
beam geometry and the external loads are presented, which enable the application of simplified
versions (denoted as reduced models) of the general theory presented in the last section. The
motivation for the development of such reduced formulations is twofold: On the one hand, the
numerical effort as well as the complexity of the formulation can be reduced drastically. As will
be shown in the following, for none of these reduced models any intermediate or material triad
has to be calculated. Consequently, the treatment of large rotations is not required anymore. On
the other hand, the special cases presented below are of high practical relevance.

2.4.1 Isotropic Kirchhoff-Love beam theory
In this first subsection, the case of beams with quasi-circular cross-sections and vanishing initial
curvature within a three-dimensional problem setting, in the following denoted as “isotropic
bending”-case, will be treated. It is characterized by the following geometric specifications:

I2 = I3 =: I, IT = IP = 2I and κ0 ≡ 0. (2.128)

Based on (2.128), the moment stress resultants can be simplified. In the “isotropic bending”-
case, the initial configuration of the beam is rotationally symmetric with respect to the centerline.
Since any axis lying in the cross-section can be identified as principal axis of inertia, the initial
triad g0i(s) can be chosen arbitrarily. For simplicity, it will be chosen as constant field given by
g0i(s)≡g0i=const., which implies a vanishing initial torsionK01 =KM01+ϕ

′
0≡0. Furthermore,

the initial intermediate triad gM0i is chosen to coincide with the initial material triad g0i. Under
these circumstances, the following relations for the initial torsion and relative angle are valid:

K01 ≡ 0, ϕ0 ≡ 0. (2.129)

Inserting (2.129) and (2.128) into (2.95) also yields simplified moment stress resultants:

m = 2GI
(
KM1 + ϕ′︸ ︷︷ ︸

=K1

)
g1 + EIκ. (2.130)

Since the relative angle ϕ does not appear in the bending moment components anymore, the
total torsion K1 =KM1+ϕ

′, can be chosen as new primary variable instead of ϕ. For that reason,
the quantity KM1 is not required and the resulting deformation measures do not depend on any
intermediate triad anymore. Due to (2.128), also the inertia moments can be simplified:

−mρ= ˙̃h=
d

dt

(
2ρIW1g1+ρIw⊥

)
=ρI

(
2Ẇ1g1+2W1ġ1+ẇ⊥

)
. (2.131)
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Inserting (2.131) into gT1m̃ρ = gT1(m̃ + mρ) = M̃1− 2ρIẆ1 and the result together with the
intermediate result gT1m

′=2GIK ′1 into the strong form of the balance equations (2.107) yields:

0= 2GIK ′1 + M̃1−2ρIẆ1,

0= f ′‖+

[
r′

||r′||2
×
(
m′+m̃−ρI

(
2W1ġ1+ ẇ⊥︸︷︷︸

≈0

))]′
+ f̃ρ,

with m=2GIK1g1+EIκ, f‖=EAεg1, f̃ρ= f̃−ρAr̈.

(2.132)

Thus, due to (2.128), the perpendicular component ρIw⊥ of the angular momentum h̃ does only
appear in the second (vector-valued) equation of (2.132). In the range of high beam slender-
ness ratios, these rotational inertia contributions can be assumed as small compared to the in-
ertia forces fρ appearing in the same equation. Consequently, the inertia effects stemming from
the perpendicular component of the angular momentum will be neglected (as indicated by the
curly brackets in (2.132)) in this section as well as in Section 2.4.2. This assumption is typi-
cal for (isotropic) shear-free beam theories and distinguishes e.g. the Euler-Bernoulli from the
Rayleigh beam model (see e.g. [36] for an application of both models in the geometrically non-
linear regime). Since the term 2ρIẆ1 represents the only inertia contribution to the first equation
of (2.132), a simple cancelation of this term seems not to be justified (see also Section 2.4.2.2). In
order to remain variationally consistent, also the term 2ρIẆ1g1 in the second equation of (2.132)
is kept. Inserting these simplifications into the elastic (2.100) and kinetic (2.62) energy yields:

Π̃kin=
ρA

2
ṙTṙ+

ρIP
2
W 2

1 , Π̃int=
EA

2
ε2+

EI

2
κTκ+

GIT
2
K2

1 . (2.133)

Based on the energies (2.133), the weak form can be derived in a variational manner (see also
Appendix A.2). Using the auxiliary relations δK1 = δΘ′1+δgT1(g1×g′1)= δΘ′1+δθT⊥κ as well as
δW1 =δΘ̇1+δgT1(g1×ġ1)=δΘ̇1+δθT⊥ġ1 according to (2.93), the weak form eventually yields:

G=

l∫
0

[
δεEAε+δκEIκ+δΘ′12GIK1+δθT⊥2GIK1κ

]
ds

−
l∫

0

[
δrT f̃ρ+δθT⊥(m̃⊥−2ρIW1ġ1)+δΘ1(M̃1−2ρIẆ1)

]
ds−

[
δrT fσ+δθT⊥mσ⊥+δΘ1Mσ1

]
Γσ

.

(2.134)

In (2.134), the external moments have been split, i.e. m̃ = M̃1g1+m̃⊥ and mσ =Mσ1g1+mσ⊥,
and the spin vector δθ is given according to (2.91). Furthermore, the variations δε and δκ read:

δε=
δr′T r′

||r′||
, δκ=

||r′||2 (δr′×r′′+r′×δr′′)−2
(
δr′T r′

)
(r′×r′′)

||r′||4
, δθ⊥=

r′×δr′

||r′||2
. (2.135)

In deriving (2.134), use has been made of the relations δoṙT ṙ = (δṙ− δθ× ṙ)T ṙ = δṙT ṙ and
δoκ

Tκ=(δκ−δθ×κ)Tκ=δκTκ for the spatial vectors ṙ and κ. Alternatively, the weak form can
be derived by inserting the simplifications of this section into the weak form (2.110). This proce-
dure is shown in Appendix A.3 (see equation (A.8)). It is easy to verify that (2.134) and (A.8) are
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2.4 Reduced Kirchhoff-Love Beam Theories

identical. According to (2.93), the angular velocity component W1 cannot directly be expressed
via the primary variable K1, in particular W ′

1 6= K̇1. In order to formulate W1 and Ẇ1, one could
for example employ (Lie-group) time integrators based on multiplicative rotation increments
∆θ as shown in Section 3.1.2 (see also [209]). However, this would (at least formally) require
to determine material triads and associated rotation increments in every time step. Since such a
procedure would almost negate the advantages of the isotropic theory as compared to the general
Kirchhoff theory presented in Section 2.3, the former will solely be applied to static problems
within this thesis. In this case, (2.134) is uniquely defined by the primary variables (r, K1) and
the variations (δr, δΘ1). Nevertheless, the dynamic isotropic case of this section will serve as an
important intermediate step for the derivation of a torsion-free beam theory in the next section.

In the static case, the isotropic theory according to (2.134) does not require any treatment of
large rotations, in particular, no material or intermediate triads have to be determined. Further-
more, it is emphasized that in the mentioned static case, the fields K1, representing the torsional
deformation, and r(s), representing the bending deformation, are only coupled by one term,
namely δθT⊥2GIK1κ, which vanishes in the straight configuration. The static weak form (2.134)
is identical to the weak form proposed in [36] for straight Kirchhoff beams with circular cross-
sections. Thus, the beam element presented in [36] can be considered as special case that can be
derived in a consistent manner from the general formulation given in Table 2.1.

2.4.2 Torsion-free Kirchhoff-Love beam theory
In a further step, the isotropic bending theory of Section 2.4.1 will be supplemented by the
assumption that no torsional components of external moments are acting on the beam, viz.

g1(s, t) · m̃(s, t) = M̃1(s, t) ≡ 0 and
[
g1(t) ·mσ(t)

]
Γσ

=
[
Mσ1(t)

]
Γσ

= 0. (2.136)

Furthermore, for dynamic problems it is assumed that the torsion K1 as well as the tangential
component W1 of the angular velocity vector are zero in the initial configuration:

K1(s, t = 0) ≡ 0 and W1(s, t = 0) ≡ 0. (2.137)

There are many fields of application where such restrictions are valid. As examples, the Brow-
nian dynamics of filaments in biopolymer networks (see e.g. [61]), cables of high voltage lines
(see e.g. [9]), fibers in biologial tisue or the fibers in industrial webbings or ropes (see e.g. [69])
can be mentioned. In Section 2.4.2.2, it will be proven that in (quasi-) static problems involv-
ing slender continua modeled by means of the general Kirchhoff beam theory of Section 2.3
the mechanical torsion K1 will always exactly vanish as consequence of the restrictions (2.136)
and (2.137) together with (2.128). This result remains valid for arbitrarily deformed beam cen-
terlines and is independent from the resulting magnitude of displacements and rotations. Fur-
thermore, it is shown that even in dynamics, at least for problems that are dominated by a low
frequency response, the torsion K1 (and also the angular velocity W1) will be small with a
magnitude decreasing quadratically with the beam slenderness ratio. In both cases, the torsion-
free beam formulation presented in the next section can be applied. In the following, the term
“torsion-free” is equivalent to “vanishing torsional moments” and simultaneously to “vanish-
ing torsional deformation”. This is in strong contrast to the notion “shear-free”, which means
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negligible shear deformation but non-vanishing shear forces. In the next section, the strong and
weak form of the balance equations of such a torsion-free beam theory will be presented. In Sec-
tion 2.4.2.2, the applicability of this theory to slender continua that can be modeled via the gen-
eral Kirchhoff theory of Section 2.3 will be justified by showing that restrictions (2.136), (2.137)
and (2.128) lead to a state of vanishing torsion in statics and to small torsion values in dynamics.

Remark: Alternatively, the torsion-free theory presented in the next section can of course
also be applied to slender bodies without torsional stiffness GIT ≈ 0, i.e. slender ”quasi-
continua” which cannot produce torsional moments as consequence of their constitutive
law. Examples are braided ropes with finite bending stiffness but negligible torsional re-
sistance, filament species in bio-polymer networks (see e.g. [61], Section 4.2.) or chains.
According to [191], the term ”quasi-continua” is used for mechanical objects that are
composed of a large number of primitive components (e.g. the links of a chain, or the
individual monomers of a polymer macromolecule). The mechanical behavior of such
objects can often be approximated by continuum theories with properly chosen constitu-
tive constants, even though these objects are not continua in the classical sense. While for
general slender continua with torsional stiffness the requirement (2.136) of vanishing ex-
ternal torsional moments has to be satisfied by the set of external loads in order to end up
with a state of vanishing torsion, in the case of slender ”quasi-continua” without torsional
resistance, the deformed configurations will ”automatically” arise in a way such that ex-
ternal moment loads will have no torsional component and obey the relations (2.136).

2.4.2.1 Strong and weak form of torsion-free beam theory

It is quite obvious that the first equation of (2.132) vanishes if the torsion-free beam theory
according to K1 =W1 =Ẇ1 =0 is applied, while the second set of equations simplifies to:

f ′‖+

[
r′

||r′||2
×(m′ + m̃⊥)

]′
+ f̃ +fρ=0 with m=EIκ, f‖=EAεg1, fρ=−ρAr̈. (2.138)

The weak form of a torsion-free beam theory as introduced in the last section results from (2.133)
and (2.134) by setting K1 =W1 =Ẇ1 =0 and removing the terms associated with δΘ1.

G=

l∫
0

[
δεEAε+δκEIκ+δrTρAr̈

]
ds−

l∫
0

[
δrT f̃ +δθT⊥m̃⊥

]
ds−

[
δrT fσ + δθT⊥mσ⊥

]
Γσ

=̇0. (2.139)

The associated functions of kinetic and hyper-elastic stored energy yield in this case:

Π̃kin=
ρA

2
ṙTṙ, Π̃int=

EA

2
ε2+

EI

2
κTκ. (2.140)

The formulation presented in this section is the shear-free counterpart to the torsion-free beam
formulation presented in [191], which is based on the Simo-Reissner beam theory. Since the
torsion term cancels out from the weak form, only the primary variable r and the variation δr
have to be discretized. The corresponding finite element formulation is based on less degrees of
freedom than the general formulation of Section 2.3 and is therefore numerically more efficient.
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Furthermore, this formulation does not require any rotational degrees of freedom (or any other
triad parametrization). This property dramatically simplifies standard procedures such as spatial
discretization (in a manner that preserves objectivity of deformation measures), linearization,
configuration updates, or time integration via finite differences in dynamics. These procedures
are typically complicated by the presence of rotational degrees of freedom in common geomet-
rically exact beam formulations. Furthermore, in contrast to standard geometrically exact beam
formulations, (2.139) will result in a symmetric tangent stiffness matrix (as long as no external
moment contributions are considered) and a symmetric and constant mass matrix. The torsion-
free model also seems to provide an ideal tool for the mechanical investigation of cable-like
structures. In pure cable formulations, artificial bending terms are often necessary in order to
stabilize compressional modes (see e.g. [179]). On the contrary, the torsion-free formulation
naturally provides such a stabilization in a mechanically consistent manner. In the next section,
the applicability of this torsion-free beam theory is justified from a mechanical point of view.

2.4.2.2 Applicability of torsion-free beam theory

In the last section, the weak form of a torsion-free beam theory, i.e. a theory that neglects elastic
and inertia contributions associated with twist degrees of freedom, has been derived. In this sec-
tion, the theoretical justification for applying this torsion-free beam theory to practical problem
classes characterized by the restrictions (2.128), (2.136) and (2.137) will be derived. Thereto,
the first equation of (2.132), which is associated with the twist DoFs, is repeated here:

−GK ′1 + ρẆ1 = 0. (2.141)

In the following, the partial differential equation (2.141) shall be solved. Actually, the second re-
quirement in (2.136) would not allow for Dirichlet boundary conditions for the DoFs associated
with twist since these type of boundary conditions could induce boundary torques Mσ1(t) 6=0 in
general. However, in the next two sections, it will be shown that a beam with one clamped end
will still exhibit a state of vanishing torsion while blocked twist DoFs at both ends of the beam
can induce torsion even if the initial configuration is torsion-free. In order to investigate these
scenarios, three types of boundary conditions for the twist DoFs will be considered:

a) No twist DoFs blocked: K1(s = 0, t) = K1(s = l, t) = 0.

b) Twist DoFs blocked at one end: K1(s = 0, t) = 0, W1(s = l, t) = 0.

c) Twist DoFs blocked at both ends: W1(s = 0, t) = W1(s = l, t) = 0.

(2.142)

In order to solve (2.141), the following relation between K1 and W1 (see (2.93)) will be used:

K̇1 =W ′
1+F, F :=gT1(k×w)=gT1(k⊥×w⊥)= ġT1(g1×g′1). (2.143)

Differentiation of (2.141) with respect to s, differentiation of (2.143) with respect to t and a
subsequent insertion of Ẇ ′

1 from (2.143) into (2.141) yields the following PDE in K1(s, t):

−K ′′1 +
1

c2
K̈1 =

1

c2

d

dt
F (s, t) =:

1

c2
f(s, t) with c2 =

G

ρ
. (2.144)

Here, the expression c can be identified as the wave speed of a linear torsional oscillator. Depend-
ing on the considered type of boundary conditions as listed in (2.142), it might be reasonable to
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formulate the PDE (2.141) solely in terms of the tangential angular velocity component W1. An
analogous procedure than the one applied for the derivation of (2.144) yields:

−W ′′
1 +

1

c2
Ẅ1 =

d

ds
F (s, t) =: f̃(s, t) with c2 =

G

ρ
. (2.145)

In a next step, the expression F (s, t) will be further specified in order to simplify the subsequent
derivation of inhomogeneous solutions for the PDEs (2.144) or (2.145). Thereto, the space curve
r(s, t) with s ∈ [0; l] and t ∈ [0;T ] is expanded as a two-dimensional Fourier-series:

r(s, t)=
∞∑
i=1

∞∑
j=1

rij sin

(
iπs

l

)
sin

(
jπt

T

)
. (2.146)

Here, rij are the vector-valued coefficients of the Fourier-series. If the evolution of the curve
r(s, t) can be assumed as sufficiently smooth, differentiation of (2.146) yields:

r′(s, t)=
∞∑
i=1

∞∑
j=1

(
iπ

l

)
rij cos

(
iπs

l

)
sin

(
jπt

T

)
. (2.147)

In the range of high slenderness ratios, the axial strains are assumed to be small, i.e. ||r′|| ≈ 1,
and the base vector g1 can be expressed by the approximation g1≈r′:

g1(s, t)≈r′(s, t)=
∞∑
i=1

∞∑
j=1

r̄ij cos

(
iπs

l

)
sin

(
jπt

T

)
. (2.148)

In (2.148), the term iπ/l has been included into the Fourier coefficient r̄ij in order to make the
latter dimensionless. Further differentiation of (2.148) with respect to s and t results in:

g′1(s, t)≈
∞∑
i=1

∞∑
j=1

−
(
iπ

l

)
r̄ij sin

(
iπs

l

)
sin

(
jπt

T

)
,

ġ1(s, t)≈
∞∑
i=1

∞∑
j=1

(
jπ

T

)
r̄ij cos

(
iπs

l

)
cos

(
jπt

T

)
.

(2.149)

With these approximations, the product F (s, t) = ġT1 (g1 × g′1) in (2.144) and (2.145) yields:

F (s, t)=
∞∑
i=1

∞∑
j=1

1

l
ΩjF̃ij sin (ω̂is) sin (Ωjt) with ω̂i =

iπ

l
, Ωj =

jπ

T
. (2.150)

From (2.148) and (2.149) to (2.150), trigonometric relations have been used in order to end
up with a Fourier series representation of F (s, t) according to (2.150) within the finite interval
(s, t) ∈ [0; l]× [0;T ] with new (dimensionless) coefficients F̃ij . For simplicity, also the term iπ
has been included into the coefficients F̃ij . Depending on the considered type of boundary con-
ditions, it might be useful to use an equivalent cosine half range Fourier series instead of (2.150):

F (s, t)=
∞∑
i=0

∞∑
j=1

1

l
ΩjF̄ij cos (ω̂is) sin (Ωjt) with ω̂i =

iπ

l
, Ωj =

jπ

T
, (2.151)

with coefficients F̄ij differing from F̃ij . In the following two sections, solutions for (2.144)
and (2.145) will be derived for the (quasi-) static as well as for the dynamic case.
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2.4.2.3 Verification of applicability in statics

In the (quasi-) static case, inertia terms can be neglected by setting ρ = 0 in (2.141), resulting in:

K ′1 = 0. (2.152)

Thus, a constant torsion K1 = const. and consequently a constant first component M1 of the
moment stress resultant m follow from (2.141). For the boundary condition types a) and b) the
torsion K1 vanishes at least at one end of the beam. Consequently, for these boundary condi-
tions the constant value of M1 equals zero, or in other words, the beam remains torsion-free.
The treatment of the boundary condition c) is more intricate. In this case, it is sensible to re-
express (2.152) via W1. In the (quasi-) static case, the variant (2.145) simplifies to:

−W ′′
1 =

d

ds
F (s, t) =: f̃(s, t). (2.153)

Based on (2.150), a twofold integration of (2.153) with respect to the coordinate s leads to:

W1(s, t) =
∞∑
i=1

∞∑
j=1

Ωj

lω̂i
F̃ij cos (ω̂is) sin (Ωjt) + c1(t)s+ c2(t). (2.154)

After evaluating the boundary conditions W1(s=0, t)=W1(s= l, t)=0, (2.154) becomes:

W1(s, t) =
∞∑
i=1

∞∑
j=1

Ωj

lω̂i
F̃ij

[
cos (ω̂is)−

(−1)i − 1

l
s− 1

]
sin (Ωjt). (2.155)

Relation (2.143) and the initial condition K1(s, t=0)=0 enable the integration of K1(s, t):

K1(s, t) =
∞∑
i=1

∞∑
j=1

F̃ij
l

(−1)i − 1

iπ
cos (Ωjt) = −

∞∑
j=1

F̄0j

l

(
cos (Ωjt)−1

)
. (2.156)

From the second to the third term in (2.156), the standard transformation rule between the coef-
ficients of sine and cosine half range series has been applied. As expected, the resulting torsion
K1(s, t) is constant along the beam and does not vanish in general 3D scenarios (F̄0j 6= 0).
Thus, in case of boundary conditions of type c) (e.g. two clamped ends) the beam will not re-
main torsion-free in general. This is in contrast to the boundary conditions a) and b), where the
torsion will always exactly vanish as long as (quasi-) static problems are considered. The vari-
able t in (2.156) represents a pseudo time, describing the evolution of the quasi-static problem.
These investigations will be extended to more general dynamic problems in the next section.

2.4.2.4 Verification of applicability in dynamics

In the dynamic case, the PDE (2.144) describing the dynamic evolution of the torsion K1(s, t)
has to be solved. In a first step, boundary conditions of type a) shall be considered. Thereto,
the homogeneous solution K1h(s, t) based on a Bernoulli separation approach according to
K1h(s, t) = u(s)v(t) is determined such that the first line of (2.142) is fulfilled:

K1h(s, t)=
∞∑
i=1

sin
(ωis
c

)
(Ai cos (ωit)+Bi sin (ωit)) with ωi =

iπc

l
= cω̂i. (2.157)
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As expected, the homogeneous solution is identical to that of a torsional oscillator of length lwith
free ends. For the derivation of an inhomogeneous solution, the time derivative, f(s, t) = Ḟ (s, t)
is required. This time derivative follows through differentiation of the Fourier series (2.150):

f(s, t)=
∞∑
i=1

∞∑
j=1

1

l
Ω2
j F̃ij sin

(ωis
c

)
cos (Ωjt) with ωi = cω̂i. (2.158)

In a next step, for the inhomogeneous solution K1p(s, t) of (2.144), an ansatz of the type

K1p(s, t) =
∞∑
i=1

∞∑
j=1

Kij sin
(ωis
c

)
cos (Ωjt), (2.159)

with unknown coefficientsKij is made. Similar to the homogeneous solution, also (2.159) fulfills
the boundary conditions of type a). In order to determine the coefficientsKij , (2.158) and (2.159)
are inserted into the PDE (2.144). A comparison of sin (ωis/c)- and cos (Ωj)-coefficients yields:

Kij =
η2
ij

1− η2
ij

F̃ij
l
, with ηij =

Ωj

ωi
. (2.160)

Since (2.144) represents a linear PDE, the total solution for the torsion K1(s, t) follows from
superposition of K1h(s, t) and K1p(s, t). The constants Ai and Bi can be determined from the
initial conditions (2.137). From K1(s, t=0)=0, the constants Ai can be derived. It follows:

K1(s, t)=
∞∑
i=1

sin
(ωis
c

)[ ∞∑
j=1

F̃ij
l

(
η2
ij

1−η2
ij

[cos (Ωjt)− cos (ωit)]

)
+Bi sin (ωit)

]
. (2.161)

With W ′
1 = K̇1−F and the initial conditions W1(s, t = 0) = W ′

1(s, t = 0) = 0, the remaining
constants Bi and the final solutions for W1(s, t) and K1(s, t) can be derived according to:

K1(s, t)=
∞∑
i=1

1

l
sin
(ωis
c

) ∞∑
j=1

F̃ij

(
η2
ij

1−η2
ij

[cos (Ωjt)− cos (ωit)]

)
,

W1(s, t)=−
∞∑
i=1

c

l
cos
(ωis
c

) ∞∑
j=1

F̃ij

(
η2
ij

1−η2
ij

[sin (ωit)−ηij sin (Ωjt)]−ηij sin (Ωjt)

)
.

(2.162)

Similarly, also the solutions K1(s, t) and W1(s, t) for the boundary conditions of type b) and
c) can be derived (see Appendix A.4). In practical systems, the contributions stemming from
the homogeneous solution are typically damped out after a certain time and the overall system
dynamics are dominated by the external excitation represented by the inhomogeneous solution.
Thus, only the inhomogeneous solutions for the boundary conditions a), b) and c) are compared:

a)Kp1(s, t)=
∞∑
i=1

1

l
sin
(ωis
c

) ∞∑
j=1

F̃ij
η2
ij

1−η2
ij

cos (Ωjt), ωi =
iπc

l
.

b)Kp1(s, t)=
∞∑
i=1

1

l
sin
(ωis
c

) ∞∑
j=1

F̂ij
η2
ij

1−η2
ij

cos (Ωjt), ωi =
(2i− 1)πc

2l
.

c)Kp1(s, t)=
∞∑
i=1

1

l
cos
(ωis
c

) ∞∑
j=1

F̄ij
η2
ij

1−η2
ij

cos (Ωjt)−
∞∑
j=1

F̄0j

l

(
cos (Ωjt)−1

)
, ωi =

iπc

l
.

(2.163)
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In (2.163), the coefficients F̃ij and F̄ij refer to the sine and cosine Fourier series (2.150) as well
as (2.151) with ω̂i = iπ/l, while the coefficients F̂ij stem from a sine Fourier series expansion
of F (s, t) with ω̂i = (2i − 1)π/(2l) (see Appendix A.4.1). In the limit Ωj→ 0, i.e. ηij→ 0, the
results of these three cases are identical to the results already gained for the static case, i.e. the
torsion vanishes for boundary conditions of type a) and b) while a constant torsion along the
beam length results from type c). Consequently, the torsion resulting in dynamic problems from
boundary conditions of type a) and b) remains small as long as the frequencies Ωj describing
the beam centerline dynamics are small as compared to the natural frequencies ωi of the torsion
modes. In the following considerations, it is assumed that the relevant frequencies Ωj , with j=
1, 2, ..., NΩ, of a truncated version of the Fourier series expansion (2.146) at least lie within the
same order of magnitude as the relevant eigenfrequencies of the linearized beam problem given
in (3.120). For many practical applications, it can be assumed that the low eigenfrequencies and
the associated deformation modes dominate the overall dynamic response while the amplitudes
resulting from high modes can be assumed as being small or damped out by dissipative sources
inherent to virtually all mechanical systems. In the range of high beam slenderness ratios, these
most relevant low eigenfrequencies are associated with the bending modes (see (3.120)). With
the assumption Ωj∼ωb for j=1, 2, ..., NΩ, the following estimation can be made for ηij:

η2
ij =

Ω2
j

ω2
i

∼
(

1

ζ2

E

ρl2

)/( GIT
ρIP l2

)
∼ 1

ζ2
. (2.164)

According to (2.163) and (2.164), the magnitude of the mechanical torsion, and consequently the
magnitude of the error resulting from a neglect of torsion, decreases quadratically with increasing
beam slenderness ratio ζ := l/R as long as the assumption Ωj∼ωb is justified. Thus, the torsion-
free theory seems to be a reasonable specification of the general Kirchhoff beam theory, whose
range of applicability also lies in the scope of high slenderness ratios as considered in this thesis.

2.4.2.5 Conclusion of static and dynamic analysis

In this section, a special torsion-free beam theory has been presented which exhibits the po-
tential of resulting in considerably simplified finite element formulations (see Section 3.7) and
numerical algorithms as compared to general, geometrically exact Reissner or Kirchhoff type
beam formulations. Apart from the restrictions (2.128), (2.136) and (2.137) with respect to initial
beam geometry and external (moment) loads (supplemented by proper twist Dirichlet boundary
conditions given by the first two lines of (2.142)), this beam theory is able to model general 3D,
large-deformation beam problems in statics and dynamics. For static problems fulfilling these
restrictions, it has been shown in Section 2.4.2.3 that the solution of the torsion-free theory is
identical to the solution of the general Kirchhoff theory. In the dynamic case, it has been shown
in Section 2.4.2.4 that the error between the torsion-free and the general Kirchhoff beam theory
decreases quadratically with increasing beam slenderness ratio as long as low-frequency domi-
nated, i.e. bending dominated, mechanical problems are considered. Thus, the torsion-free theory
can be regarded as a reasonable and promising specialization of the general Kirchhoff theory in
the range of high beam slenderness ratios. Besides the investigated applicability to general, slen-
der continua, the torsion-free beam theory represents an ideal model for quasi-continua without
torsional resistance such as braided ropes, mechanical chains or polymer macro molecules.
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3 Finite Element Formulations for
Geometrically Exact Beams

In this chapter, the space-time-continuous beam problems presented in the last chapter will be
discretized in order to allow for an approximate numerical solution. While spatial discretization
is based on the finite element method (FEM), the generalized-α method, an implicit, one-step
finite difference time integration scheme, is employed for temporal discretization. In the context
of finite element methods for solid mechanics, it is often more convenient to perform time dis-
cretization on the semi-discrete problem setting resulting from spatial discretization. Here, just
the opposite succession, i.e. the initial time discretization is followed by a subsequent spatial
discretization, is chosen. This second variant is often applied in the development of geometri-
cally exact beam finite element formulations and will lead to simpler discrete expressions. The
differences arising from these two discretization successions will briefly be discussed in Ap-
pendix B.2. In Section 3.1.1, the basics of the standard generalized-α method as proposed by
Chung and Hulbert [50] will be presented. In Section 3.1.2, a recently proposed extension of the
generalized-α method from vector spaces to Lie groups [8, 40, 41], which is directly applicable
to the beam element formulations proposed in this thesis, will be presented and compared to
the standard generalized-α method. Afterwards, in Section 3.2, some basics of the FEM as well
as different alternatives for the spatial discretization of the translational and rotational primary
variable fields are presented. Based on these alternatives and the theory presented in Chapter 2,
different beam element formulations will be proposed in Sections 3.3-3.7. There, the resulting
element residual vectors will be derived. Since the linearization of the residuum by using either
analytic techniques or automatic differentiation tools is rather straightforward, not for all consid-
ered element formulations this step is executed in detail. Finally, in Section 3.8, these concepts
and the resulting element formulations will be verified by means of proper numerical test cases.

3.1 Temporal Discretization Methods for Primary Fields
Often, finite difference methods are applied in combination with the finite element method in or-
der to discretize the problem of interest in time. A large variety of such finite difference schemes
is available in the literature. Based on the introduction of a constant time step size ∆t, the con-
sidered total time interval t ∈ [0, T ] is subdivided into equidistant subintervals [tn, tn+1], where
n ∈ N0 is the time step index. Consequently, the solution for the primary variable fields describ-
ing the current configuration C(s, t) :=(r(s, t),Λ(s, t)) is computed at a series of discrete points
in time with associated configurations C(s, tn) :=(r(s, tn),Λ(s, tn))=:(rn(s),Λn(s)).

One possible classification of time integration methods distinguishes between implicit and ex-
plicit schemes. For implicit schemes, the fully discretized problem are typically represented by a
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system of equations that is nonlinear in the unknown discrete primary variables, which requires
the application of a nonlinear solver, i.e. a Newton-Raphson scheme. On the contrary, explicit
schemes allow for a direct extrapolation of the known configuration Cn to the unknown configu-
ration Cn+1. The resulting system of equations is linear in the discrete unknowns such that only
a linear solution step is required, which can often be further simplified by applying for example
lumping techniques (see e.g. [73, 78, 97]. Within this thesis, solely implicit schemes will be
considered. These are favorable for problems that are dominated by a low frequency response,
while explicit schemes are rather suited to model high frequency responses and wave-like phe-
nomena such as high velocity impacts. At least in the geometrically linear regime, implicit time
integrators can be proven to be unconditionally stable, thus typically allowing for considerably
larger time step sizes as compared to explicit schemes. Mechanical systems of slender beams
typically result in a system of stiff differential equations as consequence of an increasingly large
gap between the high-frequency and the low-frequency band with increasing beam slenderness
ratio. Especially for such applications, implicit schemes are preferable. Nevertheless, implicit
methods are arguably more challenging than their explicit counterparts, since typically a con-
sistent linearization of all deformation-dependent quantities is required and the convergence of
the nonlinear solution scheme has to be ensured. Particularly for highly complex configurations,
which might for example occur when the contact interaction of many slender fibers shall be mod-
eled (see Section 4.5.3.4), this is a demanding task. Further details concerning time integration
in the context of nonlinear finite element methods can e.g. be found in [22]. In order to simplify
notation required for subsequent derivations, the weak form G (see e.g. (2.52) or (2.110)) is split
into the contributions Gint of internal forces, Gkin of kinetic forces and Gext of external forces:

G=Gint+Gkin−Gext. (3.1)

Within this thesis, the standard generalized-α method will be applied in combination with the
torsion-free beam element formulation proposed in Section 2.4.2.1, while a recently proposed ex-
tension of this method to Lie group time integration (see Section 3.1.2) will be used for temporal
discretization of the general Reissner and Kirchhoff type beam elements considered herein. This
distinction is made since the former finite element formulation is based on additive increments
of primary variables formulated in a global vector space, which results in a constant and sym-
metric mass matrix. These properties are comparable with well-known nonlinear finite element
formulations for solid mechanics and perfectly suited for the standard generalized-α method. On
the contrary, the latter beam element variants will be formulated on the basis of multiplicative
rotation increments defined on the tangent space of a nonlinear manifold. The resulting mass
matrices are typically deformation-dependent and non-symmetric. Under such circumstances, a
standard generalized-α scheme is not directly applicable and some modifications of the method
are required in order to preserve the consistency of the finite difference scheme (see [8, 40]).

3.1.1 Generalized-α method for vector space time integration
The standard generalized-α method has been proposed by Chung and Hulbert [50] and repre-
sents a generalization of the well-known Newmark time integration scheme [166], the HHT-α
method [96] and the WBZ-α method [232]. The generalized-α method applies a Newmark
scheme in order to express the velocity ṙn+1(s) and acceleration field r̈n+1(s) at the end of a
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interval [tn, tn+1] in terms of known quantities at time tn and the unknown position field rn+1(s):

rn+1 = rn + ∆tṙn + ∆t2[(0.5− β)r̈n + βr̈n+1],

ṙn+1 = ṙn + ∆t[(1− γ)r̈n + γr̈n+1].
(3.2)

Solving this system of equations for the unknown velocities ṙn+1 and accelerations r̈n+1 yields:

ṙn+1 =
γ

β∆t
(rn+1 − rn)− γ − β

β
ṙn −

γ − 2β

2β
∆tr̈n,

r̈n+1 =
1

β∆t2
(rn+1 − rn)− 1

β∆t
ṙn −

1− 2β

2β
r̈n.

(3.3)

Here, β ∈ ]0, 0.5] and γ ∈ [0, 1] are two parameters of the method determining the properties
of the resulting time integration scheme. The basic idea of the generalized-α method lies in the
introduction of generalized midpoints tn+1−αm , tn+1−αf ∈ [tn, tn+1] at which the individual con-
tributions to the weak form are evaluated. The following interpolations are commonly employed:

rn+1−αf = (1− αf )rn+1 + αfrn,

ṙn+1−αf = (1− αf )ṙn+1 + αf ṙn,

r̈n+1−αm = (1− αm)r̈n+1 + αmr̈n,

Gext,n+1−αf = (1− αf )Gext,n+1 + αfGext,n,

Gint,n+1−αf = (1− αf )Gint(rn+1, δr) + αfGint(rn, δr).

(3.4)

Here, the contributions of the external forces to the weak form at time tn and tn+1 are given as:

Gext,n = Gext(rn, δr, f̃n, m̃n, fσ,n,mσ,n),

Gext,n+1 = Gext(rn+1, δr, f̃n+1, m̃n+1, fσ,n+1,mσ,n+1).
(3.5)

Remark: In this work, the contributions of the internal forces are considered by the trape-
zoidal rule. Alternatively, Gint,n+1−αf could also be determined based on a midpoint rule:

Gint,n+1−αf = Gint(rn+1−αf , δr).

Obviously, the two definitions coincide in the context of linear finite element problems.

Adding the weak form contributions of internal, kinetic and external forces yields the counterpart
of equation (3.1), evaluated at the generalized midpoints tn+1−αm and tn+1−αf :

Gint,n+1−αf +Gkin(r̈n+1−αm , δr)−Gext,n+1−αf =̇0. (3.6)

The generalized-α method combines the properties of second-order accuracy, unconditional sta-
bility (within the linear regime), controllable damping of the high-frequency modes and mini-
mized damping of the low-frequency modes. As soon as one of the four parameters β, γ, αm and
αf is prescribed by the user in order to control the desired amount of high-frequency damping
(third property), the remaining three parameters are fixed such that the first, second and fourth of
the properties mentioned above are fulfilled. The degree of high-frequency damping is typically
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prescribed by means of the spectral radius ρ∞, which eventually plays the role of the only free
parameter of the method. Depending on the choice of ρ∞, the system parameters are given by:

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

, β =
(1− αm + αf )

2

4
, γ =

1

2
− αm + αf . (3.7)

The special choice ρ∞= 0 leads to an integration scheme which introduces no numerical dissi-
pation into the system. Furthermore, the choice αm=0, αf =0 represents the Newmark method,
the choice αm = 0, αf 6= 0 leads to the HHT-α scheme and the choice αm 6= 0, αf = 0 yields the
WBZ-α method. Furthermore, it should be emphasized that the succession of spatial and tempo-
ral discretization makes no difference as long as the generalized-α method is combined with a
spatial discretization scheme that depends linearly on nodal (discrete) degrees of freedom. This
is the case for the torsion-free beam element formulation considered here (see also Section 3.7).
For completeness, in Appendix B.1, the perhaps more common variant of applying temporal
discretization to the already spatially discretized problem is shown. The variant presented here
will enable detailed comparisons with the Lie group generalized-α scheme presented in the next
section. There, the succession of spatial and temporal discretization indeed makes a difference.

Finally, a brief outlook shall be given concerning possible extensions of the employed time inte-
gration scheme. The arguably most important properties of a time integration scheme concern the
stability as well as the accuracy of the method. In the geometrically linear regime, the focus often
lies on the accuracy of the method since the requirement of unconditional stability is already sat-
isfied by implicit schemes. However, when applied within the geometrically nonlinear regime of
large displacements and rotations, these implicit schemes typically loose the property of uncon-
ditional stability. A sufficient condition for stability in nonlinear systems is given by the energy
criterion which requires that the total system energy either is conserved or decreased within one
time step, a property which is denoted as energy stability. Basically, three main categories of
algorithms have been proposed in the literature in order to satisfy this energy criterion: meth-
ods which enforce conservation of energy by means of additional constraint equations, methods
which satisfy algorithmic conservation of energy by construction as well as methods which em-
ploy numerical dissipation in order to fulfill the energy criterion (see also [131] for a detailed
classification of these methods). Furthermore, besides accuracy and stability, also conservation
of linear and angular momentum can be considered as desirable properties.

The first category of algorithms was established by Hughes et al. [105], who proposed the Con-
straint Energy Method. These algorithms enforce an additional constraint equation of constant
system energy by means of Lagrange multipliers. However, it has been observed (see [132])
that these methods conserve the system energy perfectly in case an equilibrium solution can be
found, but that these schemes often lead to non-convergent Newton-Raphson iterations which
take place at configurations where algorithms without enforced energy conservation typically
become unstable. A currently very popular category of time integration schemes which ensures
exact conservation of energy, linear momentum as well as angular momentum by their algo-
rithmic design are the so-called energy-momentum methods, which represent the second of the
three categories mentioned above. The basic idea of these methods is to define the relation be-
tween the internal forces evaluated at a generalized midpoint within the interval [tn, tn+1] and
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the configurations at time tn and tn+1 such that the resulting discrete values of energy and mo-
mentum are identical for two subsequent time steps. The first representative of this type, the
energy-momentum method (EMM) proposed by Simo and Tarnow [207] was subsequently ex-
tended by Gonzalez [87] and supplemented by the possibility of including numerical dissipation,
which yields the so-called generalized energy-momentum method (GEMM) [131, 133]. Finally,
the generalized-α method is a representative of the third category. The basic idea of these well-
known methods is to provide controllable high-frequency dissipation by the algorithmic design.
The resulting schemes cannot guarantee for exact conservation of energy, linear and angular
momentum. Also the parameter choice leading to stability in the linear regime does in general
not guarantee for stability in the nonlinear regime. Nevertheless, the generalized-α method still
combines the desirable properties of second-order accuracy and controllable dissipation of the
high-frequency regime at minimal numerical dissipation of the lower modes. This behavior is
not only favorable from a numerical point of view - since especially the high-frequency modes
are affected by discretization errors - but also mimics, at least to some extent, the physical re-
ality of low-frequency dominated mechanical systems. There, high-frequency contributions are
often damped out by various physical sources of dissipation. Finally, the generalized-α method
is simple to implement and very flexible: It can directly be applied to different types of element
formulations, whereas e.g. energy-momentum methods would require specific adaptions. This
holds especially for the beam element formulations presented in this thesis. Thereto, in the next
section an extension of the standard generalized-α method will be presented that allows for time
integration on Lie groups, as needed in the context of geometrically exact beam formulations.
This integration scheme can directly be applied to the different variants of geometrically exact
Simo-Reissner and Kirchhoff-Love beam elements without requiring further adaptions and thus
allows for a straightforward comparison of different formulations. Of course, a future extension
of the proposed beam elements to energy-momentum conserving algorithms is thinkable.

3.1.2 Generalized-α method for Lie group time integration
In this section, a Lie group extension of the standard generalized-α method originally proposed
by [8, 40, 41] will be presented. This method will be applied for time discretization of the gen-
eral Reissner and Kirchhoff type beam element formulations presented in subsequent sections,
whose configuration space C(s, t) = (r(s, t),Λ(s, t)) ∈ <3 × SO(3) is defined by the position
field r(s, t) and the rotation field Λ(s, t). It is emphasized that the following procedure is in-
dependent from the rotation parametrization of Λ(s) employed to these different beam element
formulations. The aim is again to express translational velocities and accelerations ṙn+1(s) and
r̈n+1(s) as well as angular velocities and accelerations Wn+1 and An+1 at the end of a time
interval [tn, tn+1] in terms of known quantities at time tn and the unknown position field rn+1(s)
as well as the unknown rotation field Λn+1(s). Thereto, the vectors θ̃n+1 and Θ̃n+1, representing
the multiplicative rotation increment between the time steps tn and tn+1, are introduced:

exp(S(Θ̃n+1))=ΛT
nΛn+1, Θ̃n+1 =ΛT

n θ̃n+1 =ΛT
n+1θ̃n+1. (3.8)

Besides the distinctions already made for vector space time integrators in the last section (e.g.
implicit or explicit scheme, one-step or multi-step scheme, employed methodology in order to
guarantee stability and/or conservation properties) two further classifications can be made for
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time integration schemes applied to rotational variables: First, depending on the type of spatial
rotation interpolation employed for example in the context of geometrically exact beam finite
elements, the succession of spatial and temporal discretization will in most cases influence the
resulting discrete solution. Secondly, it can be distinguished between approaches that apply a
time integration scheme directly to the vectors (Θ̃,W,A) and approaches that express angu-
lar velocities and accelerations by means of (additive) rates of the primary variables and apply
a time integration scheme to these additive rates, e.g. to the vectors (ψ, ψ̇, ψ̈) in the case of
a rotation vector parametrization (see also (2.67)). This distinction has already been indicated
by equation (2.69) for the Reissner case and by equation (2.103) for the Kirchhoff case. Since,
for example, the vectors ψ̇ and ψ̈ simply represent additive changes of a vector ψ and all of
these vectors are defined in the same global vector space, any standard vector space time in-
tegration scheme such as the well-known generalized-α method presented in the last section
can be employed if such additive rates are considered. On the contrary, Θ̃,W and A are ax-
ial vectors associated with elements of the Lie algebra so(3), which forms the tangent space of
the Lie group SO(3). Consequently, time integration schemes that are directly applied to the
quantities (Θ̃,W,A) are commonly denoted as Lie group time integration schemes. In this con-
text, it can be further distinguished between Lie group schemes that are based on the material
vectors (Θ̃,W,A) and schemes that are based on their spatial counterparts (θ̃,w, a). How-
ever, following the results derived in [210], only the former variant will be applied within this
thesis. Arguably, one of the first Lie group time integration schemes, at least in the context of
geometrically exact beam formulations, has been proposed by Simo and Vu-Quoc [209] and rep-
resents the Lie group extension of the classical Newmark scheme. On the contrary, the scheme
of [8, 40, 41], which will be presented in the following, is the Lie group extension of the standard
generalized-α method. Similar to the last section, this scheme is based on the four parameters
β, γ, αm and αf and simplifies to the variant of Simo and Vu-Quoc [209] for the special choice
αm=αf =0. A distinctive feature of the Lie group generalized-α scheme lies in the fact that all
terms of the weak form are evaluated at the end point tn+1 of the considered time interval:

Gn+1 =G(rn+1, ṙn+1, r̈n+1,Λn+1,Wn+1,An+1, f̃n+1, m̃n+1, fσ,n+1,mσ,n+1)=̇0. (3.9)

The update formulas for translational quantities are given by a standard Newmark scheme

ũn+1 := rn+1 − rn,

ũn+1 = ∆tṙn + +∆t2[(0.5− β)r̈mod,n + βr̈mod,n+1],

ṙn+1 = ṙn + ∆t[(1− γ)r̈mod,n + γr̈mod,n+1],

(3.10)

which is slightly changed in form of a multiplicative configuration update for the rotations:

exp(S(Θ̃n+1)) = ΛT
nΛn+1,

Θ̃n+1 = ∆tWn + +∆t2[(0.5− β)Amod,n + βAmod,n+1],

Wn+1 = Wn + ∆t[(1− γ)Amod,n + γAmod,n+1].

(3.11)

The only difference between (3.10) and (3.2) lies in the definition of modified acceleration vec-
tors r̈mod, which are related to the real / physical acceleration vectors r̈ according to:

(1− αm)r̈mod,n+1 + αmr̈mod,n = (1− αf )r̈n+1 + αf r̈n with r̈mod,0 = r̈0. (3.12)
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In a similar manner, the modified as well as the real/physical angular accelerations are related:

(1− αm)Amod,n+1 + αmAmod,n = (1− αf )An+1 + αfAn with Amod,0 =A0. (3.13)

For later use, it is favorable to express ṙn+1 and r̈n+1 in terms of the primary unknown rn+1:

ṙn+1 =
γ

β∆t
ũn+1 +

(
1− γ

β

)
ṙn + ∆t

(
1− γ

2β

)
r̈mod,n,

r̈n+1 =
1− αm

β∆t2(1− αf )
ũn+1 −

1− αm
β∆t(1− αf )

ṙn

+

[
−(1− αm)(0.5− β)

β(1− αf )
+

αm
1− αf

]
r̈mod,n −

αf
1− αf

r̈n.

(3.14)

A similar relation can be formulated for the angular velocities Wn+1 and accelerations An+1:

Wn+1 =
γ

β∆t
Θ̃n+1 +

(
1− γ

β

)
Wn + ∆t

(
1− γ

2β

)
Amod,n,

An+1 =
1− αm

β∆t2(1− αf )
Θ̃n+1 −

1− αm
β∆t(1− αf )

Wn

+

[
−(1− αm)(0.5− β)

β(1− αf )
+

αm
1− αf

]
Amod,n −

αf
1− αf

An.

(3.15)

In [40] and [41], it has been proven that the integration scheme given by equations (3.9)-(3.15)
yields the same favorable properties as the standard generalized-α method, which are second-
order accuracy, unconditional stability (within the linear regime), controllable damping of the
high-frequency modes and minimized damping of the low-frequency modes. Remarkably, the
parameter choice leading to this optimal behavior is identical to (3.7). Furthermore, it is shown
that this scheme can consistently treat non-constant mass matrix contributions, such as the term
ΛCρA occurring in geometrically exact Reissner and Kirchhoff type beam formulations, as well
as the presence of equality constraints (which might occur for Kirchhoff type element formula-
tions where inextensibility is enforced by Lagrange multipliers). An extension of this scheme to
inequality constraints (e.g. contact constraints which are enforced via Lagrange multipliers) is
given in [48]. Similar to the last section, it has to be stated that also the extended generalized-α
scheme cannot guarantee for exact conservation of energy, linear and angular momentum. Also
in the field of Lie group time integration schemes, a large variety of methods aiming to guarantee
these conservation properties has been proposed [17, 26, 35, 62, 86, 109, 119, 144, 189, 210].
However, the perhaps most essential advantage of the extended generalized-α scheme as com-
pared to these alternatives lies again in its simplicity and flexibility. Independent of the beam
theory (Reissner or Kirchhoff type), the employed spatial interpolation schemes as well as the
chosen set of nodal primary variables (e.g. in terms of rotation parametrization), this time inte-
gration scheme can directly be applied without the need for any further adaptions.

3.2 Spatial Discretization Methods for Primary Fields
Spatial discretization is exclusively considered in the context of finite element methods within
this thesis. It represents the core topic in the development of geometrically exact Kirchhoff beam
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elements considered in this work. In the following Section 3.2.1, some basic concepts of the fi-
nite element method, already particularized to the 1D case of geometrically exact beams, are
presented. However, this section solely intends to provide the most essential tools and concepts
required for subsequent derivations. For a detailed introduction to the finite element method,
the reader is referred to the literature, e.g. by Bathe [13], Belytschko et al. [22], Hughes [103],
Reddy [182], Strang and Fix [216], Zienkiewicz and Taylor [242] and Zienkiewicz et al. [243].
Subsequently, in Sections 3.2.2 and 3.2.3, specific finite element interpolations employed to the
translational and rotational primary variable fields considered in this thesis will be proposed.
Finally, in Section 3.2.4, the most important requirements on the employed spatial discretiza-
tions and the resulting finite element formulations will be stated. In the subsequent sections, the
fulfillment of these criteria will be verified for the finite element realizations presented there.

3.2.1 Basic concept of the finite element method
The starting point of the finite element discretization is given by the weak form of the balance
equations (e.g. (2.52) for the Simo-Reissner beam theory, (2.110) for the general Kirchhoff-Love
beam theory, (2.134) for the reduced isotropic beam theory or (2.139) for the reduced torsion-
free beam theory) based on properly defined solution and weighting spaces U and V:

U :=
{
r ∈Wmr,2(Ωl), Λ(q) ∈WmΛ,2(Ωl)|(r,Λ(q))(s, t) = (ru,Λ(qu)) on Γu

}
,

V :=
{
δr ∈Wmr,2(Ωl), δq ∈WmΛ,2(Ωl)|(δr, δq)(s) = 0 on Γu

}
.

(3.16)

Here, the notations q(s, t) and δq(s) have been employed as generalizations of the rotational
primary variable field and its variation, which differ for the different beam theories considered
in Chapter 2. Furthermore, Wm,2(Ωl) represents the Sobolev space of functions with square
integrable derivatives of order i for i = 0, ...,m. Here and in the following, mr and mΛ de-
note the highest (arc-length) derivatives of the translational and rotational primary variable field
occurring in the weak form, and consequently also in the associated hyper-elastic energy func-
tion. Throughout this thesis, the values mΛ = mr = 1 for Reissner type beam formulations
and mΛ = 1,mr = 2 for Kirchhoff type beam formulations with corresponding Sobolev spaces
W1,2(Ωl) as well as W2,2(Ωl) will be relevant. Now, the different weak forms derived in Chap-
ter 2 can be summarized by the following general problem statement:

Find (r,Λ(q)) ∈ U such that G(r,Λ(q), δr, δq) = 0 ∀ (δr, δq) ∈ V. (3.17)

The basic concept of the finite element method relies on the Galerkin approach of approximating
the analytic, space-continuous solution (r,Λ(q)) by means of a discrete solution (rh,Λh(qh))
represented by a weighted sum of shape functions out of a proper (square-integrable) func-
tion space Wm,2(Ωl). The finite element method particularizes the Galerkin approach to shape
functions with local (element-wise) support, which offers several advantages with respect to
the subsequent numerical solution process. Thus, the finite element discretization process sim-
ply represents a confinement of the trial and weighting space to finite-dimensional subspaces
Uh⊂U and Vh⊂V, yielding the following discrete equivalent to the weak form (3.17):

Find (rh,Λh(qh)) ∈ Uh such that G(rh,Λh(qh), δrh, δqh) = 0 ∀ (δrh, δqh) ∈ Vh. (3.18)
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Figuratively, in the FEM discretization process, the 1D beam domain described by the arc-length
coordinate s ∈ [0, l] = Ωl is subdivided into nele finite elements confined by nele+1 element
boundary nodes with coordinates si and si+1 for i=1, ..., nele. The centerline curve r(e)(s, t) on
element e is approximated by local interpolation functions N (e)i

r (s) according to

r(e)(s, t) ≈ r
(e)
h (s, t) =

nr∑
i=1

N (e)i
r (s)d̂i(t), r

(e)
0 (s) ≈ r

(e)
0h (s) =

nr∑
i=1

N (e)i
r (s)d̂i0, (3.19)

where the nodal vectors d̂i, d̂i0 ∈ <3 represent e.g. nodal positions in case of Lagrange shape
functions N (e)i

r (s)=L(e)i(s) or nodal positions and tangents in case of Hermite shape functions
N

(e)i
r (s)=H(e)i(s) and nr denotes the number of nodes of one finite element (e) associated with

the centerline interpolation (3.19). Here and in the following, the hat (̂.) refers to nodal primary
variables. Moreover, throughout this thesis, the index (.)h refers to the discrete representation
of a quantity and the superscript (.)(e) to a specific finite element. For simplicity, these indices
will often be omitted in the following if there is no danger of confusion. In (3.19), the initial
and current centerline interpolation, and consequently also the interpolation of the displacement
field uh(s, t) := rh(s, t) − r0h(s), are based on the same shape functions, an approach denoted
as isoparametric concept. Typically, the arc-length space s ∈ [s(e),1, s(e),2] underlying one finite
element is mapped onto an elementwise parameter space ξ ∈ [−1; 1]. The element Jacobian
J(ξ) := ||r0h,ξ(ξ)|| is defined by the interpolation of the initial beam centerline curve and de-
scribes the mapping between infinitesimal increments in the parameter space and the arc-length
space according to ds = J(ξ)dξ. Throughout this thesis, (.),ξ = d

dξ
(.) represents the derivative

with respect to the parameter coordinate ξ. The interpolation of the beam centerline variation
δr(s) considered in this thesis is based on the Bubnov-Galerkin approach of applying identical
shape functions as trial and test functions, yielding the following parameter-based descriptions:

r
(e)
h (ξ, t)=

nr∑
i=1

N i
r(ξ)d̂

i(t), r
(e)
0h (ξ)=

nr∑
i=1

N i
r(ξ)d̂

i
0, δr

(e)
h (ξ)=

nr∑
i=1

N i
r(ξ)δd̂

i. (3.20)

As a consequence of the parameter space representation, the shape functionsN i
r(ξ) do not longer

depend on the considered finite element (e) as it was the case for N (e)i
r (s). In contrary to (3.20),

a Petrov-Galerkin approach would allow for different trial and test functions. Next, similarly
to (3.20), also the rotational field q(s, t) and it variation δq(s) have to be approximated:

q
(e)
h (ξ, t)=nl(q̂1(t), ..., q̂nΛ(t), ξ), q

(e)
0h (ξ)=nl(q̂1

0, ..., q̂
nΛ
0 , ξ),

δq
(e)
h (ξ, t)=

nΛ∑
i=1

Ni
q(ξ, t)δq̂

i with Ni
q(ξ, t)=nl(q̂1(t), ..., q̂nΛ(t), ξ).

(3.21)

Throughout this thesis, the operator nl(.) represents a function that depends on its arguments in
a nonlinear manner. In (3.21), the vectors q̂i, q̂i0 and δq̂i represent the nodal values of the fields
qh(s, t),q0h(s) and δqh(s, t) and nΛ denotes the number of nodes of one finite element (e) as-
sociated with the rotation interpolation (3.21). According to (3.21), the interpolation schemes
applied to the rotation fields will in general depend on the associated nodal values in a nonlinear
manner. Furthermore, the weighting functions δq(e)

h (ξ, t) are linear functions with respect to the
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associated nodal variations. However, the employed generalized shape functions Ni
q(ξ, t) con-

sidered in this thesis will in general depend on the current deformation state, expressed by the
nodal rotational degrees of freedom q̂i. Furthermore, for the rotation field, also Petrov-Galerkin
approaches, i.e. δ[qh] 6=δqh, will be considered. In Figure 3.1, the employed element-local node
numbering is visualized. Figure 3.1(a) represents the special case nr =nΛ. Within this thesis, a
discretization with nr = 2 and nΛ = 3 as illustrated in Figure 3.1(b) will typically be applied to
Kirchhoff type element formulations. Due to this numbering, the boundary nodes of the transla-
tional as well as the rotational interpolation scheme are addressed by the indices i=1, 2.

(a) Arbitrary node numbering with nr =nΛ. (b) Node numbering applied to Kirchhoff elements.

Figure 3.1: Element-local node numbering of translational and rotational primary fields.

Throughout this thesis, the discrete nodal vectors x̂(e)
:= (d̂1T , ..., d̂nrT , q̂1T , ..., q̂nΛT )T as well

as δx̂(e)
:= (δd̂1T , ..., δd̂nrT , δq̂1T , ..., δq̂nΛT )T collect all nodal primary variables and variations

associated with one finite element. In a similar manner, the global vectors X and δX collecting the
nodal primary variables of all finite elements as well as their variations can be defined. In order
to simplify the notation for subsequent derivations, and since there is no danger of confusion,
the (̂.) marking nodal primary variables, are omitted for assembled, global vectors such as X. By
making use of these abbreviations and inserting the discretizations (3.20) and (3.21) into one of
the considered weak forms, the element residual vectors r (which should not be confused with
the symbol r representing the beam centerline) and the global residual vector R can be identified:

G≈Gh=

nele∑
e=1

δx̂(e)T

s(e),2∫
s(e),1

[.] ds=:

nele∑
e=1

δx̂(e)Tr(e) =:δXTR=̇0 with r(e) :=

s(e),2∫
s(e),1

[.] ds. (3.22)

Since the nodal variations occurring in δX are arbitrary, the discretized weak form (3.22) requires
the global residual vector to vanish, i.e. R =̇ 0. Furthermore, the global vectors and the element-
wise counterparts employed in (3.22) are related by a proper assembly operator:

R =

nele

A
e=1

r(e), X =

nele

A
e=1

x̂(e)
, δX =

nele

A
e=1

δx̂(e)
. (3.23)

Similar to the splitting of the weak form according to (3.1), also the residual vectors can be
split into contributions (.)int stemming form internal elastic forces, contributions (.)ext from
external forces as well as contributions (.)kin from kinetic forces. In case a generalized-α time
integration scheme according to Section 3.1.2 is applied for temporal discretization, all of these
three contributions are evaluated at the current time step tn+1, which eventually yields:

R(Xn+1) = Rint(Xn+1) + Rkin(Xn+1)− Rext(Xn+1)=̇0. (3.24)
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The dependencies of the translational acceleration r̈ as well as of the angular velocity W and
acceleration A appearing in Rkin(Xn+1) on the nodal primary variables Xn+1 is given by (3.14)
and (3.15) together with the interpolation formulas (3.20) and (3.21). In order to solve the set of
nonlinear algebraic equations (3.24) for the unknown primary variables Xn+1, an iterative solu-
tion scheme is required. This question will be treated in the next sections.

Finally, a few comments concerning convergence of the finite element method shall be made.
It is assumed that the space-time continuous problem setting defined by the weak form (3.17)
exhibits a unique solution. For spatial convergence, basically the two requirements of consis-
tency and stability have to be fulfilled by the employed FEM interpolation scheme. Consistency
means that the applied trial functions of order p are expected to be complete, i.e. that they can
exactly represent polynomials of order p, and that they fulfill proper continuity requirements at
the element boundaries such that the highest (arc-length) derivative m occurring in the weak
form still remains square-integrable and consequently that the associated energy functional re-
mains bounded. The latter requirement is addressed by choosing the shape functions from proper
Sobolev spaces Wm,2(Ωl) (see also (3.16)) and is typically fulfilled by Cm−1-continuous shape
functions. Stability requires that the resulting discrete problem setting must satisfy certain well-
posedness conditions which for example preclude the occurrence of non-physical zero-energy
modes. In the context of geometrically exact beam element formulations this requirement also
demands the function spaces employed for interpolation of the translational and rotational pri-
mary variable fields r and Λ(q) to be properly harmonised in order to avoid undesirable locking
effects. For the beam element formulations considered within this work, these requirements as
well as the expected convergence rates will be further specified in Section 3.2.4 and (at least
heuristically) verified for the individual element types in Sections 3.3-3.5. For thorough math-
ematical derivations and proofs, the interested reader is exemplarily referred to the references
mentioned above and to the textbooks of Brezzi and Fortin [39] as well as Reddy [181].

3.2.1.1 Linearization of residual vector

For the subsequently presented solution process by means of a Newton-Raphson scheme, the set
of nonlinear algebraic equations (3.24) has to be linearized. Based on a truncated Taylor series
expansion, the linearized variant of the residual equations given by equation (3.24) yields:

L (R)
∣∣
Xn+1

:=R(Xn+1)+K(Xn+1)∆Xn+1=̇0, K(Xn+1) :=
dR(Xn+1)

dXn+1

. (3.25)

The Jacobian K of R is commonly denoted as effective dynamic tangent stiffness matrix. Simi-
larly to the residual, also the tangent stiffness matrix can be subdivided into element-wise, inde-
pendently calculable element stiffness matrices k defined by the linearized variant of (3.22):

L (Gh) :=

nele∑
e=1

δx̂(e)T
L(r(e))=:

nele∑
e=1

δx̂(e)T
(r(e)+k(e)∆x̂(e)

)=̇δXT(R+K∆X). (3.26)

Again, the global and element-wise matrices in (3.26) are related by a proper assembly operator:

K =

nele

A
e=1

k(e), with k(x̂n+1) :=
dr(xn+1)

dx̂n+1

. (3.27)
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Similar to the residual, also the element stiffness matrix can be split into three contributions:

k=kint+kkin−kext :=
∂rint(x̂n+1)

∂x̂n+1

+
∂rkin(x̂n+1)

∂x̂n+1

− ∂rext(x̂n+1)

∂x̂n+1

. (3.28)

The first term represents the tangential stiffness matrix associated with the internal forces. As
stated in [204] and elaborated earlier in [4, 5, 241], the loading by ”moments with fixed axes”,
viz. m̃(s) 6= 0 and mσ 6= 0 in the weak forms of the Reissner and Kirchhoff type beam formu-
lations considered in Section 2, leads to non-conservative problems and consequently to non-
symmetric (space-continuous) tangent operators. Furthermore, in [204], it has been shown that
as consequence of the configuration space C ∈ <3×SO(3) represented by a nonlinear mani-
fold, the tangent operator of geometrically exact beams (based on multiplicative rotation incre-
ments) is still non-symmetric for non-equilibrium configurations but symmetric for equilibrium
configurations, as long as no external moments are considered. This property characterizes the
space-continuous problem and is consequently also inherited by the finite element representation
even if it is based on a Bubnov-Galerkin approach. The third term in (3.28) represents the stiff-
ness contribution from external forces. In general, these contributions stem from deformation-
dependent forces, e.g. follower loads, or deformation-dependent weighting functions. The latter
case applies to geometrically exact beam formulations with strong enforcement of the Kirchhoff
constraint in form of the constrained spin vector field δθ(s) (if external moments are considered)
and to the Bubnov-Galerkin (rotation interpolation) variants of the Reissner and Kirchhoff type
beam element formulations presented in this thesis. As already stated earlier, the finite element
formulation resulting from the torsion-free beam theory presented in Section 2.4.2 yields a van-
ishing contribution kext = 0 and a tangent stiffness matrix kint = kTint, which is symmetric even
for non-equilibrium configurations as long as no external moment loads are employed. Finally,
the second part in (3.28) represents the contribution to the effective dynamic stiffness matrix
resulting from inertia forces. If the Lie-group scheme of Section 3.1.2 is employed, the stiffness
contribution resulting from inertia forces has the following structure:

kkin :=
1−αm

β∆t2(1−αf )
∂rkin(x̂n+1)

∂r̈n+1

∂rn+1

∂x̂n+1

+
1−αm

β∆t2(1−αf )
∂rkin(x̂n+1)

∂An+1

∂Θ̃n+1

∂x̂n+1

+
γ

β∆t

∂rkin(x̂n+1)

∂Wn+1

∂Θ̃n+1

∂x̂n+1

+
∂rkin(x̂n+1)

∂x̂n+1

.

(3.29)

While the first contribution, which stems from the translational primary variable field, represents
a constant and symmetric contribution to the dynamic effective tangent stiffness matrix, the rota-
tional contributions in the second line are in general deformation-dependent and non-symmetric.
Again, for the torsion-free beam element formulation presented in Section 3.7, only the first term
in (3.29) is required, thus yielding a standard constant and symmetric overall mass matrix.

3.2.1.2 Solution schemes for nonlinear systems of equations

In every time step tn+1, the set of nonlinear equations (3.24) has to be solved for the nodal un-
knowns Xn+1. For this purpose, the Newton-Raphson method, based on a repeated linearization
of the residual (3.24), solution of the resulting set of linear algebraic equations and a subsequent
incremental update of the nodal unknowns, is employed within this thesis. Within each iteration
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k of the Newton-Raphson scheme, the linearized system (3.25) has to be evaluated for the current
displacement state Xk

n+1 and afterwards solved for the unknown increment ∆Xk+1
n+1:

K(Xk
n+1)∆Xk+1

n+1 = −R(Xk
n+1). (3.30)

If (3.25) has been formulated solely in terms of additive increments for all translational and
rotation primary variables, the update procedure at the end of each iteration is given by

Xk+1
n+1 = Xk

n+1 + ∆Xk+1
n+1. (3.31)

In case of a rotation vector-based triad parametrization, the linearization (3.25) can be formulated
such that the increments ∆q̂ of the rotation vectors represent either additive or multiplicative
changes of the triad orientation. In the former case, (3.31) can directly be applied. In the latter
case, translational and rotational unknowns have to be treated separately according to:

d̂ir,k+1
n+1 = d̂ir,kn+1 + ∆d̂ir,k+1

n+1 with ir=1, ..., nr,tot,

ΛiΛ,k+1
n+1 = exp (S[∆q̂iΛ,k+1

n+1 ])ΛiΛ,k
n+1 with iΛ =1, ..., nΛ,tot.

(3.32)

Here, nr,tot and nΛ,tot represent the total number of nodes associated with the centerline interpola-
tion and with the rotation interpolation, respectively. The steps (3.30) together with either (3.31)
or (3.32) are repeated until a certain user-defined convergence criterion is fulfilled. Within this
thesis, the Euclidean norms of the displacement increment vector ∆Xk+1

n+1 and of the residual
vector R(Xk+1

n+1) are checked. For convergence, these norms have to fall below prescribed tol-
erances δR and δX, i.e. ||R(Xk+1

n+1)|| < δR and ||∆Xk+1
n+1|| < δX. The perhaps most important

advantage of the Newton-Raphson method as compared to alternative methods without tangent
information, e.g. fixed-point iterations, lies in the quadratic convergence order of the iterative
scheme (3.30)-(3.32), provided the initial estimate X0

n+1 lies within the convergence radius, i.e.
it is sufficiently close to the (unknown) final solution Xn+1. The simplest possible choice for the
initial estimate is given by the solution of the previous time step, i.e. X0

n+1 =Xn. In all examples
considered in this thesis, this simple ”constant predictor” is employed. In dynamic examples,
the initial estimates for translational and rotational velocities and accelerations are consistently
derived from this choice based on the employed time integration scheme. Furthermore, within
this thesis, solely exact Newton-Raphson methods based on a consistently determined tangent
stiffness matrix as defined in (3.25) will be employed. An alternative is for example given by
approximating the consistent tangent stiffness matrix with the initial tangent stiffness matrix of
the first iteration. Such a procedure saves computation time in the iterative evaluation of (3.30),
since K(Xn+1), the computationally most expensive part, only has to be calculated once in the
beginning. On the other hand, the property of quadratic convergence does not hold for such a
scheme anymore, which typically yields an increased number of iterations. Apart from these ap-
proximate schemes, there exists a large variety of extensions of the classical Newton-Raphson
method aiming at an enhanced convergence radius and consequently at an increased overall
efficiency and robustness. Well-known representatives are modified Newton methods such as
line-search schemes (see e.g. [53, 85, 143]), which employ a scaled increment vector in the
update formula (3.31), quasi-Newton methods such as pseudo-transient continuation schemes
(see e.g. [45, 80, 124]), which employ modifications of the tangent stiffness matrix or Newton
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schemes with step-size control based on algebraic constraint equations such as arc-length tech-
niques (see e.g. [52, 54, 180]), which are typically applied to mechanically unstable systems.
While for all examples of this chapter a classical Newton-Raphson scheme is employed, in the
context of beam-to-beam contact as considered in Chapter 4, a modified Newton scheme with
adapted update step (3.31) is proposed in order to guarantee for robust and reliable contact de-
tection. For further details on nonlinear solution schemes, the reader is referred to the books of
Ortega and Rheinboldt [170], Kelley [123], Nocedal and Wright [167] as well as Deuflhard [63].

3.2.1.3 Adaption of load step size

For conservative (quasi-)static problems, the final FEM solution (as well as the solution of the
space-continuous problem) is independent from the loading path. Thus, in principle, it would be
possible to apply the external loads ”at once”, i.e. within one load step. However, in order to
ensure convergence of the Newton-Raphson scheme even for load cases inducing complex and
highly nonlinear deformation states, the external load is typically applied ”bit by bit” in form of
an incremental procedure. For example, the external force fσ,n at load step tn is given by

fσ,n=λnfσ with λn=
n∆t

T
and n∈{1, ..., N}, N=

T

∆t
, (3.33)

in the simplest case (as considered here) that the load factor λn ∈ [0; 1] is increased linearly in
time. In (3.33), fσ represents the final load for which an equilibrium configuration is searched,
N denotes the number of load steps, ∆t the load step size and T the pseudo-time represent-
ing the final state, which can typically be chosen as T = 1 in static simulations. In such an
incremental procedure, the final solution of the last load step is chosen as initial guess for the
Newton iteration of the current load step, i.e. X0

n+1 = Xn. Consequently, the step size ∆t has
to be chosen small enough such that the initial guess lies within the convergence radius of the
Newton-Raphson scheme. In highly nonlinear structural problems, such as the considered cat-
egory of beam problems, the constant step size ∆t is typically limited by only a few critical
configurations occurring at certain load steps, while most of the remaining load steps would al-
low for a considerably increased step size. Consequently, an important gain in efficiency could
be achieved by allowing for variable step sizes ∆t during a simulation. For the static examples
considered throughout this thesis, such a variable step sizes is achieved by the following simple
procedure: Initially, a comparatively large step size ∆t0 = 1/N0 (with T = 1) is chosen. If the
Newton-Raphson scheme has not converged within a prescribed number of niter,max iterations,
the step size is halved and the load step is repeated. This procedure is repeated until convergence
can be achieved. Then, after four converging load steps on the low step size level, the step size is
doubled again. Also this procedure of successively doubling the step size after four converging
load steps at the current step size level is repeated until the original step size ∆t0 is reached again.

This procedure will not only drastically increase the overall computational efficiency, it also
allows for comparatively objective and fair comparisons of the performance of the Newton-
Raphson scheme for different element formulations. In subsequent numerical examples, such
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comparisons will be made on the basis of the accumulated number of Newton iterations

niter,tot :=
N∑
n=1

niter,n, (3.34)

required to solve the entire mechanical problem. Here, niter,n is the number of iterations re-
quired for the step tn. In the context of the ”load step adaption scheme” mentioned above, non-
converging steps are considered in the total number of iterations with niter,n=niter,max.

3.2.1.4 Solution schemes for systems of linear equations

As already stated above, in every Newton step i, a linear system of equations (3.30) needs to be
solved. Equation (3.30) can be recast in the more general, and also more customary, form

AX = B, (3.35)

with the so-called system matrix A, the right-hand side vector B and the sought-after solution
vector X. Especially for large discrete system sizes, the linear solution process typically domi-
nates the overall computational effort involved within one Newton step. In such cases, an effi-
cient and robust linear solver is of highest importance. Even though the topic of linear solution
schemes does not lie in the focus of this thesis, at least a few comments on this subject shall be
given here for the following two reasons: On the one hand, the properties of the system matrix
A are drastically influenced by the characteristics of the underlying physical problem, e.g. by
the slenderness ratio of the considered beams. On the other hand, these properties of the system
matrix typically have considerable influence on the performance of the employed linear solver.
However, for details, the reader is exemplarily referred to the book of Quarteroni et al. [178].

In principle, linear solvers can be classified as direct and iterative schemes. Commonly, direct
solvers lead to simpler algorithms and their performance is less sensitive with respect to the
specific properties of the system matrix. Unfortunately, direct linear solvers, e.g. based on a LU-
decomposition of the system matrix A, typically become inefficient and too memory consuming
for very large system sizes. The working principle of iterative linear solvers, such as the conju-
gate gradient method (CG, see e.g. [95]) or the generalized minimal residual method (GMRES,
see e.g. [193]) relies on an iterative solution process applied to (3.35). The performance of it-
erative linear solvers is strongly influenced by the condition number of the system matrix A,
which can be approximated by the ratio of the largest and smallest eigenvalues of A. Thereto,
often a preconditioning step, i.e. an equivalence transformation of (3.35) based on proper scaling
operators, is required in order to increase the efficiency or to enable the applicability of iterative
solvers at all. Examples for commonly employed preconditioning schemes are Jacobi and Gauss-
Seidel methods, incomplete factorization schemes (ILU) as well as algebraic multigrid methods
(AMG). As indicated in Section 3.3.4, very high beam slenderness ratios will in general lead to
system matrices with very high condition numbers. While moderate and high condition num-
bers might ”only” require moderate extra effort in terms of a proper preconditioning scheme,
very high beam slenderness ratios of ζ ≈ 10000 and above, as considered in this thesis and
also prevalent in practical applications, eventually show the limits of such a procedure: In the
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range of very high condition numbers, at some point, the round-off errors resulting from ill-
conditioning might reach the limit of available computational accuracy (see e.g. Section 3.8.2).
In such extreme cases, neither direct solvers nor properly preconditioned iterative solvers might
be applicable at all or at least they would deliver results that are strongly affected by round-off
errors. Consequently, in such scenarios, but also in general, it seems to be reasonable to directly
address the mechanical model and to abstain for example from (physically less important) highly
stiff deformation modes. Among others, this goal is addressed within this thesis by advancing
the geometrically exact beam theory from Reissner type to Kirchhoff type element formulations.

3.2.2 Discretization of beam centerline
Next, the spatial discretization of the beam centerline curve r(s), generically given in (3.20),
will be conducted. In the following two sections, an interpolation scheme based on Lagrange
polynomials as well as an interpolation based on Hermite polynomials will be presented.

3.2.2.1 Discretization of beam centerline based on Lagrange polynomials

The highest derivative of the primary variable r(s) occurring in the weak form (2.52) of the
Simo-Reissner beam theory is the first derivative r′(s) of the centerline curve. Consequently,
a C0-continuous interpolation of the beam centerline r(s) is sufficient in this case. Thus, for
these formulations, the standard choice of trial functions for the interpolation of the initial and
deformed centerline curve is based on Lagrange polynomials of order nr−1 according to:

rh(ξ) =
nr∑
i=1

Li(ξ)d̂i =: Ld̂ and r0h(ξ) =
nr∑
i=1

Li(ξ)d̂i0 =: Ld̂0. (3.36)

In (3.36), the vectors d̂i, d̂i0 ∈ <3 represent the current and initial nodal positions, whereas Li(ξ)
are standard Lagrange polynomials satisfying the interpolation property Li(ξj) = δij at the el-
ement node coordinates ξj as well as proper completeness conditions. Here, δij represents the
Kronecker delta symbol. The matrix L and the vector d̂ represent proper element-wise assem-
blies of the shape functions Li and the position vectors d̂i for i= 1, ..., nr, which are given by
L :=(L1(ξ)I3, ..., L

nr(ξ)I3) as well as d̂ :=(d̂1T , ..., d̂nrT )T . The element Jacobian yields:

ds= ||r0h,ξ(ξ)||dξ=:J(ξ)dξ with r0h,ξ(ξ)=
nr∑
i=1

Li,ξ(ξ)d̂
i
0. (3.37)

Following a Bubnov-Galerkin approach, the interpolation of the trial functions δr(s) reads:

δrh(ξ) =
nr∑
i=1

Li(ξ)δd̂i =: Lδd̂. (3.38)

In the next section, an alternative interpolation based on Hermite polynomials will be presented.
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3.2.2.2 Discretization of beam centerline based on Hermite polynomials

The highest derivative of the primary variable r(s) occurring in the weak form (2.110) of the
Kirchhoff-Love beam theory with strong constraint enforcement is the second derivative r′′(s)
of the centerline curve. Consequently, for the interpolation of the centerline r(s) shape functions
are required that fulfill C1-continuity at the element boundaries. Besides this requirement, a C1-
continuous centerline representation will be very beneficial for the numerical treatment of beam-
to-beam contact interaction (see Chapter 4). In order to guarantee for C1-continuity, Hermite
shape functions are employed as trial functions for the interpolation of the centerline curve:

rh(ξ)=
2∑
i=1

H i
d(ξ)d̂

i+
c

2

2∑
i=1

H i
t(ξ)t̂

i=:Hd̂, r0h(ξ)=
2∑
i=1

H i
d(ξ)d̂

i
0+

c

2

2∑
i=1

H i
t(ξ)t̂

i
0 =:Hd̂0. (3.39)

In (3.39), the vectors d̂i, d̂i0 ∈ <3 and t̂i, t̂i0 ∈ <3 represent nodal position and nodal tangent
vectors at the two boundary nodes of the resulting finite elements. Again, the matrix H and
the vector d̂ represent proper element-wise assemblies of the shape functions H i

t and H i
d as

well as the nodal position and tangent vectors d̂i and t̂i for i = 1, 2. The explicit expressions
are H := (H1

d(ξ)I3, 0.5cH
1
t (ξ)I3, H

2
d(ξ)I3, 0.5cH

2
t (ξ)I3) as well as d̂ := (d̂1T , t̂1T , d̂2T , t̂2T )T .

Furthermore, c > 0 is a constant of the dimension length, which will be specified later. Finally,
the Hermite shape functions employed in (3.39) obey the following polynomial representation:

H1
d(ξ)=

1

4
(2+ξ)(1−ξ)2, H2

d(ξ)=
1

4
(2−ξ)(1+ξ)2,

H1
t (ξ)=

1

4
(1+ξ)(1−ξ)2, H2

t (ξ)=−1

4
(1−ξ)(1+ξ)2.

(3.40)

It is straightforward to verify that these shape functions satisfy the interpolation properties

H i
d(ξ

j) = δij, H i
d,ξ(ξ

j) = 0, H i
t(ξ

j) = 0, H i
t,ξ(ξ

j) = δij for i, j = 1, 2. (3.41)

Moreover, the shape functions introduced in (3.40) fulfill the following completeness conditions

2∑
i=1

H i
d(ξ)=1,

2∑
i=1

(
ξiH i

d(ξ)+H i
t(ξ)

)
=ξ,

2∑
i=1

(
ξi2H i

d(ξ)+2ξiH i
t(ξ)

)
=ξ2,

2∑
i=1

(
ξi3H i

d(ξ)+3ξi2H i
t(ξ)

)
=ξ3,

(3.42)

and can consequently represent any polynomial of order three. For space curves, the Jacobian
J(ξ), which maps between infinitesimal arc-length and parameter coordinate increments, reads:

ds= ||r0h,ξ(ξ)||dξ=:J(ξ)dξ with r0h,ξ(ξ)=
2∑
i=1

H i
d,ξ(ξ)d̂

i
0+

c

2

2∑
i=1

H i
t,ξ(ξ)t̂

i
0. (3.43)

Based on (3.43), the first and second arc-length derivative of the centerline curve, which are
needed for the Kirchhoff beam deformation measures defined in (2.95), yield:

r′h(ξ) =
1

J(ξ)
rh,ξ(ξ), r′′h(ξ) =

1

J(ξ)2
rh,ξξ(ξ)−

J,ξ(ξ)

J(ξ)3
rh,ξ(ξ). (3.44)
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The derivative J,ξ(ξ) of the Jacobian follows directly from the defining equation (3.43):

J,ξ(ξ)=
d

dξ
||r0h,ξ||=

rT0h,ξr0h,ξξ

||r0h,ξ||
with r0h,ξξ(ξ)=

2∑
i=1

H i
d,ξξ(ξ)d̂

i
0+

c

2

2∑
i=1

H i
t,ξξ(ξ)t̂

i
0. (3.45)

In the following, an initial geometry shall be discretized by means of nele elements, confined by
nele + 1 boundary nodes with arc-length coordinates si, i = 1, 2, ..., nele+1, on a given space
curve r0(s). It is assumed that either an analytical description of the curve r0(s) exists, or at
least the nodal positions r0(si) and tangents r′0(si) are known. Since s is chosen as arc-length
parameter of the initial geometry and since the derivative of a parametrized curve with respect
to an arc-length parameter always has a norm of one (see e.g. [23]), the initial tangent vectors
have to be of unit length, i.e. ||r′0(si)|| = 1. Now, the nodal positions and the nodal tangents are
chosen according to d̂1

0 := r0(s1), d̂2
0 := r0(s2) and t̂1

0 := r′0(s1), t̂2
0 := r′0(s2) for each element.

The interpolation property of this discretization with respect to nodal positions and tangents can
be verified by making use of (3.39), (3.41) and (3.43) as well as the chain rule r′0 =

r0,ξ

J
:

r0,h(ξ
1)= d̂1

0, r0,h(ξ
2)= d̂2

0, r′0,h(ξ
1)=

ct̂1
0

||ct̂1
0||

= t̂1
0, r′0,h(ξ

2)=
ct̂2

0

||ct̂2
0||

= t̂2
0. � (3.46)

Equivalent results can be obtained for the interpolation of the current centerline curve:

rh(ξ
1)= d̂1, rh(ξ

2)= d̂2, r′h(ξ
1)=

ct̂1

||ct̂1
0||

= t̂1 and r′h(ξ
2)=

ct̂2

||ct̂2
0||

= t̂2. � (3.47)

Thus, due to ||t̂1
0|| = ||t̂2

0|| = 1, the interpolation property for the nodal positions d̂i, d̂i0 and
tangents t̂i, t̂i0 is fulfilled for any c > 0. This is in contrast to classical linear Euler-Bernoulli
beam elements discretized by the Hermite shape functions (3.40). There, the constant c has to
be chosen as the length of the (straight) element in order to fulfill the interpolation properties.
Thus, the question arises how c has to be chosen in the considered context of geometrically ex-
act beams. In the following, four different choices of the constant c shall be briefly discussed.
In Appendix B.4, the influence of these different choices on the convergence behavior of the
interpolation scheme (3.39) is investigated by means of proper Taylor expansions of r(s).

Variant 1: If an analytic representation r0(ξ) of the initial geometry is available, the interpolation
constant c1 =copt can be chosen as solution of an optimization problem given by:

Find c ∈ <+ such that
∫ 1

−1

(r0(ξ)− r0h(ξ, c1))2 dξ → min. (3.48)

For this variant, an analytic representation of the reference geometry is needed. The drawback
of such an approach is the numerical effort of solving an additional optimization problem. How-
ever, the optimization problem has to be solved only once in the beginning of a simulation.

Variant 2: On the other hand, investigations on the approximation quality and the convergence
behavior of the interpolation (3.39) (see Appendix B.3 and Appendix B.4) suggest a value
c2 = lele in the range of the initial element length lele as a reasonable choice. Here lele denotes the
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3.2 Spatial Discretization Methods for Primary Fields

arc-length of an analytic curve segment defined by two successive nodes at si and si+1.

Variant 3: If no analytic representation of the initial geometry exists, the interpolated element
length c3 = lele,h on the discretized geometry can be employed as alternative to the analytic
segment length lele. The determination of c3 requires the solution of the following equation:

c3 = lele,h :=

∫ 1

−1

||r0h,ξ(ξ, c3)||dξ. (3.49)

Since (3.49) represents a nonlinear function in c3, it has to be solved iteratively (see also [6]).

Variant 4: Another, even simpler choice is to approximate the element length by the norm of
the initial distance vector between the two element boundary nodes, i.e. c4 = ||d̂2

0 − d̂1
0||.

In Appendix B.4, it is shown that in the limit of fine discretizations, i.e. lele → 0, these four
different choices for the constant c coincide, but only the first three of these choices guarantee
the expected optimal convergence order of four in the centerline approximation, while the fourth
variant leads to a decline in the convergence order to three. On the contrary, arbitrary choices of
the constant c that drastically differ from the element length lele can further deteriorate conver-
gence and can even lead to practically unfeasible discretizations. These considerations shall be
further verified by means of a numerical example (see Figure 3.2 for illustration).

(a) 180o-arc: c= lh, c= l and c=copt. (b) 45o-arc: c= lh, c= l and c=copt.

(c) 45o-arc: c=0.5l, c=2l and c= ||d2−d1||. (d) 45o-arc: c=0.001l and c=3.5l.

Figure 3.2: Discretization of arc segments by one finite element with different choices for c.
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3 Finite Element Formulations for Geometrically Exact Beams

Thereto, a single finite element (lele= l) with Hermite interpolation according to (3.39) is applied
to discretize initial geometries in form of different arc segments. The results for different choices
of the constant c are plotted in Figure 3.2. In Figure 3.2(a), a 180o-arc has been discretized.
By definition, the choice c = copt delivers the best approximation of the arc, followed by the
discretizations according to c= l and c= lh. Already for the discretization of an 45o-arc (Figure
3.2(b)), there is no remaining visible difference between these three choices. In Figure 3.2(c),
the roughest approximation for the element length, namely c = ||d2−d1||, was applied to the
45o-arc. Again, only marginal differences compared to the three choices of Figure 3.2(b) can be
observed. However, a deviation from the element length by a factor 2 leads to a clearly visible
decline in the approximation quality. Finally, in Figure 3.2(d), the deviation from the element
length are extended to the higher factors 3.5 and 0.001, respectively. A factor 3.5 already leads to
a loop in the discretized centerline curve, which makes the interpolation unfeasible for practical
simulations. On the other hand, for the choice c= 0.001l, the influence of the nodal tangents is
reduced to such an extent that the interpolation almost looks like a linear Lagrange interpolation
of the two boundary nodes. Nevertheless, by zooming further into the plot, one would recognize
that even in this case the interpolation property still holds for the nodal tangent vectors. Thus, as
stated above, the interpolation property of (3.39) is independent of the constant c.
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(b) Hermite and Lagrange shape functions.

Figure 3.3: L2-errors for different discretizations applied to a 45o-arc segment.

In Figure 3.3, the L2-errors resulting from the discretization of an initial geometry in form of
a 45o-arc segment by different interpolation schemes is investigated. Figure 3.3(a) confirms the
expected convergence rate of four for the variants 1-3 as well as the convergence rate of three for
variant 4. Furthermore, it reveals that the extreme choices c=3.5lele and c=0.001lele still lead to
convergence, but to a further reduced convergence rate of approximately 1. From Figure 3.3(b),
it can be observed that the Hermite interpolation 3.39 based on the variants c= copt, c= lele and
c= lele,h yields the same discretization error level per degree of freedom as the Lagrange interpo-
lation 3.36. For all the interpolations considered so far, the nodal position vectors d̂i0 (and tangent
vectors t̂i0) have been determined by the corresponding position vectors r0(si) (and normalized
tangent vectors r′0(si)) of the analytic initial geometry r0(s). Of course, the approximation of the
initial geometry could be further improved, if the initial nodal vectors d̂i0 (and t̂i0) are determined
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3.2 Spatial Discretization Methods for Primary Fields

via an optimization process that minimizes the resulting L2-error. Also this variant, based on a
L2-fitting of the nodal vectors and the choice c= lele, has been plotted in Figure 3.3(b).

For all numerical examples presented in this thesis, the variant c3 = lele,h in combination with the
initial nodal vectors d̂i0 =r0(si) and t̂i0 =r′0(si) is applied. Finally, also the variations δr(s) have
to be discretized by properly chosen test functions. Following a Bubnov-Galerkin approach, also
the interpolation of δr(s) is based on Hermite polynomials and given by the expression:

δrh(ξ)=
2∑
i=1

H i
d(ξ)δd̂

i+
c

2

2∑
i=1

H i
t(ξ)δt̂

i=:Hδd̂. (3.50)

The arc-length derivatives of (3.50) can be derived similarly to (3.44). In an analogous manner,
the procedure presented here can also be extended to Hermite polynomials of higher order.

3.2.3 Discretization of rotation field
In Section 2.1.1, two parametrizations of rotation tensors have been investigated: a parametriza-
tion via rotation vectors ψ and a parametrization via the SR mapping on the basis of the set
(t, ϕ). In the following two sections, these two variants will be employed in order to parametrize
the rotation tensors Λi at the element nodes i = 1, ..., nΛ. In the subsequent Sections 3.2.3.3
and 3.2.3.4, also two possible approaches for the interpolation of these nodal triads in the ele-
ments interior, one based on rotation vectors and one based on the SR mapping, will be presented.

3.2.3.1 Parametrization of nodal triads via rotation vectors

According to Section 2.1.1, rotation vectors ψ̂1
n, ..., ψ̂

nΛ
n can be employed as primary variables

in order to describe the nodal triads Λi
n = Λi

n(ψ̂i
n), i= 1, 2, ..., nΛ, at time step tn. For practical

purposes, also the alternative of storing nodal orientations in terms of quaternions might be use-
ful. However, the following considerations are only of an exemplary character and, thus, based
on the simplest possible choice. As indicated in Section 3.2.1.2, the update of nodal orientations
from iteration k to k+1 of a nonlinear solution scheme might either be based on additive rotation
increments ∆ψ̂i,k+1

n or on multiplicative rotation increments ∆θ̂i,k+1
n given by:

Λi,k+1
n (ψ̂i,k+1

n )=Λi,k
n (ψ̂i,k

n +∆ψ̂i,k+1
n )

or Λi,k+1
n (ψ̂i,k+1

n )=exp(S[∆θ̂i,k+1
n ])Λi,k

n (ψ̂i,k
n ).

(3.51)

Only for rotations with a magnitude smaller than 180◦ a unique rotation vector can be extracted
from a given triad (by applying e.g. Spurrier’s algorithm, see [214]). Within this work, rotation
vectors are always extracted in a manner such that ψ ∈]− π; π]. Within this range, the transfor-
mation matrix T between additive and multiplicative rotation vector increments (see (2.17)) and
its inverse, which do not exist at ψ=2π, are always well-defined.

3.2.3.2 Parametrization of nodal triads via smallest rotation mapping

Alternatively, the nodal triads can be defined via a relative rotation of nodal intermediate triads
Λi
Mϕ̂

by a nodal relative angle ϕ̂i with respect to the tangent vector according to (2.22). The
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3 Finite Element Formulations for Geometrically Exact Beams

nodal intermediate triads are defined by the smallest rotation mapping of the nodal intermediate
triad Λ̄i

Mϕ̂,n
:=Λi

Mϕ̂,n−1 of the last time step onto the basis vector gi1,n of the current step tn:

Λi
n=exp(S[ϕ̂ing

i
1,n])Λi

Mϕ̂,n
, Λi

Mϕ̂,n
=sr(Λ̄i

Mϕ̂,n
,gi1,n) with Λ̄i

Mϕ̂,n
:=Λi

Mϕ̂,n−1. (3.52)

This variant will be used for Kirchhoff type beam element formulations in combination with the
Hermite centerline interpolation (3.39), where the first base vector gi1 is defined via the tangent
vector to the beam centerline, i.e. gi1 = t(ξi)/||t(ξi)||. All in all, the nodal triad is defined by
the nodal relative angle ϕ̂i and the tangent vector t(ξi) at the node i, i.e. Λi = Λi(ϕi, t(ξi)).
However, it has to be emphasized that in contrary to ϕ̂i, the vector t(ξi) does not necessarily
have to be a nodal primary variable. If the considered node i coincides with one of the two
element boundary nodes employed in the Hermite interpolation (3.39), this tangent vector indeed
represents a nodal primary variable, i.e. t(ξi) = t̂i for i = 1, 2, otherwise the tangent vector
simply represents the interpolated centerline derivative at this position, i.e. t(ξi)=r′(ξi). Based
on (additive) increments ∆ϕ̂i,k+1

n of the nodal relative angles, the configuration update from
iteration k to iteration k + 1 of the Newton-Raphson scheme at time step tn reads:

Λi,k+1
n (ϕ̂i,k+1

n ,gi,k+1
1,n )=exp(S[ϕ̂i,kn +∆ϕ̂i,k+1

n ,gi,k+1
1,n ])Λi,k+1

Mϕ̂,n
, Λi,k+1

Mϕ̂,n
=sr(Λ̄i

Mϕ̂,n
,gi,k+1

1,n ). (3.53)

The base vectors gi,k+1
1,n =r′ k+1

n (ξi)/||r′ k+1
n (ξi)|| are fully defined by the discrete centerline curve

r′ k+1
n = r′(d̂1,k+1

n , d̂2,k+1
n , t̂1,k+1

n , t̂2,k+1
n ) based on an additive update of the degrees of freedom

defining the beam centerline, i.e. d̂i,k+1
n = d̂i,kn +∆d̂i,k+1

n as well as t̂i,k+1
n = t̂i,kn +∆t̂i,k+1

n .

Remark: Within this thesis, intermediate triads ΛM based on the SR mapping are used
for two different purposes: Firstly, they are used for the definition of nodal material triads
Λi based on nodal relative angles ϕ̂i and associated nodal intermediate triads Λi

Mϕ̂
(SR

mapping ”in time” from Λ̄i
Mϕ̂,n

=Λi
Mϕ̂,n−1 to Λi

Mϕ̂,n
, see (3.52)). Secondly, they are used

for the definition of an interpolated material triad field Λ(ξ) based on a relative angle field
ϕ(ξ) and an associated intermediate triad field ΛMϕ,n(ξ) (SR mapping ”in space” from a
reference triad Λr,n = Λn(ξr) to ΛMϕ,n(ξ), see (3.63)). In order to distinguish these two
applications, the additional index ϕ̂ or ϕ of ΛM refers to the associated relative angle.

3.2.3.3 Triad interpolation based on local rotation vectors

In this section, a triad interpolation is presentented that has originally been proposed by Shoe-
make [203] in the field of computer graphics and for the first time employed to geomerically
exact beam element formulations by Crisfield and Jelenić [58, 116]. On each of the considered
nΛ nodes, a triad Λi, with i = 1, 2, ..., nΛ, is defined by primary degrees of freedom either
according to Section 3.2.3.1 or to Section 3.2.3.2. The interpolation strategy presented in this
section is independent from the specific choice of nodal primary variables. First, a reference
triad Λr based on the triads at nodes I and J is defined according to the following averaging:

Λr=ΛI exp(S(ΦIJ/2)) with exp(S(ΦIJ)) = ΛITΛJ . (3.54)

The nodes I and J are chosen as the two middle triads for elements with an even number nΛ of
nodes and as the one middle triad (i.e. I=J) for elements with an odd number nΛ of nodes (see
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3.2 Spatial Discretization Methods for Primary Fields

also equation (6.2) in [58], which is based on a sightly different node numbering). Based on the
definition of the element reference triad Λr, the interpolated triad field is defined as follows:

Λh(ξ)=Λr exp(S(Φlh(ξ))), Φlh(ξ)=

nΛ∑
i=1

Li(ξ)Φi
l, exp(S(Φi

l)) = ΛT
rΛ

i. (3.55)

Again, Li(ξ) represent the standard Lagrange polynomials of order nΛ−1 and Φi
l the rotation

vectors associated with the relative rotation between the triad Λi at node i and the reference
triad Λr. As indicated by the capital letter Φ, these vectors define the relative rotation via right-
translation. The interpolation (3.55) represents an orthonormal interpolation scheme. Thus, the
interpolated triad field is still an element of the rotation group, i.e. Λh(ξ)∈SO(3)∀ ξ ∈ [−1; 1].
Furthermore, the interpolation scheme (3.55) preserves the objectivity of the space-continuous
deformation measures (see [58]). The curvature vector (see (2.43)) resulting from (3.55) reads

Kh(ξ)=T−T (Φlh(ξ))Φ
′
lh(ξ), (3.56)

and can exactly represent the state of constant curvature Kh= const . Thus, the two-noded vari-
ant of (3.55) can be identified as a geodesic interpolation scheme, since it connects two points
on the nonlinear manifold SO(3) via the ”shortest distance”. Consequently, the two-noded vari-
ant of this interpolation represents the SO(3)-counterpart to the linear interpolation (3.36) of
quantities in <3. In contrast to the interpolations (3.36) and (3.39) of the beam centerline, the
rotation interpolation (3.55) is nonlinear in the nodal degrees of freedom. Thus, if e.g. the field
of rotation vectors ψh(ξ) with nodal values ψh(ξi) = ψ̂i is employed for triad parametrization,
the rotation vector interpolation resulting from (3.55) can be written in an abstract manner in the
formψh(ξ)=nl(ψ̂1, ..., ψ̂n

Λ, ξ) as already indicated in (3.21). While an explicit interpolation rule
for the rotation vectorsψh(ξ) is not needed for practical purposes - the triad field is already given
by (3.55) - the discrete version of the spin vector field δθh(ξ) and the field of (multiplicative)
rotation vector increments ∆θh(ξ) will be required in the next sections for the spatially dis-
cretized weak form of the balance equations and its linearization. In [58], these discretized fields
have consistently been derived from the triad interpolation (3.55), leading to the following result:

∆θh(ξ) =

nΛ∑
i=1

Ĩi(ξ)∆θ̂i =: Ĩ∆θ̂θθ, δθh(ξ) =

nΛ∑
i=1

Ĩi(ξ)δθ̂i =: Ĩδθ̂θθ. (3.57)

The arc-length derivatives of the interpolations (3.57) follow in a straightforward manner to:

∆θ′h(ξ) =

nΛ∑
i=1

1

J(ξ)
Ĩi,ξ(ξ)∆θ̂

i, δθ′h(ξ) =

nΛ∑
i=1

1

J(ξ)
Ĩi,ξ(ξ)δθ̂

i. (3.58)

The generalized shape function matrices Ĩi(ξ)∈<3×<3 as well as their derivatives Ĩi,ξ(ξ) have
been derived in the original work [58] (see also Appendix B.5). Again, assembly matrices and
vectors Ĩ :=(Ĩ1, ..., ĨnΛ) as well as ∆θ̂θθ :=(∆θ̂1T , ...,∆θ̂nΛT )T and δθ̂θθ :=(δθ̂1T , ..., δθ̂nΛT )T have
been introduced. These shape functions depend on the rotational primary variables in a nonlin-
ear manner, e.g. Ĩi(ξ) = nl(ψ̂1, ..., ψ̂n, ξ) if nodal rotation vectors according to Section 3.2.3.1
are employed. Consequently, they have to be re-calculated for every new configuration and this
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dependency on the rotational primary variables would have to be considered within a consis-
tent linearization procedure in case the spin vector interpolation δθh(ξ) given in (3.57) is used
in the weak form according to a Bubnov-Galerkin procedure. In order to avoid this additional
linearization, it can be sensible to follow a Petrov-Galerkin approach based on an interpolation
of δθh(ξ) via Lagrange polynomials. This strategy is also applied within this work and leads to:

δθh(ξ) =

nΛ∑
i=1

Li(ξ)δθ̂i =: Lδθ̂θθ, δθ′h(ξ) =

nΛ∑
i=1

1

J(ξ)
Li,ξ(ξ)δθ̂

i =: L′δθ̂θθ. (3.59)

Nevertheless, the interpolation ∆θh(ξ) is still based on (3.57) in order to end up with a consistent
linearization of the rotation field. Finally, it has to be emphasized that the generalized shape
functions fulfill the following interpolation and completeness properties

Ĩi(ξj) = δijI3,

nΛ∑
i=1

Ĩi(ξ) ≡ I3,

nΛ∑
i=1

Ĩi,ξ(ξ) ≡ 0, (3.60)

i.e. these shape functions can exactly represent constant rotation vector increment fields. Since
these properties are also fulfilled by the Lagrange polynomials, both the Bubnov-Galerkin inter-
polation (3.57) as well as the Petrov-Galerkin interpolation (3.59) of the spin vector field δθh(ξ)
can exactly represent a constant distribution δθh(ξ) = const. in an element. This property is im-
portant with respect to conservation of angular momentum (see e.g. Sections 3.2.4.5 and 3.3.3).

3.2.3.4 Triad interpolation based on ”Smallest Rotation” mapping

In this section, again, a triad interpolation with nΛ nodes is considered. On each of these nodes,
a triad Λi, with i = 1, 2, ..., nΛ, is defined by primary degrees of freedom either according
to Section 3.2.3.1 or to Section 3.2.3.2. Similar to the last section, the interpolation strategy
presented in the following is independent from the specific choice of nodal primary variables.
Concretely, a novel interpolation scheme is proposed that defines an orthonormal triad field
Λh(ξ)∈SO(3)∀ ξ ∈ [−1; 1] based on a given tangent vector field t(ξ) = r′(ξ) and nodal triads
Λi = (gi1,g

i
2,g

i
3) with i = 1, 2, ..., nΛ. In the following, this tangent vector field is defined by

a Hermite interpolation of the beam centerline according to (3.39) based on two nodes at the
element boundary with six degrees of freedom d̂j, t̂j and j = 1, 2, respectively. It has to be
emphasized that the number of nodes of the triad interpolation can in general differ from the
number of nodes of the Hermite centerline interpolation, i.e. nΛ 6= 2 (see Figure 3.1(b)). The
nodal triads are oriented tangential to the centerline. Thus, the first base vectors yield:

g1(ξ)=
r′(ξ)

||r′(ξ)||
→ gi1 =

r′(ξi)

||r′(ξi)||
. (3.61)

Similarly to Section 3.2.3.3, one nodal triad ΛI initially has to be chosen as reference triad:

Λr=ΛI with I ∈ {1, 2, ..., nΛ}. (3.62)

Based on the reference triad Λr and the nodal triads Λi the interpolation is defined according to:

Λh(ξ)=exp(S[ϕh(ξ)g1(ξ)]) ΛMϕ(ξ), ΛMϕ(ξ)=sr(Λr,g1(ξ)),

ϕh(ξ)=

nΛ∑
i=1

Li(ξ)ϕi, exp(S[ϕigi1])=ΛiΛT
Mϕ

(ξi).
(3.63)
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The general curvature vector Kh(ξ) for interpolations that fulfill the Kirchhoff constraint in a
strong manner is given by (2.90). The total torsion resulting from (3.63) can be derived as:

K1 =KMϕ1 + ϕ′h, KMϕ1 =gTMϕ3g
′
Mϕ2 =− κTgI1

1+gT1 gI1
. (3.64)

Remark: It is emphasized that the nodal relative angles ϕi = ϕh(ξ
i) occurring in (3.63)

are different from the nodal primary variables ϕ̂i introduced in (3.52) of Section 3.2.3.2
for parametrization of nodal triads. For both quantities, the symbol ϕ has been chosen
since in both cases the relative angle between the material triad Λ(ξi) and an intermediate
triad ΛMϕ(ξi) in case of ϕi (stemming from a SR mapping ”in space”) or an intermediate
triad Λi

Mϕ̂
in case of ϕ̂i (stemming from a SR mapping ”in time”) is measured. The

difference becomes clear by realizing that the intermediate triad ΛMϕ(ξi) resulting from
the smallest rotation of Λr onto g1(ξi) (see (3.63)) will in general differ from the in-
termediate triad Λi

Mϕ̂
resulting from the smallest rotation of Λ̄i

Mϕ̂
onto g1(ξi) (see (3.52)).

Remark: In the literature, the smallest rotation mapping defined in (2.20) of Section 2.1.2
is often alternatively denoted as ”rotation without twist”. Thus, sometimes it is mistakenly
assumed that an intermediate triad field as employed in (3.63) would exhibit a vanishing
torsion (see e.g. [90], where the slightly different interpolation scheme (3.78) has been
employed). However, according to (3.64), the torsion of the intermediate triad field (3.63)
constructed via the SR mapping does not vanish for general curved 3D configurations
of the beam centerline. It can easily be shown that the torsion vanishes in the limit of
very fine discretizations lele :=s(e),2−s(e),1 → 0. In this limit, the intermediate triad field
becomes identical to an elementwise Bishop frame [28] and the following relation holds:

lim
lele→0

KMϕ1(ξ)=− lim
ξI→ξ

κTgI1
1+gT1 gI1

=− lim
ξI→ξ

(g1(ξ)× g′1(ξ))Tg1(ξI)

1+gT1 (ξ)g1(ξI)
=0. (3.65)

However, as verified numerically in Section 3.8.6, a neglecting of KMϕ1 in the range of
finite element lengths will in general lead to a decline in the spatial convergence rate.

Again, the discrete version of the spin vector field δθh(ξ) has to be determined. Following a
Petrov-Galerkin approach, the spin vector of (2.91) can be discretized as follows:

δθh(ξ) = δΘ1h(ξ)g1 +
S(r′)δr′

||r′||2
with δΘ1h(ξ)=

nΛ∑
i=1

Li(ξ)δΘ̂i
1 =:L‖δΘ̂ΘΘ1, (3.66)

where the interpolation of r′ and δr′ follows (3.39) and (3.50). The matrix L‖ :=(L1, ..., LnΛ) as
well as the vector δΘ̂ΘΘ1 := (δΘ̂1

1, ..., δΘ̂
nΛ
1 )T represent proper assemblies of the Lagrange shape

functions Li and the nodal twist vector components δΘ̂i
1. Alternatively, it can be discretized in a

Bubnov-Galerkin manner based on the triad interpolation (3.63). In this case, it reads:

δθh(ξ)=δΘ1h(ξ)g1+
S(r′)δr′

||r′||2
, δΘ1h(ξ)=δΘMϕ1(ξ)+δϕh(ξ), δϕh(ξ)=

nΛ∑
i=1

Li(ξ)δϕi. (3.67)
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The spin vector δθh(ξ) in (3.67) shall be completely expressed via nodal variations δΘ̂ΘΘ1 and δd̂,
i.e. via assemblies of nodal primary variables. Thereto, δΘMϕ1(ξ) and δϕi are expressed as

δΘMϕ1(ξ)=δΘI
1+

gT1 (gI1×δgI1)−gI T1 (g1×δg1)

1+gT1 gI1
,

δϕi=δΘi
1−δΘi

Mϕ1 =δΘi
1−δΘI

1−
gi T1 (gI1×δgI1)−gI T1 (gi1×δgi1)

1+gi T1 gI1
,

(3.68)

which directly follows from interpolation (3.63). Inserting the relations (3.68) into (3.67) yields:

δΘ1h(ξ)=L‖δΘ̂ΘΘ1−
nΛ∑
i=1

Li
giT1 (gI1×δgI1)−gIT1 (gi1×δgi1)

1+giT1 gI1
+

gT1(gI1×δgI1)−gIT1 (g1×δg1)

1+gT1 gI1︸ ︷︷ ︸
=:δΘ1,diff (ξ)

.
(3.69)

In (3.69), the notion δΘ1,diff (ξ) has been introduced for the term distinguishing the Petrov-
Galerkin variant (3.66) and the Bubnov-Galerkin variant (3.67). In a next step, by making use of
the abbreviations xb = x(ξb) as well as xa = x(ξa) and the following auxiliary relations

gT1a(g1b×δg1b)=gT1a(t̃b×δr′b)=(g1a×t̃b)
TH′(ξb)δd̂, t̃ :=

g1

||r′||
=

r′

||r′||2
, (3.70)

the Bubnov-Galerkin interpolation of the spin vector (3.67) can finally be formulated as:

δθTh (ξ)=δΘ̂ΘΘ
T

1vθ‖Θ +δd̂
T
vθ⊥+δd̂

T
vθ‖d vθ‖Θ=LT‖⊗gT1 , vθ⊥=−H′TS(t̃),

vθ‖d =

(
nΛ∑
i=1

Li v1i−v1

)
⊗gT1 , v1 =

H′T (ξ)(gI1×t̃)− H′T (ξI)(g1×t̃I)

1+g T
1 gI1

,

v1i=v1(ξi)=
H′T (ξi)(g

I
1×t̃i)− H′T (ξI)(g

i
1×t̃I)

1+gi T1 gI1
.

(3.71)

Comparing equations (3.66) and (3.71) leads to the conclusion that the difference between the
Bubnov-Galerkin and the Petrov-Galerkin variant is completely expressed by one additional term
based on the vector vθ‖d . The arc-length derivative of the spin vector reads:

δθ′Th (ξ)=δΘ̂ΘΘ
T

1v′θ‖Θ+δd̂
T
v′θ⊥+δd̂

T
v′θ‖d ,

v′θ‖Θ=L′T‖ ⊗gT1 +LT‖ ⊗g′T1 , v′θ⊥=−H′′TS(t̃)−H′TS(t̃′), t̃′=
r′′

||r′||2
− 2(r′T r′′)r′

||r′||4

v′θ‖d =
( nΛ∑
i=1

Li′ v1i−v′1
)
⊗gT1 +

( nΛ∑
i=1

Li v1i−v1

)
⊗g′T1 ,

v′1 =
H′T (ξ)(gI1×t̃′)+H′′T (ξ)(gI1×t̃)−H′T (ξI)(g

′
1×t̃I)

1+gT1g
I
1

− (g′T1 gI1)v1

1+g T
1 gI1

.

(3.72)

Finally, it shall be investigated if the two variants (3.66) and (3.67) can represent a constant
distribution δθTh (ξ) = w0 = const. and δθ′Th (ξ) = 0, as it is the case for their counterparts (3.57)
and (3.59) of Section 3.2.3.3. Thereto, the nodal variations are chosen according to

δd̂j = w0 × d̂j, δt̂j = w0 × t̂j, δΘ̂i
1 = gT1 (ξi)w0 for j = 1, 2; i=1, ..., nΛ. (3.73)
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Inserting δd̂j and δt̂j according to (3.73) into (3.50) gives the desired result δrh(ξ)=w0×rh(ξ).
With this result and by inserting (3.73) into the two different spin vector interpolations (3.66)
and (3.67), which both fulfill the interpolation property for the tangential spin vector components
δΘ̂i

1, it can already be shown that w0 is at least represented correctly at the element nodes:

δθh(ξ
i)=(gT1 (ξi)w0)g1(ξi) +

r′(ξi)×(w0×r′(ξi))

||r′(ξi)||2
=w0 for i=1, ..., nΛ. (3.74)

Here, the Grassmann identity for double cross-products a×(b×c)=(aTc)b−(aTb)c for arbitrary
vectors a,b, c ∈ <3 as well as g1 =r′/||r′|| have been employed. Next, it will be investigated for
the two variants (3.66) and (3.67), if the choice (3.73) leads to a constant spin vector field along
the entire beam element. Inserting (3.73) into (3.66) and using the Grassmann identity yields:

δθh(ξ)=

(
nΛ∑
i=1

Li(ξ)gT1 (ξi)w0

)
g1(ξ) +

r′(ξ)×(w0×r′(ξ))

||r′(ξ)||2

=

[
I3 − g1(ξ)⊗

(
gT1 (ξ)−

nΛ∑
i=1

Li(ξ)gT1 (ξi)

)
︸ ︷︷ ︸

6=0

]
w0 6= w0.

(3.75)

Thus, the Petrov-Galerkin interpolation (3.66) cannot exactly represent a constant spin vector
field. Since the interpolations (3.66) and (3.67) only differ in δΘ1,diff (ξ) as introduced in (3.69),
only this term will be investigated in the following. Inserting (3.73) into δΘ1,diff (ξ) yields:

δΘ1,diff (ξ)=−
nΛ∑
i=1

Li(ξ)(gT1(ξi)w0)+

nΛ∑
i=1

Li(ξ)︸ ︷︷ ︸
=1

(gT1(ξI)w0)+(gT1 (ξ)w0)−(gT1(ξI)w0)

=

(
gT1 (ξ)−

nΛ∑
i=1

Li(ξ)gT1 (ξi)

)
w0.

(3.76)

Thus, adding the term δΘ1,diff (ξ)g1(ξ) to the Petrov-Galerkin variant (3.75) yields the desired
result δθh(ξ) = w0 = const. for the Bubnov-Galerkin spin vector interpolation in case the
nodal variations are given by (3.73). Alternatively, this result can be obtained by considering
that (3.67) represents the consistent variation of the objective triad interpolation (3.63) (see also
Section 3.2.4.2). Since this interpolation is objective, the variation of the discrete internal energy
has to vanish for infinitesimal rigid body rotations. For an arbitrary stress resultant m, this is only
possible if δθ′h(ξ)≡ 0 and consequently δθh(ξ)≡ const. can be displayed exactly (see also the
weak form (2.110)). Recapitulatory, the interpolation (3.67) can represent arbitrary constant spin
vector distributions w0, while for the interpolation (3.66) this is only possible for 2D problems or
in the special case w0 = 0. This result will be important in order to investigate the conservation
properties of the resulting finite element formulations (see e.g. Sections 3.2.4.5 and 3.4.4). Fi-
nally, the field of (multiplicative) rotation vector increments ∆θh(ξ) and the derivative ∆θ′h(ξ),
required for a consistent linearization of the discretized weak form, follow from equations (3.71)
and (3.72) by simply replacing the variations δ(.) by increments ∆(.). The spin vector consid-
ered above is expressed via multiplicative nodal increments δΘ̂i

1 as nodal primary variables. In
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case a rotation parametrization of the nodal triads via nodal rotation vectors according to Sec-
tion 3.2.3.1 is employed, the nodal vector of multiplicative iterative rotation increments given by
∆Θ̂i = (∆Θ̂i

1,∆Θ̂i
2,∆Θ̂i

3)Tgi can be directly used for triad update as shown in (3.51). However,
if a rotation parametrization of the nodal triads via the SR mapping and nodal relative angles
ϕ̂i according to Section 3.2.3.2 is employed, the rotation vector increments shall be expressed
by means of additive increments ∆ϕ̂i of the nodal primary variables ϕ̂i as shown in (3.53). A
relation between ∆Θ̂i

1 and ∆ϕ̂i can easily be derived on the basis of equations (2.27) and (2.28):

∆Θ̂i
1 = ∆Θi

Mϕ̂1 + ∆ϕ̂i = − ḡiT1 S(gi1)

1 + giT1 ḡi1

∆ti

||ti||
+ ∆ϕ̂i, ∆ti = ∆r′(ξi) = H′(ξi)∆d̂. (3.77)

Of course, at the two element boundary nodes, the last term in equation (3.77) can be simplified
according to: ∆tj =∆r′(ξj)=H′(ξj)∆d̂=∆t̂j if j=1 or j=2.

Remark: The triad interpolation scheme presented in this section is very similar to the
approach presented by Meier et al. [156] (see Section 3.5.2). There, an intermediate triad
field has been constructed in a manner similar to (3.63), but with the choice Λr = Λ1

Mϕ̂
.

While the most essential properties of these two approaches are comparable, there are
some slight advantages of the procedure presented here: Choosing a material triad Λi as
reference triad Λr makes the interpolation scheme independent from the choice of the
nodal primary variables (according to Section 3.2.3.1 or according to Section 3.2.3.2).
Furthermore, locating the reference triad at the element middle node makes the element
formulation symmetric and extends the maximal orientation difference of the material
triads at the element boundary nodes that can be represented from 180◦ to 360◦. The
latter property results from the maximal orientation difference of 180◦ allowed for two
tangent vectors in order to yield a unique SR mapping (see also Section 2.1.2.)

Remark: In Meier et al. [156], also an alternative triad interpolation scheme (see Section
3.5.1 of [156]) has been investigated, which defines an intermediate triad field ΛMϕ(ξ)
directly via the smallest rotation mapping from the intermediate triad field Λ̄Mϕ(ξ) of the
last time step onto the current tangent vector field g1(ξ) according to:

Λh(ξ)=exp(S[ϕh(ξ)g1(ξ)]) ΛMϕ(ξ), ΛMϕ(ξ)=sr(Λ̄Mϕ(ξ),g1(ξ)),

ϕh(ξ)=

nΛ∑
i=1

Li(ξ)ϕ̂i, Λ̄Mϕ,n+1(ξ)=ΛMϕ,n(ξ).
(3.78)

At first glance, this interpolation seems to be more straightforward than (3.63) since
no nodal triads are required for constructing the intermediate triad field. However, as
shown by Meier et al. [156], an interpolation of this kind is neither objective nor path-
independent. For geometrically exact Kirchhoff beams, this triad interpolation has e.g.
been employed in the recent contributions of Greco et al. [90] and Bauer et al. [19].

3.2.4 Requirements on spatial discretization methods
In this section, important requirements on the applied spatial discretizations of translational and
rotational fields will be stated. In the subsequent sections, different beam element formulations
will be presented. There, the fulfillment of these requirements will be investigated.
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3.2.4.1 Differentiability of discrete fields

The first requirement for spatial discretization methods concerns differentiability. On the one
hand, this requirement is related to the weak form of the balance equations: The highest arc-
length derivative occurring in the weak form of the Simo-Reissner beam theory is of order one,
leading to the requirement of at least C0-continuous discrete centerline and triad fields. Such a
continuity at the element boundaries is provided by the Lagrange centerline interpolation (3.36)
as well as by the two discussed approaches of triad interpolation according to Sections 3.2.3.3
and 3.2.3.4. The second arc-length derivative of the beam centerline in the weak form of the
balance equations is a distinctive property of the Kirchhoff-Love beam theory and requires the
interpolation of the centerline to be at least C1-continuous as guaranteed by (3.39). On the other
hand, the beam-to-beam contact formulations presented in Chapter 4 require the existence of a
well-defined tangent vector field along the entire beam centerline, which can conveniently be fur-
nished by the Hermite interpolation (3.39). There exist well-known alternatives that enable the
contact treatment based on C0-continuous centerline representations and a modified/enhanced
contact formulation. However, in Chapter 4, it will be shown that the employed Hermite in-
terpolation does not only lead to a simpler finite element formulation - since no extra effort is
necessary at locations without unique tangent vector - but that it also leads to advantages in terms
of Newton convergence, energy stability as well as integration and discretization errors.

3.2.4.2 Objectivity and path-independence

The properties of objectivity and path-independence play a central role in the development of
(geometrically exact) beam finite element formulations. The importance of these properties can
be traced back to the nonlinear nature of the configuration space (resulting from the occurrence
of large rotations) which complicates the interpolation of rotational quantities. Furthermore, it
can be explained by the historic background that none of the early geometrically exact beam
formulations fulfilled both of these properties (see [58]). As already explained in [58], the path-
independence of the employed discretizations can directly be concluded from the fact that none
of these interpolation schemes is based on any history values of interpolated quantities. Only the
nodal primary variables depend on history values. However, the corresponding nodal displace-
ments can always arise in a way such that the finite element solution is independent from the
actual load path in case the considered physical problem is path-independent. In other words,
the arising nodal displacements yield the path-independent solution to the discrete optimiza-
tion problem (based on a Lagrangian as formulated in Appendix A.2) which is associated with
the path-independent physical problem. In the numerical investigations performed at the end of
this chapter, this property will be verified. However, throughout this section, the fundamental
property of objectivity, i.e. the invariance of the applied deformation measures under rigid body
motions, will be investigated. Thereto, a rigid body translation rR and a rigid body rotation ΛR

are superimposed onto the beam centerline curve r(ξ) and the triad field Λ(ξ). A rigid body mo-
tion is characterized by constant fields rR and ΛR along the beam, thus r′R≡ 0 and Λ′R≡ 0. In
the following, the subscript (.)∗ denotes quantities that result from the superimposed rigid body
motion, thus r∗(ξ) = ΛR (r(ξ)+rR) and Λ∗(ξ) = ΛRΛ(ξ). A formulation is denoted as being
objective if such a rigid body motion does not affect the material deformation measures Ω and
Γ. It is straightforward to show that the space-continuous versions of the deformation measures

87



3 Finite Element Formulations for Geometrically Exact Beams

Ω and Γ are objective, i.e. Ω∗ = Ω and Γ∗ = Γ (see e.g. [58]). The question of interest is if
this objectivity is preserved by the employed spatial discretization schemes. In [58], it is shown
that the fulfillment of the following requirement guarantees for the objectivity of a geometrically
exact beam formulation based on the Simo-Reissner theory as introduced in Section 2.2:

r∗h(ξ)=̇ΛR(rh(ξ)+rR) , Λ∗h(ξ)=̇ΛRΛh(ξ) → Ω∗h=Ωh, Γ∗h=Γh. (3.79)

The following investigations will exclusively be applied to discretized quantities. However, in
order to shorten notation, the subscript (.)h will be omitted throughout this section. First, it shall
briefly be shown that the validity of (3.79) is also sufficient for the invariance of the deformation
measures (2.95) and (2.97) of the Kirchhoff beam theory. If (3.79) is valid, it follows:

r∗′(ξ) = ΛRr′(ξ), r∗′′(ξ) = ΛRr′′(ξ), g∗i (ξ) = ΛRgi(ξ), g∗′i (ξ) = ΛRg′i(ξ). (3.80)

Based on (3.80), the axial tension, the Frenet-Serret curvature vector and the total torsion read:

||r∗′|| =
(
r′TΛT

RΛRr′
)0.5

= ||r′|| → ε∗ = ||r∗′|| − 1 = ||r′|| − 1 = ε,

κ∗ =
r∗′ × r∗′′

||r∗′||2
=

ΛR(r′ × r′′)

||r′||2
= ΛRκ → g∗Ti κ

∗=gTi ΛT
RΛRκ=gTi κ,

K∗1 = K∗M1 + ϕ∗′ = g∗′T2 g∗3 = g′T2 ΛT
RΛRg3 = g′T2 g3 = KM1 + ϕ′ = K1.

(3.81)

The identities Ω∗=Ω and Γ∗=Γ for the original and the rotated deformation measures of (2.95)
and (2.97) are a direct consequence of (3.81). Thus, also for the Kirchhoff beam elements, the
requirements (3.79) are sufficient in order to ensure objectivity. In the following, the validity of
(3.79) will be investigated for the different interpolation strategies of Sections 3.2.2 and 3.2.3.

Objectivity of centerline interpolations: Due to the linear dependence of the interpolated
centerline r(ξ) according to (3.36) or (3.39) on the nodal position (and tangent) vectors, the
proof of the first part of (3.79) is trivial and independent from the intermediate triad field:

r∗(ξ) = ΛR(r(ξ)+rR) for d̂∗i = ΛR

(
d̂i+rR

)
and t̂∗i = ΛRd̂i. � (3.82)

Objectivity of triad interpolation based on local rotation vectors: The fulfillment of (3.79)
and consequently of the objectivity requirement of the triad interpolation scheme (3.55) has al-
ready been shown in the original work [58]. The interested reader is referred to this reference.

Objectivity of triad interpolation based on ”Smallest Rotation” mapping: Based on the
relations (3.80)-(3.82) and the strong fulfillment of the Kirchhoff constraint, g∗1(ξ) yields:

g∗1(ξ) =
r∗′(ξ)

||r∗′(ξ)||
=

ΛRr′(ξ)

||r′(ξ)||
= ΛRg1(ξ). (3.83)

Next, the nodal primary variables are chosen such that the nodal triads are also rigidly rotated:

Λi∗ = ΛRΛi. (3.84)
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Using (3.83), (3.84) and the definition (2.20) of the smallest rotation mapping, the following rela-
tion between the base vectors gMϕ2(ξ) and gMϕ3(ξ) of the intermediate triad ΛMϕ(ξ) (see (3.63))
and their counterparts g∗Mϕ2(ξ) and g∗Mϕ3(ξ) resulting from the rigid body motion can be derived:

g∗Mϕi(ξ)=g∗ri−
g∗Tri g∗1(ξ)

1+g∗Tr1 g∗1(ξ)
(g∗1(ξ)+g∗r1)

= ΛRgri−
gTriΛ

T
RΛRg1(ξ)

1+gTr1Λ
T
RΛRg1(ξ)

(ΛRg1(ξ)+ΛRgr1)=ΛRgMϕi(ξ), i = 2, 3.

(3.85)

From (3.83) and (3.85), it can be concluded that the intermediate triad field is rigidly rotated:

Λ∗Mϕ
(ξ) = ΛRΛMϕ(ξ). (3.86)

If the transformation rule (2.10) together with (3.83), (3.84) as well as (3.86) are considered, the
following result can be derived from the fourth equation of the triad interpolation scheme (3.63):

exp(S[ϕi∗gi∗1 ])=exp(S[ϕi∗ΛRgi1])=̇Λi∗Λ∗TMϕ
(ξi)=

ΛRΛiΛT
Mϕ

(ξi)ΛT
R=ΛR exp(S[ϕigi1])ΛT

R=exp(S[ϕiΛRgi1]) → ϕi∗=ϕi.
(3.87)

Thus, the interpolation ϕ(ξ) in (3.63) is unchanged by the rigid body motion, i.e. ϕ∗(ξ) =ϕ(ξ).
Together with (3.83) and (3.86), the desired result for Λ∗(ξ) as stated in (3.79) can be derived:

Λ∗(ξ)=exp(S[ϕ∗(ξ)g∗1(ξ)]) Λ∗Mϕ
(ξ)=exp(S[ϕ(ξ)ΛRg1(ξ)])ΛRΛMϕ(ξ)

=ΛR exp(S[ϕ(ξ)g1(ξ)])ΛT
RΛRΛMϕ(ξ)=ΛR exp(S[ϕ(ξ)g1(ξ)])ΛMϕ(ξ)=ΛRΛ(ξ). �

(3.88)

In the reformulations made in (3.88), again use has been made of the auxiliary relation (2.10) and
the definition (3.63) of the interpolation scheme. According to (3.88), the triad interpolation pro-
posed in Section 3.2.3.4 fulfills the requirement of objectivity. As mentioned above and derived
in the third line of (3.81), the fulfillment of (3.79) guarantees for objective deformation measures,
provided that these are consistently derived from the triad interpolation. In order to verify this
latter restriction, the two individual contributionsKM1 and ϕ′ appearing in the third line of (3.81)
shall be subject to a closer investigation. Besides the relation ϕ∗(ξ) = ϕ(ξ) → ϕ∗′(ξ) = ϕ′(ξ),
which has already been deduced above, also the torsion K∗M1 of the intermediate system can be
calculated for the configuration resulting from the rigid body motion:

K∗Mϕ1 =− κ∗TgI∗1
1+g∗T1 gI∗1

=− κTΛT
RΛRgI1

1+gT1 ΛT
RΛRgI1

=− κTgI1
1+gT1 gI1

=KMϕ1. � (3.89)

As expected, KMϕ1 is not affected by the rigid body motion and, in turn, also the total torsion
K∗1 =K∗M1+ϕ

∗′=KM1+ϕ
′=K1 remains unchanged. This result again underlines the objectivity

of the proposed interpolation scheme and the consistency of the derived torsion measure.

3.2.4.3 Avoidance of locking effects

It is well-known that purely displacement-based finite elements are prone to locking. Locking
effects particularly relevant for geometrically exact beam formulations are shear locking as well
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as membrane locking. While shear locking can - by definition - only appear in beam formu-
lations of Simo-Reissner type, membrane locking has already been observed for geometrically
linear Kirchhoff beams (see e.g. [6] or [7]). In general, membrane locking refers to the inability
of elements to exactly reproduce inextensibility, viz. a vanishing axial strain ε ≡ 0, for curved
structures such as shells or beams. This behavior can be traced back to a coupling between the
kinematic quantities describing the axial tension mode and the curved geometry. While the fo-
cus of the subsequent investigations lies on membrane locking, some remarks on shear locking
- which are relevant for the Kirchhoff elements of Section 3.5 - are made at the end of this section.

Characterization of locking: One possible definition of locking is the deterioration of the spa-
tial convergence rate in dependence of a certain key parameter. Subsequent investigations will
reveal that the element slenderness ratio ζele := lele/R plays the role of such a key parameter
associated with the membrane locking effect of slender beams. One question of interest is how
the liability of a finite element formulation to locking can be assessed in a quantitative manner.
From a mathematical point of view, this question can be answered by investigating the stability
of the employed finite element formulation. For example, for mixed finite element formulations,
a stability criterion is given by the well-known Ladyshenskaya-Babuska-Brezzi (LBB) condi-
tion, also denoted as inf-sup condition (see [38, 39]). Since a direct and general analysis of such
conditions can often be intricate, also numerical inf-sup tests have been suggested in the litera-
ture (see e.g. [15, 112]). From a mechanical point of view, locking is typically explained by the
occurrence of parasitic stresses, viz. the occurrence of modes in the discrete solution that are not
part of the analytical solution. Consequently, the question if an element formulation is prone to
locking or not can also be answered by investigating proper representative test cases for parasitic
stresses. Besides these mathematical and mechanical interpretations of locking, a third, namely
a numerical perspective (see [130]) can often be helpful. From a numerical point of view, lock-
ing can be seen as the consequence of an over-constrained system of equations. As introduced in
[103], the so-called constraint ratio allows for some, at least heuristic, evaluation of the locking
behavior of a finite element formulation. The constraint ratio is defined as the ratio of the total
number of equilibrium equations neq to the total number of constraint equations neq,c:

r :=
neq
neq,c

. (3.90)

In order to analyze the locking behavior, the constraint ratio r of the continuous problem and
the constraint ratio rh of the discretized problem evaluated for an infinite number of elements
have to be compared. The underlying proposition is that elements with rh<r (especially rh<1,
which means that more constraints than degrees of freedom are present) have a tendency to lock,
whereas values rh > r of the constraint ratio indicate that not enough constraint equations are
available in order to reproduce the constraint in an accurate manner. Following this hypothe-
sis, the case rh = r has to be regarded as the optimal constraint ratio. Throughout this thesis,
the relevant locking phenomena will be analyzed based on a mechanical as well as a numerical
perspective. The corresponding concepts are applicable in a straightforward manner. In future
work, the stability of the most promising element formulations also has to be investigated in a
mathematically rigorous manner, either based on direct analysis or on numerical stability tests.
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Membrane locking: In the case considered here, the discrete centerline curve r(ξ) represents
the relevant kinematic quantity, which influences the axial tension ε(ξ) = ||r′(ξ)||−1 as well
as the centerline curvature vector κ given in (2.88). In the following, the possibility of exactly
representing a constant value ||r′(ξ)|| ≡ 1, which is equivalent to a vanishing axial tension,
shall be investigated for the Hermite interpolation (3.39). Similar results can also be derived
for the Lagrange interpolation (3.36). For simplicity, an initially straight beam element with
length lele = l, thus leading to a constant Jacobian ||r0,ξ(ξ)|| ≡ l/2, is considered. According to
Section 3.2.2.2, the following expression can be stated for the norm of the centerline derivative:

||r′||= 2

l

∣∣∣∣∣∣1
8

(
−6d̂1+6d̂2−lt̂1−lt̂2

)
︸ ︷︷ ︸

||()||=̇4l

+
ξ

8

(
−2lt̂1+2lt̂2

)︸ ︷︷ ︸
=̇0

+
ξ2

8

(
6d̂1−6d̂2+3lt̂1+3lt̂2

)
︸ ︷︷ ︸

=̇0

∣∣∣∣∣∣. (3.91)

The only solution that fulfills the requirements indicated by the curly brackets in order to exactly
display the identity ||r′(ξ)||≡1 along the entire beam element is given by the nodal values

t̂2 = t̂1 =: t and d̂2 − d̂1 = lt with ||t|| = 1. (3.92)

The choice (3.92) leads to a constant derivative r′(ξ) of the centerline position vector field:

r′(ξ)≡t with ||t|| = 1. (3.93)

Thus, the only possible solution with ||r′(ξ)|| ≡ 1 is a straight line. In other words, inextensi-
bility cannot exactly be reproduced for curved beam elements, which is precisely the definition
of membrane locking. In order to further investigate the impact of membrane locking on the
proposed Kirchhoff beam elements and to develop solution strategies, the following simple ex-
ample will be investigated: An initially straight beam of length l with square cross-section of
side length R (A = R2 and I2 = I3 = R4/12), clamped at its left end, loaded with a discrete
end-moment at its right end and discretized by one finite element is considered. The external
load is chosen as M = EI3π/(2l), which leads to an analytic beam centerline solution for the
deformed configuration that is represented by a quarter circle (see Figure 3.4(a)).

In a next step, the energy contributions of the axial tension as well as the bending mode shall
be examined. For simplicity, the nodal primary values are chosen such that the nodal position
and tangent vectors resulting from the analytic centerline solution are exactly represented (being
aware that the ”best approximation” solution delivered by the FEM will differ from this choice):

d̂1 = (0, 0, 0)T , d̂2 = l (2/π,−2/π, 0)T︸ ︷︷ ︸
=:d̃2

, t̂1 = (1, 0, 0)T , t̂2 = (0, 1, 0)T . (3.94)

Here, the dimensionless position vector d̃2 has been introduced. For the considered plane exam-
ple of an initially straight beam, the length-specific hyper-elastic energy (2.100) simplifies:

Π̃int = Π̃int,ε + Π̃int,κ =
1

2
EAε2 +

1

2
EI3κ

2 with κ= ||κ||. (3.95)
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(a) Problem setup and analytic solution. (b) Numerical solutions for different ζs.

Figure 3.4: Initially straight, clamped beam bent to a quarter circle by a discrete end-moment.

In (3.95), Π̃int,ε and Π̃int,κ denote the discrete energy contributions of the axial tension and the
bending deformation, respectively. Based on (3.91), the discretized axial tension yields:

ε=
1

4

∣∣∣∣∣∣(6d̃2 − t̂1 − t̂2
)

+ 2ξ
(
t̂2 − t̂1

)
+ 3ξ2

(
−2d̃2 + t̂1 + t̂2

)∣∣∣∣∣∣− 1=: ε̃. (3.96)

In order to simplify the analysis, the approximation κ = ||r′×r′′||/||r′||2 ≈ ||r′×r′′|| for the
centerline curvature vector is employed. This approximation is based on the assumption of small
axial tension being equivalent to ||(||r′||−1)|| � 1 and makes sense for the considered example
whose analytic solution yields ε≡0. By inserting the discretization (3.39), κ= ||κ|| yields:

κ≈ 1

2l

∣∣∣∣∣∣[3d̃2×(t̂2−t̂1)−t̂1×t̂2
]
+ξ
[
6d̃2×(t̂2+ t̂1)

]
+ξ2

[
3d̃2×(t̂2− t̂1)−3t̂1×t̂2

]∣∣∣∣∣∣︸ ︷︷ ︸
=:2κ̃

. (3.97)

In (3.96) and (3.97), the dimensionless quantities ε̃ and κ̃ have been introduced. With these
deformation measures, the proportion of axial tension energy to bending energy yields:

Π̃int,ε

Π̃int,κ

= 12

(
l

R

)2(
ε̃

κ̃

)2

. (3.98)

Since the dimensionless proportion ε̃/κ̃ is independent of the problem scaling, the proportion of
the parasitic axial strain energy to the bending strain energy scales quadratically with the element
slenderness ratio ζele = lele/R. Thus, the key parameter for the considered locking phenomenon
is the ratio of the element length lele= l and the ”effective cross-section radius“ R. This result is
in agreement with the investigations for geometrically linear Kirchhoff elements in [6].

The simulation results (based on the subsequently derived residual (3.122) of the SK-TAN el-
ement without re-interpolation of the axial strain) for the parameter choice E = 1.0, l = 1000
and the different slenderness ratios ζ = 10, ζ = 100, ζ = 1000 and ζ = 10000 are presented in
Figure 3.4(b). The analytic solution is displayed in red color. Of course, for each slenderness
ratio, the external moment has been adapted such that the respective analytic solution is given by
a quarter circle. As expected, an increasing slenderness ratio aggravates the locking effect and
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leads to a progressively stiff system answer. In Figure 3.5, the numerical results for ||r′(ξ)|| cal-
culated via exact Gauss integration are plotted for simulations with different slenderness ratios.
With increasing slenderness ratio, the ratio of axial stiffness to bending stiffness increases, which
leads to a progressively strong penalization of the parasitic strains. Correspondingly, the FEM
solutions show a decrease in the parasitic strains for increasing slenderness ratios. From Figure
3.5, it also gets obvious that the positions of the points fulfilling ||r′(ξ)|| = 1 are almost iden-
tical for the different slenderness ratios. Since r′(ξ) is a dimensionless quantity, the evolutions
illustrated in Figure 3.5 are independent of the problem scaling and valid whenever a quarter
circle is discretized by one finite element. However, with finer discretizations, the arc segment
represented by one element shrinks. One can show that the fluctuation of ||r′(ξ)|| then decreases.

Remark: Actually, the residual vector stated in (3.122) consists of functional expres-
sions that cannot be integrated exactly by Gauss integration. However, in numerical
simulations, the deviations in the results for a number of Gauss points nG > 4 turned
out to be very small as compared to the discretization error. Therefore, the notion ”exact
integration“ will be used whenever four or more Gauss points have been applied.

Figure 3.5: Straight beam bent to a quarter circle: Distribution of ||r′(ξ)|| within an element.

So far, the effect of membrane locking has been investigated from a mechanical point of view.
The axial tension has been identified as the parasitic strain mode occurring in a pure bending
test case. In a next, alternative step, this locking effect will be highlighted from a numerical per-
spective based on the concept of constraint ratios as introduced above. The 2D space-continuous
problem of the considered Kirchhoff beam is described by two differential equations, which de-
termine the two components of the centerline curve r(s), while one constraint equation has to
be considered, namely ||r(s)′|| ≡ 1. Consequently, the constraint ratio yields r = 2 for the con-
tinuous problem. The nonlinear system of equations resulting from the spatially discretized 2D
beam problem consists of neq = 4nele+1 equations after proper Dirichlet conditions have been
considered. For curved configurations, the identity ε≡0 cannot be represented exactly along the
entire element. Thus, the number of constraint equations is given by the number of Gauss points,
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at which the scalar constraint ε= 0 has to be fulfilled. The choice nG = 4, representing an exact
integration (see also the remark above), yields a total of neq,c = 4nele constraint equations. The
resulting discrete constraint ratio rh based on the limit nele →∞ follows as:

rh = lim
nele→∞

4nele+1

4nele
= 1 < r = 2. (3.99)

According to the statements made above, a discrete constraint ratio that is smaller than the con-
tinuous one, i.e. rh<r, indicates that the element formulation is prone to membrane locking.

Different solution strategies exist in order to get rid of these locking effects. In the following, the
approach of Assumed Natural Strains (ANS, see e.g. [104]), Reduced Integration (RI, see e.g.
[168]) and an alternative procedure recently proposed in Meier et al. [157], denoted as Minimally
Constrained Strains (MCS), shall be compared. This new method can be characterized as an
assumed strain/B-bar approach (see e.g. [205]) and can be derived in a variationally consistent
manner. Concretely, the contribution Gε of the axial tension to the weak form is replaced by Gε̄:

Gε=δr′Tg1︸ ︷︷ ︸
δε

EA (||r′||−1)︸ ︷︷ ︸
ε

→ Gε̄=δε̄EAε̄,

ε̄(ξ)=

nCP∑
i=1

Li(ξ)ε(ξi), δε̄(ξ)=

nCP∑
k=1

Li(ξ)δε(ξi), Π̃int,ε=
1

2
EAε̄2.

(3.100)

In (3.100), ξi denotes the parameter coordinate and nCP the number of Collocation Points (CPs)
where the ”original“ strains are evaluated. Moreover, Li(ξ) are Lagrange shape functions of
polynomial order nCP−1. By linearizing the residual (3.100) at the undeformed, straight config-
uration C0, one can identify the B-bar structure typical for geometrically linear finite elements:

L(Gε)|C0:=δd̂
T
H′Tt0︸ ︷︷ ︸

BT

KtT0 H′︸︷︷︸
B

∆d̂, L(Gε̄)|C0=δd̂
T
B̄T
KB̄∆d̂, B̄(ξ)=

nCP∑
i=1

Li(ξ)B(ξi). (3.101)

Here, the abbreviation K :=EA has been introduced in order to shorten the notation.

Remark: In the last section, it has been shown that the strain field ε(ξ) is objective
and path-independent, meaning that the strain field does not change as a consequence
of a rigid body motion and that its value at a certain configuration is independent from
the deformation path leading to that configuration. Since the assumed strain field ε̄(ξ)
represents a pure re-interpolation of the original strain field ε(ξi) evaluated at fixed
collocation points ξi, the former will also fulfill objectivity and path-independence.

Now, the essential question is how the number and locations of the CPs have to be chosen. As
indicated by means of the green squares in Figure 3.5, the ANS approach is based on an interpo-
lation of the axial tension values at the CPs with vanishing axial tension. Analogously, the blue
crosses indicate the integration points (IPs) of a reduced Gauss integration scheme with three
Gauss points. The MCS method, however, applies a third set of CPs, marked with red circles
in Figure 3.5. In the following, the special choice of these collocation points will be motivated
by the concept of constraint ratios and compared to other approaches. In case of a strain re-
interpolation such as given by (3.100), it is sufficient that the constraint of vanishing axial strains
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is fulfilled at the collocation points in order to end up with a vanishing axial strain energy. Since
the Hermite interpolation (3.39) provides a C1-continuous centerline curve, the first derivative r′

and consequently also the axial tension ε is C0-continuous at the element boundaries. Thus, ex-
actly one constraint equation ||r′(ξi)||=̇1 results from each (interior and element boundary) CP
with coordinate ξi, thus leading to neq,c = 2nele+1. This, in turn, results in the desired optimal
constraint ratio rh=limnele→∞(4nele+1)/(2nele+1)=2=r=2 in the limit nele →∞.

Remark: The chosen CPs are motivated by the strain-continuity: If the axial strains were
not C0-continuous but exhibited jumps at the element boundaries, each element boundary
node would provide two constraint equations, one for the previous element (e) and one
for the subsequent element (e+1) in the form ||r′(ξ(e) =1)||=̇1 and ||r′(ξ(e+1) =−1)||=̇1.

In the following table, the constraint ratios resulting from the three methods ANS, RI and MCS
are compared for different choices of the number and locations of the collocation or Gauss points:

- MCS-3b MCS-2b MCS-3i MCS-2i ANS-4i RI-3i RI-2i
neq,c 2nele+1 nele+1 3nele 2nele 4nele 3nele 2nele
rh/r 1 2 2/3 1 0.5 2/3 1

Table 3.1: Quantitative comparison of different ”anti-locking” methods.

The index i in Table 3.1 indicates that all collocation or Gauss points lie in the elements interior
while variants that are marked by an index b also employ the element boundary nodes ξ =±1.
According to the statements made above, the variants with rh/r = 1 represent the constraints
associated with the axial tension in an optimal manner, whereas variants with rh/r < 1 have a
tendency to lock. Consequently, at first glance, the variants MCS-3b, MCS-2i and RI-2i seem to
be equally suitable. However, the (heuristic) criterion of constraint ratios is not the only aspect
that has to be considered in this context. Additionally, it has to be ensured that the overall system
of equations does not become singular as a consequence of too few constraint equations. Thus,
the total number of (independent) equations neq,κ+ε resulting from the requirement of exactly
displaying a state of constant axial tension (see (3.96)) and constant curvature (see (3.97)) must
not be smaller than the total number of unknowns nuk, i.e. neq,κ+ε≥nuk. In this context, the case
of a straight beam centerline, where axial tension and bending curvature are decoupled, repre-
sents the most critical configuration. In order to investigate this situation, again a discretization
based on one finite element with the following nodal degrees of freedom

d̂1 =
(
d1

1, d
1
2, 0
)T
, d̂2 =

(
d2

1, d
2
2, 0
)T
, t̂1 =

(
t11, t

1
2, 0
)T
, t̂2 =

(
t21, t

2
2, 0
)T (3.102)

shall be considered. Furthermore, the boundary conditions of a clamped end result in:

d1
1 =d1

2 =0 and t12 =0. (3.103)

By considering equation (3.97), it is easy to verify that the fulfillment of the two equations

d2
2=̇0 and t22=̇0 (3.104)

is sufficient in order to reproduce a vanishing curvature along the entire beam element. Thus,
in the straight configuration, besides the neq,dbc = 3 equations (3.103) representing the Dirich-
let boundary conditions and the neq,κ = 2 equations (3.104) representing the state of vanishing

95



3 Finite Element Formulations for Geometrically Exact Beams

curvature, neq,c :=neq,ε= 3 additional equations stemming from the axial tension mode are nec-
essary in order to ensure nuk = 8=̇neq,κ+ε = neq,dbc+neq,κ+neq,c. Analogously, one can easily
show that a discretization with nele finite elements leads to neq,κ=2nele and to a required number
of constraint equations according to neq,c=̇nuk−neq,dbc−neq,κ=4(nele+1)−3−2nele=2nele+1.
The variant MCS-3b exactly provides the minimal number neq,c=̇2nele+1 of required constraint
equations. For that reason, this method has been denoted as method of Minimally Constrained
Strains in Meier et al. [157]. On the contrary, the variants MCS-2i and RI-2i provide too few
constraint equations neq,c=2nele < 2nele+1, which leads to a singular tangent stiffness matrix,
a result which can be traced back to the existence of a zero-energy mode in the straight con-
figuration. In order to avoid zero-energy modes of this type and a corresponding rank deficient
stiffness matrix, a strain re-interpolation based on the nCP = 3 CPs with parameter coordinates
ξ1 =−1, ξ2 = 1 and ξ3 = 0 as illustrated in Figure 3.5 has to be applied. In a similar manner, an
optimal constraint ratio of rh = r = 4 and the avoidance of zero-energy modes can be verified
for this choice of collocation points in the general 3D case. In this context, the higher constraint
ratio of 3D problems suggests that membrane locking may play a less crucial role than in the 2D
case. This prediction will be confirmed by subsequent numerical examples.

Remark: Of course, locking would be avoided if the beam element represented the
internal energy (3.95) exactly for pure bending states, requiring nuk =neq,κ+ε. While for
straight configurations, as shown above, this requirement holds, arbitrary curved con-
figurations will yield a slightly over-constrained system of equations with nuk < neq,κ+ε

in general. Thus, the state of constant curvature and vanishing axial tension cannot be
displayed exactly. However, as the subsequent numerical examples will show, mem-
brane locking can still be avoided. This result is reasonable, since the variant MCS-3i
still fulfills the optimal constraint ratio r/rh=1 for such arbitrarily curved configurations.

Remark: As an alternative to the variant MCS-3i, also a reduced Gauss-Lobatto integra-
tion scheme with integration points ξ1 = −1, ξ2 = 1 and ξ3 = 0 could be applied to the
axial tension term of the weak form, yielding the same number of constraint equations
neq,c = 2nele + 1 as the MCS approach. However, within this thesis, the MCS method
will be preferred due to its arguably more consistent variational basis and the uniform
integration scheme resulting for the individual work contributions of the weak form.

All in all, it can be concluded that the choice of the element boundary nodes and the element
midpoint as collocation points of the MCS method leads to the minimal possible number of con-
straint equations neq,c = 2 ·nele+1 and to an optimal constraint ratio of rh=2=r. Consequently,
a successful avoidance of locking effects can be expected from this approach. A similar effec-
tiveness can be expected from the application of a reduced Gauss-Lobatto integration scheme
with integration points ξ1 =−1, ξ2 = 1 and ξ3 = 0 to the axial tension terms of the weak form.
On the contrary, the minimal number of three integration points possible for a reduced Gauss-
Legendre integration scheme leads to an increased constraint ratio of rh=3>r and consequently
to a suboptimal locking behavior expected for this standard approach. While the methodologies
presented so far aim at a reduction of the number of constraint equations, the functional principle
of the ANS approach is different: There, parameter coordinates have to be determined where the
constraint is already correctly fulfilled by the original element formulation (when applying the
latter to a representative test case). These parameter coordinates, indicated by means of green
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squares in Figure 3.5, are chosen as CPs for the ANS approach. Such a procedure can avoid lock-
ing effects in a manner that is independent of the number of constraint equations. The drawback
of the ANS method is that the positions of these points may change for general deformation states
in the geometrically nonlinear regime, which might considerably deteriorate the effectiveness of
this approach. All these theoretical considerations recommend the proposed MCS approach as
method of choice in order to avoid locking effects for the Kirchhoff beam elements considered
in this thesis. Subsequently presented numerical results will confirm this prediction.

Shear locking: The phenomenon of shear locking does not lie in the focus of the current work.
Nevertheless, the cause for such locking effects shall at least be briefly compared with the sit-
uation already discussed for membrane locking. Shear locking denotes the inability of a finite
element formulation to exactly represent the state of vanishing shear strains. This situation can
again be illustrated by means of the pure bending example from above. It is assumed that the
beam centerline is discretized either by Lagrange polynomials according to (3.36) or by Hermite
polynomials according to (3.39) and that the triad interpolation is given by (3.55). It has already
been stated that the triad interpolation (3.55) can exactly represent constant curvatures. On the
other hand, it has been shown that the Hermite centerline representation (and also its counterpart
based on Lagrange polynomials) cannot exactly display the state of constant curvature (based on
the exact definition in (2.88)). This means, the state r′T(ξ)g2(ξ)≡r′T(ξ)g3(ξ)≡0 cannot be dis-
played exactly in combination with a constant curvature. In other words, the interpolation spaces
applied to the translation (i.e. to the beam centerline) and to the rotation field (i.e. to the triad
field) do not optimally match in the sense that a state of constant curvature and vanishing shear
deformation cannot be represented exactly. Similar to membrane locking, the ratio of the shear
stiffness to the bending stiffness increases quadratically with the beam element slenderness ratio.
Thus, again the element slenderness ratio represents the key parameter for this locking effect.
Further 2D investigations on membrane and shear locking effects in geometrically linear and
nonlinear shear-deformable beam element formulations can also be found in [108].

3.2.4.4 Optimal convergence orders

In order to compare the convergence behavior of different finite element formulations, a well-
defined error measure is required. Thereto, the relative L2-error ||e||2rel according to

||e||2rel =
1

umax

√
1

l

∫ l

0

||rh − rref ||2ds, (3.105)

will be considered in the numerical examples presented in Section 3.8. In the definition (3.105),
rh denotes the numerical solution of the beam centerline position for a certain discretization. For
all examples without analytic solution, the standard choice for the reference solution rref is a
numerical solution via the WK-TAN element (see Section 3.5.2) employing a spatial discretiza-
tion that is by a factor of four finer than the finest discretization shown in the corresponding
convergence plot. The normalization with the element length l makes the error independent of
the length of the considered beam. The second normalization leads to a more convenient relative
error measure, which relates the L2-error to the maximal displacement umax occurring for the
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investigated load case. For some examples, also the relative energy error according to

||e||e,rel =
Πint,h − Πint,ref

Πint,ref

, (3.106)

will be considered. Here, Πint,h and Πint,ref represent the (integrated) stored energy functions
(see e.g. 2.100) associated with the investigated discretization and with the reference solution.
Before the convergence plots of selected numerical examples will be discussed in Section 3.8, the
optimal convergence rates in the error norms (3.105) and (3.106) expected for the different beam
element formulations shall be briefly discussed. The convergence in the energy error (which is
minimized by the finite element method) is dominated by the highest derivativem of the primary
variable fields r(ξ) and Λ(ξ) occurring in the energy (see e.g. 2.100) and consequently in the
weak form. Since the employed hyperelastic stored energy functions represent quadratic forms
in the derivatives of these primary variable fields, the convergence rate in the energy error yields:

||e||e = O(h2(k−m+1)). (3.107)

Here, h := lele denotes the element length and k the polynomial degree completely represented
by the employed trial functions. In [216], it is shown that the expected convergence rate of the
L2-error for the Ritz solution to a variational problem of order m follows from (3.107) to:

||e||2 = O(hk+1 + h2(k−m+1)). (3.108)

The second term in (3.108) represents the dependence of the L2-error convergence rate on the
energy error convergence, reflecting the variational basis of the finite element method. The first
term represents the pure polynomial approximation of the trial functions with respect to the
considered primary variable field, e.g. r(ξ). In most cases, e.g. when displacement-based solid
elements are considered, the first exponent is smaller than the second one and dominates the
overall discretization error. For this reason, only the first term is considered by many authors.
However, in the following, it will be shown that especially for Kirchhoff type beam element for-
mulations also the second term of (3.108) is very important. Thereto, the expected convergence
rates for Reissner and Kirchhoff type beam element formulations shall briefly be discussed.

Element formulations of Simo-Reissner type: The highest derivative of primary variable fields
occurring in the weak form associated with the Simo-Reissner beam problem is m = 1. Thus,
for the third-order (k= 3) Reissner beam elements considered in this work, a convergence rate
of six is expected in the energy error (3.106), while the L2-error is dominated by the first term
of (3.108) leading to a corresponding optimal convergence rate of four.

Element formulations of Kirchhoff-Love type: The subsequently proposed Kirchhoff beam
elements will lead to the values k=3 for the polynomial degree of the triad functions and m=2
for the highest arc-length derivative in the weak form. Consequently, the convergence of the en-
ergy error is of order four. Furthermore, the exponents of both terms in (3.108) take on a value of
four, also leading to an expected convergence rate of four for the L2-error. Thus, also the second,
energy-related term has to be considered for Kirchhoff problems of this kind. For that reason, at
least polynomials of order three should be chosen as trial functions for Kirchhoff beam elements:
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Reducing the polynomial degree from k=3 to k=2 would lead to an undesirable decline in the
L2-convergence rate from four to two. Thus, the third-order Kirchhoff beam elements proposed
in this thesis can be regarded as approximations of the lowest order that is reasonable from a
numerical point of view. However, the fact that both exponents of (3.108) take on the same value
for k = 3 also means that in some cases, usually for examples involving complex deformation
states and strain distributions, the second, energy-related term might determine the overall error-
level. Thus, in order to fully exploit the approximation power of the employed discretization, it
can often be sensible to apply trial functions of increased polynomial degree k>3. In this case,
the first term of (3.108) will determine the overall error level for sufficiently fine discretizations
(since the second term converges faster) and consequently the discretization error is exclusively
limited by the approximation power of the applied polynomial order. The extension of the pro-
posed Kirchhoff beam element formulations to Hermite interpolations of order k>3 is possible
in a straightforward manner and will be treated in future research work. In the numerical exam-
ple of Section 3.8.2, a first proof of concept will be given for such an extension.

Remark: Based on these considerations the question arises, which trial function orders
kSR and kKL of element formulations based on the Simo-Reissner and the Kirchhoff-Love
theory have to be chosen in subsequent numerical examples in order to perform a reason-
able comparison of their convergence behavior. The answer to this question depends on
the primary interest, which might either lie in the L2-convergence or in the energy conver-
gence. Within this thesis, the third-order Kirchhoff elements are compared to third-order
Reissner elements, leading to equal L2-error rates but to different energy error rates. Al-
ternatively, one could also compare the third-order Kirchhoff elements with second-order
Reissner elements, leading to equal energy error rates but to different L2-error rates.

3.2.4.5 Conservation properties

Since the finite element solution converges towards the corresponding analytic solution in the
limit of fine spatial discretizations, elementary properties of the analytic solution such as conser-
vation of linear momentum (or rather equilibrium of forces in statics), conservation of angular
momentum (or rather equilibrium of moments in statics) as well as conservation of energy (or
rather balance of external and internal work for non-conservative problems) will also be fulfilled
by the numerical solution for lele → 0. However, often it is desirable to provide such proper-
ties already for arbitrarily rough spatial discretizations. The question, if these properties of the
space-continuous problem are inherited by the spatially discretized problem, will later be inves-
tigated for the different beam element formulations proposed in subsequent sections. Thereto,
use will be made of the fact that the discretized weak form of the balance equations is fulfilled
for arbitrary values of the nodal primary variable variations. Choosing the nodal primary variable
variations such that the associated virtual motion represents a rigid body translation given by

(δrh(ξ), δθh(ξ))≡(u0,0) ∈ Vh with u′0 = 0, (3.109)

allows to investigate the conservation of linear momentum. The special choice (3.109) leads
to δr′h(ξ) ≡ δθ′h(ξ) ≡ 0 and consequently to vanishing contributions of the internal forces and
moments in the discrete versions of the weak forms (2.52) and (2.110) associated with the Simo-
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Reissner and the Kirchhoff-Love beam theory. Inserting (3.109) into these weak forms yields

l̇ = fext with l :=

l∫
0

l̃ds, fext =

l∫
0

f̃ds+
[
fσ

]
Γσ
, (3.110)

and consequently to exact conservation of linear momentum l = const. for the unloaded sys-
tem, viz. if fext = 0. Since possible reaction forces at Dirichlet supports are also included in
fext, (3.110) is equivalent to the equilibrium of forces in the static case, i.e. if l=0. Similarly, a
choice of the nodal primary variable variations representing a rigid body rotation given by

(δrh(ξ), δθh(ξ))≡(w0 × rh(ξ),w0) ∈ Vh with w′0 = 0, (3.111)

allows to investigate the angular momentum. Relation (3.111) leads to δr′h(ξ)≡w0×r′h(ξ) as
well as δθ′h(ξ)≡0 and consequently again to vanishing contributions of the internal forces and
moments in the discrete versions of the weak forms (2.52) and (2.110) associated with the Simo-
Reissner and the Kirchhoff-Love beam theory. Inserting (3.111) into these weak forms yields:

ḣ=mext, h :=

l∫
0

(h̃+r× l̃)ds, mext=

l∫
0

(
r× f̃ +m̃

)
ds+

[
r× fσ+mσ

]
Γσ
, (3.112)

and consequently to exact conservation of angular momentum h = const. for the unloaded sys-
tem, viz. if mext=0. Since possible reaction moments at Dirichlet supports are also included in
mext, relation (3.112) is equivalent to the equilibrium of moments in the static case, i.e. if h=0.
Finally, a choice of the nodal primary variable variations according to

(δrh(ξ), δθh(ξ))≡(ṙh(ξ),wh(ξ)) ∈ Vh, (3.113)

allows to investigate the mechanical power balance. Inserting (3.113) into the discrete versions
of the weak forms (2.52) and (2.110) associated with the Simo-Reissner and the Kirchhoff-Love
theory, and making use of the relations ˙̃Πint = w′Tm+(ṙ′−w×r′)T f and ˙̃Πkin = wTcρa (see
Appendix A.2) as well as wTS(w)cρw=0, yields the following relation

Π̇kin + Π̇int = Pext with Pext =

l∫
0

[
ṙT f̃ + wTm̃

]
ds+

[
ṙTfσ + wTmσ

]
Γσ

, (3.114)

and consequently to exact energy conservation Πkin+Πint = const. for the unloaded system,
viz. if Pext = 0. So far, it has been shown that exact conservation of linear momentum, angu-
lar momentum and energy (see equations (3.110), (3.112) and (3.114)) can be guaranteed for
the spatially discretized (and time-continuous) problem, provided the special choices (3.109),
(3.111) and (3.113) for the translational and rotational variation fields are contained in the dis-
crete weighting space Vh of the considered finite element formulation. In the following sections,
the question if (3.109), (3.111) and (3.113) can indeed be represented by the discrete weight-
ing functions, will be investigated for the proposed beam element formulations. Of course, also
the time integration scheme influences the conservation properties of the fully discrete system
considerably. However, the investigation of this factor does not lie within the scope of this thesis.
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3.3 Simo-Reissner Beam Element
Throughout this thesis, the Reissner type beam element formulation proposed by Crisfield and
Jelenić [58, 116], in the following referred to as CJ element, will serve as reference formulation
for numerical comparisons. In the next section, the main constituents required to derive the
element residual vector will be presented. In the subsequent Sections 3.3.2 and 3.3.3, this element
formulation will be investigated with respect to possible locking effects and the fulfillment of
mechanical conservation properties as introduced in Sections 3.2.4.3 and 3.2.4.5.

3.3.1 Element residual vector
In this section, the element residual vector of the CJ element formulation will be derived from the
general, space-continuous Simo-Reissner beam problem statement. First, all trial and weighting
functions are replaced by their discrete counterparts taken from the finite-dimensional trial sub-
space (rh,Λh) ∈ Uh ⊂ U and the weighting subspace (δrh, δθh) ∈ Vh ⊂ V. In the following,
nn-noded elements with the nodal primary variables x̂CJ := (d̂1T, ψ̂1T, ..., d̂nnT, ψ̂nnT )T as well
as δx̂CJ := (δd̂1T, δθ̂1T, ..., δd̂nnT, δθ̂nnT )T are considered. The centerline interpolation is based
on Lagrange polynomials of order nn−1 according to Section (3.2.2.1), i.e. nr = nn. Further-
more, the rotation field interpolation follows equation (3.55) of Section 3.2.3.3 based on nΛ =nn
nodes, in combination with a Petrov-Galerkin approach for the spin vector discretization given
by (3.59). In contrast to the original works [58, 116], here the modified generalized-α scheme of
Section (3.1.2) is employed for time integration, thus defining the velocities and accelerations re-
quired for the inertia forces fρ and moments mρ as stated in (2.65). Inserting these interpolation
schemes as presented in the previous sections into the weak form of the balance equations (2.52)
yields the element residual vector contributions rCJ,d̂ and rCJ,θ̂ according to

rCJ,d̂ =

1∫
−1

(
L′T f − LT f̃ρ

)
J(ξ)dξ −

[
LT fσ

]
Γσ
,

rCJ,θ̂ =

1∫
−1

(
L′Tm− LTS(t)f − LTm̃ρ

)
J(ξ)dξ −

[
LTmσ

]
Γσ
= 0.

(3.115)

The subscripts (.)d̂ and (.)θ̂ distinguish the residual vector contributions associated with the
variations δd̂i as well as δθ̂i. In contrary to the general form of the residual vector (3.22), the
integration interval has already been shifted to the parameter space in (3.115). Within this thesis,
a linearization ∆rCJ = kCJ∆x̂CJ based on multiplicative rotation increments ∆θ̂i according to
∆x̂CJ := (∆d̂1T,∆θ̂1T, ...,∆d̂nnT,∆θ̂nnT )T as given in [116] is employed. For dynamic prob-
lems, the element residual vector rCJ and stiffness matrix kCJ slightly differ from the original
work [116] as consequence of the applied time integration scheme as introduced in Section 3.1.2.

Remark: Similar to the corresponding remark in Section 2.2.3, the discretized material
triad field Λh(ξ) given by (3.55) is fully defined via the local rotation vector field Φlh(ξ)
(and Λr). Thus, the discrete trial space can formally also be formulated as (rh,Φlh) ∈ Uh.

101



3 Finite Element Formulations for Geometrically Exact Beams

3.3.2 Avoidance of locking effects
In [58] and [116], the authors proposed a reduced Gauss integration scheme in order to avoid
shear locking and membrane locking in the range of high beam slenderness ratios. Thereto, nn−1
integration points have been employed for the integration of the internal force contribution of a
nn-noded element. The effectiveness of this procedure will be verified in subsequent numerical
examples and shall be briefly motivated by the following considerations: The 3D Simo-Reissner
beam problem is based on neq=6 differential equations (2.49) describing the beam problem and
pointwise neq,c = 3 constraint equations in order to represent the state of vanishing axial strains
r′Tg1 ≡ 1 and vanishing shear strains r′Tg2 ≡ r′Tg3 ≡ 1 prevalent in a pure bending problem.
Consequently, the constraint ratio of the space-continuous problem yields r=neq/neq,c = 2. As
consequence of the reduced integration, the discrete number of constraint equations takes on a
value of neq,c=3 · (nn−1) · nele. Given the total number of equations neq=6(nn−1) · nele after
application of proper Dirichlet conditions, the constraint ratio of the discrete problem results in:

rh = lim
nele→∞

3 · (nn−1) · nele
6(nn−1) · nele

= 2 = r. (3.116)

Relation (3.116) yields the optimal constraint ratio for this element formulation. Consequently,
no locking effects are expected. The investigations made so far can be further refined by real-
izing that the CJ element can exactly represent the internal energy associated with a 3D pure
bending state. In order to understand this statement, the internal energy is split into contribu-
tions stemming from torsion and bending and into contributions stemming from axial tension
and shear deformation, i.e. Πint,h=Πint,Ω,h+Πint,Γ,h. For a pure bending state, the energy contri-
bution Πint,Γ,h has to vanish, and thus the total internal energy of a pure bending state is given by
Πint,Ω,h, which in turn is uniquely defined by the curvature vector field Kh(ξ)= const. In order to
represent the desired (constant) distribution of the curvature vector field Kh(ξ), which is possible
for the employed triad interpolation (3.55), only (nn−1)·nele of the (nn−1)·nele+1 nodal rotation
vectors have to arise properly, while the one remaining nodal rotation vector describes rotational
rigid body modes of the beam. Since the curvature vector field is defined via the arc-length
derivative of the rotation field, this one remaining nodal rotation vector can also be interpreted
as integration constant resulting from an integration of the curvature field. Additionally, the nodal
position vectors have to arise in a way such that Πint,Γ,h = 0. While the requirement Γh(ξ)≡ 0
cannot be fulfilled exactly for the employed triad trial function spaces, the reduced Gauss inte-
gration scheme applied for the CJ element yields a finite number of 3 ·(nn−1) ·nele constraint
equations in order to satisfy Πint,Γ,h = 0. Thus, similar to the rotation field, only (nn−1) · nele
of the (nn−1) · nele+1 nodal position vectors have to arise properly in order to fulfill these
constraint equations, while the one remaining nodal position vector describes translational rigid
body modes of the beam. All in all, the (nn−1) · nele+1 nodal position and rotation vectors can
always arise in a way such that a 3D pure bending case can be represented, which consists of a
constant curvature vector field Kh(ξ) =const., a vanishing (reduced integrated) energy contribu-
tion Πint,Γ,h of axial and shear strains as well as six superposed rigid body modes. Consequently,
the torsion and bending modes represented by Ωh(ξ) as well as the axial tension and shear val-
ues at the Gauss points represented by Γh(ξGP ) are non-competing and no locking effects are
expected. These considerations can easily be extended to arbitrary curvature fields Kh(ξ) that
are representable by the employed triad interpolation and arbitrary fields Γh(ξ) for which the
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term ΓT
hΓh as occurring in the energy integral can be integrated exactly by the reduced Gauss

integration scheme. In Sections 3.8.2 and 3.8.3, the expected result that the discrete hyperelastic
energies associated with pure bending states in 2D and in 3D can be represented exactly by this
beam element formulation will be verified by means of corresponding numerical test cases.

3.3.3 Conservation properties
In the following, it will be investigated if the Simo-Reissner beam element formulation pro-
posed by Crisfield and Jelenić and repeated in the section above can represent the variational
fields (3.109), (3.111) and (3.113) required in order to guarantee conservation of linear momen-
tum, conservation of angular momentum as well as conservation of energy. The representation
of a rigid body translation (3.109) is trivial and given by the nodal primary variable variations

δd̂i = u0, δθ̂i = 0 for i = 1, ..., nn. (3.117)

Similarly, a rigid body rotation (3.111) can be displayed by the nodal primary variable variations

δd̂i = w0 × d̂i, δθ̂i = w0 for i = 1, ..., nn. (3.118)

It follows from (3.117) and (3.118), that conservation of linear and angular momentum can be
guaranteed. This statement holds for both spin-vector discretizations (3.57) and (3.59) and for
the discretized centerline variation (3.38) since all of these variants fulfill proper completeness
conditions and can exactly represent a constant vector field δθ=w0. If the nodal velocities and
angular velocities of the time-continuous problem are chosen as primary variable variations

δd̂i = ḋi, δθ̂i = wi for i = 1, ..., nn, (3.119)

only the Bubnov-Galerkin variant (3.57) leads (per definition) to an exact representation of the
rates of the spatially discretized hyperelastic and kinetic energy and consequently to exact en-
ergy conservation for the spatially discretized, time-continuous problem. On the contrary, the
Petrov-Galerkin variant (3.59), which has been employed in (3.115), is not variationally con-
sistent with the triad interpolation (3.55) occurring in the discrete internal and kinetic energies.
Consequently, the weak form (3.115) does not represent exact energy rates of the spatially dis-
cretized problem and cannot guarantee for exact energy conservation.

3.3.4 Motivation for ”shear-free” beam theories
Geometrically exact Simo-Reissner beam elements unify high computational efficiency and ac-
curacy. In fields of application where thick beams are involved and the effect of shear deforma-
tion is important, they are favorable as compared to the Kirchhoff type counterparts. However,
with increasing beam slenderness ratio ζ= l/R, the shear contribution to the overall beam defor-
mation decreases. Furthermore, it is exactly the avoidance of the high stiffness contributions of
the shear modes which makes the Kirchhoff-Love theory of thin beams not only applicable, but
also favorable in the range of high beam slenderness ratios. In Section 2.3.6, this concept was
even pursued one step further by additionally applying inextensibility constraints which allow to
also abstain from the high stiffness contributions of the axial tension mode. In this brief section,
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possible benefits of applying (inextensible) Kirchhoff type beam elements in the range of high
slenderness ratios will be illustrated and, at least approximately, quantified. In Section 3.8, most
of these effects will also be investigated and verified by means of numerical examples.

In the following considerations, five sources for potential benefits of applying Kirchhoff type
beam element formulations in the range of high beam slenderness ratios, classified with respect
to the affected algorithmic building blocks within a finite element code, will be discussed. The
first three sources of influence are related to the applied time integration schemes, nonlinear as
well as linear solvers. The fourth source for potential benefits considers the possible reduction of
discrete system sizes due to the application of Kirchhoff type element formulations. This effect
will not only influence one specific, but several algorithmic building blocks. Finally, the fifth
aspect concerns the torsion-free beam theory and resulting finite element realization, which can
completely abstain from rotational DoFs. This property will again simplify several of the algo-
rithmic building blocks as compared to standard geometrically exact beam element formulations.

1: Improved stability properties of time integration scheme: The dynamic equations of mo-
tion of highly slender beams typically result in very stiff Partial Differential Equations (PDEs).
With increasing beam slenderness ratio, the ratio between high eigenfrequencies (associated
with shear modes), intermediate eigenfrequencies (associated with axial tension and twisting
modes) and low eigenfrequencies (associated with bending modes) increases considerably. As a
consequence, the stability requirement of explicit time integration schemes leads to very small
critical time step sizes as compared to the large oscillation periods of the bending modes. For
many practical applications involving highly slender beams, such a fine temporal discretization
means a wast of computational resources since often a temporal resolution of the slow bend-
ing modes would be sufficient. On the contrary, implicit time integration schemes can provide
unconditional stability in the linear regime of small deformations. However, in the large de-
formation regime, also their performance is considerably deteriorated by such high-frequency
contributions. Despite the stability aspect, high-frequent modes are strongly affected by the time
discretization error and should be avoided as long as no high-frequency analysis is required by a
specific application. In order to illustrate the relevant frequency spectrum, in the following, the
proportionalities of the eigenfrequencies resulting from pure bending ωb, pure torsion ωt, pure
axial tension ωa and pure shearing ωs are given for the linearized beam problem:

ωb∼

√
EI

ρAl4
∼ 1

ζ

√
E

ρl2
, ωt∼

√
GIT
ρIP l2

∼

√
E

ρl2
, ωa∼

√
E

ρl2
, ωs∼

√
GA

ρI
∼ζ

√
E

ρl2
. (3.120)

According to the relations (3.120), the ratio of axial and torsional eigenfrequencies to bending
eigenfrequencies increases linearly with increasing slenderness ratio. The ratio of shear eigenfre-
quencies to bending eigenfrequencies increases quadratically with increasing slenderness ratio.
Thus, from a theoretical point of view, the avoidance of shear modes could already improve
the numerical behavior considerably. On the other hand, an additional inextensibility constraint
only seems to be promising for applications where no torsion is present. In Section 2.4.2, it
has been investigated under which circumstances the influence of mechanical torsion on large-
deformation beam problems can be neglected. In Section 3.7, a corresponding torsion-free beam
element formulation is presented, which would, if combined with an inextensibility constraint,
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completely abstain from both modes of the intermediate frequency regime. Of course, it would
be desirable to verify these theoretical considerations numerically. Since the numerical exam-
ples of Section 3.8 mainly focus on static analysis and only present a brief outlook on possible
dynamic investigations, such a numerical verification does not lie within the scope of this thesis.

However, numerical investigations of this question available in the literature confirm the pre-
dicted trend: Lang and Arnold [136] investigated the geometrically nonlinear oscillations of
a slender beam, which has been modeled by means of the geometrically exact Simo-Reissner
theory and discretized via finite differences (see also [137]). In order to measure the influence
of high-frequency modes on time integration stability, the maximal possible time step sizes of
the applied explicit time integration scheme have been determined for three different mechani-
cal beam models: The full shear-deformable and extensible Simo-Reissner beam formulation, a
beam formulation subject to the Kirchhoff constraint of vanishing shear deformation, and a beam
formulation subject to the Kirchhoff constraint and an additional inextensibility constraint. For
the roughest discretization considered in this numerical experiment and an investigated slender-
ness ratio of ζ= 100, a rather moderate slenderness ratio as compared to the applications shown
in Chapter 4, the time step size could be increased by a factor of≈ 100 when abstaining from the
shear mode and by a further factor of ≈ 5 when additionally abstaining from the axial tension
mode. These results indicate the potential of the Kirchhoff type beam formulations. Furthermore,
they suggest that the first step towards an extensible Kirchhoff beam formulation might already
represent the essential one with respect to numerical savings.

2: Improved performance of (iterative) linear solvers: According to the previous argumen-
tation, a high ratio of the highest to the lowest dynamical eigenfrequencies, measured by the
dynamic spectral radius, deteriorates the performance of time integration schemes. In a simi-
lar manner, the performance of iterative linear solvers (see e.g. [178] and also Section 3.2.1.4)
decreases with increasing ratio of the highest to the lowest eigenvalue of the tangent stiffness
matrix, a measure for the condition number of this matrix. Furthermore, even if direct linear
solvers are applied, very high condition numbers might considerably limit the achievable nu-
merical accuracy. Especially in dynamics, where such round-off errors tend to accumulate, these
effects are undesirable. In the following, the influence of the different deformation modes on
the condition number is investigated. For simplicity, the physical units of the considered beam
problem are chosen such that the element length lies in the range of lele≈ 1. Since the element
length, or better the element Jacobian, typically enters the element formulation with different ex-
ponents occurring in different stiffness matrix entries, an element length of lele≈ 1 seems to be
a reasonable choice with respect to conditioning. In this case, the resulting contributions to the
element stiffness matrix of a Simo-Reissner beam element formulation that has been linearized
with respect to the straight configuration, typically obeys the following proportionalities:

kb∼EI∼ER4, kt∼GIT ∼ER4, ka∼EA∼ER2, ks∼GA∼ER2. (3.121)

Again, kb, kt, ka and ks denote stiffness contributions from bending, torsion, axial tension and
shear modes. As long as lele≈ 1 holds and the discretization is kept fixed, the cross-section ra-
diusR decreases linearly with increasing slenderness ratio ζ . According to (3.121), it is expected
that the ratio of high stiffness contributions (from shear and axial tension modes) to low stiff-
ness contributions (from torsional and bending modes), and also the condition number, increases
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quadratically with the beam slenderness ratio ζ . Furthermore, it is expected that a pure neglect
of shear modes is not sufficient in order to improve conditioning. An additional inextensibility
constraint seems to be required in order to get rid of the axial stiffness which scales quadratically
with ζ just as the shear mode. In Section 3.8.2, this statement will be confirmed numerically.

3: Improved performance of nonlinear solvers: The relation between the performance of a
nonlinear solver, e.g. of a Newton-Raphson scheme, and the conditioning of the considered
problem, e.g. measured via the condition number of the tangent stiffness matrix, is not that clear
as in the case of linear solvers. Nevertheless, typically, it is at least expected that the perfor-
mance of tangent-based nonlinear solvers also deteriorates for ill-conditioned problems showing
slope differences of the target function by several orders of magnitude when stepping in differ-
ent directions (e.g. in directions that activate shear and axial tension modes or in directions that
activate bending and torsional modes). Interestingly, all numerical examples investigated in this
thesis will confirm the trend that the nonlinear solver performance of the considered Reissner
type beam element formulations deteriorates drastically with increasing slenderness ratio, while
the total number of Newton iterations required by the extensible Kirchhoff type formulations re-
mains almost unchanged. A first numerical investigation performed on an inextensible Kirchhoff
formulation suggests that this behavior is not noteworthy influenced, neither in a positive nor in
a negative manner, by an additional inextensibility constraint. Thus, with respect to nonlinear
solver performance, the avoidance of shear stiffness contributions seems to be the critical factor.

4: Reduced system size: Kirchhoff type beam element formulations do not require any degrees
of freedom for representing the mode of shear deformation. It can be expected that, at least as
long as no convergence deteriorating phenomena such as locking occur, the same polynomial
approximation and the same discretization error level can be guaranteed with fewer degrees of
freedom. This prediction will be confirmed by the numerical examples in Section 3.8.

5: Abstaining from algorithmic treatment of large rotations: In Section 3.7, the finite ele-
ment realization of the torsion-free beam theory presented in Section 2.4.2 will be shown. The
perhaps most considerable advantage of this torsion-free element formulation is that it is based
on a pure centerline representation. Consequently, the treatment of large rotations and associ-
ated degrees of freedom can completely be avoided. Thus, many steps within a nonlinear finite
element algorithm that are typically complicated by the presence of large rotations (e.g. spa-
tial interpolation, time discretization, non-symmetric tangent stiffness matrix, non-constant and
non-symmetric mass matrix, incremental and iterative configuration updates) are comparable to
those of standard solid finite elements for the proposed torsion-free formulation.

These sources of potential benefits were the motivation for the development of shear-free beam
element formulations based on the Kirchhoff-Love theory of thin beams. Different realizations
of such element formulations, e.g. based on a weak or on a strong enforcement of the Kirchhoff
constraint, will be presented in the next sections. The influence of the aforementioned aspects on
the resulting numerical behavior will be verified in Section 3.8 by means of proper test cases.
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3.4 Kirchhoff-Love Beam Element Based on Strong
Constraint Enforcement

In this section, a finite element formulation based on a strong enforcement of the Kirchhoff con-
straint according to Section 2.3 is presented. In Section 3.4.1, a variant based on nodal triads
parametrized via tangent vectors according to Section 3.2.3.2 is investigated. In Section 3.4.2,
the transition to a rotation vector-based parametrization as in Section 3.2.3.1 is conducted.

Similar to the CJ element presented in the previous section, also for this element formulation, the
avoidance of possible membrane locking effects as well as the fulfillment of mechanical conser-
vation properties will be verified in Sections 3.4.3 and 3.4.4. Finally, Section 3.4.5 evaluates and
compares the suitability of the tangent-based and rotation vector-based nodal triad parametriza-
tions for the modeling of practically relevant Dirichlet boundary conditions and joints.

3.4.1 Residual vector of tangent-based parametrization
Similar to the Simo-Reissner case, the trial and weighting functions are replaced by their dis-
crete counterparts taken from the finite-dimensional trial subspace (rh, ϕh) ∈ Uh ⊂ U and
the weighting subspace (δrh, δΘ1h) ∈ Vh ⊂ V. In the following, 3-noded elements with the
nodal primary variables x̂TAN := (d̂1T, t̂1T, ϕ̂1, d̂2T, t̂2T, ϕ̂2, ϕ̂3)T as well as the set of nodal pri-
mary variable variations δx̂TAN := (δd̂1T, δt̂1T, δΘ̂1

1, δd̂
2T, δt̂2T, δΘ̂2

1, δΘ̂
3
1)T are considered (see

also Figure 3.1(b)). The centerline interpolation is based on Hermite polynomials according to
Section 3.2.2.2 and completely defined by the two element boundary nodes. The rotation field
interpolation follows equation (3.63). Concretely, a quadratic rotation interpolation based on
three nodes, thus also involving the element center node, is considered. Since the orientation of
the material triad field is determined by the relative angle ϕh(ξ) as well as the tangent vector
field r′h(ξ), with the latter being a polynomial of order two, this second-order interpolation is
sufficient for triad field discretization. In Meier et al. [156], it has been confirmed that a higher
interpolation order nΛ> 3 will not further improve the approximation quality while a lower in-
terpolation order nΛ < 3 will lead to a decline in the convergence rate. The time integration of
Section 3.1 is employed, thus leading to the inertia forces fρ and moments mρ given in (2.65).

Inserting these discretizations into (2.110) in combination with the spin vector interpolation
of (3.67) yields the residual vector of the Bubnov-Galerkin variant of this element formulation:

rSK−TAN+CS,d̂ =

1∫
−1

([
v′θ⊥+v′θ‖d

]
m+vεF1−HT f̃ρ−

[
vθ⊥+vθ‖d

]
m̃ρ

)
J(ξ)dξ

−

[
HT fσ+

[
vθ⊥+vθ‖d

]
mσ

]
Γσ

,

rSK−TAN+CS,Θ̂1
=

1∫
−1

(
v′θ‖Θm− vθ‖Θm̃ρ

)
J(ξ)dξ −

[
vθ‖Θmσ

]
Γσ

with vε=
H′T t

||t||
.

(3.122)
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The Bubnov-Galerkin formulation (3.122) can be transformed into a Petrov-Galerkin variant
based on the spin interpolation scheme (3.66) by simply omitting the terms vθ‖d , which yields:

rSK−TAN,d̂ =

1∫
−1

(
v′θ⊥m+vεF1−HT f̃ρ−vθ⊥m̃ρ

)
J(ξ)dξ−

[
HT fσ+vθ⊥mσ

]
Γσ

,

rSK−TAN,Θ̂1
=

1∫
−1

(
v′θ‖Θm− vθ‖Θm̃ρ

)
J(ξ)dξ −

[
vθ‖Θmσ

]
Γσ

with vε=
H′T t

||t||
.

(3.123)

In Section 3.4.3, it will be shown that the element formulations based on (3.122) or (3.123)
tend to membrane locking in the range of high element slenderness ratios and that these locking
effects can be avoided by the following re-interpolation of the axial tension ε and its variation δε
based on the MCS procedure (3.100) and the nodal coordinates ξ1 =−1, ξ2 =1 and ξ3 =0:

F̄1 =EAε̄, ε̄(ξ)=
3∑
i=1

Li(ξ)ε(ξi), δε̄(ξ)=
3∑
i=1

Li(ξ)δε(ξi),

ε(ξi) = (||r′|| − 1)(ξi) , δε(ξ
i) =

(
δr′T

r′

||r′||

)
(ξi)

, v̄ε=
3∑
i=1

Li(ξ)vε(ξi).

(3.124)

Thus, a locking-free element formulation can be obtained by simply replacing the axial force F1

by F̄1 and the discrete axial tension variation operator vε by v̄ε in the discrete weak form (3.122).
The discrete expression for the internal energy associated with the modified axial tension ε̄ reads:

Π̃int,ε̄ =
1

2
EAε̄2. (3.125)

Throughout this thesis, the element formulation based on the degrees of freedom x̂TAN and
δx̂TAN , the residual (3.123) together with (3.124) will be denoted as SK-TAN element, which
stands for ”Strong Kirchhoff constraint enforcement combined with nodal triad parametrization
via nodal TANgents”. Correspondingly, the combination of the degrees of freedom x̂TAN and
δx̂TAN , the residual (3.122) together with (3.124) will be denoted as SK-TAN+CS element, re-
ferring to the Consistent Spin vector interpolation underlying the Bubnov-Galerkin variant. It has
to be emphasized that the replacement of the original axial tension terms with the corresponding
MCS terms according to (3.124) is standard for all Kirchhoff type beam element formulations
considered in this thesis. Only in examples where for comparison reasons also variants without
MCS method are considered, an additional abbreviation ...-MCS, e.g. SK-TAN-MCS, is em-
ployed. For the SK-TAN element, a linearization ∆rSK−TAN = kSK−TAN∆x̂TAN based on the
increment vector ∆x̂TAN :=(∆d̂1T,∆t̂1T,∆ϕ̂1,∆d̂2T,∆t̂2T,∆ϕ̂2,∆ϕ̂3)T will be employed (see
Appendix B.6). In contrary to the multiplicative rotation variations δΘ̂i

1 occurring in δrSK−TAN ,
the quantities ∆ϕ̂i represent additive rotation increments of the nodal relative angles ϕ̂i.

3.4.2 Residual vector of rotation vector-based parametrization
In some scenarios, e.g. applications where complex rotational Dirichlet or coupling conditions
should be prescribed at the element boundary, it can be beneficial to employ the alternative
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parametrization of the triads Λ1 and Λ2 at the element boundary nodes via rotation vectors
according to Section 3.2.3.1. In such a case, an alternative set of nodal primary variables given
by x̂ROT :=(d̂1T, ψ̂1T, t̂1, d̂2T, ψ̂2T, t̂2, ϕ̂3)T and δx̂ROT :=(δd̂1T, δθ̂1T, δt̂1, δd̂2T, δθ̂2T, δt̂2, δΘ̂3

1)T

can be employed. Here, ψ̂1 and ψ̂2 represent the rotation vectors associated with these boundary
triads, δθ̂1 and δθ̂2 are the corresponding spin vectors and t̂1 and t̂2 represent the magnitudes of
the nodal tangents, i.e. t̂1 := ||t1|| and t̂2 := ||t2||, as introduced in Section 2.1.2. In this case, the
nodal tangents of the Hermite interpolation (3.39) are no primary variables anymore, but have to
be expressed by ψ̂1 and t̂1 as well as ψ̂2 and t̂2 (see also the transformation rule (2.30)):

t̂i → ti = t̂i exp(S(ψ̂i))E1 for i = 1, 2. (3.126)

The transformation between the variations (δθ̂i, δt̂i) as well as (δt̂i, δΘ̂i
1) for i = 1, 2 is given by

the transformation matrices T̃ and T̃−1 according to (2.30) and leads to the following relation:

δx̂TAN = T̃x̂δx̂ROT with T̃x̂ =


I3

T̃1

I3

T̃2

1

 , (3.127)

where all blank entries are zero. The transformation matrices T̃1 and T̃2 follow from (2.30) as:

T̃1 =

(
−t̂1S(g1

1) g1
1

g1T
1 0

)
, T̃2 =

(
−t̂2S(g2

1) g2
1

g2T
1 0

)
with gi1 =exp(S(ψ̂i))E1. (3.128)

In order to simplify the transformation between the two different sets of degrees of freedom
considered in Sections 3.4.1 and 3.4.2, the residual contributions rTAN,d̂ and rTAN,Θ̂1

according
to (3.122) are slightly reordered and the sought-after residual rROT is introduced:

rTAN,d̂ := (rT
TAN,d̂1 , r

T
TAN,t̂1 , r

T
TAN,d̂2 , r

T
TAN,t̂2)T ,

rTAN,Θ̂1
:= (rTAN,Θ̂1

1
, rTAN,Θ̂2

1
, rTAN,Θ̂3

1
)T ,

rTAN := (rT
TAN,d̂1 , r

T
TAN,t̂1 , rTAN,Θ̂1

1
, rT
TAN,d̂2 , r

T
TAN,t̂2 , rTAN,Θ̂2

1
, rTAN,Θ̂3

1
)T ,

rROT := (rT
ROT,d̂1 , r

T
ROT,θ̂1 , rROT,t̂1 , r

T
ROT,d̂2 , r

T

ROT,θ̂2 , rROT,t̂2 , rROT,Θ̂3
1
)T .

(3.129)

Inserting relation (3.127) into the virtual work contribution of one beam element yields:

δx̂TTANrTAN = δx̂TROT T̃
T

x̂ rTAN =̇ δx̂TROT rROT → rROT = T̃
T

x̂ rTAN . (3.130)

According to (3.128) and (2.34), the matrix T̃ and its inverse T̃−1 are well-defined as long as
t̂1 6= 0 and t̂2 6= 0. The physical interpretation of t̂i = 0 is that an arc-segment on the beam
centerline at the position of the node i with initial length ds would be compressed to a length
of zero. Since such a scenario is impossible from a physical point of view, these requirements
are assumed to be fulfilled. Consequently, the transformation from the residual vector rTAN to
the residual vector rROT is based on a non-singular matrix T̃x̂. The same statement holds for the
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transformation of the global residual vectors RTAN and RROT via the matrix T̃X which represents
an assembly of the element matrices T̃x̂. Thus, the following relation can be established:

RROT = T̃
T

XRTAN , T̃X∈<nX×<nX , rank(T̃X)=nX → RTAN =0⇔ RROT =0. (3.131)

As long as a unique solution of RTAN =0 exists, the solution of RROT =0 will lead to the same
mechanical equilibrium configuration. In other words, the pure re-parametrization performed
from Section 3.4.1 to Section 3.4.2 will not change the results of the discretized beam problem.
Nevertheless, the transformation matrix T̃X depends on the primary degrees of freedom in a non-
linear manner and has to be considered within a consistent linearization procedure.

Throughout this thesis, the element formulation based on the degrees of freedom x̂ROT and
δx̂ROT , the residual (3.123) transformed via (3.130) together with the MCS approach (3.124)
will be denoted as SK-ROT element, which stands for ”Strong Kirchhoff constraint enforce-
ment combined with nodal triad parametrization via nodal ROTation vectors”. Correspondingly,
the combination of the degrees of freedom x̂ROT and δx̂ROT , the residual (3.123) transformed
via (3.130) together with the MCS approach (3.124) will be denoted as SK-ROT+CS element.
Since the SK-ROT and the SK-TAN element yield the same finite element solution (expressed
via different nodal primary variables), the following theoretical investigations concerning lock-
ing behavior and conservation properties will only be performed for the SK-TAN element.

For the SK-ROT element, a linearization ∆rSK−ROT = kSK−ROT∆x̂ROT based on the incre-
ment vector ∆x̂ROT := (∆d̂1T,∆θ̂1T,∆t̂1,∆d̂2T,∆θ̂2T,∆t̂2,∆ϕ̂3)T will be employed (see Ap-
pendix B.8). Here, ∆θ̂1 and ∆θ̂2 are multiplicative increments and ∆ϕ̂3 is an additive increment.

3.4.3 Avoidance of locking effects
In order to investigate the locking behavior of the SK-TAN element, the investigations already
made in Section 3.2.4.3 only have to be extended from 2D to the general 3D case. In 3D, the
Kirchhoff beam problem is described by neq=4 differential equations (2.107) and constrained by
neq,c=1 constraint equation in case a pure bending state shall be represented. Thus, the constraint
ratio of the space-continuous problem yields r = neq/neq,c = 4. Due to the employed MCS
method, the discrete number of constraint equations takes on a value of neq,c=2nele+1. Given the
total number of equations neq=8nele+1 after application of proper Dirichlet boundary conditions,
the constraint ratio of the discrete problem resulting from the SK-TAN element yields:

rh = lim
nele→∞

8nele+1

2nele+1
= 4 = r. (3.132)

Relation (3.132) yields the optimal constraint ratio for this element formulation. Consequently,
no locking effects are expected. Furthermore, it has been shown in Section 3.2.4.3 that the re-
quirement of representing a straight beam configuration with arbitrary distribution of ε̄h(ξ) yields
a number of independent equations that equals the number of degrees of freedom. Consequently,
such a state can be represented exactly and no zero-energy modes associated with this state have
to be expected. The extension of this statement to 3D is straightforward and will not be further
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investigated here. Moreover, it has also been shown in Section 3.2.4.3 that the discrete hypere-
lastic energy Πint,h associated with a pure 2D bending case, i.e. ε̄h(ξ) ≡ 0 and κh(ξ) ≡ const.,
cannot be displayed exactly by the SK-TAN element. Of course, this statement still holds in
3D. In Sections 3.8.2 and 3.8.3, the expected result that the discrete hyperelastic energies asso-
ciated with pure bending states in 2D and in 3D cannot be represented in an exact manner by
this beam element formulation will be verified by means of corresponding numerical test cases.
There, it will also be shown that this property leads to a slightly increased discretization error
level as compared to the subsequently derived WK-TAN element. However, this observation is
independent from the element slenderness ratio and cannot be attributed to membrane locking.

3.4.4 Conservation properties
Also for the proposed SK-TAN beam element formulation with strong enforcement of the Kirch-
hoff constraint, it shall be investigated if the variational fields (3.109), (3.111) and (3.113) re-
quired for conservation of linear momentum, conservation of angular momentum and conser-
vation of energy can be represented by the corresponding discrete weighting subspace Vh. The
representation of a rigid body translation (3.109) is given by the nodal primary variable variations

δd̂j = u0, δt̂j = 0, δΘ̂i
1 = 0 for j = 1, 2; and i = 1, 2, 3. (3.133)

This result can be verified by inserting the choices for δd̂j and δt̂j made in (3.133) into the
Hermite interpolation (3.50) and making use of the first completeness condition in (3.42), which
yields δrh(ξ) = u0 = const. as well as δr′h(ξ) = δg′1h(ξ) = 0. Inserting these relations together
with δΘ̂i

1 = 0 into either (3.66) or (3.67) results in the required vanishing of the discrete spin
vector field. Thus, both the Petrov-Galerkin as well as the Bubnov-Galerkin variant for the spin
vector interpolation lead to an exact conservation of the linear momentum. Next, a rigid body
rotation (3.111) has to be displayed by the following nodal primary variable variations

δd̂j = w0 × d̂j, δt̂j = w0 × t̂j, δΘ̂i
1 = gT1 (ξi)w0 for j = 1, 2; and i = 1, 2, 3. (3.134)

Inserting δd̂j and δt̂j according to (3.118) into (3.50) gives the desired result δrh(ξ)=w0×rh(ξ).
In Section 3.2.3.4 (see (3.73)-(3.76)), it has already been shown that based on the nodal val-
ues (3.134) the Bubnov-Galerkin interpolation (3.67) can exactly represent such a ”virtual” rigid
body rotation, while the Petrov-Galerkin variant (3.66) cannot. Consequently, only the Bubnov-
Galerkin interpolation can guarantee for exact conservation of angular momentum. This result
will be confirmed by subsequent numerical examples. Finally, also the conservation of energy
will be investigated for the Kirchhoff type element. If the nodal velocities and angular velocities
of the time-continuous problem are chosen as nodal primary variable variations according to

δd̂j = ḋj, δt̂j = ṫj, δΘ̂i
1 = gT1 (ξi)wi for j = 1, 2; and i = 1, 2, 3, (3.135)

again, only the Bubnov-Galerkin variant (3.67) leads (per definition) to an exact representation
of the rates of the discrete internal and kinetic energy and consequently to exact energy conserva-
tion for the spatially discretized, time-continuous problem. On the contrary, the Petrov-Galerkin
variant (3.66) is not variationally consistent with the triad interpolation (3.63) occurring in the
discrete energies and will not guarantee for energy conservation of the time-continuous problem.
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3.4.5 Modeling of Dirichlet boundary conditions and joints
For many applications, the formulation of proper Dirichlet boundary conditions or kinematic
joints between the nodes of different beam elements are of a high practical relevance. This sec-
tion represents a brief interlude, where the possibility of formulating some basic constraint con-
ditions of this type will be investigated for the SK-ROT and the SK-TAN element.

3.4.5.1 SK-ROT element

Since the SK-ROT element simplifies the formulation of Dirichlet boundary conditions and kine-
matic constraints in many practically relevant cases, it will be considered first.

Dirichlet boundary conditions: A simple support at element node a can be realized via

d̂a = d̂au = d̂a0 → ∆d̂a = 0. (3.136)

If a clamped end should be modeled, also the cross-section orientation has to be fixed, i.e.

Λa = Λa
u = Λa

0, and ψ̂a = ψ̂a
0 → ∆θ̂a = 0. (3.137)

Thus, the modeling of Dirichlet boundary conditions for the employed translational and rota-
tional degrees of freedom is similar to the procedure of standard finite elements that are purely
based on translational degrees of freedom. This procedure can also be extended to inhomoge-
neous Dirichlet conditions. However, the determination of ∆θ̂a requires special care in this case:

d̂a = d̂au(t)→ ∆d̂an+1 = d̂au,n+1 − d̂au,n,

Λa = Λa
u(t)→ exp(S(∆θ̂an+1)) = Λa

u,n+1Λ
aT
u,n.

(3.138)

The multiplicative procedure of the second line simplifies to the additive procedure according to
the first line if the prescribed rotation is additive, which only holds for 2D rotations.

Connections: In order to realize a simple (moment-free) joint between the two nodes a and b of
two connected beam elements, the following procedure is sufficient:

d̂b = d̂a, δd̂b = δd̂a, ∆d̂b = ∆d̂a. (3.139)

Thus, the degrees of freedom d̂b can be eliminated from the global system of equations in a stan-
dard manner by simply assembling the corresponding lines and columns of the global residual
vector and stiffness matrix properly. A rigid joint between two elements prescribed at the nodes a
and b additionally requires to suppress any relative rotation between the associated nodal triads.
It is assumed that the corresponding nodal triads differ by some fixed relative rotation Λ0:

Λa = ΛbΛ0 or exp(S(∆θ̂a)) = exp(S(∆θ̂b))Λ0 → Λ0 = ΛbTΛa. (3.140)

From (3.140), the following relations between the associated rotation increments can be derived:

δΛa = δΛbΛ0 → S(δθ̂a)Λa = S(δθ̂b)ΛbΛ0 → δθ̂b = δθ̂a → ∆θ̂b = ∆θ̂a. (3.141)
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Consequently, also the rotational degrees of freedom ψ̂b can be eliminated from the global
system of equations in a standard manner by simply assembling the corresponding lines and
columns of the global residual vector and of the global stiffness matrix properly.

Remark: It is emphasized that a rigid joint according to (3.140) is formulated via right-
translation of the rotation tensor Λ0. This is mandatory since a rigid joint represents a
fixed orientation difference between material quantities, i.e. a fixed relative rotation with
respect to material axes. A left-translation of the rotation tensor Λ0 via

Λa = Λ0Λ
b → Λ0 = ΛaΛbT → δθ̂b = ΛT

0 δθ̂
a 6= δθ̂a, (3.142)

i.e. a fixed relative rotation with respect to spatial axes, has a different physical meaning.

Remark: If additive increments ∆ψ̂a and ∆ψ̂b of the global rotation vectors ψ̂a and ψ̂b

instead of the multiplicative increments ∆θ̂a and ∆θ̂b were applied in the linearization
process, equation (3.141) would have to be replaced by the relations:

∆θ̂b = ∆θ̂a → ∆ψ̂b = T(ψ̂b)T−1(ψ̂a)∆ψ̂a 6= ∆ψ̂a. (3.143)

If these additive increments are employed, a direct elimination of the degrees of freedom
ψ̂b via a proper assembly of the global stiffness matrix is not possible. Instead, the
corresponding columns have to be scaled with the transformation matrix T(ψ̂b)T−1(ψ̂a).

Remark: Physically reasonable boundary conditions can be completely defined by the
cross-section orientation and centroid position. For all of the considered types of boundary
conditions, the degrees of freedom t̂a and t̂b, which are a measure for the axial force at
the corresponding nodes, are part of the FEM solution and must not be prescribed.

3.4.5.2 SK-TAN element

The treatment of the translational degrees of freedom required for the subsequently considered
boundary conditions is identical to the last section and will therefore be omitted here.

Dirichlet boundary conditions: The realization of a simple support at node a is identical
to (3.136). In order to model a clamped end, the simplest case of a tangent vector that is parallel
to a global base vector, e.g. t̂a ‖e1, is considered. In this case, (3.136) has to be supplemented by

t̂aTe2 = t̂aTe3 = 0→ ∆t̂a2 = ∆t̂a3 = 0 and ϕ̂a = ϕ̂a0 → ∆ϕ̂a = 0. (3.144)

Here, the representation t̂a= t̂ai ei of the tangent vector in the global coordinate frame ei has been
exploited. In order to prescribe boundary conditions with arbitrary triad orientation, the tangent
vector has to be expressed by means of the basis vectors of the prescribed material triad:

Λa=Λa
u=Λa

0, t̂a= T̂ ai gai → T̂ a2 = T̂ a3 =0→ ∆T̂ a2 =∆T̂ a3 =0, ϕ̂a= ϕ̂a0 → ∆ϕ̂a=0. (3.145)

Consequently, in this case, the equations of the linearized residual vector that are associated
with the degrees of freedom t̂a have to be transformed by the rotation tensor Λa

0 and the Dirichlet
conditions have to be formulated in this rotated coordinate system. Again, the first component T̂1
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of the tangent vector, when expressed in the material frame, represents its magnitude and must
not be prescribed. If the Dirichlet conditions are time-dependent, the prescribed evolution of the
relative angle has to be adapted, since now the intermediate frame Λa

Mϕ̂
might change in time:

exp(S[ϕ̂an+1g
a
1,n+1])=Λa

n+1Λ
aT
Mϕ̂,n+1 with Λa

Mϕ̂,n+1 =sr(Λa
Mϕ̂,n

,ga1,n+1). (3.146)

Thus, the required value ϕ̂an+1 has to be determined in a recursive manner based on the prescribed
current triad Λa

n+1 and the intermediate triad Λa
Mϕ̂,n

of the last time step (see also Section 3.2.3.2
for more details). The remaining conditions remain unchanged as compared to (3.145).

Connections: Based on (3.140) and (3.141) and the transformation rules stated in (2.34), the
following relations between the sets (t̂a, ϕ̂a) as well as (t̂b, ϕ̂b) can be stated:

δt̂b = −tbS(gb1) δθb︸︷︷︸
=̇δθa

+gb1δt
b = −tbS(gb1)

(
1

ta
S(ga1)δt̂a + ga1δΘ̂

a
1

)
+ gb1δt̂

b,

δΘ̂b
1 = gbT1 δθb︸︷︷︸

=̇δθa

= gbT1

(
1

ta
S(ga1)δt̂a + ga1δΘ̂

a
1

)
.

(3.147)

Combining these two relations eventually yields the following total transformation matrix:

(
δt̂b

δΘ̂b
1

)
=

(
−tbS(gb1) 1

ta
S(ga1) −tbS(gb1)ga1 gb1

gbT1
1
ta

S(ga1) gbT1 ga1 0

)
︸ ︷︷ ︸

=:TRC

 δt̂a

δΘ̂a
1

δt̂b

 . (3.148)

A similar relation can be formulated for the iterative increments. Since the rotation increments
∆Θ1 =TΘM1t∆t+∆ϕ (see (2.28)) have to be expressed by additive increments ∆t and ∆ϕ for
the chosen linearization scheme, an additional transformation is required as compared to (3.148):

(
∆t̂b

∆ϕ̂b

)
=T̃RC1TRCT̃RC2

∆t̂a

∆ϕ̂a1
∆t̂b

, T̃RC1 :=

(
I3 0

−TΘM1t 1

)
, T̃RC2 :=

 I3 0 0
TΘM1t 1 0

0T 0 1

.(3.149)

Equations (3.148) and (3.149) allow to transform the corresponding lines and columns of the
global residual vector and stiffness matrix properly and to eliminate the degrees of freedom
(t̂b, ϕ̂b) from the global system of equations. Again, the magnitude of the tangent vector t̂b is
not influenced by the rigid joint and enters the system of equations as new degree of freedom.
While in the last section, the motion of the rigid joint was completely determined by the set
(d̂a, ψ̂a, t̂a, t̂b), in this section the alternative set (d̂a, t̂a, ϕ̂a, t̂b) is employed.

All in all, it can be concluded that the realization of clamped ends with arbitrary orientation
or of rigid joints between beams is simpler for the SK-ROT formulation based on nodal rota-
tion vectors. While for these elements such conditions can directly be formulated in the global
coordinate system, the tangent vector-based SK-TAN formulation requires an additional trans-
formation of the corresponding lines and columns of the global residual vector and stiffness
matrix. In Section 3.8, some properties of the tangent vector-based variant will become apparent
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which make this type of formulation favorable for many applications. If certain element nodes
require Dirichlet conditions of the type considered here, it is still possible to apply a hybrid ap-
proach, and to replace the nodal tangents by nodal rotation vectors as primary variables only at
the specific nodes where such conditions are required. All the results derived so far apply in a
similar manner to the WK-TAN and WK-ROT elements that will be derived in the next section.

3.5 Kirchhoff-Love Beam Element Based on Weak
Constraint Enforcement

As alternative to the formulation presented in the last section, a beam element will now be pre-
sented that is based on the weak fulfillment of the Kirchhoff constraint. Thus, the basis for the
intended element formulation is provided by the Simo-Reissner beam theory. In a first step, a fi-
nite element formulation of Simo-Reissner type with a C1-continuous centerline representation
will be derived in Section 3.5.1. Afterwards, the Kirchhoff constraint of vanishing shear strains
will be enforced in order to end up with a finite element formulation of Kirchhoff type. Fol-
lowing the derivations in Section 2.3.5, the weak statement of the Kirchhoff constraint (2.122)
can be realized by introducing spatial interpolations for the Lagrange multipliers and their vari-
ations, i.e. by choosing a proper discrete trial space (λΓ,2,h, λΓ,3,h) ∈ UλΓ23,h ∈ UλΓ23

and a
proper discrete weighting space (δλΓ,2,h, δλΓ,3,h) ∈ VλΓ23,h ∈ VλΓ23

. The resulting nonlinear sys-
tem of discrete equilibrium equations will contain discrete Lagrange multipliers as additional
nodal primary variables and exhibit a saddle point type structure. In order to avoid the additional
effort of solving a large system of equations with saddle point structure, a slightly different ap-
proach is chosen here. In the next section, a modified Reissner type beam element formulation
will be presented, which is based on a smooth Hermite centerline interpolation and a MCS type
strain re-interpolation not only of the axial strain εh(ξ) but also of the shear strains Γ2,h(ξ) and
Γ3,h(ξ). Applying the constraint of vanishing shear strains in a consistent manner directly on the
re-interpolated strain fields Γ̄2,h(ξ) and Γ̄3,h(ξ) yields a collocation point type approach of con-
straint enforcement which does not require additional Lagrange multipliers (see Section 3.5.2).
Throughout this thesis, this variant will be preferred since it does neither yield additional La-
grange multiplier degrees of freedom nor a saddle point type system of equations. Also for this
element formulation, the two variants concerning nodal rotation parametrization according to
Sections 3.2.3.1 and 3.2.3.2 will be presented in the following Sections 3.5.2 and 3.5.3.

3.5.1 Basic formulation: Hermitian Simo-Reissner element
The Reissner type beam element formulated in this section represents an intermediate step in
the derivation of a corresponding Kirchhoff type beam element formulation in the next section.
The discrete beam centerline representation is given by the Hermite interpolation (3.39) based
on the position and tangent vectors d̂i and t̂i at the two element boundary nodes. Furthermore,
the rotation interpolation is given by a three-noded representation of (3.55) with nodal triads
Λ1, Λ2 and Λ3. Again, a finite element formulation will be considered on the basis of a strain
re-interpolation similar to the MCS method (3.124). While in the Kirchhoff case (3.124), only
the axial strain has been treated, now the entire deformation measure Γ, consisting of axial and
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shear strains, will be re-interpolated in order to avoid membrane as well as shear locking:

Γ̄(ξ) =
3∑
i=1

Li(ξ)Γ(ξi), δΓ̄(ξ) =
3∑
i=1

Li(ξ)δΓ(ξi) ξ1 = −1, ξ2 = 1, ξ3 = 0. (3.150)

On the basis of (3.150), also the hyper-elastic stored energy function Π̃int(Ω,Γ) given in (2.58)
has to be replaced by Π̃int(Ω, Γ̄). Now, one can introduce the following set of degrees of
freedom x̂HSR := (d̂1T, t̂1T, ψ̂1T, d̂2T, t̂2T, ψ̂2T , ψ̂3T )T as well as the associated variation vec-
tor δx̂HSR :=(δd̂1T, δt̂1T, δθ̂1T, δd̂2T, δt̂2T, δθ̂2T, δθ̂3T )T . Based on the weak form (2.52), (3.150),
the definitions (2.55) and (2.57), (3.39) and (3.55), the element residual vector can be derived as:

rHSR,d̂ =

1∫
−1

(
vΓ1F̄− LT f̃ρ

)
J(ξ)dξ −

[
LT fσ

]
Γσ

rHSR,θ̂ =

1∫
−1

(
L′Tm + vΓ2F̄− LTm̃ρ

)
J(ξ)dξ −

[
LTmσ

]
Γσ
= 0,

F̄ = CF Γ̄, vΓ1 =
3∑
i=1

Li(ξ)
(
H′TΛ

)
(ξi)

, vΓ2 =
3∑
i=1

Li(ξ)
(
LTS(t)Λ

)
(ξi)

.

(3.151)

This element formulation could e.g. be applied to problems of thick beams with higher continuity
requirements (e.g. beam-to-beam contact). However, within this thesis, the formulation (3.151)
solely represents an intermediate step in the derivation of Kirchhoff beam elements with weak
enforcement of the Kirchhoff constraint as performed in the next two sections.

3.5.2 Residual vector of tangent-based parametrization
Due to (3.150), the general weak constraint enforcement of Section (2.3.5) can be simplified:

Γ̄2(ξ) ≡ Γ̄3(ξ) ≡ 0 → r′T(ξi)g2(ξi) =̇ r′T(ξi)g3(ξi) =̇ 0 for i = 1, 2, 3. (3.152)

According to (3.152), the Kirchhoff constraint is exactly fulfilled at the three collocation points.
In the following, a parametrization is chosen that directly fulfills these constraints without the
need for additional Lagrange multipliers. Thereto, the same set of nodal degrees of freedom
x̂TAN = (d̂1T, t̂1T, ϕ̂1, d̂2T, t̂2T, ϕ̂2, ϕ̂3)T as well as the set of nodal primary variable variations
δx̂TAN = (δd̂1T, δt̂1T, δΘ̂1

1, δd̂
2T, δt̂2T, δΘ̂2

1, δΘ̂
3
1)T as in Section 3.4.1 are chosen. In case of a

Bubnov-Galerkin approach, the following discrete spin vector field results from the triad inter-
polation (3.55) in combination with the Kirchhoff constraint (3.152) (see also (3.57)):

δθh(ξ)=
3∑
i=1

Ĩi(ξ)δθi with δθi =

(
δΘ̂i

1g1(ξi) +
S[r′(ξi)]δr′(ξi)

||r′(ξi)||2

)
. (3.153)

Since the Kirchhoff constraint is exactly fulfilled at the three element nodes, the constrained
variant (2.91) of the nodal spin vectors δθi has been combined with (3.57). Based on the Petrov-
Galerkin approach (3.59), the Kirchhoff constraint (3.152) yields for the spin vector field:

δθh(ξ)=
3∑
i=1

Li(ξ)δθi with δθi =

(
δΘ̂i

1g1(ξi) +
S[r′(ξi)]δr′(ξi)

||r′(ξi)||2

)
. (3.154)
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Similar to the CJ element, only the latter version (3.154) will be employed throughout this thesis.
The final element residual vector resulting from these discretized fields reads:

rWK−TAN,d̂ =

1∫
−1

(
v̄′θ⊥m + v̄εF̄1 − HT f̃ρ − v̄θ⊥m̃ρ

)
J(ξ)dξ −

[
HT fσ

]
Γσ

−

[
v̄θ⊥mσ

]
Γσ

,

rWK−TAN,Θ̂1
=

1∫
−1

(
v̄′θ‖Θm− v̄θ‖Θm̃ρ

)
J(ξ)dξ −

[
v̄θ‖Θmσ

]
Γσ

,

v̄θ⊥=−
3∑
i=1

Li(ξ)vθ⊥(ξi), v̄ε=
3∑
i=1

Li(ξ)vε(ξi),

v̄θ‖Θ =
3∑
i=1

Li(ξ)vθ‖Θ(ξi) with v̄′...=
3∑
i=1

Li,ξ(ξ)

J(ξ)
v...(ξi).

(3.155)

In the following, the formulation based on the degrees of freedom x̂TAN and δx̂TAN and on the
residual (3.155) will be denoted as WK-TAN element, which stands for ”Weak Kirchhoff con-
straint enforcement combined with nodal triad parametrization via nodal TANgents”. For the
WK-TAN element, a linearization ∆rWK−TAN =kWK−TAN∆x̂TAN based on the increment vec-
tor ∆x̂TAN :=(∆d̂1T,∆t̂1T,∆ϕ̂1,∆d̂2T,∆t̂2T,∆ϕ̂2,∆ϕ̂3)T is employed (see Appendix B.7).

Remark: Actually, a collocation type approach has been applied in order to enforce
the Kirchhoff constraint. Nevertheless, the notion ”weak constraint enforcement” is kept
throughout this thesis since such a procedure still represents the basis of the space-
continuous formulation. Moreover, the difference to the formulation based on ”strong
constraint enforcement” of Section 3.4 shall be emphasized by this naming.

3.5.3 Residual vector of rotation vector-based parametrization
Also for the element formulation of Section 3.5.2 based on weak Kirchhoff constraint enforce-
ment, a coordinate transformation from x̂TAN and δx̂TAN to the alternative primary variables
x̂ROT := (d̂1T, ψ̂1T, t̂1, d̂2T, ψ̂2T, t̂2, ϕ̂3)T and δx̂ROT := (δd̂1T, δθ̂1T, δt̂1, δd̂2T, δθ̂2T, δt̂1, δΘ̂

3
1)T

can be performed. The transformation rule for the residual vector rROT = T̃
T

x̂ rTAN is identical
to (3.130) in Section 3.4.2. Throughout this thesis, the element formulation based on the degrees
of freedom x̂ROT and δx̂ROT and on the element residual vector (3.155) transformed via (3.130)
will be denoted as WK-ROT element, which stands for ”Weak Kirchhoff constraint enforce-
ment combined with nodal triad parametrization via nodal ROTation vectors”. For the WK-
ROT element, a linearization ∆rWK−ROT = kWK−ROT∆x̂ROT based on the increment vector
∆x̂ROT :=(∆d̂1T,∆θ̂1T,∆t̂1,∆d̂2T,∆θ̂2T,∆t̂1,∆ϕ̂

3)T will be employed (see Appendix B.8).

3.5.4 Avoidance of locking effects
In the investigation of the locking behavior of the proposed WK-TAN element, many results
already derived in Section 3.3.2 and 3.4.3 can be re-used. Since the numbers neq and neq,c for the
space-continuous as well as for the discrete problem are identical to the SK-TAN element, it can
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readily be concluded that also the WK-TAN element formulation shows an optimal constraint
ratio of r=rh=4 and that no membrane locking effects are expected for this element.

Similar to Section 3.3.2, it shall be shown that also the WK-TAN/-ROT elements can exactly rep-
resent the internal energy associated with a 3D pure bending state. This time, the internal energy
is split into contributions stemming from torsion and bending and into contributions stemming
from axial tension, i.e. Πint,h = Πint,Ω,h+Πint,ε,h. For a pure bending state, the energy contribu-
tion Πint,ε,h has to vanish, and thus the total internal energy of a pure bending state is given by
Πint,Ω,h, which is uniquely defined by the curvature vector field Kh(ξ) = const. In order to rep-
resent the desired (constant) distribution of the curvature vector field Kh(ξ), which is possible
for the employed triad interpolation (3.55), only 2nele of the 2nele+1 nodal triads have to arise
properly, while the one remaining nodal triad describes rotational rigid body modes of the beam.

Although the nodal triads are not necessarily parametrized by nodal rotation vectors, still three
conditions result from each of these 2nele nodal triads, thus resulting in a total of neq,Ω = 6nele
conditions. Additionally, the axial strains at the collocation points have to vanish in order to
yield a vanishing contribution Πint,ε,h=0. This requirement results in neq,ε=2nele+1 additional
conditions that have to be fulfilled at the collocation points. If again six further conditions are
considered in order to superpose arbitrary rigid body modes (representing the minimally required
number of Dirichlet boundary conditions in static problems), the total number of neq =8nele+7
equations equals the total number of nuk = 7(nele+1)+nele unknowns contained in the global
vector X for the considered WK-TAN/ROT elements. Thus, in case a unique FEM solution is ex-
istent, a 3D pure bending case can be represented exactly. Similar to the CJ element, the torsion
and bending modes represented by Ωh(ξ) as well as the axial tension values at the collocation
points represented by ε(ξCP ) are non-competing and no locking effects are expected.

Again, these considerations can easily be extended to arbitrary curvature fields Kh(ξ) that are
representable by the employed triad interpolation and arbitrary second-order polynomials ε̄(ξ)
according to (3.124). In Sections 3.8.2 and 3.8.3, the expected result that the discrete hyperelastic
energies associated with pure bending states in 2D and in 3D can exactly be represented by the
WK-TAN/ROT elements will be verified by means of corresponding numerical test cases.

3.5.5 Conservation properties
Since the WK-TAN beam element formulation proposed above basically combines the triad in-
terpolation and the spin vector interpolation δθh(ξ) of the CJ element (see Section 3.3) with
the centerline interpolation and its variation δr′h(ξ) already applied to the SK-TAN element of
Section 3.4, the corresponding conservation properties can directly be concluded from the inves-
tigations made in Sections 3.3.3 and 3.4.4. Consequently, this element formulation will exactly
fulfill conservation of linear and angular momentum. Conservation of energy can only be guar-
anteed for the spatially discretized, time-continuous problem in case the Petrov-Galerkin spin
vector interpolation (3.154) is replaced by its Bubnov-Galerkin counterpart (3.153).
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3.6 Realization of Inextensibility Constraint
The different Kirchhoff type element formulations can additionally be complemented by an in-
extensibility constraint in order to get rid of the high stiffness contributions of the axial tension
mode. Unfortunately, in contrast to the Kirchhoff constraint, there is no straightforward way to
enforce the inextensibility constraint directly through a special choice of the primary variables
or by a collocation approach that would allow for Lagrange multiplier elimination on element
level, as long as the interpolation property r(xi) = d̂i with i = 1, 2 has to be fulfilled for the
position vector field r(s) at the element boundary nodes. This statement can easily be illustrated
by considering a straight beam element of arbitrary order. In order to avoid zero-energy modes,
inextensibility means in such a case that the solution for the nodal position vectors at the two
boundary nodes cannot arise independently, but have to fulfill a constraint (e.g. ||d̂1−d̂2||=̇lele).

Since the primary field r(s) has to be at least C0-continuous (for all beam element formulations
considered in this thesis), the position vector at an element boundary node will always influ-
ence the displacement field of both adjacent finite elements, and thus the constraint cannot be
formulated by means of a local Lagrange multiplier that can be eliminated on element level.
Since this interpolation property, provided e.g. by Lagrange or Hermite shape functions, is very
beneficial for example for the realization of Dirichlet boundary conditions, it should be kept for
the formulations considered in this thesis. Thus, in contrast to the Kirchhoff constraint, the La-
grange multipliers resulting from the inextensibility constraint cannot be eliminated on element
level. Following the derivations in Section 2.3.6, the weak statement of the inextensibility con-
straint (2.122) can be realized by introducing spatial interpolations for the Lagrange multipliers
and their variations, i.e. by choosing discrete trial and weighting spaces λε,h ∈ Uλε,h ∈ Uλε and
δλε,h ∈ Vλε,h ∈ Vλε . However, similar to the enforcement of the Kirchhoff constraint in the last
section, the alternative approach of enforcing inextensibility on the re-interpolated strain field
ε̄(ξ) rather than on the original strain field will be applied in the following:

ε̄(ξ) ≡ 0 → ε(ξi) = ||r′(ξi)|| − 1 =̇ 0 for i = 1, 2, 3. (3.156)

The result is again a collocation point type of constraint enforcement, where the norm of the
centerline tangent vector has to be enforced to unity at the three collocation points ξ1 = −1,
ξ2 = 1 and ξ3 = 0. By applying a similar procedure as in Section 2.3.6 at the three collocation
points and by additionally considering the (scaled) contributions from the tension field ε̄(ξ) of
the extensible case, the following element contribution to the discrete weak form can be derived:

δΠ
(e)
λε

=
3∑
i=1

δλiεε(ξ
i) +

3∑
i=1

δε(ξi)λiε + cε

1∫
−1

δε̄(ξ)EAε̄(ξ)J(ξ)dξ

=
3∑
i=1

δλiεε(ξ
i) +

3∑
i=1

δε(ξi)

λiε + cεEA

1∫
−1

Li(ξ)ε̄(ξ)J(ξ)dξ

 .
(3.157)
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Thus, the contributions of the inextensibility constraint to the element residual vector read:

rλε,d̂ =
3∑
i=1

vε(ξ
i)

λiε + cεEA

1∫
−1

Li(ξ)ε̄(ξ)J(ξ)dξ

 ,
rλε,λ= (ε(ξ1), ε(ξ2), ε(ξ3))T .

(3.158)

Since also for the variant (3.158), the Lagrange multipliers cannot be eliminated at element level
(as discussed above), a weak constraint enforcement based on discrete Lagrange multiplier fields
chosen from trial and weighting spaces Uλε,h and Vλε,h would not mean much extra effort. There
are two slight advantages of the collocation type approach (3.158), for which reason this variant
has been applied in this thesis. Firstly, it seams to be more consistent with the collocation point
type enforcement of the Kirchhoff constraint of the WK-TAN/ROT element formulations. Sec-
ondly, for the SK/WK-ROT element formulations, i.e. the Kirchhoff formulations with rotation
vector triad parametrization at the boundary nodes, the norm of the tangent vectors t̂1 and t̂2

at the boundary nodes are primary variables of the finite elements. For these variants, the pri-
mary variables can directly be set to t̂1 = t̂2 = 1 such that only one Lagrange multiplier per
finite element is necessary in order to enforce the constraint ||r′(ξ= 0)||= 1. Consequently, for
these variants, the formulation of the inextensibility constraint via (3.158) does not require more
degrees of freedom than the original variant, since only one additional Lagrange multiplier per
element is required and (approximately) one degree of freedom per element can be saved due to
the a priori knowledge t̂1 = t̂2 =1. Nevertheless, the resulting system is a saddle point system.

Finally, the application of such an inextensibility constraint shall briefly be motivated by means
of a numerical investigation: An initially straight beam with length l = 1.0, E = 2G = 1.0
is discretized by one third-order beam element. The resulting condition number of the tangent
stiffness matrix shall be investigated for two different slenderness ratios ζ1 = 102 (R = 10−2)
and ζ2 = 104 (R= 10−4). Thereto, the tangent stiffness matrices of the CJ element and the WK-
TAN element are evaluated for the straight undeformed configuration of the beam. In order to
yield a non-singular stiffness matrix, the Dirichlet boundary condition of a clamped end has been
considered. For simplicity, the problem has been restricted to 2D by proper additional Dirich-
let boundary conditions. For this configuration and the two investigated slenderness ratios, the
tangent stiffness matrix of the Reissner type CJ element yields condition numbers of 5·106 and
2·1011, respectively. These values have been approximated by the ratio of the highest and low-
est eigenvalue of the tangent stiffness matrix. In a similar manner, the corresponding condition
numbers for the WK-TAN element result in 2 · 105 and 2 · 109, respectively. As expected, the
condition numbers of the Reissner and Kirchhoff type element formulations are (approximately)
in the same order of magnitude. Furthermore, the condition number increases almost quadrati-
cally with the beam slenderness ratio. Condition numbers in the range of 1011 as observed for the
CJ element formulation and a slenderness ratio of ζ2 = 104 can be regarded as drastic challenge
for iterative linear solvers and as a severe limitation of the achievable computational accuracy.
Moreover, finer spatial discretizations will yield even higher condition numbers. Now, the situ-
ation shall be improved by combining the WK-TAN element with an additional inextensibility
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constraint. Applying the constraint (3.158) leads to an element stiffness matrix of the form:

kele,tot =

(
kele kTλε
kλε 0

)
. (3.159)

Here, the block kλε =drλε/dx̂ represents the linearization of the inextensibility constraint equa-
tion and kele is the counterpart to the stiffness matrix of the element formulation without inex-
tensibility constraint. In the straight, undeformed configuration (with λiε = 0 for i = 1, 2, 3),
the submatrix kele is identical to the element stiffness matrix of the corresponding Kirchhoff
beam element formulation without inextensibility constraint. Now, the condition number of the
submatrix kele can be improved by choosing proper scaling factors cε < 1. For the investigated
example, the scaling factor cε = (ζ1/ζ2)2 = 10−4 reduces the condition number of kele resulting
from the slenderness ratio ζ2 =104 from its initial value 2·1011 to the value 5·106 associated with
the slenderness ratio ζ1 without changing the final FEM solution. A scaling factor of cε = 10−8

even yields a condition number of 2 ·101. While the condition number increases quadratically
with the beam slenderness ratio, it increases (approximately) linearly with the scaling factor cε.
Reduced condition numbers is only one possible benefit of inextensible Kirchhoff type beam
element formulations. Further advantages can for example arise in terms of improved stability
properties of the employed time integration scheme (see also Section 3.3.4).

Remark: Since the scaling factor cε is directly applied to the residual vector, it in-
fluences not only the linear solver but also the performance of the nonlinear solver.
Consequently, for an optimal choice of the scaling factor cε, both aspects have to be con-
sidered and harmonized (see also Section 3.8.2.2 for a corresponding numerical test case).

Remark: Obviously, the inextensibility constraints (3.156) yield a linearized residual
with saddle point structure, which requires the application of a special class of itera-
tive linear solvers that are suitable for saddle point problems. However, in many cases, a
saddle-point system with good-natured submatrix kele might be preferable to a non-saddle
point system with strongly ill-conditioned matrix kele. Nevertheless, the collocation point
approach (3.156) can be regarded as one possible and very simple variant of enforcing
inextensibility. Within this thesis, this approach has been chosen in order to demonstrate
basic relationships and perform a first proof of principle. Future research work might for
example focus on the development of tailored Lagrange multiplier interpolations λε,h(ξ)
that allow for a computationally cheap, global condensation of the Lagrange multipliers in
order to avoid the saddle point structure of the global system of equations. Such constraint
localization approaches based on dual Lagrange multiplier spaces are e.g. employed in the
context of computational contact mechanics (see e.g. [173, 175, 231]).

3.7 Kirchhoff-Love Beam Elements Based on Reduced
Beam Theories

3.7.1 Residual vector of torsion-free element formulation
In this section, also the finite element realization of the torsion-free theory of Section 2.4.2,
in the following denoted as TF element, will be derived. It is completely defined by the beam
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centerline curve with the set of nodal degrees of freedom x̂TF = (d̂1T, t̂1T, d̂2T, t̂2T )T as well
as the set of nodal primary variable variations δx̂TF = (δd̂1T, δt̂1T, δd̂2T, δt̂2T )T . Applying the
Hermite centerline interpolation (3.39) to the weak form (2.139) yields:

rTF,d̂=

1∫
−1

[̄
vεF̄1+vκm+HTfρ

]lele
2
dξ−

1∫
−1

[
HT f̃ +vθ⊥m̃⊥

]lele
2
dξ−

[
HT fσ+vθ⊥mσ⊥

]
Γσ
=̇0,

m=EIκ, vκ=
||r′||2

[
H′TS(r′′)− H′′TS(r′)

]
− 2(H′T r′)⊗(r′×r′′)T

||r′||4
.

(3.160)

In the element residual vector (3.160), the MCS method has been applied for axial strain re-
interpolation with v̄ε and F̄1 being given by (3.124). Moreover, the vector vθ⊥ is given in (3.71).
As already mentioned, in contrast to standard geometrically exact beam formulations, (3.160)
will result in a symmetric tangent stiffness matrix (as long as no external moment contributions
are considered) and, moreover, a symmetric and constant mass matrix. Furthermore, it can com-
pletely abstain from rotational degrees of freedom, which leads to considerable simplifications
in the overall numerical algorithm (see also Section 2.4.2 for further details).

For the TF element, a linearization ∆rTF = kTF∆x̂TF based on the purely additive increment
vector ∆x̂TF :=(∆d̂1T,∆t̂1T,∆d̂2T,∆t̂2T)T will be employed (see Appendix B.9). Based on the
definitions of κ=g1×g′1 and δθ=g1×δg1, the identity δκTκ=δθ′κ can easily be shown. This
allows to replace the variation δκ by δθ′ in the weak form (2.139). In this case, the vector vκ has
to be replaced with v′θ⊥ in (3.160). Although, both variants yield identical residual vectors and
stiffness matrices, the latter allows to formulate the stiffness matrix in a more compact form.

Remark: In Meier et al. [157], it has been shown how the IT element formulation can
be considerably simplified on the basis of proper approximations assuming small axial
strains ε� 1. For comparison reasons, also this formulation, in the following denoted as
TF+ST (Torsion-Free + Small Tension), will be considered in the numerical example of
Section 3.8.5. For details, the interested reader is referred to the original work [157].

3.7.2 Locking and conservation properties of torsion-free element
Since the TF element represents a special case of the SK-TAN element, the locking behavior
and the resulting conservation properties are similar. Thus, also for the TF element, an optimal
constraint ratio can be derived, and no membrane locking effects are expected. Furthermore, the
only difference between the Petrov-Galerkin variant SK-TAN and the Bubnov-Galerkin counter-
part SK-TAN+CS lies in the interpolation of the twist component of the spin vector field, which
results in exact conservation of linear momentum, angular momentum and energy for the latter
formulation but not for the former. Since this twist component is not present for the TF element,
it inherits these desirable three conservation properties from the SK-TAN+CS element.
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3.7.3 Residual vector of isotropic element formulation
Throughout this thesis, the static isotropic beam element formulation according to (2.134), de-
noted as IT element, will play a less important role as the TF element. Nevertheless, for compar-
ison reasons, it will also be applied to two of the following numerical examples and the residual
vector shall be briefly stated here. However, as already argued in Section 2.4.1, only the static
variant of this formulation will be considered here. The following set of nodal degrees of free-
dom x̂TF = (d̂1T, t̂1T, K̂1

1 , d̂
2T, t̂2T , K̂2

1)T as well as the set of nodal primary variable variations
δx̂TF =(δd̂1T, δt̂1T, δΘ̂1

1, δd̂
2T, δt̂2T , δΘ̂2

1)T will be employed for this element. Based on the Her-
mite centerline interpolation (3.39) and by introducing the additional linear interpolations

K1h(ξ)=
2∑
i=1

Li(ξ)K̂i
1 and δΘ̂1h(ξ)=

2∑
i=1

Li(ξ)δΘ̂i
1, (3.161)

and neglecting all inertia terms, the corresponding element residual vector can be derived in a
very similar manner as for the SK-TAN element or for the TF element presented above.

3.8 Numerical Examples
In this section, the previously proposed beam element formulations will be investigated numer-
ically by means of proper test cases. All simulations results presented in this thesis rely on a
software implementation of the proposed finite element formulations and numerical algorithms
within the in-house finite element research code BACI (cf. Wall and Gee [222]), developed
jointly at the Institute for Computational Mechanics at the Technical University of Munich.
While most of the numerical examples (see Sections 3.8.1-3.8.8) are considered as quasi-static
problems, eventually, in Sections 3.8.9 and 3.8.10, also two dynamic test cases are investigated.
In a first step, these numerical examples aim to verify the principle applicability and accuracy
of the proposed general and reduced Kirchhoff-Love beam element formulations in the range
of different beam slenderness ratios. This verification process crucially relies on detailed com-
parisons with analytic reference solutions, benchmark tests known form the literature as well as
numerical reference solutions generated by means of well-established geometrically exact beam
element formulations of Simo-Reissner type. More specifically, also the essential requirements
formulated in Section 1.2.2.2 such as objectivity and path-independence, avoidance of locking
effects, consistent spatial convergence behavior as well as the fulfillment of conservation prop-
erties will be verified for the different beam element formulations presented in Sections 3.3-3.7.
Finally, based on the arguments given in Section 3.3.4, the focus will also lie on detailed com-
parisons of Reissner and Kirchhoff type beam element formulations for example with respect to
the resulting discretization error level or the performance of the Newton-Raphson scheme.

Since the Kirchhoff type beam element formulations based on a tangent-based triad parametriza-
tion and the formulations based on a rotation vector-based triad parametrization (compare e.g.
Sections 3.4.1 and 3.4.2 or Sections 3.5.2 and 3.5.3) have been shown to yield identical FEM so-
lutions, only the former category will be investigated with respect to spatial discretization errors.
Furthermore, for all examples without analytic solution, the standard choice for the reference
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solution rref (see also (3.105) of Section 3.2.4.4) is a numerical solution via the WK-TAN ele-
ment (see Section 3.5.2) employing a spatial discretization that is by a factor of four finer than
the finest discretization shown in the corresponding convergence plot. In order to achieve a good
comparability among the different geometries and load cases, a standard set of geometrical and
constitutive parameters has been applied in all simulations unless stated otherwise. This standard
set consists of a beam with initial length l= 1000 and square cross-section with side length R.
These parameters lead to a cross-section area of A = R2 and to moments of inertia of area of
I2 = I3 =: I =R4/12 and IT =R4/6. Different beam slenderness ratios ζ := l/R are generated
by varying the value R= 0.1, 1.0, 10, 100 of the cross-section side length. The standard choice
for the constitutive parameters is E = 1.0 and G = 0.5, thus leading to EI = GIP = R4/12.
For all numerical examples considered in the following sections, a Newton-Raphson scheme
based on consistent linearization has been applied in order to solve the set of nonlinear equa-
tions resulting from the temporally and spatially discretized weak form of the balance equations
(see Section 3.2.1 for further details). As indicated in Section 3.2.1.2, for convergence, both
of the two criteria ||R(Xk+1

n+1)|| < δR and ||∆Xk+1
n+1|| < δX have to be fulfilled. Typical conver-

gence tolerances chosen for the subsequent examples are in the range of δX = 10−8 as well as
δR =10−7, 10−9, 10−11, 10−13 for the slenderness ratios ζ=10, 100, 1000, 10000.

3.8.1 Example 1: Verification of objectivity
The objectivity of the Kirchhoff beam element formulations proposed in Sections 3.4 and 3.5
has already been proven theoretically. In order to verify these results numerically, the follow-
ing test case will be investigated (see Figure 3.6(a)): At the clamped end of an initially curved
beam with slenderness ratio ζ = 10, whose stress-free centerline configuration equals a quar-
ter circle, a Dirichlet rotation with respect to the global x-axis is imposed. For the presented
quasi-static example, a total rotation angle of 20π, increasing linearly over 100 load steps, is
prescribed. In order to investigate objectivity, the normalized internal (hyperelastic) energy is
plotted over the total number of rotations (see Figure 3.6(b)) for the WK-TAN and SK-TAN
element as well as for the Bubnov-Galerkin variant of the SK-TAN element formulation with
Consistent Spin (SK-TAN+CS) vector interpolation according to (3.122). For comparison rea-
sons, also the non-objective SR Kirchhoff beam element formulation investigated in Meier et
al. [156] will be considered (see also the last but one remark at the end of Section 3.2.3.4). For
clearness, the internal energy Πint is normalized by the factor Πint,r = 0.5EIπ2/(4l), which is
equal to the amount of mechanical work that is required to bend the initially stress-free quarter
circle into a straight beam by means of a discrete, external end-moment. Of course, the internal
energy should vanish for a beam that is merely rotated out of its stress-free initial configuration.

From Figure 3.6(b), it becomes obvious, however, that the internal energy of the SR formulation
increases over the number of rotations, which is a clear indication for the already theoretically
predicted non-objectivity. Within 10 rotations, the normalized energy reaches a value of almost
Πint,r/4, which results in a clearly visible deformation of the initial quarter circle. On the con-
trary, the internal energy of all the other investigated element formulations results in a value
that is zero up to machine precision. Finite element formulations based on such interpolation
schemes as the investigated SR element might show reasonable results for static test cases (see
e.g. [156]). However, especially in dynamic problems involving considerable rigid body motions,
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(a) Problem setup. (b) Internal energy due to imposed rigid body rotation.

Figure 3.6: Objectivity test: Rigid body rotation of an initially stress-free quarter circle.

non-physical results as well as a drastic deterioration of the conservation properties investigated
in Section 3.2.4.5 can follow from the application of such element formulations.

3.8.2 Example 2: Pure bending in 2D
The examples shown in this section exclusively focus on 2D geometries and load cases. The
section is sub-divided into two subsections: In Section 3.8.2.1, two load cases, a pure pending
case as well as a combined moment-and-force load case, yielding geometrically nonlinear, but
still moderate centerline deformations, are considered. This section aims at the investigation of
membrane locking effects and at the comparison of different anti-locking tools, especially of
the MCS method proposed in Section 3.2.4.3. In Section 3.8.2.2, again a pure bending and a
combined moment-and-force load case will be considered. However, due to higher load factors,
the resulting degree of deformation is further increased as compared to the examples of Sec-
tion 3.8.2.1. This higher degree of deformation reveals clear differences in the approximation
quality of the WK and SK Kirchhoff beam element variants. Besides the comparison of these
two variants, also a first proof of concept for the development of higher-order Hermitian Kirch-
hoff elements and inextensible Kirchhoff beam elements is given in this section.

3.8.2.1 Comparison of different anti-locking methods

An initially straight beam is clamped at one end. Two different load cases will be analyzed: The
first load case M is identical to the example analyzed in Section 3.2.4.3 and solely consists of a
discrete end-moment M = (0, 0,M)T applied in one load step. The moment M = EIπ/(2l)
exactly bends the beam into a quarter-circle shaped arc. In the second load case M+F, the end-
moment and an additional tip force F = (0, F, 0)T in global y-direction are applied in one load
step. The initial and deformed geometries for these two load cases are illustrated in Figure 3.7.
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3 Finite Element Formulations for Geometrically Exact Beams

(a) Straight beam bent by end-moment. (b) Straight beam bent by end-moment and -force.

Figure 3.7: Initial and deformed configuration of an initially straight beam for two load cases.

While the standard parameters and the slenderness ratios ζ=10, 100, 1000, 10000 have been cho-
sen for the load case M, only the highest and therefore most critical slenderness ratio ζ=10000
in combination with an external force of F = 1.0 · 10−10≈ 10M/l has been investigated for the
load case M+F. In a first step, the SK-TAN element formulation according to (3.123) is applied
in combination with a full Gauss-Legendre integration (”SK-TAN-FI“) with nG = 4, a reduced
Gauss-Legendre integration (”SK-TAN-RI“) with nG= 3, a classical assumed natural strain ap-
proach (”SK-TAN-ANS“) as well as the MCS method according to (3.124) based on nG = 4
integration points (”SK-TAN-MCS“) (see Section 3.2.4.3 for further details on these variants).

In Figure 3.8(a), the relativeL2-error of the load case M and different slenderness ratios is plotted
with respect to an analytic reference solution. For spatial discretization, the variant SK-TAN-FI
based on meshes with 1, 2, 4, 8, 16, 32 and 64 elements has been applied. As already indicated
by the deformed shapes illustrated in Figure 3.4(b) of Section 3.2.4.3, the convergence is slowed
down dramatically with increasing slenderness ratio. If the beam is e.g. discretized by one fi-
nite element (lele = 1000), the relative error increases almost by two orders of magnitude when
enhancing the slenderness ratio from ζ = 10 to ζ = 10000. However, Figure 3.8(a) also reveals
that this effect decreases with decreasing element sizes and almost completely disappears for
discretizations with more than 32 elements. The reason for this behavior lies in the fact that the
element slenderness ratio ζele = lele/R is the key-parameter for the observed locking effect and
that the latter also decreases with decreasing element sizes. However, for typical engineering
applications with relative error bounds in the range of 1%, the effect is by no means negligible.
For sufficiently fine discretizations the expected convergence order of four is reached.

In Figure 3.8(b), the relative L2-error is plotted for the same slenderness ratios as before, but for
the variant SK-TAN-MCS, which is supplemented by the MCS method according to (3.124). As
expected, the locking effect completely disappears for all investigated slenderness ratios. How-
ever, as shown in Figure 3.8(c), for the load case M and the highest investigated slenderness ratio
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(a) Reference: Analytic, different slenderness ratios.
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(d) Reference: WK-TAN-MCS, ζ=10000.

Figure 3.8: Straight beam subject to the load cases M and M+F: Relative L2-error.

of ζ=10000, the same effect can alternatively be achieved by applying a simple reduced integra-
tion procedure (variant SK-TAN-RI) or a classical ANS approach (variant SK-TAN-ANS). On
the contrary to load case M, Figure 3.8(d) reveals that no distinctive improvement of the locking
behavior can be obtained by these alternative methods for the load case M+F: Both the ANS
approach as well as the reduced integration scheme can only slightly alleviate the locking effect
in the range of rather coarse discretizations as compared to the variant SK-TAN-FI. The MCS
approach, however, completely eliminates the error offset due to membrane locking also for this
load case. The explanation for this observation is obvious and in agreement with the statements
of Section 3.2.4.3: Similar to the working principle of the MCS method, the reduced integration
scheme can alleviate locking effects by reducing the number of constraint equations.

Yet, as shown in Section 3.2.4.3, the MCS method leads to a lower number of constraint equa-
tions as compared to the simple reduced integration scheme, which makes the latter method less
effective. While the reduced integration scheme seems to be sufficient for the load case M, a
special case yielding symmetric curvature distributions within the elements, the more general
deformed configurations resulting from the load case F+M already demonstrate the limits of this
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3 Finite Element Formulations for Geometrically Exact Beams

simple method. On the other hand, the working principle of the standard ANS method does not
aim at a reduction of the number of constraint equations, but rather at an evaluation of the critical
axial tension term at selected collocation points with vanishing parasitic strains. In the geomet-
rically nonlinear regime of large deformations, the parameter space positions of these optimal
collocation points are deformation-dependent. Obviously, the load case M+F already leads to a
change in these positions up to an extent that almost completely destroys the working principle
and impact of the ANS method. Summing up, it is to say that based on these two examples the
proposed MCS method seems to be superior to standard methods such as reduced integration
or ANS in terms of locking avoidance when combined with the considered geometrically exact
Kirchhoff beam elements. In example 8 of Section 3.8.8, a further comparison of these different
anti-locking methodologies on the basis of a very general problem setting involving 3D defor-
mation states and an initially curved geometry will be presented, which will confirm this result.
For completeness, in Figures 3.8(c) and 3.8(d), also the L2-error of the WK-TAN-MCS element
based on a weak enforcement of the Kirchhoff constraint according to (3.155) has been plotted.
For the load cases M and M+F, this formulation yields a comparable convergence behavior and
discretization error level as the SK-TAN-MCS element. Next, it will be shown that this behav-
ior will change with increasing deformation. Throughout this thesis, the MCS method will be
employed per default and the abbreviation ...-...-MCS in the element name will be omitted.

3.8.2.2 Comparison of different element formulations

In the convergence plots investigated for the two load cases M and M+F, no noteworthy differ-
ences between the SK and WK element could be observed. In order to investigate the difference
in the two general approaches of enforcing the Kirchhoff constraint in a strong or in a weak
manner further in detail and to perform first comparisons with geometrically exact beam el-
ement formulations of Simo-Reissner type, two additional load cases will be considered (see
Figure 3.9): The first load case considered in this section, in the following denoted as M̃ , simply
increases the magnitude of the external moment by a factor of eight as compared to the previous
load case M, i.e. M̃ =8M , thus leading to a deformed geometry that is represented by a double
circle (see Figure 3.9(a)). Since the contribution of Simo and Vu-Quoc [208], this load case has
been established as a standard test case for geometrically exact beam element formulations. Fi-
nally, in a fourth load case, denoted as M̃+F̃ , the end-moment M̃ = 8M is supplemented by a
tip force F = (0, F̃ , 0)T in global y−direction, whose magnitude is this time exactly chosen as
F̃ =10M̃/l=0.08M . The final configuration of this last load case is illustrated in Figure 3.9(b).

In Figure 3.10(a), the L2-error resulting from the load case M̃ has been plotted for the WK-TAN
and the SK-TAN element as well as for the Reissner type CJ beam element formulation pro-
posed by Crisfield and Jelinic [58, 116] and presented in Section 3.3. Here, discretizations with
8, 16, 32, 64, 128 and 256 elements have been employed. These discretizations are comparable to
the load case M since similarly to that example, also here, the roughest discretization is based on
one finite element per 90◦-arc segment of the analytic solution. In order to enable a reasonable
comparison of different element formulations, here and in the following, the discretization error
will be plotted over the total number of degrees of freedom resulting from the respective finite
element discretization. Since no shear deformation is present for this example, the Reissner and
Kirchhoff type elements converge towards the same analytic solution. All element formulations
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(a) Straight beam bent by end-moment. (b) Straight beam bent by end-moment and -force.

Figure 3.9: Initial and deformed configuration of an initially straight beam for two load cases.
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(b) Reference: Analytic, energy error.

Figure 3.10: Straight beam and load case M̃ : convergence of L2- and energy error.

exhibit the expected optimal convergence order of four, indicated by the black dashed line. The
WK-TAN element shows the expected result that Kirchhoff element formulations can represent
the same discretization error level with less degrees of freedom as compared to the Reissner type
element formulation (see Section 3.3.4). Furthermore, for this example, it can even be shown that
the lines representing the discretization error of the WK-TAN element and of the CJ element for-
mulation would be almost identical if the discretization error was plotted solely over the degrees
of freedom associated with the centerline interpolation. Thus, the observable difference in Fig-
ure 3.10(a) is a pure result of the additional rotational degrees of freedom required for Reissner
type element formulations in order to represent shear deformation. Such a behavior is expected
for this pure bending example since the two considered element formulations can exactly rep-
resent the internal energy associated with a pure bending state (see Sections 3.3.2 and 3.5.4).
Consequently, the discretization error contribution stemming from the second term in (3.108)
vanishes, the finite element problem degenerates to a pure problem of polynomial curve approx-
imation represented by the first term in (3.108) and, thus, the discretization error plotted over
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3 Finite Element Formulations for Geometrically Exact Beams

the number of centerline DoFs yields similar results for the Lagrange centerline interpolation of
the Reissner type element and the Hermite centerline interpolation of the Kirchhoff type element.

The situation is completely different for the SK-TAN element, which cannot exactly represent
the internal energy associated with a pure bending state. A closer investigation would confirm
the expected result that the SK-TAN element exhibits a remaining error in the length-specific hy-
perelastic stored energy (2.100), which is more or less constant along the beam length. Based on
this finding, it can easily be answered why the discretization error level of the SK-TAN element
applied to the load case M̃ is considerably increased as compared to the first load case M (while
an identical level of the length-specific L2-error has been observed for the WK-TAN and the CJ
element): By the FEM, solely the distribution of the second centerline derivative r′′ is optimized
in order to yield a minimal energy error within the beam domain Ωl, while the centerline field r
itself is only constrained at the clamped end of the beam. Thus, with increasing distance from the
clamped end, the discretization error in the centerline field r, resulting from a two-fold integra-
tion of the (more or less) constant error in the second derivative r′′ along an increasing arc-length
segment, also increases. Consequently, by assuming comparable errors in the length-specific en-
ergy for comparable discretizations (i.e. the same number of finite elements representing the
same angle segment of the analytic solution), a higher length-specific discretization error is ex-
pected for the load case M̃ as compared to the load case M. Figure 3.10(b) confirms the expected
result that the energy error of the SK-TAN element does not vanish for this example and exhibits
a convergence order of four. Furthermore, it is shown that the length-specific energy error ”av-
eraged” along the entire beam length is identical to the length-specific energy error ”averaged”
only along the first eighth of the beam (representing a quarter circle). As consequence of the
error accumulation described above, the length-specific L2-error is lower (and similar to load
case M) if it is only ”averaged” along the first eighth of the beam (see Figure 3.10(a)).

From a rather mathematical point of view, the increased discretization error level of the SK-
TAN element can be explained by a high level of the second, energy-related term in (3.108) that
dominates the overall discretization error. This behavior, in turn, is a pure consequence of the
fact that the two exponents k+1 and 2(k−m+1) in (3.108) are identical for trial functions of
polynomial degree k = 3. However, for polynomial degrees k > 3, the second term in (3.108)
is expected to converge with a higher rate and consequently, for sufficiently fine discretizations,
the first term reflecting the pure polynomial approximation power will determine the overall dis-
cretization error level. In this range, a lower discretization error per DoF can be expected for the
Kirchhoff type beam element formulations independently of the beam length, the complexity of
the deformation state or the type of boundary conditions. For a first proof of principle, in Fig-
ure 3.11(b), the L2-error resulting from the CJ element with fifth-order Lagrange interpolation
as well as from the SK-TAN element based on a fifth-order Hermite interpolation are depicted:
While for very rough discretizations, the energy-related error contribution with higher conver-
gence rate still seems to dominated the overall discretization error of the SK-TAN element, the
expected optimal gap between the Reissner discretization error (higher level) and the Kirchhoff
discretization error (lower level) can be observed. For comparison reasons, in Figure 3.11(a), the
results of the corresponding third-order variants of Figure 3.10(a) are repeated. Since this thesis
focuses on the development of third-order Kirchhoff beam elements, no further details on the
construction of higher-order Hermite polynomials (either by introducing additional nodes or by
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considering higher-order derivatives) will be given at this point. However, it is expected that a
comparable behavior as illustrated in Figure 3.11(b), can also be achieved for the other test cases
considered throughout this thesis, if fifth-order SK and WK elements are employed. A detailed
investigation of general geometrically exact beam element formulations of Kirchhoff-Love type
with polynomial degree k>3 will be considered in future research work.
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(a) Reference: Analytic, third-order elements.
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Figure 3.11: Straight beam and load case M̃ : convergence of third- and fifth-order elements.

Eventually, also the convergence behavior of the fourth load case shall be investigated. In Fig-
ures 3.12(a) and 3.12(b) the L2-error of the CJ, the WK-TAN and the SK-TAN element is plotted
for the two beam slenderness ratios ζ = 100 and ζ = 10000. Since no closed-form analytic so-
lution has been available for this example, a numerical reference solution based on the element
formulation of Crisfield and Jelenić has been employed. As a consequence of shear deformation
induced by the tip force F̃ , the result derived from the Reissner and Kirchhoff type beam element
formulations will differ in the limit of very fine discretizations h→ 0. This ”model error” of the
shear-free Kirchhoff elements becomes visible in form of a kink in the convergence diagram
and a certain cutoff error level that remains constant even for arbitrarily fine discretizations. As
expected, the model difference between the Simo-Reissner and the Kirchhoff-Love beam theory
decreases with increasing beam slenderness ratio, a property that is reflected by a lower cutoff
error level for the higher slenderness ratio ζ = 10000. For the lower slenderness ratio ζ = 100,
the relative error distinguishing the Kirchhoff from the Reissner solution lies below 10−3, which
can be assumed as reasonable approximation for many engineering applications. For the high
slenderness ratio ζ = 10000, the relative error between these two models is smaller than 10−7.
For the investigated cases of ζ= 100 and ζ= 10000, the cutoff error scales almost quadratically
with the slenderness ratio, which would be the expected result for the displacement solution of
the geometrically linear theory. This result is quite remarkable for this highly nonlinear example.

Despite the fact that the Simo-Reissner formulations yield the more general solutions, which
also contain the effects of shear deformation, the Kirchhoff type WK-TAN element formulation
will be considered as numerical reference solution throughout this thesis (see Figures 3.12(c)
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(a) Reference: Crisfield & Jelenić, ζ=100.
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(b) Reference: Crisfield & Jelenić, ζ=10000.
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(c) Reference: WK-TAN, ζ=100.
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(d) Reference: WK-TAN, ζ=10000.

Figure 3.12: Load case M̃+F̃ : L2-error for different element formulations.

and 3.12(d) for illustration). Such a procedure seems to be sensible, since within this thesis, the
convergence behavior of the Kirchhoff type elements and not of the Reissner type elements shall
be studied. Nevertheless, the model error of the Kirchhoff type beam elements is still observ-
able, but this time in form of a kink and a remaining cutoff error level in the convergence plots
of the Reissner type formulation. From Figures 3.12(c) and 3.12(d), it can again be observed
that all element formulations exhibit the expected convergence rate of four, that the error level
of the SK-TAN element lies slightly above and that the error level of the WK-TAN element lies
below the error level of the CJ element. Furthermore, also the variant SK-TAN-IE of the SK-
TAN element that has been supplemented by an additional inextensibility constraint according
to Section 3.6, has been considered in these plots. Within its range of applicability, this element
yields similar results as the original SK-TAN element and a cutoff error as compared to the ex-
tensible Kirchhoff variants which lies in the same range as the cutoff error between Kirchhoff
and Reissner formulations. Thus, it represents a reasonable next step of model reduction aiming
at improved numerical properties. As mentioned in Section 3.6, the inextensibility constraint can
be combined with all element formulations considered in this thesis. Here, only a first proof of
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principle should be given. Further investigations on the construction of inextensible Kirchhoff
beam elements and their numerical properties will be addressed in future research work.
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(a) Reference: WK-TAN, ζ=100.

10
1

10
2

10
3

10
4

degrees of freedom

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

||
e
||

e
,r

e
l

WK-TAN

SK-TAN

 4 th  order

(b) Reference: WK-TAN, ζ=10000.

Figure 3.13: Load case M̃+F̃ : Energy-error for different element formulations.

While the WK-TAN element was able to exactly represent the internal energy of the load case
M̃ , now, for the load case M̃+F̃ , the energy convergence of the formulations WK-TAN and SK-
TAN can be compared (see Figures 3.13(a) and 3.13(b) for the two slenderness ratios ζ = 100
and ζ= 10000). Both element formulations exhibit the expected convergence order of four, and
similar to the load case M̃ , the WK-TAN element yields a better approximation of the internal
energy than the SK-TAN element. This is observable in form of a lower energy error level in
Figures 3.13(a) and 3.13(b) and the reason for the lower L2-error level visible in Figures 3.12(c)
and 3.12(d). A possible explanation for the better performance of the WK-TAN element may be
found by considering the interaction of the employed translational and rotational interpolation
schemes: As shown in Section 3.5.4, the number of unknowns equals the number of equations
required for the WK-TAN element to (energetically) represent a pure bending state. This means
that an exact representation of the internal energy associated with states of constant axial tension,
bending curvature and torsion is possible. This property does not hold for the SK-TAN element
(see e.g. Section 3.4.3), where the corresponding system of equations that has to be fulfilled
for representing a pure bending state is slightly over-constrained. While the difference between
the WK and the SK elements in the L2-error level is expected to vanish with higher-order trial
functions, such an effect can in general not be predicted for the energy error. Eventually, it has to
be mentioned that for both the L2-error as well as the energy error plots of the load case M̃+F̃ ,
no difference between the slenderness ratios ζ = 100 and ζ = 10000 is evident, which again
underlines the successful avoidance of membrane locking and the effectiveness of the MCS
method. Finally, also the performance of the Newton-Raphson scheme shall be investigated and
compared between Kirchhoff and Reissner type element formulations (see Figure 3.14). Since
the computationally expensive steps of solving a nonlinear system of equations and evaluating
the tangent stiffness matrix have to be conducted in every Newton iteration, a reduction in the
total number of Newton iterations niter,tot as defined in (3.34) would considerably increase the
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overall efficiency of the numerical algorithm. In Figures 3.14(a) and 3.14(b), the total number
of Newton iterations niter,tot of the load case M̃+F̃ in combination with slenderness ratios of
ζ = 100 and ζ = 10000 has been plotted for the element formulations CJ, WK-TAN, SK-TAN,
WK-ROT and SK-ROT and different spatial discretizations. While the final FEM solutions have
been shown to be independent from the choice of nodal rotation parametrization, the number
of Newton iterations required for the SK/WK-ROT and SK/WK-TAN variants might differ con-
siderably. Therefore, also the Newton performance of these variants has been investigated. For
solving the highly nonlinear beam problem, the load step adaption scheme presented in Sec-
tion 3.2.1.3 based on an initial number of N0 =2 load steps has been employed.
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(b) High slenderness ratio: ζ=10000.
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(c) Moderate slenderness ratio: ζ=100.
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Figure 3.14: Load case M̃+F̃ : Total number of Newton iterations.

By comparing Figures 3.14(a) and 3.14(b), one realizes that the Newton performance of the
Kirchhoff type element formulations is rarely influenced by the considered slenderness ratio,
while the number of Newton iterations required by the Reissner element increases drastically
with increasing slenderness ratio. Furthermore, it seems that the SK/WK-TAN variants require
fewer Newton iterations than the SK/WK-ROT variants. These trends will be confirmed, and
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even more pronounced, in more general 3D examples presented in subsequent sections. Fur-
thermore, in Figures 3.14(c) and 3.14(d), the element SK-TAN is compared with its counterpart
SK-TAN-IE supplemented by an additional inextensibility constraint according to Section 3.6.
Accordingly, the pure consideration of an additional inextensibility constraint does not seem to
lead to a noteworthy change in the Newton performance within the considered range of slender-
ness ratios. As mentioned in Section 3.6, in order to take advantage of the inextensible formu-
lation in terms of conditioning, it is recommended to scale the axial tension residual terms by
means of a proper factor cε. In Figure 3.14(d), the required number of Newton iterations resulting
from scaling factors cε = 10−4, cε = 10−6 and cε = 10−8 is plotted: A factor of cε = 10−4 leads
to no noteworthy change in the Newton performance, a factor of cε = 10−6 to a visible increase
of niter,tot and a factor of cε = 10−8 to a drastic increase of niter,tot. This behavior seems to be
reasonable since a too ”soft” stiffness contribution stemming from the axial tension terms might
be contradictory to the inextensibility constraint, which can be interpreted as an infinitely stiff
contribution. Nevertheless, scaling factors up to cε = 10−4 seem to be sensible, since the New-
ton performance is not influenced in this range, and the condition number of the submatrix kele
in (3.159) can already be decreased considerably (namely by a factor of cε). Of course, a further
improvement of the condition number could be achieved by applying proper preconditioning
operations, which only influence the linear but not the nonlinear solver. As already mentioned
above, this 2D example only represents a first proof of concept for inextensible, geometrically
exact Kirchhoff beam elements. Further research work on this topic is intended.

In summary, the following conclusions can be drawn from the 2D examples considered in this
section: 1) The proposed Kirchhoff elements yield accurate results with acceptable model errors
for slenderness ratios of ζ ≥ 100 and a model error that decreases quadratically with increasing
beam slenderness ratio. 2) The expected convergence orders of four in the L2- as well as in the
energy error could be confirmed for all investigated Kirchhoff elements. 3) In combination with
the MCS method, none of the considered element formulations exhibited an influence of the ele-
ment slenderness ratio on the resulting discretization error. This result confirms the effectiveness
of the MCS method in the avoidance of membrane locking. 4) The discretization error level of
the WK-TAN element lies below the error level of the Reissner type element and also below the
error level of the SK-TAN element above. The increased error level of the SK-TAN element has
been shown to vanish with higher polynomial degree k > 3 of the trial functions. 5) While the
total number of Newton iterations required by the Reissner type element formulations consider-
ably increases with increasing beam slenderness ratio, the number of iterations remains more or
less constant for the Kirchhoff type formulations. These conclusions drawn from the considered
2D tests will be confirmed by the more general examples investigated in the following sections.

3.8.3 Example 3: Pure bending in 3D
In this section, the 3D extension of the pure bending examples (load cases M and M̃ ) investi-
gated in the last section will be considered. Again, the focus lies on an initially straight, clamped
beam of standard length l = 1000 investigated for the two different slenderness ratios ζ = 100
and ζ=10000. However, this time, the beam is loaded by a 3D end-moment M1 :=(M, 0,M)T ,
with M = 10 for ζ = 100 as well as M = 10−7 for ζ = 10000, which contains an additional
moment component in beam length direction inducing torsional deformation. For this load case,
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3 Finite Element Formulations for Geometrically Exact Beams

an analytic solution can be derived by means of the differential equations given in Section 2.3.4.
The initial and deformed configuration of this problem setting are illustrated in Figure 3.15(a).

(a) Straight beam loaded with a 3-dimensional discrete end-moment. (b) Helix-shaped beam.

Figure 3.15: Straight beam bent to a helix and helix-shaped beam bent to an inverse helix.

It can easily be verify that the differential equations (2.118) and (2.119) presented in Section
2.3.4 as well as the Dirichlet- and Neumann boundary conditions of this example are fulfilled by
an analytic solution which is characterized by the following representation:

r(s) = R0

 1√
2

(sin β + β)

(1− cos β)
1√
2

(β − sin β)

 with R0 =
EI

2M
and β =

s√
2R0

. (3.162)

This solution represents a helix whose mid-axis points into the (1, 0, 1)T -direction, viz. in the
direction of the applied external moment. The special parameter choice of this example leads to a
radiusR0 of the enveloping cylinder that is identical to the slope of the helix. In Figures 3.16, the
deformed centerlines are illustrated for ζ=100 and different magnitudes of the external moment.

(a) External moment M=10. (b) External moment M=20. (c) External moment M=70. (d) Top view.

Figure 3.16: Deformed shapes for different magnitudes of the applied 3-dimensional moment.

In Figure 3.17(a), the relative L2-error resulting from the two investigated slenderness ratios is
plotted for the element formulations CJ, WK-TAN and SK-TAN as well as spatial discretiza-
tions based on 8, 16, 32, 64, 128 and 256 elements. Again, all element formulations exhibit the
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expected convergence order of four and the discretization error level of the WK-TAN element
is lower, whereas the discretization error of the SK-TAN element is slightly higher than for the
CJ element. Furthermore, no visible difference can be observed between the discretization error
levels associated with the two different slenderness ratios. Due to the choice GIT =EI2 =EI3,
it can easily be verified that this example results in an analytic solution exhibiting vanish-
ing axial tension and shear deformation as well as a constant spatial and material curvature
vector along the entire beam pointing into the direction of the external moment vector, i.e.
k = K = M/(EI)(1, 0, 1)T = const. Thus, already the roughest discretizations of the CJ and
WK-TAN elements can exactly represent the hyperelastic stored energy function for this pure
bending case, which can be interpreted as a simple 3D patch test for geometrically exact beams.
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(a) ”Straight to helix“, reference: analytic.

10
1

10
2

10
3

10
4

degrees of freedom

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

||
e
||

2 re
l

SK-TAN, ζ=10 2

 4 th  order

(b) ”Inversion of helix“, reference: analytic.

Figure 3.17: Convergence plot of load cases ”straight to helix“ and ”inversion of helix“.

Finally, also the number of Newton iterations shall be investigated (see Figure 3.18). In order to
enable more general conclusions, this time, a second Reissner type beam element formulation,
which is based on a completely different triad interpolation scheme, has additionally been in-
cluded in the comparison. Concretely, this element represents an ”interpretation” formulated by
Crisfield [56] (see Chapter 17.2) of the original variant proposed by Simo and Vu-Quoc [208],
in the following denoted as SV element. This time, the load step adaption scheme presented in
Section 3.2.1.3 based on an initial number of N0 =10 load steps has been employed.

Similarly to the 2D case considered in the last section, the Newton performance of the Reissner
type element formulations drastically deteriorates with increasing slenderness ratio whereas the
performance of the Kirchhoff type elements remains unchanged (or is even slightly improved
in case of the WK/SK-TAN variants). Concretely, for the slenderness ratio ζ= 10000, all inves-
tigated discretizations of the WK/SK-TAN elements exhibit a remarkably constant number of
niter,tot = 140±4 iterations, while the total number of iterations required by the WK/SK-ROT
elements increases from niter,tot ≈ 500 to niter,tot ≈ 2000 with increasing number of elements
and the total number of iterations required by the Reissner type formulations is almost by two
orders of magnitude higher than for the WK/SK-TAN elements and lies constantly above a value
of niter,tot> 12000. Seemingly, the considerable difference between the WK/SK-TAN elements
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(a) Moderate slenderness ratio: ζ = 100.
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(b) High slenderness ratio: ζ = 10000.

Figure 3.18: Load case ”straight to helix“: Total number of Newton iterations.

and the Reissner type element formulations can be attributed to two different effects: Firstly,
the parametrization of nodal triads via tangent vectors seems to be more good-natured than the
parametrization based on nodal rotation vectors. This effect already gets visible as difference
between the WK/SK-TAN and the WK/SK-ROT variants and seems to be more or less indepen-
dent from the beam slenderness ratio. Secondly, the high stiffness contributions resulting from
the shear mode seem to considerably deteriorate the Newton convergence in the range of high
slenderness ratios: This effect becomes obvious as difference between the WK/SK-ROT ele-
ments and the Reissner type elements. The linearizations of all of these four elements are based
on multiplicative updates of nodal rotation vectors. This observation is emphasized by the two
elements types WK-ROT and CJ, which additionally exhibit the same triad interpolation. These
two elements only differ in the centerline interpolation (based on Lagrange or Hermite polyno-
mials), which is not expected to influence the Newton convergence in such a drastic manner, and
the fact that the WK-ROT element additionally enforces the constraint of vanishing shear strains.
Consequently, the avoidance of shear modes seems to be the main reason for the considerably
improved performance of the Kirchhoff type element formulations. Finally, the observation that
the total number of Newton iterations required by the WK/SK-ROT variants increases with in-
creasing number of elements is only of secondary practical interest since the discretizations
relevant for practical applications are located in the range of small element numbers (on the left
of Figure 3.18(b)). The observations made in Figures 3.18(a) and 3.18(b) and discussed so far,
will be confirmed by further 3D examples presented in subsequent sections.

This section shall be concluded by an extension of the example presented so far: Thereto, the in-
verse problem as shown in Figure 3.15(b) will be considered. For the inverse problem, the initial
geometry is already a helix according to (3.162). However, for the inverse problem, a slightly
different radius R̃0 = l/(9

√
2π)<R0 has been chosen. Since the length of the beam still has the

standard value of l=1000, a higher number of 4.5 loops along the helix results from this choice.
Again, one can verify by means of the differential equations (2.118) and (2.119) that the external
moment M2 := (−M2, 0,−M2)T with M2 = EI/(2R̃0) exactly bends the helix into a straight
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(a) Step t=0.0. (b) Step t=0.25. (c) Step t=0.50. (d) Step t=0.75. (e) Step t=1.0.

Figure 3.19: Inversion of a helix by an end-moment: Deformed shape at different load steps.

line (see Figure 3.19(c)). By doubling the magnitude of the external moment toM2 =EI/R̃0, the
helix is exactly inverted, i.e. the analytic solution for the deformed geometry has the same form
as for the initial geometry according to (3.162) (with R̃0 instead of R0), but with opposite sign
in the second vector component. Different deformation states for the latter case are illustrated in
Figure 3.19. The L2-error resulting for this example from the SK-TAN element has been plotted
in Figure 3.17(b), which yields the expected convergence order of four.

The examples considered in this section also clarify the relevance of the Frenet Serret interme-
diate triad field for analytical purposes (see Section 2.3.4), e.g. for the derivation of analytical
solutions via (2.118) and (2.119). Firstly, helical curves represent a distinguished class of solu-
tions for beams loaded with moments (see e.g. [3]). Secondly, this kind of solutions can easily
be represented with respect to the Frenet-Serret intermediate triad, since the centerline curva-
ture κhelix=const. and the torsion τhelix=const. of the intermediate triad field are constant.

Remark: For some of the discretizations investigated in Figure 3.18, solutions of the
SK-TAN element could already be found in one load step. However, since in these cases
no convergence could be achieved for simulations based on two or three load steps, the
solution of the problem by means of one load step can rather be regarded as a ”lucky shot”
than as a representative convergence behavior. In order to avoid a biased comparison
resulting from such effects, the initial number of load steps has been increased toN0 =10.
By this means and the load step adaption scheme of Section 3.2.1.3, an evaluation and
comparison process is intended that is as fair and objective as possible. Nevertheless, this
example shows that an absolute statement concerning the robustness of the nonlinear
solution scheme based on a single example / discretization and a deliberately chosen
”good-natured” step size, as sometimes done in the literature, is questionable. Here, the
degree of arbitrariness is intended to be minimized by employing an automated scheme
for determining the optimal load step size, by comparing the results of different test
cases, different discretizations, different element types (here Reissner and Kirchhoff type
beam elements) as well as different representatives for each element type. Furthermore,
in order to avoid biased results as consequence of incorrect linearizations, the results of
the Reissner type element formulations derived on the basis of an analytic representation
of the consistent tangent stiffness matrix have been verified by simulations on the basis
of a consistent tangent stiffness matrix derived via an automatic differentiation tool.
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3.8.4 Example 4: Verification of path-independence
In Section 3.2.4.2, the fundamental property of objectivity has already been verified for the pro-
posed Kirchhoff beam elements. In this section, it will be shown that these element formulations
are also path-independent, i.e. for beam problems whose analytic solution is independent from
a specific loading path, these beam element formulations also yield a discrete solution that is
independent from a specific loading path. As numerical test case for path independence, an ini-
tially straight clamped beam with initial length l = 1000 and slenderness ratio ζ = 100 (thus
R = 10) is considered that is loaded by an end-moment M = (0, 0,M)T , with the moment
M = 4EIπ/l ≈ 10.47 being defined such that it exactly bends the beam into a ”double-circle“,
and an additional end-force F = (0, 0, F )T , with F = 0.01≈M/l. Again, for comparison rea-
sons, also the case of an increased slenderness ratio ζ = 10000 with correspondingly adapted
loads M = 4EIπ/l ≈ 1.047 · 10−7 and F = 10−10 ≈M/l will be investigated. The problem
setup as well as the deformed configuration for this example are shown in Figure 3.20. In the
following, two different possibilities how to apply these tip loads are investigated: In a first load
case, the moment and the force are applied simultaneously (load case ”sim“), while, in a second
load case, the moment and the force are applied successively (load case ”suc“). In the latter case,
the external moment is increased linearly from zero to M in the pseudo-time interval t∈ [0; 0.5],
whereas the external force is increased linearly from zero to F within t ∈ [0.5; 1.0].

Figure 3.20: Problem setup: Initially straight beam bent by a discrete end-moment and -force.

The deformed shapes of both load cases have been plotted for the pseudo-time steps t = 0.25,
t = 0.5, t = 0.75 and t = 1.0 in Figure 3.21. Apparently, the two load cases lead to different
deformation paths, but to an identical final configuration. It contradicts intuition that this final
deformed configuration lies completely in the half space with z≤0, although the tip force points
into the positive z-direction. For the case of small forces F , this observation can easily be veri-
fied by deriving an analytical solution based on a linearization of equations (2.118) and (2.119)
with respect to the double-circle configuration resulting from the end-moment M . Furthermore,
this observation is in agreement with the results obtained in [107] and [16], where a similar ex-
ample based on a slightly modified parameter choice has been analyzed.

In order to investigate possible path dependence effects also in a quantitative manner, the rela-
tive L2-error has been calculated between the solution rh,suc of the load case ”suc“ for a certain
discretization and the solution rh,sim of the load case ”sim“ for the same centerline discretiza-
tion. Thus, basically the relative L2-error definition of equation (3.105) has been applied, with
rh = rh,suc and rref = rh,sim. The results obtained for the two different slenderness ratios and
the investigated element formulations CJ, SK-TAN and WK-TAN are illustrated in Figure 3.22.
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(a) Step t=0.25 (sim). (b) Step t=0.50 (sim). (c) Step t=0.75 (sim). (d) Step t=1.0 (sim).

(e) Step t=0.25 (suc). (f) Step t=0.50 (suc). (g) Step t=0.75 (suc). (h) Step t=1.0 (suc).

Figure 3.21: Deformed configurations for simultaneous (sim) and successive (suc) loading of an
initially straight beam with a moment M and a force F at different load steps.

Accordingly, for all investigated element types, discretizations and slenderness ratios, this error
vanishes up to machine precision, which verifies the path independence of these formulations.
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(a) Moderate slenderness ratio: ζ = 100.
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(b) High slenderness ratio: ζ = 10000.

Figure 3.22: L2-error between the load cases ”Simultaneously” and ”Successively”.

For completeness, Figure 3.23 represents the discretization error resulting from the CJ, SK-TAN
and WK-TAN elements for the considered slenderness ratios of ζ = 100 and ζ = 10000. There,
the observations already made in earlier examples with respect to convergence rate, discretiza-
tion error level and cutoff error between Kirchhoff and Reissner type element formulations are
confirmed. Similar to these earlier examples, also this test case involves an isotropic beam (i.e
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no initial curvature, quasi-circular cross-section shape with I2 = I3 =: I) and a 3D deformation
state with non-vanishing torsion and can consequently serve as test case for the isotropic Kirch-
hoff theory presented in Section 2.4.1 (see equation (2.134) for the corresponding weak form).
As expected, the resulting isotropic beam element formulation can represent this test case cor-
rectly and shows a convergence rate of four and a similar discretization error level as the variant
SK-TAN. The only reason why the discretization error level is slightly lower for the isotropic
than for the SK-TAN element lies in the twist interpolation, which only requires two DoFs for
the isotropic element but three DoFs for the SK-TAN element. In Section 3.2.3.4, the impor-
tance of a consistent torsion (3.64) of the intermediate triad field has been emphasized. Now, in
Figure 3.23(b), the discretization error for a variant (SK-TAN no KM1) has been plotted, where
exactly this torsion term has been neglected. Surprisingly, the resulting discretization error level
is identical to the ”correct” SK-TAN element formulation. How can this contradiction be ex-
plained? In order to answer this question, it has to be realized that the actual triad orientation
is not important for isotropic examples in order to yield a consistent centerline convergence. It
can easily be verified that only the mechanical torsion has to be represented correctly, which is
also the functional principle of the isotropic beam element. If the torsion of the intermediate triad
field is neglected, the total torsion is solely represented by the derivative of the relative angle field
ϕ(ξ). Consequently, the relative angle arises in a way such that the total torsion is represented
exactly, which in turn results in an inconsistent triad orientation. However, since for isotropic
beams, only the torsion, but not the triad orientation, enters the weak form, the final result for
the beam centerline is correct. Later in Section 3.8.6, it will be shown that the situation changes
for anisotropic beams, i.e. beams with initial curvature or with anisotropic cross-section shapes.
There, the neglect of the intermediate triad torsion will indeed lead to an inconsistent centerline
solution resulting in a decreased spatial convergence rate. Furthermore, this investigation ex-
plains why certain Kirchhoff element formulations available in the literature, which accidentally
neglect this torsion term, nevertheless produce correct results and consistent convergence rates
for the centerline solution as long as isotropic beam problems are considered.
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(a) Reference: WK-TAN, ζ = 100. (b) Reference: WK-TAN, ζ = 10000.

Figure 3.23: Path independence: L2-error for different element formulations.
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Finally, in Figure 3.24, again, the total number of Newton iterations required by the different el-
ement formulations is plotted for the load case ”sim” and the two investigated slenderness ratios.
Here, the load step adaption scheme presented in Section 3.2.1.3 based on an initial number of
N0 = 10 load steps has been employed. The obtained results are very similar to the last section:
The Newton performance of the Reissner type element formulations drastically deteriorates with
increasing slenderness ratio whereas the performance of the Kirchhoff type elements remains un-
changed. For the slenderness ratio ζ=10000, all investigated discretizations of the WK/SK-TAN
elements exhibit a remarkably constant number of niter,tot = 107±1 iterations, while the total
number of iterations required by the WK/SK-ROT elements increases from niter,tot ≈ 800 to
niter,tot ≈ 2500 with increasing number of elements. Again, the total number of iterations re-
quired by the Reissner type beam element formulations is almost by two orders of magnitude
higher than for the WK/SK-TAN elements and lies constantly above a value of niter,tot > 6000
for the CJ element formulation and niter,tot>7000 for the SV element formulation.
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(a) Moderate slenderness ratio: ζ = 100.
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(b) High slenderness ratio: ζ = 10000.

Figure 3.24: Load case ”Simultaneously“: Total number of Newton iterations.

3.8.5 Example 5: Beam with sinusoidal line load
In this section, an initially straight beam of length l = 1000 and slenderness ratio ζ = 10000
with support and loading conditions as illustrated in Figure 3.25(a) is considered. While the
left end of the beam is clamped, the right end only has two remaining degrees of freedom:
the displacement ux in x-direction and the rotation α with respect to the x−axis. The beam
is loaded with a constant axial line load as well as a ”rotating“ transverse line load given by
f̃(s)=(f̃x, f̃y, f̃z)

T=(f̃x, f̃⊥sinφ, f̃⊥cosφ)T, with f̃x/EI=f̃⊥/(2EI)=3.6·10−8 and φ=2πs/l.
The motivation for the investigation of this example is twofold: On the one hand, this is an exam-
ple that fulfills the restrictions of both reduced beam theories presented in Section 2.4 (isotropic
geometry and no external twisting moments). On the other hand, the resulting 3D and geomet-
rically nonlinear deformation state, the external loading by means of distributed line loads as
well as Dirichlet boundary conditions at both ends will yield very general beam configurations
for which the isotropic theory of Section 2.4.1 and especially the torsion-free beam theory of
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(a) Beam geometry and external loads.
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(b) L2-error, reference: WK-TAN, ζ = 10000.

Figure 3.25: Initially straight, slender beam loaded with a ”rotating” distributed lineload.

Section 2.4.2 can be verified. Therefore, this example represents an ideal test case for these for-
mulations. The deformed configurations at different load steps are illustrated in Figure 3.26.

In Figure 3.25(b), the relative L2-error of the CJ, SK-TAN and WK-TAN elements are plotted
for discretizations with 1, 2, 4, 8, 16, 32, 64 and 128 elements. All elements exhibit the expected
convergence order of four. The relative cutoff error between Reissner and Kirchhoff formulations
again lies in the range of 10−7. According to Figure 3.25(b), the discretization error levels of the
SK-TAN and the WK-TAN elements show no visible differences. The improved performance of
the SK-TAN element as compared to the last examples might be attributed to the employment
of Dirichlet conditions at both ends of the beam and to the fact that this example does not yield
deformed configurations exhibiting multiple loops of the beam centerline. Moreover, the general
SK-TAN element is compared with the reduced IsoTropic (IT) and the Torsion-Free (TF) ele-
ment formulation of Section 3.7. Additionally, also an approximation of the torsion-free element
based on the assumption of Small Tension (TF+ST) as derived in Meier et al. [157] (see also
the remark in Section 3.7) has been plotted. As expected, the variants IT and TF converge to the
correct solution since all of the requirements (2.128) and (2.136) are fulfilled for this example.
The slightly decreased discretization error is a direct consequence of the fact that these elements
require less (in case of the IT variant) or no (in case of the TF variant) degrees of freedom in
order to represent the twist field. Apparently, the variant TF+ST based on the ”small tension”
assumption cannot go below a relative error level of 1.0 ·10−8 for this example. This is exactly
the expected result: While the reduced models IT and TF are exact formulations which can
represent the correct analytic solution in case the corresponding restrictions concerning beam
geometry and external loads are fulfilled, the ”small tension” assumption of the variant TF+ST
is based on an approximation and consequently yields an approximate solution. However, the re-
sulting cutoff error lies below the model error between the Reissner and Kirchhoff formulations.
Thus, this approximation seems to be justified resulting in a very simple and efficient element.
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(a) Step t=0.0. (b) Step t=0.2. (c) Step t=0.4. (d) Step t=0.6. (e) Step t=0.8. (f) Step t=1.0.

Figure 3.26: Beam with a ”rotating“ lineload: Deformed configurations at different load steps.

This example also gives some interesting insight into the ”one-way“ coupling between bend-
ing and torsional moments in the geometrically nonlinear regime of isotropic beams: Despite
the non-constant bending moment vector m=EIκ(s) resulting from the three-dimensional de-
formed geometry of this example, the torsional moment vanishes at any position s along the
entire beam. Thus, the bending moment field does not influence the distribution of the torsional
moment. On the other hand, one can show that an additional external twist moment in global
x-direction applied at the beams right end would lead to a constant torsional moment along the
entire beam and to a change in the deformed centerline curve. This means that the torsional mo-
ment indeed influences the distribution of the bending moment. The term δθT⊥2GIK1κ of the
isotropic weak form (2.134) can be identified as the corresponding coupling term.

Finally, some comments concerning the applied twist boundary conditions shall be made. For the
static problem considered here, only the boundary conditions of type b) and type c) in (2.142)
can be employed. For the investigations made above, the twist boundary condition of type b) has
been applied, which was predicted to yield a state of vanishing torsion. This prediction has been
confirmed by observing that the torsion-free beam element formulation yields identical results as
the general Kirchhoff beam element formulations. On the other hand, twist boundary conditions
of type c), i.e. clamped twist DoFs at both ends of the beam, are expected to result in a state of
non-vanishing torsion. In order to verify this statement, the ratio <Mt>/<Mb> of the average
torsion moment <Mt> to the average bending moment <Mb> based on the definitions

<Mt>:=

√√√√√1

l

l∫
0

M2
t ds, <Mb>:=

√√√√√1

l

l∫
0

M2
b ds, (3.163)

has been determined numerically for both types of boundary conditions. Thereto, a very fine
finite element discretization with 512 CJ elements has been employed. This discretization is fine
enough to yield a ratio <Mt>/<Mb>≈ 0 that vanishes up to machine precision for the twist
boundary conditions of type b). On the contrary, the twist boundary conditions of type c) result
in a ratio <Mt>/<Mb>≈0.05, and consequently in an average torsional moment that is only by
one order of magnitude smaller than the average bending moment resulting from this load case.
These numerical results confirm the theoretical predictions made in Section 2.4.2.
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3.8.6 Example 6: Arc-segment with out-of-plane load
Besides the objectivity test in Section 3.8.1, all examples investigated in the previous sec-
tions were based on isotropic geometries, i.e. straight beams with quasi-circular cross-sections
EI2 =EI3. Now, an initially curved beam will be considered. The initial geometry is represented
by a 45◦-degree circular arc-segment with curvature radius r0 = 100 that lies completely in the
global x-y-plane and that is clamped at one end. The section constitutive parameters of the beam
result from a quadratic cross-section shape with side length R = 1 and a Young’s modulus of
E = 107 as well as a shear modulus of G = 0.5 · 107. This initial geometry is loaded by an
out-of-plane force f = (0, 0, fz)

T in global z-direction with magnitude fz = 600. This example
has initially been proposed by Bathe and Bolourchi [14] and can meanwhile be considered as
standard benchmark test for geometrically exact beam element formulations that has been in-
vestigated by many authors (see e.g. [12, 43, 55, 60, 71, 74, 106, 116, 187, 188, 199, 208]).
While the original definition of the slenderness ratio yields a value of ζ= l/R=100π/4 for this
example, a slightly modified definition of the slenderness ratio according to ζ̃ = r0/R= 100 is
employed in the following. For comparison reasons, also a second variant of this example with
increased slenderness ratio ζ̃=r0/R=10000, i.e. R=0.01, and adapted force fz =6 · 10−6 will
be investigated. The initial and deformed geometry of the problem are illustrated in Figure 3.27.

Figure 3.27: Arc-segment with out-of-plane force: Initial (red) and final (green) configuration.

In Tables 3.2 and 3.3, the tip displacements resulting from the two slenderness ratios and differ-
ent discretizations with WK-TAN and SK-TAN Kirchhoff type elements as well as with Reissner
type elements of Crisfield and Jelenić and Simo and Vu-Quoc are plotted. Due to rough spatial
discretizations, and in some cases also due to additional model simplifications, the correspond-
ing values derived in the literature for the case ζ̃ = 100 show a comparatively large variation.
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Formulation # Elements ux(l) uy(l) uz(l)
Crisfield & Jelenić 32 47.15044 15.68480 53.47486
Crisfield & Jelenić 8 47.15044 15.68480 53.47486
Simo & Vu-Quoc 8 47.14634 15.69146 53.47362
WK-TAN 32 47.15215 15.68535 53.47176
WK-TAN 8 47.15178 15.68510 53.47225
SK-TAN 8 47.15201 15.68557 53.47216

Table 3.2: Case ζ̃ = 100: tip displacement and relative error for different formulations.

Formulation # Elements ux(l) uy(l) uz(l)
Crisfield & Jelenić 32 47.15129 15.68508 53.46860
Crisfield & Jelenić 8 47.15129 15.68508 53.46860
Simo & Vu-Quoc. 8 47.14719 15.69174 53.46736
WK-TAN 32 47.15129 15.68508 53.46860
WK-TAN 8 47.15093 15.68482 53.46908
SK-TAN 8 47.15115 15.68530 53.46900

Table 3.3: Case ζ̃ = 10000: tip displacement and relative error for different formulations.

On the contrary, the deviation in the results displayed in Table 3.2 is smaller than 0.1% for all
investigated formulations. The fact that these results have been derived by representatives of
different beam theories, i.e. of the Simo-Reissner and of the Kirchhoff-Love theory, indicates
their correctness. While the Reissner and Kirchhoff values resulting from a discretization with
32 elements coincide up to the fourth significant digit for the case ζ̃ = 100, the corresponding
values are identical in all seven significant digits displayed for the case ζ̃=10000.
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(a) Reference: WK-TAN, ζ̃ = 100. (b) Reference: WK-TAN, ζ̃ = 10000.

Figure 3.28: Arc-segment with out-of-plane force: L2-error for different formulations.

147



3 Finite Element Formulations for Geometrically Exact Beams

The observations described above are also confirmed by the convergence plots in Figure 3.28.
All formulations yield the expected convergence orders, and, similar to the last example, the SK-
TAN element exhibits an identical discretization error level as the WK-TAN element, since again
no multiple centerline loops are involved for this example. Furthermore, similar to the example
of Section 3.8.3, also a variant (SK-TAN no KM1) has been investigated where the torsion of
the intermediate triad field has been omitted. While the omission of this term did not influence
the convergence order observed in Section 3.8.3, this inconsistency yields a decline in the con-
vergence rate from four to two for the anisotropic example considered here. This underlines the
importance of consistently considering this term (see also Section 3.8.3 for further explanation).
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(a) Number of Newton iterations for ζ̃ = 100.
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(b) Number of Newton iterations for ζ̃ = 10000.

(c) Number of load steps for ζ̃ = 100. (d) Number of load steps for ζ̃ = 10000.

Figure 3.29: Arc-segment with out-of-plane force: Number of Newton iterations and load steps.

Also for this example, the performance of the Newton-Raphson scheme will be evaluated. How-
ever, in order to enable a comparison with the values available in the literature, this time, not the
load step adaption scheme of Section 3.2.1.3 is employed, but the following alternative procedure
in order to determine the maximal constant load step size ∆t= const.: Starting with a scheme
based on one load step N0 =1, the number of load steps is increased by one, i.e. Nnew=Nold+1,
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in the range N = 1, ..., 10 and increased by increments of 10, i.e. Nnew=Nold+10, in the range
N > 10, until Newton convergence is achieved for all load steps. In order to avoid ”lucky shots”
(see the remark at the end of this section and also the remark in Section 3.8.3), a maximal load
step size and an associated minimal number of load steps Nmin is accepted only if also the next
incrementation step of the load step size according to the procedure described above leads to
Newton convergence for all load steps. In Figure 3.29, the total number of Newton iterations as
well as the minimal number of load steps Nmin resulting from the maximal constant load step
size are plotted for the two different slenderness ratios. The results are similar to the observa-
tions made in previous sections, however, with a smaller difference between the SK/WK-TAN
elements and the SK/WK-ROT elements. Concretely, the beam problem with slenderness ratio
ζ̃=100 is solved in 1 load step and a total of 8 iterations for the SK/WK-TAN discretizations, in
1-3 load steps and a total of 10-40 iterations for the SK/WK-ROT discretizations and in 7 load
steps and a total of 57-58 iterations for the discretizations based on Reissner type elements.

For the increased slenderness ratio ζ̃ = 10000, the problem is again solved in 1 load step and
a total of 8 iterations for the SK/WK-TAN discretizations, in 1-4 load steps an a total of 10-50
iterations for the SK/WK-ROT discretizations and in 30-60 load steps and a total of 350-450
iterations for the Reissner discretizations. In Table 3.4, the corresponding values reported in the
literature for the slenderness ratio ζ̃=100 are summarized. As already mentioned earlier, a direct
comparison of these results is difficult since it is not clear which procedure has been applied by
the different authors in order to determine the minimal number of Newton iterations (e.g. if it
was required that also ”subsequent refinement steps” have to be convergent or if, on the contrary,
also singular occurrences of convergence for special, good-natured loading paths were accepted).

Nevertheless, the numbers summarized in Table 3.4 should at least give a first impression on
the behavior of the Newton-Raphon scheme resulting from different finite element formulations.
Accordingly, only a few formulations can solve the problem in less than 20 iterations. Further-
more, for the case ζ̃=100, only the Reissner type formulation proposed in [117] and investigated
in [116] yields a lower number of Newton iterations than the SK/WK-TAN elements. However,
as shown in [116], this beam element formulation is non-objective and path-dependent. More-
over, for all examples investigated so far, the real advantage of the Kirchhoff type formulations
occurred especially for the high slenderness ratio ζ̃= 10000, which has not been investigated in
the literature. For the range of moderate and high slenderness ratios, it can be concluded that the
proposed Kirchhoff beam elements can be considered as very robust and efficient formulations
as compared to many (Reissner type) alternatives from the literature.

Remark: Maybe the reader is wondering why the SV element, which is an interpretation
of the element proposed in [208], based on an identical discretization with eight first-
order elements as investigated in [208], required more Newton iterations than reported in
that reference. Actually, also in the numerical tests performed here, the nonlinear problem
resulting from a discretization with eight first-order SV elements could be solved in three
load steps. However, since a subsequent simulation based on four load steps was not
convergent, the procedure for the avoidance of ”lucky shots” as explained above has been
applied, thus leading to minimal values of 7 load steps and 52 Newton iterations.
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Reference Elements Nmin niter,tot Remark
[60] 8 first-order 6 - Number of iterations has not been reported.
[208] 8 first-order 3 27 -
[43] 8 first-order 6 47 -
[199] 8 first-order 3 30 Application of a standard Newton scheme.
[199] 8 first-order 2 11 Application of an accelerated Newton scheme.
[14] 8 first-order 60 - Number of iterations has not been reported.
[55] 8 first-order 3 16 -
[116] 8 first-order 1 4 Non-objective variant proposed in [117].
CJ 8 first-order 7 59 Objective variant proposed in [116].
CJ 8 third-order 7 58 Objective variant proposed in [116].
SV 8 first-order 7 52 Interpretation of the formulation of [208].
SV 8 third-order 7 58 Interpretation of the formulation of [208].
SK-TAN 8 third-order 1 8 Kirchhoff type beam element formulation.
WK-TAN 8 third-order 1 8 Kirchhoff type beam element formulation.
SK-ROT 8 third-order 1 24 Kirchhoff type beam element formulation.
WK-ROT 8 third-order 2 30 Kirchhoff type beam element formulation.

Table 3.4: Low slenderness ratio ζ̃ = 100: Number of load steps as well as number of Newton
iterations reported in the literature (top) and determined in this thesis (bottom).

3.8.7 Example 7: Instability of a circular ring
In this section, again a beam with 2D curved initial geometry, but this time in form of a closed
circular ring is considered. This test case has e.g. been investigated in [187] and [211] and ini-
tially been proposed in [171]. An initially stress-free, closed circular ring with radius R0 is
exposed to prescribed rotation angles θ1 = (−θ, 0, 0)T at the material point with initial coordi-
nate (R0, 0, 0)T and θ2 =(θ, 0, 0)T at the material point with initial coordinate (−R0, 0, 0)T (see
Figure 3.30(a)). The rotation angle θ is increased linearly from zero to θ=180◦ within 180 load
steps. In order to allow for comparability, identical geometrical and constitutive parameters have
been chosen as in [187] and [211]. Concretely, the elastic ring is characterized by a radius of
R0 = 20, a rectangular cross-section with width b=1/3 and height h=1 (I2≈3.086 · 10−3 and
I3≈2.778 · 10−2) and a considered torsional moment of inertia of IT =9.753 · 10−3. As material
parameters, a Young’s modulus of E=21 · 106 and a Poisson’s ratio of ν=0.3 has been chosen.
In the following, this test case will exemplarily be simulated by means of the SK-TAN element.

It is shown in [171] that the analytic solution for this problem is a plane circular ring with
radius R0/3 as illustrated in Figure 3.30(a). The deformed configurations at different load steps
are shown in Figure 3.30(b). In Figure 3.31(a), the analytical solution as well as the numerical
results for the reaction moment M that is necessary to prescribe the rotation θ is plotted over the
devolution of θ. The numerical and analytical results are in excellent agreement. Additionally, in
Figures 3.31(b)-3.31(d), the numerical results for the displacement components of the material
point P with initial coordinate (0, R0, 0)T are shown (see also [187]). All numerical results have
been determined for two different discretizations with 16 and 32 SK-TAN elements, respectively.
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(a) Instability of a circular ring: Problem setup. (b) Configurations at different load steps.

Figure 3.30: Deformation of an elastic ring: Problem setup and deformed configurations.

(a) Reaction moment M . (b) Displacement of P in x-direction.

(c) Displacement of P in y-direction. (d) Displacement of P in z-direction.

Figure 3.31: Load-rotation-curve of reaction moment M and displacement of material point P .

The results of both discretizations show only minor differences for all plots. The critical point in
Figure 3.31(a), characterized by a horizontal tangent in the load-displacement curve, indicates a
mechanical instability, thus, yielding a challenging test case for the employed element.
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3.8.8 Example 8: Helix loaded with axial force
In the last static example considered in this chapter, the generality of the initial geometry shall
be further increased: A helix with linearly increasing slope, clamped at one of its ends, is loaded
with a discrete end-force F = (0, 0, F )T (see Figure 3.32 for illustration).

Figure 3.32: Helix with varying slope loaded with discrete force: Problem setup.

The initial geometry of the helix can be described via the following analytic representation:

r0(β)=R0

 sin β
cos β−1

6
81π2β

2

, R0 =
l

6
√(

3π
4

)2
+1+ 27π2

8
ln

(
4

3π
+
√

1+
(

4
3π

)2
) ≈ 34.36. (3.164)

The radius R0 of the enveloping cylinder of the helix is chosen such that the helix exactly con-
sists of 4.5 loops, i.e. β ∈ [0; 9π], along the standard length of l = 1000. Also this example is
investigated for two different slenderness ratios ζ = 100 and ζ = 10000 with associated axial
forces F =2·10−1 as well as F =2·10−9. The ratio of these forces is chosen identical to the ratio
of the bending stiffnesses of the cases ζ1 =100 and ζ2 =10000 leading to the comparable values
uz,max,1≈267 and uz,max,2≈266 for the maximal tip-displacement in z-direction.

In Figure 3.33, the resulting relative L2-error of the CJ, SK-TAN and WK-TAN element is plot-
ted for discretizations with 16, 32, 64, 128, 256 and 512 elements. All element formulations show
the expected convergence rate of four, the discretization error level of the WK-TAN element is
slightly lower than the discretization error level of the SK-TAN element. However, both dis-
cretization error levels lie below the error level of the Reissner type CJ element.

In Figure 3.34, the different anti-locking approaches already investigated for the 2D case in
Section 3.8.2.1 are compared for the 3D helix example. For the low slenderness ratio ζ = 100
depicted in Figure 3.34(a), no noteworthy locking effects can be observed. In case the high slen-
derness ratio ζ = 10000 is considered, locking effects are visible, but as already predicted in
Section 3.2.4.3, to a lower extent as in the 2D case. Again, with the MCS method, the occur-
rence of such effects can completely be avoided, while neither a standard reduced integration
scheme nor a standard ANS approach can improve the situation. In conclusion, it can be stated
that the proposed beam elements in combination with the MCS approach completely remedies
unphysical locking effects even for extreme slenderness ratios and demanding geometries.
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(a) Reference: WK-TAN, ζ = 100.
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(b) Reference: WK-TAN, ζ = 10000.

Figure 3.33: Helix loaded with axial force: L2-error for different formulations.
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(a) Reference: SK-TAN, ζ = 100.
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(b) Reference: SK-TAN, ζ = 10000.

Figure 3.34: Helix loaded with axial force: Investigation of locking effects.

Finally, the helix problem shall be even more generalized by not only accounting for 3D initial
curvatures but also for anisotropic cross-section shapes with initial twist as illustrated in Fig-
ure 3.35. Again, the two slenderness ratios ζ = 100 and ζ = 10000 have been investigated. The
square cross-section of the last example is extended to a rectangular cross-section shape with di-
mensions b=10 and h=5 and an assumed torsional moment of inertia IT ≈3.2875·10−2 for the
case ζ=100. The case ζ=10000 is defined by b=0.1 and h=0.05 and an assumed torsional mo-
ment of inertia IT ≈3.2875·10−6. The external forces have been chosen as F =5·10−2 for ζ=100
and F = 5 · 10−10 for ζ = 10000 and the initial twist as one twist rotation per helix loop. The
resulting L2-error plotted in Figure 3.36 again shows a consistent convergence behavior similar
to Figure 3.33. Additionally, in Figure 3.35, also the Bubnov-Galerkin variant (SK-TAN+CS) of
the SK-TAN element with consistent spin vector interpolation has been plotted. Accordingly, no
visible difference compared to the Petrov-Galerkin (SK-TAN) variant can be observed.
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Figure 3.35: Twisted helix with axial force: Initial and final shape for ζ=100 and ζ=1000. For
better visibility, the variant ζ=1000 has been plotted instead of ζ=10000.
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(a) Reference: WK-TAN, ζ = 100.
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(b) Reference: WK-TAN, ζ = 10000.

Figure 3.36: Twisted helix loaded with axial force: L2-error for different formulations.

In a last step, also the balances of forces and moments are investigated for this most general
example of Figure 3.35. In Table 3.5, the reaction forces and moments at the clamped end of the
helix at s= 0 and the force and moment contributions (with respect to the point s= 0) resulting
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from the external load applied at s= l are plotted for discretizations with eight elements. It can
easily be verified that the balance of forces and moments is exactly fulfilled by the variants CJ,
WK-TAN and SK-TAN+CS, while the Petrov-Galerkin variant SK-TAN only fulfills the balance
of forces but not the balances of moments. This confirms the prediction made in Section 3.4.4.

Cri. & Jel. WK-TAN SK-TAN SK-TAN+CS
F1(0) 0.0 0.0 0.0 0.0
F1(l) 0.0 0.0 0.0 0.0
F2(0) 0.0 0.0 0.0 0.0
F2(l) 0.0 0.0 0.0 0.0
F3(0) 5.00000000E-6 5.00000000E-6 5.00000000E-6 5.00000000E-6
F3(l) 5.00000000E-6 5.00000000E-6 5.00000000E-6 5.00000000E-6
M1(0) -1.64350142E-4 -1.54617971E-4 -1.51929992E-4 -1.65509346E-4
M1(l) -1.64350142E-4 -1.54617971E-4 -1.52158798E-4 -1.65509346E-4
M2(0) -4.41005618E-5 -8.55776851E-6 -1.13519642E-5 -5.43051999E-6
M2(l) -4.41005617E-5 -8.55776851E-6 -2.30787384E-5 -5.43051999E-6
M3(0) 0.0 0.0 0.0 0.0
M3(l) 0.0 0.0 0.0 0.0

Table 3.5: Slenderness ζ = 10000: Reaction forces and moments for different formulations.

3.8.9 Example 9: Oscillations of a beam with sinusoidal line load
In the next-to-last example of this chapter, a first dynamic test case will be considered. The
general problem setup is identical to the example of Section 3.8.5 (see Figure 3.25(a)): An
initially straight beam of length l = 1000 and slenderness ratio ζ = 10000 (i.e. R = 0.1) is
supported at both of its ends. The left end of the beam is clamped, and the right end has two
remaining degrees of freedom, which are the displacement ux in x-direction and the rotation
α with respect to the x-axis. The distributed line load exciting the beam has been chosen as
f̃(s, t) = f̂(t)(f̃x, f̃y, f̃z)

T = f̂(t)(f̃x, f̃⊥ sinφ, f̃⊥ cosφ)T , with f̃x = 6.0 ·10−6, f̃⊥ = 3.0 ·10−7

and φ = 2πs/l. The time-dependent function f̂(t) is linearly increased from f̂ = 0 at t = 0 to
f̂ = 1.0 at t = 0.5 and then linearly decreased to f̂ = 0 at t = 1, while the overall simulation
time as well as the time step size have been chosen as T =10 and ∆t=0.01. Thus, the test case
consists of two phases: An excited oscillation phase for t ∈ [0, 1] and a free oscillation phase for
t ∈ [1, 10]. Furthermore, the constitutive parameters as well as the density have been chosen as
E = 2G = 107 and ρ = 10−7. This combination of material parameters and external loads will
again yield very general 3D geometrically nonlinear deformation states. All resulting section
constitutive parameters, with IT/2 = I2 = I3 =: I, as well as the oscillation periods Tb and Tt
calculated for the lowest bending and torsion mode of the linearized problem, are presented in
the first line of Table 3.6. Accordingly, the oscillation period associated with the lowest (bend-
ing) eigenfrequency resulting from this parameter choice takes on a value of Tb≈ 1, leading to
approximately ten oscillations during the considered time interval T =10. Furthermore, the time
step size ∆t=0.01 should guarantee for a proper temporal resolution of the low bending modes.
Similar to the last sections, also this example will be investigated for a second slenderness ratio
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ζ = 100. In order to yield a comparable test case, the amplitude and the excitation frequency of
the line load as well as the time step size ∆t and the time interval T would have to be adapted
to the increased bending stiffnesses and eigenfrequencies resulting from this lower slenderness
ratio. In order to simplify the following comparisons and to keep f̃(s, t), ∆t and T unchanged,
the constitutive parameters and the density are adapted to E=2G=10−1 and ρ=10−11 such that
the resulting bending stiffnesses and eigenfrequencies remain unchanged. All the material and
geometrical parameters resulting from this choice are illustrated in the second line of Table 3.6.
Accordingly, the axial stiffness EA is decreased, the rotational inertia terms ρI are increased
and the translational inertia terms ρA remain constant due to the transition from ζ = 10000 to
ζ=100. Moreover, as expected, the lowest torsional eigenfrequency is decreased with decreasing
slenderness ratio as compared to the lowest bending eigenfrequency (which remains unchanged).

ζ R A I E ρ EI EA ρI ρA Tb Tt
104 10−1 10−2 10−4/12 107 10−7 103/12 105 10−11/12 10−9 ≈1.0 ≈6·10−4

102 101 102 104/12 10−1 10−11 103/12 101 10−7/12 10−9 ≈1.0 ≈6·10−2

Table 3.6: Material and geometrical parameters for the variants ζ=100 and ζ=10000.

Apart from (2.128) and (2.136), this time also the restrictions (2.137) for the initial conditions
are fulfilled, thus again allowing for an approximation of the general Kirchhoff-Love theory by
means of the torsion-free beam theory presented in Section 2.4.2. In the following, the results
derived by means of the general Reissner and Kirchhoff type beam element formulations CJ,
SK-TAN and WK-TAN will be compared with the results derived by the torsion-free element
formulation according to (3.160). Time integration is based on the Lie group generalized−α
scheme of Section 3.1.2 for the former three element formulations, while a standard (vector
space) generalized−α scheme according to Section 3.1.1 is combined with the torsion-free el-
ement formulation. In both cases, a spectral radius of ρ∞ = 0.95 has been employed. In Fig-
ures 3.37 and 3.38, the discretization errors resulting from twist boundary conditions of type b)
(case illustrated in Figure 3.25(a)) and twist boundary conditions of type c) (additional clamping
of the twist angle at the position s= l) are displayed for the different element formulations. In
all cases, the expected spatial convergence rates of four can be observed. Figure 3.37 reveals
similar discretization error levels for the SK-TAN and WK-TAN elements, which both lie be-
low the error level of the Reissner type element CJ. Again, the even lower error level of the
torsion-free element formulation results from the fact that no twist DoFs are required for this
formulation. In contrary to the static example of Section 3.8.5, here, the discretization error plot
of the torsion-free element formulation exhibits a kink and a remaining cutoff error level with
respect to the WK-TAN reference solution. However, the amount of this remaining cutoff error
level decreases with increasing slenderness ratio. This observation underlines the conclusions
of Section 2.4.2.2 that the torsion-free theory yields exact solutions in statics, but only approx-
imations to the general Kirchhoff theory in dynamics. Similar to the model error between the
general Kirchhoff theory and the Reissner theory, also this model error decreases quadratically
with increasing slenderness ratio. Consequently, the torsion-free beam theory, applied to dy-
namic problems, seems to be a sensible and consistent extension of the model reduction already
initialized by deriving the shear-free Kirchhoff theory from the Reissner beam theory.
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(a) Reference: WK-TAN, ζ = 100.
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(b) Reference: WK-TAN, ζ = 10000.

Figure 3.37: Beam with boundary conditions of type b): L2-error for different formulations.
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(a) Reference: WK-TAN, ζ = 100.
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(b) Reference: WK-TAN, ζ = 10000.

Figure 3.38: Beam with boundary conditions of type c): L2-error for different formulations.

For comparison reasons, in Figure 3.38, the same investigations have also been conducted for the
case of twist boundary conditions of type c). As expected, in this case, the torsion-free formula-
tion yields a considerable model error which does not decrease with increasing beam slenderness
ratio. It has already been shown in the static examples of Section 3.8.5 that boundary conditions
of this type will not yield configurations with vanishing torsion for general 3D scenarios.

In order to further strengthen the theoretical statements of Section 2.4.2.2 and the numerical
results derived so far, the ratio M̄t/M̄b of the average torsional moment M̄t and the average
bending moment M̄b shall be considered. As compared to Section 3.8.5, this time the moment
components are not only ”averaged in space”, but also ”averaged in time” according to

M̄t :=
N∑
i=1

<Mt> (ti)

N
, M̄b :=

N∑
i=1

<Mb> (ti)

N
, (3.165)
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where <Mt > and <Mb > represent the corresponding spatially averaged quantities given
in (3.163) and N is the number of time steps. In Table 3.7, the ratio M̄t/M̄b according to (3.165)
and (3.163) is shown for all three possible types of twist boundary conditions and the two inves-
tigated slenderness ratios ζ = 100 and ζ = 10000. Again, for the boundary conditions of type a)
and b), a quadratic decrease of the average torsion with increasing beam slenderness ratio can be
observed in good approximation, while the boundary conditions of type c) yield a considerably
higher average torsion value that is independent of the slenderness ratio.

a) - ζ=102 a) - ζ=104 b) - ζ=102 b) - ζ=104 c) - ζ=102 c) - ζ=104

1.9E-4 1.8E-8 8.2E-4 6.2E-8 1.4E-2 1.4E-2

Table 3.7: Ratio M̄t/M̄b of average torsional to average bending moment.

Finally, in Figure 3.39, the internal and kinetic system energies as well as their sum have
been plotted for discretizations consisting of 256 Reissner type CJ elements and Kirchhoff type
torsion-free elements, respectively. For both slenderness ratios ζ = 100 and ζ = 10000, the total
system energy is preserved very well and no visible differences can be observed between the CJ
and the torsion-free elements. In other words, the torsion-free formulation seems to provide a
very good approximation to the analytic solution of this example already for the lower slender-
ness ratio ζ = 100. Furthermore, in Figure 3.40, the internal and kinetic energies resulting from
a discretization with 256 CJ elements is split into the individual contributions stemming from
torsion modes (subscript (.)Mt) and bending modes (subscript (.)Mb

) as well as the contributions
stemming from axial tension and shear modes (subscript (.)F ). For both slenderness ratios, it
can be observed that the overall dynamic system answer is dominated by the bending energy
contributions and by the translational inertia forces. This effect gets more and more emphasized
with increasing slenderness ratio. For the high slenderness ratio ζ = 10000, the internal energy
contributions of the ”stiff” axial tension and shear modes are approximately by six orders of mag-
nitude smaller than the energy contributions of the ”soft” bending mode. Due to the fulfillment
of requirements (2.128), (2.136) and (2.137), the internal energy contributions of the torsion
mode, which can be identified as a ”soft” mode with stiffness similar to the bending stiffness,
are approximately by further eight orders of magnitude lower than the shear mode contributions.
Furthermore, the rotational inertia contributions seem to be negligible for this high slenderness
ratio, with twist contributions (subscript (.)Mt) that are smaller than the rotation contributions
associated with the component w⊥ (subscript (.)Mt) of the angular velocity vector.

Of course, further numerical investigations of the torsion-free beam theory, especially when
applied to dynamic problems, are intended for the future research work. Nevertheless, the nu-
merical verifications performed in this section already confirm the theoretical statements made
in Section 2.4.2. Accordingly, the torsion-free beam theory results in efficient and considerably
simplified finite element formulations and numerical algorithms, which yield very accurate ap-
proximations to the dynamic solutions of the general Kirchhoff theory, and which consequently
can be considered as a reasonable and consistent further step of model reduction.
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(a) Moderate slenderness ratio: ζ = 100. (b) High slenderness ratio: ζ = 10000.

Figure 3.39: Beam with boundary conditions of type b): Energy conservation.

(a) Moderate slenderness ratio: ζ = 100. (b) High slenderness ratio: ζ = 10000.

Figure 3.40: Beam with boundary conditions of type b): Individual energy contributions.

3.8.10 Example 10: Free oscillations of an elbow cantilever
The final numerical example represents a more general dynamic test case as compared to the last
section. The example has initially been investigated in [209] and subsequently been considered
in several contributions in the field of geometrically nonlinear beam element formulations (see
e.g. [116] and [41]). A right-angle elbow cantilever beam consists of two straight beam segments
of length l=10 being rigidly connected at one of their ends. In the initial configuration, the first
segment points into global y-direction and the second segment into global x-direction.

The first segment of the cantilever is clamped at the position s = 0. In the original work, the
cross-section of the beam is described by the section parameters EA = GA2 = GA3 = 106,
GIT =EI2 =EI3 = 103 as well as ρA= 1 and ρIP/2 = ρI2 = ρI3 = 10. It can easily be verified
that these section parameters can for example be represented by a quadratic cross-section with
radius R≈0.1, thus resulting in a slenderness ratio of ζ≈100 for each of the two segments, for
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(a) Step 0. (b) Step 5. (c) Step 10. (d) Step 15. (e) Step 20.

(f) Step 25. (g) Step 30. (h) Step 35. (i) Step 40. (j) Step 45.

Figure 3.41: Free oscillations of an elbow cantilever: Initial and deformed configurations.

which the rotational inertia contributions are additionally scaled by a factor of 104. This artifi-
cial scaling has been applied in order to emphasize (and properly verify) the rotational inertia
contributions, which would otherwise be comparatively small for the chosen slenderness ratio.
This cantilever beam is loaded by a discrete force F = (0, 0, Fz)

T pointing in global z-direction
and acting at the rigid corner of the elbow. The magnitude of the force is linearly increased
from Fz = 0 at t = 0 to Fz = 50 at t = 1 and then linearly decreased to Fz = 0 at t = 2. In
the remaining simulation time until T =50, the cantilever executes geometrically nonlinear free
oscillations in 3D space with amplitudes being in the range of the segment lengths. The initial
and deformed configurations at different time steps are illustrated in Figure 3.41. For time inte-
gration, the modified generalized-α scheme of Section 3.1.2 with ρ∞=0.95 has been employed.
As spatial discretizations, the CJ element, the WK-ROT element as well as the Petrov-Galerkin
variant SK-ROT and the Bubnov-Galerkin variant SK-ROT+CS with consistent spin vector in-
terpolation according to (3.122) have been applied. This example yields a further complexity
that has not been present in the previous test cases: The modeling of a rigid beam connection
occurring at the corner of the elbow. As already mentioned in earlier sections, the modeling of
such kinks in the beam centerline is easier to be realized by the SK/WK-ROT variants. Never-
theless, the resulting solutions are identical as for the SK/WK-TAN variants.

In Figure 3.42, the internal, kinetic and total system energy is plotted for different time step sizes
and spatial discretizations. For discretizations with 8 WK-ROT and SK-ROT elements per elbow
segment and a time step size of ∆t = 0.01 as illustrated in Figures 3.42(a) and 3.42(b), no visible
oscillations in the total system energy and no visible differences in the energy contributions of
the Reissner and Kirchhoff type elements can be observed. In Figures 3.42(c)- 3.42(f), the energy
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(a) WK-ROT, 16 elements, ∆t = 0.01. (b) SK-ROT, 16 elements, ∆t = 0.01.

(c) Cri. & Jel., 2 elements, ∆t = 0.25. (d) WK-ROT, 2 elements, ∆t = 0.25.

(e) SK-ROT, 2 elements, ∆t = 0.25. (f) SK-ROT+CS, 2 elements, ∆t = 0.25.

Figure 3.42: Free oscillations of an elbow cantilever: Energy conservation.

contributions resulting from a larger time step size of ∆t = 0.25 and a rougher spatial discretiza-
tion based on one beam element per elbow segment has been plotted. Accordingly, also for these
rough discretizations, the overall system energy is preserved very well. The fact that the to-
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tal system energy approximation resulting from the (energetically consistent) Bubnov-Galerkin
discretization SK-ROT+CS is rarely improved as compared to the Petrov-Galerkin variants CJ,
WK-ROT and SK-ROT indicates that for the chosen spatial and temporal discretizations, the in-
fluence of the temporal discretization error might dominate the error in the total system energy.
As compared to reference [116], where an identical time step size of ∆t= 0.25 and a compara-
ble spatial discretization consisting of one second-order CJ element per elbow segment has been
applied, the oscillations of the total system energy could be considerably decreased and the insta-
bility observed there at the end of the considered time interval could be completely avoided. This
improvement can be attributed to the applied Lie group extension of the generalized-α scheme
according to Section 3.1.2, whereas in reference [116] the Lie group extension of a Newmark
time integration scheme as proposed in [208] has been considered. Based on (simplified) Reiss-
ner type beam element formulation (see [144]), similar observations have already been made in
reference [41], where the Lie group extension of the generalized-α scheme has been proposed.

Again, further numerical investigations on the combination of the generalized-α scheme accord-
ing to Section 3.1.2 and the proposed Kirchhoff beam element formulations applied to dynamic
problems might be desirable and are intended for future research work. However, these first nu-
merical investigations suggest that the desirable properties of the Kirchhoff beam element formu-
lations observed in static test cases might also be transferred to the dynamic regime. Especially,
the C1-continuous centerline interpolation and the excellent Newton convergence behavior in
the range of high slenderness ratios qualify the proposed Kirchhoff beam element formulations
for a combination with the beam-to-beam contact algorithm presented in the next chapter. In
very complex contact scenarios as e.g. considered in Section 4.5.3.4 of the next chapter, the ro-
bustness and efficiency of the resulting implicit schemes, properties that are not least inherited
from the underlying beam element formulations, will be of highest practical relevance.
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In this chapter, the geometrically exact beam models as well as their finite element realizations
derived in Chapters 2 and 3 will be supplemented by beam-to-beam contact formulations and
algorithms that allow for the numerical treatment of the contact interaction of highly slender
beams in complex 3D configurations involving arbitrary beam-to-beam orientations. Existing
beam contact formulations can be categorized in point-to-point contact models, which consider
a discrete contact force at the closest point of the beams, and line-to-line contact models that
assume distributed contact forces. In Section 4.1, the basics of standard point contact models,
which represent sufficiently accurate and very efficient contact models in the regime of large con-
tact angles, are presented. However, there it is shown in a mathematically concise manner that
these contact models fail to describe a considerable range of small contact angles, i.e. configura-
tions that are likely to occur in practical applications. In Section 4.2, an alternative formulation
is proposed that models beam-to-beam contact by means of distributed line forces, a procedure
that is shown to be applicable for arbitrary geometrical configurations. The proposed formula-
tion is enhanced by a consistently linearized integration interval segmentation avoiding numer-
ical integration of the distributed line forces across strong discontinuities. In combination with
a smoothed contact force law and the employed C1-continuous beam elements, this procedure
drastically reduces the numerical integration error, an essential prerequisite for optimal spatial
convergence rates. While the proposed line-to-line contact model applied to slender beams yields
very accurate and robust numerical formulations in the range of small contact angles, it is shown
that the computational efficiency of general line contact formulations considerably decreases
with increasing contact angles. In order to combine the advantages of these basic formulations, a
novel all-angle beam contact (ABC) formulation is developed in Section 4.3 that applies a point
contact formulation in the range of large contact angles and a recently developed line contact
formulation in the range of small contact angles, the two being smoothly connected by means of
a variationally consistent model transition. Based on a stringent analysis, two different transition
laws are investigated, optimal algorithmic parameters are suggested and conservation of linear
momentum, angular momentum and total energy is shown. All configuration-dependent quan-
tities within the point-, the line- and the transition-contact regime are consistently linearized,
thus allowing for their application within implicit time integration schemes. Subsequently, in
Section 4.4, additional algorithmic constituents will be proposed, which can be considered as
important prerequisites for efficient and robust overall contact algorithms. Concretely, these al-
gorithmic constituents consist of a novel two-stage contact search algorithm, a modified Newton-
Raphson scheme with contact-specific step size control, a computational scheme for consistent
consideration of beam end point contact contributions, as well as alternative, numerically good-
natured penalty force laws. Finally, a series of numerical test cases is considered in Section 4.5.
Specifically, in Sections 4.5.1 and 4.5.2 small (academic) test cases, partly based on analytic so-
lutions, are analyzed in order to investigate properties such as overall accuracy and consistency
of the proposed formulations regarding integration error, spatial convergence behavior, resulting
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contact force distributions and mechanical conservation properties. Eventually, in Section 4.5.3,
four practically relevant applications involving complex systems of slender fibers are considered
in order to verify the overall robustness of the proposed algorithms but also for quantifying the
efficiency gains as compared to standard beam contact formulations.

In the following sections, the contact contributions to the discrete problem setting shall be deter-
mined. Due to the consideration of contact, the global residual vector (3.24) has to be extended:

R(Xn+1) = Rint(Xn+1) + Rkin(Xn+1) + Rcon(Xn+1)− Rext(Xn+1)=̇0. (4.1)

where Rcon(Xn+1) represents the global residual contribution of the contact forces, which results
from a proper assembly of the local element-pair-wise residual vectors denoted as

r(c)
con,1(x̂(c)

1,n+1, x̂
(c)
2,n+1) and r(c)

con,2(x̂(c)
1,n+1, x̂

(c)
2,n+1) (4.2)

and associated with the elements 1 and 2 of the contact element pair (c). In the following sec-
tions, these local residual vectors will be derived for the different beam-to-beam contact formula-
tions described above. All contact models considered in this chapter are based on the assumptions
of circular beam cross-sections, neglect of shear deformation with respect to the resulting contact
geometries as well as friction-less contact interaction. As direct result of these assumptions, the
contact interaction can completely be described by the current centerline configurations of the
contacting beams. An extension to frictional beam-to-beam contact interaction will be addressed
in future research work (see also Section 5 for a brief outlook to this topic). Large parts of the
following sections have been taken from the author’s previous contributions [158, 159].

4.1 Point-to-Point Contact Formulation and Limitations
Within this section, the main constituents of a standard point-to-point beam contact formulation
as introduced in [234] will be presented. Thereto, two arbitrarily curved beams with cross-section
radii R1 and R2 are considered. Here and in the following, the subscripts (.)1 and (.)2 refer to
these two beams. The beam centerlines are represented by two parametrized curves r1(ξ) and
r2(η) with curve parameters ξ and η. In contrast to the beam theory presented in the last two
chapters, where derivatives with respect to the (initial) arc-length parameter s were required, the
space-continuous beam-to-beam contact problem is based on two arbitrary curve parametriza-
tions ξ and η. Later, when the beam contact problem is discretized in space, these to parameters
will be directly identified as element parameter coordinates as introduced in Chapter 3. Based on
the two beam centerline curves introduced above, the non-unit tangent vectors r1,ξ(ξ) = rp1(ξ)
and r2,η(η) = rp2(η) can be defined in a standard manner. In what follows, it is assumed that the
considered space curves are at least C1-continuous, thus providing a unique tangent vector at
every position ξ and η. The kinematic quantities introduced above are illustrated in Figure 4.1.
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Figure 4.1: Kinematic quantities defining the point-to-point contact problem of two beams.

Remark: In contrast to the arc-length derivative (.)′, the derivative with respect to an
arbitrary curve parameter ξ or η is denoted as (.)p. Thus, the following relations are valid:

(.)′ :=(.),s=
∂

∂s
(.) and (.)p :=(.),ξ=

∂

∂ξ
(.) with (.),s=

(.),ξ
||r0,ξ||

. (4.3)

Similar relations can be formulated for the curve parameter η describing the second beam.

4.1.1 Contact formulation and contribution to weak form
The point-to-point beam contact formulation enforces the contact constraint by prohibiting pen-
etration of the two beams at the closest point positions ξc and ηc. Here and in the following, the
subscript c indicates that a quantity is evaluated at the closest point coordinates ξc or ηc, respec-
tively. These closest point coordinates are determined as solution of the bilateral (”bl“) minimal
distance problem, also denoted as bilateral closest point projection (CPP), with

dbl := min
ξ,η

d(ξ, η) = d(ξc, ηc) with d(ξ, η) = ||r1(ξ)− r2(η)||. (4.4)

This leads to two orthogonality conditions that have to be solved for the unknowns ξc and ηc:

p1(ξ, η) = rT1,ξ(ξ) (r1(ξ)− r2(η)) → p1(ξc, ηc)=̇0,

p2(ξ, η) = rT2,η(η) (r1(ξ)− r2(η)) → p2(ξc, ηc)=̇0.
(4.5)

The contact condition of non-penetration is formulated by means of the inequality constraint

g ≥ 0 with g := dbl −R1 −R2, (4.6)

where g is the gap function defined at the closest points ξc and ηc. This inequality constraint can
be included into the considered variational problem setting via a penalty potential

Πcε =
1

2
ε〈g〉2 and 〈x〉 =

{
x, x ≤ 0
0, x > 0

(4.7)
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or alternatively via a contact contribution in terms of a Lagrange multiplier potential

Πcλ = λcg and λc ≥ 0, g ≥ 0, λcg = 0. (4.8)

Throughout this work, constraint enforcement via penalty regularization according to (4.7) (see
also the remarks in Section 4.2.3.3) is considered exclusively. The constant ε in (4.7) is referred
to as penalty parameter (not to be confused with the axial tension ε introduced in Chapter 2).
Variation of (4.7) leads to the contribution of one contact point to the weak form:

δΠcε = ε〈g〉δg = ε〈g〉 (δr1c − δr2c)
T n. (4.9)

In (4.9), the contact force vector fcε as well as the contact normal vector n can be identified:

fcε = −ε〈g〉︸ ︷︷ ︸
=:fcε

n, n :=
r1(ξc)− r2(ηc)

||r1(ξc)− r2(ηc)||
. (4.10)

According to (4.10), the point-to-point beam contact formulation models the contact force fcε
that is transferred between the two beams as a discrete point force acting at the closest points.

Remark: Since the values of the parameter coordinates ξc and ηc describing the location
of the current contact point are deformation-dependent, the total variation or linearization
of a quantity X(ξ, η) can be split up into the following three contributions:

δ (X(ξ, η)) = X,ξδξ +X,ηδη + δX and ∆ (X(ξ, η)) = X,ξ∆ξ +X,η∆η + ∆X.

Here, the first two contributions denote the change in X(ξ, η) due to a change in the
parameter coordinates ξ and η, whereas the contributions δX/∆X represent the varia-
tion/linearization of X(ξ, η) at fixed parameter coordinates. As derived in the original
work by Wriggers and Zavarise [234], the total variation of the gap simplifies due to

δg = nT (δ (r1c)− δ (r2c)) = nT (δr1c + rp1cδξ − δr2c − rp2cδη) = nT (δr1c − δr2c)

since nTrp1c = nTrp2c = 0,

which is a consequence of the orthogonality conditions (4.5) at the closest points ξc and ηc.

For later use, also the contact angle between the tangents at the contact points shall be defined:

α = arccos (z) with z =
||rpT1 (ξc)r

p
2(ηc)||

||rp1(ξc)|| · ||rp2(ηc)||
, α ∈ [0; 90◦]. (4.11)

In a next step, spatial discretization has to be performed. Since, for simplicity, only the con-
tact contribution of one contact point will be considered in the following, the indices 1 and
2 are directly transferred to the two finite elements where the point contact takes place. The
beam-to-beam contact formulations considered in this thesis are completely defined by the beam
centerline configuration. In what follows, it is assumed that the (C1-continuous) interpolation of
the beam centerline is given by (3.39) as well as (3.50). Inserting (3.39) into the orthogonality
conditions (4.5) allows to solve the latter for the unknown closest point parameter coordinates
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ξc and ηc. Since the system of equations provided by (4.5) is in general nonlinear in ξ and η, a
local Newton-Raphson scheme is applied for its solution. The linearizations of (4.5) can e.g. be
found in [234] and in Appendix C.1. Inserting equations (3.39) into equation (4.9) leads to the
following contact residual contributions rcon,1 and rcon,2 of the two considered elements:

δΠcεh = δd̂
T

1 ε〈g〉H
T
1 (ξc)n︸ ︷︷ ︸

=:rcon,1

−δd̂
T

2 ε〈g〉H
T
2 (ηc)n︸ ︷︷ ︸

=:rcon,2

. (4.12)

Finally, the linearization of the residual vector (4.12) is based on the following general form:

kcon,l =
drcon,l
dd̂12

=
∂rcon,l
∂d̂12

+
∂rcon,l
∂ξc

dξc

dd̂12

+
∂rcon,l
∂ηc

dηc

dd̂12

for l = 1, 2. (4.13)

Here, the vector d̂12 := (d̂
T

1 , d̂
T

2 )T collecting the nodal degrees of freedom associated with the
centerline interpolation of element 1 and element 2 has been introduced. The individual beam
contact contributions to the element stiffness matrix are detailed in Appendix C.1.

Remark: The C1-continuous Hermite shape functions guarantee for the existence of a
unique tangent vector field. Nevertheless, the beam contact formulations presented in the
following are general enough to be combined with any type of beam element formulation
and shape function set. However, if such alternative shape functions do not satisfy the
smoothness requirement, additional means are necessary in order to detect and evaluate
mechanical contact at positions with non-unique tangent vectors.

Remark: So far, it has been assumed that the beam centerline discretization given
by the Hermite interpolation (3.39) is completely described by the nodal degrees of
freedom d̂12 := (d̂1T

1 , t̂1T
1 , d̂2T

1 , t̂2T
1 , d̂1T

2 , t̂1T
2 , d̂2T

2 , t̂2T
2 )T . However, strictly speaking, this

is only true for the SK/WK-TAN and the TF elements, but not for the SK/WK-ROT
elements, which rely on a rotation vector-based parametrization of the triads at the
element boundary nodes. In the latter case, the element contact residuals derived in this
and the following sections have to be transformed by the rule (3.130). Also in this case,
the beam problem is still completely defined by the beam centerline curves, however, for
the SK/WK-ROT elements these centerline curves also depend on nodal rotation vectors.

4.1.2 Limitations of point-to-point contact formulation
The point-to-point contact formulation provides an elegant and efficient contact model as long
as sufficiently large contact angles are considered. However, its limitation lies in the requirement
of a unique closest point solution according to (4.5), which cannot be guaranteed for arbitrary
geometrical configurations. In [129], the authors have already treated the question of uniqueness
and existence of the closest point projection by means of geometrical criteria based on so-called
projection domains. Within this section, this question will be analyzed from a different perspec-
tive: This procedure will allow to define easy-to-evaluate control quantities and to derive proper
upper and lower bounds of these control quantities, within which a unique closest point solution
can be guaranteed in a mathematically rigorous manner. In the following, it will be derived that
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the contact angle α defined in (4.11), the closest point distance dbl and the geometrical curvature
κ̄ of the beam centerline, which is closely related to the mechanical curvature κ (2.88) via

κ̄ :=
κ

||r′||
=
||r′ × r′′||
||r′||3

= ||r,s̃s̃|| since ||r,s̃|| = 1, (4.14)

are such suitable control quantities. In (4.14), the parameter coordinate s̃ ∈ [0; l̃] represents the
arc-length of the current, deformed beam centerline and l̃ denotes the corresponding current cen-
terline length. For the following analytic derivations, which are based on the space-continuous
problem setting, the current arc-length parameters s̃1 and s̃2 instead of the initial arc-length
parameters s1 and s2 (required for the space-continuous problem setting of the beam formu-
lations) or the normalized element parameters ξ and η (required for the spatially discretized
problem setting) are employed. This choice simplifies many steps due to the essential property
||r1,s̃1 || = ||r2,s̃2|| = 1. Next, the maximal cross-section to curvature radius ratio is defined as

µmax :=
R

min (r̄)
� 1 with r̄ =

1

κ̄
≈ 1

κ
, (4.15)

i.e. as the quotient of the cross-section radius R and the minimal radius of curvature r̄ occurring
in the deformed geometry. As derived in Section 2.2.5, the application of the considered cate-
gory of geometrically exact beam theories (and also of the majority of alternative geometrically
nonlinear beam theories) is only justified for problems exhibiting small values of this ratio, i.e.
µmax � 1. This property will be useful later on in this section. In order to simplify the following
derivations, the definition of the unilateral (“ul”) distance function field dul(s̃1), which assigns
a closest partner point s̃2c of the second beam (in this context also denoted as master beam)
for every given point s̃1 on the first beam (in this context also denoted as slave beam), will be
anticipated here and thoroughly derived in Section 4.2. The unilateral distance function field is
defined via the following unilateral closest point projection (see Figure 4.3(a) for illustration):

dul(s̃1) = min
s̃2

d(s̃1, s̃2) = d(s̃1, s̃2c) with d(s̃1, s̃2) = ||r1(s̃1)− r2(s̃2)||. (4.16)

Next, one has to realize that the bilateral closest point projection (4.4) represents a special case of
the unilateral closest point projection (4.16). Concretely, the closest point coordinates (4.4) are
found through minimization of the minimal distance function dul(s̃1) according to (4.16) with
respect to the slave beam parameter s̃1, represented by the following minimization problem:

dbl = min
s̃1

dul(s̃1) = dul(s̃1c). (4.17)

Now, in a first step, the requirements for the existence of a unique solution of the unilateral clos-
est point projection will be examined. As soon as a unique distance function dul(s̃1) can be guar-
anteed, the investigation of the existence and uniqueness of the bilateral closest point projection
simplifies from the analysis of a function with 2D support occurring in (4.4) to the analysis of
a function with 1D support according to (4.17). For a given point with coordinate vector r1(s̃1),
the unilateral closest point projection according to (4.16) searches for the corresponding closest
point coordinate s̃2c on the space curve r2(s̃2). The applied Hermite shape functions provide a
C1-continuous centerline curve and guarantee for a uniquely defined tangent vector field. In this
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case, a necessary condition for the existence of the minimal distance solution (4.16) is satisfied
if the requirement of a vanishing first derivative is fulfilled, i.e.

d,s̃2(s̃1, s̃2c) = −
rT2,s̃2(s̃2c) (r1(s̃1)− r2(s̃2c))

||r1(s̃1)− r2(s̃2c)||
=̇0 → rT2,s̃2(s̃2c) (r1(s̃1)− r2(s̃2c)) =̇0. (4.18)

This, in turn, is guaranteed by the second equation of (4.5). A sufficient condition for the exis-
tence of a locally unique closest point solution is given by (4.18) together with the requirement
of a positive second derivative of the distance function field between the contacting beams:

d,s̃2s̃2(s̃1, s̃2c) =−
rT2,s̃2s̃2c(s̃2c) (r1(s̃1)− r2(s̃2c))− rT2,s̃2(s̃2c)r2,s̃2(s̃2c)

||r1(s̃1)− r2(s̃2c)||

− rT2,s̃2(s̃2c) (r1(s̃1)− r2(s̃2c))︸ ︷︷ ︸
=0

·(...) >̇ 0.
(4.19)

Together with the auxiliary relation rT2,s̃2(s̃2c)r2,s̃2(s̃2c)=1, (4.19) leads to the requirement:

→ rT2,s̃2s̃2(s̃2c)︸ ︷︷ ︸
κ̄2(s̃2c)nFS2(s̃2c)

(r1(s̃1)− r2(s̃2c))︸ ︷︷ ︸
dul(s̃1)n(s̃1)

−1<̇0. (4.20)

Making use of the definition of the geometrical curvature according to (4.14) and the definitions

nFS2(s̃2c) :=
r2,s̃2s̃2(s̃2c)

||r2,s̃2s̃2(s̃2c)||
,

n(s̃1) :=
r1(s̃1)−r2(s̃2c)

||r1(s̃1)−r2(s̃2c)||
,

β2(s̃1) :=arccos
(
nT(s̃1)nFS2(s̃2c)

)
(4.21)

of the Frenet-Serret unit normal vector nFS2(s̃2c) (see also Section 2.3.4) aligned to the curve
representing the master beam as well as the angle β2(s̃1) between this vector and the contact
normal vector n(s̃1) (which is defined similarly to (4.10)), (4.20) can be reformulated as:

κ̄2(s̃2c)dul(s̃1) cos(β2(s̃1))<̇1. (4.22)

If the two beams are close enough so that the sought-after closest point s̃2c is relevant in terms
of active contact forces (g(s̃1) = 0 → dul(s̃1) = 2R) and under consideration of the worst case
cos(β2)(s̃1) = 1, the following final requirement for a unique solution of (4.16) is obtained:

2
R

r̄2(s̃2c)
≤ 2µmax<̇1 � (4.23)

As a consequence of the maximal cross-section to curvature radius ratio µmax � 1, a uniquely
defined unilateral distance function dul(s̃1) can be guaranteed as long as the beams are suffi-
ciently close. A corresponding criterion for arbitrary distances defined via dul(s̃1) =: k · R can
be derived by replacing the factor 2 by k in (4.23). In a second step, also the requirements for
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a unique bilateral closest point solution (4.17), based on a uniquely defined distance function
dul(s̃1) (which is provided as consequence of (4.23)) are investigated. Again, the first derivative

d dul(s̃1)

ds̃1

=
d d(s̃1, s̃2c(s̃1))

ds̃1

=
∂d

∂s̃1

+
∂d

∂s̃2c︸︷︷︸
≡0

∂s̃2c

∂s̃1

=
rT1,s̃1(s̃1) (r1(s̃1)− r2(s̃2c))

||r1(s̃1)− r2(s̃2c)||

→ rT1,s̃1(s̃1c) (r1(s̃1c)− r2(s̃2c)) =̇0,

(4.24)

has to vanish. This is satisfied at the closest point s̃1c by the first line of (4.5). Furthermore,
the additional identity ∂d/∂s̃2c ≡ 0∀ s̃1 ∈ [0; l̃1] is fulfilled as consequence of the second line
of (4.5). Again, a locally unique solution of the minimal distance problem (4.17) additionally
requires a positive second derivative. Differentiation of the relation (4.24) yields:

d2 dul(s̃1)

ds̃2
1

∣∣∣∣∣
(s̃1c,s̃2c)

=
d2 d(s̃1, s̃2c(s̃1))

ds̃2
1

∣∣∣∣∣
(s̃1c,s̃2c)

=

(
∂2d

∂s̃2
1

+
∂2d

∂s̃1 ∂s̃2c

∂s̃2c

∂s̃1

) ∣∣∣∣∣
(s̃1c,s̃2c)

>̇0. (4.25)

The derivative ∂s̃2c/∂s̃1 in (4.25) can be derived by consistently linearizing condition (4.18):

[
rT2,s̃2s̃2(r1−r2)−rT2,s̃2r2,s̃2

]
δs̃2c+rT2,s̃2r1,s̃1 δs̃1 =0→ ∂s̃2c

∂s̃1

=
rT2,s̃2r1,s̃1

rT2,s̃2r2,s̃2−rT2,s̃2s̃2 (r1−r2)
. (4.26)

After making use of this result and calculating the derivatives of (4.24) with respect to the current
arc-length coordinates s̃1 as well as s̃2c, the requirement (4.25) finally yields:

rT1,s̃1s̃1 (r1 − r2) + rT1,s̃1r1,s̃1 − rT1,s̃1r2,s̃2 ·
rT2,s̃2

r1,s̃1

rT2,s̃2
r2,s̃2

−rT2,s̃2s̃2
(r1−r2)

||r1 − r2||

∣∣∣∣∣
(s̃1c,s̃2c)

>̇0. (4.27)

Using the quantities defined in (4.21), the contact angle α according to (4.11) and the definitions

nFS1(s̃1c) :=
r1,s̃1s̃1(s̃1c)

||r1,s̃1s̃1(s̃1c)||
, β1(s̃1c) := arccos

(
nT (s̃1c)nFS1(s̃1c)

)
, (4.28)

condition (4.27) can be reformulated. Due to the strictly positive denominator observed in the
inequality condition (4.27), only the numerator has to be considered in the following:

1+κ̄1dbl cos(β1)− cos(α)2

1−κ̄2dbl cos(β2)
>̇0⇔

(
1+

∈ [0;1[︷︸︸︷
κ̄1dblcos(β1)

)︸ ︷︷ ︸
>0

(
1−

∈ [0;1[︷︸︸︷
κ̄2dblcos(β2)

)︸ ︷︷ ︸
>0

>̇cos(α)2.(4.29)

Here the (relevant) case of sufficiently close beams dbl=k·R, satisfying κ̄1dbl<1 and κ̄2dbl<1 as
consequence of (4.15), is assumed. If the two beams are close enough such that the sought-after
closest points (s̃1c, s̃2c) are relevant in terms of active contacts (g=0→ dbl=2R), the inequality
(4.29) can be reformulated by means of the following worst case estimates:

(1+2κ̄1R cos(β1))(1−2κ̄2R cos(β2))≥(1−2κ̄1R)(1−2κ̄2R)≥(1−2µmax)
2>̇ cos(α)2. (4.30)
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4.1 Point-to-Point Contact Formulation and Limitations

Since only positive angles α ∈ [0; 90◦] are relevant, only the positive branch of the quadratic
inequality (4.30) has to be considered, yielding the following lower bound for the contact angle:

α>̇αmin = arccos (1− 2µmax) . (4.31)

The importance of the final requirement in (4.31) is quite obvious: As long as an upper bound
µmax for the admissible ratio of cross-section to curvature radius can be provided, (4.31) yields a
lower bound for the admissible contact angles above which the closest point solution is unique.
Again, condition (4.31) can be expanded to general, but still sufficiently small (κ̄dbl < 1!), dis-
tances dbl = k ·R by replacing the factor 2 by k. The three examples illustrated in Figure 4.2 shall

(a) Straight + Straight. (b) Straight + Circular. (c) Straight + Helical.

Figure 4.2: Contact interaction of two beams: Non-unique geometrical configurations.

visualize the important result in (4.31): If only straight rigid beams are considered (µmax = 0,
see Figure 4.2(a)), the trivial requirement α > 0 is obtained, which reflects the well-known sin-
gularity of the closest point projection for parallel beams. If a straight and a circular beam are
considered, both being oriented in a centrical manner as depicted in Figure 4.2(b), a constant
gap g(s̃1) =const. between both beams can be observed, thus leading to a non-unique bilateral
closest point solution, but this time at a contact angle of α = 90◦. However, this case is not
practically relevant, since contact in such a scenario can only occur if r̄ ≈ 2R, therefore leading
to a cross-section to curvature radius ratio µ ≈ 0.5, which is not supported by the considered
beam theory, anyway. The third situation (Figure 4.2(c)) is similar to the example that will later
be numerically investigated in Section 4.5.1.2. The contact interaction between a straight beam
and a helical beam again leads to a constant gap function g(s̃1) = const. and consequently to a
non-unique bilateral closest point solution. With decreasing slope h, the ratio of cross-section to
curvature radius as well as the contact angle at which this non-unique solution appears increases.
This is in perfect agreement with (4.31). In this context, the helix represents an intermediate
configuration between the case of two straight parallel beams according to Figure 4.2(a) (slope
h→∞) and the case of a straight and a circular beam according to Figure 4.2(b) (slope h = 0).
In the numerical example of Section 4.5.1.2, it will be shown that for such geometries a compar-
atively large scope of contact angles α ∈ [0◦;αmin] cannot be modeled by means of the standard
point-to-point contact formulation. In practical simulations, the lower bound (4.31) has to be
supplemented by a proper safety factor in order to guarantee for a unique closest point solution
not only when contact actually occurs (g = 0) but already for a sufficient range of small positive
gaps g > 0. Furthermore, too small angles α marginally above the lower bound (4.31) might
lead to an ill-conditioned system of equations in (4.5) even if a unique analytic solution exists.
Thus, the important result of this section is that the standard point-to-point contact formulation is
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not only unfeasible for examples including strictly parallel beams, but rather for a considerable
range of small contact angles, since no locally unique closest point solution is existent in this
range. According to (4.31), the size of this range depends on the ratio of the maximal bending
curvature amplitude expected for the considered problem and the cross-section radius.

So far, only mathematical arguments have been used to show why the point-to-point beam con-
tact formulation cannot be applied in the range of small contact angles. However, it is also ques-
tionable from a physical or mechanical point of view if the model of “point-to-point contact“
itself is suitable to describe the contact interaction of beams enclosing very small angles. On
the one hand, it is clear that configurations providing a strictly constant distance function, i.e.
dul,s̃1(s̃1) ≡ 0, are best modeled by a line-to-line and not by a point-to-point contact formula-
tion. On the other hand, if an exact constraint enforcement of beams with rigid cross-sections is
assumed, a pure point-to-point contact situation would already occur for non-constant distance
functions with very small slopes, i.e. 0 < ||dul,s̃1(s̃1)|| � 1. However, this is a pure consequence
of the rigid cross-section assumption inherent to the employed beam model, while a 3D con-
tinuum approach would naturally lead to distributed contact tractions. Consequently, also in the
context of 1D continuum theories, such scenarios should better be modeled by a line rather than
a point contact formulation. In the next section, a novel line contact formulation, which is capa-
ble of modeling arbitrary beam contact angles α ∈ [0◦; 90◦] and which is particularly beneficial
for small contact angles and nearly constant distance functions dul(s̃1), will be proposed.

Remark: Criterion (4.31) does not automatically exclude the point-to-point contact
model from applications where small contact angles α < αmin might occur. In general,
it is possible to apply the point-to-point contact formulation in the range of large contact
angles and to switch to an alternative formulation for configurations where no unique
bilateral closest point solution exists. Such an alternative formulation will typically be
based on multiple contact evaluation points introduced at prescribed locations (e.g. Gauss
points or collocation points) and will consequently be categorized as line-to-line type
contact formulation by the notion applied here. However, the procedure of switching
from one contact formulation to another is not trivial from an algorithmic point of view. It
is desirable that the transition between two different contact formulations fulfills certain
requirements such as smoothness or variational consistence. The former requirement can
be necessary in order to preserve the convergence properties of tangent-based nonlinear
solvers, the latter to enable energy conservation in dynamic problems. The formulation
of smooth, variationally consistent transition laws between point- and line-based contact
models will be considered in the subsequent Section 4.3 of this thesis.

Remark: By abstaining from the worst case estimates in (4.30), an alternative criterion
for a unique solution of the bilateral closest point projection (4.4) can be derived:

α >̇αmin =
√

(1 + 2κ̄1R cos(β1)) (1− 2κ̄2R cos(β2)) .

This criterion contains specific information of the considered contact pair such as the
current curvature magnitudes κ̄1 and κ̄2 of the two contacting beams at the contact points
as well as the angles β1 and β2 between the contact normal vector and the respective
Frenet-Serret normal vectors of the two contacting beams at the contact points.
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These angles describe the orientation of the respective centerline curvature vector with
respect to the contact normal vector. Consequently, for an individual contact pair, this
criterion provides a ”better” lower bound αmin than the more conservative estimate (4.31).
However, (4.31) is a global criterion that does not require the investigation of individual
contact pairs as long as a global upper bound µmax representing the maximal admissible
curvature is provided by the applied beam theory. Such an upper bound can typically be
formulated a priori and does not have to be evaluated during the actual simulation as it is
the case for the quantities κ̄1, κ̄2, β1 and β2 appearing in the alternative criterion.

4.2 Line-to-Line Contact Formulation

(a) Space-continuous problem setting. (b) Discretized problem setting.

Figure 4.3: Kinematic quantities defining the line-to-line contact problem of two close beams.

In the following, a novel line-to-line contact formulation is proposed that does not formulate the
contact condition in form of a point-constraint at the closest points anymore, but rather as a line
constraint enforced along the entire beam length. Consequently, it is not searched for one closest
pair of points, but rather for a closest point field ηc(ξ) on the second beam (master) assigned to
the parameter coordinate field ξ on the first beam (slave). The relevant kinematic quantities of
this approach are illustrated in Figure 4.3(a). The closest master point ηc to a given slave point ξ
is determined as solution of the following unilateral (“ul”) minimal distance problem:

dul(ξ) := min
η
d(ξ, η) = d(ξ, ηc) with d(ξ, η) = ||r1(ξ)− r2(η)||. (4.32)

It has already been shown in Section 4.1.2 (see (4.23)) that a unique unilateral closest point
solution according to (4.32) can be guaranteed for arbitrary beam-to-beam orientations if the
two beams are close enough so that contact can occur (dul(ξ)≈ 2R). Condition (4.32) leads to
one orthogonality condition that has to be solved for the unknown parameter coordinate ηc:

p2(ξ, η) = rT2,η(η) (r1(ξ)− r2(η)) → p2(ξ, ηc)=̇0 (4.33)

Thus, on the contrary to the procedure of the last section, the normal vector is still perpendicular
to the second beam but not to the first beam anymore. Furthermore, in the context of line con-
tact, the subscript c indicates that a quantity is evaluated at the closest master point ηc = ηc(ξ)
associated with a given slave point ξ. In a next step, the contact condition of non-penetration

g(ξ) ≥ 0∀ ξ with g(ξ) := dul(ξ)−R1 −R2 (4.34)

is formulated by an inequality-constraint for the gap function field g(ξ) along the slave beam.
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4.2.1 Constraint enforcement and contact residual contribution
Throughout this thesis, constraint enforcement based on the space-continuous penalty potential

Πcε =
1

2
ε

l1∫
0

〈g(ξ)〉2ds1 (4.35)

is considered. In Section 4.2.3, it will be shown that this strategy is preferable in beam contact
applications as compared to alternative methods known from contact modeling of 3D continua.
The space-continuous penalty potential in (4.35) does not only serve as purely mathematical tool
for constraint enforcement, but also has a physical interpretation: It can be regarded as a me-
chanical model for the flexibility of the surfaces and/or cross-sections of the contacting beams.
While (4.35) represents the simplest possible potential of this kind, an extension to more elab-
orate penalty potentials taking into account the cross-section and surface constitutive behavior
can be reasonable and is possible for the beam contact approaches presented here. Variation of
the penalty potential (4.35) leads to the following contact contribution to the weak form:

δΠcε = ε

l1∫
0

〈g(ξ)〉δg(ξ)ds1 and δg(ξ) = (δr1(ξ)− δr2(ξ))Tn(ξ). (4.36)

In the virtual work expression (4.36), the contact force fcε(ξ) and normal vector n(ξ), given by

fcε(ξ) = −ε〈g(ξ)〉︸ ︷︷ ︸
=:fcε(ξ)

n(ξ), n(ξ) :=
r1(ξ)− r2(ηc)

||r1(ξ)− r2(ηc)||
, (4.37)

can be identified. According to (4.37), the line-to-line beam contact formulation models the
contact force fcε(ξ), which is transferred between the two contacting beams, as a distributed line
force. For later use, again the contact angle field is defined according to:

α(ξ) = arccos (z(ξ)) with z(ξ) =
||rpT1 (ξ)rp2(ηc)||
||rp1(ξ)|| · ||rp2(ηc)||

, α ∈ [0; 90◦]. (4.38)

Next, spatial discretization has to be performed. For simplicity, only the contact contribution
stemming from one finite element on the slave beam and one finite element on the master beam
being, assigned to the former via projection (4.33), is considered in the following. Therefore, the
indices 1 of the slave beam and 2 of the master beam will also be used in order to denote the
two considered finite elements lying on these beams. Inserting the Hermite centerline interpo-
lation (3.39) into the orthogonality condition (4.33) allows to solve the latter for the unknown
closest point parameter coordinate ηc(ξ) for any given slave coordinate ξ. The linearizations of
(4.33) required for an iterative solution procedure can be found in Appendix C.2. Inserting the
discretization (3.39) into equation (4.36) and replacing the analytic integral by a Gauss quadra-
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ture finally leads to the following contributions of element 1 and 2 to the discretized weak form:

δΠ
(1,2)
cεh = δd̂

T

1

nGP∑
k=1

wkJc1(ξk)ε〈g(ξk)〉HT
1 (ξk)n(ξk)︸ ︷︷ ︸

=:rcon,1

− δd̂
T

2

nGP∑
k=1

wkJc1(ξk)ε〈g(ξk)〉HT
2 (ηc(ξk))n(ξk)︸ ︷︷ ︸

=:rcon,2

.

(4.39)

Here, nGP is the number of Gauss points per slave element, wk are the corresponding Gauss
weights, ξk are the Gauss point coordinates in the parameter space ξ ∈ [−1; 1] and finally ηc,k is
the closest master point coordinate assigned to the Gauss point coordinate ξk on the slave beam
(see also Figure 4.3(b)). The Jacobian Jc1(ξk) maps between the slave beam arc-length incre-
ment ds1 and an increment in the parameter space used for numerical integration (see Section
4.2.2), and rcon,1 and rcon,2 are the residual contributions of the slave (1) and master (2) element.

Remark: In (4.36), the same gap variation has been derived as for the point contact case.
This time, the variation δξ is zero since ξ remains fixed, while the contribution from the
variation of η vanishes due to the orthogonality condition on the slave side:

δg(ξ) = nT (ξ) (δ(r1(ξ))− δ(r2(ηc))) = nT (ξ) (δr1(ξ)− δr2(ηc)− r2,η(ηc)δη)

= nT (ξ) (δr1(ξ)− δr2(ηc)) since nT (ξ)r2,η(ηc) = 0.

Remark: The gap function in (4.34) describes the exact value of the minimal surface-
to-surface distance between the two contacting beams at a given coordinate ξ only if the
contact normal vector is perpendicular to both beam centerlines:

rT1,ξ(ξ)n(ξ) = 0 and rT2,η(ηc)n(ξ) = 0. (4.40)

While both conditions in (4.40) are exactly satisfied at the closest point of the point-
to-point contact formulation per definition, only the second condition is fulfilled for an
arbitrary contact point ξ within an active line-to-line contact segment. However, on the
one hand, when considering non-constant distributions of the centerline distance field
along the beams, i.e. dul(ξ) 6= const., the region of active line-to-line contact contribu-
tions characterized by g(ξ) < 0, decreases with increasing penalty parameter. In the limit
ε → ∞, the line-to-line contact formulation converges towards the point-to-point con-
tact formulation, where both conditions (4.40) are fulfilled exactly. Thus, for a sensibly
chosen penalty parameter, the gap function definition (4.34) provides also a good approx-
imation for the line-to-line contact formulation. On the other hand, in configurations with
constant centerline distance field dul(ξ) = const., i.e. a range where no unique bilateral
closest point solution exists and the point-to-point contact formulation cannot be applied,
the two orthogonality conditions (4.40) are exactly fulfilled for the entire beam anyway.
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4.2.2 Integration segments
From a pratical point of view, it is desirable to decouple the beam discretization and the contact
discretization. This can be achieved by allowing for nII ≥ 1 contact integration intervals per
slave beam element with nGR integration points defining a Gauss rule of order p = 2nGR − 1
on each of these integration intervals, thus leading to nGP = nII · nGR integration points per
slave element. In order to realize such a numerical integration procedure, one has to introduce
nII further parameter spaces ξ̄i ∈ [−1; 1] with i = 1, ..., nII on each slave element:

ξ(ξ̄i) =
1.0− ξ̄i

2
ξ1,i +

1.0 + ξ̄i
2

ξ2,i with i = 1, ..., nII . (4.41)

In the simplest case, the parameter coordinates ξ1,i and ξ2,i confining the ith integration interval
are chosen equidistantly within the slave element. Further information on the general determina-
tion of ξ1,i and ξ2,i is provided later on in this section. The total Jacobian Jc1(ξ(ξ̄i)) = ds1/dξ̄i
as employed in the contact residual contributions (4.39), follows directly from (4.41) and reads

Jc1(ξ(ξ̄i)) =
ds1

dξ̄i
=
∂s1

∂ξ
· ∂ξ
∂ξ̄i

= J1(ξ(ξ̄i)) ·
ξ2,i − ξ1,i

2
with i = 1, ..., nII , (4.42)

where the mapping J1(ξ(ξ̄i)) from the arc-length space s1 to the element parameter space ξ on
the slave beam results from the applied beam centerline interpolation (3.39) (see also (3.43)).
Additionally, the sum over the number of Gauss points appearing in (4.39) has to be split:

rcon,1 =

nII∑
i=1

nGR∑
j=1

wjJc1(ξij, ξ1,i, ξ2,i)ε〈g(ξij)〉HT
1 (ξij)n(ξij)︸ ︷︷ ︸

rijcon,1

,

rcon,2 =

nII∑
i=1

nGR∑
j=1

−wjJc1(ξij, ξ1,i, ξ2,i)ε〈g(ξij)〉HT
2 (ηc(ξij))n(ξij)︸ ︷︷ ︸

rijcon,2

.

(4.43)

Here, the terms rijcon,1 and rijcon,2 denote the residual contributions resulting from one individual
Gauss point j lying in the integration interval i. Moreover, the element parameter coordinates ξij
are evaluated according to the rule (4.41) at the Gauss point coordinates ξ̄j:

ξij =
1.0− ξ̄j

2
ξ1,i +

1.0 + ξ̄j
2

ξ2,i for i = 1, ..., nII , j = 1, ..., nGR. (4.44)

Similar to the Gauss weights wj , these Gauss point coordinates ξ̄j are constant, i.e. they are not
deformation-dependent, and identical for all integration intervals in case the same Gauss rule is
applied in each of these intervals. The Gauss quadrature applied for integration of (4.43) guaran-
tees an exact integration of polynomials up to order p = 2nGR−1 when using an integration rule
with nGR quadrature points per integration interval. However, by simply integrating across the
element boundaries of two successive master elements associated with the considered integration
interval via the closest point projection (4.33), the integrand would not have a closed-form poly-
nomial representation anymore and the mentioned polynomial order of exact integration cannot
be guaranteed. On the one hand, the integrands in (4.43) are not of purely polynomial nature,
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4.2 Line-to-Line Contact Formulation

a fact, that precludes exact integration anyway. On the other hand, strong discontinuities in the
integrand, such as jumps in the contact force from a finite value to zero at the master beam end-
points, might increase the integration error drastically. Thus, a compromise between integration
accuracy and computational efficiency is aimed at. Thereto, the integration intervals introduced
above are subdivided into sub-segments only when the projections of master beam endpoints lie
within the considered integration interval. With this segmentation strategy, an integration across
strong discontinuities at the master beam endpoints can be avoided (see Figure 4.4(b)).

(a) Segments at all master element boundaries. (b) Segments only at master beam endpoints.

Figure 4.4: Creation of integration sub-segments on the slave beam.

However, integration segments are not created at all master element boundaries, where weak
discontinuities in the integrand might occur (see Figure 4.4(a)). A further example for locations
showing weak discontinuities in the integrand are the boundaries of active contact zones, i.e.
locations where the contact line force decreases from a positive value to zero. As will become
clear later, the integration across this kind of discontinuities is rather unproblematic due to the
applied beam formulation being C1-continuous at the element boundaries (see Chapter 3) and an
applied quadratic penalty law regularization (see Section 4.4.3) that leads to a smoother transition
between contact and non-contact zones along the beam length. In order to find the boundary
coordinate ξB of an integration sub-segment created at a given master beam endpoint ηEP , the
latter has to be projected onto the slave beam according to the rule (with p2 according to (4.33)):

p2(ξB, ηEP )=̇0, (4.45)

where the given parameter coordinate ηEP can take on the values −1.0 and 1.0 and ξB is in
general found via an iterative solution of (4.45). The derivative p2,ξ needed for such an iterative
solution procedure can be found in Appendix C.2. In the worst, yet very unlikely, case that
two master beam endpoints have valid projections according to (4.45) within one integration
interval, this interval has to be subdivided into three sub-segments. In this case, for one of these
three sub-segments, both boundary coordinates ξ1,i and ξ2,i are determined via (4.45) and are
deformation-dependent. Thus, in general, the coordinates ξ1,i and ξ2,i in (4.41) are given by:

ξ1,i=

{
−1+(i−1)· 2

nII
if no valid master beam endpoint projection exists

ξB1(ηEP , d̂12) if a valid master beam endpoint projection exists

ξ2,i=

{
−1+i· 2

nII
if no valid master beam endpoint projection exists

ξB2(ηEP , d̂12) if a valid master beam endpoint projection exists

(4.46)

for i = 1, ..., nII . Thus, in the standard case, these boundary coordinates are equidistantly dis-
tributed and constant. If a valid projection of a master beam endpoint onto an integration interval
exists, ξB1(ηEP , d̂12) denotes the resulting deformation-dependent lower boundary of a created
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sub-segment, whereas ξB2(ηEP , d̂12) denotes the upper boundary. Equation (4.46) together with
(4.44) and (4.42) provide all necessary information in order to evaluate the element residual vec-
tors according to (4.43). The linearization of the contributions rijcon,1 and rijcon,2 of one individual
Gauss point on element 1 can be formulated by means of the following total differential:

kijcon,l =
drijcon,l
dd̂12

=
∂rijcon,l
∂d̂12

+
∂rijcon,l
∂ξij

dξij

dd̂12

+
∂rijcon,l
∂ηc

dηc

dd̂12

+
∂rijcon,l
∂ξ1,i

dξ1,i

dd̂12

+
∂rijcon,l
∂ξ2,i

dξ2,i

dd̂12

,

with
dξij

dd̂12

=
∂ξij
∂ξ1,i

dξ1,i

dd̂12

+
∂ξij
∂ξ2,i

dξ2,i

dd̂12

and
dηc

dd̂12

=
∂ηc
∂ξij

dξij

dd̂12

+
∂ηc

∂d̂12

for l = 1, 2.

(4.47)

It is emphasized that no summation convention applies to the repeated indices in (4.47). Again,
all basic linearizations of (4.47) are summarized in Appendix C.2. The linearization in (4.47)
represents the most general case where the upper and lower boundary of an integration interval
are deformation-dependent. However, this is only the case for slave elements with valid master
beam endpoint projections according to (4.45) with ξB ∈ [−1; 1]. In practical simulations, this is
not the case for the vast majority of contact element pairs, i.e. dξ1,i/dd̂12 = 0 and dξ2,i/dd̂12 = 0,
thus leading to the following remaining linearization contributions of an individual Gauss point:

kijcon,l =
drijcon,l
dd̂12

=
∂rijcon,l
∂d̂12

+
∂rijcon,l
∂ηc

∂ηc

∂d̂12

, l = 1, 2. (4.48)

The combination of a line-to-line type contact model with a consistently linearized integration
interval segmentation at the beam end points as presented in this section, a quadratically reg-
ularized smooth penalty law and a C1-continuous smooth beam centerline representation is a
distinctive feature of the proposed contact formulation. The benefits of these means are a dras-
tical reduction of the integration error enabling a consistent spatial convergence behavior for a
low number of Gauss points (see Section 4.5.1 for verification), an increase of the algorithmic
robustness and a reduction of possible contact force/energy jumps. The selective segmentation
strategy provides these benefits without significantly increasing the computational effort.

4.2.3 Alternative constraint enforcement strategies
Similar to point-to-point contact formulations, the constraint equation resulting from the line-
to-line contact formulation can be considered within a variational framework by means of a
Lagrange multiplier potential or by means of a penalty potential. In contrast to the point-to-point
case, however, the constraint in (4.34) is not only defined at a single point but rather on a pa-
rameter interval ξ ∈ [ξa, ξb]. According to Section 4.2.1, the penalty method, which introduces
no additional degrees of freedom, can be directly applied in terms of a space-continuous penalty
potential, see (4.35). This potential can alternatively be interpreted as a simple hyper-elastic
stored-energy function representing the accumulated cross-section stiffness of the contacting
beams. The final contact formulation resulting from such a procedure after spatial discretization
and numerical integration is often denoted as Gauss-point-to-segment type formulation.
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On the contrary, the Lagrange multiplier method applied to the constraint in (4.34) introduces
an additional primary variable field λ(ξ), which is typically discretized in a manner consistent
to the spatial discretization of the displacement variables (discrete inf-sup stable pairing). Even-
tually, the nodal primary variables resulting from the discretization of the Lagrange multiplier
field can be considered as additional unknowns or be eliminated by means of a penalty regular-
ization (applied to a spatially discretized version of (4.34)). Both variants are typically denoted
as mortar-type formulations (see e.g. [174, 175]). In Section 4.2.3.1, the main steps of applying
a mortar formulation to beam contact problems, thus representing an alternative to the formula-
tion of Section 4.2.1, are provided. Finally, in Sections 4.2.3.2 and 4.2.3.3, a detailed comparison
and evaluation of the variants ”Gauss-point-to-segment” versus ”mortar” and ”penalty method”
versus ”Lagrange multiplier method” is performed in the context of beam contact.

4.2.3.1 Constraint enforcement based on Lagrange multiplier discretization

Alternatively to Section 4.2.1, constraint enforcement via a Lagrange multiplier potential

Πcλ =

l1∫
0

λc(ξ)g(ξ)ds1 with λc(ξ) ≥ 0, g(ξ) ≥ 0, λc(ξ)g(ξ) = 0 (4.49)

is intended in this section. Variation of the Lagrange multiplier potential according to (4.49)
leads to the following contact contribution to the weak form of the balance equations:

δΠcλ =

l1∫
0

[λc(ξ)δg(ξ) + δλc(ξ)g(ξ)] ds1 and δg(ξ) = [δr1(ξ)− δr2(ξ)]T n(ξ). (4.50)

In (4.50), the contact force fcλ(ξ) = −λc(ξ)n(ξ) =: fcλ(ξ)n(ξ) transferred between the two
beams can again be interpreted as a distributed line force. This time, the Lagrange multiplier
field represents the magnitude of this line force. Next, spatial discretization has to be performed.
Again, the contribution of one slave beam element 1 and one master beam element 2 is consid-
ered. In addition to the spatial discretization (3.39), a trial space λc≈λch∈Uλch⊂Uλc⊂< and
a weighting space δλc≈ δλch∈Vλch⊂Vλc⊂< have to be defined for the Lagrange multipliers:

λc(ξ) ≈ λch(ξ) =

nλ∑
j=1

N j
λ1(ξ)λ̂j1 =: Nλ1(ξ)λ̂λλ1,

δλc(ξ) ≈ δλch(ξ) =

nλ∑
j=1

N j
λ1(ξ)δλ̂j1 =: Nλ1(ξ)δλ̂λλ1.

(4.51)

Here, nλ represents the number of nodes of the Lagrange multiplier discretization per slave ele-
ment, the vector Nλ1(ξ) collects the corresponding test and trial functions with support on slave
beam 1, and λ̂λλ1 as well as δλ̂λλ1 contain the corresponding discrete nodal Lagrange multipliers and
their variations, respectively (see e.g. [230] concerning the choice of the spaces Uλch and Vλch).
Inserting (3.39) and (4.51) into (4.50) and replacing the analytic integral by a Gauss quadrature

179



4 Beam-to-Beam Contact

finally leads to the following contribution of elements 1 and 2 to the discretized weak form:

δΠ
(1,2)
cλh =δd̂

T

1

nGP∑
k=1

wkJc1(ξk)λc(ξk)HT
1(ξk)n(ξk)︸ ︷︷ ︸

=rcon,1

−δd̂
T

2

nGP∑
k=1

wkJc1(ξk)λc(ξk)HT
2(ηc,k)n(ξk)︸ ︷︷ ︸

=rcon,2

+δλ̂λλ
T

1

nGP∑
k=1

wkJc1(ξk)NT
λ1(ξk)g(ξk)︸ ︷︷ ︸

=rλ,1,2

.

(4.52)

Again, rcon,1 and rcon,2 represent the contact force residual contributions of slave element 1 and
master element 2, whereas rλ,1,2 denotes the corresponding residual contribution resulting from
constraint equation (4.34). Based on (4.52), different strategies of constraint enforcement are
possible: Considering the nodal Lagrange multipliers λ̂λλ1 as additional unknowns would lead to
an exact satisfaction of the discrete version of the constraints (4.34). Alternatively, these discrete
constraint equations can be regularized by means of a penalty approach. Let nele,s denote the
total number of slave elements. Then, one typically defines averaged nodal gaps ĝj according to

ĝj :=

nele,s∑
e=1

nGP∑
k=1

wkJc1(ξk)N
j
λ1(ξk)g(ξk) for j = 1, ..., nλ. (4.53)

In (4.53), a summation over all slave elements with support of the shape function N j
λ1(ξ) as-

signed to the nodal gap ĝj is sufficient. Consequently, each nodal gap according to (4.53) repre-
sents one line of the total contact residual contribution resulting from constraint equation (4.34).
Now, one can replace the nodal Lagrange multipliers by averaged nodal penalty forces:

λ̂jε1 = ε〈ĝj〉 for j = 1, ..., nλ. (4.54)

Inserting the nodal penalty forces instead of the nodal Lagrange multipliers into (4.52) yields:

δΠ
(1,2)
cλεh

=δd̂
T

1

nGP∑
k=1

wkJc1(ξk)λcε(ξk)HT
1 (ξk)n(ξk)︸ ︷︷ ︸

=rcon,1

−δd̂
T

2

nGP∑
k=1

wkJc1(ξk)λcε(ξk)HT
2 (ηc,k)n(ξk)︸ ︷︷ ︸

=rcon,2

with λcε(ξ) =

nλ∑
j=1

N j
λ1(ξ)λ̂jε1.

(4.55)

This procedure eliminates the additional nodal unknowns λ̂. However, the constraint of vanish-
ing nodal gaps ĝj will not be exactly fulfilled anymore. The only difference of the discretized
weak form (4.39), i.e. the one resulting from a space-continuous penalty potential, and (4.55),
i.e. the one resulting from a discretized Lagrange multiplier potential and a subsequent penalty
regularization, lies in the definition of the scalar contact forces λcε(ξ) and ε〈g(ξ)〉, respectively.
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4.2.3.2 Comparison of the two penalty approaches

The main advantage of the formulation presented in Section 4.2.3.1 is that it results from a con-
sistent Lagrange multiplier discretization. As long as the trial and weighting spaces Uh,Vh,Uλch

and Vλch are chosen such that a proper discrete inf-sup-stability condition is satisfied, no contact-
related locking effects have to be expected, even for large values of the penalty parameter. This
does in general not hold for the formulation presented in Section 4.2.1, where contact-related
locking might occur for very high penalty parameters. When considering highly slender beams,
moderate values of the penalty parameter are often sufficient in order to satisfy the contact con-
straint with the desired accuracy. In Section 4.5.1, it will be verified numerically that within
this range of penalty parameters the spatial convergence behavior is not deteriorated by contact-
related locking effects when applying the contact formulation according to Section 4.2.1. A cru-
cial advantage of the latter formulation lies in its efficiency and its straight-forward implementa-
tion. On the one hand, the numerical implementation of the variant presented in Section 4.2.3.1
requires an additional element evaluation loop in order to determine the nodal gaps according
to (4.53) or, in other words, the penalty-based elimination of the Lagrange multipliers cannot
exclusively be conducted on element level. On the other hand, in combination with the standard
gap function definition according to (4.34), this variant requires a very fine finite element dis-
cretization when applied to contact problems involving highly slender beams. This fact will be

(a) Problem setup and geometry. (b) Evolution of gap function. (c) Evolution of contact force.

Figure 4.5: Two straight beam elements with large penetration and small contact angle.

illustrated in the following by means of Figures 4.5 and 4.6. In Figure 4.5(a), two straight beam
elements with cross-section radii R1 = R2 = R characterized by a comparatively small con-
tact angle and a large penetration of almost g(ξc)≈ 2R are depicted. The resulting contact line
force vector field according to (4.37) is illustrated in green color. Furthermore, in Figure 4.5(b),
the evolution of the gap function is plotted over the length of the slave beam element. With in-
creasing penalty parameter, the formulation according to Section 4.2.3.1 forces the nodal gaps
in (4.53) to vanish. Roughly speaking, this means that the areas enclosed by positive gaps and the
areas enclosed by negative gaps, as indicated with red and blue color in Figure 4.5(b), must bal-
ance each other. For small contact angles and reasonable spatial discretizations, this is possible.
However, when looking at the gap-function evolution resulting from two almost perpendicular
beams as illustrated in Figure 4.6(b), such a balancing can only be achieved if the beam element
length is reduced drastically. This need for a sufficiently fine spatial discretization increases the
numerical effort of this method. Alternatively, one might modify the definition of the gap func-
tion g(ξ), such that negative/positive gap contributions are weighted stronger/weaker. Since such
an extra effort is not necessary for the procedure of Section 4.2.1, this variant will be preferred.
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(a) Problem setup and geometry. (b) Evolution of gap function. (c) Evolution of contact force.

Figure 4.6: Two straight beam elements with large penetration and large contact angle.

4.2.3.3 Penalty method vs. Lagrange multiplier method

Constraint enforcement by means of Lagrange multipliers is common practice in the field of
computational contact mechanics for solids, especially in combination with mortar methods (see
Section 4.2.3.1), due to some advantageous properties, for example concerning the accuracy
of contact resolution. Even though the application of the Lagrange multiplier method for con-
straint enforcement in beam-to-beam contact scenarios has already been investigated in [146],
the vast majority of publications in this field is based on regularized constraint enforcement via
the penalty method. This fact can be justified by a couple of reasons: When considering dis-
cretizations based on structural models the ratio of surface degrees of freedom to all degrees of
freedom (=1 for beams) is much larger than for solid discretizations based on a 3D continuum
theory. Consequently, also the ratio of additional Lagrange multiplier degrees of freedom to dis-
placement degrees of freedom would be comparatively high when enforcing e.g. beam-to-beam
line contact constraints (see Section 4.2.3.1) by means of Lagrange multipliers. Furthermore,
when modeling slender structures by means of mechanical beam models, which are often based
on the assumption of rigid cross-sections, computational efficiency is one of the key aspects
whereas the resolution of exact contact pressure distributions and other mechanical effects on
the length scale of the cross-section, which is typically by orders of magnitude smaller than the
length dimension of the beam, is not of primary interest. If one is primarily interested in the
global system behavior, even penetrations on the order of magnitude of the cross-section radius
are often tolerable. Typically, penalty parameters required to limit the penetrations to such val-
ues decrease with the beam thickness. Often, the required values are proportional to the beam
bending stiffness and therefore the penalty contributions do not significantly deteriorate the con-
ditioning of the system matrix which is usually dominated by high axial and shear stiffness terms.

Besides the arguments above, there is one further crucial point, which makes the penalty method
not only preferable to constraint enforcement via Lagrange multipliers, but which even prohibits
the use of the latter method. Many of the perhaps most efficient and elegant beam models avail-
able in the literature (see e.g. the comparison of ANS beams and geometrically exact beams in
[188]), are based on the assumption of rigid cross-sections. Especially when considering very
thin beams, this assumption is well-justified and the properties of the resulting beam formula-
tions are desirable from a numerical point of view. However, combining the assumption of rigid
cross-sections and contact constraint enforcement via Lagrange multipliers leads to the follow-
ing dilemma when considering e.g. the dynamic collision of two beams: In the range of large
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contact angles, the initial kinetic energy will be transformed into elastic bending energy and back
to kinetic energy during the impact. However, with decreasing contact angle the elastic bending
deformation decreases and in the limit of two matching, exactly parallel beams the amount of
elastic deformation during the collision drops to zero, since the cross-sections are rigid. The
accelerations and contact forces resulting from such a scenario are unbounded and the result-
ing numerical problem becomes singular. Thus, undoubtedly, a certain amount of cross-section
flexibility is indispensable when modeling such a scenario. This cross-section flexibility can be
provided by a penalty force law such as the one in Section 4.2.1, which already has the struc-
ture of a typical hyper-elastic strain energy function and models the accumulated stiffness of the
cross-sections of the two contacting beams. Of course, this idea can be refined by deriving more
sophisticated penalty laws in form of reduced models based on a continuum mechanical analysis
of the cross-section deformation and stiffness (see also [122]). However, since the primary inten-
tion is the regularization of parallel-impact scenarios and not the resolution of local deformations
on the cross-section scale, the simple and convenient force law (4.88) will be kept. Nevertheless,
the adaption of the presented theory to more general penalty laws is straightforward. Finally,
with these considerations in mind, the penalty parameter in the context of rigid-cross-section
beam contact is no longer a pure mathematical tool of constraint enforcement, but it rather has a
physical meaning: it serves as mechanical model of the beam cross-section stiffness. This inter-
pretation simplifies the determination of a proper penalty parameter.

4.2.4 Limitations of line-to-line contact formulation
According to Section 4.1.2, the unilateral closest point solution (4.33) required for the line-to-
line contact formulation is unique in the range of admissible beam curvatures and for a suffi-
ciently small distance between the contacting beams. However, the practical limitation of the
line-to-line contact formulation is of a different nature and appears in terms of computational
effort. In order to explain this statement, the top-view of two contacting straight beams with
given contact angle α is illustrated in Figure 4.7. The crucial question is which distance ∆s̃GP
between two successive Gauss points (red circles) is admissible such that the normalized gap

gn := g/R = (dbl − 2R)/R (4.56)

at the bilateral closest points (visualized by means of green circles) does not exceed a prescribed
minimal value. From simple geometrical considerations, the following relation between the uni-
lateral distance function dul associated with the Gauss point and its projection onto the master
beam (visualized by blue circles), the bilateral distance function dbl at the closest point pair
s̃1c, s̃2c (perpendicular to the slide plane) and the contact angle α can be derived:

d2
ul = d2

bl +

(
∆s̃GP sin (α)

2

)2

. (4.57)

It is assumed that the penalty parameter ε of the line contact formulation is high enough such that
dul ≈ 2R in case of an active/contacting Gauss point. Using this estimation together with equa-
tion (4.56), the relation (4.57) is exploited in order to derive the maximal admissible Gauss point
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Figure 4.7: Contact interaction of two straight beams enclosing a given contact angle α.

distance ∆s̃GP,max such that a prescribed minimal normalized gap gn,min will not be exceeded:

∆s̃GP,max =

√
1−

(gn,min
2

+ 1
)2 4R

sin (α)
. (4.58)

From (4.58), two extreme cases can be deduced: Requiring (theoretically) a vanishing gap at the
bilateral closest point gn,min = 0 means that the distance between the Gauss points also would
have to vanish. However, in order to simply prevent the beams from an undetected crossing
(gn,min = 2 represents the minimal possible gap occurring in case of crossing centerlines), a
maximal distance of 4R/ sin (α) (see Figure 4.7) must not be exceeded. From (4.58), the minimal
number of (evenly distributed) Gauss points nGP,min required for a slave beam of length l1 and
an expected maximal contact angle αmax in order to limit the normalized gap to gn,min yields

nGP,min = kGP

[
1−

(gn,min
2

+ 1
)2
]−0.5

sin (αmax)

4
ζ1 with ζ1 =

l1
R
, (4.59)

where ζ1 denotes the slenderness ratio of the slave beam. Here, kGP represents a safety fac-
tor, which takes into account that the Gauss points are actually not evenly distributed, that in
fact some small penetration at the Gauss points (and not exactly dul = 2R) appear and finally
that in practical simulations one often requires a certain number of intermediate Gauss points
for reasons of integration accuracy. Nevertheless, the required minimal number of Gauss points
increases linearly with the slenderness ratio of the beams. Practical simulations of slender fil-
aments confirm the prediction in (4.59), i.e. that the computational effort increases with the
slenderness ratio of the beams and that the overall computational cost is dominated by the nu-
merical evaluation of Gauss point quantities. The second interesting information provided by
equation (4.59) is that the minimally required number of Gauss points nGP,min increases with
the expected contact angle. Thus, the computational effort could be reduced dramatically if the
expensive line-to-line contact formulation were only applied in the range of small contact angles.

Again, it is not only the numerical point of view that suggests a confinement of the line-to-line
contact formulation to the range of small contact angles: With increasing contact angle and in-
creasing penalty parameter, the force evolution resulting from the line contact model degenerates
more and more to a Dirac-delta distribution, thus advocating the point contact model as mechan-
ical model of choice to be applied in the range of large contact angles. In the following section,
the findings of Section 4.1 and 4.2 will be combined in order to derive a novel all-angle beam
contact formulation that is suitable for arbitrary beam-to-beam orientations.
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4.3 All-angle Beam Contact (ABC) Formulation
The quintessence of the last two sections is rather straightforward: The point-to-point contact
formulation serves as a sensible mechanical model and very efficient numerical algorithm in the
range of intermediate and large contact angles, while it represents an insufficient mechanical
model in the range of small contact angles and is even inapplicable for contact angles below the
lower bound provided by (4.31). On the other hand, the line-to-line contact formulation provides
a very accurate mechanical model and a robust and rather efficient numerical algorithm in the
range of small contact angles, whereas the model quality and especially the computational effi-
ciency dramatically decrease with increasing contact angles. According to (4.59), this situation
aggravates with increasing beam slenderness ratio. The novel approach presented in the follow-
ing is based on the simple idea of combining the advantages of these two types of formulations,
while abstaining from their disadvantages. Thus, a point contact formulation is applied in the
range of large contact angles, while the range of small contact angles is covered by a line contact
formulation. The smooth model transition between these regimes within a prescribed interval

[α1;α2] with α1, α2 ∈ [0◦; 90◦], α1 < α2, (4.60)

is realized in a variationally consistent manner without loosing essential properties such as con-
servation of linear momentum, angular momentum and energy. Furthermore, all configuration-
dependent quantities describing the point, line and transition contact range are consistently lin-
earized, thus allowing for their application within an implicit time integration scheme.

4.3.1 Derivation of ABC formulation
In the next sections, two different possibilities of carrying out the model transition will be inves-
tigated, the first one on penalty force level and the second one on penalty potential level.

4.3.1.1 Force-based model transition

The first variant proposes a beam contact model transition that is performed on the contact force
level. Thereto, the overall contact contribution to the weak form is defined as follows:

δΠcε = [1− k(zc)] ε⊥〈g〉︸ ︷︷ ︸
=:−fcε⊥

δg +

l1∫
0

k(z(ξ))ε‖〈g(ξ)〉︸ ︷︷ ︸
=:−fcε‖(ξ)

δg(ξ)ds1. (4.61)

Here and in the following, the indices ⊥ and ‖ of a quantity refer to the point contact or the line
contact formulation, respectively. Additionally, the following notations zc :=z(ξc, ηc) as well as
z(ξ) = z(ξ, ηc(ξ)) are employed for the cosine of the contact angle (field). The angle-dependent
transition factor k(z) occurring in (4.61) is represented by the following analytic expression:

k(z)=


1, α < α1

0.5
(

1−cos
(
π z−z2
z1−z2

))
, α2 ≥ α ≥ α1

0, α > α2

, z=cos(α)=
||rT1,ξr2,η||
||r1,ξ||||r2,η||

. (4.62)
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Thus, (4.61) represents a pure point-contact formulation for large angles α > α2, a pure line-
contact formulation for small angles α<α1 and a weighted sum of these two basic formulations
for angles within the transition interval α ∈ n[α1;α2]. Furthermore, the transition factor k(z)
according to (4.62) provides a C1-continuous transition law for the corresponding contact force
contributions. It would be an obvious choice to take the contact angle α as argument of the tran-
sition function k. However, in (4.62), z=cos(α) has been employed, which represents the scalar
product of the two unit tangent vectors (see also (4.11) or (4.38)) at the contact point instead
of the contact angle α itself as argument of the transition function. Firstly, cos(α) is a smooth
and monotonic function for α ∈ [0; 90◦] and k(cos(α)) can therefore model the transition in a
similar manner as k(α). Secondly, this way, additional nonlinearities and singularities resulting
from the arccos function, which is necessary in order to express α in terms of primary variables,
can be avoided. Mechanically, the products (1−k(zc(αc))ε⊥〈g〉 and k(z(α(ξ))ε‖〈g(ξ)〉 of the
scaling factor, the penalty parameter and the gap occurring in (4.61) can be interpreted as angle-
dependent penalty force laws f(g, α). Unfortunately, it can easily be shown that no potential
Π(g, α) exists for such a force law: If a potential existed, the integrability condition

fg,α = −fα,g with fg =
∂Π(g, α)

∂g
, fα =

∂Π(g, α)

∂α
(4.63)

would have to be fulfilled by the force law. Since (4.61) only provides a force component fg=fcε,
but no force component that is work-conjugated with δα (fα ≡ 0), the integrability condition
(4.63) cannot be fulfilled leading to a non-conservative force law. In contrast to mechanically mo-
tivated non-conservative force laws (e.g. friction forces), the non-conservative nature of (4.61)
has a pure algorithmic reason. Thus, even for a conservative mechanical system, exact energy
conservation cannot be achieved if the force law (4.61) employed. For that reason, an alternative,
potential-based contact model transition will be proposed in the next section.

4.3.1.2 Potential-based model transition

In order to preserve energy conservation, again, a transition rule similar to (4.62) will be applied,
but this time directly on the penalty potential level according to:

Πcε =
1

2
ε⊥(1− k(zc)

2)〈g〉2 +
1

2
ε‖

l1∫
0

k2(z(ξ))〈g(ξ)〉2ds1. (4.64)

Variation of the combined potential (4.64) yields the contact contribution to the weak form:

δΠcε = ε⊥
(
1− k(zc)

2
)
〈g︸ ︷︷ ︸

=−fcε⊥

〉 δg − ε⊥〈g〉2k(zc)
∂k(zc)

∂α︸ ︷︷ ︸
=−mcε⊥

δα

+

l1∫
0

[
ε‖k

2(z(ξ))〈g(ξ)〉︸ ︷︷ ︸
=−fcε‖

δg(ξ) + ε‖〈g(ξ)〉2k(z(ξ))
∂k(z(ξ))

∂α︸ ︷︷ ︸
=−mcε‖

δα(ξ)
]
ds1 .

(4.65)
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While the terms on the left represent contact force contributions similar to the ones occurring in
(4.61), the terms on the right can be identified as contact moment contributions that are work-
conjugated to the variation of the contact angle α. These contact moments play the role of the
additional contact contributions fα = −mcε necessary in order to fulfill the integrability con-
dition (4.63) and eventually make the force law conservative. The only reason why a quadratic
transition factor k(z)2 has been applied in (4.64) instead of a linear one is the derivative ∂k/∂α
occurring in (4.65). By this choice, also the transition in the contact moment contributions be-
comes C1-continuous. For conservative problems where exact energy conservation is important,
the weak form (4.65) has to be preferred. However, for non-conservative problems and/or prob-
lems where exact energy conservation is only of secondary interest, also the simpler variant
according to (4.62) can be applied. This statement can be supported by the following three ar-
guments: Firstly, for a sensible choice of the penalty parameter, the total energy contribution of
the penalty forces is often small as compared to the internal elastic or kinetic energy. Secondly,
the ratio of the contact moments mcε to the moment contribution of the contact forces, which are
typically in the order of magnitude of fcε · l, can be formulated by means of the proportionality

mcε

fcε · l
∼ g

l
(4.66)

and is therefore expected to be small, since g � l holds for a sensible choice of the penalty pa-
rameter. Thirdly, for reasonably balanced penalty parameters ε⊥ and ε‖ (see Section 4.3.3), the
contact moments stemming from a decreasing/increasing point-contact potential and the ones
stemming from an increasing/decreasing line-contact potential will mutually erase each other up
to a certain degree. As a result, the total moment contribution of point-to-point and line-to-line
contact together is smaller than the individual contributions. For all these reasons, the simpler
force-based formulation (4.61) will be preferred for the applications in Section 4.5.3. Neverthe-
less, for comparison purposes, also the potential-based model will be consulted.

Remark: The contact moments occurring in (4.65) are not mechanically motivated. They
are rather necessary from a mathematical point of view in order to enable exact energy
conservation within the shifting interval. However, in Section 4.5.2.1, it will be shown
that in general the pure line-to-line contact formulation already generates (mechanically
motivated) accumulated contact moments with respect to the normal vector n at the
(bilateral) closest point. There, it will be observed that for a sensibly chosen ratio of
ε⊥ and ε‖ (see Section 4.3.3), the model error between the ABC formulation and the
standard line-to-line contact formulation will not be increased in a noticeable manner
by these algorithmic contact moments. Furthermore, as already mentioned above, the
ratio of these contact moment contributions to moment contributions stemming from
contact forces or external forces decreases with increasing penalty parameter. Never-
theless, an exact energy conservation can only be guaranteed if these terms are considered.

In a next step, spatial discretization is performed. The final discrete version of (4.65) (or 4.61)
basically consists of the standard contributions of point contact (see Section 4.1) and line contact
(see Section 4.2) as well as the transition factor defined in (4.62) and discretized by (3.39). The
last missing term that has to be formulated in case of a potential-based transition is the variation
δk = (∂k(z)/∂α) · δα. In (4.65), the terms on the right have been formulated as variations with
respect to α in order to illustrate the moment-character of these contributions. However, it is

187



4 Beam-to-Beam Contact

sensible to slightly reformulate these terms, since the transition factor has been formulated as
function of z = cosα and the dependence on the contact angle α is only of implicit nature:

δk(z)=
∂k(z)

∂α
δα=

∂k(z)

∂z
δz,

∂k(z)

∂z
=


0, α < α1

π
2(z1−z2)

sin
(
π z−z2
z1−z2

)
, α2 ≥ α ≥ α1

0, α > α2

(4.67)

Variation of the term z(r1(ξ), r2(η)) according to (4.62) leads to the following expression:

δz =

[
vT1

(
drp1

dd̂12

)
+ vT2

(
drp2

dd̂12

)]
δd̂12

vT1 =
gT1,2
||rp1||

[
I3×3 − g1,1 ⊗ gT1,1

]
, vT2 =

gT1,1
||rp2||

[
I3×3 − g1,2 ⊗ gT1,2

]
,

g1,1 =
rp1
||rp1||

, g1,2 =
rp2
||rp2||

drp1

dd̂12

=
∂rp1

∂d̂12

+
∂rp1
∂ξ

dξ

dd̂12

=

[(
Hp

1,0
)

+ rpp1
dξ

dd̂12

]
,

drp2

dd̂12

=
∂rp1

∂d̂12

+
∂rp2
∂η

dη

dd̂12

=

[(
0,Hp

2

)
+ rpp2

dη

dd̂12

]
.

(4.68)

In the derivation of (4.68), the discretization according to (3.39) has already been inserted and,
again, only the contribution of two beam elements with nodal degrees of freedom d̂12 have been
considered. The definition of the transition factor according to (4.62) and its variation according
to (4.67) and (4.68) is valid for the point contact and for the line contact contribution. However,
in the point-contact contribution, all terms have to be evaluated at the closest point pair ξc and ηc,
while in the line contact contribution all terms have to be evaluated at the Gauss points ξij (see
also Section 4.2) and the corresponding closest master points ηc(ξij). In contrast to the gap func-
tion variation δg, the derivation of δz also requires the variations of the contact point coordinates
ξ and η for a variationally consistent formulation of the weak form. The corresponding deriva-
tives dξ/dd̂12 and dη/dd̂12 of these coordinates for the cases of point-to-point and line-to-line
contact are summarized in Appendix C.1 and Appendix C.2. The basic steps in order to derive
the final residual and stiffness contributions of the force-based as well as of the potential-based
all-angle beam contact formulation are summarized in Appendix C.3.

4.3.2 Choice of shifting angles
A sensible choice of the shifting angles α1 and α2 is crucial for a robust and efficient contact
algorithm based on the presented ABC formulation. For a given upper bound µmax describing
the maximal curvature admissible or expected for the considered example, (4.31) yields a lower
bound for the shifting angle α1 above which a unique bilateral closest point solution necessary
for the point-to-point contact formulation can be guaranteed. Thus, α1 is determined as

α1 = kα1 arccos (1− 2µmax) . (4.69)
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Here, kα1 > 1 represents an additional safety factor. Next, the second shifting angle α2 has to be
chosen. For efficiency reasons, this angle should be as small as possible. However, the shifting
interval should be large enough in order to ensure a model transition that is sufficiently smooth
from a mechanical as well as from a numerical point of view. Since the point-to-point contact
and the line-to-line contact model approach each other with increasing penalty parameters, also
the shifting interval can be chosen tighter with increasing penalty parameters. In the numerical
simulations presented in Section 4.5.3, typical shifting intervals will lie in the angle range of
α2−α1≈1◦... 5◦. Having prescribed α2, also the lower bound for the required number of Gauss
points of the line contact formulation can be determined by inserting αmax=α2 into (4.59).

4.3.3 Adjustment of point and line penalty parameters
So far, ε⊥ and ε‖ represent two independent system parameters. In this section, an optimal ratio of
these two parameters will be derived, such that only one penalty parameter has to be user-defined
while the second one can be determined automatically. The criterion for this optimal choice is
the minimization of the work contribution of the algorithmic contact moment contributionsmcε⊥
and mcε‖. This approach is not only advantageous for the potential-based ABC formulation. As
a consequence of this choice, the difference between the work contributions of the force-based
and the potential-based formulation, which represents the non-conservative work contributions
of the force-based formulation, will be minimized. In the following, it is not searched for the
exact solution of the corresponding minimization problem, but rather for an approximate solution
based on some simplifying assumptions. Thereto, the curves r1(ξ) and r2(η) are expressed as
linear Taylor expansions with respect to the closest point (ξc, ηc), thus leading to a constant
contact angle within the line-to-line contact region. In this case, the mcε‖-term can be simplified:

ε‖

l1∫
0

〈g(ξ)〉2k(z(ξ))
∂k(z(ξ))

∂α
δα(ξ)ds1 = ε‖

s1,c+∆s‖∫
s1,c−∆s‖

g(ξ)2k(z(ξ))
∂k(z(ξ))

∂α
δα(ξ)ds1

≈ ε‖

s1,c+∆s‖∫
s1,c−∆s‖

gl(ξ)
2ds1 · k(zc)

∂k(zc)

∂α
δαc.

(4.70)

Here, gl(ξ) denotes the gap function based on linearly approximated beam geometries. This
approximation is valid, since for a sensible choice of the penalty parameter and the shifting
interval (see Section 4.3.2) the length 2∆s‖ of the domain with active contact forces (g < 0) is
small compared to the beam length. Furthermore, this length decreases with increasing penalty
parameter. Next, it is required that the contact moment work contributions balance each other:

ε‖

s1,c+∆s‖∫
s1,c−∆s‖

gl(ξ)
2ds1 · k(zc)

∂k(zc)

∂α
δαc=ε⊥g

2k(zc)
∂k(zc)

∂α
δαc → ε⊥=

ε‖
g2

s1,c+∆s‖∫
s1,c−∆s‖

gl(ξ)
2ds1. (4.71)

In general, equation (4.71) based on a linearly approximated geometry cannot be fulfilled for
arbitrary contact angles and gaps by one constant penalty parameter ε⊥. Therefore, only the
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weaker requirement that (4.71) is exactly fulfilled for the minimal admissible gap gmin (going
along with maximal contact work) and at the mean shifting angle ᾱ12 := (α1 + α2)/2 is stated:

ε⊥
ε‖

=
1

g2
min

s1,c+∆s‖∫
s1,c−∆s‖

gl(gmin, ᾱ12, ξ)
2ds1 =

Π̃cε‖(gmin, ᾱ12)

Π̃cε⊥(gmin)
. (4.72)

Since an exact solution of (4.71) is not intended, but rather an approximation providing at least a
sensible order of magnitude, a comparatively rough bound for the minimal gap gmin is sufficient.
If the specific application prescribes some tolerable bound gmin, this value can be taken. With
an implementation of the proposed ABC formulation at hand, it is a simple task to perform a
pre-processing step, where the normalized penalty potential Π̃cε⊥(gmin) of the point-contact and
Π̃cε‖(gmin, ᾱ12) of the line-contact (see Section 4.4.3 for the definition of normalized penalty
potentials and different penalty force laws) resulting from the contact interaction of two straight
beams characterized by an enclosed angle ᾱ12 and a gap gmin are calculated. With these energies
and a given penalty parameter ε‖, the corresponding value of ε⊥ can be calculated according to
(4.72). This procedure is valid for arbitrary penalty force or potential laws that depend linearly
on the penalty parameter, such as for example the laws (4.87) and (4.88) (see Section 4.4.3).
In case of a linear penalty law according to (4.87), the integral appearing in (4.72) can also be
approximated analytically. Assuming the most conservative estimation for the minimal gap ac-
cording to gmin=−2R (intersection of the beam centerlines), and approximating the distribution
of gl(ξ) as piecewise linear function in ξ yields the following relation:

ε⊥
ε‖
≈ 2

g2
min

s1,c+∆s‖∫
s1,c

[
−gmin

(
1− s1 − s1,c

∆s‖

)]2

ds1 =
2∆s‖

3
. (4.73)

By using (4.58) in case of intersecting beam centerlines (gmin =−2R → gn,min =−2) in order
to determine the integration length as 2∆s‖=4R/ sin (ᾱ12), a simple relation can be stated:

ε⊥
ε‖
≈ 4R

3 sin (ᾱ12)
. (4.74)

A similar analytic approximation could also be derived for the quadratically regularized penalty
force law introduced in Section 4.4.3. However, since in practical simulations the relation ḡ � R
often holds (see again Section 4.4.3 for the definition of ḡ), (4.74) can also be applied as approx-
imation for this force law. In Section 4.5, it will be shown that in many cases a choice of ε⊥
according to (4.74) is sufficient in order to reduce the non-conservative work contribution of the
force-based formulation down to a practically tolerable level. Nevertheless, this behavior can be
further improved by determining ε⊥ via numerical integration of (4.72) based on the actually
applied penalty law and a better estimation for the minimal gap gmin. With this suggestion at
hand, only the line-to-line penalty parameter ε‖ has to be prescribed independently. For the de-
termination of ε‖, the value of the cross section stiffness can serve as a starting point.
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Remark: In (4.61), it seemed to be natural to introduce a scaling factor [1−k(z)] for
the point penalty parameter that is complementary to the scaling factor k(z) of the line
penalty parameter. With the knowledge of the last sections, one could imagine an alterna-
tive description of the angle-dependent evolution of the point penalty parameter. Thereto,
one could apply the force-based ABC formulation, yet, not based on the applied [1−k(z)]-
transition law in combination with a constant penalty parameter, but rather based on an
individual point-to-point penalty parameter ε⊥,i at every contact point as additional un-
known. In order to determine this additional unknown, one could formulate conditions
similar to (4.71) for each individual contact point, such that the resulting evolution of ε⊥,i
allows for exact energy conservation without the need for algorithmic contact moments
as appearing in the potential-based ABC formulation. However, in Section 4.5.2 it will be
verified numerically that the error in the energy conservation of the simple force-based
ABC formulation in combination with a sensible, constant choice of ε⊥ (see e.g. (4.72))
is in many cases negligible from a practical point of view. Thus, the numerical effort
resulting from a formulation with additional unknowns ε⊥,i does not seem to be justified.

4.3.4 Conservation properties
In Section 3.2.4.5, the conservation of linear and angular momentum as well as the conserva-
tion of energy has already been formulated in a general manner for the proposed beam element
formulations. Concretely, it has been shown that the conservation statements (3.110), (3.112)
and (3.114) can directly be deduced in case the ”virtual motions” (3.109), (3.111) and (3.113)
can be represented by the chosen weighting spaces Vh. Since the proposed beam-to-beam con-
tact formulations are completely defined by the beam centerline field r(s) (and its variation
δr(s)), only the first of the two respective variational fields in (3.109), (3.111) and (3.113) that
is related to the centerline variation δrh is relevant in the following. In contrast to the discrete
spin vector fields, it has already been shown that the discrete centerline variation fields given
in (3.109), (3.111) and (3.113) can be exactly represented by all of the presented beam element
formulations. Thus, the only remaining step is to investigate if these virtual centerline motions
also result in a conservation of linear momentum, angular momentum and energy for the con-
sidered beam contact formulations. Concretely, the proposed ABC formulation in combination
with a potential-based model transition given in (4.65) will be investigated, since it contains the
variants ”force-based transition“ (neglect of contact moment contributions and replacement of
k(z) by k2(z)), ”pure point contact“ (k(z)≡0) and ”pure line contact“ (k(z)≡1) as special cases.

Starting with the investigation of conservation of linear momentum, the specific test functions
δr1h(ξ) = δr2h(η) = u0 = const. are employed. In the following, it will be shown that inserting
these test functions into (4.65) yields a vanishing overall contact contribution to the weak form:

δΠcε(δr1h=δr2h=u0) = 0. (4.75)

In other words, the discrete contact forces at the contact interface exactly balance each other and
global conservation of linear momentum according to (3.110) is still preserved. In order to prove
this statement, one has to realize from (4.9) and (4.36) that δg(δr1h = δr2h = u0) = 0, which
already yields vanishing contact force terms (terms on the left) in (4.65). Furthermore, inserting
(3.109) into the expressions for dξ/dd̂12 and dη/dd̂12 given in Appendix C.1 and C.2 delivers
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the trivial result that the closest point projections are not influenced by a rigid body translation of
the entire system, i.e. dξ(δr1h=δr2h=u0)/dd̂12 = dη(δr1h=δr2h=u0)/dd̂12 =0. Inserting this
result together with H′1δd̂1(u0) = H′2δd̂2(u0) = 0 into (4.68) leads to δz = δα = 0, and there-
fore also to vanishing contact moment contributions in (4.65). This concludes the proof of (4.75).

In order to investigate conservation of angular momentum, the test functions δr1h=w0× r1 and
δr2h=w0 × r2 based on a spatially constant vector w0 =const. are considered. It will be shown
that inserting these test functions into (4.65) again yields a vanishing contact contribution:

δΠcε(δrih=w0 × rih) = 0 for i=1, 2. (4.76)

In other words, the contact moments at the contact interface exactly balance each other and
conservation of angular momentum according to (3.112) is preserved. In order to prove this
statement, this specific choice of test functions is first inserted into (4.9) and (4.36):

δg(δrih=w0 × rih) = (w0 × r1h −w0 × r2h)
T n = wT

0 [(r1h − r2h)× n] = 0. (4.77)

Again, inserting this choice of test functions into the expressions for dξ/dd̂12 and dη/dd̂12 pre-
sented in Appendix C.1 and C.2 yields the trivial result that the closest point projections are not
influenced by a rigid body rotation, i.e. dξ(δrih=w0×rih)/dd̂12 = dη(δrih=w0×rih)/dd̂12 =0.
An evaluation of the remaining terms in equation (4.68) finally results in

δz = vT1 (w0 × r′1h) + vT2 (w0 × r′2h) =
r′T2 (w0 × r′1h)

||r′1|| ||r′2||
+

r′T1 (w0 × r′2h)

||r′1|| ||r′2||
= 0, (4.78)

where (w0×rih)
′=w0×r′ih was used. The results (4.77) and (4.78) complete the proof of (4.76).

In a last step, also the conservation of energy has to be verified. Thereto, the test functions
δr1h = ṙ1h as well as δr2h = ṙ2h are considered. The contact contributions (4.65) have been
derived from the potential (4.64) in a Bubnov-Galerkin manner under consistent consideration
of the spatial discretization given by the Hermite centerline interpolation (3.39), i.e.

δΠcε =
2∑
i=1

(
∂Πcε

∂ri

dri

dd̂12

δd̂12 +
∂Πcε

∂r′i

dr′i

dd̂12

δd̂12

)
,

dr1

dd̂12

=

[
(H1,0) + r′h

dξ

dd̂12

]
,
dr′1

dd̂12

=

[(
H′1,0

)
+ r′′1

dξ

dd̂12

]
,

dr2

dd̂12

=

[
(H2,0) + r′2

dξ

dd̂12

]
,
dr′2

dd̂12

=

[(
H′2,0

)
+ r′′2

dξ

dd̂12

]
.

(4.79)

Therefore, by replacing the variations δ(.) with time derivatives ˙(.), the correspondingly dis-
cretized contact contributions (4.65) per definition represent the rate Π̇cε of the discrete penalty
potential. Adding the contact terms to the internal, kinetic and external terms in (3.114) yields

Π̇kin + Π̇int + Π̇cε = Pext, (4.80)

which again implies conservation of the sum of kinetic, internal and penalty energy in the ab-
sence of external forces, i.e. if Pext = 0. In case of the non-conservative ”force-based transition”
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between the point and line contact regime, no potential of the contact forces exists and the term
Π̇ε in (4.80) has to be replaced by the negative power of the contact forces −Pcε, viz.

Pcε = (ṙ1 − ṙ2)T fcε⊥ +

l1∫
0

[
(ṙ1 − ṙ2)T fcε‖

]
ds1, fcε⊥ = fcε⊥n, fcε‖ = fcε‖n. (4.81)

In summary, it can be stated that the properties of conservation of linear momentum, angu-
lar momentum and energy are preserved by the spatially discretized version of the proposed
beam-to-beam contact formulations in combination with the geometrically exact beam element
formulations proposed in Chapter 3. In Section 4.5.2.2, this statement will also be verified nu-
merically. The question of preservation of these properties in the temporally discretized problem
setting depends on the applied time integration scheme and is not content of this work.

4.4 Algorithmic Aspects
In the following Sections 4.4.1 and 4.4.2, further information concerning the employed con-
tact search algorithm and a step size control applied to the iterative displacement increments
within the Newton-Raphson scheme will be given. The latter method enables displacements per
time step that are larger than the beam cross section radius, which is the typical time step size
limitation of standard beam contact algorithms. In Section 4.4.3, different penalty force laws are
presented before the contact contributions of the beam endpoints are considered in Section 4.4.4.

4.4.1 Contact search algorithm
The contact search algorithm combined with the proposed ABC formulation consists of two
search steps. The first step is an element-based octree search and yields pairs of close-by finite
elements (located on two different or for self-contact also on the same physical beam) that might
potentially come into contact. The octree search assumes that (the 2D projection of) the maximal
deformation of an initially straight beam segment discretized by one third-order finite element
based on (3.39) does not exceed a half-circular shape. Having this restriction in mind, the octree
search is based on an intersection of spherical bounding boxes defined by

rm =
d̂1 + d̂2

2
, rs = (1 + krs)

||d̂2 − d̂1||
2

(4.82)

and illustrated in two dimensions in Figure 4.8. Here, the introduced parameter krs represents
an additional safety factor. While the spherical search box appears as a comparatively loose hull
for straight beam elements (see Figure 4.8(a)) its application seems to be justified when consid-
ering strongly deformed beam elements as illustrated in Figure 4.8(b). In order to further limit
the size and number of beam segments where (a large number of) unilateral closest-point pro-
jections have to be evaluated, a second search step is applied. Thereto, each beam element of
the pairs found in the first step is subdivided into nseg equidistant sub-segments as illustrated in
Figure 4.8(c). Thereby, the number nseg of sub-segments is doubled until the angles βjl and βjr
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between the real geometry and the straight search segment at the left and right end of the search
segments are smaller than a prescribed value βmax, i.e. βjl, βjr<βmax for j∈{1, nseg}. To fulfill
this criterion for arbitrary configurations, nseg is adapted dynamically in every Newton step.

(a) Straight. (b) Curved. (c) Subdivision of each finite element into nseg search segments.

Figure 4.8: Two-step search algorithm: 1) Element-wise octree search based on spherical search
boxes (4.8(a) and 4.8(b)). 2) Dynamic subdivision into search segments (4.8(c)).

Next, it is assumed that for the search segments built by this procedure, the actual centerline ge-
ometry is completely enwrapped by a double cone with cone angle 2βmax (see Figure 4.9(a)). It
seems to be rather intuitive when looking at Figure 4.9(a) that for the applied third-order Hermite
polynomials this assumption is justified. For the examples of Section 4.5, this statement has also
been verified numerically. Since the direct intersection of these double-cones is geometrically
quite involved, they are replaced by enwrapping cylinders (see Figure 4.9(b)) with radius

rcyl = kcyl · tan (βmax) ·
lseg
2

with lseg =
lele
nseg

. (4.83)

Here, lele is the initial element length and kcyl a safety factor. After the geometrically close-
by segment pairs have been determined via intersection of these cylindrical bounding boxes
(which can be done very efficiently by an analytic CPP between the straight cylinder axes and
a subsequent check of the segment endpoints), the intersection angle γ can be determined.
This enables an estimation of the potential contact angles possible for this segment pair, i.e.
α∈ [γ−2βmax; γ+2βmax]. Consequently, from the set of close segment pairs found in the sec-
ond search step, a subset of potential point contact segment pairs can be created for all pairs
satisfying γ >α1−2βmax and a subset of potential line contact segments for all pairs satisfying
γ<α2+2βmax. Considerable advantages result from this second search step: First, compared to
the element-wise spherical bounding boxes, the tighter segment-wise cylindrical bounding boxes
deliver a smaller set of potential contact pairs for which the closest point projections have to be
solved iteratively. Second, the subdivision into potential point and line contact pairs again re-
duces the number of (expensive) unilateral closest point projections necessary at the slave beam
Gauss points for the line contact formulation. This means that the computational savings of the
ABC formulation are twofold: On the one hand, the required Gauss point density can be reduced
as compared to the pure line contact formulation. On the other hand, the number of beam seg-
ments evaluated by the (unilateral CPP of the) line formulation is reduced to those enclosing
small contact angles, while segments with larger contact angles are evaluated by the (bilateral
CPP of the) cheaper point contact formulation. The third advantage resulting from the proposed
two-stage contact search is related to the iterative solution of the nonlinear orthogonality con-
ditions (4.5) for the closest points ξc and ηc. Since the solution points ξc and ηc are necessary
in order to determine the contact status (active or inactive) of a close-by segment pair, a robust
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(a) Creation of conical search boxes. (b) Intersection of cylindrical boxes.

Figure 4.9: Creation of segment-wise search boxes, intersection and determination of angle γ.

and reliable solution scheme is mandatory, but not trivial to provide when considering beam el-
ements of arbitrary interpolation order. The choice of the shifting angle α1 according to (4.69)
guarantees that a unique closest point solution exists for the segment pairs relevant for point-
to-point contact, i.e. for pairs with α > α1. On the one hand, the contact search also delivers a
certain amount of potential point contact pairs for which the actual contact angle at the (a priori
unknown) closest point is smaller than α1 and, consequently, for which no unique closest point
solution can be guaranteed. On the other hand, the number of such segment pairs with α < α1

is reduced drastically since the potential point contact segment pairs are already filtered on the
basis of γ>α1−2βmax. By this means and as consequence of the good starting points (the search
segment midpoints), the number of unconverged local Newton loops could be reduced drasti-
cally. Exemplarily, the example of Section 4.5.3.1, which leads to very complex beam-to-beam
contact interaction scenarios with more than 100 independent point contact regions per time step,
leads to less than one unconverged local Newton loop per 10 time steps.

In a second step, it has to be checked that these potential contact pairs with unconverged bi-
lateral closest point solution are indeed not relevant in terms of active contact force contribu-
tions. With the proposed ABC formulation such a check basically comes at zero extra effort.
Since the closest point projections of potential contact pairs lying in the transition range, i.e.
γ∈ [α1−2βmax;α2+2βmax], are performed by both the point-to-point and the line-to-line contact
formulation, one can use the results of the unilateral closest point projection associated with the
line contact formulation in order to estimate the closest points ξc and ηc as well as the gap g and
the contact angle αc at this location for pairs with unconverged bilateral closest point projection
of the point contact formulation. In the cases g>0 or α<α1, the corresponding unconverged pair
is not relevant for point contact and the simulation can proceed. This procedure has been suffi-
cient for convergence of all relevant bilateral closest point projections of the numerical examples
that will be considered in Section 4.5. However, if a relevant bilateral closest point projection is
not convergent, one could alternatively apply the estimation of the closest points ξc and ηc based
on the unilateral closest point projection instead of the exact bilateral CPP solution. The strate-
gies described above rely on convergent unilateral closest point projections. In Section 4.1.2, it
has been shown that the solvability of this projection can be guaranteed for the entire range of
possible contact angles. This prediction could be confirmed numerically: In combination with
the applied two-stage contact search algorithm, all unilateral closest point projections carried out
within the scope of examples considered in Section 4.5 have been convergent.
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4.4.2 Step size control
In Section 4.2.4, it has been shown that an increasing beam slenderness ratio requires an increas-
ingly fine spatial ”contact discretization“ in the sense of a higher Gauss point density necessary
for the line contact formulation. Here, it will be shown that for standard beam-to-beam contact
formulations also the maximal permissible time step size ∆t decreases with increasing beam
slenderness ratio. For illustration, two perpendicular beams are considered (see Figure 4.10).

Figure 4.10: Undetected crossing of two beams due to too large displacement increments.

If the norm of the iterative displacement increments ∆d̂
k

1 of beam 1 and ∆d̂
k

2 of beam 2 within
the kth Newton iteration of a time step is larger than the cross section diameter 2R, the beams
can cross completely without remaining penetration and therefore without contact being detected
(see Figure 4.10 for illustration). Already for displacement norms in the range of the cross section
radius R, the beam centerlines can cross, which results in a change of direction of the contact
forces and, in turn, in an undetected crossing of the beams. To avoid such undesirable scenarios,
the inf-norm of the global iterative displacement increment vector ∆Dk is scaled if necessary:

while ( ||∆Dk||∞ > R ) {∆Dk = 0.5 ·∆Dk }. (4.84)

Similar to the notation applied in Appendix B.1, the vector D represents a global assembly of all
the (translational) degrees of freedom associated with the beam centerline interpolation. Thus, it
differs from the global vector X by the rotational degrees of freedom. Furthermore, the notation
||(.)||∞ represents the inf-norm of a vector. The modified Newton scheme resulting from this
algorithm (see also Section 3.2.1.2) does not only prevent undetected beam crossing, but it also
enhances the robustness of the nonlinear solution process in general. This does especially apply
to examples with strongly fluctuating external loads and high peak forces (see Section 4.5.3.1) or
abruptly opening contacts (e.g. when a beam slides across the end of a second beam; see also the
example of Section 4.5.3.4). In addition to algorithm (4.84), the following criterion is checked
in every iteration in order to control the maximal penetration of the contacting beams:

g > −k ·R with k ∈ [0; 1]. (4.85)

In combination, criteria (4.84) and (4.85) ensure that two beams cannot cross each other without
contact detection. The standard alternative to the procedure proposed in this section is to simply
choose the time step size small enough, such that the inf-norm of the displacement increment
per time step ∆t is smaller than the cross section radius of the contacting beams, i.e.

||D(tn+1)− D(tn)||∞ < R. (4.86)

In general, such a procedure leads to a higher number of total Newton iterations, because con-
vergence is required for every displacement step of size R corresponding to one time step, while
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in case of algorithm (4.84) some successive Newton iterations with (confined) displacement step
size R can take place before the converged solution of the considered time step is found. In
Section 4.5.3.1, this statement and the resulting efficiency gains will be confirmed.

4.4.3 Penalty laws
So far, the linear penalty law introduced in (4.37) (see Figure 4.11(a)) has been considered:

fcε(g) =

{
−εg,
0,

and Πcε(g) =

{
ε
2
g2, g ≤ 0

0, g > 0
. (4.87)

In practical simulations, one often applies regularized penalty laws that allow for a smooth con-
tact force transition as illustrated in Figure 4.11(b). This second variant is favorable from a
numerical point of view: First of all, it may improve the performance of tangent-based iterative
solution schemes applied to the nonlinear system of equations stemming from the considered
discretized problem, since a unique tangent exists at the transition point ḡ between the states of
“contact” and “non-contact”. Secondly, the time integration scheme applied in dynamic simula-
tions benefits from such a smooth contact force law. Thirdly, also numerical integration of line
contact forces (see Section 4.2.2) becomes more accurate for smooth force laws given by:

fcε(g)=


f̄−εg,
εḡ−f̄
ḡ2 g

2−εg+f̄ ,

0,

Πcε(g)=


ε
2
g2 − f̄ g + εḡ2

6.0
, g≤0

− εḡ−f̄
3ḡ2 g

3+ ε
2
g2−f̄ g+ εḡ2

6.0
, 0<g≤ ḡ

0, g>ḡ

f̄=
εḡ

2
(4.88)

For each force law an appropriate potential defined by fcε=−∂Πcε/∂g and Πcε(g= ḡ)=0 (with
ḡ = 0 for the linear force law (4.87)) as well as a normalized potential Π̃cε = Πcε/ε (see also
Section 4.3.3) can be derived. For simplicity, all derivations in the previous sections are based on
a linear penalty law according to (4.87). However, a more general form of these equations that
is valid for arbitrary penalty laws can easily be derived by simply replacing all linear force-like
expressions of the form −ε〈g〉 by fcε(g) and all quadratic potential-like expressions of the form
0.5ε〈g〉2 by Πcε(g). For most simulations of this thesis, the regularized law (4.88) is applied.

(a) Standard linear penalty law. (b) Quadratically regularized penalty law.

Figure 4.11: Graphical visualization of standard and quadratically regularized penalty law.
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4.4.4 Endpoint-to-line and endpoint-to-endpoint contacts
The contact formulations presented so far have only considered solutions of the minimal distance
problem within the element parameter domain ξ, η ∈ [−1; 1] as represented by the blue area in
Figure 4.12(a). Due to the C1-continuity of the discrete centerline, also solutions coinciding with
the element nodes are found by this procedure. However, a minimal distance solution can also
occur in form of a boundary minimum at the physical endpoints of the beams. The boundary
solutions indicated by the four red lines in Figure 4.12(a) represent solutions with one parameter
taking on the value−1 or 1 and the other parameter being arbitary. Mechanically, these solutions
can be interpreted as the minimal distance appearing between a physical beam endpoint and an
arbitrary beam segment as indicated in Figure 4.12(b). Additionally, a minimum can also occur
in form of the distance between the physical endpoints of both beams (see Figure 4.12(c)), which
corresponds to the four green corner points in Figure 4.12(a). Neglecting these boundary minima
can lead to impermissibly large penetrations and even to an undetected crossing of beams.

(a) Parameter space. (b) Endpoint-to-line. (c) Endpoint-to-endpoint.

Figure 4.12: Possible contact configurations involving the interior and endpoints of the beams.

At first glance, these contact configurations seem to be comparatively rare for thin beams and the
mechanical influence of these contact contributions seems to be limited. However, practical sim-
ulations have shown that neglecting these contributions does not only lead to a slight inconsis-
tency of the mechanical model itself but also to a drastically reduced robustness of the nonlinear
solution scheme, since initially undetected large penetrations can lead to considerable jumps in
the contact forces during the iterations of a nonlinear solution scheme. While for the endpoint-to-
endpoint case, the contact point coordinates are already given, the endpoint-to-line case requires
a unilateral closest-point-projection similar to the one in (4.32). Depending on which beam end-
point is given, this unilateral closest-point-projection either searches for the closest point ηc to
a given point ξ ∈ {−1, 1} or for the closest point ξc to a given point η ∈ {−1, 1}. As soon
as the contact point coordinates are known, one can directly apply the residual contribution of
the point-to-point contact formulation according to (4.12). From a geometrical point of view,
applying this model means that the beam endpoints are approximated by hemispherical surfaces.
Again, it is justified to only consider the variation contribution with fixed ξ and fixed η for δg
according to (4.9), since either the considered parameter coordinate is indeed fixed (if repre-
senting a physical endpoint) or the corresponding tangent vector is perpendicular to the contact
normal (if representing the projection onto a segment). Nevertheless, one has to distinguish be-
tween the cases endpoint-to-endpoint and endpoint-to-line contact in order to correctly include
the increments ∆ξ and ∆η in the linearizations of the contact residuals (see Appendix C.1).
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4.5 Numerical Examples
In this section, the theory presented so far will be verified by means of chosen numerical test
cases. Specifically, in Sections 4.5.1 and 4.5.2, small (academic) test cases, partly based on an-
alytic solutions, will be analyzed in order to investigate properties such as overall accuracy and
consistency of the proposed formulations regarding integration error, spatial convergence behav-
ior, resulting contact force distributions and mechanical conservation properties. Subsequently,
in Section 4.5.3, four practically relevant applications involving complex systems of slender
fibers will be considered in order to verify the overall robustness of the proposed algorithms but
also for quantifying the efficiency gains as compared to standard beam contact formulations. For
the numerical test cases of this section, the Newton-Raphson scheme with tolerances similar to
Section 3.8 in combination with the step size control of Section 4.4.2 will be employed. Since the
focus of the following examples lies on the investigation of the proposed contact formulations,
the simplest possible beam element formulation, which means the torsion-free TF element, has
been chosen as standard choice if not stated otherwise. The examples are chosen in a manner
such that the requirements (2.128), (2.136) and (2.137) are fulfilled and that, consequently, the
TF element yields exact solutions, i.e. solutions that would identically be obtained by the general
Kirchhoff theory, for the considered static examples and good approximations for the dynamic
examples (see also Section 2.4.2). Furthermore, as emphasized in Section 3.7, the spatial dis-
cretization underlying the TF element exactly preserves linear and angular momentum as well
as energy. Nevertheless, in Section 4.5.3.2, also an application involving initially curved beam
segments as well as non-trival coupling conditions between these segments will be considered.
For this example, the WK-ROT element derived in Section 3.5.3 will be applied.

4.5.1 Test cases for line-to-line contact formulation
4.5.1.1 Example 1: Patch test

The first example is a simple static patch test that should verify the effectiveness of the integration
interval segmentation introduced in Section 4.2.2. As illustrated in Figure 4.13, the example
consists of one completely fixed, rigid beam discretized with three beam elements (different
element lengths) and a second, deformable beam discretized by two beam elements with cross-
section radiiR1 =R2 =0.005, Youngs moduliE1 =E2 =1.0·109, length of the first beam l1 =2.0
and length of the second beam l2 =0.8. The second beam is loaded by a constant transverse line
load p=1.0 and its left endpoint is exposed to a Dirichlet-displacement of ∆u=1.001 within 100
equidistant load steps. Furthermore, contact interaction between the two beams is modeled by the
linear penalty law according to (4.87) with a penalty parameter ε=500. As a consequence of the
constant transverse line load and the chosen penalty parameter, there exists a trivial analytical

Figure 4.13: Static patch pest: Initial configuration.
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(a) Integration without segmentation at the endpoints. (b) Integration with segmentation at the endpoints.

Figure 4.14: Average error of the gap at the Gauss points for different Gauss rules.

solution with a constant gap gref = −p/ε = −0.002 along the entire upper beam. In order to
verify the working principle of the integration interval segmentation in the presence of strong
discontinuities, the first (rigid) beam is chosen as slave. In Figure 4.14, the average relative error

erel =

nGP,tot∑
i=1

gi − gref
nGP,tot · gref

(4.89)

of the gaps gi at the active Gauss points is plotted over the number of load steps for the formu-
lations with and without integration interval segmentation at the beam endpoints in combination
with different numbers of Gauss points nGP,tot. In all cases, three integration intervals per slave
element have been applied. From Figure 4.14(a), one observes that the strong discontinuity of
the contact force ε〈g(ξij)〉 occurring in the integrand of (4.43) leads to a considerable integration
error that only gradually decreases when increasing the number of Gauss points. As expected,
the formulation with integration interval segmentation (see Figure 4.14(b)) yields a significantly
lower integration error level and a faster decline in the error with increasing number of Gauss
points. Yet, even this formulation does not allow for an exact integration, in general, since the
weighting functions H1 and H2 in (4.43) have no closed-form polynomial representation across
the element boundaries. However, it will be shown in the next examples that the corresponding
integration error is typically lower than the overall discretization error and therefore of no prac-
tical relevance. Furthermore, compared to a formulation with integration interval segmentation
at all master beam element nodes, which would then allow for exact numerical integration, the
proposed segmentation strategy is considerably less computationally expensive.

4.5.1.2 Example 2: Twisting of two beams

The second example aims at verifying the accuracy and consistency of the line contact formula-
tion based on the spatial convergence behavior. Thereto, two initially straight and parallel beams
are investigated with circular cross-sections and radii R1 = R2 = R = 0.01, initial lengths
l1 = l2 = l = 5 and Young’s moduli E1 =E2 =E =1.0·109 as illustrated in Figure 4.15(a). The
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(a) Initial and deformed configurations. (b) Relative L2-error over element length.

Figure 4.15: Dirichlet-controlled twisting of two straight beams into a double-helical shape.

initial geometries of the two beams k=1, 2 are given by the analytic expression:

r0k(s) =

 (−1)k−1r
0
s

 , s ∈ [0; l], r=R−|g0|
2
, k = 1, 2. (4.90)

The distance between the beams is chosen such that they exhibit an initial gap of g0 =−0.1R. The
beams are clamped at one end and their cross-sections at the other end are moved in a Dirichlet-
controlled manner such that the corresponding cross-section center points describe a circular
path. By this procedure, the two beams get twisted into a double-helical shape as illustrated in
Figure 4.15(a). The system parameters are chosen in a way such that the analytic solution for the
deformed beams is exactly represented by a helix with constant slope given by

rk(ϕ)=

 r cos [ϕ+ (k − 1)π]
r sin [ϕ+ (k − 1)π]
hϕ

 , ϕ∈ [0; 2π], r=R−|g0|
2
,

h=

√√√√(((1.0 + ε)l

2π

)2

− r2

)
, ε=0.01, k=1, 2.

(4.91)

In the following, the required parameters are directly presented. The derivation based on the
ODEs (2.118) and (2.119) is summarized in Appendix C.4. Before the actual twisting process
starts, the beams are pre-stressed by an axial displacement at the left endpoints (superscript “l”)

∆d̂l1,z = ∆d̂l2,z = u = 2πh− l ≈ 4.9647 · 10−2 (4.92)

within one load step. Then, these points are moved on a circular path with radius r=R−|g0|/2

∆d̂l1,x=−r
[
1−cos

(
k2π

N

)]
, ∆d̂l1,y=r sin

(
k2π

N

)
,

∆d̂l2,x=r

[
1−cos

(
k2π

N

)]
, ∆d̂l2,y=−r sin

(
k2π

N

)
, k = 1, ..., N,

(4.93)
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within N = 8 further load steps in order to end up with one full twist rotation. The translational
displacements at the right endpoints of the right beams (superscript “r”) are set to zero, i.e.

∆d̂r1,x = ∆d̂r2,x = ∆d̂r1,y = ∆d̂r2,y = ∆d̂r1,z = ∆d̂r2,z = 0. (4.94)

Furthermore, the x-components of all tangential degrees of freedom are set to zero, i.e.

∆t̂l1,x = ∆t̂l2,x = ∆t̂r1,x = ∆t̂r2,x = 0, (4.95)

whereas the y- and z-components of the nodal tangents are not prescribed but part of the numeri-
cal solution. As shown in Appendix C.4, these boundary conditions for the tangential degrees of
freedom are sufficient in order to impose the required boundary moments at the beam endpoints.
If eventually the penalty parameter (see again Appendix C.4) is chosen as

ε = − (1 + ε)r

(r2 + h2)g0

(
EAε+

EI(1 + ε)h2

(r2 + h2)2

)
, (4.96)

the resulting analytic solution finally obeys the analytic representation of (4.91), thus show-
ing a gap of g0 between the two beams that is constant along the beam lengths. As already
mentioned earlier, the penalty parameter and the resulting gap between the two beams occur-
ring in the analytic solution (4.91) can be interpreted as a mechanical model for the contact-
surface/cross-section flexibility of the considered beams. Furthermore, the derived analytic so-
lution corresponds to a mechanical state consisting of constant axial tension ε, constant bending
curvature κ = (1+ε)r

r2+h2 and vanishing torsion along both beams. In Figure 4.15(b), the relative
L2-error (3.105) of the FE solution for beam 1 is plotted with respect to the analytic solution
over the element length for discretizations with 4, 8, 16, 32, 64, 128 and 256 elements per beam.

In order to investigate the influence of the applied Gauss integration rule, the cases of a 5-point
and a 2-point Gauss rule with one integration interval per element in both cases are considered.
According to Figure 4.15(b), the 5-point-variant converges towards the analytic solution up to
machine precision with the optimal order O(h4) as expected for the applied third-order beam el-
ements. Throughout this work, this 5-point-rule will be the default value if nothing is mentioned
to the contrary. Reducing the number of Gauss integration points to a value of 2 leads to a slight
increase of the L2-error in the range of comparatively rough spatial discretizations. However,
for finer discretizations the 2-point curve converges towards the 5-point curve. When looking at
the upper right data point in Figure 4.15(b), one observes the remarkable result that a total of
8 contact evaluation points per beam (4 elements per beam with 2 Gauss points per element) is
sufficient in order to end up with a relative error that is far below 1%.

In Section 4.1.2, a lower bound αmin for the contact angle has bee derived, above which a unique
bilateral closest point projection exists. Next, the corresponding result (4.31) shall briefly be
verified by means of a slightly modified version of the considered twisting example. Thereto,
it is assumed that the maximal admissible ratio of cross-section to curvature radius supported
by the beam theory is 1%, i.e. µmax = 0.01. For simplicity, the helix radius given in (4.91) is
approximated by the cross-section radius, i.e. r=R, thus g0 =0. With µmax=0.01, the minimal
admissible slope for a helix with constant slope similar to (4.91) can be calculated as:

µmax = κ̄R =
R2

R2 + h2
min

= 0.01 → h2
min = 99R2. (4.97)
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Furthermore, after some geometrical considerations, one can calculate the actual (constant) con-
tact angle enclosed by two corresponding tangents for the case h = hmin:

α=arccos

(
rT1,ϕ(ϕ)r2,ϕ(ϕ)

||r1,ϕ(ϕ)||||r2,ϕ(ϕ)||

)
=arccos

(
h2
min −R2

h2
min +R2

)
=arccos (0.98)≈11.5◦. (4.98)

This is exactly the same result that would be obtained for the lower bound αmin by inserting
µmax = 0.01 into (4.31). This means that the helix geometry according to example 2 represents
an extreme case, where all worst-case assumptions made in the derivation (4.30) become true
and where, for a given admissible radius ratio µmax = 0.01, a non-unique closest point solu-
tion appears exactly at the contact angle αmin predicted as lower bound by equation (4.31). On
the other hand, this example shows that (4.31) provides the best possible lower bound, since it
actually occurs in a practical example. It can be concluded that for this example, leading to a
constant gap along the beams, no unique closest point solution exists and consequently standard
point-to-point contact formulations cannot directly be applied.

4.5.1.3 Example 3: General contact of two beams

So far, only scenarios with a constant gap function along the beam have been considered. Based
on the following examples, the more general case of non-constant gaps, and especially the case
of a change in sign in the gap evolution along the beam, will be investigated. At positions with a
change in sign in the gap function, the contact force according to the standard law in (4.87) drops
to zero. As illustrated in Figure 4.5(c), this leads to a kink in the force evolution at this point,
which becomes more and more pronounced with increasing contact angle (see Figure 4.6(c)).

(a) Final geometry. (b) L2-error for linear penalty law. (c) L2-error for regularized penalty law.

Figure 4.16: Two initially straight and parallel beams with larger initial distance.

This weak discontinuity in the integrand may in general increase the numerical integration error
and can be avoided by replacing the standard linear force law by the smoothed law (4.88) (see
again Figures 4.5(c) and 4.6(c)). The influence of these two different force laws on the integration
error and eventually on the spatial convergence behavior will be investigated by means of the
following example: Beam geometries and material parameters identical to the last example are
considered. The penalty parameter is decreased to ε = 1000. Also, the initial configuration is
similar to the one illustrated in Figure 4.15(a) of the last example. However, this time, the initial
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distance between the beams is increased to a value of 2r= 4R= 0.04. The Dirichlet boundary
conditions of the tangential degrees of freedom are slightly changed in order to completely avoid
any cross-section rotation at the boundaries. Correspondingly, the following relations hold:

∆t̂l1,x = ∆t̂l2,x = ∆t̂r1,x = ∆t̂r2,x = ∆t̂l1,y = ∆t̂l2,y = ∆t̂r1,y = ∆t̂r2,y = 0. (4.99)

Thus, the tangents are completely clamped at both ends. Moreover, no pre-stressing is applied:

∆d̂l1,z = ∆d̂l2,z = 0. (4.100)

The remaining Dirichlet conditions are similar to the last example, see (4.93) and (4.94). The re-
sulting deformed configuration is illustrated in Figure 4.16(a). Due to the larger separation of the
beams, the gap function increases from negative values to positive values when approaching the
beam endpoints. The corresponding contact force evolutions resulting from different spatial dis-
cretizations are illustrated in Figure 4.17(a). In Figures 4.16(b) and 4.16(c), the relative L2-error
with respect to a numerical reference solution is plotted for the formulation based on a linear
penalty law and the formulation based on the quadratically regularized force law (regularization
parameter ḡ=0.1R=0.001). In case of the simple linear penalty law, the number of Gauss points
has to be enhanced by a factor of 10 as compared to the standard 5-point rule in order to ensure
O(h4) convergence within the considered range of spatial discretizations (see Figure 4.16(b)).
Thus, obviously, the increased integration error resulting from the kink in the penalty force law
dominates the spatial discretization error if the standard 5-point Gauss rule is applied. Only an
increase in the number of Gauss points, and therefore an increase in the numerical effort, reduces
this integration error. An elimination of this kink by means of a smoothed penalty law enables
the same accuracy and the optimal convergence order O(h4) already with the standard 5-point
Gauss rule (see Figure 4.16(c)), which reduces the numerical effort drastically.

(a) Example 3: Contact force distribution. (b) Example 4: Contact force distribution.

Figure 4.17: Comparison of contact force distributions of Example 3 and Example 4.

4.5.1.4 Example 4: Influence of integration segments on convergence

In the first example, it has already been illustrated how the integration error can be reduced via
an integration interval segmentation at the beam endpoints. Now, the influence of this method
on the spatial convergence behavior will be analyzed. Again, the beam geometry,the material
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parameters and the penalty parameter are identical to the last example. In order to enforce an
integration across the beam endpoints, the initial geometry of one of the beams is shifted by a
value of r = 2R = 0.02 along the positive z-axis leading to the representation:

rk0(s) =

 (−1)k−1r
0
s+ (k − 1)r

 , s ∈ [0; l], r=2R, k = 1, 2. (4.101)

The following Dirichlet boundary conditions are prescribed at the endpoints of the two beams:

∆d̂r1,x = −0.12, ∆d̂r2,x = 0.12,

∆d̂r1,y = ∆d̂r2,y = ∆d̂r1,z = ∆d̂r2,z = 0,

∆d̂l1,x=−r
[
1−cos

(
k2π

N

)]
, ∆d̂l1,y=r sin

(
k2π

N

)
,

∆d̂l2,x=r

[
1−cos

(
k2π

N

)]
, ∆d̂l2,y=−r sin

(
k2π

N

)
, k = 1, ..., N,

∆d̂l1,z = ∆d̂l2,z = 0,

∆t̂l1,x = ∆t̂l2,x = ∆t̂r1,x = ∆t̂r2,x = ∆t̂l1,y = ∆t̂l2,y = ∆t̂r1,y = ∆t̂r2,y = 0.

(4.102)

The two additional conditions in the first line of (4.102) enforce a negative gap and consequently
active contact forces at the (non-matching) right endpoints of the beams. By this means, an
integration across a contact force jump at these endpoints is intentionally enforced, which is
sensible in order to investigate the effectiveness of the integration interval segmentation. All the
remaining Dirichlet conditions appearing in (4.102) are similar to Section 4.5.1.3. The deformed
geometry resulting from these boundary conditions is illustrated in Figure 4.18(a).

(a) Geometry. (b) Smooth force law with segmentation. (c) Smooth force law without segmentation.

Figure 4.18: Dirichlet-controlled twisting of two parallel beams with non-matching endpoints.

Furthermore, the contact force distributions corresponding to different finite element meshes are
presented in Figure 4.17(b). The contact force distributions show the expected jump from a value
of fc(s= 0.02−) = 0 to fc(s= 0.02+)≈ 4.5 at position s= 0.02 (see also the detail view in Fig-
ure 4.17(b)). In Figures 4.18(b) and 4.18(c), the relative L2-error with respect to a numerical
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reference solution is plotted for the formulation based on the quadratically regularized force law
(regularization parameter ḡ = 0.1R = 0.001), once with integration interval segmentation (Fig-
ure 4.18(b)) and once without a corresponding segmentation (Figure 4.18(c)).

According to Figure 4.18(b), the remaining integration error of the formulation with interval
segmentation and a 5-point Gauss rule slightly deteriorates the spatial convergence behavior.
However, by applying two instead of one 5-point Gauss integration intervals per element, this
influence of the integration error vanishes and the optimal convergence order O(h4) can be ob-
served. On the contrary, the convergence behavior of the formulation without integration interval
segmentation (see Figure 4.18(c)) is still deteriorated by the integration error for a 5-point Gauss
rule even with two intervals per element. Even if the number of intervals is increased to 10, i.e.
an increase of the number of Gauss points by a factor of 5, this negative influence is still visible
in the range of fine spatial finite element discretizations. Furthermore, it is worth mentioning that
this effect is expected to become even more pronounced in practical applications, where the dis-
placements are not Dirichlet-controlled in the direct neighborhood of the strong discontinuity.
All in all, it seems that the integration interval segmentation solely applied at the beam end-
points represents a sensible compromise of integration accuracy and computational efficiency.
Additionally, in dynamic simulations, this strategy prevents from force and energy jumps in sce-
narios where active Gauss points of standard integration schemes based on fixed, non-segmented
integration intervals would slide across master beam endpoints.

4.5.2 Test cases for ABC contact formulation
4.5.2.1 Example 1: Beam rotating on arc

The first example verifying the ABC formulation consists of a completely fixed, rigid arc (beam
1 = slave) lying in the global xz-plane and being discretized by one beam element and a flexible
straight beam (beam 2 = master) that initially points into global y-direction and is discretized
by three finite elements (see Figure 4.19). The following geometrical and material parameters
have been chosen for this example: E = 1.0 ·109, R = 0.01, l2 = 2, l1 = πrarc with rarc = 1.0.
Furthermore, a quadratically regularized penalty law with ḡ = 0.1R = 0.001 has been applied.
In the following, the model transition between point- and line-contact will be investigated for
different choices of the penalty parameters ε⊥ and ε‖. For the sake of better visualization, the
comparatively large shifting interval limited by α1 =10◦ and α2 =30◦ has been chosen. Thereto,

Figure 4.19: Straight flexible beam and rigid arc: 3D-view of initial configuration.
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(a) θk = 0◦. (b) θk = 0.6 ·90◦. (c) θk = 0.7 ·90◦. (d) θk = 0.8 ·90◦. (e) θk = 0.9 ·90◦. (f) θk = 1.0 · 90◦.

Figure 4.20: Contact interaction of an initially straight flexible beam rotating on a rigid arc: Top-
view (xz-view) of deformed configuration at different rotation angles θk.

the endpoints of the master beam are first driven downwards (in negative z-direction) in a dis-
placement controlled manner within 1000 load steps until contact occurs. Then, with contact
being active, the two endpoints of the master beam are moved on a circular path within further
N=4000 load steps, such that the beam performs a full rotation with respect to the global z-axis,
thus covering the whole range of possible contact angles. The only reason for the high number of
load steps is a sufficiently high resolution required for the plots presented later on. The following
Dirichlet conditions have been applied in the second stage of the deformation process:

∆d̂l2,x=
l2
2

sin (θk) , ∆d̂l2,y=
l2
2

[1−cos (θk)] ,

∆d̂r2,x=− l2
2

sin (θk) , ∆d̂r2,y=− l2
2

[1−cos (θk)] ,

∆d̂l2,z = ∆d̂r2,z = −0.3, θk =
k · 2π
N

for k = 1, ..., N.

(4.103)

Since an axial displacement of the master beam is precluded by the applied Dirichlet fixation, the
value of the beam cross section occurring in the axial stiffness is reduced by a factor of 100, i.e.
A=0.01R2π, in order to end up with a deformation that is not completely dominated by the axial
stiffness. Different states of deformation during the first quarter of the rotation process are illus-
trated in Figure 4.20. In the range of large contact angles, a pure point-contact force occurs (see
Figures 4.20(a) and 4.20(b)) whose magnitude is illustrated by a red line. Figures 4.20(c) and
4.20(d) represent the realm of model transition: With decreasing contact angle, the magnitude
of the point-contact force decreases, while the magnitude of the discrete Gauss point contribu-
tions to the line-contact force (illustrated by green lines) increases until a contact angle range
of α < α1 = 10◦, i.e. a pure line-contact state is reached (see Figure 4.20(e)). Finally, in Fig-
ure 4.20(f) both beams lie within one plane (α = 0◦), thus leading to a state of pure line-contact.

In order to investigate the transition phase between the two contact formulations more closely,
the accumulated contact force as well as the accumulated torque of the point and the line contact
force with respect to the global z-axis are plotted in Figures 4.21 and 4.22. The three individ-
ual plots in each case represent simulations with low (ε‖ = 5 ·105, ε⊥ = 2 ·104), intermediate
(ε‖ = 5 ·106, ε⊥ = 2 ·105) and high penalty (ε‖ = 5 ·107, ε⊥ = 2 ·106) parameters. The three
point-to-point penalty parameters ε⊥ assigned to the three given line-to-line penalty parameters
ε‖ have been determined according to the approximation (4.74), thus leading to ε⊥/ε‖≈25. Fur-
thermore, in each plot the following three cases will be compared: a standard force-based ABC
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(a) Low ε: ε⊥=2 · 104, ε‖=5·105. (b) Moderate ε: ε⊥=2·105, ε‖=5·106. (c) High ε: ε⊥=2 · 106, ε‖=5·107.

Figure 4.21: Evolution of accumulated contact force fcz over the number of load steps.

(a) Low ε: ε⊥=104, ε‖=5·105. (b) Moderate ε: ε⊥=105, ε‖=5·106. (c) High ε: ε⊥=106, ε‖=5·107.

Figure 4.22: Evolution of accumulated contact torque mcz over the number of load steps.

formulation, a potential-based ABC formulation and finally a pure line-to-line contact formula-
tion. For all cases, nII = 100 integration intervals with 5 Gauss points per interval have been
chosen. This high number has been chosen such that also the pure line-to-line contact formula-
tion is able to properly resolve the range of large contact angles for the given, very rough spatial
discretization. First, the accumulated contact forces resulting from a low penalty parameter (see
Figure 4.21(a)) are considered. During the first 1000 load steps, beam 2 is driven downwards.
After 200 load steps, the beams come into contact and the contact forces rise. After 1000 load
steps the rotation starts. The two peaks occurring in all force plots at load step 2000 and load
step 4000 represent configurations where both beams lie within one plane (see Figure 4.20(f)).
These force peaks do not represent any numerical artifact or model error, but rather are expected
from a mechanical point of view: beam 2 has to be deformed to a higher extent in order to pass
this ”parallel“ configuration, which in turn leads to higher overall contact forces in this configu-
ration. The pure line-to-line contact formulation (red dashed line) shows a smooth and steadily
increasing contact force evolution in the range θ ∈ [0; 90◦] (step 1000 until step 2000).

On the contrary, the contact force evolutions of the force-based (blue dashed line) and potential-
based (green solid line) ABC formulation remain constant in the range of large contact angles.
This is the expected evolution of the pure point-contact formulation (for the considered sym-
metrical problem), which is active in this angle range. After approximately 1700 load steps
(α = 30◦), the transition range begins, characterized by a visible increase of the contact force.
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Approximately at load step 1900 (α = 10◦), the end of the transition interval is reached. From
now on, the curves representing the ABC formulations and the curve representing the pure line-
to-line contact formulation are identical, since the ABC formulation reduces to a pure line-to-line
contact formulation for angles α < α1 =10◦. As expected, the difference between the pure line-
to-line contact formulation and the more efficient ABC formulations vanishes with increasing
penalty factor (see Figures 4.21(b) and 4.21(c)). Furthermore, no distinctive difference between
the contact force evolutions of the force-based and the potential-based ABC formulation is visi-
ble. In Figure 4.22, the accumulated torque of the contact forces with respect to the global z-axis
is plotted. In this example, the resulting contact torque is a consequence of line contact force
contributions that do not exactly point into global z-direction at all positions besides the rotation
center at position x = y = 0. Consequently, the contact torque contribution of the pure point-
contact force vanishes. This is visible for the curves representing the ABC formulation (see e.g.
the blue chain line and the green solid line in Figure 4.22(a)) in the range of large contact angles.
The contact torque evolutions show a very steep gradient in the neighborhood of α=90◦, which
can mechanically be interpreted as a ”snap-through“ behavior. Exactly at α= 90◦ (step 2000),
the total torque vanishes as a consequence of the geometrical symmetry.

As expected, the difference between the force-based and the potential-based variant due to al-
gorithmic contact moments appearing in the latter formulation is small compared to the model
deviation between the pure line-to-line contact and the pure point-to-point contact model (ABC
formulation in the range α< 30◦). It is especially small compared to the total magnitude of the
mechanically motivated contact torque peaks. Furthermore, this difference decreases with in-
creasing penalty parameter. For the high-penalty case (see Figure 4.22(c)), the variant based on
a better penalty approximation ε⊥=5.4·105 (dark-blue solid line) determined via the numerical
solution of (4.72) (with gmin=0.0006) instead of (4.74) has additionally been plotted. In this
case, almost no remaining difference between the force-based and the potential-based variant is
visible. All other distinctions of the different formulations, especially the mutual convergence of
the three curves with increasing penalty parameter, are similar to the force evolutions above.

4.5.2.2 Example 2: Impact of free flying beams

The next example aims at investigating the conservation properties (linear momentum, angular
momentum and total energy) of the proposed ABC formulation within a dynamic framework.
Thereto, two initially straight beams with R= 0.01, l= 2, E = 10−6 and densities ρ1 = 0.1 and
ρ2 =0.05 are considered. Initially, both beams are arranged in a parallel manner with a distance
of d= 10R= 0.1 (see Figure 4.23(a)). Within the time interval t∈ [0; 0.06], beam 2 (= master)
is accelerated by a line load f̃z(η, t) = 5 ·10−7f̄z(t) pointing in negative global z-direction and
being constant along the beams length. The time scaling factor f̄z(t) increases linearly from zero
to one for t ∈ [0; 0.03] before it decreases again linearly from one to zero for t ∈ [0.03; 0.06].
The slave beam (beam 1) is loaded by a line load f̃y(ξ, t) = 2.5·10−6 ·f̄y(t)·ξ pointing in global
y-direction and increasing linearly with ξ ∈ [−1; 1], which induces an angular momentum on
the beam. The time scaling factor f̄y(t) increases linearly from zero to one for t∈ [0; 0.02] and
decreases linearly from one to zero within the interval t∈ [0.02; 0.04].
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(a) Initial configuration. (b) Time step: 870. (c) Time step: 910. (d) Time step: 2000.

Figure 4.23: Dynamic impact of a rotating and a translationally moving straight beam.

After this acceleration phase, the beams move freely until an impact of the two beams takes
place. For time integration, the standard generalized-α scheme according to Section 3.1.1 with-
out numerical dissipation (αf = 0.5, αm= 0.5, β= 0.25 and γ= 0.5) and a total simulation time
T = 2.0s. Since this time integrator cannot guarantee exact energy conservation of the tempo-
rally discretized problem for arbitrary time step sizes (see e.g. [207]), the time step size is chosen
small enough (standard choice ∆t=0.001s) such that the impact of the spatial discretization on
the conservation properties can be investigated with sufficient accuracy. The system parameters
are chosen such that the impact takes place at a contact angle α∈ [α1;α2] lying within the shift-
ing interval. The configurations at the beginning of the simulation, at the beginning and the end
of the impact and the end of the simulation are illustrated in Figures 4.23(a) - 4.23(d).

In Figure 4.24, the system energies are plotted for the force-based and potential-based ABC
formulation in combination with different penalty laws. Figure 4.24(a) represents the force-
based variant in combination with a quadratically regularized penalty law with ε‖ = 3 ·10−3,
ε⊥=3.1·10−4 and ḡ = 10−3. Here, the point penalty parameter ε⊥ has been determined on the
basis of (4.74). Beside the kinetic energy Ekin and the internal elastic energy Eint of the two
beams, the accumulated contact work determined via the following expression (see also (4.80))

Wcon(t) =
t∑

ti=∆t

∆X(ti)
TRcon(ti), (4.104)

has been plotted. Here Rcon(ti) denotes the total contact residual contribution and ∆X(ti) the
increment of the total displacement vector between time steps ti and ti−1. The notion of contact
work is necessary since no potential is existent for the force-based formulation. Furthermore, the
sum of kinetic and internal energy Ekin+Eint as well as the total work Wtot=Wcon+Ekin+Eint
representing the sum of all three contributions, is illustrated. All mechanical energy and work
contributions plotted in Figure 4.24 are normalized with the internal energy E0 = EIπ2/(8l),
which corresponds to a beam that has been elastically bent to a quarter-circle. Looking at Fig-
ure 4.24(a), one realizes that after the acceleration phase the total work Wtot remains constant,
which indicates that no relevant energy losses are caused by the applied time integrator.

While the total work basically consists of pure kinetic energy in the first half of the process, the
dynamic impact (peak in the contact work) induces a deformation of the beams accompanied by
an increase in the internal elastic energy. However, after the contact has re-opened, a remaining
contact work in the range ofWcon≈−0.002·E0 can be observed, thus leading to an increase in the
energy Ekin+Eint by the same amount. The fact that the contact work does not decrease to zero
after the contact has re-opened again is a direct consequence of the non-conservative nature of the
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(a) f -based: ε‖=3·10−3, ε⊥=3.1·10−4, ḡ=10−3. (b) Π-based: ε‖=3·10−3, ε⊥=3.1·10−4, ḡ=10−3.

(c) f -based: ε‖=3·10−3, ε⊥=3.1·10−6, ḡ=10−3. (d) f -based: ε‖=3·10−1, ε⊥=7.8·10−5, ḡ=10−4.

Figure 4.24: Conservation of total system energy for dynamic impact scenario.

force-based formulation. On the contrary, the potential-based formulation (see Figure 4.24(b)) is
able to represent exact conservation (aside from possible losses caused by a non-conserving time
integration scheme) of the total energy Etot =Econ+Ekin+Eint, since a contact potential Econ
is existent that vanishes as soon as the contact re-opens. For comparison reasons, also a variant
of the force-based formulation has been plotted, where the penalty parameter ε⊥ = 3.1 ·10−6

has been decreased by a factor of 100 as compared to (4.74) (see Figure 4.24(c)). In this case,
the amount of accumulated non-conservative contact work that remains after the contact has
re-opened increases to Wcon ≈ 0.011 ·E0. On the contrary, when applying a better approxima-
tion for the optimal penalty parameter ε⊥ = 2.4 ·10−4 based on a numerical solution of (4.72)
(with gmin=−0.002), the remaining contact work drops to Wcon ≈−0.001 ·E0 (not illustrated
in Figure 4.24). It has already been argued in Section 4.3.1.2 that the non-conservative work
contributions of the force-based ABC formulation decrease with increasing penalty parameter.
Applying a penalty law with increased penalty parameters ε‖ = 3 ·10−1, ε⊥ = 7.8 ·10−3 (ε⊥ de-
termined with (4.72) and gmin =−0.0002) and ḡ= 1 ·10−4 results in a remaining contact work
of Wcon ≈ −0.000003 ·E0 (not illustrated in Figure 4.24). Even for a decrease of the penalty
parameter by a factor of 100 to ε⊥ = 7.8 ·10−5, the remaining non-conservative work does not
exceed a value of Wcon ≈ 0.0013 ·E0 in this case (see Figure 4.24(d)). Finally, in Figure 4.25,
the linear and angular momentum normalized with the initial values introduced by the external
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(a) Conservation of linear momentum. (b) Conservation of angular momentum.

Figure 4.25: Conservation of linear and angular momentum for dynamic impact scenario.

forces are plotted for the force-based ABC formulation and the quadratically regularized penalty
law with ε‖=3·10−3, ε⊥=3.1·10−4 and ḡ=1·10−3 (corresponding to Figure 4.24(a)). As already
expected from analytic investigations (see Section 4.3.4), the linear and angular momentum are
exactly conserved. This also holds for the potential-based ABC formulation and all penalty laws.

4.5.3 Practical applications
Within the following four sections, the proposed overall ABC contact algorithm shall be verified
by four practically relevant applications. The employed standard contact algorithm consists of
the ABC formulation with force-based transition of Section 4.3.1.1 based on properly adapted
penalty parameters according to Section 4.3.3 and a quadratically regularized penalty law (4.88),
the endpoint contact contributions given in Section 4.4.4, the two-stage search algorithm of Sec-
tion 4.4.1 as well as the step size control as proposed in Section 4.4.2.

4.5.3.1 Example 1: Simulation of a biopolymer network

In a first practically relevant example, the presented simulation framework is applied in order to
investigate the influence of mechanical contact interaction on the three-dimensional Brownian
motion of filaments in biopolymer networks. Biopolymer networks are tight meshes of highly
slender polymer filaments (e.g. Actin filaments) embedded in a liquid phase, often intercon-
nected by means of a second molecule species (so-called cross-linkers). These networks can for
example be found in biological cells. There, they crucially determine the mechanical properties
of cells and biologically highly relevant processes such as cell-migration or cell-division. In the
recent contribution by Cyron and Wall [61], a finite element model for the Brownian motion of
these filaments in the absence of mechanical contact interaction has been proposed. Accordingly,
these slender filaments are described by means of a geometrically nonlinear beam theory. The
mechanical interaction of the filaments with the surrounding fluid is modeled by means of ex-
ternal distributed line loads consisting of velocity-proportional viscous drag forces and thermal
excitation forces. The latter are modeled as stochastic forces characterized by a mean value of
zero, a variance determined by the absolute temperature and the properties of the surrounding
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fluid and finally by spatial and temporal correlation lengths which are assumed to be zero (see
[61] for details). Due to the physical length scales relevant for such systems, inertia forces can
often be neglected, thus leading to a system of first-order stochastic partial differential equations
(SPDEs). While spatial discretization is performed via the finite element method in combina-
tion with the TF beam element formulation (Section 3.7), a Backward Euler scheme is applied
in order to discretize the resulting semi-discrete problem in time. In this section, the Brownian
dynamics simulation framework presented in [61] is combined with the contact algorithm pro-
posed in the sections before in order to simulate the free diffusion of Actin filaments (without
consideration of cross-linker molecules). Thereto, a system of 208 initially straight and randomly
distributed Actin filaments with circular cross-section of radius R = 2.45 · 10−3, length l = 4
and Youngs modulus E = 1.3 ·109 (all quantities given in the unitsmg, µm, and s) is considered
and illustrated in Figure 4.26(a). All further physical system parameters describing the viscous
and stochastic forces are identical to those applied in Müller et al. [160] and can be found therein.

(a) Undeformed initial configuration. (b) Configuration at step 190. (c) Configuration at step 500.

Figure 4.26: Brownian dynamics simulation of the free diffusion of Actin filaments: Initial as
well as deformed filament configurations at different time steps.

The simulation has been performed by applying a spatial discretization with 32 beam elements
per filament, a time step size of ∆t = 1.0·10−4 and a total simulation time of T = 5.0·10−1. Fur-
thermore, the contact parameters have been chosen as ε⊥=1.0 · 103, ε‖=5.0 · 104, ḡ=2.0·10−3,
α1 = 9◦ and α2 = 11◦ in combination with 20 five-point integration intervals per element. The
ratio ε‖/ε⊥ ≈ 50 results from (4.74). The applied Gauss point density has been determined
on the basis of equation (4.59) with gn,min = 0.1 in combination with an adequate safety fac-
tor. The spatial configurations at times t = 0.0, t = 0.19 and t = 0.5 and corresponding detail
views are illustrated in Figure 4.26 and 4.27 (where for reasons of better visualization, the cross
section radius has been scaled by a factor of 2). As a consequence of the excitatory stochastic
forces employed in the considered Brownian dynamics model, the velocity field of these fila-
ments is strongly fluctuating in space and in time, thus leading to drastic and frequent changes
in the active contact set. This property in combination with the very high filament slenderness
ratio of ζ ≈ 1600, comparatively large time step sizes (maximal displacement per time step
∆Dmax := max (||D(ti)−D(ti−1)||∞)≈ 10R) and complex geometrical contact configurations
spanning the whole range of possible contact angles (see e.g. Figure 4.27(b)) make this example
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(a) Step 190: magnification factor 4. (b) Step 190: magnification factor 8.

Figure 4.27: Brownian dynamics simulation of the free diffusion of Actin filaments: Final con-
figuration based on different magnification factors.

very challenging concerning the robustness and efficiency of the proposed contact algorithm.
In addition to the step size control of Section 4.4.2, also the load step adaption scheme of Sec-
tion 3.2.1.3 has been employed. Consequently, in case of non-convergence of the global Newton
scheme within 50 iterations, the time step size is halved before it is doubled again after 4 suc-
cessful Newton loops on the smaller time step level. Considering standard state-of-the-art beam
contact algorithms, one would have to apply a line-to-line contact type formulation in order to
represent not only intermediate and large contact angles but also the range of small contact an-
gles, which occur with significant frequency in the considered type of application and which
cannot be resolved by a beam contact formulation of point-to-point type. A neglect of this small
angle range would not only result in a pure physical modeling error, but in impermissibly large
penetrations and consequently in non-convergence of the Newton-Raphson scheme for a consid-
erable number of time steps. In the following, the proposed ABC formulation will be compared
with a pure line-to-line contact formulation. According to (4.59), the number of integration inter-
vals of the line contact formulation has been chosen by a factor of five (sin(90◦)/ sin(11◦)≈ 5)
higher than for the ABC formulation in order to resolve the most critical case α = 90◦ of the line
contact model equivalently to the most critical case α=11◦ of the ABC formulation.

In Figures 4.28 and 4.29, the total number of active point contacts, active line contact Gauss
points, and active beam endpoint contacts of the ABC and the pure line-to-line contact formu-
lation have been plotted over the simulation time for the time interval t ∈ [0; 0.1]. While the
number of active endpoint contacts is similar for both formulations and the number of active
point contacts is, of course, zero for the pure line contact formulation, it becomes obvious that
the new ABC formulation could reduce the total number of active Gauss points in the line contact
regime by approximately a factor of 10. This reduction of computational effort by a factor of 10
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(a) Active point contacts. (b) Active line contact Gauss points. (c) Active endpoint contacts.

Figure 4.28: Number of active contacts for pure line-to-line contact formulation.

(a) Active point contacts. (b) Active line contact Gauss points. (c) Active endpoint contacts.

Figure 4.29: Number of active contacts for proposed ABC contact formulation.

can be split into two individual contributions: First, the required Gauss point density could be
reduced by a factor of 5. Secondly, only a small proportion of the total set of active contacts,
namely the subset with small contact angles, i.e. α < 11◦, had to be evaluated by the line-to-line
contact formulation. In order to investigate also the influence of the applied two-stage contact
search, additional simulations of the ABC formulation and the pure line contact formulation have
been conducted, where only the first search step has been applied, i.e. a standard octree-search
with spherical bounding boxes. The resulting average contact evaluation time t̄c per Newton step
(total CPU time for complete treatment of beam contact including contact search, closest-point
projections, contact force and stiffness evaluations etc.) of the resulting four variants are plotted
in Table 4.1. Accordingly, as compared to a standard beam contact algorithm consisting of a pure
line contact formulation and a one-stage octree search (first line in Table 4.1), approximately a
factor of 20 could be saved by the proposed two-stage search.

These savings can be attributed to the tight cylindrical bounding boxes of the second search step
yielding a very small set of potential contact segment pairs for which the active Gauss points
have to be determined by means of an iterative solution of the unilateral closest point projection.
For the ABC formulation, the savings due to the second search stage (comparison of the third
and fourth line in Table 4.1) are even more emphasized (approximately a factor of 50), which
can be explained as follows: The subdivision of the potential contact segment pairs into potential
point-to-point and potential line-to-line contact segment pairs that is enabled by the two-stage
search algorithm, leads to a considerable reduction of the number of unilateral closest point pro-
jections necessary in order to determine the active line contact Gauss points (which is typically
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Formulation Search algorithm max (nGP,tot) t̄c

Line-to-Line 1-stage ≈ 2700 1.7 · 101 sec.

Line-to-Line 2-stage ≈ 2700 7.7 · 10−1sec.

ABC 1-stage ≈ 180 3.6 · 100 sec.

ABC 2-stage ≈ 180 7.6 · 10−2sec.

Table 4.1: Average contact evaluation times for different contact and search schemes.

much higher than the number of bilateral closest point projections in the point contact regime).
Obviously, the computational savings resulting from this second search step overcompensate the
required numerical effort. However, the efficiency of the second search stage depends on the
number of search segments per finite element determined by the maximal segment angle βmax,
in this example chosen as βmax = 1◦. A comparison of the average contact evaluation times of
the pure line-to-line and the ABC formulation, both in combination with the two-stage contact
search (second line and fourth line in Table 4.1) reveals another saving in computation time by
a factor of 10 that directly correlates with the reduced number of active Gauss points as already
shown in Figures 4.28 and 4.29. Thus, the new ABC formulation in combination with the two-
stage contact search leads to an overall saving by a factor of 200 as compared to a standard
line-to-line beam contact formulation with a one-stage octree search.

In the considered Brownian dynamics example, where dynamic collisions at all possible fila-
ment-to-filament orientations can occur, also the significance of the endpoint contact contribu-
tions introduced in Section 4.4.4 becomes apparent. In order to underpin this statement, the
corresponding total numbers of active beam endpoint contacts in Figure 4.28(c) shall again be
considered. Accordingly, the endpoint contact contributions occur with significant frequency.
Neglecting these endpoint contact forces would not only allow for nonphysically large penetra-
tions, it would also lead to non-convergence of the Newton-Raphson scheme in many time steps.

Next, the influence of the step size control presented in Section 4.4.2 will be investigated. In or-
der to enable the corresponding investigations in an efficient manner, a second, smaller example
of a biopolymer network consisting of only 37 initially straight filaments will be considered as
described and illustrated by Meier et al. [158]. The filaments of this second example are charac-
terized by a reduced length l = 2.0, are discretized by 8 finite elements per filament and will be
observed along a simulation time of t ∈ [0.0; 0.1]. Furthermore, the line-to-line penalty param-
eter as well as the second shifting angle are slightly changed to ε‖ = 2.0 · 104 and α2 = 15◦.
All other simulation parameters remain unchanged as compared to the first example. In order
to investigate the effectiveness of the algorithm proposed in Section 4.4.2, one simulation has
been conducted on the basis of this step size control of the iterative displacement increments
per Newton step according to (4.84) with a time step size of ∆t = 1.0 · 10−4. A second sim-
ulation has been conducted without step size control. The standard procedure, and the simplest
variant, of the latter case is based on a constant time step size that is small enough in order
to avoid undetected crossing of beams. The choice of this maximal constant time step size has
been realized by successively reducing the initial time step size ∆t = 1.0 · 10−4 by factors
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0.5, 0.25, 0.1, 0.05, 0.025, 0.01 etc. until the restriction of the displacement increment per time
step (4.86) holds during the entire simulation, thus leading to a final step size of ∆t=1.0 · 10−7.

SSC Time Step Size # Time Steps # Total Iterations # Iterations/Step

No 1.0 · 10−4 1.0 · 103 ≈ 2.0 · 104 ≈ 20

Yes 1.0 · 10−7 1.0 · 106 ≈ 2.0 · 106 ≈ 2

Table 4.2: Comparison of ABC formulation with and without Step Size Control (SSC).

Table 4.2 gives a comparison of the two variants ”with/without“ step size control (SSC). As a
consequence of a considerably higher time step size (factor 1000) and limited iterative displace-
ment increments, the average number of Newton iterations per time step is increased by a factor
of 10 for the variant with SSC, whereas the total number of Newton iterations during the entire
simulation could be reduced approximately by a factor of 100. The remarkable impact of this
simple method can be explained by considering the following two aspects: First, similar to a
pure time step size reduction, the step size control subdivides a given displacement into small
sub-steps with displacement increments of size R. However, in contrast to a pure time step size
reduction, the step size control does not require Newton convergence of the intermediate config-
urations generated by these sub-steps, a fact, that already saves a considerable number of overall
Newton iterations. Secondly, the admissible constant time step size in case of a pure time step
size reduction might be limited by a small number of individual time steps, whereas for the re-
maining time steps the displacement per time step might be much smaller than the cross section
radius. The step size control on the other hand automatically adapts the number of sub-steps to
the amount of total displacement per time step, thus leading to the optimal number of sub-steps.

Of course, there exist applications where the maximal admissible time discretization error is the
crucial limiting factor of the time step size. However, in many cases, especially when considering
systems of highly slender filaments, the representation of the overall displacements on the length
scales of the filament length are of practical interest, and not the resolution of the exact contact
dynamics occurring on the length scale of the cross section radius and smaller. This applies in
particular to non-deterministic systems such as the considered biopolymer networks, where av-
eraged statistical statements efficiently generated out of a large number of individual stochastic
realizations are relevant. There are many questions of interest in this field, e.g. the influence of
mechanical contact interaction on filament diffusion or on the development of thermodynami-
cally stable or unstable equilibrium phases [161] in cross-linked biopolymer networks, where a
robust contact simulation framework is required. In order to enable simulations along physically
relevant time scales, computational efficiency is one of the key requirements.

Finally, this section will be concluded by an exemplary statistical analysis of a physically relevant
quantity. Concretely, the influence of the mechanical contact interaction on the filament diffusion
measured by the mean square displacement per time step, which is defined as

〈∆rP 〉 :=
1

N

N∑
i=1

∆rPi with ∆rPi = ||∆rPi ||, (4.105)
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will be evaluated. In (4.105), N = 103 denotes the number of time steps and ∆rPi the displace-
ment increment of a material filament point P , here chosen as the midpoint of a filament located
close to the center of the considered network in the initial configuration, at time step i. In order
to enable a statistical analysis, 100 realizations of the underlying Gaussian process have been
considered by generating 100 different sets of random numbers for the space-time distribution
of the stochastic loads. Having determined the mean square displacement 〈∆rP 〉lc for the case
where contact is considered and 〈∆rP 〉lnc for the case where contact is neglected, the modeling
error ml

rel of the stochastic realization l=1, ..., 100 can be defined as:

ml
rel :=

〈∆rP 〉lnc − 〈∆rP 〉lc
〈∆rP 〉lc

. (4.106)

Statistical evaluation of the measured modeling errors finally yield a mean value of 8.5% and a
variance of 2.5%. In other words, for the considered example, the mean square displacement per
time step is overestimated by 8.5% on average when neglecting mechanical contact interaction.
Of course, this analysis only has an exemplary character, since system parameters such as fluid
and filament properties, magnitude of stochastic forces, considered simulation time and/or type
of chosen (periodic) boundary conditions (not considered here) might drastically change the
influence of mechanical contact interaction on the filament diffusion behavior. Nevertheless, this
result represents a first indication that mechanical contact may decrease diffusivity noticeably.

4.5.3.2 Example 2: Tube with rod-based microstructure

In this second application, tubes with rod-based microstructure as illustrated in Figure 4.31 shall
be investigated. In practically relevant systems such microstructure tubes can e.g. be identified
in form of arterial stents employed in medical engineering or in form of carbon nanotubes. Here,
the example has been chosen in order to illustrated the flexibility of the WK-ROT elements in the
modeling of rigid connections between beam elements (see also the example of Section 3.8.10)
embedded in complex microstructures. In the following, quasi-static axial tension tests shall be
performed on these microstructure tubes (see Figure 4.32 for the deformed configurations).

(a) Initial config.: R=0.5. (b) Final config.: R=0.5. (c) Initial config.: R=0.1. (d) Final config.: R=0.1.

Figure 4.30: Axial tension test on microstructure tubes: Detail views for different slendernesses.

Throughout this section, cylinders with three different microstructure resolutions consisting of
nhex=20, nhex=40 and nhex=100 hexagonal unit cells along the circumference of the tube will
be considered (see Figures 4.31(a), 4.31(b) and 4.31(c)). The cylinder is described by a diame-
ter of 50 and a height of ≈ 70. The material parameters have been chosen as E = 2G≈ 2 ·102.
Each, initially curved hexagon segment is discretized by one WK-TAN element. At the transition
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(a) 20 segment on circumference. (b) 40 segment on circumference. (c) 100 segment on circumference.

Figure 4.31: Initial configurations of microstructure tube for three different mesh sizes.

(a) 20 segment on circumference. (b) 40 segment on circumference. (c) 100 segment on circumference.

Figure 4.32: Deformed configurations of microstructure tube for three different mesh sizes.

points, three adjacent segments are rigidly connected. Due to the employed Hermite interpola-
tion and the choice of nodal rotation vectors as primary variables, the resulting ”triple” points
between three connected segments are C1-continuous in the sense that the centerline tangents
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(a) Low slenderness: R=0.5. (b) High slenderness: R=0.1.

Figure 4.33: Axial tension test on different microstructure tubes: load-displacement curves.

of the corresponding elements at these points all lie within one tangent plane, which is identi-
cal to the analytic tangent plane of the cylinder at this point. This smoothness property will be
very beneficial for beam-to-beam contact interaction investigated at the end of this section. As
consequence of the nodal rotation vector parametrization employed to the WK-ROT elements,
no additional constraint equations are required in order to model the rigid connections between
the segments. Furthermore, each segment is characterized by a circular cross-section shape. For
comparison reasons, the two different cross-section radii R = 0.5 and R = 0.1 will be investi-
gated. The change of the hexagonal unit cells of the microstructures associated with these two
segment slenderness ratios resulting from the global deformation are illustrated in Figures 4.30.
The axial tension tests are conducted in a Dirichlet-controlled manner by fully constraining,
which means by clamping, all nodes on the top as well as on the bottom of the tubes (see Fig-
ures 4.32) and applying an axial displacement with a final magnitude of u(T )=100.

This test case again underlines the robustness of the applied Kirchhoff beam elements. For ex-
ample, the deformed configuration of the variant nhex = 20, R= 0.5 could be found in one load
step and 10 Newton iterations. In Figures 4.33 the resulting load-displacement curves for the
six investigated variants have been plotted. Interestingly, the load-displacement curves relating
the reaction force F(t) and the prescribed displacement u(t) are almost linear and the slope is
proportional to the segment cross-section area, i.e. F(t)∼nhexR2u(t). Thus, the microstructure
tube behaves similarly to an assembly of axis-aligned fibers of cross-section radiusR2. Finally, a
first proof-of-principle for the contact interaction between such microstructures is given in Fig-
ures 4.34. Again, the ends of the tubes are Dirichlet-controlled such that the two tubes approach
each other and finally come into contact. In future research work, it is planned to extend the
presented beam-to-beam contact framework also to beam-to-solid contact scenarios. In the con-
text of microstructure tubes as presented in this section, such a beam-to-solid contact interaction
between slender and solid bodies could for example occur in the simulation of the placement
process of arterial stents which are in tight contact with the surrounding arterial wall.
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(a) 3D view: t=0.0. (b) 3D view: t=1/3. (c) 3D view: t=2/3. (d) 3D view: t=1.0.

(e) 2D view: t=0.0. (f) 2D view: t=1/3. (g) 2D view: t=2/3. (h) 2D view: t=1.0.

Figure 4.34: Static simulation of contact interaction between two mirco-structure tubes.

4.5.3.3 Example 3: Static load test on a webbing

As third application, a static load test performed on a fibrous webbing shall be analyzed. The
webbing consists of 10 + 20 ribbons, each of them made out of 10 individual fibers with circular
cross-sections. The geometrical and constitutive parameters of an individual fiber are given by
l= 500, R= 1, E= 2G= 1.0·107. Each fiber endpoint is simply supported and the positions of
these supports are chosen such that the fibers are initially stress-free in case no beam-to-beam
contact interaction is considered. Within a ribbon, two neighboring fibers pointing in global x-
direction exhibit a vanishing initial gap g0 =0 while the fibers pointing in global y-direction are
placed with an initial distance of g0 =R. Each fiber is discretized by 20 TF elements yielding a
global system that consists of 300 fibers, 6000 finite elements and approximately 38000 DoFs. In
this example, the regimes of point and line contact are clearly separated. Thus, the shifting angles
have been chosen to α1 = 40◦ and α2 = 45◦. Since no active contacts lying within the transition
interval are expected for this example, the line and point penalty parameters do not necessarily
have to be harmonized. Concretely, a quadratically regularized penalty law with ε⊥= 2.4 · 105,
ε‖ = 2.0 · 104 and ḡ = 0.1R in combination with one three-point integration interval per slave
element has been chosen. Again, the global Newton-Raphson scheme is supplemented by the
step size control of Section 4.4.2 and the load step adaption scheme of Section 3.2.1.3.

In order to determine the pre-stressed initial configuration, the fibers in x-direction are first
loaded by a properly chosen sinusoidal line load. However, contact interaction is not considered
in this first step. After activating the contact algorithm, the line load is reduced to zero in an in-
cremental manner in order to finally yield the equilibrium configuration of the unloaded system
as illustrated in Figure 4.35 (first and second row, left). In a next step, the deformation of the
resulting webbing when exposed to a point loading shall be investigated. Thereto, a test piece
in form of a rigid sphere (radius 50) is driven into the webbing. This process is performed in an
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Figure 4.35: Static load test on a webbing: Initial and deformed configurations.
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incremental, Dirichlet-controlled manner. The modeling of the contact interaction between the
rigid sphere and the individual fibers is similar to the procedure described in Section 4.4.4 in the
context of beam endpoint-to-segment contact. Different perspectives of the final deformed con-
figuration are again shown in Figure 4.35. This state is characterized by approximately 15000 ac-
tive line contact Gauss points, 16000 active point contacts and maximal penetrations in the range
of 10% of the cross-section diameter for both regimes. The well-balanced number of active point
and line contacts underlines the efficiency potential of the ABC formulation and demonstrates
that the computationally expensive line contact contributions have been successfully reduced.
In Figure 4.35, also the magnitudes of the resulting axial tension within the individual fibers
are illustrated. Often, the mechanical fiber interaction in webbings of the type considered here
is strongly determined by friction forces. Thereto, a future extension of the proposed beam-to-
beam contact formulation by frictional effects seems to be very promising in order to improve the
model quality and the significance of the generated simulation results. Nevertheless, for mate-
rial pairings exhibiting low friction coefficients, the outcomes visualized in Figures 4.35 already
provide a first quantification of the expected fiber stresses and a first hint with respect to possible
failure mechanisms within the webbing. Furthermore, the perhaps more important purpose of
this example is to demonstrate the robustness and scalability of the presented beam element and
beam-to-beam contact formulations when applied to systems of practical relevance and size.

4.5.3.4 Example 4: Twisting process and failure of a rope

In this last example, the static twisting process of a rope will be investigated. The considered
rope is built from 7 × 7 individual fibers with length l = 5, circular cross-section of radius
R = 0.01 and Youngs modulus E = 109. The arrangement of the initially straight fibers in seven
sub-bundles with seven fibers per sub-bundle is illustrated in Figure 4.36(a).

For spatial discretization, 10 TF beam elements per fiber are employed. The contact parameters
have been chosen as ε = 5.0 · 105 as well as ḡ = 0.1R = 0.001 in combination with seven
5-point integration intervals per element. In the first stage of the twisting process, each of the
seven sub-bundles is twisted by four full rotations within 80 static load steps. The twisting pro-
cess is performed in a Dirichlet-controlled manner, such that the cross-section center points at
one end of the sub-bundles (front side in Figure 4.36) are moving on a circular path (see also
Example 2 of Section 4.5.1.2) with respect to the individual sub-bundle center points, while the
corresponding points at the other end of the sub-bundles (back side in Figure 4.36) remain fixed.
The deformed configurations at characteristic load steps after one, two, three and four full ro-
tations are illustrated in Figures 4.36(b)-4.36(e). In the second stage of the twisting process, all
seven sub-bundles together are twisted by one further rotation within 20 additional static load
steps. This time, the cross-section center points are moving on a circular path with respect to the
center point of the entire 7× 7-rope. The deformed configuration at the end of this twisting pro-
cess is illustrated in Figure 4.36(f). While the cross-section center points of all fiber endpoints
at one end of the rope (front side in Figure 4.36) are fixed in axial direction, the cross-section
center points of all fiber endpoints at the other end of the rope (back side in Figure 4.36) are
free to move in axial direction. Additionally, a constant axial tensile force f̄ax = 1000 acting on
each of these axially freely movable fiber endpoints provides axial pre-stressing during the entire
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(a) Undeformed initial configuration. (b) Configuration at load step 20. (c) Configuration at load step 40.

(d) Configuration at load step 60. (e) Configuration at load step 80. (f) Configuration at load step 100.

Figure 4.36: Static simulation of the twisting process of a rope consisting of 7× 7 fibers.

twisting process. On the contrary to Section 4.5.1.2, the fiber endpoints are simply supported but
not clamped. Consequently, Dirichlet conditions are only applied to the positional degrees of
freedom d̂i at the endpoints but not to the tangential degrees of freedom t̂i. The initial geome-
try of the individual fibers as well as the chosen loading and Dirichlet boundary conditions are
compatible with the requirements (2.128), (2.136) and (2.137) formulated in Section 2.4. As a
result, each individual fiber remains torsion-free and the TF beam elements yield exact results
for the considered static example. Given the global twisting state of the rope as illustrated in
Figure 4.36(f), this result might contradict first intuition. Nevertheless, of course, an overall ex-
ternal axial torque resulting from the moment contributions of the reaction forces at the beam
endpoints with respect to the centerline of the rope is necessary in order to guarantee for static
equilibrium of the twisted rope at different load steps. The corresponding evolution of this exter-
nal axial torque during the deformation process normalized by the maximal torque occurring at
load step 100 is plotted in Figure 4.37(a). Interestingly, the evolution of the twisting torque over
the twisting angle is almost linear within the two stages of deformation, i.e. the behavior of the
rope is similar to the twisting response of a slender continuum. The higher slope in the second
twisting stage, where all sub-bundles are twisted uniformly with respect to the centerline of the
rope, results from the increased overall elastic stiffness. The external work required in order to
perform the considered twisting process in a quasi-static manner is proportional to the area en-
closed by the graph of the twisting torque evolution and the horizontal axis of Figure 4.37(a).

From a purely mechanical point of view, it is quite obvious that the presented example, which is
dominated by line-to-line contact interaction along the entire length of the rope, should better be
modeled by a line-to-line than a point-to-point type contact formulation. However, this choice
shall also be motivated from a mathematical point of view. Thereto, the minimal contact angle
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(a) Axial reaction torque during twisting process. (b) Minimal angle min (α) / lower bound αmin.

Figure 4.37: Reaction torque and contact angle in the numerical simulation of a rope.

min (α) occurring within the entire rope at a specific load step has been plotted over the first 80
load steps in Figure 4.37(b). As expected, the value of this minimal angle increases with increas-
ing twisting angle/load step. In order to mathematically evaluate the possibility of applying the
point-to-point contact formulation to this example, this minimal contact angle will be compared
with the lower bound αmin according to (4.31), above which a unique bilateral closest point
solution can be guaranteed. To be able to do so, the evolution αmin = arccos (1− 2Rκ̄max) has
additionally been plotted over the first 80 loads steps. Here,R=0.01 represents the cross-section
radius and κ̄max is the maximal curvature value occurring in the entire rope for the considered
load step. As can be seen from Figure 4.37(b), the curve representing the minimal angle min (α)
actually occurring in the simulation lies entirely below the curve representing the minimal ad-
missible angle αmin. Thus, a unique bilateral closest point solution cannot be guaranteed and
hence, as expected, the point-to-point contact formulations is not suitable for this example.

As last and probably most demanding numerical test case, the dynamic failure of two ropes of
the type presented above shall be mimicked. In the initial, static equilibrium configuration, the
two ropes are oriented in a perpendicular manner and contact each other (such that the imaginary
undeformed rope centerlines would exactly cross each other) as illustrated in Figure 4.38(a). Ad-
ditionally, the penalty parameters have been increased by a factor of ten, i.e. ε⊥ = 1.5 ·105 and
ε‖= 5.0·106, as compared to the static twisting process above. Starting from this configuration,
the Dirichlet fixations as well as the axial tensile forces at one of the two ends of each rope (bot-
tom left and bottom right in Figure 4.38(a)) are released, while the Dirichlet conditions at the
other ends of the ropes (top left and top right in Figure 4.38(a)) remain fixed. After having con-
sistently calculated the initial accelerations D̈0 of this non-equilibrium configuration, a dynamic
simulation of the transient system evolution along a total simulation time of t∈ [0.0; 1.5 ·10−3] is
performed. For time discretization, the standard generalized-α scheme of Section 3.1.1 in com-
bination with a small amount of numerical dissipation provided by a spectral radius of ρ∞=0.95
(αf≈0.49, αm≈0.46, β≈0.26 and γ≈0.53) and a time step size ∆t=1.0 · 10−7. The deformed
configurations at different time steps are illustrated in Figure 4.38. Accordingly, the sudden re-
lease of the external (reaction-) forces leads to an initial wave propagation from the free end to
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(a) Time: 0. (b) Time: T/8. (c) Time: 2T/8.

(d) Time: 3T/8. (e) Time: 4T/8. (f) Time: 5T/8.

(g) Time: 6T/8. (h) Time: 7T/8. (i) Time: T .

Figure 4.38: Simulation of the dynamic failure of two twisted steel cables which are initially in
perpendicular contact: Deformed configurations at different time steps.

the clamped end. During the entire process, a highly dynamic contact interaction between the two
ropes and between the individual fibers within the ropes can be observed. This contact interac-
tion again includes arbitrary three-dimensional contact configurations spanning the whole range
of possible contact angles (see e.g. the detail views in Figures 4.39 and 4.39). This statement is
confirmed by Figure 4.42(a), where the minimal and maximal contact angle occurring in each
time step is plotted over the simulation time. In Figures 4.41, the total number of active point-to-
point contacts, active line-to-line contact Gauss points and active endpoint contacts is displayed.
In this rather line-contact-dominated example, a comparatively low number of point contacts can
be observed which lies in the range of 5-10 active contacts per time step while the number of
active line-to-line contact Gauss points decreases drastically from an initial value of ≈60000 to
a value of ≈ 3000 in the end of the simulation. The step size control according to Section 4.4.2
allowed for comparatively large time steps, thus leading to maximal displacements per time step
in the range of four times the cross section radius, i.e. ∆Dmax=max (||D(ti)−D(ti−1)||∞)≈4R.
According to Figure 4.42(b), the total energy consisting of elastic, kinetic and contact contribu-
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Figure 4.39: Visualization of final configuration based on small / intermediate zoom factors.

Figure 4.40: Visualization of final configuration based on a high zoom factor.

tions, is conserved very well despite the comparatively large time step size. The decline in total
energy as a consequence of the numerical dissipation inherent to the generalized-α scheme with
ρ∞= 0.95 is less than 1% during the total simulation time. Furthermore, due to the adjustment
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(a) Active point contacts. (b) Active line contact Gauss points. (c) Active endpoint contacts.

Figure 4.41: Simulation of dynamic failure of two steel cables: Active contacts.

(a) Minimal and maximal contact angle. (b) Evolution of total system energy.

Figure 4.42: Simulation of dynamic failure of two steel cables: Contact angles and gaps.

of point-to-point and line-to-line penalty parameter according to (4.31), no visible energy jumps
of the force-based ABC formulation could be observed when contact angles in the transition
range α ∈ [α1;α2] occurred. On the other hand, a simulation that has been performed without
considering endpoint contacts (for comparison reasons) led to considerable jumps in the total
energy by several percent - a result that underlines the importance of the endpoint contributions.

All in all, it can be concluded from the practical applications considered in this section that
the proposed contact algorithm enables a highly robust treatment of arbitrary contact configura-
tions. The interplay of the individual building blocks such as ABC formulation, two-stage contact
search and step size control of the nonlinear solver results in considerable computational savings
as compared to standard beam-to-beam contact formulations available in the literature.
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5 Summary and Outlook

In this thesis, mechanical models for highly slender beams and their contact interaction have
been proposed on the basis of the geometrically exact Kirchhoff-Love beam theory. From these
models, novel finite element formulations have been derived that allow for an accurate, robust
and efficient numerical simulation of physically relevant time scales within complex mechani-
cal systems composed of highly slender fibers with arbitrary orientation. In the following Sec-
tion 5.1, the accomplishments and most important results of this thesis will be further detailed.
Section 5.2, gives a brief outlook on possible future extensions and directions of research.

5.1 Summary
Within this thesis, the first geometrically exact, objective, three-dimensional, large-deformation
Kirchhoff-Love beam element formulations representing the modes of axial tension, torsion
and bending and accounting for arbitrary initial geometries as well as anisotropic cross-section
shapes have been developed. Thereto, two alternative element formulations have been proposed:
i) The first formulation is based on a strong enforcement of the Kirchhoff constraint (SK) en-
abled by a novel orthonormal rotation interpolation scheme. ii) The space-continuous theory
of the second variant is based on a weak enforcement of the Kirchhoff constraint (WK). The
discrete realization of the Kirchhoff constraint relies on a properly chosen collocation strategy
which can entirely abstain from the use of additional Lagrange multipliers. While this second for-
mulation allows for arbitrary rotation interpolations, the investigated numerical realization has
employed the well-known orthonormal, geodesic triad interpolation scheme proposed in [58].
Taking advantage of a third-order Hermite interpolation, both element formulations provide a
C1-continuous centerline representation. In this context, detailed theoretical and numerical in-
vestigation have been conducted on the optimal choice of the required Hermite constant. In order
to avoid possible membrane locking effects in the regime of high beam slenderness ratios, the
concept of Minimally Constrained Strains (MCS) has been proposed for re-interpolation of the
axial tension field. This concept is especially suited for smooth interpolation schemes with in-
creased continuity, but still of a very general nature and is expected to be easily transferable to
other locking phenomena and classes of slender structures. Furthermore, for each of these two
element formulations, two different sets of nodal rotation parametrizations are proposed, one
based on nodal rotation vectors (ROT) and one on nodal tangent vectors (TAN). While these
different choices have been shown to yield identical FEM solutions, they differ in the resulting
performance of nonlinear solvers and in the effort required for prescribing essential boundary
and transition conditions. The four finite element formulations resulting from a combination of
the two interpolation schemes and the two choices of nodal primary variables have been denoted
as SK-TAN, SK-ROT, WK-TAN and WK-ROT elements, respectively. Eventually, the proposed
beam element formulations are supplemented by an implicit, second-order accurate time inte-
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gration scheme recently proposed in the literature for time discretization of large rotations. This
integration scheme can be identified as Lie group extension of the well-known generalized-α
method with comparable properties. The generality and flexibility of this scheme allow for a
straightforward combination with the different element formulations considered in this thesis.

For the two different spatial discretization schemes SK and WK, the fulfillment of essential
properties such as objectivity and path-independence, conservation of energy and momentum
as well as consistent spatial convergence behavior and the avoidance of locking in the high
slenderness regime have been shown theoretically and verified by means of chosen numerical
examples. In the context of conservation properties, especially, the influence of applying either
Bubnov-Galerkin or Petrov-Galerkin discretizations has been in the focus. Concerning locking
behavior, the proposed MCS method has been compared with alternative methods known from
the literature such as standard Assumed Natural Strains (ANS) or Reduced Integration (RI). In
contrast to these alternative methods, the new MCS method could effectively avoid any evidence
of membrane locking for all investigated load cases and slenderness ratios.

On the basis of several numerical examples, detailed and systematic numerical comparisons of
the resulting discretization error levels and performance of the nonlinear solver have been per-
formed between the four variants of the proposed geometrically exact Kirchhoff-Love beam el-
ements and two well-established geometrically exact Simo-Reissner beam element formulations
known from the literature. Most of the examples have been investigated for the two different
slenderness ratios ζ = 100 and ζ = 10000. For the low slenderness ratio ζ = 100, the general
model difference between the shear-free Kirchhoff-Love theory and the Simo-Reissner theory
of shear-deformable beams, measured in form of the relative L2-error remaining in the limit of
arbitrarily fine spatial discretizations, typically lay below 0.1%. Also the quadratic decrease of
this model difference with increasing slenderness ratio could be confirmed numerically. In all
investigated examples, the proposed WK elements have shown a lower discretization error level
than the investigated Simo-Reissner beam element formulation. These results confirm the theo-
retical prediction that Kirchhoff type formulations can achieve the same discretization error level
as Reissner type formulations with less degrees of freedom, since no shear deformation has to
be represented. Compared to the excellent results of the WK elements, the SK elements showed
an increased discretization error level, in some examples even higher as for the Simo-Reissner
elements. Based on the underlying convergence theory, this phenomenon could be attributed to
the polynomial degree k= 3 of the employed trial functions and predicted to vanish for higher-
order elements with k > 3. This prediction has been confirmed by means of a first numerical
test case employing Hermite polynomials of order k= 5 which resulted in the expected optimal
discretization error level lying below the error level of the Simo-Reissner reference formulation.
While most of the investigated examples have been conducted in a quasi-static manner, also two
dynamic test cases, one of them a well-known benchmark test from the literature, have been
conducted. There, the accuracy of the inertia contributions of the proposed elements as well as
the energy stability of the employed time integration scheme could be confirmed.

Besides the resulting discretization error level, also the total number of Newton-Raphson itera-
tions required to solve the considered test cases by means of the different element formulations
and for different slenderness ratios has been analyzed in a systematic manner. For all investigated
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examples and slenderness ratios, the proposed SK-TAN and WK-TAN elements required less
Newton iterations to solve the problem as compared to the two well-established Simo-Reissner
formulations chosen as reference. In the small slenderness range ζ= 100, the results of the four
proposed Kirchhoff-Love variants and the two investigated Simo-Reissner formulations lay at
least in the same order of magnitude. While the behavior of the Kirchhoff-Love formulations
remained more or less unchanged, the number of Newton iterations required by the two differ-
ent Simo-Reissner formulations increased considerably with increasing slenderness ratio. In the
investigated examples with slenderness ratio ζ = 10000, this number was up to two orders of
magnitude higher for the Simo-Reissner elements as compared to the proposed SK-TAN and
WK-TAN elements. Also the number of iterations required by the SK-ROT and WK-ROT ele-
ments, which are based on nodal rotation vectors for triad parametrization, has been independent
from the considered slenderness ratio, higher as for the SK-TAN and WK-TAN elements but still
considerably lower as for the Reissner type elements. Recapitulatory, out of the four proposed
Kirchhoff variants, the WK-TAN element, based on a weak enforcement of the Kirchhoff con-
straint and a triad parametrization via nodal tangent vectors, can be recommended in terms of
a low discretization error level and an excellent performance of the Newton-Raphson scheme.
Of course, further factors could be considered in a comprehensive comparison. For example, the
SK-ROT and WK-ROT elements based on nodal rotation vectors simplify the prescription of
Dirichlet conditions. The flexibility of the proposed beam element variants allows to combine
the advantages of the two different rotation parametrizations by choosing e.g. the WK-TAN el-
ement as basic formulation and replace the nodal tangents by nodal rotation vectors at nodes
where complex boundary or coupling conditions have to be prescribed. This can be realized by
a simple transformation applied to the residual and stiffness contributions of the relevant node.

The abstaining from stiff shear mode contributions underlying the proposed Kirchhoff-Love el-
ement formulations does not only yield an improved Newton-Raphson performance. Also the
highest eigenfrequency band of slender beams, which is associated with the shear modes, can
be avoided by this means. The theoretical considerations made in this thesis give hope for con-
siderably improved stability properties of numerical time integration schemes when combined
with the developed shear-free elements. A future numerical investigation of this topic seems to
provide a considerable scientific potential. Furthermore, it has also been shown that an additional
abstaining from the axial tension modes can considerably improve the condition number of the
system matrix, which can in turn improve the performance of iterative linear solvers. For a first
proof of concept, the derived elements have been supplemented by an additional inextensibility
constraint realized via a constraint enforcement strategy of augmented Lagrange type. In the
investigated numerical example, the condition number of the system matrix could be improved
by several orders of magnitude without deteriorating the performance of the nonlinear solver as
compared to the investigated beam element formulations without inextensibility constraint.

From the general Kirchhoff-Love theory, a reduced torsion-free theory as well as a correspond-
ing beam element realization, which fulfills the same essential properties as the general element
formulations, have been consistently derived in this thesis. It has been shown that this torsion-
free formulation can be applied to initially straight beams with isotropic cross-section shape as
long as no external torsional moments are acting on the beam. These restrictions are valid for
many of the applications mentioned in Section 1.1. These applications often represent systems
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of straight fibers loaded by pure force loads. Consequently, the developed torsion-free element
formulations are of highest practical interest. For the applicant, the torsion-free element for-
mulation is beneficial since it can completely abstain from rotational degrees of freedom. This
property considerably simplifies standard procedures such as rotation interpolation, derivation
of linearizations, configuration updates, or time integration via finite differences in dynamics.
These procedures are typically complicated by the presence of rotational degrees of freedom in
common geometrically exact beam element formulations. Furthermore, in contrast to standard
geometrically exact beam formulations, the torsion-free element formulation results in a sym-
metric tangent stiffness matrix (as long as no external moment contributions are considered)
and a symmetric and constant mass matrix. For cases where the mentioned limitations with re-
spect to external loads and initial geometries are fulfilled, it has been shown analytically that the
torsion-free formulation, as compared to the general Kirchhoff theory, yields i) correct results
for static problems as well as ii) good approximations for dynamic problems with a resulting
model error that decreases quadratically with increasing slenderness ratio. Thus, it is perfectly
compatible with the proposed Kirchhoff formulations, since also the model error of shear-free
theories decreases quadratically with the beam slenderness ratio. On the basis of two static and
dynamic numerical examples, these theoretical predictions could already be confirmed. All in
all, the developed torsion-free element seems to be very beneficial within its extent of validity.
Consequently, a further analysis of this type of reduced formulations seems to be very promising.

The second core topic of this thesis was the development of an efficient and robust beam-to-beam
contact formulation capable of describing complex contact configurations of slender beams in-
volving arbitrary beam-to-beam orientations. It has been shown by means of a mathematically
concise investigation of standard point-to-point beam contact models that these formulations fail
to describe a considerable range of practically relevant contact configurations as consequence
of a non-unique bilateral closest point projection. On the contrary, a line-to-line contact formu-
lation proposed in this thesis models contact interaction of slender continua by means of dis-
tributed line forces. It has been shown analytically that the corresponding unilateral closest point
projection relevant for this line contact formulation always possesses a unique solution and thus
is applicable for any geometrical contact configuration. By means of theoretical and numerical
investigations, different contact discretizations, i.e. Gauss-point-to-segment or mortar type for-
mulations, as well as different constraint enforcement strategies, based on penalty regularization
or Lagrange multipliers, have been investigated and compared. On the basis of these compar-
isons, it has been concluded that a penalty-based Gauss-point-to-segment formulation is most
suitable for the considered range of beam-to-beam contact applications. On the one hand, the
penalty regularization of the contact constraint, which can be interpreted as mechanical model
of the cross-section stiffness, has been shown to be indispensable when employing beam models
based on the assumption of rigid cross-sections. On the other hand, as compared to mortar-type
approaches, the proposed Gauss-point-to-segment contact discretization is favorable in terms of
computational efficiency and implementation effort. The proposed formulation is supplemented
by a consistently linearized integration interval segmentation that avoids numerical integration
across strong discontinuities at beam endpoints. In combination with a smoothed contact force
law and the proposed C1-continuous beam element formulations, this procedure drastically re-
duces the numerical integration error. It has been verified numerically that this reduction of the
integration error is an essential prerequisite in order to obtain optimal spatial convergence rates.
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In this context, a new numerical test case suitable for line-to-line contact scenarios has been de-
signed and a corresponding analytic solution based on the Kirchhoff-Love beam theory has been
derived. This test case as well as the associated analytic solution can serve as valuable bench-
mark for the proposed model but also for future beam contact formulations.

In order to evaluate the numerical effort required for line-based beam contact formulations, a
criterion has been derived for the minimally required number of contact evaluation points in
dependence on the beam slenderness ratio and the contact angle. Based on this criterion and on
the investigations already performed on the point contact model, it has been concluded that, on
the one hand, point-to-point contact formulations serve as sensible mechanical models and very
efficient numerical algorithms in the range of intermediate and large contact angles while they
are not applicable for small contact angles. On the other hand, line-to-line contact formulations
provide accurate and robust mechanical models in the small-angle regime whereas the computa-
tional efficiency considerably decreases with increasing contact angles. In order to combine the
advantages of these basic formulations, a novel all-angle beam contact (ABC) formulation has
been developed that applies a point contact formulation in the range of large contact angles, the
proposed line contact formulation in the range of small contact angles and a smooth model tran-
sition within a predefined contact angle interval. Concretely, two types of model transition have
been investigated: a variationally consistent one formulated on penalty potential level as well as
a simpler force-based model transition. It has been shown analytically that both variants exactly
fulfill the essential conservation properties of linear and angular momentum. However, only the
potential-based formulation fulfills exact conservation of energy. Nevertheless, for many fields of
application, the more efficient force-based model transition could be recommended as method of
choice since the non-conservative work contributions of this variant can be minimized by choos-
ing an optimal ratio of the point and line penalty parameters. Furthermore, optimal parameter
choices concerning the required Gauss point densities and the model transition shifting angles
have been derived. All deformation-dependent quantities have been consistently linearized, thus
enabling the application within the framework of implicit time integration. The accuracy and
consistency of the ABC formulation in terms of conservation properties and contact force dis-
tributions has been verified numerically. Eventually, the proposed ABC formulation has been
supplemented by the contact force contributions arising from the beam endpoints.

It has been shown that endpoint contact contributions as well as small-angle contact configura-
tions without unique bilateral closest point solution are likely to occur in unstructured systems
with arbitrarily distributed and oriented fibers. A neglect of these contributions by solely ap-
plying a standard point-to-point contact formulation will in general lead to impermissibly large
penetrations and an undetected crossing of beams. Even if such undetected large penetrations
only occur at individual spatial positions and single points in time and even if the pure model-
ing error resulting from such a nonphysical behavior might be negligible, the sudden detection
of such large penetrations can considerably deteriorate the performance of nonlinear solution
schemes or prohibit convergence at all, in dynamic simulations it can induce energy instabilities.

Besides the requirement of highly resolved spatial contact discretizations, the modeling of thin
fibers by means of standard beam contact formulations is also limited by small time step sizes.
In order to address this limitation, a step size control for the nonlinear solution scheme has been
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proposed that enables displacements per time step far above the order of the cross section radius.
Additionally, a very efficient two-stage contact search has been developed, which consists of
an octree search with spherical bounding boxes in the first step and dynamically adapted search
segments enwrapped by tight cylindrical search boxes in the second step. The second search step
yields a very tight set of potential contact pairs and allows for subdividing this set into potential
point-to-point and potential line-to-line contact pairs. This search strategy allows to fully exploit
the efficiency potential of the proposed all-angle beam contact formulation, with regard to two
different aspects: On the one hand, a lower number of potential contact pairs has to be evaluated
by the computationally more involved line contact formulation, viz. only the ones within the
small-angle range. On the other hand, lower Gauss point densities are required within this range.

Eventually, the interplay of the proposed ABC formulation and the developed Kirchhoff beam
elements has been investigated on the basis of four possible real-life applications: 1) A Brown-
ian dynamics simulation of the free diffusion process of Actin filaments prevalent for example in
the cytoskeleton of biological cells; 2) An axial tension test performed on a microstructure tube
representing comparable practical systems such as an arterial stent or a segment of a carbon nan-
otube; 3) A static load test on an industrial webbing; 4) The simulation of the twisting process
and the dynamic failure of two high-tensile ropes modeled on the mesoscopic scale of individual
fibers. By means of these test cases, it could be verified that the proposed methods yield a beam-
to-beam contact algorithm that combines a significant degree of robustness and universality in
the implicit(!) numerical treatment of complex contact scenarios and arbitrary beam-to-beam
orientations with a considerably increased computational efficiency compared to existing for-
mulations, especially in the range of high slenderness ratios. For the investigated example, both
the reduction in the total number of Newton iterations enabled by the step size control as well
as the savings in contact evaluation time resulting from a combination of ABC formulation and
two-stage contact search have been in the range of two orders of magnitude. Thus, the cumula-
tive savings resulting from these two effects can be assumed to lie in the range of four orders of
magnitude. When considering examples with strong contact interaction, high slenderness ratios
and comparatively rough spatial FEM discretizations enabled by powerful higher-order beam
elements, it is precisely the contact evaluation time that may dominate the overall computational
costs. Therefore, substantial savings in this scope are of highest practical relevance.

5.2 Outlook
Possible future research work in the field of geometrically exact Kirchhoff beam element formu-
lations concerns for example an extension of the proposed third-order elements to higher poly-
nomial degrees k > 3. It has been shown that - at least for the SK-TAN/ROT elements - such an
extension might be reasonable in order to fully exploit the approximation power of the under-
lying trial functions. Furthermore, more detailed evaluations and comparisons of extensible and
inextensible Kirchhoff-Love as well as Simo-Reissner beam element formulations considering
also the resulting performance of linear solvers and the stability behavior of the applied time in-
tegration schemes are desirable. Future research work in this context might for example focus on
the development of tailored Lagrange multiplier interpolations that allow for a computationally
cheap, global condensation of the Lagrange multipliers in order to avoid the saddle point struc-
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ture of the global system of equations. Furthermore, very promising approaches on (first-order)
geodesic or helicoidal interpolations on the so-called Special Euclidean group SE(3) have been
recently proposed for geometrically exact beam formulations of Simo-Reissner type [212, 213].
The resulting trial spaces for the translational and rotational primary variable fields of such ap-
proaches are properly harmonized and no additional means, such as reduced integration, are
required in order to avoid locking effects. At least for the 2D case, an extension of this concept
to higher-order elements has been proposed recently [66]. Also in the context of geometrically
exact Kirchhoff type beam element formulations, an extension of this concept to C1-continuous,
higher-order interpolations in 3D might be very interesting. It is expected that the resulting trial
functions associated with the centerline interpolation cannot be stated explicitly but have to be
obtained via numerical integration. Thus, a detailed comparison of such element formulations
and the Hermite-based elements proposed in this thesis not only in terms of accuracy but also
in terms of overall efficiency might be very informative. Finally, the employed Lie-group exten-
sion of the well-known generalized-α time integration scheme [40, 41] has been shown to yield
energy-stable algorithms for large-deformation beam problems and reasonable time step sizes.
Nevertheless, for certain applications an exact conservation of energy and momentum might be
crucial, and consequently the development of energy-momentum methods that are suitable for
the proposed beam element formulations represents a possible direction of future research.

Possible future extensions of the beam-to-beam contact framework can be subdivided into ef-
forts aiming at an improved computational performance and efforts aiming at an improved
model quality. Extensions of the former type might for example consider the development of
large-time-step contact algorithms that enable displacements per time step far beyond the beam
cross-section dimensions without limiting the size of displacement increments per Newton step.
Such formulations can for example be based on history information from the last time step and
proper assumptions for the displacement path of material points between two time steps. The
main task in the development of such schemes is to derive smooth formulations that are con-
sistent and still highly robust for arbitrary geometrical configurations. Thus, it might still be
beneficial to combine such formulations with the step size control proposed in Section 4.4.2,
but with iterative displacement increments that may exceed the beam cross-section dimensions.
Complex systems of highly slender, contacting fibers as e.g. considered in Section 4.5.3 often
exhibit mechanically unstable equilibrium configurations. The prevalence of such instabilities in
combination with high beam slenderness ratios and a strong mutual contact interaction between
the individual fibers represent a considerable challenge for nonlinear solution schemes, even if
inertia contributions are considered. Consequently, a further extension of the employed Newton-
Raphson scheme and the development of highly robust but still sufficiently efficient nonlinear
solution schemes tailored for this class of mechanical problems seems to be very promising and
highly relevant from a practical point of view. For problems involving high-frequency responses
or wave-like phenomena, also an application of the presented methods in the framework of ex-
plicit dynamics might be interesting. There, the challenging nonlinear solution process could be
avoided. Furthermore, such explicit schemes could greatly benefit from the avoidance of high-
frequency modes achieved by the proposed extensible and inextensible Kirchhoff type beam
element formulations. Eventually, a considerable gain in computational performance seems to
be possible by further refining the employed code parallelization strategies. Parallel redistribu-
tion strategies can be regarded as highly promising approaches taking into account a possible
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change of the optimal parallel distribution of the spatial domain on the applied processors as
consequence of continuously changing sets of beam elements interacting via mechanical contact.

Possible future extensions of the employed physical contact model incorporate for example the
mechanically consistent modeling of frictional contact interaction in the point contact, the line
contact and the transition regime. Already the accurate formulation of friction laws for the basic
point contact model as well as for the basic line contact model can be assumed to require sig-
nificant methodological developments. Most of the friction models and associated finite element
discretizations available for beam-to-beam contact formulations are either based on considerably
simplifying assumptions, e.g. concerning the friction force direction or the consistent treatment
of relative twist rotations, or can not guarantee for objectivity, which is an essential issue not
only for geometrically exact beam element formulations but also in the formulation of penalty-
regularized friction models. Also an extension of the penalty regularization applied to the normal
contact interaction on the basis of suitable physical models (see e.g. [122]) can be considered as
reasonable step to improve the overall quality of the contact model. Besides the pure mechan-
ical contact interaction, often denoted as steric interaction, also the potential-based interaction
between slender fibers, e.g. induced by electrostatic surface charges or Van-der-Waals effects,
might be highly relevant for many applications. An extension of the overall contact algorithm
by models capturing such a potential-based beam-to-beam interaction will be simplified by the
modular structure of the implemented simulation framework and can be regarded as very promis-
ing. Moreover, the contact interaction between slender components, described by beam models,
and solid bodies, described by volume-based finite elements, might be important for many appli-
cations. As a possible future application of interest, the contact interaction between arterial stents
and the walls of surrounding blood vessels, has to be mentioned. A numerical realization result-
ing from such a beam-to-solid contact model might considerably benefit from the robustness and
the smooth surface representation of the proposed Kirchhoff beam elements. In Section 4.5.3.1,
the interaction of contacting filaments and a surrounding fluid has been considered in an implicit
manner by means of a proper viscous damping model. However, there are many examples for
fiber-based systems where an explicit resolution of fluid structure interaction is indispensable.
Possible applications comprise the motion of slender viruses in viscous fluid, the dynamics of
offshore risers, the resin flow between fibers during the manufacturing process of fiber-reinforced
composite materials or the fluid-fiber-interactions in rotational spinning processes employed for
example for glass wool production. In this context, an extension of the existing contact frame-
work in order to also account for fluid-to-beam interactions seems to be very promising.

In Section 4.5.3, the developed beam element and beam contact formulations have successfully
been applied to four exemplary fields of application. An extension of the existing beam-to-beam
contact model by additional physical effects such as anisotropic frictional contact interaction,
potential-based interaction involving electrostatic or Van-der-Waals effects or also explicit fluid-
structure interaction would considerably broaden the spectrum of potential future applications.
Given the variety of practically relevant applications that are crucially based on the prevalence
and interaction of highly slender fibers as well as the complexity of accurately analyzing the
mesoscopic behavior of such systems, the methods developed in this thesis will contribute to
considerably extend the range of accessible length and time scales and eventually to gain further
insight into physical phenomena that have not yet been feasible for numerical simulation.
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Exact Beam Theory

A.1 Singularities of mappings onto tangent fields
The problem of defining a map gM2(g1) for a given vector g1 with the orthogonality condition

g1 · gM2(g1) = 0 (A.1)

shall be examined in the following. Mappings of this kind are for example the smallest rotation
mapping (2.20) or the mapping defining the Frenet-Serret normal vector (2.113). Since g1 is a
unit vector, it is an element of the unit sphere S2, a nonlinear manifold defined as

S2 := {u ∈ <3, ||u|| = 1}. (A.2)

Considering (A.1), the sought-after vector field gM2(g1) can be interpreted as an element of the
tangent space of S2. For a given vector u ∈ S2 this tangent field is defined as

TuS
2 := {v ∈ <3,v · u = 0}. (A.3)

In this context, the so-called ”hairy ball theorem of algebraic topology“ (see e.g. [72]) states that
there exists no continuous tangent vector field gM2(g1) ∈ TuS

n on even-dimensional n-spheres,
with gM2(g1) 6= 0∀g1 ∈ Sn. For the 2-sphere S2, this means that, if gM2(g1) is a continuous
function assigning a vector gM2 ∈ TuS

2 to every given vector g1 ∈ S2, then there is at least
one g1 such that gM2(g1) = 0. Thus, for every function that maps a tangent vector field g1 onto
an orthogonal vector field gM2(g1) fulfilling (A.1), at least one singularity gM2(g1) = 0 exists,
where no unique direction perpendicular to g1 is defined.

A.2 Variational problem of Simo-Reissner beam theory

For the case that no external forces act on the beam, i.e. fσ = f̃ = mσ = m̃ = 0, the strong and
weak forms (2.49) and (2.52) shall equivalently be formulated via the Hamilton principle:

δ

T∫
t=0

L dt = 0 with [δr=δθ=0]t=Tt=0 . (A.4)

The Lagrangian L occurring in (A.4) is defined as the difference of kinetic and potential energy:

L=

l∫
s=0

(Π̃kin−Π̃int) ds. (A.5)
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Based on the kinetic energy (2.62) and the hyper-elastic energy (2.58), the variation (A.4) reads:

δ

T∫
t=0

L dt =

T∫
t=0

l∫
s=0

(
δow

Tcρw + δoṙ
TρAṙ− δoωTcmω − δoγTcfγ

)
ds dt

=

T∫
t=0

l∫
s=0

(
δθ̇T h̃ + δṙT l̃− δθ′Tm− [δr′−δθ×r′]

T
f
)
ds dt

= −
T∫

t=0

l∫
s=0

(
−δθTmρ − δrTfρ + δθ′Tm + [δr′−δθ×r′]

T
f
)
ds dt = 0.

(A.6)

From the first to second line, the objective variations δow=δθ̇, δoω=δθ′ and δoγ=[δr′−δθ×r′]
(see (2.48), (2.53), (2.54)) have been inserted. Furthermore, the additional relation δoṙ

T ṙ =
(δṙ−δθ× ṙ)T ṙ = δṙT ṙ has been applied. From the second to the third line, partial integration
of the inertia terms together with the boundary conditions in (A.4) have been applied. Since no
external forces and moments are considered, i.e. fσ=mσ=0, partial integration of (A.6) yields:

δ

T∫
t=0

L dt =

T∫
t=0

l∫
s=0

(
δθT
[
m′ + r′ × f + mρ︸ ︷︷ ︸

=̇0

]
+ δrT

[
f ′ + fρ︸ ︷︷ ︸

=̇0

])
ds dt = 0. (A.7)

The arbitrariness of δθ(s, t) and δr(s, t) directly yields the strong form (2.49). Inverting the last
step from (A.6) to (A.7), by partial integration of the weighted strong form (2.49), this time
only along the beam length l, yields the weak form of the balance equations (2.52). The terms
occurring in this weak form for an unloaded beam can already be identified in the third line
of (A.6). While conservative external forces could also be included into the Lagrangian (A.5),
for a consideration of non-conservative external forces and 3D external moments, which are
known to be non-conservative (see e.g. [208]), the starting point has to be the strong form (2.49).

A.3 Reformulation of the isotropic weak form
Inserting all simplifications of the isotropic case (Section 2.4.1) in the weak form (2.110) yields:

0 =

l∫
0

[
δrT f̃ρ−δr′T

(
EAh1+EIh2+2GIh3+

S(r′)m̃tρ

||r′||2

)
−δr′′TEIh4

]
ds

+

l∫
0

[
δΘ1

r′Tm̃tρ

||r′||
−δΘ′12GIK1

]
ds+

[
δrT fσ−δr′T

S(r′)mσ

||r′||2
+ δΘ1

r′Tmσ

||r′||

]
Γσ

.

(A.8)
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In this weak form, all dependencies on the new primary variables r and K1 have already been
inserted. Furthermore, the following abbreviations have been introduced:

h1 := r′
(

1− 1

||r′||

)
, h2 :=

2r′(r′T r′′)2

||r′||6
− r′(r′′T r′′) + r′′(r′T r′′)

||r′||4
,

h3 := K1
r′ × r′′

||r′||3
, h4 :=

r′′

||r′||2
− r′(r′T r′′)

||r′||4
.

(A.9)

The notation m̃tρ indicates that the perpendicular part of the angular momentum is neglected:

m̃tρ :=m̃−ρI
(
2Ẇ1g1+2W1ġ1

)
and f̃ρ= f̃ +fρ= f̃−ρAr̈. (A.10)

A.4 Analytic solutions for the twist PDE

A.4.1 Boundary conditions of type b)
Here, a solution will be derived for the PDE (2.144) subject to boundary conditions of type
b). Again, a homogeneous solution K1h(s, t) based on an approach according to K1h(s, t) =
u(s)v(t) is determined such that the boundary condition K1h(s=0, t)=0 is fulfilled:

K1h(s, t)=
∞∑
i=1

sin
(ωis
c

)
︸ ︷︷ ︸

ui(s)

(
Ai cos (ωit)+Bi sin (ωit)︸ ︷︷ ︸

vi(t)

)
. (A.11)

Since a boundary condition has only been formulated at one end of the beam, the frequencies
ωk are not determined so far. Now, it is assumed that the function F (s, t) can be expanded as a
Fourier series based on fundamental solutions ui(s) from (A.11) with unknown frequencies ωi:

F (s, t)=
∞∑
i=1

∞∑
j=1

1

l
ΩjF̂ij sin

(ωis
c

)
sin (Ωjt) with Ωj =

jπ

T
. (A.12)

Differentiation of the Fourier series (A.12) yields the required time derivative f(s, t) = Ḟ (s, t):

f(s, t)=
∞∑
i=1

∞∑
j=1

1

l
Ω2
j F̂ij sin

(ωis
c

)
cos (Ωjt). (A.13)

Next, the inhomogeneous solution K1p(s, t) of (2.144) shall be determined based on the ansatz:

K1p(s, t) =
∞∑
i=1

∞∑
j=1

Kij sin
(ωis
c

)
cos (Ωjt). (A.14)

Insertion of (A.13) and (A.14) into the PDE (2.144) yields the unknown coefficients Kij:

Kij =
η2
ij

1− η2
ij

F̂ij
l
, with ηij =

Ωj

ωi
. (A.15)
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The total solution of the torsion K1(s, t) follows from superposition of K1h(s, t) and K1p(s, t):

K1(s, t) =
∞∑
i=1

sin
(ωis
c

)(
Ai cos (ωit)+Bi sin (ωit) +

∞∑
j=1

η2
ij

1− η2
ij

F̂ij
l

cos (Ωjt)

)
. (A.16)

From the initial condition K1(s, t = 0) = 0 the first constant Ai can be obtained. It follows:

K1(s, t) =
∞∑
i=1

sin
(ωis
c

)[
Bi sin (ωit) +

∞∑
j=1

η2
ij

1− η2
ij

F̂ij
l

(cos (Ωjt)− cos (ωit))

]
. (A.17)

Next, W ′
1(s, t)=K̇1(s, t)−F (s, t) can directly be derived from (A.17) and (A.12):

W ′
1(s, t)=

∞∑
i=1

sin
(ωis
c

)(
Biωi cos (ωit) +

∞∑
j=1

η2
ij

1− η2
ij

F̂ij
l

[ωi sin (ωit)−Ωj sin (Ωjt)]

)

−
∞∑
i=1

sin
(ωis
c

) ∞∑
j=1

1

l
ΩjF̂ij sin (Ωjt).

(A.18)

From W1(s, t = 0) ≡ 0 , it follows that also the derivative has to vanish, i.e. W ′
1(s, t = 0) ≡ 0,

and consequently Bi = 0. Finally, the solutions for W ′
1(s, t) and K1(s, t) read:

K1(s, t)=
∞∑
i=1

sin
(ωis
c

) ∞∑
j=1

η2
ij

1− η2
ij

F̂ij
l

(cos (Ωjt)− cos (ωit)) ,

W ′
1(s, t)=

∞∑
i=1

sin
(ωis
c

)(∞∑
j=1

1

1− η2
ij

F̂ij
l

[
η2
ijωi sin (ωit)−Ωj sin (Ωjt)

])
.

(A.19)

Finally, integration of W ′
1(s, t) with respect to the arc-length coordinate s yields W1(s, t):

W1(s, t)=−
∞∑
i=1

c cos
(ωis
c

)(∞∑
j=1

1

1− η2
ij

F̂ij
l

[
η2
ij sin (ωit)−ηij sin (Ωjt)

])
. (A.20)

Actually, in (A.20) a time-dependent integration ”constant” c(t) is required. However, from the
PDE Ẇ1 = c2K ′1 (see (2.141)) and the initial condition W (s, t= 0) = 0 it follows that this con-
stant has to vanish. With (A.20) and the boundary condition W1(s= l, t)=0, ωi can be derived:

cos

(
ωil

c

)
= 0 → ωi =

2i− 1

2l
πc. (A.21)

A.4.2 Boundary conditions of type c)
In this appendix, a solution shall be derived for the PDE (2.145) formulated with respect to
W1(s, t) and subject to boundary conditions of type c). Thus, a homogeneous solution W1h(s, t)
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based on a separation approach according to W1h(s, t) = u(s)v(t) is determined such that the
boundary conditions W1h(s=0, t)=W1h(s= l, t)=0 at both ends of the beam are fulfilled:

W1h(s, t)=
∞∑
i=1

sin
(ωis
c

)(
Ai cos (ωit)+Bi sin (ωit)

)
with ωi =

iπc

l
. (A.22)

In this case, it is advantageous to employ the cosine-based Fourier series expansion of F (s, t)
according to (2.151). Differentiation of (2.151) yields the required derivative f̃(s, t) = F ′(s, t):

f(s, t)=−
∞∑
i=1

∞∑
j=1

ωi
lc

Ωj F̄ij sin
(ωis
c

)
sin (Ωjt) with ωi = cω̂i. (A.23)

Next, the inhomogeneous solution K1p(s, t) of (2.145) shall be determined based on the ansatz:

W1p(s, t) =
∞∑
i=1

∞∑
j=1

Wij sin
(ωis
c

)
sin (Ωjt). (A.24)

Insertion of (A.23) and (A.24) into the PDE (2.145) yields the unknown coefficients Wij:

Wij = − ηij
1− η2

ij

c

l
F̄ij, with ηij =

Ωj

ωi
. (A.25)

The total solution of W1(s, t) follows from superposition of W1h(s, t) and W1p(s, t):

W1(s, t) =
∞∑
i=1

sin
(ωis
c

)(
Ai cos (ωit)+Bi sin (ωit)−

∞∑
j=1

ηij
1− η2

ij

c

l
F̄ij sin (Ωjt)

)
. (A.26)

From the initial condition W1(s, t = 0) = 0 the first constant Ai = 0 can be obtained. Next,
K̇1(s, t)=W ′

1(s, t)+F (s, t) can directly be derived from (A.26) and (2.151):

K̇1(s, t)(s, t)=
∞∑
i=1

(ωi
c

)
cos
(ωis
c

)(
Bi sin (ωit)−

∞∑
j=1

ηij
1− η2

ij

c

l
F̄ij sin (Ωjt)

)

+
∞∑
i=0

∞∑
j=1

Ωj

l
F̄ij cos

(ωis
c

)
sin (Ωjt)

=
∞∑
i=1

cos
(ωis
c

)((ωi
c

)
Bi sin (ωit)−

∞∑
j=1

η2
ij

1− η2
ij

Ωj

l
F̄ij sin (Ωjt)

)

+
∞∑
j=1

Ωj

l
F̄0j sin (Ωjt).

(A.27)

Integration of (A.27) with respect to the time t yields the following expression for the torsion:

K1(s, t)=
∞∑
i=1

cos
(ωis
c

)(
−Bi

c
cos (ωit) +

∞∑
j=1

η2
ij

1− η2
ij

1

l
F̄ij cos (Ωjt)

)

−
∞∑
j=1

1

l
F̄0j cos (Ωjt) + c(s).

(A.28)
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Differentiation of (A.28) with respect to s yields the following expression for K ′1(s, t):

K ′1(s, t)=
∞∑
i=1

(ωi
c

)
sin
(ωis
c

)(Bi

c
cos (ωit)−

∞∑
j=1

η2
ij

1− η2
ij

1

l
F̄ij cos (Ωjt)

)
+ c′(s). (A.29)

From the PDE Ẇ1 =c2K ′1 (see (2.141)) the derivative of the integration constant yields c′(s) = 0.
Consequently, c(s) = c is not a function of s any longer. Furthermore, the constant Bi can be
determined from the initial condition K ′1(s, t=0)=0. It follows for the torsion K1(s, t):

K1(s, t)=
∞∑
i=1

cos
(ωis
c

) ∞∑
j=1

η2
ij

1− η2
ij

1

l
F̄ij
(

cos (Ωjt)− cos (ωit)
)

−
∞∑
j=1

1

l
F̄0j cos (Ωjt) + c.

(A.30)

Finally, the constant c can be determined from the condition K1(s, t=0)=0, which yields:

K1(s, t)=
∞∑
i=1

cos
(ωis
c

) ∞∑
j=1

η2
ij

1− η2
ij

1

l
F̄ij
(

cos (Ωjt)− cos (ωit)
)

−
∞∑
j=1

1

l
F̄0j

(
cos (Ωjt)− 1

)
.

(A.31)

With the constants Bi being determined, also the final solution of W1(s, t) can be stated:

W1(s, t) =
∞∑
i=1

sin
(ωis
c

) ∞∑
j=1

ηij
1− η2

ij

c

l
F̄ij
(
ηij sin (ωit)− sin (Ωjt)

)
. (A.32)
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B Supplements to the Temporal and
Spatial Discretizations

B.1 Alternative formulation of generalized−α scheme
In the following, the perhaps more common application of the generalized-α method to the spa-
tially discretized problem shall be briefly recapitulated. Thereto, it is assumed that the spatially
discretized centerline field, its time derivative and its variation can be expressed as

rh(s) = Nr(s)D, r′h(s) = N′r(s)D, r′′h(s) = N′′r(s)D,

ṙh(s) = Nr(s)Ḋ, r̈h(s) = Nr(s)D̈,
δrh(s) = Nr(s)δD, δr′h(s) = N′r(s)δD, δr′′h(s) = N′′r(s)δD,

where the global matrix Nr(s) and the global vector D represent proper assemblies of the shape
functions and nodal primary variables associated with the centerline interpolation according
to (3.19). The torsion-free element formulation of Section 3.7 is completely described by this
interpolation. Inserting this discretization into the weak form (3.160) yields the general form:

G=δDTR=δDT (MD̈ + Rint(D)− Rext(D))=̇0.

The Newmark scheme, already solved for the unknown velocities and accelerations, reads:

Ḋn+1 =
γ

β∆t
(Dn+1 − Dn)− γ − β

β
Ḋn −

γ − 2β

2β
∆tD̈n,

D̈n+1 =
1

β∆t2
(Dn+1 − Dn)− 1

β∆t
Ḋn −

1− 2β

2β
D̈n.

Again, the discrete nodal displacements, velocities and accelerations as well as the residual con-
tributions Rint(D) and Rext(D) are evaluated at the generalized midpoints:

Dn+1−αf = (1− αf )Dn+1 + αfDn,

Ḋn+1−αf = (1− αf )Ḋn+1 + αf Ḋn,

D̈n+1−αm = (1− αm)D̈n+1 + αmD̈n,

Rext,n+1−αf = (1− αf )Rext,n+1 + αfRext,n,

Rint,n+1−αf = (1− αf )Rint(Dn+1) + αfRint(Dn).

The residual contributions Rext(D) of the external forces are defined similar to (3.5):

Rext,n = Rext(Dn, f̃n, m̃n, fσ,n,mσ,n),

Rext,n+1 = Rext(Dn+1, f̃n+1, m̃n+1, fσ,n+1,mσ,n+1).
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Finally, in complete accordance to (3.6), the entire generalized residual vector reads:

Rint,n+1−αf +MD̈n+1−αm−Rext,n+1−αf =̇0.

The derivation that has just been conducted represents an alternative variant to the derivation
made in Section 3.1.1. Since the discrete trial and test functions rh(s) and δrh(s) depend linearly
on the nodal primary variables D and δD and since δD is independent from the considered point
in time, it is straightforward to verify that both variants yield an identical result in terms of a set
of nonlinear algebraic equations representing the fully discretized beam problem.

B.2 Comparison of four time discretization variants
In the following, the differences between the four different discretization variants resulting from
the succession of spatial and temporal discretization as well as from the choice of either the
vectors (ψ, ψ̇, ψ̈) or the vectors (Θ̃,W,A) for a time discretization finite difference scheme.
For the following comparisons, the four resulting variants are denoted as follows:

1. TS-VS: (Temporal→ Spatial) discretization; Vector Space integration: (ψ, ψ̇, ψ̈).

2. ST-VS: (Spatial→ Temporal) discretization; Vector Space integration: (ψ, ψ̇, ψ̈).

3. TS-LG: (Temporal→ Spatial) discretization; Lie Group integration: (Θ̃,W,A).

4. ST-LG: (Spatial→ Temporal) discretization; Lie Group integration: (Θ̃,W,A).

Concerning spatial discretization, one two-noded finite element based on the triad interpolation
scheme (3.55) with nodal triads Λ1 = exp(S(ψ1)) and Λ2 = exp(S(ψ2)) will be considered.
Concerning time integration, a standard Newmark scheme is applied to the triple (ψ, ψ̇, ψ̈)
and its Lie group counterpart to (Θ̃,W,A). For simplicity, only the resulting material angular
velocity W, finally expressed via additive rotation vector increments ∆ψ1

n+1 := ψ1
n+1−ψ1

n and
∆ψ2

n+1 := ψ2
n+1−ψ2

n, will be compared. The two applied time integration rules read:

ψ̇n+1 =
γ

β∆t
∆ψn+1 +

(
1− γ

β

)
ψ̇n + ∆t

(
1− γ

2β

)
ψ̈n,

Wn+1 =
γ

β∆t
Θ̃n+1 +

(
1− γ

β

)
Wn + ∆t

(
1− γ

2β

)
An.

(B.1)

The intended investigations shall be simplified by expressing the evolution of ψ(ξ) that results
from the triad interpolation scheme (3.55) as function of the nodal rotation vectors ψ1 and ψ2.
In a first step, Λ(ξ) can be expressed by means of these nodal rotation vectors:

Λ(ξ)=Λ1 exp(S[Φlh(ξ)])

= Λ1 exp(S[L2(ξ)Φ2
l ])

= Λ1 exp(S[L2(ξ)rv
(
Λ1TΛ2)]

)
= exp(S[ψ1]) exp(S[L2(ξ)rv

(
exp{S[ψ1]}T exp{S(ψ2)}

)
]).

(B.2)
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Employing the rotation vector extraction operator rv(.) as defined in (2.7), ψ(ξ) yields:

ψ(ξ)= rv{exp(S[ψ1]) exp(S[L2(ξ)rv
(

exp{S[ψ1]}T exp{S(ψ2)}
)
])}=: f(ψ1,ψ2, ξ). (B.3)

Now, the angular velocities W resulting for the four different variants shall be derived. The
angular velocity W expressed by means of ψ1 and ψ2 yields for the variant TS-VS:

W(s, t) = ΛTT−1ψ̇,

Wn+1(s) = ΛTT−1

(
γ

β∆t
(ψn+1 −ψn) + ...

)
,

Wn+1(ξ) = ΛTT−1

(
γ

β∆t
(f(ψ1

n+1,ψ
2
n+1, ξ)− f(ψ1

n,ψ
2
n, ξ)) + ...

)
.

The angular velocity W expressed by means of ψ1 and ψ2 yields for the variant ST-VS:

W(s, t) = ΛTT−1ψ̇,

W(ξ, t) = ΛTT−1ḟ(ψ1(t),ψ2(t), ξ) = ΛTT−1

(
∂f

∂ψ1
ψ̇1 +

∂f

∂ψ2
ψ̇2

)
,

Wn+1(ξ) = ΛTT−1

(
∂f

∂ψ1

[
γ

β∆t

(
ψ1
n+1 −ψ1

n

)
+ ...

]
+

∂f

∂ψ2

[
γ

β∆t

(
ψ2
n+1 −ψ2

n

)
+ ...

])
.

The angular velocity W expressed by means of ψ1 and ψ2 yields for the variant TS-LG:

Wn+1(s) =
γ

β∆t
Θ̃n+1(s) + ... ,

Wn+1(ξ) =
γ

β∆t

(
rv
[

exp{S[ψn+1(ξ)]}T exp{S[ψn(ξ)]}
])

+ ...

=
γ

β∆t

(
rv
[

exp{S[f(ψ1
n+1,ψ

2
n+1, ξ)]}

T
exp{S[f(ψ1

n,ψ
2
n, ξ)]}

])
+ ... .

The angular velocity W expressed by means of ψ1 and ψ2 yields for the variant ST-LG:

W(s, t) = ΛTT−1ψ̇,

W(ξ, t) = ΛTT−1ḟ(ψ1(t),ψ2(t), ξ) = ΛTT−1

(
∂f

∂ψ1
ψ̇1 +

∂f

∂ψ2
ψ̇2

)
= ΛTT−1

(
∂f

∂ψ1
T1Λ1W1 +

∂f

∂ψ2
T2Λ2W2

)
,

Wn+1(ξ) = ΛTT−1

(
∂f

∂ψ1
T1Λ1

(
γ

β∆t
Θ̃1
n+1 + ...

)
+

∂f

∂ψ2
T2Λ2

(
γ

β∆t
Θ̃2
n+1 + ...

))
= ΛTT−1

(
∂f

∂ψ1
T1Λ1

(
γ

β∆t
rv
[

exp{S[ψ1
n+1]}T exp{S[ψ1

n]}
]

+ ...

)

+
∂f

∂ψ2
T2Λ2

(
γ

β∆t
rv
[

exp{S[ψ2
n+1]}T exp{S[ψ2

n]}
]

+ ...

))
.
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By comparing these results it becomes clear, that in general the four variants will yield four
different results. It is e.g. quite obvious that the results of the variants TS-VS and ST-VS will
differ whenever f(ψ1

n,ψ
2
n)) is a nonlinear function in ψ1

n and ψ2
n since in this case

f(ψ1,ψ2)) 6= ∂f

∂ψ1
ψ1 +

∂f

∂ψ2
ψ2.

Furthermore, it can already been seen that the numerical effort resulting from these variants
might differ considerably. Already for the investigated angular velocity it seems that the third
variant TS-LG, the one which has been chosen herein, leads to simpler expressions since the
transformation matrix T−1 is not needed. This advantage is even more pronounced, when the
angular accelerations have to be determined. While the variants TS-VS, ST-VS and ST-LG addi-
tionally require the time derivative of T−1, the expression for the angular acceleration A given
for the variant TS-LG in the second line of (3.15) differs from the corresponding expression for
the angular velocity W given in the first line of (3.15) only by a constant pre-factor. Based on
this argumentation, the variant TS-LG has been preferred in this thesis - and in many works on
this topic that can be found in the literature. The only additional requirement for such a proce-
dure is that the employed time integration scheme has been extended for the usage on Lie groups.

B.3 Hermite constant for straight beams
In order to find the optimal choice for the constant c, in a first step, the simplest case of initially
straight beams shall be considered. In this case, the nodal tangents can be written as

t̂0 := t̂1
0 = t̂2

0 =
d̂2

0 − d̂1
0

||d̂2
0 − d̂1

0||
=

d̂2
0 − d̂1

0

lele
. (B.4)

where d̂1
0 and d̂2

0 are the nodal coordinates and lele = ||d̂2
0 − d̂1

0|| is the element length. Inserting
these nodal position vectors and tangent vectors into (3.43) yields:

r0,h,ξ(ξ) =
1

4

(
3lele − c+ 3ξ2(c− lele)

)
t̂0. (B.5)

According to (B.5), the choice c = lele makes the Jacobian J(ξ) = ||r0h,ξ(ξ)|| = || lele2
t̂0|| = lele

2

constant, which is desirable for straight beams.

B.4 Hermite constant for curved beams
In Section B.3 it has been shown that the choice c= lele leads to a constant element Jacobian.
This result can not directly be transferred to initially curved beams. However, in the following,
it will be shown that at least in the limit of lele→0 the element Jacobian becomes constant with
an error in the order of O(lele

4) if the constant c is chosen according to c= lele. For this case, it
will also be shown that (3.39) enables an exact representation of the Taylor series expansion

r0(s+ ∆s) = r0(s) + r′0(s)∆s+ r′′0(s)
∆s2

2
+ r′′′0 (s)

∆s3

6
+ O(∆s4). (B.6)
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of the initial centerline curve r0(s) up to terms of order O(∆s4). This, in turn, confirms the ex-
pected discretization error of order O(ξ4) for the employed third-order Hermite polynomials. For
the following derivations, the derivatives of (B.6) are required. Differentiation of (B.6) yields:

r′0(s+ ∆s) = r′0(s) + r′′0(s)∆s+ r′′′0 (s)
∆s2

2
+ O(∆s3),

r′′0(s+ ∆s) = r′′0(s) + r′′′0 (s)∆s+ O(∆s2).

(B.7)

Since s has been chosen as an arc-length parameter, the following relations are valid:

r′0(s) · r′0(s) = 1, r′0(s) · r′′0(s) = 0, r′′0(s) · r′′0(s) + r′0(s) · r′′′0 (s) = 0. (B.8)

Making use of these relations allows for the following expansion of the tangent vector norm:

||r′0(s+ ∆s)|| = 1 + O(∆s3). (B.9)

Now, the arc-length segment ∆s ∈ [− lele
2

; lele
2

] shall be discretized by an finite element of length
lele. Thus, also the element length lele is a small quantity in the order of ∆s. It follows from (B.6):

d̂1
0 =r0(s− lele/2)=r0(s)−r′0(s)

lele
2

+r′′0(s)
l2ele
8
−r′′′0 (s)

l3ele
48

+O(lele
4),

d̂2
0 =r0(s+ lele/2)=r0(s)+r′0(s)

lele
2

+r′′0(s)
l2ele
8

+r′′′0 (s)
l3ele
48

+O(lele
4).

(B.10)

Since the initial nodal tangents have to be of unit norm, the derivatives r′0(s+lele/2) as well as
r′0(s−lele/2) according to (B.7) have to be normalized with the tangent vector norm (B.9):

t̂1
0 =

r′0(s− lele/2)

1 + O(lele
3)

= r′0(s)− r′′0(s)
lele
2

+ r′′′0 (s)
l2ele
8

+ O(lele
3),

t̂2
0 =

r′0(s+ lele/2)

1 + O(lele
3)

= r′0(s) + r′′0(s)
lele
2

+ r′′′0 (s)
l2ele
8

+ O(lele
3).

(B.11)

Inserting the nodal vectors (B.10) and (B.11) into (3.39) and assuming that the constant c is in
the same order of magnitude as the element length, i.e. c=O(lele), yields the discrete geometry:

r0h(ξ) = r0(s)

+
r′0(s)

8

(
(6lele − 2c) ξ + (−2lele + 2c) ξ3

)
+

r′′0(s)

16

((
2l2ele − 2clele

)
+ 2cleleξ

2
)

+
r′′′0 (s)

64

((
2l3ele − 2cl2ele

)
ξ +

(
−2

3
l3ele + 2cl2ele

)
ξ3

)
+ O(lele

4).

(B.12)

In the following, a constant map between ∆s and ξ is aimed in the limit of small ∆s. Having the
Taylor series (B.6) in mind, in this case, the discretized geometry has to be of the form

r0h(ξ) = r0(s) + r′0(s)a1ξ + r′′0(s)a2ξ
2 + r′′′0 (s)a3ξ

3 + O(∆s4), (B.13)
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where the coefficients ai depend on the constant map between ∆s and ξ. From (B.12), it becomes
clear that such a form is only possible for the choice c = lele. In this case, (B.12) simplifies to:

r0h(ξ) = r0(s) + r′0(s)

(
lele
2
ξ

)
+ r′′0(s)

1

2

(
lele
2
ξ

)2

+ r′′′0 (s)
1

6

(
lele
2
ξ

)3

+ O(lele
4). (B.14)

By inserting the vectors (B.10) and (B.11) into (3.43) with c= lele, the derivative r0h,ξ becomes:

r0h,ξ(ξ) = r′0(s)
lele
2

+ r′′0(s)
l2ele
4
ξ + r′′′0 (s)

l3ele
16
ξ2 + O(lele

4). (B.15)

With (B.8), also the discrete norm ||r0h,ξ(ξ)|| can be expanded as a Taylor series according to

||r0h,ξ(ξ)|| =
lele
2

(
1 +O(l3ele)

)
=
lele
2

+ O(l4ele). (B.16)

As desired, the result is a constant map d∆s= ||r0h,ξ(ξ)||dξ= lele
2
dξ+O(l4ele) between arc-length

and normalized parameter. With ∆s(ξ=−1)=− lele
2

and ∆s(ξ=1)= lele
2

, one obtains

∆s =
lele
2
ξ + O(l4ele). (B.17)

Due to this constant map, the parameter choice c= lele as well as the parameter choice

c= lele,h=

1∫
−1

(
lele
2

+O(l4)

)
dξ = lele+O(l4), (B.18)

are equal up to terms of order O(l4ele). It can easily be derived from (B.10) that the choice
c= ||d̂2

0−d̂1
0||= lele+O(l3ele) equals the choice c= lele up to terms of order O(l3ele). By insert-

ing (B.17) into (B.14), the identity of the discretized geometry with the Taylor series (B.6) up
to terms O(l4ele) can be shown. It can be concluded that for the choice c = lele the third-order
Taylor expansion of the analytic geometry r0(∆s) can exactly be represented by the discretized
geometry r0h(ξ). For the deformed geometry r(∆s), it can be shown in a similar manner that
the choice c = lele leads to a constant value of ||rh,ξ(ξ)|| up to terms O(l4ele), which is equiv-
alent to a constant axial tension ε along the element. It should be emphasized that also in the
latter case the initial element length lele, but not the current element length, has to be chosen
for the sought-after Hermite constant c. Again, a third-order Taylor expansion of the analytic
deformed geometry r(∆s) can exactly be represented by the discretized geometry rh(ξ). Thus,
for the choice c= lele, the discretization error stemming from the pure geometry approximation
of r(s) by rh(ξ) can be assumed to be of order O(l4ele), which is expected for polynomials of
order three. All in all, it can be concluded that the initial element length lele turned out to be
the optimal choice for the constant c appearing in the Hermite interpolation according to (3.39).
Whereas the legitimacy of the approximations c= lele,h has been confirmed, the approximation
c= ||d̂2 − d̂1|| might lead to a decrease in the convergence order from O(l4ele) to O(l3ele).

248



B.5 Definition of rotational shape function matrices

B.5 Definition of rotational shape function matrices

In this appendix, the shape functions Ĩi(ξ) required for the multiplicative rotation increments

∆θ(ξ) =

nΛ∑
i=1

Ĩi(ξ)∆θ̂i, ∆θ′(ξ) =

nΛ∑
i=1

Ĩi′(ξ)∆θ̂i. (B.19)

associated with the triad interpolation 3.55 and originally derived in [116] shall be presented:

Ĩi(ξ) = Li(ξ)ΛrT
−1(Φlh(ξ))T(Φi

l)Λ
T
r

+ δiIΛr

[
I3 −T−1(Φlh(ξ))

{
nΛ∑
j=1

Lj(ξ)T(Φj
l )

}]
vIΛT

r

+ δiJΛr

[
I3 −T−1(Φlh(ξ))

{
nΛ∑
j=1

Lj(ξ)T(Φj
l )

}]
vJΛT

r .

(B.20)

In (B.20), no summation over double indices is applied. The vectors vI and vJ are defined as

vI =
1

2

(
I3+

1

ΦIJ
tan

(
ΦIJ

4

)
S(ΦIJ)

)
, vJ =

1

2

(
I3−

1

ΦIJ
tan

(
ΦIJ

4

)
S(ΦIJ)

)
, (B.21)

with the common abbreviation ΦIJ = ||ΦIJ ||. Moreover, the arc-length derivative Ĩi′(ξ) reads:

Ĩi(ξ) = Li′(ξ)ΛrT
−1(Φlh(ξ))T(Φi

l)Λ
T
r + Li(ξ)ΛrT

−1
,s (Φlh(ξ))T(Φi

l)Λ
T
r

− δiIΛr

(
T−1
,s (Φlh(ξ))

{
nΛ∑
j=1

Lj(ξ)T(Φj
l )

}
+T−1(Φlh(ξ))

{
nΛ∑
j=1

Lj′(ξ)T(Φj
l )

})
vIΛT

r

− δiJΛr

(
T−1
,s (Φlh(ξ))

{
nΛ∑
j=1

Lj(ξ)T(Φj
l )

}
+T−1(Φlh(ξ))

{
nΛ∑
j=1

Lj′(ξ)T(Φj
l )

})
vJΛT

r .

(B.22)

Finally, the required arc-length derivative T−1
,s (Φlh(ξ)) is given by (see also [56, 115]):

T−1
,s (Φlh(ξ)) = ΦT

lhΦ
′
lh

Φlh sin Φlh − 2(1− cos Φlh)

Φ4
lh

S(Φlh) +
1− cos Φlh

Φ2
lh

S(Φ′lh)

+
1

Φ2
lh

(
1− sin Φlh

Φlh

)
(S(Φlh)S(Φ′lh) + S(Φ′lh)S(Φlh))

+ ΦT
lhΦ

′
lh

3 sin Φlh − Φlh(2 + cos Φlh)

Φ5
lh

S(Φlh)S(Φlh).

(B.23)

Here, the abbreviations Φlh = Φlh(ξ) and Φlh = ||Φlh(ξ)|| have been applied. As mentioned
in [116], the limit T−1

,s (Φlh(ξ))→ 0.5S(Φ′lh(ξ)) can be derived for small angles Φlh(ξ)→ 0.
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B.6 Linearization of SK-TAN element
Before deriving the linearization of the SK-TAN element, some former definitions are repeated:

t :=r′, g1 :=
r′

||r′||
, t̃ :=

r′

||r′||2
, g′1 =

r′′

||r′||
− (r′T r′′)r′

||r′||3
, t̃′=

r′′

||r′||2
− 2(r′T r′′)r′

||r′||4
. (B.24)

These quantities will be required for later derivations. Linearization of (B.24) yields:

∆g1 =
1

||r′||
(
I3−g1⊗gT1

)
H′∆d̂, ∆t̃=

1

||r′||2
(
I3−2g1⊗gT1

)
H′∆d̂,

∆g′1 =−(r′T r′′)

||r′||3
(
I3−g1⊗gT1

)
H′∆d̂− 1

||r′||
(
g′1⊗gT1 +g1⊗g′T1

)
H′∆d̂

+
1

||r′||
(
I3−g1⊗gT1

)
H′′∆d̂,

∆t̃′=−2(r′T r′′)

||r′||4
(
I3−2g1⊗gT1

)
H′∆d̂− 2

||r′||2
(
g′1⊗gT1 +g1⊗g′T1

)
H′∆d̂

+
1

||r′||2
(
I3−2g1⊗gT1

)
H′′∆d̂.

(B.25)

In the following, the linearization of the SK-TAN element will be derived. For completeness, the
underlying residual vector (3.123) with inserted strain re-interpolation (3.124) is repeated here:

rd̂ =

1∫
−1

(
v′θ⊥m+v̄εF̄1−HT f̃ρ−vθ⊥m̃ρ

)
J(ξ)dξ−

[
HT fσ+vθ⊥mσ

]
Γσ

,

rΘ̂1
=

1∫
−1

(
v′θ‖Θm− vθ‖Θm̃ρ

)
J(ξ)dξ −

[
vθ‖Θmσ

]
Γσ

.

(B.26)

The linearization of the element residual vector (B.26) obeys the following general form:

∆rd̂ =

1∫
−1

(
∆v′θ⊥m+v′θ⊥∆m+∆v̄εF̄1+v̄ε∆F̄1

)
J(ξ)dξ

−
1∫

−1

(
HT∆fρ+∆vθ⊥m̃ρ+vθ⊥∆mρ

)
J(ξ)dξ−

[
∆vθ⊥mσ

]
Γσ

,

∆rΘ̂1
=

1∫
−1

(
∆v′θ‖Θm+v′θ‖Θ∆m−∆vθ‖Θm̃ρ − vθ‖Θ∆mρ

)
J(ξ)dξ −

[
∆vθ‖Θmσ

]
Γσ

.

(B.27)

In order to identify the element stiffness matrix kSK−TAN , (B.27) has to be brought in the form

∆rSK−TAN =: kSK−TAN∆x̂TAN . (B.28)
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The vector ∆x̂TAN has already been defined in Section 3.4.1. The moment-related terms yield:

∆v′θ⊥m=H′′TS(m)∆t̃+H′TS(m)∆t̃′, ∆m=−S(m)∆θ+cm∆θ′,

∆vθ⊥m̃ρ=H′TS(m̃ρ)∆t̃, ∆vθ⊥mσ=H′TS(mσ)∆t̃,

∆vθ‖Θm̃ρ=(LT‖⊗m̃T
ρ )∆g1, ∆vθ‖Θmσ=(LT‖⊗mT

σ )∆g1,

∆v′θ‖Θm=(L′T‖ ⊗mT )∆g1+(LT‖ ⊗mT )∆g′1.

(B.29)

Here, many of the relations already derived in Section 3.2.3.4 could be re-used. The field of
multiplicative rotation vector increments ∆θ follows directly from equation (3.71):

∆θ=vTθ‖Θ∆Θ̂ΘΘ1+(vTθ⊥+vTθ‖d)∆d̂,

vθ‖Θ =LT‖⊗gT1 , vθ⊥=−H′TS(t̃),

vθ‖d =

(
nΛ∑
i=1

Li v1i−v1

)
⊗gT1 , v1 =

H′T (ξ)(gI1×t̃)− H′T (ξI)(g1×t̃I)

1+g T
1 gI1

,

v1i=v1(ξi)=
H′T (ξi)(g

I
1×t̃i)− H′T (ξI)(g

i
1×t̃I)

1+gi T1 gI1
.

(B.30)

In a similar manner, the associated arc-length derivative ∆θ′ follows from equation (3.72):

∆θ′=v′Tθ‖Θ∆Θ̂ΘΘ1+(v′Tθ⊥+v′Tθ‖d)∆d̂,

v′θ‖Θ=L′T‖ ⊗gT1 +LT‖ ⊗g′T1 , v′θ⊥=−H′′TS(t̃)−H′TS(t̃′), t̃′=
r′′

||r′||2
− 2(r′T r′′)r′

||r′||4
,

v′θ‖d =
( nΛ∑
i=1

Li′ v1i−v′1
)
⊗gT1 +

( nΛ∑
i=1

Li v1i−v1

)
⊗g′T1 ,

v′1 =
H′T (ξ)(gI1×t̃′)+H′′T (ξ)(gI1×t̃)−H′T (ξI)(g

′
1×t̃I)

1+gT1g
I
1

− (g′T1 gI1)v1

1+g T
1 gI1

.

(B.31)

The remaining linearizations required in equation (B.29) have already been derived in (B.25).
In contrast to the spin vector field δθ, the increment field ∆θ has to be expressed via additive
relative angle increments ∆ϕ̂i. The required relation is given by (3.77) and repeated here:

∆Θ̂ΘΘ1 =(Θ̂1
1, Θ̂

2
1, Θ̂

3
1)T , ∆Θ̂i

1 = − ḡiT1 S(gi1)

1 + giT1 ḡi1

H′(ξi)∆d̂
||ti||

+ ∆ϕ̂i. (B.32)

The linearization of the element residual terms associated with axial tension results in:

∆F̄1 =EA∆ε̄=EAv̄Tε ∆d̂, ∆v̄ε=
3∑
i=1

Li(ξ)∆vε(ξi), ∆vε=
H′T

||r′||
(I3+g1⊗gT1 )H′∆d̂. (B.33)

Based on equation (3.14), the linearization of the inertia forces can be written as:

−HT∆fρ=ρAcr̈1HTH∆d̂, cr̈1 =
1−αm

(1−αm)β∆t2
. (B.34)
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The time integration factor cr̈1 of the modified generalized-α scheme according to Section 3.1.2
slightly differs from the corresponding factor of the standard generalized-α scheme according to
Section 3.1.1 (see (B.59) for comparison). The linearization of the inertia moments yields:

−∆mρ=S(mρ)∆θ + [cW{S(W)Cρ − S(CρW)}+ cACρ]∆Θ̃n+1,

cA =
1−αm

(1−αm)β∆t2
, cW =

γ

β∆t
, ∆Θ̃n+1 =ΛT

n∆θ̃n+1 =ΛT
nT(θ̃n+1)∆θ.

(B.35)

For clarity, the indices n+1 and n of the current and previous time step have explicitly been
noted for some of the quantities occurring in (B.35). All the other quantities are evaluated at
tn+1. As already introduced in Section 3.1.2, the fields Θ̃n+1 and θ̃n+1 are the material and
spatial multiplicative rotation increments relating the current configuration and the converged
configuration of the previous time step tn. The two vectors are related by the transformation

Θ̃n+1 =ΛT
n+1θ̃n+1 =ΛT

n θ̃n+1 → ∆Θ̃n+1 =ΛT
n∆θ̃n+1. (B.36)

The second step in (B.36) is valid since θ̃n+1 is an eigenvector with eigenvalue one of the rotation
tensor Λn+1Λ

T
n between the configurations n and n+1, thus Λn+1Λ

T
n θ̃n+1 = θ̃n+1. Furthermore,

∆Θ̃n+1 and ∆θ̃n+1 represent the fields of additive increments of Θ̃n+1 and θ̃n+1 between two
successive Newton iterations, whereas ∆θ as given by (B.30) represents the field of multiplica-
tive rotation increments between two successive Newton iterations.

B.7 Linearization of WK-TAN element
The residual vector of the WK-TAN element is given in equation (3.155) and repeated here:

rd̂ =

1∫
−1

(
v̄′θ⊥m+v̄εF̄1−HT f̃ρ−v̄θ⊥m̃ρ

)
J(ξ)dξ−

[
HT fσ+v̄θ⊥mσ

]
Γσ

,

rΘ̂1
=

1∫
−1

(
v̄′θ‖Θm− v̄θ‖Θm̃ρ

)
J(ξ)dξ −

[
v̄θ‖Θmσ

]
Γσ

.

(B.37)

The linearization of the element residual vector (B.37) obeys the following general form:

∆rd̂ =

1∫
−1

(
∆v̄′θ⊥m+v̄′θ⊥∆m+∆v̄εF̄1+v̄ε∆F̄1

)
J(ξ)dξ

−
1∫

−1

(
HT∆fρ+∆v̄θ⊥m̃ρ+v̄θ⊥∆mρ

)
J(ξ)dξ−

[
∆v̄θ⊥mσ

]
Γσ

,

∆rΘ̂1
=

1∫
−1

(
∆v̄′θ‖Θm+v̄′θ‖Θ∆m−∆v̄θ‖Θm̃ρ − v̄θ‖Θ∆mρ

)
J(ξ)dξ −

[
∆v̄θ‖Θmσ

]
Γσ

.

(B.38)
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In order to identify the element stiffness matrix kWK−TAN , (B.38) has to be brought in the form

∆rWK−TAN =: kWK−TAN∆x̂TAN . (B.39)

The linearization of the vectors v̄... and v̄′... originally defined in (3.155) follows to:

∆v̄θ⊥=−
3∑
i=1

Li(ξ)∆vθ⊥(ξi), ∆v̄ε=
3∑
i=1

Li(ξ)∆vε(ξi),

∆v̄θ‖Θ =
3∑
i=1

Li(ξ)∆vθ‖Θ(ξi) with ∆v̄′...=
3∑
i=1

Li, ξ(ξ)

J(ξ)
∆v...(ξi).

(B.40)

The linearization of the vectors v... and v′... has already been stated in the last section. Also the
linearization of the moment stress resultant has the same form as in the last section:

∆m=−S(m)∆θ+cm∆θ′. (B.41)

However, the fields ∆θ and ∆θ′ originally defined in Section 3.2.3.3 are this time given by

∆θ=
3∑
i=1

Ĩi(ξ)∆θ(ξi), ∆θ′=
3∑
i=1

1

J(ξ)
Ĩi,ξ(ξ)∆θ(ξi). (B.42)

Due to the Kirchhoff constraint, the nodal increments ∆θ(ξi) can be expressed according to:

∆θ(ξi)=∆Θ̂i
1g1(ξi)+vTθ⊥(ξi)∆d̂, ∆Θ̂i

1 = − ḡiT1 S(gi1)

1 + giT1 ḡi1

H′(ξi)∆d̂
||ti||

+ ∆ϕ̂i. (B.43)

The linearization of the inertia forces is identical to the corresponding results of the last section:

−HT∆fρ=ρAcr̈1HTH∆d̂, cr̈1 =
1−αm

(1−αm)β∆t2
. (B.44)

This statement also holds for the linearization of the inertia moments, which reads:

−∆mρ=S(mρ)∆θ + [cW{S(W)Cρ − S(CρW)}+ cACρ]∆Θ̃n+1,

cA =
1−αm

(1−αm)β∆t2
, cW =

γ

β∆t
, ∆Θ̃n+1 =ΛT

n∆θ̃n+1 =ΛT
nT(θ̃n+1)∆θ.

(B.45)

However, for the WK-TAN element, the rotation increment field ∆θ is given by equation (B.42).

B.8 Linearization of SK-ROT and WK-ROT elements
The nodal primary variable variations of the SK/WK-TAN and the SK/WK-ROT elements read:

δx̂TAN :=(δd̂1T, δt̂1T, δΘ̂1
1, δd̂

2T, δt̂2T, δΘ̂2
1, δΘ̂

3
1)T ,

δx̂ROT :=(δd̂1T, δθ̂1T, δt̂1, δd̂2T, δθ̂2T, δt̂1, δΘ̂
3
1)T .

(B.46)
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In a similar manner, the set of iterative nodal primary variable increments have been defined as:

∆x̂TAN :=(∆d̂1T,∆t̂1T,∆ϕ̂1,∆d̂2T,∆t̂2T,∆ϕ̂2,∆ϕ̂3)T ,

∆x̂ROT :=(∆d̂1T,∆θ̂1T,∆t̂1,∆d̂2T,∆θ̂2T,∆t̂1,∆ϕ̂
3)T .

(B.47)

The transformations between these primary variable variations and increments is given by:

δx̂TAN = T̃x̂δx̂ROT and ∆x̂TAN =TM x̂∆x̂ROT . (B.48)

The transformation matrices T̃x̂, originally defined in (3.127), and TM x̂ have the following form:

T̃x̂ =


I3

T̃1

I3

T̃2

1

 and TM x̂ =


I3

T1
M

I3

T2
M

1

 . (B.49)

These two different transformation matrices are required, since the primary variable variations
of the SK/WK-TAN elements are based on the multiplicative quantities δΘ̂i

1, whereas the cor-
responding iterative primary variable increments are based on the additive quantities ∆ϕ̂i. The
submatrices T̃i and Ti

M (see (2.34) and (2.33)) are evaluated at the two element boundary nodes:

T̃i := T̃(ξi) and Ti
M := TM(ξi) for i = 1, 2. (B.50)

In chapter 3, it has already been shown that the following residual transformation is valid:

rROT = T̃
T

x̂ rTAN . (B.51)

In a similar manner, also the linearized element residual vector can be transformed:

∆rROT =∆T̃
T

x̂ rTAN+T̃
T

x̂ ∆rTAN︸ ︷︷ ︸
=kTAN∆x̂TAN

=:
(

H̃x̂(rTAN)+T̃
T

x̂kTANTM x̂

)
︸ ︷︷ ︸

:=kROT

∆x̂ROT . (B.52)

Here, the matrix H̃x̂(rTAN) has been introduced, in order to represent the linearization of T̃x̂:

H̃x̂(rTAN)∆x̂ROT := ∆T̃
T

x̂ rTAN with H̃x̂(rTAN)=


0

H̃
1

0

H̃
2

0

 . (B.53)

After calculating the derivative of T̃x̂ and re-ordering the result, the submatrices H̃
i
can be stated:

H̃
i

=

(
S(rTAN,t̂i)S(gi1)− rTAN,Θ̂i1S(gi1) S(gi1)rTAN,t̂i

−rT
TAN,t̂i

S(gi1) 0

)
, i = 1, 2. (B.54)
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From (B.52), the following transformation rule for the the element stiffness matrix can be stated:

∆rROT = kROT∆x̂ROT with kROT = H̃x̂(rTAN)+T̃
T

x̂kTANTM x̂. (B.55)

In order to apply this transformation, the components of the element stiffness matrices kTAN and
kROT have to be arranged in the same order as the components of the element residual vectors:

rTAN := (rT
TAN,d̂1 , r

T
TAN,t̂1 , rTAN,Θ̂1

1
, rT
TAN,d̂2 , r

T
TAN,t̂2 , rTAN,Θ̂2

1
, rTAN,Θ̂3

1
)T ,

rROT := (rT
ROT,d̂1 , rTROT,θ̂1 , rROT,t̂1 , r

T
ROT,d̂2 , rTROT,θ̂2 , rROT,t̂2 , rROT,Θ̂3

1
)T .

(B.56)

B.9 Linearization of TF element
As explained in Section 3.7.1, the term vκ will be replaced with v′θ⊥ in the element residual
vector (3.160) in order to yield a more compact form of the element stiffness matrix.

rd̂=

1∫
−1

[̄
vεF̄1+v′θ⊥m−HTfρ

]
lele
2
dξ−

1∫
−1

[
HT f̃ +vθ⊥m̃⊥

]
lele
2
dξ−

[
HT fσ+vθ⊥mσ⊥

]
Γσ

=̇0. (B.57)

A subsequent linearization of the element residual vector (B.57) yields the following expression:

∆rd̂=

1∫
−1

[
∆v̄εF̄1+v̄ε∆F̄1+∆v′θ⊥m+v′θ⊥∆m−HT∆fρ

]lele
2
dξ

−
1∫

−1

[
∆vθ⊥m̃⊥

]lele
2
dξ−

[
∆vθ⊥mσ⊥

]
Γσ
=̇0.

(B.58)

Here, the linearization of the moment stress resultant and the inertia forces results in:

∆m=EI [−S(g′1)∆g1 + S(g1)∆g′1] , −HT∆fρ=ρAcr̈2HTH∆d̂, cr̈2 =
1−αm
β∆t2

. (B.59)

All the remaining individual linearizations have already been derived in the previous appendices.
As expected, the TF element yields a constant and symmetric mass matrix. Also the symmetry
of the element stiffness matrix can easily be shown in case m̃⊥=mσ⊥=0.
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C Supplements to the Beam-to-Beam
Contact Formulations

C.1 Linearization of point-to-point and endpoint contact
contributions

Since the endpoint contact contributions can be regarded as special case of the point contact, the
linearization of this formulation is considered first. The linearization of (4.12) yields:

kcon,l =
drcon,l

dd̂12

=
∂rcon,l

∂d̂12

+
∂rcon,l
∂ξc

dξc

dd̂12

+
∂rcon,l
∂ηc

dηc

dd̂12

for l = 1, 2. (C.1)

Here, dξc/dd̂12 and dηc/dd̂12 stem from a linearization of the orthogonality conditions (4.5):

A(ξc, ηc) ·
(
dξc

dd̂12

T

,
dηc

dd̂12

T)T
= −B(ξc, ηc),

with A =

(
p1,ξ p1,η

p2,ξ p2,η

)
=

(
rT1,ξr1,ξ + (r1 − r2)T r1,ξξ −rT1,ξr2,η

rT1,ξr2,η −rT2,ηr2,η + (r1 − r2)T r2,ηη

)
,

and B =

(
p1,d12

p2,d12

)
=

(
(r1 − r2)TH1,ξ + rT1,ξH1 −rT1,ξH2

rT2,ηH1 (r1 − r2)TH2,η − rT2,ηH2

)
.

(C.2)

Here, the terms p1,ξ, p1,η, p2,ξ and p2,η, which are collected in matrix A, can be used for an
iterative solution of the orthogonality conditions (4.5) for the unknown closest point coordinates
ξc and ηc by means of a local Newton-Raphson scheme. The partial derivatives of the residual
vectors with respect to d12 as occurring in (C.1) are given by:

∂rcon,1

∂d̂12

= ε

(
HT

1 n
∂g

∂d̂12

+ gHT
1

∂n

∂d̂12

)
,

∂rcon,2

∂d̂12

= ε

(
HT

2 n
∂g

∂d̂12

+ gHT
2

∂n

∂d̂12

)
,

∂g

∂d̂12

= nT [H1,−H2] ,
∂n

∂d̂12

=
I3 − n⊗ nT

||r1 − r2||
[H1,−H2] .

(C.3)

The partial derivatives with respect to the closest point coordinates ξc and ηc yield:

∂rcon,1
∂ξc

=ε
(
HT

1 ng,ξ+gHT
1,ξn+gHT

1 n,ξ
) ∣∣

(ξc,ηc)
,
∂rcon,2
∂ξc

=ε
(
HT

2 ng,ξ+gHT
2 n,ξ

) ∣∣
(ξc,ηc)

,

∂rcon,1
∂ηc

=ε
(
HT

1 ng,η+gHT
1 n,η

) ∣∣
(ξc,ηc)

,
∂rcon,2
∂ηc

=ε
(
HT

2 ng,η+gHT
2,ηn+gHT

2 n,η
) ∣∣

(ξc,ηc)
,

g,ξ=nT r1,ξ, g,η=−nT r2,η, n,ξ=
I3−n⊗nT

||r1−r2||
r1,ξ, n,η=−I3−n⊗nT

||r1−r2||
r2,η.

(C.4)
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C Supplements to the Beam-to-Beam Contact Formulations

Depending on the considered case (point-, line-, endpoint-contact), (C.4) can be simplified due
to nTr1,ξ =0 and/or nTr2,η =0. In case of endpoint contact, only the partial derivatives dξc/dd̂12

and dηc/dd̂12 have to be adapted, while all other terms remain unchanged. In case of contact
between an endpoint of beam 1, i.e. ξc = −1 or ξc = 1, with a segment ηc ∈ [−1; 1] on beam 2,
the second line of (C.2) is considered in order to determine dηc/dd̂12, while dξc/dd̂12 vanishes:

dξc

dd̂12

= 0 and
dηc

dd̂12

= −
p2,d̂12

p2,η

. (C.5)

Correspondingly, the condition p2(ηc) = 0 and the derivative p2,η can be used for an iterative
determination of ηc. In case of contact between an endpoint of beam 2, i.e. ηc = −1 or ηc = 1,
with a curve segment ξc ∈ [−1; 1] on beam 1, the first line of equation (C.2) has to be considered
in order to determine dξc/dd̂12, while dηc/dd̂12 vanishes:

dξc

dd̂12

= −p1,d12

p1,ξ

and
dηc

dd̂12

= 0. (C.6)

In this case, p1(ξc) = 0 and p1,ξ can be used for an iterative determination of ξc. Considering the
contact between two endpoints, ξc = −1 or ξc = 1 and ηc = −1 or ηc = 1, yields:

dξc

dd̂12

=
dηc

dd̂12

= 0. (C.7)

C.2 Linearization of the line-to-line contact formulation
This linearization is based on the general form (4.47). It is focused on the most general case with
an integration interval segmentation being applied on both sides of the slave element. In the line
contact case, the orthogonality condition p2 on beam 2 is relevant. Its linearization reads:

p2,ξ
dξ

dd̂12

+ p2,ηc

dηc

dd̂12

= −p2,d̂12
→ dηc

dd̂12

=

(
−p2,ξij

p2,η︸ ︷︷ ︸
= ∂ηc
∂ξij

· dξij
dd̂12

+
−1

p2,η

p2,d̂12︸ ︷︷ ︸
= ∂ηc
∂d̂12

)∣∣∣∣∣
(ξij ,ηc(ξij))

. (C.8)

With the help of (4.44), the linearization dξij/dd̂12 of the slave evaluation points yields

dξij

dd̂12

=
∂ξij
∂ξ1,i

dξ1,i

dd̂12

+
∂ξij
∂ξ2,i

dξ2,i

dd̂12

with
∂ξij
∂ξ1,i

=
1.0− ξ̄j

2
and

∂ξij
∂ξ2,i

=
1.0 + ξ̄j

2
, (C.9)

where ξ̄j are constant Gauss point coordinates. Here, η is fixed at the master beam endpoints:

dξ1,i

dd̂12

=

(
−1

p2,ξ

p2,d̂12︸ ︷︷ ︸
=
∂ξB1
∂d̂12

)∣∣∣∣∣
(ξB1(ηEP ),ηEP )

and
dξ2,i

dd̂12

=

(
−1

p2,ξ

p2,d̂12︸ ︷︷ ︸
=
∂ξB2
∂d̂12

)∣∣∣∣∣
(ξB2(ηEP ),ηEP )

. (C.10)
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C.2 Linearization of the line-to-line contact formulation

Since ∂rijcon,l/∂ξ1,i and ∂rijcon,l/∂ξ2,i solely stem from the explicit dependence of the total Jaco-
bian Jc1(ξij, ξ1,i, ξ2,i) on the boundary coordinates ξ1,i and ξ2,i, these terms can be rewritten:

∂rijcon,l
∂ξ1,i

=
rijcon,l

Jc1(ξij, ξ1,i, ξ2,i)
· Jc1,ξ1,i(ξij, ξ1,i, ξ2,i),

∂rijcon,l
∂ξ2,i

=
rijcon,l

Jc1(ξij, ξ1,i, ξ2,i)
· Jc1,ξ2,i(ξij, ξ1,i, ξ2,i) with l = 1, 2.

(C.11)

The linearizations of the Jacobian occurring in (C.11) follow directly from the definition (4.42):

Jc1,ξ1,i(ξij, ξ1,i, ξ2,i) = −J(ξ(ξ̄i))

2
, Jv1,ξ2,i(ξij, ξ1,i, ξ2,i) =

J(ξ(ξ̄i))

2
. (C.12)

The derivative ∂rijcon,l/∂d̂12 with respect to d̂12 shows strong similarities to the terms in (C.1):

∂rijcon,1

∂d̂12

=wjJc1(ξij, ξ1,i, ξ2,i)ε
∂g(ξij)

∂d̂12

HT
1 (ξij)n(ξij)

+ wjJc1(ξij, ξ1,i, ξ2,i)εg(ξij)HT
1 (ξij)

∂n(ξij)

∂d̂12

,

∂rijcon,2

∂d̂12

=−wjJc1(ξij, ξ1,i, ξ2,i)εε
∂g(ξij)

∂d̂12

HT
2 (ηc(ξij))n(ξij)

− wjJc1(ξij, ξ1,i, ξ2,i)εg(ξij)HT
2 (ηc(ξij))

∂n(ξij)

∂d̂12

.

(C.13)

The terms ∂g/∂d̂12 and ∂n/∂d̂12 are identical to the ones in (C.3). The derivatives of the residual
contributions rijcon,1 and rijcon,2 with respect to the evaluation points ξij result in:

∂rijcon,1
∂ξij

=wjJc1,ξij(ξij, ξ1,i, ξ2,i)εg(ξij)HT
1 (ξij)n(ξij)

+ wjJc1(ξij, ξ1,i, ξ2,i)εg,ξij(ξij)H
T
1 (ξij)n(ξij)

+ wjJc1(ξij, ξ1,i, ξ2,i)εg(ξij)HT
1,ξij

(ξij)n(ξij)

+ wjJc1(ξij, ξ1,i, ξ2,i)εg(ξij)HT
1 (ξij)n,ξij(ξij),

∂rijcon,2
∂ξij

= −wjJc1,ξij(ξij, ξ1,i, ξ2,i)εg(ξij)HT
2 (ξij)n(ξij)

− wjJc1(ξij, ξ1,i, ξ2,i)εg,ξij(ξij)H
T
2 (ξij)n(ξij)

− wjJc1(ξij, ξ1,i, ξ2,i)εg(ξij)HT
2 (ξij)n,ξij(ξij).

(C.14)
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Similarly, The derivatives of rijcon,1 and rijcon,2 with respect to the evaluation points ηc yield:

∂rijcon,1
∂ηc

=wjJc1(ξij, ξ1,i, ξ2,i)εg,ηc(ξij)H
T
1 (ξij)n(ξij)

+ wjJc1(ξij, ξ1,i, ξ2,i)εg(ξij)HT
1 (ξij)n,ηc(ξij),

∂rijcon,2
∂ηc

= −wjJc1(ξij, ξ1,i, ξ2,i)εg,ηc(ξij)H
T
2 (ξij)n(ξij)

− wjJc1(ξij, ξ1,i, ξ2,i)εg(ξij)HT
2,ηc(ξij)n(ξij)

− wjJc1(ξij, ξ1,i, ξ2,i)εg(ξij)HT
2 (ξij)n,ηc(ξij).

(C.15)

The partial derivatives of g and n are again identical to the ones presented in (C.4). The partial
derivative Jc1,ξij = Jξij(ξ2,i − ξ1,i)/2 of the total Jacobian is only relevant in case of a non-
constant element Jacobian J . It should again be emphasized that this most general linearization
in (4.47) is only necessary for slave elements with valid master beam endpoint projections ac-
cording to (4.45). In practical simulations, for the vast majority of contact element pairs this is
not the case, i.e. dξ1,i/dd̂12 = 0 and dξ2,i/dd̂12 = 0, and the linearization in (4.48) is sufficient.

C.3 Residual and linearization of the ABC formulation
In a first step, the residual and linearization terms of the ABC formulation with force-based
model transition will be considered. The residual contributions directly follow from inserting
the discretized weak forms (4.12) and (4.43) into (4.61). Following the chain rule, the corre-
sponding linearization consists of the basic linearizations of the point-to-point and line-to-line
formulations according to (C.1) and (C.2) scaled by the transition factor occurring in (4.61)
and supplemented by additional terms containing the linearization of the transition factor itself.
The linearization of the transition factor follows directly from (4.67) and (4.68) by replacing
the variation δd̂12 with the increment ∆d̂12. According to (4.65), the residual of the ABC for-
mulation with potential-based model transition basically consists of the residual terms of the
variant with force-based model transition (with squared transition factor k(z)2 instead of k(z);
terms on the left-hand side) and additional contact moment contributions composed of energy-
like scalar terms of the form εg2 multiplied with the transition factor and the variation of the
transition factor according to (4.67) and (4.68). The linearization of the potential-based variant
is straight-forward, but more involved than for the force-based variant, since the linearization of
the transition factor variation (4.67) and (4.68) is required. For that reason, a convenient auto-
matic differentiation tool has been employed instead of deriving this linearization analytically.

C.4 Derivation of an analytical solution for the twisting
of two beams

The following derivations are based on the PDEs (2.118) and (2.119). Concretely, the possibility
of finding a parameter choice for the example “Twisting of two beams” that leads to a solution
in form of a helix with constant slope according to (4.91) for both considered beams shall be
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C.4 Derivation of an analytical solution for the twisting of two beams

investigated. Per definition, such a helix with radius r and slope h exhibits the following constant
expressions for the mathematical curvature κ̄ and torsion τ̄ along the beams length:

κ̄ =
r

h2 + r2
= const. and τ̄ =

h

h2 + r2
= const. (C.16)

Since the mathematical curvature κ̄ and torsion τ̄ are defined as angle increments per (current)
arc-length increment, and the mechanically relevant quantities κ = (1 + ε)κ̄ and τ = (1 + ε)τ̄
are defined as angle increments per initial/undeformed arc-length, the following expressions can
be derived between the individual kinematic quantities occurring in (2.119):

κ =
r(1 + ε)

h2 + r2
= const. → m′b = 0 and τ =

h(1 + ε)

h2 + r2
= const. (C.17)

The external load for a beam in static equilibrium according to Figure 4.15(a) consists of discrete
point forces and moments at the left and right endpoints of the beams due to the applied Dirichlet
conditions and a line load f̃n in nFS-direction from the contact interaction. In case of a prescribed
constant gap g0 < 0 in the equilibrium configuration, this contact line load obeys the relation:

f̃n = εg0. (C.18)

All remaining distributed external loads vanish. Concretely, this means that:

f̃g1 = f̃b = m̃g1 = m̃n = m̃b = 0. (C.19)

Now, the most simple solution of this kind shall be found with a prescribed constant axial tension
ε=0.01 and a constant torsion τ+ϕ′=const. With (2.119) and (C.17), this requirement yields:

f ′g1
= m′g1

= 0. (C.20)

Inserting equations (2.119) and (C.20) into equations (2.118) leads to one remaining relation

− τ

1 + ε
(κmg1 − τmb) + κfg1 + f̃n = 0, (C.21)

that has to be satisfied by the system parameters, while the other three equilibrium equations of
(2.118) are satisfied automatically. From the family of solutions provided by equation (C.21), in
the following the one with vanishing mechanical torsion will be considered:

mg1 = GIT (τ + ϕ′) = 0 → ϕ′ = −τ = − h

h2 + r2
. (C.22)

Altogether, equations (C.21) and (C.22) postulate a requirement for the penalty parameter:

h2(1 + ε)2

(h2 + r2)2
· EIr

h2 + r2
+
r(1 + ε)EAε

h2 + r2
+ εg0 = 0

→ ε = − (1 + ε)r

(r2 + h2)g0

(
EAε+

EI(1 + ε)h2

(r2 + h2)2

)
.

(C.23)

In a next step, the Dirichlet boundary conditions have to be determined. The additional relation
r = R−|g0|/2 for the helix radius appearing in (4.91) stems from the simple observation that the
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distance between the two helix centerlines has to satisfy 2r = 2R− |g0| in order to generate the
required gap g0. With r being defined this way, the derivation of the conditions (4.93) and (4.94)
is trivial in order to end up with a helix with radius r. However, the condition (4.92) for the axial
displacement requires some further calculations. Thereto, the required constant distribution of
the axial tension ε = 0.01 of the helix has to be expressed as a function of the total length l̃ of
the deformed helix in order to determine the helix slope h:

ε =
l̃ − l
l

=
1

l

2π∫
ϕ=0

∣∣∣∣∣∣∣∣drk(ϕ)

dϕ

∣∣∣∣∣∣∣∣ dϕ− 1 =
2π
√
r2 + h2

l
− 1 (C.24)

→ h=

√√√√(((1.0 + ε)l

2π

)2

− r2

)
. (C.25)

Equation (C.24) yields the required helix slope in case of a given helix radius r and a prescribed
axial tension ε. The required axial displacement u of the right endpoint follows from (4.91) as:

∆dl1,z = ∆dl2,z = u = 2πh− l. (C.26)

Finally, the Dirichlet-conditions for the tangential degrees of freedom have to be determined.
The constant bending moment mb has to be considered via proper moment boundary conditions
at the beam endpoints. According to (2.1), the virtual work contribution of an external moment
vector mj

bb
j
FS in b-direction at the left/right boundary node j = l, r leads to a residual entry

mj
bb

jT
FS

(
δαjgj1 +

gj1 × δtj

||tj||

)
=

mj
b

||tj||
δtjTnjFS =

mj
b

||tj||
δtjn

with gj1 =
tj

||tj||
, bjTFSgj1 = 0, bjFS × gj1 = njFS

(C.27)

into the n-component of the corresponding nodal tangential degrees of freedom. Since the local
n-directions coincide with the global x-directions at the beam endpoints here, it is sufficient to
prescribe the x-components of the nodal tangents via Dirichlet constraints in order to enable
proper reaction moments. According to (4.91), these x-components have to vanish:

∆tl1,x = ∆tl2,x = ∆tr1,x = ∆tr2,x = 0. (C.28)

Since the system parameters have been chosen in a way that leads to vanishing torsion, no ad-
ditional torsional external moments have to be applied at the beam endpoints, i.e. glT1 ml

σ =
grT1 mr

σ = 0. For this reason, the application of the torsion-free Kirchhoff beam element pre-
sented in Section 3.7.1 is justified for this example and leads to the correct mechanical solution.
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[115] G. Jelenić and M. A. Crisfield, Interpolation of rotational variables in nonlinear dynamics
of 3D beams, International Journal for Numerical Methods in Engineering 43, 1193–
1222, 1998.
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