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Abstract

Highly slender fiber- or rod-like components represent essential constituents of mechanical sys-
tems in countless fields of application and scientific disciplines such as mechanical engineer-
ing, biomedical engineering, material science as well as bio- or molecular physics. Examples
are high-tensile industrial ropes and webbings, fiber-reinforced composite materials or synthetic
polymer materials. On entirely different time and length scales, such slender components are
relevant when analyzing the supercoiling process of DNA strands, the characteristics of car-
bon nanotubes or the Brownian dynamics within the cytoskeleton of biological cells, a biopoly-
mer network of highly slender filaments that crucially influences biologically relevant processes
such as cell division and cell migration. Often, these slender components can be modeled as 1D
Cosserat continua based on a geometrically nonlinear beam theory. In all mentioned cases, me-
chanical contact interaction crucially influences the overall system behavior. In this thesis, me-
chanical models for very slender beams and their contact interaction are proposed on the basis
of the geometrically exact Kirchhoff-Love beam theory. From these models, novel finite element
formulations are derived that allow for an accurate, robust and efficient numerical simulation of
complex mechanical systems composed of highly slender fibers with arbitrary orientation.

Compared to other classes of geometrically nonlinear beam elements, geometrically exact beam
element formulations are characterized by a high degree of accuracy and computational effi-
ciency. While the existing representatives are almost exclusively based on the Simo-Reissner
theory of shear-deformable beams, the current thesis proposes novel finite element formulations
based on the geometrically exact Kirchhoff-Love theory of thin beams. The proposed formu-
lations are the first of this category that consider curved 3D beam geometries with anisotropic
cross-section shapes and fulfill fundamental mechanical properties such as observer invariance.
For finite elements derived from 3D Boltzmann continua such properties are standard. However,
the non-additivity and non-commutativity of the configuration space underlying geometrically
exact beams, which can be identified as a nonlinear manifold, requires special interpolation
strategies. Thereto, novel orthonormal rotation interpolation schemes are proposed that eventu-
ally yield two alternative beam elements based on a strong and a weak enforcement of the Kirch-
hoff constraint, respectively. It is confirmed analytically and numerically that these finite element
formulations offer considerable numerical advantages for the simulation of highly slender con-
tinua and yield an increased efficiency and robustness as compared to the existing counterparts
of Simo-Reissner type. Additionally, a reduced torsion-free beam element formulation is derived
from the general theory that results in considerably simplified and very efficient algorithms. The
extent of validity of this reduced formulation is strictly analyzed and shown to be relevant for a
variety of practical applications. The smooth geometry representation of the proposed formula-
tions can be regarded as highly beneficial for the development of robust beam contact algorithms.

Existing beam contact formulations can be categorized in point-based contact models that con-
sider discrete contact forces and line-based models that assume distributed contact forces. Line-
based formulations applied to slender beams represent accurate models in the range of small con-
tact angles, whereas the computational efficiency considerably decreases with increasing contact
angles. On the other hand, point-based formulations are very efficient in the regime of large con-
tact angles. However, based on an analytic criterion derived in this thesis, it is shown that these



models are inapplicable for a considerable range of small contact angles as consequence of non-
unique closest point projections. In order to combine the advantages of these two basic models,
a novel beam contact approach, denoted as all-angle beam contact (ABC) formulation, is pro-
posed. It employs a point contact formulation in the range of large contact angles and a newly
developed line contact formulation in the range of small contact angles. The latter is based on a
consistently linearized integration interval segmentation that avoids numerical integration across
strong discontinuities. This approach in combination with a smooth contact force law and the
proposed C'-continuous beam element formulations leads to a drastic reduction of the numer-
ical integration error, which in many cases only enables optimal convergence behavior under
uniform mesh refinement. The point and line contact model are smoothly connected by means
of a variationally consistent model transition approach. Based on a sound mechanical derivation,
two different transition laws are investigated and optimal algorithmic parameters are suggested.
The proposed ABC formulation is supplemented by a step size control of the nonlinear solver
allowing for displacement increments per time step that exceed the beam cross-section dimen-
sions and an efficient two-stage contact search based on dynamically adapted search segments.

For both the proposed Kirchhoff beam elements and the beam contact formulation, fundamen-
tal properties such as objectivity, conservation of energy and momentum as well as consistent
spatial convergence behavior are predicted theoretically and verified by means of suitable nu-
merical test cases. The combination of all the individual methodological constituents proposed
in this thesis results in accurate mechanical models for thin beams and their contact interaction.
The interplay of the developed algorithmic building blocks yields a highly efficient and robust
implicit simulation framework allowing for the analysis of physically relevant time scales in
complex mechanical systems composed of highly slender fibers with arbitrary orientation.
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Zusammenfassung

Hochschlanke faser- oder stabartige Komponenten sind essentielle Bestandteile mechanischer
Systeme in zahllosen Anwendungsfeldern und wissenschaftlichen Disziplinen wie etwa in den
Ingenieurwissenschaften, in der Medizintechnik, in den Materialwissenschaften oder in der Bio-
und Molekularphysik. Beispiele sind hochfeste Seile und Gewebe, faserverstirkte Verbund-
werkstoffe oder synthetische Polymerwerkstoffe. Auf ginzlich anderen Zeit- und Lingenskalen
sind solche Komponenten etwa relevant zur Analyse des Supercoiling-Prozesses von DNA-
Striangen, der Eigenschaften von Carbon Nanotubes oder der Brownschen Teilchenbewegung im
Cytoskelett biologischer Zellen. Letzteres stellt ein biopolymeres Netzwerk aus schlanken Fila-
menten dar, welches biologisch relevante Prozesse wie Zellteilung oder Zellmigration entschei-
dend beeinflusst. Oft konnen diese schlanken Komponenten als 1D-Cosserat-Kontinua basierend
auf einer geometrisch nichtlinearen Balkentheorie modelliert werden. In allen genannten Fillen
wird das globale Systemverhalten entscheidend durch mechanische Kontaktinteraktion beein-
flusst. Ziel dieser Arbeit ist die Entwicklung mechanischer Modelle fiir sehr schlanke Balken
und deren Kontaktinteraktion auf Basis der geometrisch exakten Kirchhoff-Love Balkentheorie.
Ausgehend von diesen Modellen werden neuartige Finite Elemente Formulierungen abgeleitet,
welche die Voraussetzungen schaffen fiir eine akkurate, robuste und effiziente numerische Simu-
lation komplexer mechanischer Systeme aus hochschlanken Fasern beliebiger Orientierung.

Verglichen mit anderen Klassen geometrisch nichtlinearer Balkenelemente zeichnen sich ge-
ometrisch exakte Balkenelementformulierungen durch einen hohen Grad an Genauigkeit und
Recheneffizienz aus. Wihrend die bestehenden Reprisentanten beinahe ausschlieBlich auf der
Simo-Reissner Theorie schubweicher Balken basieren, schligt die vorliegende Arbeit neuartige
Finite Elemente Formulierungen basierend auf der geometrisch exakten Kirchhoff-Love Theo-
rie diinner Balken vor. Die entwickelten Formulierungen sind die ersten ihrer Art, welche fiir
gekriimmte 3D-Balkengeometrien mit anisotropen Querschnitten geeignet sind und gleichzeitig
grundlegende mechanische Prinzipien wie etwa Objektivitit erfiillen. Vom 3D-Boltzmannkonti-
nuum abgeleitete Finite Elemente erfiillen diese Eigenschaften oft standardméBig. Die Nicht-
Additivitdt und Nicht-Kommutativitdt des Konfigurationsraumes geometrisch exakter Balken,
welcher als nichtlineare Mannigfaltigkeit identifiziert werden kann, erfordert hingegen spezielle
Interpolationstechniken. Hierzu werden neuartige, orthonormale Rotationsinterpolationen vor-
geschlagen, welche schlielich in zwei alternativen Balkenelementformulierungen, basierend
auf einer starken beziehungsweise einer schwachen Erfiillung der Kirchhoff-Zwangsbedingung,
resultieren. Es kann sowohl analytisch als auch numerisch nachgewiesen werden, dass diese
Finite Elemente Formulierungen betrédchtliche Vorteile in der Simulation hochschlanker Kon-
tinua bieten und in einer hoheren Recheneffizienz und Robustheit resultieren als existierende
Varianten basierend auf der Simo-Reissner Theorie. Dariiber hinaus wird eine reduzierte tor-
sionsfreie Balkenelementformulierung von der allgemeinen Theorie abgeleitet, welche zu stark
vereinfachten und sehr effizienten Algorithmen fiihrt. Der Giiltigkeitsbereich dieser reduzierten
Formulierung wird stringent analysiert. Auerdem wird gezeigt, dass dieser fiir viele praktische
Anwendungen relevant ist. Die glatte Geometriedarstellung der entwickelten Formulierungen
erweist sich als duerst vorteilhaft fiir die Entwicklung robuster Balkenkontaktalgorithmen.
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Existierende Balkenkontaktformulierungen konnen in punktbasierte Kontaktmodelle, welche
diskrete Kontaktkrifte annehmen, und linienbasierte Modelle, welche verteilte Kontaktkrifte
annehmen, unterteilt werden. Linienbasierte Formulierungen angewendet auf schlanke Balken
stellen prizise Modelle im Bereich kleiner Kontaktwinkel dar, wihrend die resultierende Re-
cheneffizienz mit zunehmenden Kontaktwinkeln erheblich abnimmt. Andererseits konnen punkt-
basierte Formulierungen als sehr effizient im Bereich groBer Kontaktwinkel erachtet werden.
Allerdings kann anhand eines in dieser Arbeit abgeleiteten analytischen Kriteriums gezeigt wer-
den, dass diese Modelle aufgrund nicht eindeutiger Closest-Point-Projektionen innerhalb eines
betrichtlichen Bereichs kleiner Kontaktwinkel nicht anwendbar sind. Um nun die Vorteile dieser
beiden grundlegenden Modelle zu kombinieren, wird ein neuartiger Ansatz, bezeichnet als All-
Angle Beam Contact (ABC) Formulierung, vorgeschlagen. Diese Formulierung wendet eine
Punktkontaktformulierung im Bereich kleiner Kontaktwinkel sowie eine neu entwickelte Li-
nienkontaktformulierung im Bereich groer Kontaktwinkel an. Letztere basiert auf einer kon-
sistent linearisierten Integrationsintervall-Segmentierung, welche eine numerische Integration
tiber starke Diskontinuitdten hinweg vermeidet. In Kombination mit einem glatten Kontaktkraft-
gesetz und den entwickelten C'-stetigen Balkenelementformulierungen fiihrt dieser Ansatz zu
einer drastischen Reduzierung des numerischen Integrationsfehlers, wodurch in vielen Fillen
erst ein optimales Konvergenzverhalten bei gleichméBiger Netzverfeinerung ermdoglicht wird.
Der glatte Ubergang zwischen Punkt- und Linienkontaktmodell wird auf variationell konsistente
Weise gewihrleistet. Basierend auf einer stringenten Herleitung werden zwei unterschiedliche
Modelliibergangsgesetze untersucht und optimale algorithmische Parameter vorgeschlagen. Die
entwickelte ABC-Formulierung wird durch eine Schrittweitenregelung des nichtlinearen Lo-
sers ergdnzt, welche Verschiebungsinkremente pro Zeitschritt ermoglicht, die die Balkenquer-
schnittsdimensionenen iiberschreiten. Der Algorithmus wird schlieBlich durch eine effiziente,
zweistufige Kontaktsuche basierend auf dynamisch angepassten Suchsegmenten komplettiert.

Sowohl fiir die vorgeschlagenen Kirchhoff-Balkenelemente als auch fiir die Balkenkontaktfor-
mulierung werden grundlegende Eigenschaften wie Objektivitit, Energie- und Impulserhaltung,
aber auch konsistentes rdumliches Konvergenzverhalten theoretisch sowie durch numerische
Tests verifiziert. Die Kombination all der einzelnen, in dieser Arbeit vorgeschlagenen metho-
dischen Bestandteile fiihrt zu einem préazisen mechanischem Modell fiir diinne Balken und deren
Kontaktinteraktion. Das Zusammenspiel der entwickelten algorithmischen Komponenten liefert
ein hocheffizientes und robustes implizites Simulationswerkzeug, welches die Untersuchung
physikalisch relevanter Zeitskalen in komplexen mechanischen Systemen bestehend aus hoch-
schlanken Fasern beliebiger Orientierung ermoglicht.
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Nomenclature

Representation of scalars, tensors and other quantities

q,Q
q,Q
q,2
q
Q
Q

Scalar quantity, Euclidean norm of corresponding vectors q, Q

Tensor of order one or higher, matrix representation

Tensor object of 3D continuum mechanics

Vector or matrix containing elementwise assembled discrete quantities
Vector or matrix containing globally assembled discrete quantities
Function space

Operators and symbols

&
X

B N e

Dyadic product

Vector product

Inner product

Transpose of a tensor

Inverse of a tensor or mapping

Transpose of the inverse of a tensor

Determinant

Identity tensor of dimension n X n

Variation of a quantity (additive in all cases besides 6 and 0®)
Objective part of the variation of a quantity

Finite increment of a quantity (additive in all cases besides A@ and A®)
Euclidean norm

Infinity norm

Extraction of rotation vector from rotation tensor

Levi-Civita-Symbol

Kronecker delta symbol

Smallest rotation mapping

Arbitrary function that depends on its arguments in a nonlinear manner
Quantities associated with reference triad of smallest rotation mapping
Derivative with respect to arc-length parameter s

Time derivative

Diagonal matrix

Linearization of a quantity

X



Nomenclature

Superscripts and subscripts

S~—
&=

0
5 5 < F

q:Ol—Zﬁj%
n

~
3
~+

*

E I3 83 T T 8 3
Q » ~
N =

g

P S A A e U S
e e N e e N e e N e e e e N e e e S e N e e e S S e e

o .

Q

S

(¢}

Matrix representation of a tensor given in the basis E;

Matrix representation of a tensor given in the basis g;

Quantity associated with intermediate triad

Quantity associated with intermediate triad of spatial SR mapping
Quantity associated with intermediate triad of temporal SR mapping
Quantity associated with smallest rotation mapping

Quantity associated with Frenet-Serret frame of a curve

Vector component parallel to centerline tangent or line contact contribution
Vector component normal to centerline tangent or point contact contribution
Quantity of initial configuration

Quantity at Dirichlet boundary

Quantity at Neumann boundary

Contribution of internal forces

Contribution of external forces

Contribution of kinetic forces

Contribution of contact forces

Contribution due to inextensibility constraint

Spatially discretized quantity, domain or function space

Changed quantity as consequence of a rigid body motion

Reference solution for a quantity of interest

Quantity associated with axial tension mode

Quantity associated with shear mode

Quantity associated with torsion mode

Quantity associated with bending mode

Quantity associated with triad parametrization via nodal tangents

Quantity associated with triad parametrization via nodal rotation vectors
Contact quantity associated with a bilateral closest point projection
Contact quantity associated with a unilateral closest point projection
Contact quantity that is evaluated at the bilateral or unilateral closest points

Representation of spatial and material quantities in associated frames

q

Q

4;

Qi

Qi

QQl y dns Qb

Spatial tensor

Material tensor

Components of spatial tensor when expressed in the frame ey, e, €3
Components of material tensor when expressed in the frame E, E,, E3
Components of spatial tensor when expressed in the frame g1, g2, g3
Components of a spatial vector q expressed in the Frenet-Serret frame



Nomenclature

X (s)
x(9)

gij gl
g9,¢"

3D continuum mechanics

Initial position of cross-section point with convective coordinates 4
Current position of cross-section point with convective coordinates 4
Reference vector defining moment stress resultants

Collection of convective coordinates describing material cross-section point
Individual convective coordinates describing material cross-section point
First Piola-Kirchhoff stress tensor

Second Piola-Kirchhoff stress tensor

Cauchy stress tensor

Piola surface stress vectors

Deformation gradient

Cauchy-Green deformation tensor

Material constitutive tensor of Saint-Venant-Kirchhoff material

Spatial and material covariant base vectors fori = 1,2, 3

Spatial and material contravariant base vectors for ¢ = 1,2, 3

Large rotations and 1D kinematics

g1,82,83
E, Ey E;
€1,€9,€3
A

A

SO(3)
s0(3)
TaSO(3)
S(a)
exp(S(a))

Base vectors spanning the beam cross-section, also denoted as material triad
Material base vectors of Cartesian frame

Spatial base vectors of Cartesian frame

Rotation tensor, material triad with base vectors g1, g2, €3

Relative rotation tensor between initial and current material triad
Special orthogonal group

Set of skew symmetric tensors

Tangent space of SO(3) at A

Skew symmetric tensor with arbitrary axial vector a € R3
Representation of rotation tensor with rotation vector a via exponential map
Arbitrary primary variable for rotation parametrization

Spatial (total) rotation vector

Euclidean norm of rotation vector 1)

Normalized rotation vector representing axis of rotation

Material (total) rotation vector

Spatial and material additive (finite) rotation vector increment
Spatial and material multiplicative (finite) rotation vector increment
Spatial and material additive rotation vector variation

Spatial and material multiplicative rotation vector variation

Spatial and material curvature vector

Spatial and material angular velocity vector

Spatial and material angular acceleration vector

Beam centerline curve

Displacement of beam centerline curve

Mechanically relevant Frenet-Serret curvature vector of a curve
Mechanically relevant torsion of Frenet-Serret frame of a curve
Geometrical Frenet-Serret curvature vector of a curve
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Nomenclature

T Geometrical torsion of Frenet-Serret frame of a curve

r Geometrical curvature radius of a curve

Nnrg Normal vector of Frenet-Serret frame of a curve

brg Binormal vector of Frenet-Serret frame of a curve

T Transformation between additive and multiplicative variations 1 and 60
t Non-unit tangent vector aligned to beam centerline

t Norm of non-unit tangent vector t

t Non-unit tangent vector t normalized with ¢*

% Relative angle between intermediate frame and material triad

A Reference triad of smallest rotation mapping

Ay Intermediate triad

To,,t Transformation matrix between the variations 00/, and ot

To¢ Transformation matrix between the variations 6@ and ot

Ty Transformation matrix between the variations (Jt, d¢) and (40, 6t)
T, Transformation matrix between the variations d¢ and 06

T Transformation matrix between the variations (dt, d©,) and (66, dt)
AR Rigid body rotation

IR Rigid body translation

1D stress resultants, constitutive laws and balance equations

S Arc-length parameter on initial beam centerline

l Beam length in initial configuration

O Beam arc-length domain

s Arc-length parameter on current beam centerline

] Beam length in current configuration

t Time

T Total simulation time

I; Neumann boundary of the beam

I, Dirichlet boundary of the beam

C(r,q) Configuration of the beam with primary variable fields r and q

f’, m Distributed external forces and moments per unit length

f,,m, Distributed inertia forces and moments per unit length

f'p Sum of distributed inertia and external forces per unit length

m, Sum of distributed inertia and external moments per unit length

f,,m, Forces and moments at the Neumann boundary 1,

f,m Spatial force and moment stress resultants

F,M Material force and moment stress resultants

G(r,q) Weak form of the balance equations with primary variable fields r and q
L(r,q) Lagrangian of variational problem with primary variable fields r and q
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1 Introduction

1.1 Motivation

In countless fields of application, mechanical systems are characterized by the prevalence of
slender fiber- or rod-like components. Often, these components crucially determine the mechan-
ical characteristics of the overall system such as anisotropic strength and stiffness properties or
relevant mechanisms of load transfer. While the rather descriptive notions of “’fibers” and “rods”
might immediately be associated with slender or lengthy bodies featuring more or less transverse
flexibility, the more concise description for the class of mechanical components considered in
this thesis is given by the notion “beams”. Mechanically, a beam is a structural model appro-
priate to describe the motion and deformation of bodies whose dimension in length direction
is much larger than the dimensions in transverse directions. Consequently, the applicability of
beam models can be evaluated by the ratio of length to lateral dimensions of a body, denoted as
slenderness or slenderness ratio. In this context, the mechanical model of ’ropes” represents the
extreme case of beams with negligible stiffness in transverse direction.

In classical engineering applications, such slender beam-like components arise for example
in form of lightweight construction frames, gear shafts or wheel axles in vehicles, cables, oil
pipelines or deep drilling rods. In contrast to these single-component systems, their is a variety
of technically relevant multi-component systems that crucially rely on the composition out of
a large number of slender components. Examples are classical ropes or textile webbings, high-
tensile industrial ropes and webbings, fiber-reinforced composite materials but also cellulose
fibers determining the characteristics of paper [67, 69, 135]. Typically, there are two distinctive
differences between the aforementioned single- and multi-component systems: Firstly, the men-
tioned multi-component systems typically consist of individual fibers with very high slenderness
ratio as compared to most of the single-component systems summarized above. Secondly, the
overall mechanical properties and the global system response of these multi-component systems
is essentially determined by fiber-to-fiber contact interaction and the resulting force transfer be-
tween individual fibers. Exactly these two aspects, the modeling of mechanical components with
highest slenderness ratios and their contact interaction will lie in the focus of this thesis. Mechan-
ical systems unifying these two aspects can be found in numerous modern fields of application
and are in the focus of several scientific disciplines that range far beyond the classical engi-
neering examples considered above: In the field of material science, slender components can for
example be identified in form of interconnected macromolecules occurring in synthetic polymer
materials, in novel fiber-based porous materials with tailored constitutive properties on the basis
of optimized fiber sizes, orientations and densities but also in fiber-based, acoustic and thermal
insulation materials [186, 240]. Arterial stents, tube-shaped devices on the basis of thin steel
wire structures, are employed in biomedical engineering in order to keep passage ways open
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in human blood vessels. They can be identified as further practical applications that crucially
rely on highly slender mechanical components and their contact interaction [94, 192]. Slender
constituents at entirely different length and time scales can be found in biological systems: As
examples, the fibers in biological tissue, muscle fibers or the filaments in biopolymer networks
have to be mentioned [61, 99, 198]. A representative of the latter kind is the cytoskeleton of
biological cells, which influences biologically highly relevant phenomena such as cell-division,
cell migration or intracellular transport and has led to considerable research effort in the field
of biophysics in recent years. Also the supercoiling process of DNA strands is crucially deter-
mined by the mechanical behavior of slender structures and their mutual interaction [236], and
has attracted the interest of countless scientists in the field of molecular physics. As last exam-
ple, the development of novel nano-materials is considered. One of the arguable most prominent
applications for beam models in this field and related disceplines such as electronics or optics
are carbon nanotubes [223]. While slenderness ratios above 10® are very common among the
examples mentioned so far, these carbon molecules yield slenderness ratios up to 10°.

As compared to experimental investigations of such systems, the approach of mechanical model-
ing and numerical simulation offers a considerably increased degree of flexibility. For example,
parameter studies can be realized in a very efficient and flexible manner. Moreover, numerical
simulation schemes can be extended by additional functionalities allowing for example for sys-
tem optimization or inverse analysis, i.e. for a determination of certain system properties that
can not be measured otherwise on the basis of a known mechanical loading state and a measured
system answer. Finally, investigations on micro- and nano-scales as prevalent in the examples
of the last paragraph but also in vivo studies of biological systems are often very difficult, in
many cases even impossible, to be conducted in an experimental manner. Besides experiment
and numerical simulation, analytic approaches can be considered as third essential instrument of
system characterization. However, given the complexity of the systems and microstructures con-
sidered so far, analytic investigations are typically limited to very simple geometries and load
cases and are mostly based on considerably simplifying assumptions. Throughout this thesis,
the focus will lie on the development of accurate mechanical models as well as efficient and
robust numerical simulation tools. While the mechanical description of slender components and
their contact interaction will be based on geometrically nonlinear 3D beam models, the Finite
Element Method (FEM) will be employed in order to allow for a numerical solution of these
problems. Approximately, since the last fifty years, the FEM has been in the focus of method
developers and applicants and can meanwhile be regarded as the dominating numerical approxi-
mation scheme for the solution of partial differential equations (PDEs) of diverse origin, with its
roots lying in the field of solid and structural mechanics. Among others, the FEM benefits from
its sound mathematical foundation as well as the desirable properties of the resulting, discrete
system matrices, paving the way for efficient numerical solution schemes. Compared to alter-
native discretization techniques such as finite difference schemes, the FEM offers a high degree
of generality and geometrical flexibility, which can be regarded as very beneficial when com-
plex structures have to be modeled or when a coupling with further physical fields such as fluid,
thermal or electrical fields is required. Both aspects are relevant for many of the applications
mentioned above. In the following two sections, the state-of-the-art of existing methods as well
as the objective of the current thesis will be presented separately for the two core contents of this
thesis, which are finite element models for slender beams and for their contact interaction.
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1.2 Geometrically Exact Finite Element Formulations
for Nonlinear Beam Problems

The focus of this section lies on geometrically nonlinear, 3D beam formulations appropriate for
the modeling of complex systems of highly slender fibers. Especially, so-called geometrically
exact formulations based on a numerical realization by means of the finite element method are
considered. Moreover, the emphasis lies on formulations based on the so-called Kirchhoff-Love
theory of thin rods, which seems to be most suitable for the intended fields of application.

1.2.1 Fundamental approaches

Basically, two essential motivations for applying a beam theory instead of a 3D continuum me-
chanics theory for the modeling of slender bodies can be identified: In the early days of beam
theories, it was the accessibility of analytic solutions as for example “Euler’s Elastica”, even for
large deformation problems, that motivated the development and application of one-dimensional
theories. Nowadays, it is the knowledge that the modeling of highly slender bodies via beam the-
ories yields considerably more efficient, but also more well-posed, numerical formulations as it
would be the case for 3D continuum theories. So-called induced beam theories can be regarded
as reduced 1D continuum theories consistently derived from the 3D theory of continuum me-
chanics under consideration of a basic kinematic constraint that reflects the deformation states
expected for slender bodies in a reasonable manner. Such 1D beam theories typically allow to
describe the motion and deformation of slender bodies in 3D space on the basis of proper kine-
matic, kinetic and constitutive resultant quantities. In the case of induced beam theories, these
resultant quantities can for example be derived via integration of 3D stress measures over the
beam cross-section. The 3D stress measures typically result from the constrained 3D displace-
ment field as well as standard 3D strain measures and constitutive relations. In this context, the
cross-section of a beam represents the collection of all material points sharing the same beam
length coordinate in the stress-free configuration. On the contrary, so-called intrinsic beam the-
ories directly postulate the 1D resultant quantities. These theories are internally consistent in
the sense that the resultant quantities as well as the 1D relations connecting these quantities
still fulfill essential mechanical principles such as equilibrium of forces and moments, conserva-
tion of energy or rather existence of work conjugated stress-strain pairs, observer invariance or
path-independence of conservative problems. Nevertheless, intrinsic beam theories are decou-
pled from the 3D continuum mechanics theory. Typically, the postulated constitutive constants
relating stress and strain measures are determined experimentally, while the constitutive con-
stants of induced beam theories follow directly from the corresponding 3D constitutive laws.
Such postulated constitutive laws based on experimentally determined constants are favorable
for applications where no 3D continuum foundation exists: Considering the low number of dis-
crete molecules distributed over the thickness of macromolecules as occurring for example in
biopolymer networks, DNA strands or carbon nanotubes - to come back to the applications men-
tioned above - no 3D continuum theory can be applied in a reasonable manner. Nevertheless,
it is well-established that these slender components can be described in good approximation by
1D continuum theories and associated experimentally determined constitutive constants [198].
Finally, a compromise between the induced and intrinsic theories considered so far are so-called
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semi-induced beam theories, where only the constitutive law is postulated and all the remaining
kinetic and kinematic relations are consistently derived from the 3D theory.

Based on the Bernoulli hypothesis of undeformed cross-sections and the work of Euler, the
“Kirchhoff beam” [125], proposed by Kirchhoff zu Heidelberg in 1859, was the first formula-
tion allowing for arbitrary initial curvatures and large three-dimensional deformations including
the states of bending and torsion. In 1944, this theory was enhanced by Love [153] to also ac-
count for small axial tension. A comprehensive historic overview of these early developments is
given in the work of Dill [64]. It was Reissner in 1972 for the two-dimensional case [183] and in
1981 for the general three-dimensional case [184], who completed the theory by two additional
deformation measures representing the shear deformation of the beam. While the 3D problem
statement of Reissner was still based on some additional approximations, Simo [204] extended
the work of Reissner to yield a formulation that is truly consistent in the sense of a semi-induced
beam theory. Thus, starting from a basic kinematic assumption, all kinetic and kinematic quan-
tities and relations are consistently derived from the 3D continuum theory, while the constitutive
law has been postulated. Originally, this theory has been denoted as geometrically exact beam
theory. Nowadays, it is also referred to as Simo-Reissner beam theory. According to the defini-
tion of Simo [204], also in this thesis, a beam theory is denoted as geometrically exact, if “the
relationships between the configuration and the strain measures are consistent with the virtual
work principle and the equilibrium equations at a deformed state regardless of the magnitude of
displacements, rotations and strains” ([58], p. 1126). For that reason, also the notation “finite-
strain beams” has been applied in the original work [204]. However, as later argued by several
authors (see e.g. [58]) and in accordance with corresponding derivations in the literature (see
e.g. [2, 3, 153]), a consistency of the geometrically exact beam theory and the 3D theory of con-
tinuum mechanics in the sense of a (fully) induced beam theory can only be assumed as long as
small strains are considered. The fulfillment of the basic kinematic assumption of rigid cross-
sections underlying the geometrically exact beam theory requires pointwise six (translational
and rotational) degrees of freedom in order to uniquely describe the (centroid) position and ori-
entation of the cross-sections. Consequently, this beam theory can be identified as 1D Cosserat
continuum [51], derived from a 3D Boltzmann continuum with pointwise three (translational)
degrees of freedom. While there exists a variety of beam theories that also consider in-plane as
well as out-of-plane cross-section distortion, the current thesis focuses on geometrically exact
beam formulations on the basis of the rigid cross-section assumption as applied by Simo and
Reissner. Furthermore, throughout this thesis, the notion Simo-Reissner theory will be preferred
since the notion geometrically exact beam theory, when following the definition presented above,
also applies to consistently derived shear-free formulations on the basis of the Kirchhoff-Love
theory. In the remainder of this thesis, the notion “shear-free” represents the opposite of ”’shear-
deformable” and thus is equivalent to “vanishing shear strains”, but, of course, not to “vanishing
shear stresses”. Unfortunately, no absolute consensus concerning naming of the different beam
models presented so far can be found in the literature. For that reason, the following nomen-
clature, trying to be consistent with the most important representatives in the literature, will be
applied in this thesis: Geometrically nonlinear beam models capturing the modes of axial ten-
sion, torsion and bending and being appropriate for initially straight beams with isotropic cross-
section shapes are denoted as nonlinear Euler-Bernoulli beams. The extension to arbitrary initial
curvatures and anisotropic cross-section shapes is referred to as Kirchhoff-Love beam theory. Fi-
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nally, the (geometrically exact) supplementation by shear deformation modes is covered by the
Simo-Reissner theory. Euler-Bernoulli or Kirchhoff-Love formulations that neglect the mode of
axial tension are denoted as inextensible Euler-Bernoulli or Kirchhoff-Love variants. Finally, the
restriction of shear-free or shear-deformable theories to the geometrically linear regime yields
the well-known linear Euler-Bernoulli and Timoshenko beam models [219].

By identifying the configuration space underlying the geometrically exact beam theory as nonlin-
ear, differentiable manifold with Lie group structure and by pointing out important algorithmic
consequences resulting from the non-additivity and non-commutativity of the associated group
elements, the original work by Simo [204] and the subsequent work by Simo and Vu-Quoc [208]
laid the foundation for abundant research work on this topic in the following years. The static
beam theory [204, 208] has been extended to dynamics by Cardona and Geradin [43, 44] and by
Simo and Vu-Quoc [209]. The contributions of Kondoh et al. [127], Dvorkin et al. [71] as well
as [ura and Atluri [113] can be regarded as further pioneering works in this field. These contribu-
tions mark the starting point for the development of a large variety of geometrically exact beam
element formulations [60, 106, 111, 115, 117, 172, 195, 211] which basically differ in the type of
rotation interpolation (e.g. interpolation of incremental, iterative or total rotational vectors), the
choice of nodal rotation parametrization (via rotation vectors, quaternions etc.), the type of iter-
ative rotation updates (multiplicative or additive), or the time integration scheme applied to the
rotational degrees of freedom (e.g. based on additive or multiplicative rotation increments). Also
extensions of the geometrically exact beam theory to arbitrary cross-section shapes with shear
centers differing from the cross-section centroid can be found [92]. An overview of the most im-
portant developments at that time is exemplarily given in the text books of Crisfield [56] as well
as Geradin and Cardona [82]. An break in this development is given by the works of Crisfield
and Jeleni¢ [58, 116], who have shown that none of the rotation field discretizations of the for-
mulations existent at that time could preserve both of the important properties objectivity and
path-independence (see also [110] for a discussion of this topic). Furthermore, in [58] and [116],
a new, objective and path-independent orthogonal interpolation scheme was proposed that di-
rectly acts on the rotation manifold and not on any of its rotation vector parametrizations as done
in the works before. This formulation was the starting point for the development of many alterna-
tive rotation interpolation strategies for geometrically exact beams that also preserve these prop-
erties. Among others, orthogonal interpolations of relative rotation vectors (see e.g. [84, 194])
or quaternions (see e.g. [83, 187, 246]), non-orthogonal interpolation strategies in combination
with modified beam models (see e.g. [27, 74, 190]) and non-orthogonal interpolation strategies
with subsequent orthogonalization (see e.g. [187]) can be identified. As reported in the original
work [58, 116], the rotation interpolation scheme proposed by Crisfield and Jeleni¢ can exactly
represent the state of constant curvature. Thus, it can be interpreted as geodesic, i.e. shortest, con-
nection between two configurations on the rotation manifold. Consequently, these geodesic rota-
tion interpolation schemes represent the counterpart to linear interpolations of translational quan-
tities. The works [31, 32] as well as the recent contributions [194, 212, 213, 220] can be identi-
fied as further geometrically exact beam element formulations based on geodesic interpolations
of the rotational (and translational) primary variable fields. A 2D extension of these so-called
helicoidal interpolations to higher-order elements is given in [66]. A formulation with smooth
centerline representation based on an isogeometric collocation scheme is proposed in [226]. Be-
sides these purely displacement-based elements, also interpolation schemes directly acting at
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the strain level combined with a subsequent derivation of the position and rotation field via in-
tegration (see e.g. [220, 244, 245]) as well as mixed formulations [197] have been proposed.
Furthermore, a variety of contributions considering time integration of rotational variables can
be found in this context [17, 26, 35, 62, 86, 109, 119, 144, 189, 210].

While all the formulations presented above have been based on the finite element method, also
discrete representatives of Simo-Reissner beam formulations based on finite difference schemes
can be found in the literature [118, 136, 137, 145]. These are often denoted as discrete elas-
tic rods and based on the concept of discrete differential geometry (DDG). In the context of
finite element formulations for geometrically nonlinear beam problems, again, a variety of al-
ternatives to the geometrically exact formulations considered in the last two paragraphs can
be found. The maybe most prominent representatives of these alternatives are the corotational
method [55, 56, 59, 76, 81] as well as Absolute Nodal Coordinate (ANC) [200, 201] and solid
beam element [14, 79] formulations. The corotational technique was initially introduced by
Wempner [229] as well as Belytschko et al. [20, 21] and shows strong similarities to the ’natural
approach” of Argyris et al. [5]. The basic idea is to split the overall non-linear deformation into
a contribution stemming from large rotations and a part stemming from local deformations ex-
pressed in a local, ’corotated” frame. Often, the local deformation can be modeled on the basis of
first- (or second-) order theories such that the entire degree of nonlinearity is represented by the
rotation of the local frame. The basic idea of ANC beam element formulations is to employ stan-
dard shape functions as known from solid finite element formulations in order to interpolate the
3D displacement field within the beam. Instead of introducing a kinematic constraint and deriv-
ing a resultant 1D model, different polynomial degrees are typically applied for the interpolation
in beam length direction and in transverse directions. Numerical comparisons as performed e.g.
by Romero [187, 188] and Bauchau et al. [18] advocate geometrically exact beams in general,
and orthogonal triad interpolation schemes (see e.g. [58]) in particular, with regard to computa-
tional accuracy and efficiency. All in all, it can be stated that finite element formulations based
on the geometrically exact beam theory have become well-established in the meantime and can
arguably be regarded as state-of-the-art methods for the computational treatment of geometri-
cally nonlinear beam problems. Formulations of this category will be in the focus of this thesis.

In the context of the geometrically nonlinear Kirchhoff-Love beam theory, several discrete re-
alizations based on finite difference schemes have recently been proposed [1, 24, 25, 88, 140].
In contrast to the Simo-Reissner theory, also several works based on an analytic treatment of
Kirchhoff-Love beam problems exist in the modern literature [138, 202]. Interestingly, most
approaches of these two categories can be found in the field of bio- or molecular physics. Al-
though, the theoretical basis of shear-free Kirchhoff-Love beam formulations has a much longer
tradition than the Simo-Reissner theory of shear-deformable beams, there are only a few geomet-
rically nonlinear shear-free finite element representations, which have not reached the excellent
properties of geometrically exact Simo-Reissner formulations so far. In his recent works [6]
and [7], Armero and Valverde gave a historic overview of existing Kirchhoff finite elements
and pointed out their drawbacks. Accordingly, the first Kirchhoff type element formulations
have applied different interpolations (C°-continuous Lagrange polynomials for the axial dis-
placements and C'-continuous Hermite polynomials for the transversal displacements) to the
different displacement-components, which led to a loss of objectivity [6]. In later works, the
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objectivity could be preserved by employing e.g. trigonometric shape functions, but the corre-
sponding formulations were limited to the investigation of plane circular arches (see e.g. [10]
or [11]). A different approach was the development of framework or corotational shear-free
beams [57, 100-102, 141], a category of formulations, which naturally preserves the objectivity
of the continuous problem. As pointed out in [6], these types of Kirchhoff type formulations
often exhibit a comparatively poor accuracy; a fact, which can directly be traced back to the lack
of an exact representation of the kinematic quantities. A further critical issue relevant in the con-
text of thin Kirchhoff beams is membrane locking, a locking phenomenon given distinction to
by Stolarski and Belytschko [215]. In general, membrane locking denotes the inability of curved
structural elements, e.g. beams or shells, to represent the inextensibility constraint of vanishing
membrane / axial strains. For thin Kirchhoff beams, [77] was one of the first contributions in
which this effect was investigated by relating the beam slenderness ratio to the condition number
of the stiffness matrix, but without explicitly using the term locking. Diverse methods have been
proposed in the literature in order to avoid membrane locking of Kirchhoff rods. Amongst others,
these are the approaches of reduced / selective integration (see e.g. [168, 176, 177]), assumed
strains based on the Hu-Washizu functional (see e.g. [49, 121, 142]), assumed stresses based on
the Hellinger-Reissner functional (see e.g. [42, 168]) or penalty relaxation / stabilization tech-
niques in combination with membrane correction factors (see e.g. [ 154, 218]). Most of the works
considered so far are limited to 2D beam problems. A historic overview concerning the devel-
opment of Kirchhoff beam element formulations in general and the key issues of objectivity and
membrane locking in particular is given in the recent works of Armero and Valverde [6, 7].

The shear-free beam elements presented by now are typically based on additional kinematic as-
sumptions, thus not being consistent with the concept of geometrically exact beams. The number
of existing geometrically exact finite element formulations on the basis of the Kirchhoff-Love
theory is very limited. For example, the recent contribution of Sansour [196] proposes an energy-
momentum method for 2D, initially straight geometrically exact elements based on the nonlinear
Euler-Bernoulli theory. The first geometrically exact, 3D, large-deformation, shear-free beam el-
ements fulfilling also the essential requirement of objectivity have been proposed by Boyer [36]
and Weiss [227, 228]. In his recent work [37], Boyer extended the original formulation [36] for
the modeling of undersea cables. However, these geometrically nonlinear Euler-Bernoulli for-
mulations only treat the special case of beams with circular cross-sections and a straight initial
configuration, i.e. the case of beams with rotationally symmetric reference geometry denoted as
isotropic bending. This limitation simplifies the theory drastically, and already the modeling of
simple piecewise straight frames is difficult since no variables are available that determine the
cross-section orientation required for kinematic constraints at beam-to-beam joints. The more
recent contributions [238, 239] allow for anisotropic cross-sections but still focus on initially
straight beams. In addition to the restrictions mentioned so far, most of these geometrically
exact 3D element formulations did not consider the issue of membrane locking. Besides the
contributions considered by now, also global finite element and finite difference discretization
approaches for Kirchhoff beams can be found in the literature [25, 75, 236]. These are typically
based on a rotation or curvature interpolation strategy and a subsequent integration of the rotation
field along the entire beam length in order to yield an explicit beam centerline representation.
Unfortunately, these global approaches yield dense system matrices and not the desirable sparse
system matrices with small bandwidths as typical for standard FEM approaches.
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Due to these obvious limitations of existing shear-free finite element formulations, Armero and
Valverde developed plane and three-dimensional Kirchhoff-Love beam elements for arbitrar-
ily curved initial geometries that guarantee the fundamental properties of objectivity and ge-
ometrical exactness [6, 7]. However, these beam elements only cover the geometrically linear
case of infinitesimal deformations. On the other hand, in the very recent works of Greco et
al. [90, 91], some first steps towards geometrically nonlinear isogeometric Kirchhoff beam ele-
ments have been made. However, the proposed formulations have only been applied to geometri-
cally linear examples. Bauer et al. [19] adapted the ideas of Greco and facilitated an application
to geometrically nonlinear examples. Nevertheless, the important properties of objectivity and
path-independence have not been considered in the works of Greco and Bauer. Thus, it can be
concluded that none of the existing geometrically exact shear-free beam element formulations
of Kirchhoff-Love type is comparable to the existing shear-deformable formulations of Simo-
Reissner type in terms of generality and fulfillment of essential mechanical principles. Also de-
tailed comparisons and evaluations of these two categories of geometrically exact beam element
formulations when applied to general problems of slender beams are still missing.

1.2.2 Research objectives

The obvious backlog of existing shear-free beam elements as compared to existing geometri-
cally exact Simo-Reissner element formulations with their excellent properties is the motivation
for the development of geometrically exact, three-dimensional, large-deformation Kirchhoff-
Love beam element formulations accounting for arbitrary initial geometries and anisotropic
cross-section shapes and fulfilling essential mechanical principles such as objectivity and path-
independence. Of course, the ultimate objective of this thesis is not only to develop Kirchhoff-
Love beam element formulations that are comparable with the existing counterparts of Simo-
Reissner type. Instead, novel element formulations are proposed being advantageous in the range
of high slenderness ratios and for the modeling of beam contact interaction as compared to exist-
ing approaches. In the next two sections, the most important requirements and the novel scientific
contributions related to the beam element formulations proposed in this thesis are presented.

1.2.2.1 Specification of requirements

The following requirements are regarded as essential for accurate, efficient and robust beam el-
ement formulations applicable to the range of applications mentioned in the beginning:

1) Representability of general geometries and loads: In this thesis, 3D, large-deformation,
dynamic problems of thin beams with arbitrary initial geometries and anisotropic cross-section
shapes loaded by arbitrary point-wise and distributed forces and moments will be considered.
The proposed rotation interpolation schemes have to be capable of representing such general
scenarios without exhibiting any singularities for practically relevant configurations.

2) Geometrical exactness: As already mentioned in Section 1.2.1, the proposed beam element
formulations have to be geometrically exact in the sense that the derived deformation measures
are consistent with the virtual work principle and the equilibrium equations at any deformed
state independent of the magnitude of displacements, rotations and strains.
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3) Fulfillment of essential mechanical principles: The essential mechanical principles of ob-
jectivity, i.e. observer or frame invariance, as well as path-independence have to be preserved by
the employed discretization schemes. Further properties such as conservation of linear momen-
tum, conservation of angular momentum and conservation of energy for arbitrarily rough spatial
discretizations are very desirable for the proposed spatial interpolation schemes.

4) Fulfillment of general requirements on finite element discretizations: For all presented
finite element formulations, accuracy will be verified on the basis of proper reference solutions.
Expected optimal convergence rates will be investigated theoretically as well as numerically.
Furthermore, effective methods for the avoidance of membrane locking are required such that
no remaining locking-related deterioration of the spatial convergence behavior will be observed
for the resulting finite element formulations, even in the range of very high slenderness ratios.

5) Energy-stable time integration: The focus of this thesis lies on the development of spatial
finite element discretizations for geometrically nonlinear beam problems. The resulting finite
element formulations are combined with a finite difference time integration scheme for large
rotations recently proposed by Briils and Cardona [40]. This implicit scheme allows for energy-
stable, second-order accurate time integration on the basis of optimized numerical dissipation
and can be identified as a Lie-group extension of the well-known generalized-o scheme.

6) Simple realization of essential boundary conditions and joints: Choices of nodal primary
variables, especially with respect to the rotation parametrization, are demanded that enable the
formulation of practically relevant Dirichlet boundary conditions but also of node-wise joints
between several beams without the need of additional constraint equations. Such joints will for
example be required for the modeling of complex microstructures. This is not standard for most
of the existing geometrically exact shear-free beam element formulations.

7) Avoidance of Lagrange multipliers and saddle point systems: Also existing geometri-
cally exact beam elements of Simo-Reissner type can be subjected to the Kirchhoff constraint
by means of additional Lagrange multiplier fields. Such a procedure typically results in saddle
point systems and the need of a special class of linear solvers or requires global condensation
strategies. While for comparison reasons, the additional enforcement of inextensibility by means
of Lagrange multipliers will be demonstrated, the standard (extensible) Kirchhoff-Love beam el-
ements considered in this work should neither rely on Lagrange multipliers nor should they yield
in saddle point systems. All required calculations have to be feasible in an element-local manner.

8) Suitability for high-performance computing: In the context of finite difference and finite
element discretizations of the Kirchhoff-Love beam theory, several schemes have been proposed
that rely on global strategies for the construction of the rotational field. Even though, these
schemes show otherwise desirable properties, they typically suffer from two elementary draw-
backs: Mostly, these schemes result in dense discrete system matrices and depend on a succes-
sive, i.e. serial, evaluation of the individual finite elements within a discretization. These two
properties make such formulations virtually impossible for high-performance computing. From
the finite element formulations proposed here, it is required to result in sparse system matrices
with small bandwidths and to be suitable for parallel computing element evaluation routines.
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While many of the (recently developed) beam element formulations of Simo-Reissner type are
conform with the standards presented so far, most of the existing geometrically exact shear-
free formulations fulfill only a few of these eight basic requirements. In the following, some
potential benefits of the shear-free formulations proposed in this thesis as compared to existing
Simo-Reissner type elements should be outlined. These advantages predominantly arise in the
range of high beam slenderness ratios and in beam-to-beam contact problems, thus, exactly in
scenarios prevalent in many of the practically relevant applications considered in Section 1.1.

1.2.2.2 Potential benefits of shear-free beam elements

1) Numerical benefits in the range of high slenderness ratios: The most essential difference
between the proposed Kirchhoff-Love and existing Simo-Reissner beam element formulations
lies in the neglect of shear deformation in the beam theory underlying the former category.
This property is independent from the chosen discretization strategy. Consequently, if otherwise
comparable interpolation strategies are applied, it can be assumed that the Kirchhoff type for-
mulations require less degrees of freedom in order to yield the same polynomial approximation
quality, and eventually the same discretization error level, since no additional primary variables
are required in order to represent shear deformation. Furthermore, in the range of very high slen-
derness ratios, the influence of the shear modes on the overall beam deformation is not only
negligible, it can also be very beneficial to abstain from these high stiffness contributions from a
numerical point of view: Mechanical problems of slender beams typically lead to stiff differen-
tial equations and ill-conditioned numerical problems deteriorating for example the performance
of time integration schemes, nonlinear solvers and linear solvers. The avoidance of the stiff shear
mode contributions can considerably improve the situation. Concretely, detailed numerical in-
vestigations on several numerical test cases involving highly slender beams will be considered.
These test cases will reveal a considerably improved performance of nonlinear solution schemes
when Kirchhoff type instead of Reissner type discretizations are employed. Similar trends will be
predicted - at least theoretically - for the behavior of linear solvers and time integration schemes.

2) Smooth geometry representation: The proposed finite element formulations for geometri-
cally exact Kirchhoff beams will be based on C*-continuous interpolations of the beam center-
line. These interpolations will eventually result in smooth beam-to-beam contact kinematics, a
property that is highly desirable in order to yield efficient and robust contact algorithms.

3) Derivation of reduced models: In addition to the full Kirchhoff model, also a special reduced
model, denoted as torsion-free beam theory, will be derived in a consistent manner starting with
the general theory. This torsion-free beam model will only be valid for special problem classes
concerning the beam geometry and the external loads. Of course, the development of such a
reduced formulation is not only warrantable from a theoretical point of view. Firstly, the geome-
tries and external loads in fields of applications such as the ones considered in Section 1.1 often
fulfill the requirements in order to apply these reduced models. Secondly, the finite elements re-
sulting from such a reduced model typically feature a simplified numerical implementation and
an increased computational efficiency. Concretely, the proposed torsion-free element formula-
tion will completely abstain from rotational degrees of freedom, a characteristic that drastically
simplifies many procedures within a finite element algorithm for geometrically exact beams.

10



1.2 Geometrically Exact Finite Element Formulations for Nonlinear Beam Problems

1.2.2.3 Proposal for geometrically exact finite element formulations based on
the Kirchhoff-Love theory of thin beams

In the development of geometrically exact Kirchhoff-Love beam elements fulfilling the require-
ments stated in the last subsections, considerable novel scientific contributions originated from
the current thesis. The most important are summarized in the following (see also [156, 157]):

e Up to the best of the author’s knowledge, the first Kirchhoff type beam element formu-
lations have been developed that fulfill all the requirements of Section 1.2.2.2, especially
the first formulations that fulfill the most essential requirements 1) - 4). Concretely, two
different Kirchhoff beam element formulations are proposed: i) The first formulation is
based on a strong enforcement of the Kirchhoff constraint. Employing the concept of in-
termediate triad fields, the space-continuous problem setting is consistently derived. For
spatial discretization, a novel orthonormal interpolation scheme is proposed that fulfills
the Kirchhoff constraint in a strong manner. ii) The space-continuous theory of the second
variant is based on a weak enforcement of the Kirchhoff constraint. The discrete real-
ization of the Kirchhoff constraint is based on a properly chosen collocation strategy. In
combination with the employed smooth centerline interpolation this strategy allows for a
complete avoidance of Lagrange multipliers. While this formulation in principle allows for
arbitrary rotation interpolations, the numerical realization performed in this thesis relies
on the well-known orthonormal, geodesic interpolation scheme proposed in [58]. The ful-
fillment of the essential properties 3) and 4) by these two finite element formulations are
verified analytically as well as numerically. Furthermore, for each of these two element
formulations, two different sets of nodal rotation parametrizations are proposed. One is
based on nodal rotation vectors and one on nodal tangent vectors. While these different
choices are shown to yield identical FEM solutions, they differ in the resulting perfor-
mance of nonlinear solvers and the effort required for the modeling of essential boundary
conditions and joints. The four finite element formulations resulting from a combination of
the two interpolation schemes and the two choices of nodal primary variables are subject
to detailed comparisons with respect to resulting discretization error levels and the perfor-
mance of nonlinear solution schemes. The applied smooth centerline interpolation is based
on Hermite polynomials. Detailed theoretical and numerical investigations are conducted
on the optimal choice of the required Hermite constant in the context of geometrically ex-
act beam formulations. Moreover, the concept of Minimally Constrained Strains (MCS) is
proposed in order to avoid membrane locking effects. This concept, based on the method
of assumed strains, is especially suited for smooth interpolation schemes with increased
continuity, but still of a very general nature. This fact lays the foundation for a possible
transfer of the method to other locking phenomena and to further structural members.

e A further original contribution of this thesis is the detailed and systematic numerical
comparison performed between (the most general representatives of) geometrically ex-
act Kirchhoff-Love and Simo-Reissner beam element formulations. Specifically, resulting
spatial convergence rates, discretization error levels as well as the performance of nonlin-
ear solution schemes are compared for different beam slenderness ratios. Also some first
comparisons with inextensible Kirchhoff type formulations are considered.

11
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e From the general Kirchhoff-Love theory, a reduced torsion-free theory as well as a cor-
responding beam element realization have been consistently derived that fulfill the same
essential properties 2) - 4) as the general element formulations as long as some strictly
specified limitations concerning external loads and initial geometry as compared to re-
quirement 1) are fulfilled. A special focus lies in stringently defining the extent of validity
of this torsion-free model and assessing possible model errors in a quantitative manner.
For cases where the limitations with respect to external loads and initial geometry are ful-
filled, it is shown theoretically and verified numerically that the derived torsion-free beam
element formulation can be applied without deteriorating the overall approximation qual-
ity. Concretely, as compared to the general Kirchhoff-Love formulations, the torsion-free
formulation yields i) correct results for static problems as well as ii) good approximations
for typical, low-frequency-dominated dynamic problems with a resulting overall model
error that decreases quadratically with increasing beam slenderness ratio.

e Up to the best of the author’s knowledge, the current work represents the first application
of a Lie group time integration scheme based on optimized numerical dissipation to geo-
metrically exact Kirchhoff-Love beam elements, and one of the first applications of such
a scheme to geometrically nonlinear beam element formulations at all.

1.3 Finite Element Formulations for Nonlinear
Beam-to-Beam Contact Problems

The focus of this section lies on geometrically nonlinear, 3D finite element formulations for
the mechanical modeling and numerical solution of beam-to-beam contact problems. Consider-
ing the potential practical applications presented in Section 1.1, especially the requirements on
numerical algorithms that result from high beam slenderness ratios as well as complex contact
configurations with arbitrary beam-to-beam orientations will be emphasized.

1.3.1 Fundamental approaches

Some recent contributions focusing on the analytical modeling of contact interaction between
thin fibers are for example the investigation of ropes with single- and bi-helical fiber substruc-
tures [235], the theoretical treatment of knot-mechanics [114], or the analysis of optimal topolo-
gies and packing densities in filamentous materials based on an implicit consideration of contact
[89]. While these analytic approaches enable a detailed analysis of special geometrical configu-
rations, there is an inevitable need for robust and efficient numerical simulation tools in order to
cover general cases of complex contact configurations relevant for many applications. Despite
the large number of publications considering geometrically nonlinear beam element formula-
tions and despite the obvious need for robust and accurate beam contact formulations in many
fields of application, there exists only a comparatively limited amount of literature focusing on
beam-to-beam contact interaction. On the contrary, intensive research work has been done in the
solid contact modeling of 3D continua within the last two decades. Important aspects in this field
of research are for example the investigation of different constraint enforcement strategies (La-
grange multiplier method, penalty method, augmented Lagrange method etc.), types of contact

12
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discretization (node-to-segment/collocation-point-to-segment, Gauss-point-to-segment, mortar-
like formulations), efficient contact search and active set strategies, procedures for Lagrange
multiplier condensation, accurate integration schemes and surface smoothing strategies. Exem-
plarily, the reader is referred to the monographs [139, 233] and the review articles [173, 231].

In contrast to contact formulations for 3D continua, which are typically based on a 2D contact
traction field acting on the contact surfaces, the arguably most popular beam contact formu-
lation originally proposed by Wriggers and Zavarise [234] models mechanical beam-to-beam
contact interaction by means of a discrete contact force acting at the closest point between the
two space curves representing the contacting beams (with circular cross-sections). This model,
in the following denoted as point-to-point contact formulation, results in an elegant and effi-
cient numerical formulation, which subsequently has been extended to frictional problems con-
sidering friction forces [237] as well as friction torques [129], rectangular beam cross-section
shapes [151, 152], smoothed centerline geometries [147], constraint enforcement via Lagrange
multipliers [146] instead of penalty-based constraint enforcement and adhesion effects [135].
Quite recently, it has been applied to self-contact problems [162] and extended to contact in-
teractions of beams with rigid surfaces [164, 165]. In [33, 34], the authors supplemented the
point-to-point contact formulation by additional electromechanical and thermomechanical ef-
fects. In [185], first steps towards a large-penetration beam contact formulation have been con-
sidered. The recent contribution [122], suggests a modified penalty-type force law in order to
implicitly take into account the cross-section deformation of the contacting beams. Very re-
cently, a beam-to-beam contact formulation has been proposed that is suitable for superelliptical
cross section shapes [163]. A detailed presentation of the general point-to-point contact model
can also be found in the textbooks [148] and [233]. One of the limitations of these point-to-point
contact formulations can be attributed to the question whether contact between beams enclosing
small contact angles, i.e. nearly parallel or entangled beams, should rather be modeled by means
of a distributed line force instead of a discrete point force from a mechanical point of view?
This question has been addressed by the recent publications [149] and [150], which propose
additional contact points located in the neighborhood of the closest point in order to somewhat
distribute the contact force in such configurations. A similar approach, however based on inte-
grated contact forces, has been proposed in [224, 225]. Unfortunately, these formulations still
rely on the existence of a locally unique closest point projection between the contacting beams.

It is precisely this requirement that represents the second and essential limitation of point-based
beam contact formulations. In very general scenarios, such as in the applications mentioned in
the beginning, where arbitrary beam-to-beam orientations can occur, a unique closest point pro-
jection cannot be guaranteed for all potential contact regions. Consequently, some mechanically
relevant contact points might be missed leading to large nonphysical penetrations or even to an
entirely undetected crossing of the considered beams. In complex systems of arbitrarily oriented
thin fibers, such undetected large penetrations do not only yield a nonphysical behavior, they can
considerably deteriorate the performance of nonlinear solution schemes or prohibit convergence
at all, even if such configurations only occur at individual spatial positions and single points
in time. In Konjukhov et al. [128, 129], the solvability of the relevant closest point projection
has already been investigated by means of geometrical criteria. Nevertheless, a mathematically
concise and practically easily realizable criterion is still missing. There are only a few alterna-
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tive beam-to-beam contact formulations available in the literature today that can overcome this
limitation. The perhaps most popular alternative is the formulation developed by Durville [67—
70, 221], which is based on a collocation-point-to-segment type formulation and the definition of
proximity zones on an intermediate geometry. A second alternative proposed by Chamekh et al.
[46, 47] is based on a Gauss-point-to-segment type formulation and has primarily been applied to
self-contact problems. What these two formulations have in common is that the contact forces are
assumed to be distributed along the two beams. Consequently, these types of formulations will
be denoted as line-to-line contact formulations in the following. These formulations, especially
the one proposed by Durville, have been proven to be very robust and applicable to complex
systems of thin fibers. Nevertheless, as compared to the variety of elaborate contact discretiza-
tion and constraint enforcement strategies available in the field of 3D solid contact mechanics,
there still seems to be a considerable potential for improvements with respect to resulting contact
discretization and integration errors or the fulfillment of smoothness conditions relevant for non-
linear solution and time integration schemes. Furthermore, even though, line contact approaches
yield accurate contact models in the entire range of possible contact angles, their computational
efficiency decreases considerably with increasing slenderness ratio. Especially in the range of
large contact angles, the number of contact evaluation points required by these approaches and
the resulting computational effort is prohibitively high as compared to point-based formulations.

1.3.2 Research objectives

The mentioned shortfalls of existing purely point-based and purely line-based beam-to-beam
contact models is the motivation to further improve these two individual models and eventually to
propose a novel unified beam-to-beam contact formulation that combines the desirable properties
of the two basic formulations while abstaining from their drawbacks. In Section 1.3.2.1, the most
important requirements for such a formulation are stated. Section 1.3.2.2 summarizes the novel
and original scientific contributions resulting from the realization of this formulation.

1.3.2.1 Specification of requirements

The two central requirements on overall beam contact algorithms are efficiency and robustness:
Especially when considering complex systems with a large number of contact interaction re-
gions and when applying higher-order geometrically exact beam elements, which enable low
discretization errors already for comparatively rough spatial discretizations, the overall com-
putational effort is typically dominated by the beam contact algorithms. As argued above, for
standard beam contact formulations this is especially true when high beam slenderness ratios
and arbitrary beam-to-beam orientations are involved. Thus, efficiency of the contact formula-
tion is a key factor. Furthermore, already the solution of nonlinear systems resulting from dis-
cretized problems involving very thin beams and highly nonlinear deformation states is numeri-
cally challenging. The consideration of an additional nonlinearity in form of contact interaction,
a physically non-smooth phenomenon, further intensifies the situation. Eventually, the implicit
treatment of complex, strongly interconnected systems of thin fibers, all of them mutually influ-
encing each other, requires a nonlinear solution scheme that is highly robust but still efficient. Of
course, the resulting formulations also have to provide a sufficient degree of accuracy required
for the intended modeling purposes. These basic demands will be concretized in the following.
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1) Representation of arbitrary contact configurations: Arbitrary configurations of highly
slender beams spanning the entire range of possible contact angles and especially including
configurations that involve endpoint-to-endpoint and endpoint-to-segment contacts have to be
representable by the proposed formulations. The fulfillment of this requirement is particularly
important in order to yield a robust behavior of the nonlinear solution scheme.

2) Accurate representation of small-angle regime: Especially in the range of small contact
angles, an accurate representation of the distributed line contact forces resulting from the in-
teraction of parallel or entangled beams is important. Simple point contact formulations will in
general not yield such a model quality. Nevertheless, the required accuracy has to be achieved in
an efficient manner allowing for sufficiently rough spatial contact discretizations.

3) Efficient representation of large-angle regime: In the range of large contact angles, an
accurate resolution of contact force distributions is of secondary interest, since the latter can be
modeled as point contact forces in good approximation. Consequently, this range should not be
covered with computationally expensive line-contact formulations that typically require a very
fine slenderness-dependent spatial contact discretization in the large-angle regime.

4) Smoothness: The proposed contact formulations have to guarantee that all spatial distribu-
tions and temporal evolutions of contact forces are sufficiently smooth. This smoothness require-
ment allows for a consistent linearization of all deformation-dependent quantities and for a robust
behavior of tangent-based nonlinear solvers within an implicit time integration scheme. Further
benefits occur in terms of increased energy stability of the applied time integration scheme and
a higher approximation quality of the resulting contact force distributions.

5) Reasonable time step sizes: The physical time scales relevant for many applications lead to
accumulated transverse displacements during a simulation that are typically by several orders of
magnitude larger than the beam cross-section dimensions. The simulation of such problems is
only feasible if the time step sizes can be chosen large enough such that the displacements per
time step clearly exceed the dimensions of the beam cross-section. Many existent formulations,
however, depend on displacements per time step that are smaller than the cross-section radius.

6) Efficient global contact search strategies: For systems involving a large number of beams,
efficient global search strategies based on tight bounding boxes are indispensable in order to
reduce the number of potential contact pairs where computationally expensive projections have
to be performed. Especially for higher-order beam elements that might be subject to highly non-
linear element deformations, the creation of tight bounding boxes is a demanding task.

7) Application of only one global nonlinear solution scheme: All nonlinearities resulting from
the beam element and from the beam contact formulation have to be captured within one global

Newton scheme. Especially, no additional fixed-point iteration schemes should be required.

8) Fulfillment of essential properties: Besides the suitability for arbitrary cross-section shapes,
all requirements of Section 1.2.2.2 have also to be fulfilled by the beam contact formulations.
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1.3.2.2 Proposal for a unified beam-to-beam contact approach: The All-angle

Beam Contact (ABC) formulation

In this thesis, a novel beam-to-beam contact formulation is proposed that fulfills the requirements
stated in the last section. The most important original scientific contributions underlying this
formulation are summarized in the following (see also [158, 159]):
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e In this thesis, a mathematically concise and rigorous investigation of the existence of the

closest-point-projection required for point-to-point contact is performed. Up to the best
of the author’s knowledge, these investigations yield the first closed-form and general
analytic criterion that is valid for arbitrary contact configurations and that is based on
proper and easy-to-determine control quantities. Based on this analytic criterion, it can
be concluded that the standard point-to-point contact formulation is not applicable in a
considerable range of practically relevant contact configurations.

An improved line-to-line beam contact formulation is proposed which is inspired by some
well-known and successful techniques from contact mechanics for 3D solids. The new
beam contact formulation is based on a Gauss-point-to-segment type contact discretization
and a penalty regularization of the contact constraint. Additionally, theoretical considera-
tions concerning alternative constraint enforcement strategies by means of Lagrange multi-
pliers and alternative contact discretizations based on mortar methods are made. However,
detailed theoretical and numerical investigations of these different approaches suggest the
penalty-based Gauss-point-to-segment formulation as the variant that is most suitable for
beam-to-beam contact and as the method of choice for the applications considered in
this thesis. In contrast to existing line-to-line beam contact formulations, the proposed
approach is extended by a consistently linearized integration interval segmentation that
avoids numerical integration across strong discontinuities. It is verified by means of suit-
able numerical examples that precisely this component in combination with a smoothed
contact force law and the applied C'-continuous beam element formulation leads to a
drastic reduction of the numerical integration error. This, in turn, improves spatial conver-
gence rates and in many cases only enables optimal convergence behavior under uniform
mesh refinement. Furthermore, a criterion is derived for the minimally required number of
Gauss points in dependence on the beam slenderness ratio and the contact angle.

Based on these investigations on point and line contact models, it is concluded that, on
the one hand, the point-to-point contact formulation serves as sensible mechanical model
and very efficient numerical algorithm in the range of intermediate and large contact an-
gles while it is not applicable for small contact angles. On the other hand, the line-to-line
contact formulation provides a very accurate and robust mechanical model in the small-
angle regime whereas the computational efficiency dramatically decreases with increasing
contact angles. On the basis of these conclusions, a novel All-angle Beam Contact (ABC)
formulation is proposed that combines the advantages of point and line contact models
while abstaining from their disadvantages: The formulation is based on a standard point-
to-point contact formulation applied in the range of large contact angles while the scope
of small contact angles is covered by the newly developed line-to-line contact formula-
tion. Two different variants of a smooth model-transition procedure between the regimes
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of point and line contact are investigated, a variationally consistent transition on penalty
potential level and a simpler variant on contact force level. Both variants lead to exact con-
servation of linear and angular momentum, while only the variationally consistent variant
enables exact energy conservation. Based on analytic investigations, recommendations are
made concerning the optimal ratio between the two penalty parameters of the point and the
line contact, the required number of line contact Gauss points and the choice of the model
transition angle interval. All configuration-dependent quantities are consistently linearized
allowing for an application within implicit time integration schemes.

The resulting formulation is supplemented by contact contributions of the beam endpoints,
whereas all existing contact formulations, no matter if point- or line-based, typically search
for minimal distance solutions only within the beams interior, but not for boundary min-
ima. On the basis of a suitable numerical example, it is shown that in many applications
these endpoint contact scenarios can appear with considerable frequency. Although, the
influence of these endpoint forces on the overall solution might be of secondary interest,
it is shown that neglecting these contributions will drastically reduce the robustness of the
nonlinear solution scheme in many cases and may even prohibit convergence at all. In
dynamic simulations, a neglect of these contributions can even prohibit energy stability.

A step size control for the nonlinear solver is proposed, which allows for displacement
increments per time step that exceed the order of magnitude of the cross-section radius,
but still avoids the occurrence of undetected crossings of the contacting beams.

Furthermore, a very efficient two-stage contact search algorithm based on dynamically
adapted search segments for each finite element is proposed. This algorithm does not only
result in a very tight set of potential contact pairs, but it also enables a subdivision into po-
tential point-to-point and potential line-to-line contact pairs. The latter property is essential
in order to fully exploit the efficiency potential of the proposed ABC formulation.

Up to the best of the author’s knowledge, the current thesis represents the first work that
systematically investigates conservation properties, integration and discretization errors as
well as spatial convergence rates for beam-to-beam contact theoretically and via numerical
examples. Especially, a numerical test case suitable for line-to-line contact scenarios has
been designed and an analytic solution based on the Kirchhoff-Love theory has been de-
rived. This test case and the associated analytic solution can serve as valuable benchmark
for the proposed formulation but also for future beam-to-beam contact approaches.

All the presented algorithmic components are tailored for the most challenging, but also
practically relevant, case of arbitrary discretization orders and lengths, which typically
leads to high element slenderness ratios and deformations. The employed global search
strategies are especially suited for higher-order geometrically exact finite elements, while
beam-to-beam contact search schemes typically applied in the literature, at least implicitly,
assume the simple case of straight beam elements. This high degree of generality is the
key for a beam-to-beam contact formulation that is based on a truly C'-continuous (and
not subsequently smoothed), geometrically nonlinear beam centerline representation.
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1 Introduction

All in all, the interplay of these individual constituents will yield a novel beam-to-beam contact
formulation that combines a significant degree of robustness and universality in the treatment
of complex contact scenarios and arbitrary beam-to-beam orientations with high computational
efficiency, especially in the limit of extreme beam and element slenderness ratios.

1.4 Outline

Reflecting the core objectives of this thesis, its content can be subdivided into two main con-
stituents: The development of finite element formulations for the modeling of slender beams and
for the modeling of beam-to-beam contact. While Chapters 2 and 3 consider the space- and time-
continuous beam problem as well as its discrete counterpart, Chapter 4 focuses on the continuous
and discrete representation of beam contact. The detailed structure is given in the following.

Chapter 2 begins with a brief introduction in the so-called SO(3) group and supplies the reader
with some mathematical tools required for the treatment of large rotations. Afterwards, the geo-
metrically exact Simo-Reissner theory of shear-deformable beams is introduced. Having stated
the basic kinematic assumptions, the focus lies on deriving the strong and weak form of the
balance equations, 1D stress resultants, work-conjugated deformation measures and proper con-
stitutive relations. After having presented the Simo-Reissner theory, the degree of generality of
the considered beam models is reduced step by step throughout the chapter. Abstaining from the
shear-deformation mode yields the Kirchhoff-Love beam theory, based on strong or weak con-
straint enforcement. Then, the possibility of abstaining from the axial tension mode on the basis
of an inextensibility constraint is presented. Eventually, the chapter is completed by introducing
two reduced beam models: The isotropic beam theory is applicable to initially straight beams
with isotropic cross-sections. The torsion-free beam theory allows to additionally abstain from
the torsion mode in case certain restrictions concerning the external loads are fulfilled.

In Chapter 3, finite difference schemes for temporal discretization as well as finite element
schemes for spatial discretization are presented, with the focus lying on the latter. After briefly
introducing the basic concept of finite elements, novel interpolation strategies for the transla-
tional and rotational primary variable fields underlying the considered beam theories are pro-
posed. Moreover, the compliance of these interpolation schemes with fundamental mechanical
principles such as objectivity and path-independence or conservation of energy and momentum
is analyzed. Afterwards, from these interpolation strategies and the theory presented in the pre-
vious chapter, novel beam element formulations of different degree of generality are derived.
Eventually, the fulfillment of fundamental mechanical properties is verified numerically. More-
over, the performance of the proposed element formulations compared to standard formulations
known from the literature is evaluated on the basis of proper numerical test cases.

Chapter 4 is devoted to the development of beam contact formulations. In the beginning, the
basics of standard point contact formulations are presented and their limitations are investigated.
Thereupon, a novel line-to-line contact formulation is proposed. The benefits of this formulation
are analyzed, possible alternatives are discussed and, finally, also general limitations of line-
based models are highlighted. Based on the considered point and line contact model, a novel
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1.4 Outline

All-angel Beam Contact (ABC) formulation is derived. After discussing different variants of
this formulation and the optimal choice of the underlying parameters, the ABC formulation is
supplemented by some important algorithmic components concerning contact search, nonlinear
solution scheme, extended penalty force laws and the treatment of endpoint contact contribu-
tions. At the end of the chapter, basic properties of the developed line contact formulation and
of the novel ABC formulation are verified numerically. Eventually, four practically relevant ap-
plications are considered in order to verify the overall robustness and efficiency of the proposed
beam element and beam contact formulations and the interplay of the individual components.

Finally, Chapter 5 summarizes the most important results and accomplishments, but also gives a

brief outlook on future extensions of the proposed finite element formulations for slender beams
and their contact formulations. There, also potential future applications will be in the focus.
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2 Geometrically Exact Beam Theory

In this chapter, the essential concepts of geometrically exact beam theories, required for the
derivation of corresponding finite element formulations in the following chapter, will be derived.
One distinctive property of geometrically exact beam formulations is the presence of large ro-
tations within the associated configuration space. In order to provide the theoretical basis for
subsequent derivations, in the following Section 2.1, the SO(3) group of large rotations as well
as possible parametrizations will be introduced. In Section 2.2, the most general type of geo-
metrically exact beam formulations considered in this thesis, the Simo-Reissner theory of thick
(shear-deformable) beams, will be presented. The underlying continuum theory will be identi-
fied as a 1D Cosserat continuum exhibiting pointwise six degrees of freedom, three translational
and three rotational ones. Furthermore, also the relation between the 1D Cosserat continuum
theory and the 3D Boltzmann continuum theory will be addressed at this point. Subsequently,
in Section 2.3, the general theory will be restricted to the Kirchhoff-Love theory of thin (shear-
free) beams. There, different methodologies of imposing the Kirchhoff constraint of vanishing
shear strains in a strong or weak sense, but also the possibility of further restricting the theory by
means of additional inextensibility constraints, will be investigated. Finally, in Section 2.4, re-
duced variants of the general Kirchhoft-Love theory will be presented which represent the basis
for considerably simplified beam elements specified in the subsequent chapter. In this section,
the main focus will lie on investigating the range of applicability of these reduced theories.

2.1 The Rotation Group SO(3)

The category of beam theories considered throughout this thesis assumes the beam cross-sections
to be rigid. Consequently, the cross-section kinematics are point-wise uniquely defined by six
degrees of freedom, three translational ones representing the position vector of the cross-section
centroid and three rotational ones describing the cross-section orientation. Thereto, an orthonor-
mal triad consisting of the base vectors g;, g, g3 € R is attached on the beam cross-sections.
Furthermore, a right-handed inertial Cartesian frame E;, E,, E; € R? associated with the ma-
terial configuration and a corresponding right-handed inertial Cartesian frame e;, e,, e; € R°
of the spatial configuration are introduced. Nevertheless, for simplicity, it is assumed that both
frames coincide, thus e; = E; for 7« = 1,2, 3. Now, the rotation from the global frame E; onto
the local frame g; is described via the orthogonal transformation A € SO(3) as follows:

gi=AE; with A=g;®E; = (g1,883)g, for i,j=123. (2.1)

Throughout this thesis, the summation convention over repeated indices holds. Furthermore, no
distinction is made between co- and contravariant bases and no index notation with sub- and
superscripts for associated base vectors and components is applied as long as Cartesian systems
are considered. According to (2.1), rotations are linear transformations in R3, thus allowing for a
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2 Geometrically Exact Beam Theory

corresponding matrix representation. Moreover, the columns of the matrix representation when
expressed with respect to the global (material) basis E; are represented by the (spatial) base
vectors g;. Here and in the following, the index near a matrix (for example the index (.)g, in
equation (2.1)) denotes the basis in which the associated tensor is represented. Furthermore,
from (2.1) it is obvious that A is a two-point tensor. In the context of geometrically exact beam
theories, A acts as push-forward operator (see e.g. [155]) between material and spatial objects.
From a rather mathematical point of view, the rotation tensor A can be identified as an element
of the Special Orthogonal group SO(3) of orthogonal transformations according to

SO(3) == {A € R¥|ATA = I3,det(A) = 1}, (2.2)

under the action of non-commutative multiplication SO(3)xS0(3)—SO(3), As=A1As#As A4
with inverse element A~'=ATand identity element I3. Here, det(.), (.)7 and (.)~! are the de-
terminant, transpose and inverse. I is a 3x3 identity matrix. The SO(3) group forms a smooth
differentiable manifold. Consequently, it can be classified as Lie group with tangent space

A € TAS0(3) := {S(a)A|S(a) € so(3)}. (2.3)

Here, so(3) denotes the set of skew symmetric tensors with S(a)b =ax b for a,b € R3. The
isomorphism between so(3) and R? enables a unique expression of S(a) € so(3) by the vector
a € N3 denoted as axial vector. By inserting the special choice A =13 into (2.3) it can easily be
verified that so(3) can be identified as the tangent space to SO(3) at the identity:

s0(3) := T1S0(3) = {S(a)|S(a) = —S(a)’ Va € R*}. (2.4)

In the nomenclature of Lie groups, so(3) is also denoted as Lie algebra of SO(3). The Lie group
SO(3) and its Lie algebra so(3) are related by the exponential map exp (.): so(3) — SO(3):

S(a)? S(a)?
(2!) Tty

exp(S(a)) :=I3+S(a)+ (2.5)
So far, the rotation group SO(3) has been introduced without stating a specific parametrization
of the rotation tensor A. In the following two sections, two possible parametrizations, which will
be useful in the development of beam element formulations according to the Simo-Reissner and
Kirchhoff-Love theory, are presented. Further mathematical details about Lie groups in general
can e.g. be found in [30]. For fundamentals of the SO(3) group and the treatment of large ro-
tations, the interested reader is referred to [4] and [134] or also to [43, 111, 204, 208] for the
treatment of large rotations in the context of geometrically exact beam element formulations.

2.1.1 SO(3) parametrization via rotation vectors

In (2.1), the rotation tensor A € 13 has been introduced without a specific parametrization.
However, it can be shown that only three of the nine components of the rotation tensor are inde-
pendent [4, 217], which is a direct consequence of the six orthonormality constraints present in
the SO(3). There exist various parametrizations of the rotation tensor such as rotation (pseudo-)
vectors, Euler angles or Rodrigues parameters that are based on a minimal set of three parame-
ters. Also four-parametric representations of the rotation tensor such as quaternions have proven
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2.1 The Rotation Group SO(3)

to be very useful for practical purposes. Within this thesis, two different parameterizations will be
employed: The one presented in this section is based on rotation vectors 1p € t%. In Section 2.1.2,
an alternative parametrization especially suited for Kirchhoff formulations is presented. The ro-
tation vector parametrization can explicitly be given via the well-known Rodrigues formula:

A1) = exp(S(¢h)) = [T+ sinS(ey) + (1 — cos)S(eqy)S(ey)] - (2.6)

Here, ¢ = ||1|| represents the scalar rotation angle and e, = 1)/||¢|| the axis of rotation.
Throughout this thesis, ||(.)|| denotes the Euclidean norm in $?. As indicated by the notation
exp(S(v))), equation (2.6) represents a closed-form representation of the exponential map ini-
tially introduced in (2.5) of the last section. The equivalence of both representations can easily
be shown by making use of the series expansions of sin (.) and cos (.) (see e.g. [56]). The ro-
tation vector of a given rotation tensor can for example be extracted by employing Spurrier’s
algorithm [214]. In order to simplify notation, throughout this thesis the following abbreviation
rv(.):=(Sloexp~')(.) is used whenever this extraction shall be formulated explicitly:

Pv=1v(A) < exp(S(y))=A. (2.7)

However, it has to be noted that a unique extraction of the rotation vector is only possible within
the interval ¥ €] — m, 7| If a subsequent rotation exp(S(A®)) by a finite angle A@ € R is
superimposed onto the given triad A, the resulting triad A,, follows the relation:

An = exp(S(3hn)) = exp(S(3h+ A1) = exp(S(A)) exp(S()) # exp(S(wh+A8)). (2.8)

It has to be emphasized, that the rotation vectors associated with two successive rotations are
not additive, i.e. ¥, # ¥ + A0 (see e.g. [56] for the actual calculation of /,,), consequently
A6 is commonly referred to as multiplicative rotation increment. Besides this non-additivity, the
nonlinear manifold SO(3) is also non-commutative with respect to multiplication of its elements.
In this context, one can formulate the counterpart to the left-translation update formula (2.8),
which is based on right-multiplication with a multiplicative rotation increment A® # A#:

A = exp(S(¢n)) = Aexp(S(AB)) = exp(S(¢)) exp(S(AO)). (2.9)

When applying the compound rotation A,, according to (2.9), A® directly acts on a non-rotated,
material object, while A@ as appearing in (2.8) acts on a rotated, spatial object. Consequently,
A® can be identified as the material counterpart of the spatial object Af. With the help of the
transformation properties of the tensors S(.) and exp(S(.)) according to

AS(P)AT = S(AY) — Aexp(S(¥))AT = exp(S(AY)) ¥V ¢ € R, A € SO(3) (2.10)
the two multiplicative rotation increments can be related by the following rule
A, = Aexp(S(A®)) = Aexp(S(AB))ATA = exp(S(AA®)A — A = AAO. (2.11)

Thus, A@ and A® are related by the push-forward operator A. Replacing the finite rotation A8
by the infinitesimal spatial quantity /0, denoted as multiplicative rotation vector variation or spin
vector, yields the following expression for the variation of the rotation tensor A:

SA = di _oxp (¢S(90))A = S(SO)A or g, = 0xg;. (2.12)
€ le=
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2 Geometrically Exact Beam Theory

Thus, as already introduced in (2.3), the skew-symmetric matrix S(60) € so(3) of the spin
vector describes infinitesimal variations 6 A of A within the tangent space T4 90(3). Similarly
to (2.12), the variation 6 A can be expressed by the material spin vector /® = AT§0:

oA = di Aexp (60O) = AS(§O). (2.13)
€le=0

Expressing the spin vectors 0@ and 48 in the associated frames E; and g;, respectively, yields:

Thus, the components of the spatial spin vector expressed in the local basis g; are identical to
the components of the material spin vector expressed in the global basis E;. This relation also
holds for all the other pairs of spatial / material quantities considered in this thesis (see e.g.
[204]). Based on the defining equation (2.13) and the representation of skew-symmetric tensors
by means of the Levi-Civita-Symbol ¢;;, the components of S(6®) can be determined:

——

=:5,;(6©)
For later use, the components 6©; shall be expressed by g; and dg;. From (2.15), it follows:
001 = g3082 = —g3083, 00, = g10gs=—g3081, 003 = g30g1=—g(0g.  (2.16)

It has already been stated, that the finite rotations occurring e.g. in (2.8) are not additive. How-
ever, this holds even for the infinitesimal rotations, i.e. 0 # d1). A relation between infinitesimal
additive and multiplicative increments is given by the tangent operator T according to

=: _ T w—/Z 1 r\ 1
o= T8, T = SIS+ 2 (T Sswisw) - gsw). ean)

The inversion of (2.17), expressing multiplicative by means of additive increments, is given by:

(& P P ¥?

For details on the derivation of the transformations T and T}, the interested reader is e.g. re-
ferred to [43, 56, 111, 209]. While the rotation vector parametrization presented so far represents
a well-known tool in the formulation of geometrically exact beam elements of Simo-Reissner
type, in the following section, an alternative parametrization of large rotations will be proposed
which offers some advantages in the description of Kirchhoff type beam element formulations.

56 = T lop, T = - (1—M) S(w)S(ap)T 4 W ImeosWg (1

Remark: Formally, one could also introduce the material rotation vector ¥ = AZ1). How-
ever, since ) is an eigenvector of A =exp(S(1)) (and also of AT) with eigenvalue one,
both variants are identical, i.e. ¥ = A1y =), and will not be further distinguished.
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2.1 The Rotation Group SO(3)

2.1.2 SO(3) parametrization via "smallest rotation” triads

The alternative parametrization considered in this section consists of four degrees of freedom
(t, ) with t € 13 and ¢ € R. In the context of Kirchhoff beam element formulations presented
later in this work, t will be the non-unit tangent vector aligned to the space curve representing
the beam centerline. Due to the Kirchhoff constraint of vanishing shear strains, the first base
vector g of the cross-section triad A = (g1, 82, g3)E,, can be expressed by this tangent vector:

t
g1 = W (2.19)

Based on the tangent vector t and an arbitrary given triad g;, one can determine a triad g,;;, in
the following denoted as interMediate or Medium triad (index M), that results when the triad g;
is rotated onto the tangent vector t via the “Smallest Rotation” (SR) as e.g. described in [56].
This mapping can be interpreted as the rotation of a given triad g; such that its first base vector
g, is rotated onto the given vector t and the corresponding rotation angle is minimized. Since
the associated rotation angle A@gp is perpendicular on the initial and on the resulting first base
vector, i.e. AQL,g = AB% g, =0, the smallest rotation is commonly also denoted as “rotation
without twist”. The resulting base vectors can be represented by the following expressions:

gngl
1+glg

t _ nggl

gvi=8g1=7—, 8m2=82———+—(81181), Emu3=83— gi+g1). (2.20)
M1 1 H H M2 2 1+g{g1( 1 1) M3 3 ( 1 1)

In order to shorten notation, the abbreviation sr(.) is introduced for the SR mapping of (2.20):

An = (8ar1, 82, 8us)E; =: st(A, g1)  with A = (81,82, 83)E.- (2.21)

In principle, the triad g; can be chosen arbitrarily, for example according to g; = E;. How-
ever, by having a closer look at the equations above, one realizes that a singularity occurs for
1+gTg; =0, i.e. when the vectors g; and g; are antiparallel. Of course, in practical simulations,
the scenario g; = —E; can easily occur, resulting in a non-defined triad A ;. Consequently, al-
ternative choices for the triad g; are required where this singularity will not occur. In the context
of a temporally discretized problem setting, the triad at a given time step ¢,, could for example be
chosen as the intermediate triad at the subsequent time step, i.e. g;(t,) =gasi(tn_1), resulting in
an Updated Lagrangian type of formulation. In this case, the singularity can only appear, if the
rotation per time step exceeds 180°. In general, reasonable time step sizes employed in practical
simulations will not allow for such large rotations per time step, thus recommending this choice
for g;. In Appendix A.1, it is shown that each mapping that defines a triad based on a given tan-
gent vector t contains a singularity. In this context, a singularity appearing at a rotation of 180°
can be considered as an optimum since such a rotation already describes the maximal difference
in orientation two given triads can have. Subsequently to the definition of an intermediate triad
A s according to (2.21), the cross-section triad g; can be defined based on a relative rotation of
the intermediate triad A j; with respect to the tangent t by an relative angle of :

A = exp(S(pg1))A . (2.22)
Alternatively, this simple 2D rotation can also be noted for the individual base vectors:

g1 = gm1, 82 =8m2C08 Y + a3 Sinp, g3 = Ear3 COS Y — G2 SIN Q. (2.23)
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2 Geometrically Exact Beam Theory

Thus, the fourth degree of freedom (DoF) ¢ introduced above is simply the relative angle that
rotates the intermediate triad Aj; onto the frame A by means of a rotation with respect to the
tangent vector. Equations (2.20) and (2.22) uniquely define a triad A parametrized by the four
degrees of freedom (t, ). Evidently, one of these four degrees of freedom, namely the norm
||t|| of the tangent vector, will not influence the triad orientation. However, as it will turn out
in the next sections, the non-unit tangent vector t is a quantity that directly results from the
beam centerline description. Thus, the only additional degree of freedom introduced in order to
describe the triad orientation is the relative angle ¢ and consequently, the proposed type of triad
parametrization is not redundant. For later use, also the spatial spin vector 60 shall be expressed
by means of additive increments (dt, d¢) of the four parameters (t, ). Therefore, this vector is
split into a component 66 parallel to g, and a component /0, perpendicular to g; as follows:

00 = 00| + 00, = 60,8, + 00, . (2.24)

Throughout this thesis, the indices (.); and (.), of a vector will denote the components of
the vector which are parallel or perpendicular to the vector g, respectively. Taking advantage
of (2.12), the following relation can be derived for the variation of the vector g;:

(Sgl =00 x g1 = (501_ X g1. (225)

Permutation of the orthogonal vectors occurring in (2.25) yields an explicit expression for 60 :

t t t x ot g xoit )
80, =g x g :—xd( ): = with 0t € R3. (2.26)
R T | [It]] [It]]? |[t]]

In a next step, equations (2.16) and (2.23) can be exploited in order to formulate 6O :
001 = 3082 = 8hr308m2 + 0 =: 0O + 0 (2.27)

By variation of the basis vector dg 2 defined in (2.20), the tangential component 6O, of the
spin vector associated with the smallest rotation intermediate triad can be determined to:

(g1x8g1)" g7S(g1) ot
0Oy =g = —— =] ot — 06,=T ot+0o. 2.28
T irelm Y Leglm O b Ot e (229

In the derivation of (2.28), use had been made of the fact that the base vectors of the triad A do
not depend on the current configuration and the corresponding displacement state, i.e. g; = 0.
Inserting (2.26)-(2.28) into (2.24) yields the following expression for the spatial spin vector:

g ®gl
1+glg

~~
:ZTgt

1 t
00 = gi10p + n (I - ) S(g1)ot with g = o t:=|[t]]. (2.29)

So far, the four degrees of freedom (t, ) have been applied in order to uniquely describe a
tangent vector t, defined by its orientation and its length, as well as the orientation of a triad
A = (g1, 82,83) aligned parallel to this tangent vector. In the following, these two geometric
entities, the non-unit tangent vector t and the triad A, shall be described by the alternative set of
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2.1 The Rotation Group SO(3)

four degrees of freedom (1, t). Here, 1) represents the rotation vector associated with the triad
A via the Rodrigues formula (2.6) and ¢ := ||t|| is the norm of the tangent vector. It can easily be
derived, that the following transformations hold between these two sets of degrees of freedom:

A = exp(S(v)), g1 = AE, t =tgi1, exp(S(pg1)) = Asr(A,g1) ™" (2.30)

Based on (2.30), the set (t, ¢) can be calculated from (), ¢) and the other way round. Next, also
a transformation rule between the variations (dt, dy) and the variations (08, dt) associated with
the set (), t) shall be derived. The variation dt can directly be written in terms of dt:

tT
5t = ollt]| = 751; =gl ot. (2.31)
Combining (2.29) and (2.31) yields a transformation between the sets (68, 6t) and (Jt, J¢):
00 o Tgt g1 ot
()= (T m)(2) o
—_———
::T;;

By using the auxiliary relations 6t = §(tg;) = dtg +tS(00)g; = dtg; —tS(g1)00 as well as
S =gl 50 —00 1, the inverse transformation of (2.32) can be derived in an analogous manner:

ot \ [ —tS(g1) & 50 . (gt
( 5 ) = ( T, 0 5t with T g = T+ el e (2.33)

J/

-

::TIM

Again, the mapping T, and the inverse T} exist provided that g, # —gj, i.e. for rotations per
time step which are smaller than 180°. The mappings Tj; and T, transform between multi-
plicative rotation increments and additive increments of the chosen parametrization. Thus, they
represent the analogon to the transformations T and T~ in case of a rotation vector parametriza-
tion (see Section 2.1.1). Since the Kirchhoff constraint of vanishing shear deformation solely
influences the component 48 ; of the spin vector, it will in the following sections often be useful
to express only this component by additive increments dt, while the tangential spin vector com-
ponent 6O, instead of the additive increment d¢ is regarded as independent primary variable. In
this case, relations (2.32) and (2.33) simplify and yield the map between (66, §t) and (t,00,):

() -5 ) () ()-8 ) () e

J/ N J/

-~

o -
=T-1 =T

Again, T and T represent the corresponding mappings. Since these mappings solely trans-
form the component 46 |, they are independent from the actual definition of the triad A ;. Con-
sequently, the index M has been omitted for the transformation matrices T and T .
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2 Geometrically Exact Beam Theory

2.2 Simo-Reissner Beam Theory

In this section, the fundamentals of the geometrically exact Simo-Reissner beam theory based on
the work of Reissner [183, 184] as well as Simo and Vu-Quoc [204, 208] will be presented. The
results of this section will provide an essential basis for the subsequent derivation of Kirchhoff
type beam formulations. As already explained in the beginning of this thesis, beam models can
be classified in intrinsic, induced and semi-induced beam theories. Based on this notion, the
geometrically exact Simo-Reissner beam theory can be identified as a semi-induced beam theory:
In [204], 1D representations of the strong and weak form of the balance equations based on
internal, external and inertia forces as well as work-conjugated strain measures have been derived
that are fully consistent with the 3D continuum theory. However, in contrary to a fully induced
theory, the constitutive relations are directly postulated on the 1D level. As already argued in
[58] and in accordance with derivations in [3], [153] or [172], a consistency of the geometrically
exact beam theories and the corresponding three-dimensional theory of continuum mechanics in
the sense of a fully induced beam theory can only be assumed as long as small local strains are
considered. In order to confirm this statement, in Section 2.2.5, a derivation of the constitutive
relations between 1D stress resultants and deformation measures from their 3D counterparts
is given. First, the basics of the geometrically exact Simo-Reissner beam theory in terms of
basic kinematic assumptions, strong and weak form of balance equations, stress resultants, work-
conjugated deformation measures and constitutive relations are presented in Sections 2.2.1-2.2.4.

2.2.1 Basic kinematic assumptions

Throughout this work, prismatic beams with anisotropic cross-section shape are considered. In
the initial (unstressed) configuration, the beam centerline, which is defined as the line connecting
the cross-section centroids, is described by the space curve s — ro(s) € R>. Here and in the
following, the index O of a quantity refers to the unstressed, initial configuration. Furthermore,
s € [0,1] =: £, C R is an arc-length parametrization of the curve and [ € R the beam length
in the initial configuration. The description of the initial configuration is completed by a field
of right-handed orthonormal triads s — go1(5), 8o2(5), 8o3(s) € R? attached to the beam cross-
sections, with gy, being the unit tangential vector to the initial centerline, i.e

go1(s) = ry(s), (2.35)

and with the base vectors go2(s) and go3(s) coinciding with the principal axes of inertia of the

cross-section at s. Throughout this work, the prime (.)) = “£(.) denotes the derivative with

respect to the arc-length parameter s. The rotation from the global frame E; onto the local frame
goi(s) is described via the orthogonal transformation s — Aq(s) € SO(3) as introduced in (2.1):
gOi(S) = Ao(S)EZ with Ao(S) = g[)j(S) (%9 Ej for ij = 17 2, 3. (236)

The basic kinematic assumption of the geometrically exact Simo-Reissner theory allows to de-
scribe the initial spatial position of an arbitrary material point according to

X (8) = ro(s) + s2802(8) + s3803(s) with s=(s,s2,53)" =(s1,52,53)" . (2.37)
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2.2 Simo-Reissner Beam Theory

where (9, s3) represent convective coordinates describing the position of a material point within
the cross-section. In order to simplify the notation for subsequent derivations, the convective
coordinate vector 4 = (s, Sa, 83)T as well as the redundant name s; := s for the arc-length s
has been introduced. The initial configuration s — Cj := (ro(s), Ao(¥o(s))) € R* x SO(3)
of the beam is therefore uniquely defined by the initial position vector field ry(s) of the cross-
section centroids and the field A((s) describing the initial orientation of the beam cross-sections.
Correspondingly, the deformed configuration of the beam centerline at time ¢ € ¢ is represented
by the space curve s,t — r(s,t) € R3. However, as consequence of axial tension, s is not an
arc-length parametrization of the current deformed centerline r(s, ¢) any longer, thus leading to

o) =1 but [|r'(s, )] # 1, (2.38)

in general. The orientation of the beam cross-section in the deformed configuration is specified
by the current orientation s,t — g1(s,1),82(s,1),g3(s,t) € R3 of the attached right-handed
orthonormal triad. The base vectors g(s,t) and g3(s,t) are oriented along the same material
fibers, i.e. the principal axes of inertia of the cross-section, as the base vectors goa(s) and go3(s)
in the initial configuration. For that reason, g;(s,t) will also be denoted as material frame or
material triad in the following. The base vector g;(s,t) := ga(s,t)xgs(s, t) completes the triad.
The latter is perpendicular to the cross-section but in general not tangential to the deformed
centerline due to shear deformation. The current frame g; (s, t) is again characterized by

gi(s,t) = A(s,t)E; with A(s,t) =g;(s,t) @ E; for i,j=123. (2.39)
Based on the basic kinematic assumption, the current spatial position of a material point reads:
x(8,t) = 1(s,1) + s282(s, ) + 5383(s,1). (2.40)

Together, equations (2.40) and (2.37) represent the Bernoulli assumption of rigid cross-sections.
The deformed configuration s, t — C' := (r(s,t), A(1p(s,t))) € R x SO(3) is uniquely defined
by the current position vector field r(s, t) of the cross-section centroids and the field A(s,t) de-
scribing the current orientation of the beam cross-sections. According to Section 2.1, A(s, t) can
be represented by three rotation parameters (e.g. by a rotation vector (s, t)), leading to point-
wise six, three translational and three rotational, degrees of freedom. The kinematic quantities
defining the initial and deformed configuration are illustrated in Figure 2.1.

903 ro(s) — 7(s) gsi

PZ L) Ao(s) — A(s) i lr 92
s go1 ; | 9

€ /

€]

Figure 2.1: Kinematic quantities defining the initial and deformed configuration of the beam.
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2 Geometrically Exact Beam Theory

In order to simplify notation, the time argument ¢ will be dropped in the following derivations.
Later in this section, the arc-length derivative of the base vectors g;(s) will be required in order
to define deformation measures. Similar to (2.12), this derivative can be formulated as

A (s) =S(k(s))A(s) or gi(s) =k(s) x gi(s), (2.41)

where k(s) is commonly referred to as spatial curvature vector. By means of the orthogonal trans-
formation A (s), itis straightforward to employ the material curvature vector K(s) := AT (s)k(s):

A'(5)=8(k(s))A(s) = A(s) A (s)S (k(s)) A(s) = A(s)S(A"(s)k(s)) = A(5)S(K(s)). (2.42)
From equations (2.41) and (2.42), explicit calculation rules for the curvatures can be derived:
S(k(s))=A'(s)AT(s), S(K(s))=AT(s)A'(s) K= KE; k= K,g,. (2.43)
In a similar manner, the spatial and material angular velocity vectors w and W are defined:
S(w(s))=A(s)AT(s), S(W(s))=AT(s)A(s) W =WE;, w=W,g,. (2.44)
For completeness, the spin vectors, which have been introduced in Section 2.1, are repeated here:
S(50(s))=0A(s)AT(s), S(9O(s))=AT(5)5A(s) 00 = 00,E;, 60 = 00,g;. (2.45)

Throughout this thesis, the dot (.) = £(.) denotes the derivative with respect to the time ¢.

For later use, some important relations between these quantities will be derived. In order to
shorten notation, the index s will often be omitted in the following. Applying the Young theorem
(A’)=(A)" and making use of the vector identity S(a)S(b)—S(b)S(a)=S(S(a)b) yields:

- (AS(K)) = AS(W)S(K)+AS(K)= - (AS(W) ) =AS(K)S(W)+AS(W')  (2.46)

— S(K)=S(W')+S(K)S(W)-S(W)S(K) - K=W' -WxK.
In a similar manner, a relation between the spatial counterparts of K and W can be derived:
A’ A
d  —"— . o d —— ,
7 ( S(k)A) = S(k)S(W)A*FS(k)A:% ( S(w)A ) =S(w)S(k)A+S(w')A (2.47)
— S(k)=S(w')+S(w)S(k)-S(k)S(w) — k=w'+w x k.

It is emphasized that the final relations (2.46) and (2.47) only differ by a ”-”. Similar relations
can be derived between (2.43) and (2.45) or between (2.44) and (2.45). The final results are:

k=w +wxk, ok = 60’ + 00 x k, ow =00 + 60 x w,

. . 2.48
K=W -WxK, K=00—-60xK, §W=50—50xW. (2:48)

After having stated the basic kinematic assumptions of the geometrically exact beam theory, in
the following section, stress resultants and the strong form of equilibrium will be presented.
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2.2 Simo-Reissner Beam Theory

2.2.2 Stress resultants and strong form of equilibrium

With f and m denoting distributed external forces and moments per unit length and f, and m,
representing the force and moment contributions due to inertia effects, the strong form of the
equilibrium equations for the considered beam problem reads (see e.g. [3, 184, 204]):
f'+f+f,=0,
. —f th (2.49)
m +1r xf+m+m,=0.

In (2.49), f and m represent the force and moment vector resulting from the internal stresses
acting on the beam cross-section area A. According to [204], these spatial objects are defined as:

f(s) ::/@(5752,33>‘E1d32d83:/tl(S,SQ,Sg)d82d33,
A A

(2.50)
m(s) := / (x(s, 82,83) —r(s)) Xt1(8, S2, $3)ds2ds3.
A

J/

vV
=:xA

In the definition (2.50), the first Piola-Kirchhoff stress tensor & has been introduced. Based on
the Piola surface stress vectors 1, £, and £3, this two-point tensor can be formulated as follows:

@(S, S9, 83) = tl(S, S9, 83)®E1 + tQ(S, S9, 83>®E2 + t3(8, S9, 83)®E3. (251)

It should be noted that a detailed introduction into 3D continuum mechanics lies beyond the
scope of the present work, which focuses on 1D continuum theories. For a thorough definition of
the Piola-Kirchhoff stress tensor P (s, so, s3) and further objects defined in the field of 3D solid
continuum mechanics required in the subsequent Section 2.2.5, the interested reader is exem-
plarily referred to the text books of Bonet and Wook [29], Gurtin [93], Holzapfel [98], Marsden
and Hughes [155], Odgen [169] or Simo and Hughes [206]. Similar to 3D continuum mechan-
ics, also a material form of the 1D equilibrium equations can be derived. This is achieved by
inserting the material stress resultants F:=A’f and M:=A"m into the balance equations (2.49).

2.2.3 Weak form and objective deformation measures

In this section, the balance equations already given by the strong form (2.49) shall be transferred
into the associated weak form. In the following, it is assumed that the reader is familiar with the
Method of Weighted Residuals (MWR) and its mechanical interpretations as Principle of Virtual
Work (PVW) or as Principle of Minimum of Total Potential Energy (PMTPE). Details on these
principles can for example be found in the textbooks of Bathe [13], Hughes [103], Zienkiewicz
and Taylor [242] and Zienkiewicz [243]. Following the PVW, the admissible variations, i.e. in-
finitesimal small and arbitrary (additive or multiplicative) changes of the current configuration
s — 0C := (0r(s),00(s)) € N3 x N3 that are compatible with the employed boundary condi-
tions are introduced. Here, 67(s) € R? represents the vector of (additive) virtual displacements
and 00(s) € 13 the vector of (multiplicative) virtual rotations, also denoted as spin vector. By
multiplication of (2.49) with /= and §0 and integration by parts, the spatial weak form is derived:

G= /l (59’Tm+ (61— 60 x 1) f— 56T (th +m,) —5rT(f+fp)) ds— [&Tf(,]— [50ng] 0. (2.52)

o

0
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2 Geometrically Exact Beam Theory

Here, f, and m, denote external forces and moments at the Neumann boundary [, of the con-
sidered beam. According to the principle of virtual work, the variations of the (so far unknown)
deformation measures < and w being work-conjugated to the spatial stress resultants f and m
can be identified by means of work-pairing. If the spatial strong form (2.49) is chosen as basis
for this procedure, the spatial deformation measures ~ and w can be identified as

Sy = 0r' — 00 xt', dw =056, (2.53)

where the “objective variation” §, of an arbitrary vector a € i? is defined as the objective part
doa:=da—00 xa (see e.g. [204]). The term 00 x a represents the variation of the base vectors:

) 560 %

If the material counterpart of equation (2.49) is chosen as starting point (see e.g [58]), the varia-
tion of the (so far unknown) material deformation measures I' and 2 being work-conjugated to
the material stress resultants F' and M can be determined in an analogous manner:

0T = AT(Y +1' x 60), 69 = A0 (2.55)

Alternatively, the same results can be derived by starting with the spatial / material balance
equations of the 3D-continuum instead of the spatial / material 1D-resultant equation (see [204]).
It can be shown that the associated antiderivatives of the spatial differential quantities are:

v=r'—gi, S(w)=AA"-AAIAAT=S(k)-S(AAlky) — w=k—AAlky. (2.56)
Similarly, the antiderivatives of the material differential quantities can be derived as:
F=AY—E;, S(Q)=A"A'-AlA[=S(K)-S(K,) — Q=K-K,. (2.57)

It is easy to verify that all of these deformation measures vanish for the stress-free initial config-
uration, i.e. when the relations A=A, r’' =r{, and g, =go; =1, = AoE; are valid. Mechanically,
the components of I' represent axial tension (first component) and shear deformation (second
and third component). The components of €2 represent torsion (first component) as well as bend-
ing (second and third component). While the current and initial material curvature vector can be
subtracted directly in (2.57), a rotation of the initial spatial curvature vector kg from the initial
basis gy, onto the current basis g; is necessary in (2.56) in order to fulfill objectivity.

Remark: In [204], the orientation of the material frame g; was described via a rota-
tion A of the initial local frame goi, thus A = AAl = g; ® gy;. The corresponding
pull-back mapping via A is the one that naturally appears, e.g. in the initial spatial cur-
vature vector of equation (2.56) or when the corresponding spatial / material quantities
(e.g. spatial / material stress resultants) of the beam theory are deduced from their spa-
tial / material counterparts of 3D continuum mechanics (e.g. Cauchy stresses / 2"? Piola
Kirchhoff stresses, see Section 2.2.5). In this case, the components of spatial quantities
expressed in the current material frame g; are identical to the components of their material
counterparts expressed in the initial material frame g;. This pull-back operation can be
interpreted as a rotation of spatial quantities from the current, curved beam configuration
onto the initial, curved beam configuration. By contrast, the pull-back operation via A
as applied here, or e.g. in [58], can be interpreted as a rotation of spatial quantities from
the current curved beam configuration onto a fictitious, in general not stress-free, straight
beam configuration, in which the material frame g; coincides with the global frame E;.

32



2.2 Simo-Reissner Beam Theory

2.2.4 Constitutive relations

Finally, constitutive relations between the material stress resultants M and F and the deformation
measures 2 and I' are required. The simplest constitutive law of this type and the one considered
in this thesis is represented by a length-specific hyperelastic stored energy function according to:

- 1 1 OIl; oI,
L, (Q,T)=-Q"CyQ+=-TTCpI, M="2=Cy-Q, F=""2—_CpTI. (258
mt(£2,T) 5 M +2 rl, 90 M-8, T F ( )
Here, the material constitutive tensors C,; and C have the following diagonal structure:
Cyr = diag[Cyp1, Cho, CM?)]EZ, and Cp = diag[Cr1, Cps, CFs]Ei- (2.59)

In the following, diag [A B C’} , represents a diagonal matrix with entries A, B, C' € R. Again,
the index E; denotes the basis in which the associated tensor is represented. The six constitu-
tive constants Cy;, Cp; € R can either be determined experimentally or derived from the 3D
continuum theory. If the latter approach is chosen (see e.g. Section 2.2.5), the constants can be
expressed by quantities related to the beam geometry and the hyper-elastic material law of the
3D-continuum. The simplest section constitutive model of this kind yields the relations

Ci=GIlr, Cuys=FEl, Cuys=FEIl3;, Cp=FEA, Cp=GA;, Cpz=GAs. (2.60)

Here, F/ and G are the Young’s modulus and the shear modulus, A, A, and Aj; are the cross-
section and the two reduced cross-sections, I and I3 are the two principal moments of inertia
and I7 is the torsional moment of inertia. The push-forward of these material relations yields:

m = c,, w and f=cspvy

. . (2.61)
Cmn = dlag [CMI; CM27 CMg} e and Cr= dlag [OFh OFQ, Cpg] g

Similarly to (2.58), the length-specific kinetic energy I, of the beam can be formulated:

= N L .
Hkin(W,P)Z§WTCPW—|—§pAI'TI‘, Cp = ACpAT’ Cp:dlag[p([2+13),p[z,pfg}Ei. (262)
=:Ip
Here, p is the mass density, C, the material inertia tensor and w represents the spatial angular
velocity vector, which has already been introduced in (2.44). From the kinetic energy (2.62), the
spatial vectors of length specific linear momentum 1and angular momentum h can be derived:
= pA h:=
or ow
Similar to the length-specific external forces f and rh, also the length-specific energies I1;,; and
Hkm and the length-specific linear and angular momentum 1 and h have been furnished with the
(.)-symbol. The total counterparts f.,;, M., I, 1in, 1 and h are obtained by integration:

1= =c,w=AC,A"w=AC,W. (2.63)

l l

£ / , mm::/(r X f'—l—ﬁl) ds—+ [r X fo+mg]r,

0
z z . (2.64)

0
!
Hmt::/ﬁmtds, Hkm::/ﬁkmds, l::/Ids, h::/(thrxi)ds.
0

0 0 0
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2 Geometrically Exact Beam Theory

The additional subscript (.).,; has been applied to the integrated external forces and moments
in order to avoid a confusion with the stress resultants f and m. Furthermore, the origin of the
global coordinate frame has been chosen as reference point for the total external moment m.,,
and angular momentum h. These definitions will be required for subsequent derivations. Next,
based on (2.63), the inertia forces f, and the inertia moments m,, yield (see e.g. [204]):

—f,=1=pAf, —m,=h=A[S(W)C,W+C,A]=S(w)c,wtc,a, a:i=w, A:=W.(2.65
Similar to w =AW, also the angular accelerations are related via the push-forward operator:

d . .
a=w= pr (AW)=AS(W)W + AW=AW=:AA, since S(W)W=0. (2.66)
When the considered beam problem has to be discretized in time (see Section 3.1 for details), the
vectors w and a can either be directly employed in a time integration scheme [116, 209, 210] or,
alternatively, they can be expressed via the (additive) rate of the primary variable v [43]. Similar
to (2.17), one can formulate the following relations in order to express w and a:

w=T1, a=T 19+ T 4. (2.67)

Finally, the problem setup presented in Sections 2.2.1-2.2.4 has to be completed by boundary
and initial conditions in order to end up with a well-defined initial boundary value problem:

r=r,, Y=y,onl, f=f, m=m,onl, [I,N[,=2, I,Ul,={0,L}

2.68
r:r07f:V0,A:A0,W:W0 at t=0. ( )
Based on a trial space (r(s,t), A(¥(s,t))) € U of functions with square-integrable first deriva-
tives satisfying (2.68) and an associated weighting space (dr(s),d0(s)) € ¢ of functions with
square-integrable first derivatives satisfying or=0, 60 =0on I',,, the weak form (2.52) is equiv-
alent to the strong form (2.49) supplemented by the boundary conditions (2.68).

Remark: Two possible time integration schemes can be derived from the variants of
either employing W and A directly or expressing them via additive rates given by (2.67):

1) (i‘v I, w, a)n-i-l = f((rv A)n+1> (I‘, A)nv (i'> W)nv (fv a)n)a
2) (I‘, f? ¢a "L)n-l-l = f((I‘, ¢)n+17 (I‘, ¢)n> (I’, "7[;)71’ (I‘, 'Qb)n)

Here, the indices (.), and (.),; refer to two successive time steps of the time-discrete
problem and f(.) represents a typical finite difference time integration scheme (e.g. a
Newmark scheme). The first variant, i.e. time integration directly based on the angular
velocities and accelerations (see Section 3.1.2) can be considered as being more flexible
since it does not require any specific rotation parametrization. It can directly be applied
to Reissner type beam formulations as well as to Kirchhoff type beam formulations with
strong or weak Kirchhoff constraint enforcement without the need for further adaptions.
Due to this flexibility and the very simple and compact time integrator resulting from this
procedure, this will be the method of choice employed throughout this thesis.

(2.69)
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2.2 Simo-Reissner Beam Theory

Remark: Since the material triad field A(s) is fully defined via a rotation vector field
parametrization (), the trial space can also be formulated as (r(s,t), (s, t)) € U.

Remark: It is shown in Appendix A.2 how the strong and weak forms (2.49) and (2.52)
can alternatively be derived by means of variational principles (viz. the Hamilton
principle). The starting point for this procedure is the Lagrangian L' = [ (ﬁkm — ﬁmt)ds
based on the kinetic and hyperelastic energy according to (2.62) and (2.58).

Remark: In principle, the geometrically exact beam theory is capable of describing the
orientation of arbitrary cross-section shapes. Thus, it is not limited to the simple case of
isotropic shapes (such as circular or quadratic cross-sections), often denoted as kinetic
symmetry, as it is the case for many Kirchhoff type beam formulations that can be found
in the literature (see e.g. [36], [227] or [228]). However, with the introduction of the spe-
cific section constitutive laws chosen in this section, the following considerations will
from now on be confined to cross-section shapes whose center of shear coincides with
the cross-section centroid (e.g. bi-symmetric cross-sections). While the beam theory pre-
sented in Sections 2.2.1-2.2.3 remains valid for arbitrary cross-sections, some adaptions
of the constitutive law would be necessary if this confinement should be resigned.

2.2.5 Relation between 1D and 3D constitutive laws

The aim of the following considerations is to derive the constitutive laws (2.58)-(2.60) in a
consistent manner from the 3D continuum theory. Thereto, the deformation gradient F of the
3D position field subject to the kinematic constraints (2.40) and (2.37) of the geometrically
exact beam theory shall be derived. Subsequently, also the Cauchy-Green deformation tensor &
is required. These two objects can be formulated based on the following definitions:
1 Jdx  Ox 0s .
=_(F'F -1 ith Fi=_=-—"-—=g0¢" 2.70
5 ) wi ox ~dsox 9©C (270)
In order to evaluate the deformation gradient (2.70), (the non-orthonormal), covariant basis vec-
tors g; =0x(s)/0s; and §; =0X(s)/0s; have to be determined from (2.40) and (2.37):

&

g1=1r +kx (5282 + 5383) , g2=82, 93 =83,

@271
G1=8o1 + ko X (52802 + 53803) » C2=802, G3="803-

Furthermore, the associated contravariant base vectors G' can be determined from the second
line of (2.71) via the definition G/ G? =¢,7, which yields after some algebraic manipulations:

1 Koyis )
leagm, G’ =g+ 2,3&)1, G’ =gos— C 8o, C:=1-Kopzso+Kopzss. (2.72)

Making use of the relation r’ =g; +-y according to (2.56) and inserting the first line of (2.71) as
well as (2.72) into (2.70) yields the following expression for the deformation gradient:

1 Kyis Kois
F=— [g1+y+kx (s082+5383)] @801 +82® [go2 + — - 8o1] +83® [go3 — Ocl, 2go1]. (2.73)

C C

Finally, by inserting (2.73) into (2.70), the individual components of the Cauchy-Green defor-
mation tensor can be determined. However, in order to gain further insight into the underlying
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structure of the deformation gradient, the procedure suggested by Geradin and Cardona [82] (for
initially straight beams) as well as Linn et al. [145] (for initially curved beams) is employed by
slightly reformulating the expression (2.73) on the basis of the relative rotation tensor A= AAL.
By applying the auxiliary relation 1/C'=1+(1—C')/C to the pre-factor of g; and solving all the
products in (2.73), the deformation gradient can be reformulated according to:

F=AL;+H®gy) with H:=Hgy Ii=gu®gu A=g Qg (2.74)

The components of the vector H, denoted as material strain vector in [82] and [145], read:

1
lea [F1+(K2_K02)S3_(K3_K03)82] ’

. ) (2.75)
sza [Ty — (K1 —Ko1)ss] H3:6 [Ts = (K1~ Ko1)o

Based on the deformation gradient (2.74), the Cauchy-Green deformation tensor can be derived:

T

H'H
8 H® gy +gn @ H| + “5cn 8 © go1- (2.76)

el
The result (2.76) has been consistently derived from the basic kinematic assumptions (2.40)
and (2.37) without any additional approximations. However, in order to finally end up with the
simple constitutive laws of the geometrically exact beam theory which is based on the quadratic
form (2.58), from now on, the following well-known assumption of small local strains is made:

<1 and R-K,<1, R-Ky < 1fori=1,2,3. (2.77)

The assumptions (2.77) state that small local axial and shear strains are considered and that the
radii of initial and deformed centerline curvature have to be small as compared to the cross-
section radius R. In the following, a first-order approximation in these small quantities is con-
sidered by setting C' ~ 1 and neglecting the last, quadratic term in (2.76). Based on these small-
strain assumptions, the approximated Cauchy-Green deformation tensor reads

— 1
E~E= 5 [H® go1 + 801 ® H] =: ;80 ® 8o;. (2.78)

The components é_iz-j of the approximated Cauchy-Green deformation tensor & finally yield:
&1 =Ty + (Ky — Kog)ss — (K3 — Kog)so,
- - 1
812 = &1 = B (T2 — (K1 — Ko1)s3),
) ) 1 (2.79)
813 = &31 = 3 (I's + (K1 — Ko1)s2),
g = 833 = E33 = 832 = 0.

By applying a Saint-Venant-Kirchhoff material with corresponding material constitutive tensor
C = CMg, @ go; @ gor @ gai, the 2. Piola-Kirchhoff stress tensor & = $¥gy; ® go; can be
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formulated component-wise based on the approximated Cauchy-Green deformation tensor &:

S = E(Ty + (K — Koo)ss — (K3 — Ko3)S),
§72 = 8% = —vé,

S12 = §2 = G(Ty — (K; — Ko1)s3) , (2.80)
SP =8 =G 3+ (K — Koi)sa),
§% g%

The scaled Young’s modulus £ and the shear modulus G have been introduced according to

n__ (1-vE __E
PEaran-ny T air ey 28D

where F is Young’s modulus and v is Poisson’s ratio. From (2.80), it gets obvious that the
standard relations known in the geometrically exact beam theory in terms of vanishing in-plane
stress components $2? = §33 = () and of a constitutive parameter E in front of the normal stress
S, only holds for the special case v =0. This is a consequence of the kinematic assumption of
rigid cross-sections, which requires the existence of in-plane reaction forces in general. In order
to resolve these two putative contradictions for general cases v # 0, the constraint of rigid cross-
sections can be weakened by allowing for a uniform lateral contraction of the cross-section with
in-plane strain components &22 =§3% = —v F}; and for a proper in-plane warping field (see [145]
or [227] for further details). Alternatively, the approximation v =0 can be employed in the first
two lines of (2.80). In praxis, this slight inconsistency is often taken into account, which is not
unusual in the field of structural theories (see e.g. [3] or [126]). In the last step required to identify
the 1D section constitutive law, the material force resultants are determined by integration of the
stress vector £ = & -gp; acting on a cross-section defined by the material normal vector gg;. This
procedure is similar to that performed in the defining equations (2.50) of the stress resultants:

ﬁ:/mmi/w@ﬁmyxw%4&—%%Mw
A A
+ G (Ty— (K1 — Ko1)s3) goa+ G (Ts+ (K1 — Ko )s2)gos) dA

(2.82)
EA 0 0 Iy o
0 0 GA | I3 ,
801 801
Mi:/ Ty X tldA:/ (52802 +53803) X [E(F1+(K2—K02)83—(K3—K03)52)g01
A A
+G (Ty— (K1 —Ko)s3) o2 + G (U3 + (K1 — Ko )sz2) gos]dA (2.83)
Glp 0 0 K, — Ko o '
= 0 FIl | Ky — Koo = C Q.

0 0 EIy |, | Ks— Ko

801

Here, the defintions of the moments of inertia of area I, := [,s3dA and I3 := [,s3dA as well
as [,s3dA= [,s5dA= [,s553dA =0 have been applied. As expected, (2.82) and (2.83) yield
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a constitutive law that is identical to the one postulated in (2.58). Comparable derivations based
on similar small-strain assumptions can e.g. be found in the original works of Kirchhoff [125]
and Love [153] in the context of shear-free beam formulations as well as in the current contribu-
tions [82, 120, 145] in the context of geometrically exact Simo-Reissner type formulations. As
mentioned in the remark at the end of Section 2.2.3, the presented derivation yields alternative
material objects F C r and T as well as M C M and  that are pulled-back to the curved, initial
reference configuration and not to the straight reference configuration as it was the case for the
material objects considered so far. However, the components of the alternative material objects,
e.g. F = Fg0:, when expressed with respect to the “curved”, local basis g, are identical to the
components of the original material objects, e.g. F = F;E;, when expressed with respect to the
“straight”, global basis E;. Accordingly, on the basis of the following push-forward operations,
also the 1. Piola-Kirchhoff stress tensor & and the Cauchy stress tensor o can be determined.

P=FS8, o= FSFT. (2.84)

detff

Starting with the 1. Piola-Kirchhoff stress tensor or with the Cauchy stress tensor, the spatial
stress resultants, e.g. f = F;g;, can be derived similarly to (2.82) and (2.83). Since again only first-
order terms of the small strains (2.77) are relevant, it is sufficient to approximate the deformation
gradient, required for the push-forward, by neglecting the linear terms in the small strains (2.77):

F A= g ®gui, detF =~ 1. (2.85)

Consequently, as already postulated in the sections before, the relevant pull-back / push-forward
operator is given by a rotation tensor A. If for the derivations above a 3D continuum formulation
with material strain and stress measures based on a straight reference configuration had been
applied, the resulting 1D material objects would be based on the global basis E; and the total
rotation tensor A could be identified as the corresponding pull-back / push-forward operator.

Remark: As already mentioned above, in the derivations made in this section, the initial,
curved configuration has been considered as material reference configuration. In order to
remain consistent with the convention of representing spatial objects by small letters and
material objects by capital letters, the alternative notation G; = gy, for the cross-section
triad in the reference configuration would have been appropriate. However, in order to
avoid confusions due to double declarations, this slight inconsistency has been accepted.

2.3 Kirchhoff-Love Beam Theory

In order to describe the configuration space of Reissner type beams, pointwise six degrees of
freedom are necessary, namely the three translational components of r(s) and three rotational
degrees of freedom 1) (s), which parametrize the triad A(s). Now, in this chapter, the assumption
of vanishing shear strains is made, which can be assumed as a sensible approximation in the
range of highly slender beams (see e.g. [153]). Thus, the beam cross-sections spanned by the
local base vectors g, and g3 have to remain perpendicular to the tangent vector t(s) := r'(s):

go(s) - t(s) =0 and gs(s)-t(s)=0 or gi(s)= 6(s) ) (2.86)
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2.3 Kirchhoff-Love Beam Theory

Principally, this so-called Kirchhoff constraint of vanishing shear deformations can be enforced
in a strong or in a weak manner. If the same parametrization (r(s),%(s)) as in the Reissner
case is chosen, additional fields of Lagrange multipliers \y(s) and A3(s) are necessary, in order
to integrate (2.86) into a constrained variational problem in a weak sense (see Section 2.3.5).
In the following sections, a parametrization consisting of 4 degrees of freedom (r(s), p(s)) is
chosen, which fulfills the Kirchhoff constraint in a strong manner. As already introduced in
Section 2.1.2, the scalar-valued quantity ¢(s) will describe the relative rotation between the
material frame g;(s) and an intermediate frame g,;(s) with respect to the tangent vector t(s)
according to (2.22). By means of (2.20), one example for a suitable intermediate frame g;;(s)
has already been given, the “Smallest Rotation” intermediate frame. Nevertheless, the follow-
ing derivations are made in a rather general manner, which allows to insert arbitrary alternative
intermediate frame definitions gys;(s). In such a general manner, kinematic relations, strong
and weak form of the balance equations, deformation measures and stress resultants and finally
also the constitutive laws are formulated for the Kirchhoff case, thus providing the basis for the
corresponding Kirchhoff beam element formulation, which will be proposed in the subsequent
chapter. In Section 2.3.4, a brief excurse on the analytic treatment of Kirchhoff beams is pre-
sented. There, one possible alternative intermediate frame, the Frenet-Serret frame, is employed.
The resulting strong form of the balance equations based on this intermediate frame is ideal for
the analytic treatment of Kirchhoff beam problems and will for example be exploited in order
to derive analytic solutions for numerical examples presented in subsequent chapters. Finally,
in Section 2.3.5, the alternative of imposing the Kirchhoff constraint in a weak sense will be
presented, while Section 2.3.6 focuses on the weak enforcement of an inextensibility constraint.

2.3.1 Kinematics

Throughout the following sections, the Kirchhoff constraint (2.86) of vanishing shear strains is
strongly enforced based on the following representation of the material base vectors (see (2.23))

= 5) = t(s) = r'(s) wi s) =1'(s
B =) = g~ e M ) 7T

(2.87)
82(8) =8aa(s) cos p(s) +8urs(s) sinp(s), gs=gums(s) cosp(s) —guma(s) sin p(s),

where the centerline-aligned intermediate triad base vectors g/, (s) =g (r'(s)) are completely
defined by the centerline field r(s) but not further specified for now (a possible example is given
by (2.20)). Now, the Kirchhoff constraint is incorporated by expressing the current configuration
s,t = C = (r(s,t), Alr(s,t), (s, t))) € R x SO(3) via the new set of primary variables
(r(s,t), (s, t)). As a first step, the spatial and material curvature vector have to be expressed
in dependence of the intermediate triad base vectors and the relative angle ¢(s). In analogy to
equations (2.24)-(2.27) and by replacing the variation §(.) by the arc-length derivative (.)’, the
spatial curvature vector k as defined in equation (2.43) can be reformulated according to:

S(r/)r//

[Ie]]>

=K

k =k +k, = Kig +S(g1)g) = (Kan +¢')g1 + (2.88)
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2 Geometrically Exact Beam Theory

The component K, representing the mechanical torsion, consists of two contributions: the
derivative o’ of the relative angle and the torsion K/, of the intermediate triad (see also (2.27)):

K = 1380 (2.89)

Furthermore, the Frenet curvature vector  represents the curvature of the beam centerline r(s).
In components, the spatial as well as the material curvature vector read:

Ky +¢' Ky + ¢
k= glkK and K = glk : (2.90)
g3Tl-s: gi ggl/v’ E;

The intermediate torsion K, is the only term in (2.90) that depends on the specific choice of
the intermediate triad. In order to keep the formulation general, at the moment, this term is not
further specified (by inserting concrete intermediate base vectors g2 and g3 into (2.89)). Be-
sides the curvature vectors, also the spin vector 66 has to be adapted to the Kirchhoff constraint.
By means of (the first three rows of) (2.34), the spatial spin vector is already expressed for the
case that the first base vector g; of the material triad is described by a non-unit vector t. In the
case considered here, this vector t represents the tangent vector r’ to the beam centerline. For
completeness, the spatial spin vector with t = r’ and ¢ = ||r’|| is repeated here:

S(r’)or’ S(r’)ér

= ((5@]\41 + 5g0)g1+

In analogy to Reissner type beam formulations, the first component 6©; of the spin vector,
representing a multiplicative increment, will subsequently directly be employed in the weak form
and not further expressed via additive increments according to 00, =0 ,,; +dp. Consequently,
the admissible variations are s — §C' := (dr(s),00(0r(s),01(s),r(s,t))) € N> x R with the
new set of variational primary variables (dr(s),00;(s)) defining the Kirchhoff case. Later, a
relation between the curvature and angular velocity components K; and W; will be required.
Left-multiplication of the first relation in the second line of (2.48) with ET = (ATg;)7 yields:

Ki=W{+gl(g1xg)), with E[(KxW)=g{(kxw)=g](kxw,)=g/(gi1xg}). (292)
In a similar manner, the following relations between K, W, and 60, can be derived from (2.48):
Ki=Wi+gl(gixg)), 0K,=00+gl(g1xg}), W1 =60,+0gl(gixg1).  (2.93)

Remark: From equations (2.88) and (2.91), the following similarities become obvious:

60 = ( 7irS(en) &)(fél), k= ( ipS(e) gl)(;{'l). (2.94)

An equivalent relation can also be formulated for the angular velocities (see (2.102)).

2.3.2 Deformation measures and stress resultants

Having defined kinematics that are compatible with the Kirchhoff constraint according to (2.86),
the deformation measures, constitutive relations and stress resultants presented in Section 2.2
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2.3 Kirchhoff-Love Beam Theory

can be adapted to the shear-free case. Inserting the constrained curvature vectors from (2.90)
into the deformation measures {2 and w according to (2.56) and (2.57) yields

K +¢"— Kro1— @ K49 — Kyo1— g
Q= 8 K — 82k0 and  w = 8 K — 82k0 . (293
g3 K — 8i3ko B, g3 K — i3k .

The objective variations of €2 and w have a similar form as stated in (2.53) and (2.55), i.e.
Q= AT0, 5w =06 (2.96)

However, in the Kirchhoff case the constrained spin vector (2.91) has to be employed. By con-
struction, the shear components of I' and -y in (2.56) and (2.57), vanish due to (2.86):

I'=¢cE; and ~=¢€g; with e:=]|r'||—1. (2.97)

Here, the abbreviation € has been introduced for the remaining component representing the axial
tension. In this case, also the corresponding objective variations of I' and ~ can be simplified:

5I'ITI',
[[r'[]

While the constitutive matrices C,; and c,, from (2.59) and (2.61) and the relations M = C,,2

as well as m = c,,w remain unchanged, the constitutive matrices Cr and c; as well as the de-

formation measures I' and ~y can be simplified to a scalar factor, since the transverse components
f, and F, of the force stress resultants given by the following split relations

0T = 0eE;, 6,y = AT = deg; with Je := =or'’'g;. (2.98)

f:f||+fj_:F1g1+fJ_ and F:FH—FFJ_:FlEl—i-FJ_ (299)

cannot be determined via a kinematic and constitutive relation anymore. In this case, the stored
energy function of (2.58) and the corresponding constitutive relations simplify to:

~ 1 1 (91:[ t aﬁ t
L (Q,6)=-Q'CyQ+-EA*, M=—=" =

(&, €)= Cu Q-+ A a0 .

The inertia forces f, as well as the inertia moments m, are identical to (2.65) and (2.66). Like
in the Reissner case, the spatial or material angular velocities w and W as well as the spatial
or material angular accelerations a and A can either be directly used in the employed time
integration scheme or they can be expressed via the (additive) rate of the primary variables
(r(s), ¢(s)). For the latter approach, transformation matrices depending on the definition of the

employed intermediate triad (see e.g. ng in (2.32) in the case of the SR intermediate triad) as
well as their time-derivatives are required in order to formulate relations similar to (2.67).

:C]V[Q:ATH’I, F1:

—EAe. (2.100)

w = Tot + g1, a=Tot+ Toct + 081 + g1 (2.101)

In the Kirchhoff case, a third variant can often be advantageous: Similar to the curvature vector
k (see (2.88)) and the spin vector 66 (see (2.91) or (2.34)), also the angular velocity w can be
split into a component tangential and a component perpendicular to the beam centerline

S(r')r’

w=w|+w, =Wig+S(g1)g :nghLW’ a=Wig +Wigi+S(g)g:.  (2.102)
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2 Geometrically Exact Beam Theory

While the component w is fully determined by the primary variable r(s), W is not specified
any further, i.e. it is not expressed via r(s) and ¢(s) and their time rates as done in (2.101).

Remark: Three possible time integration schemes result from the variants given above:

1) (fa fa W, a)n—i-l = f((r7 A>n+1= (I‘, A)m (i'a W)m (fa a)n)v
2) (f‘, f" @7 Qb)nJrl = f((r7 Qp)n+1> (I‘, Qp)m (i‘7 90)717 (i;v Qp)n)a (2103)
3) (I‘, f‘, Wl; Wl)n—i—l = f((r> A)n—l—l; (I', A)na (I', Wl)n; (I', Wl)n)

Here, the indices (.), and (.),; refer to two successive time steps of the time-discrete
problem and f(.) represents a typical finite difference time integration scheme (e.g. a
Newmark scheme). The second variant according to (2.101) represents the most specific
approach since the choice of a specific intermediate triad is needed for the matrix Tgs.
The third variant according to (2.102) requires no specific information concerning the
employed intermediate triad field, but is still based on the assumption that the Kirchhoff
constraint (2.86) is fulfilled in a strong manner. However, the first variant, i.e. time inte-
gration directly based on the angular velocities and accelerations (see Section 3.1.2) is the
most flexible one and does not require any specific rotation parametrization. It can directly
be applied to Reissner type beam formulations as well as to Kirchhoff type beam formu-
lations with strong or weak Kirchhoff constraint enforcement without the need for further
adaptions. Due to this flexibility and the simple and compact time integrator resulting
from this procedure, this variant will be employed throughout this thesis.

2.3.3 Strong and weak form

In this section, the spatial representation of mechanical equilibrium will be considered. Analo-
gous derivations can also be made starting with the material balance equations. In the following,
the notation will be simplified by summarizing external forces and moments as well as inertia
forces and moments according to f =f +f, and m, :=m-+m,. Now, the shear forces f,, which
provide no work contribution in the Kirchhoff case of vanishing shear deformations, have to be
eliminated. Thereto, (2.99) is exploited in order to split the vector valued moment equilibrium
equations, i.e. the second line of (2.49), into a component parallel to the tangent vector, i.e.

g (m'+1, +1' x f) =g/ (m'+1m,) =0, (2.104)

and a component that is perpendicular to the centerline tangent vector g; = t/|[t]], i.e.
(m'+1mm,+1' xf) —gl (m'+m, +1' xf)t=(m'+m,), +r' xf =0. (2.105)
In order to eliminate the shear forces, equation (2.105) is solved for the force component f , viz.

r r

fL = s (4 ), = (o i), 2.106)
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2.3 Kirchhoff-Love Beam Theory

in order to insert this expression into the force equilibrium equations (first line of (2.49)). To-
gether with equation (2.104), the following set of four differential equations can be formulated:

ng (m, + Ihp) =0,
r N "ol (2.107)

The set (2.107) is sufficient in order to solve for the four primary variables r and ¢ as soon
as the stress resultants f; and m are expressed by kinematic and constitutive relations from
Section 2.3.2. Multiplying (2.107) with the admissible translational and rotational variations Jr
and 00O, and integrating along the beam gives the equivalent form of the equilibrium equations:

L /
/ {MT <f” + M r’||2 X (m' + rhp)] + fp) +60,gl (m’ + rhp)] ds = 0. (2.108)
0

A first integration by parts of the weighted residual (2.108) leads to the intermediate result:

l -
/ , r/ B
/(5 <f||+|| '||2 ) (001g1) 'm—or’f, 5@1g1mp+§rT<|| I X mp)]ds
o - (2.109)

- 5rng+5@1gfm(,] = 0.
1—‘cr

The boundary force f, has been derived by using (2.106). A second integration by parts yields

l
_ [50'%+5r'T7g1F1—6rTf‘p—50Trhp]ds—[5rng+§9T =0, 0= 50,g1+ -2

0 dow'm del

/ /

XOT 5 110)
][>
In (2.110), the constrained spatial spin vector according to (2.91) has been identified and already
substituted with the symbol §6. As indicated by the curly brackets in (2.110), the pre-factors of
the stress resultants m and F} are represented by the objective variations d,w and de according
to (2.96) and (2.98), underlining the geometrical exactness of the proposed Kirchhoff beam
formulation. One can verify that the same result (2.110) would be obtained by simply inserting
the constrained rotation vector variation of (2.91) into the weak form (2.52) of the Reissner
beam. Thus, by restricting the arbitrary rotation vector variations to the admissible variations,
which are kinematically consistent with the Kirchhoff constraint, the work contribution of the
shear forces vanish, i.e. the shear force components are eliminated from the weak form. Finally,
the problem setup has to be completed by proper boundary and initial conditions:

r=ry, 81 =8, p=p,on L, f=f, m=m,onrl,, I,NI,=2, I,Ul,={0,l} @.111)
r=rg, I=Vy, =), W=wy at t=0. ’

Here g, prescribes the orientation of the tangent vector and ¢, the orientation of the cross-
section with respect to a rotation around the tangent vector. How these conditions can be modeled
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2 Geometrically Exact Beam Theory

Weak Form:
l
/ 96 -+ ey — 0x T, 567 | ds—| 9rE+ 06" my| =0, 60 =061, +
I's
0

S(r’)or’

1"
TR

Constitutive law:

m = diag|Glr, El,, El3) -w, F =FEAe

gi

Kinematic equations:

T
w = <KM1+‘,0/_KM01_9067 ngn—gngno, gépn - gggrco) , €= ||r/|| -1,

i

S(r/)r//
HZW? Ky = gJ\T43g§\42,
r/
g1 = a1k 82 =82 COS P+Zu3 SNy, g3=gn3COSP—Gp2 SN Y
Inertia terms and external loads:
f,=f+f,, h,=th+m,, f,=—pAF, m,=—[S(w)c,w-+c,a]

Initial and boundary conditions:

r=ry,, g1 =8, ¢=¢,on I, f=f, m=m,onl,, I,NI,=2, I,Ul,={0,1}

r=rgy, '=vqy, =g, W=wq at t=0.

Table 2.1: Kirchhoff beam problem based on intermediate triads gy (r) and gas3(r).

in practice is shown in Chapter 3. By introducing the trial space (r, A(r,y)) € U satisfying
(2.111) and the weighting space (or,66(or, 00, r)) €V, with ér= 0, §©; =0on [, the beam
problem is fully defined. For completeness, the spatial setting of the problem is summarized in
Table 2.1. It should be emphasized that only the concrete analytic expressions for g,2(r(s)) and
g3(r(s)) depend on the specific choice of the intermediate triad definition.

Remark: According to (2.110), the spin vector 60 represents the work-conjugated kine-
matic quantity associated with the vector of external moments. In order to impose the
Kirchhoff constraint on the spin vector, it has been expressed by means of the four pri-
mary variables (r, ¢) and the admissible variations (dr, d0;) (see (2.91)). Similar to the
spin vector itself, also external moments can be split up into components parallel and per-
pendicular to the tangent vector according to m, = M,;1g; + m, . Thus, by multiplying
the external moment m,, with the constrained spin vector 00 according to (2.91), the ex-
ternal moment is projected into the variational equations related to 6©; (the component
M, parallel to the tangent induces twist modes) and into the variational equations related
to or’ (the component m,, | perpendicular to the tangent induces bending modes).
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2.3 Kirchhoff-Love Beam Theory

This projection is deformation-dependent and has to be considered in a consistent lin-
earization. Due to the one-to-one mapping between the spin vector 960, as used for Reiss-
ner beams, and the primary variables r, ¢, or, 00, (see (2.34)) considered here, the exter-
nal moment has the same physical meaning as for geometrically exact Reissner elements.

2.3.4 Intermediate triad based on the Frenet-Serret frame

While the construction of an intermediate triad field gy, (s) applicable for the proposed finite
element formulations is presented in Section 3.2.3.4, in this section, an intermediate triad field
is considered that is ideally suited for analytic purposes: The Frenet-Serret frame. The Frenet-
Serret frame seems to be a natural choice in order to describe mechanical curvature measures of
beams, since the Frenet-Serret frame itself is defined via the curvature of the space curve r(s).
In particular, the normal vector ngg(s) of the Frenet-Serret frame points towards the center of
curvature of r(s) at position s. For two given vectors g;(s) = r'(s)/||r'(s)|| and ngg(s), the
binormal vector brg(s) completes the right-handed orthonormal triad at position s:

/ /
; and bpg:=g) X nps with g =——.
|Ig3 ] |||

From these definitions, the following expressions for the intermediate triad gy,; can be derived:

Npg = (2.112)

o = Npg = ﬁ (r"—Hr’H (r’Tr”)r) and gys3 =bpg = u (2.113)
[Ie x| [Ie > x|
From (2.113), it becomes obvious that the binormal vector b g is parallel to the curvature vector
Kk = kbrs = kg3, (2.114)
with x = ||k||. Using this relation, the deformation measures w and €2 simplify slightly due to
glk =ksing and glk = kcoso. (2.115)
After calculating the derivative g/),,, the torsion K, =g? .gh . of this intermediate triad yields:

B I,/T (r// X I,//l) HI,IH

HI./ X I.//H2

Kyy=r1 (2.116)
Remark: The definitions of x and 7 applied here differ from the common definitions

of the curvature % and torsion 7 of parametrized curves by a factor of ||r'|| = € + 1.
This is due to the fact that the mathematical curvature and torsion are defined as angle
increments per arc-length increment of the considered curve. However, as consequence of
axial tension, the centerline parameter s considered here is an arc-length parameter of the
initial but not of the current centerline curve. The relation between an arbitrary parameter

s and an arc-length parameter § of parametrized curves is given by d§ = ||r/||ds. Using

the common definitions of x and 7 yields the following relations:

‘ ‘ dgl ‘ ' dgl ds T

A

K _ deS
ds R T

_ ||dbrs
N ds

If axial tension is neglected (||r'||=1), both curvature and torsion measures are identical.
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With (2.113) and (2.116), the problem description in Table 2.1 is completed. In the following,
it will be shown that the Frenet-Serret intermediate frame can serve as an extremely useful tool
for the analytic treatment of large-deformation Kirchhoff beam problems. However, from a nu-
merical point of view, it has one considerable drawback, which makes it unfeasible for robust
algorithms: From (2.113) it becomes obvious that these base vectors are not defined for straight
curves, or more precisely, for curve segments with vanishing curvature, i.e. r” =0. Furthermore,
since the third derivative of the primary variable r appears in (2.116), at least a C?-continuous
discretization of r would be desirable when considering the weak form of Table 2.1 based on the
Frenet-Serret intermediate triad. To overcome these drawbacks, alternative intermediate frames
based on the ”Smallest Rotation” mapping (Section 2.1.2) will be employed in Chapter 3.

Due to its natural curvature adaption, the Frenet-Serret frame seems to be an ideal tool for the
analytic investigation of Kirchhoff beam problems. Later, this tool will be used in order to derive
analytic reference solutions for numerical examples. For that purpose, the strong form of the
balance equations (2.107), based on a Frenet-Serret intermediate triad field, will be considered.
In the following, the components of this vector-valued strong form shall be formulated with
respect to the Frenet-Serret frame. Thus, the moment stress resultant, the external force vector
and the external moment vector have to be split into corresponding components:

m=:mg, g1+m,n+myb, m,=:m,g g1 +myn+mpyb, fp::fpg1g1+f~pnn+fpbb- (2.117)

Projecting the vector-valued equation of (2.107) into the directions g;, n and b and using the
scalar equation of (2.107) directly yields the following set of four differential equations:

K 5 ~
f;1+1—+6(¢mn+mg+mpb)+fpglzo,
M, +m, +m T ~ .
—( b pb) — (kmg, +mi, — ™My + Mypn) + Efgy + fon =0,
1+e€ 1+e€ (2.118)
—Tmp + ml, + Kmg, + My, ! T . ~
( e A £ ) —1+€(7mn+mg+mpb)+fpb:0,

! 7 —
My, — KMy + Mg, = 0.

Furthermore, the following components of the stress resultants f,,, mg, , m,, m; can be derived:

fgl = F1 = EAE,

mglzGlT(T+(,0/—T0+Q06), (2119)
my, = Ely (ksin g — ko singg) cosp — El3 (K cos ¢ — kg cos @) sin @, '

my, = Ely (ksin @ — Ko sin ¢g) sin g + El3 (kK cos ¢ — K €os ¢g) CoS @.

In the case of quasi-circular cross-sections, i.e. £l = Fl3 =: EI, the initial material frame
go: can be chosen as coinciding with the initial intermediate frame g;¢;, thus ¢y = 0, which
simplifies the bending moment components to m,, = Elkgsinp and my, = E1 (k—Kg cos ¢).
Equations (2.119) inserted into equations (2.118) give a system of four differential equations,
which determine the four unknowns ¢, x, 7 and ¢. With the definitions of ¢, x and 7 as well as
appropriate boundary conditions, the curve r can be determined afterwards. Analytical formula-
tions comparable to (2.118) and (2.119) that can be found in the literature are mostly based on
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the assumption of inextensible beam centerlines ¢ =0 and / or quasi-circular cross-section shapes
characterized by EI, = EI; =: E'I. Under these circumstances, equations (2.118) and (2.119)
coincide for example with the results derived by Drozdov et al. [65] for this specific case.

2.3.5 Weak enforcement of Kirchhoff constraint

In the last sections, the set of primary variable fields (r(s), ¢(s)) has been chosen in a way such
that the Kirchhoff constraint (2.86) of vanishing shear strains is strongly fulfilled by construc-
tion. However, more flexibility in the subsequent discretization process (see Chapter 3) could be
gained by formulating a Reissner type beam problem, which allows for two independent inter-
polations for the centerline field r(s) as well as the triad field A(s), and by weakly enforcing the
Kirchhoff constraint of vanishing shear strains by means of additional constraint equations:

Li(s) =gl (s)r'(s)=0 for j=2,3. (2.120)

In order to integrate these constraint equations into the considered variational framework, the
latter has to be supplemented by an additional Lagrange multiplier potential of the form:

l

H)\F23 :/(/\F2<S)F2<S) + >\F3(S)F3(8)>d8. (2121)

The Lagrange multiplier fields Aro(s) and Aps(s) introduced in (2.121) can be interpreted as
the shear force components F;(s) and F3(s), i.e. reaction forces which enforce the constraint of
vanishing shear strains along the beam centerline. Variation of the Lagrange multiplier poten-
tial (2.121) leads to the contribution of the Kirchhoff constraint to the weak form:

l l

5T, — / (0Ara(5)Ta(5) £+ SArs ()T (s) s+ / (\ra(5)0T () + Ars(5)0Ts () )ds.  (2.122)
0 0

The first term in (2.122) represents the weak statement of the Kirchhoff constraint (2.120) while
the second term can be interpreted as the work contribution of the shear reaction forces. Sim-
ilar to the displacement primary fields, a proper trial space (Ar2, Ars) € U,.,, and a proper
weighting space (0 Ar2, dArs) € V., have to be introduced which uniquely define the resulting
mixed beam formulation. The discrete realization of the finite element formulation with weak
enforcement of the Kirchhoff constraint will be presented in Section 3.5.

2.3.6 Kirchhoff theory of inextensible beams

As it will be further concretized in Section 3.3.4, the numerical advantages for subsequently
derived finite element formulations (see Chapter 3) resulting from a neglect of shear deformation
can be further increased by additionally abstaining from the axial tension terms, a deformation
mode which is often of secondary interest in the range of high slenderness ratios. A neglect of
axial tension means that the beam is subject to the following inextensibility constraint:

e(s) = ||r'(s)|| =1 =0. (2.123)
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The Kirchhoff type beam formulation presented in the last sections was based on a set of primary
variable fields that fulfilled the Kirchhoff constraint of vanishing shear strains by construction
and without the need for additional constraint equations. In Section 3.6, it will be shown that in
general it is difficult to find a set of primary variables that fulfills the constraint €(s) of an inex-
tensible beam centerline by construction. Therefore, in the following, it will be briefly described
how the inextensibility constraint can be integrated into the considered variational problem in
a weak sense. Similar to Section 2.3.5, the total potential associated with the Kirchhoff beam
problem has to be extended by a corresponding Lagrange multiplier potential of the form:

l
H)\ez/)\ﬁ(s)e(s)ds. (2.124)
0

In this case, the Lagrange multiplier field )\ (s) represents the field of axial forces along the
beam, which are now of reaction force type. Variation of (2.124) leads to the contribution of
constraint (2.123) to the weak form of the Kirchhoff beam equilibrium equations:

l

5Ty, — / 52 (s)e(s)ds + / 5e(s)A (5)ds. (2.125)

0

The first term in (2.125) represents the weak statement of the inextensibility constraint (2.123)
while the second term can be interpreted as the work contribution of the axial reaction forces.
Since (2.125) enforces vanishing axial strains along the beam, the contribution of the axial strains
to the weak form will not influence the final equilibrium configurations and can be neglected.
However, in Section 3.6, it is shown that a consideration of these contributions leads to a more
good-natured numerical problem resulting from spatial discretization. Thus, if both terms are
considered simultaneously, the corresponding axial force contribution to the weak form reads:

5H,\€:/5/\E(s)e(s)d8—I—/(Se(s)()\e(s) + EAe(s))ds. (2.126)

As it will be illustrated in Section 3.3.4, a direct application of (2.126) would lead to the same
undesirable stiffness terms £ A as the extensible Kirchhoff formulation. Thus, the axial tension
term, which does not influence the final solution, is scaled by an arbitrary constant factor c.:

l

I
(SHA(_/(S)\G(S)E(S)dS + /56(8)()\6(5) + c.FAe(s))ds. (2.127)

0

The factor c. can be chosen arbitrarily such that for example the performance of linear and non-
linear solvers is optimized without changing the final solution as compared to the pure Lagrange
multiplier case. Thus, in the terminology of constraint enforcement, the regularized constraint
equation (2.127) achieved by additionally considering the (scaled) axial tension terms can be
interpreted as an Augmented Lagrange type scheme. The resulting mixed problem statement is
completed as soon as a proper trial space \c € U, and a proper weighting space d\. € V,_ is
defined. The discrete realization of the inextensibility constraint will be presented in Section 3.6.
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2.4 Reduced Kirchhoff-Love Beam Theories

The Kirchhoff beam theory considered in Section 2.3 has been formulated as general as possible
and accounts for beams with anisotropic cross-section shape and arbitrary initial curvatures in
general 3D large deformation scenarios. In the following, some special cases concerning the
beam geometry and the external loads are presented, which enable the application of simplified
versions (denoted as reduced models) of the general theory presented in the last section. The
motivation for the development of such reduced formulations is twofold: On the one hand, the
numerical effort as well as the complexity of the formulation can be reduced drastically. As will
be shown in the following, for none of these reduced models any intermediate or material triad
has to be calculated. Consequently, the treatment of large rotations is not required anymore. On
the other hand, the special cases presented below are of high practical relevance.

2.4.1 Isotropic Kirchhoff-Love beam theory

In this first subsection, the case of beams with quasi-circular cross-sections and vanishing initial
curvature within a three-dimensional problem setting, in the following denoted as “isotropic
bending”-case, will be treated. It is characterized by the following geometric specifications:

L=Ii=1 Ir=Ip=2I and ky=0. (2.128)

Based on (2.128), the moment stress resultants can be simplified. In the “isotropic bending”-
case, the initial configuration of the beam is rotationally symmetric with respect to the centerline.
Since any axis lying in the cross-section can be identified as principal axis of inertia, the initial
triad go;(s) can be chosen arbitrarily. For simplicity, it will be chosen as constant field given by
£0i(s) =go; =const., which implies a vanishing initial torsion K¢ = Ks01+¢ =0. Furthermore,
the initial intermediate triad g,;; is chosen to coincide with the initial material triad gg;. Under
these circumstances, the following relations for the initial torsion and relative angle are valid:

Ko =0, ¢o=0. (2.129)
Inserting (2.129) and (2.128) into (2.95) also yields simplified moment stress resultants:

szG[(KMl—l—gp’)gl+EIl~c. (2.130)
—_——

=K

Since the relative angle ¢ does not appear in the bending moment components anymore, the
total torsion K7 = K;1+’, can be chosen as new primary variable instead of ¢. For that reason,
the quantity K»;; is not required and the resulting deformation measures do not depend on any
intermediate triad anymore. Due to (2.128), also the inertia moments can be simplified:

- d .
—m,=h 2pIWig1+pIw ) =pl (2W1g1+2W1g1+w ). (2.131)

:E(
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Inserting (2.131) into glm, = gf(m+m,) = M, —2pIW, and the result together with the
intermediate result glm’=2G1 K] into the strong form of the balance equations (2.107) yields:

0=2GIK! + M, —2pI Wy,

/

/

x (m'+m—pl (2Wyg1+ w, ))|+f,, 2.132
( p ( 181 NOL )) P ( )
with m=2GIK,g,+Elk, fj=FEAeg,, f,=f—pAi.

0= f||+ || /||2

Thus, due to (2.128), the perpendicular component p/w | of the angular momentum h does only
appear in the second (vector-valued) equation of (2.132). In the range of high beam slender-
ness ratios, these rotational inertia contributions can be assumed as small compared to the in-
ertia forces f, appearing in the same equation. Consequently, the inertia effects stemming from
the perpendicular component of the angular momentum will be neglected (as indicated by the
curly brackets in (2.132)) in this section as well as in Section 2.4.2. This assumption is typi-
cal for (isotropic) shear-free beam theories and distinguishes e.g. the Euler-Bernoulli from the
Rayleigh beam model (see e.g. [36] for an application of both models in the geometrically non-
linear regime). Since the term 2p/ Wi represents the only inertia contribution to the first equation
of (2.132), a simple cancelation of this term seems not to be justified (see also Section 2.4.2.2). In
order to remain variationally consistent, also the term 2pI 1/, g; in the second equation of (2.132)
is kept. Inserting these simplifications into the elastic (2.100) and kinetic (2.62) energy yields:

~ EA ET GI
o W M= wlier =5

PA Pf P

ﬁkln 2

K;. (2.133)

Based on the energies (2.133), the weak form can be derived in a variational manner (see also
Appendix A.2). Using the auxiliary relations 6 K =00/ +0g{(g1 x g}) =00, 4001k as well as
oW1 =00,+0gl(g) xg1)=00,+607g, according to (2.93), the weak form eventually yields:

|
|

In (2.134), the external moments have been split, i.e. m = Mlgl +m, and m, = M,;g,+m, |,
and the spin vector ¢6 is given according to (2.91). Furthermore, the variations de and dk read:

deEAe+ ok EIk+0012GI K, +50£2GIK1/<.:] ds
(2.134)

(SI'TfO—F(SGLII’lUL—f—(S@lMl .

I's

o7, 60T (i, —2pIWyg,)+00, (M, — 2pIW1)] ds—

Y W ) 2T ) g,

[Ie/]] e[ ’

de=

(2.135)

In deriving (2.134), use has been made of the relations 6,r't = (61 — 60 x 1)Tt = 6771 and
dok'k=(0k—00xk )Tk = dKk"k for the spatial vectors r and k. Alternatively, the weak form can
be derived by inserting the simplifications of this section into the weak form (2.110). This proce-
dure is shown in Appendix A.3 (see equation (A.8)). It is easy to verify that (2.134) and (A.8) are
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2.4 Reduced Kirchhoff-Love Beam Theories

identical. According to (2.93), the angular velocity component W, cannot directly be expressed
via the primary variable Ky, in particular W] # K 1. In order to formulate W, and Wl, one could
for example employ (Lie-group) time integrators based on multiplicative rotation increments
A as shown in Section 3.1.2 (see also [209]). However, this would (at least formally) require
to determine material triads and associated rotation increments in every time step. Since such a
procedure would almost negate the advantages of the isotropic theory as compared to the general
Kirchhoff theory presented in Section 2.3, the former will solely be applied to static problems
within this thesis. In this case, (2.134) is uniquely defined by the primary variables (r, &) and
the variations (dr, d0;). Nevertheless, the dynamic isotropic case of this section will serve as an
important intermediate step for the derivation of a torsion-free beam theory in the next section.

In the static case, the isotropic theory according to (2.134) does not require any treatment of
large rotations, in particular, no material or intermediate triads have to be determined. Further-
more, it is emphasized that in the mentioned static case, the fields /7, representing the torsional
deformation, and r(s), representing the bending deformation, are only coupled by one term,
namely 50{2(}’[ Kk, which vanishes in the straight configuration. The static weak form (2.134)
is identical to the weak form proposed in [36] for straight Kirchhoff beams with circular cross-
sections. Thus, the beam element presented in [36] can be considered as special case that can be
derived in a consistent manner from the general formulation given in Table 2.1.

2.4.2 Torsion-free Kirchhoff-Love beam theory

In a further step, the isotropic bending theory of Section 2.4.1 will be supplemented by the
assumption that no torsional components of external moments are acting on the beam, viz.

g1(s, 1) -m(s,t) = My(s,£) =0 and [gl(t) : ma(t)} - [Mgl(t)} 0. (2.136)
Furthermore, for dynamic problems it is assumed that the torsion /K as well as the tangential
component W, of the angular velocity vector are zero in the initial configuration:

Ki(s,t=0)=0 and Wy(s,t=0)=0. (2.137)

There are many fields of application where such restrictions are valid. As examples, the Brow-
nian dynamics of filaments in biopolymer networks (see e.g. [61]), cables of high voltage lines
(see e.g. [9]), fibers in biologial tisue or the fibers in industrial webbings or ropes (see e.g. [69])
can be mentioned. In Section 2.4.2.2, it will be proven that in (quasi-) static problems involv-
ing slender continua modeled by means of the general Kirchhoff beam theory of Section 2.3
the mechanical torsion K; will always exactly vanish as consequence of the restrictions (2.136)
and (2.137) together with (2.128). This result remains valid for arbitrarily deformed beam cen-
terlines and is independent from the resulting magnitude of displacements and rotations. Fur-
thermore, it is shown that even in dynamics, at least for problems that are dominated by a low
frequency response, the torsion K; (and also the angular velocity 11;) will be small with a
magnitude decreasing quadratically with the beam slenderness ratio. In both cases, the torsion-
free beam formulation presented in the next section can be applied. In the following, the term
“torsion-free” is equivalent to “vanishing torsional moments” and simultaneously to “vanish-
ing torsional deformation”. This is in strong contrast to the notion ‘“‘shear-free”, which means
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negligible shear deformation but non-vanishing shear forces. In the next section, the strong and
weak form of the balance equations of such a torsion-free beam theory will be presented. In Sec-
tion 2.4.2.2, the applicability of this theory to slender continua that can be modeled via the gen-
eral Kirchhoff theory of Section 2.3 will be justified by showing that restrictions (2.136), (2.137)
and (2.128) lead to a state of vanishing torsion in statics and to small torsion values in dynamics.

Remark: Alternatively, the torsion-free theory presented in the next section can of course
also be applied to slender bodies without torsional stiffness G I ~ 0, i.e. slender ”quasi-
continua” which cannot produce torsional moments as consequence of their constitutive
law. Examples are braided ropes with finite bending stiffness but negligible torsional re-
sistance, filament species in bio-polymer networks (see e.g. [61], Section 4.2.) or chains.
According to [191], the term “quasi-continua” is used for mechanical objects that are
composed of a large number of primitive components (e.g. the links of a chain, or the
individual monomers of a polymer macromolecule). The mechanical behavior of such
objects can often be approximated by continuum theories with properly chosen constitu-
tive constants, even though these objects are not continua in the classical sense. While for
general slender continua with torsional stiffness the requirement (2.136) of vanishing ex-
ternal torsional moments has to be satisfied by the set of external loads in order to end up
with a state of vanishing torsion, in the case of slender ’quasi-continua” without torsional
resistance, the deformed configurations will “automatically” arise in a way such that ex-
ternal moment loads will have no torsional component and obey the relations (2.136).

2.4.2.1 Strong and weak form of torsion-free beam theory

It is quite obvious that the first equation of (2.132) vanishes if the torsion-free beam theory
according to K; =W, =W, =0 is applied, while the second set of equations simplifies to:

/
—x(m’+th)] +f'+fp:0 with m=Flk, fj=FAeg,, f,=—pAr. (2.138)

The weak form of a torsion-free beam theory as introduced in the last section results from (2.133)
and (2.134) by setting K; =W; =W, =0 and removing the terms associated with 0.

l

o

0

l

s |

0

SeEAe+ 0k EIk+0rp AT

5rTf+5efﬁu] ds— [&Tﬁ, + 50{m4 =0. (2.139)

I's
The associated functions of kinetic and hyper-elastic stored energy yield in this case:

i = ﬁrTf, = E—Aez + ﬂnTn. (2.140)

2 2 2
The formulation presented in this section is the shear-free counterpart to the torsion-free beam
formulation presented in [191], which is based on the Simo-Reissner beam theory. Since the
torsion term cancels out from the weak form, only the primary variable r and the variation dr
have to be discretized. The corresponding finite element formulation is based on less degrees of
freedom than the general formulation of Section 2.3 and is therefore numerically more efficient.
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Furthermore, this formulation does not require any rotational degrees of freedom (or any other
triad parametrization). This property dramatically simplifies standard procedures such as spatial
discretization (in a manner that preserves objectivity of deformation measures), linearization,
configuration updates, or time integration via finite differences in dynamics. These procedures
are typically complicated by the presence of rotational degrees of freedom in common geomet-
rically exact beam formulations. Furthermore, in contrast to standard geometrically exact beam
formulations, (2.139) will result in a symmetric tangent stiffness matrix (as long as no external
moment contributions are considered) and a symmetric and constant mass matrix. The torsion-
free model also seems to provide an ideal tool for the mechanical investigation of cable-like
structures. In pure cable formulations, artificial bending terms are often necessary in order to
stabilize compressional modes (see e.g. [179]). On the contrary, the torsion-free formulation
naturally provides such a stabilization in a mechanically consistent manner. In the next section,
the applicability of this torsion-free beam theory is justified from a mechanical point of view.

2.4.2.2 Applicability of torsion-free beam theory

In the last section, the weak form of a torsion-free beam theory, i.e. a theory that neglects elastic
and inertia contributions associated with twist degrees of freedom, has been derived. In this sec-
tion, the theoretical justification for applying this torsion-free beam theory to practical problem
classes characterized by the restrictions (2.128), (2.136) and (2.137) will be derived. Thereto,
the first equation of (2.132), which is associated with the twist DoFs, is repeated here:

~GK}| + pW, = 0. (2.141)

In the following, the partial differential equation (2.141) shall be solved. Actually, the second re-
quirement in (2.136) would not allow for Dirichlet boundary conditions for the DoFs associated
with twist since these type of boundary conditions could induce boundary torques M, (t) #0 in
general. However, in the next two sections, it will be shown that a beam with one clamped end
will still exhibit a state of vanishing torsion while blocked twist DoFs at both ends of the beam
can induce torsion even if the initial configuration is torsion-free. In order to investigate these
scenarios, three types of boundary conditions for the twist DoFs will be considered:

a) No twist DoFs blocked: Ki(s=0,t) = Ki(s=1,t) =0.
b) Twist DoFs blocked at one end: Ki(s=0,t) =0, Wi(s=1,t)=0. (2.142)
c) Twist DoFs blocked at both ends:  W;(s = 0,t) = Wy(s =[,t) = 0.
In order to solve (2.141), the following relation between K; and W; (see (2.93)) will be used:
Ki=W|+F, F:=gllkxw)=glk,xw))=gl(gixg)). (2.143)

Differentiation of (2.141) with respect to s, differentiation of (2.143) with respect to ¢ and a
subsequent insertion of W/ from (2.143) into (2.141) yields the following PDE in K (s, t):
1 1d

. 1 G
gKl = ——F(s,t) = gf(s,t) with ¢ = > (2.144)

—K//
1t cdt

Here, the expression c can be identified as the wave speed of a linear torsional oscillator. Depend-
ing on the considered type of boundary conditions as listed in (2.142), it might be reasonable to
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formulate the PDE (2.141) solely in terms of the tangential angular velocity component ;. An

analogous procedure than the one applied for the derivation of (2.144) yields:
1. d = . G
W+ ng = %F(s,t) =: f(s,t) with ¢ = > (2.145)

In a next step, the expression F'(s, t) will be further specified in order to simplify the subsequent
derivation of inhomogeneous solutions for the PDEs (2.144) or (2.145). Thereto, the space curve
r(s,t) with s € [0;1] and ¢ € [0; T is expanded as a two-dimensional Fourier-series:

. [ gmt
Z Zr” sin ( ) sin ( T ) (2.146)

i=1 j=1

Here, r;; are the vector-valued coefficients of the Fourier-series. If the evolution of the curve
r(s,t) can be assumed as sufficiently smooth, differentiation of (2.146) yields:

I'/(S’ t) :Z Z (?) r;; COs (?) sin (jTﬂ-t) . (2147)
i=1 j=1

In the range of high slenderness ratios, the axial strains are assumed to be small, i.e. ||r'|| = 1,
and the base vector g; can be expressed by the approximation g; ~r':

e 1S\ . 7t
gl(s,t)%r/@,t) :Z ZI"U cos (T) sin (%) (2.148)
i=1 j=1

In (2.148), the term i7 /1 has been included into the Fourier coefficient T;; in order to make the
latter dimensionless. Further differentiation of (2.148) with respect to s and ¢ results in:

e S5 (e () ()

Q

I, (2.149)
NZ Z ']_ﬂ— T.: COS @ coS j_ﬂ_t
- T)" l T )
=1 j=1
With these approximations, the product F'(s,t) = gl (g; x g}) in (2.144) and (2.145) yields:
(s,t) ;; —Q, Fy;sin (@) sin (Qt)  with & = ZTW, Q; = ‘7% (2.150)

From (2.148) and (2.149) to (2.150), trigonometric relations have been used in order to end
up with a Fourier series representation of F'(s,t) according to (2.150) within the finite interval
(s,t) € [0;1] x [0;T] with new (dimensionless) coefficients F};. For simplicity, also the term i
has been included into the coefficients ]5,] Depending on the considered type of boundary con-
ditions, it might be useful to use an equivalent cosine half range Fourier series instead of (2.150):

1 . .
F(s,t)= Z 7% Gis)sin () with @ = —, Q= L° 2.151)
:O =1

with coefficients FU differing from Fij. In the following two sections, solutions for (2.144)
and (2.145) will be derived for the (quasi-) static as well as for the dynamic case.
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2.4.2.3 Verification of applicability in statics
In the (quasi-) static case, inertia terms can be neglected by setting p = 0 in (2.141), resulting in:
K| =0. (2.152)

Thus, a constant torsion /K; = const. and consequently a constant first component M, of the
moment stress resultant m follow from (2.141). For the boundary condition types a) and b) the
torsion K; vanishes at least at one end of the beam. Consequently, for these boundary condi-
tions the constant value of M; equals zero, or in other words, the beam remains torsion-free.
The treatment of the boundary condition c¢) is more intricate. In this case, it is sensible to re-
express (2.152) via Wj. In the (quasi-) static case, the variant (2.145) simplifies to:

—W = d%F(s,t) =: f(s,1). (2.153)

Based on (2.150), a twofold integration of (2.153) with respect to the coordinate s leads to:

Wi( Z Z lAJ Ey; cos (@is) sin () + e1(t)s + co(2). (2.154)

=1 j5=1

After evaluating the boundary conditions W, (s=0,t)=W;(s=1[,t)=0, (2.154) becomes:

Wi(s,t) = Z Z %an {cos (wis) — M#S - 11 sin (§2;t). (2.155)

Relation (2.143) and the initial condition K (s,t=0)=0 enable the integration of K (s, t):

1(s,1) 2227 — cos (§2;t) ;T cos (§;t) — ) (2.156)

From the second to the third term in (2.156), the standard transformation rule between the coef-
ficients of sine and cosine half range series has been applied. As expected, the resulting torsion
K (s,t) is constant along the beam and does not vanish in general 3D scenarios (Foj # 0).
Thus, in case of boundary conditions of type c¢) (e.g. two clamped ends) the beam will not re-
main torsion-free in general. This is in contrast to the boundary conditions a) and b), where the
torsion will always exactly vanish as long as (quasi-) static problems are considered. The vari-
able ¢ in (2.156) represents a pseudo time, describing the evolution of the quasi-static problem.
These investigations will be extended to more general dynamic problems in the next section.

"q |

2.4.2.4 Verification of applicability in dynamics

In the dynamic case, the PDE (2.144) describing the dynamic evolution of the torsion K7 (s, t)
has to be solved. In a first step, boundary conditions of type a) shall be considered. Thereto,
the homogeneous solution K,(s,t) based on a Bernoulli separation approach according to
Kip(s,t) = u(s)v(t) is determined such that the first line of (2.142) is fulfilled:
Kip(s,t)= Zsm <w 8) (A; cos (wit)+B;sin (w;t))  with w; = ? =cw;. (2.157)
c
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As expected, the homogeneous solution is identical to that of a torsional oscillator of length [ with
free ends. For the derivation of an inhomogeneous solution, the time derivative, f(s,t) = F(s, 1)
is required. This time derivative follows through differentiation of the Fourier series (2.150):

(s,t) ZZ Q i sm( )cos (Q,t)  with  w; = cw;. (2.158)

i=1 j=1

In a next step, for the inhomogeneous solution Ky,(s,t) of (2.144), an ansatz of the type

Ki,(s,t) Z Z K;jsin < > cos (1), (2.159)

=1 j5=1

with unknown coefficients K;; is made. Similar to the homogeneous solution, also (2.159) fulfills
the boundary conditions of type a). In order to determine the coefficients /;;, (2.158) and (2.159)
are inserted into the PDE (2.144). A comparison of sin (w;s/c)- and cos (£2;)-coefficients yields:

s =

J 1 — 7712] l ) w1 Tij w; ( )
Since (2.144) represents a linear PDE, the total solution for the torsion K (s,t) follows from
superposition of K1,(s,t) and Ki,(s,t). The constants A; and B; can be determined from the

initial conditions (2.137). From K (s,t=0)=0, the constants A; can be derived. It follows:
> . w;S
- S (%)
- &
=1

With W/ = K, — F and the initial conditions W;(s,t = 0) = W/(s,t = 0) = 0, the remaining
constants B; and the final solutions for W7 (s, t) and K7 (s, t) can be derived according to:

Z % (n_i[cos (2t) — cos (w;t )]) + B; sin (wit)] . (2.161)

177Z

1w\ =5 (T
Ki(s,t)= Z 7 sin ( . ) Z F;; (1_—512[COS (Q;t) — cos (wﬁ)]) ,
o 7 L (2.162)
c w;$ ~ Mg .. . .
Wl(s,t):—z 7 €08 ( . ) Z F;; ( _57'2' [sin (w;t) —n;; sin (€;t)]—mn;; sin (th))
i=1 j=1 ij

Similarly, also the solutions K (s,t) and Wi (s,t) for the boundary conditions of type b) and
c¢) can be derived (see Appendix A.4). In practical systems, the contributions stemming from
the homogeneous solution are typically damped out after a certain time and the overall system
dynamics are dominated by the external excitation represented by the inhomogeneous solution.
Thus, only the inhomogeneous solutions for the boundary conditions a), b) and c) are compared:

a)K,i(s,t) Z sin (wl )Z —-cos (t), w; = ?

K, (s,t) Zl sin (WZ )Zle COS (Qt), w; = (21_2—11)70 (2.163)
Kpi(s,t) 227 Cos (wl )i 5-cos (Q;1) —Z (cos (Ut)—1), w; = ?
i=1 =1 -1
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In (2.163), the coefficients F’ij and Fij refer to the sine and cosine Fourier series (2.150) as well
as (2.151) with w; = im /I, while the coefficients Ej stem from a sine Fourier series expansion
of F'(s,t) with &; = (2i — 1)7/(2l) (see Appendix A.4.1). In the limit 2; — 0, i.e. n;; — 0, the
results of these three cases are identical to the results already gained for the static case, i.e. the
torsion vanishes for boundary conditions of type a) and b) while a constant torsion along the
beam length results from type c). Consequently, the torsion resulting in dynamic problems from
boundary conditions of type a) and b) remains small as long as the frequencies €2; describing
the beam centerline dynamics are small as compared to the natural frequencies w; of the torsion
modes. In the following considerations, it is assumed that the relevant frequencies §2;, with j =
1,2, ..., Nq, of a truncated version of the Fourier series expansion (2.146) at least lie within the
same order of magnitude as the relevant eigenfrequencies of the linearized beam problem given
in (3.120). For many practical applications, it can be assumed that the low eigenfrequencies and
the associated deformation modes dominate the overall dynamic response while the amplitudes
resulting from high modes can be assumed as being small or damped out by dissipative sources
inherent to virtually all mechanical systems. In the range of high beam slenderness ratios, these
most relevant low eigenfrequencies are associated with the bending modes (see (3.120)). With
the assumption §2; ~w;, for j=1,2, ..., Ng, the following estimation can be made for 7;;:

0?2 1 F GI 1
P Y il S R
i (@pP)/ (,)[Pp) & (2109

According to (2.163) and (2.164), the magnitude of the mechanical torsion, and consequently the
magnitude of the error resulting from a neglect of torsion, decreases quadratically with increasing
beam slenderness ratio ( :=[/R as long as the assumption €2, ~wj, is justified. Thus, the torsion-
free theory seems to be a reasonable specification of the general Kirchhoff beam theory, whose
range of applicability also lies in the scope of high slenderness ratios as considered in this thesis.

2.4.2.5 Conclusion of static and dynamic analysis

In this section, a special torsion-free beam theory has been presented which exhibits the po-
tential of resulting in considerably simplified finite element formulations (see Section 3.7) and
numerical algorithms as compared to general, geometrically exact Reissner or Kirchhoff type
beam formulations. Apart from the restrictions (2.128), (2.136) and (2.137) with respect to initial
beam geometry and external (moment) loads (supplemented by proper twist Dirichlet boundary
conditions given by the first two lines of (2.142)), this beam theory is able to model general 3D,
large-deformation beam problems in statics and dynamics. For static problems fulfilling these
restrictions, it has been shown in Section 2.4.2.3 that the solution of the torsion-free theory is
identical to the solution of the general Kirchhoff theory. In the dynamic case, it has been shown
in Section 2.4.2.4 that the error between the torsion-free and the general Kirchhoff beam theory
decreases quadratically with increasing beam slenderness ratio as long as low-frequency domi-
nated, i.e. bending dominated, mechanical problems are considered. Thus, the torsion-free theory
can be regarded as a reasonable and promising specialization of the general Kirchhoff theory in
the range of high beam slenderness ratios. Besides the investigated applicability to general, slen-
der continua, the torsion-free beam theory represents an ideal model for quasi-continua without
torsional resistance such as braided ropes, mechanical chains or polymer macro molecules.
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3 Finite Element Formulations for
Geometrically Exact Beams

In this chapter, the space-time-continuous beam problems presented in the last chapter will be
discretized in order to allow for an approximate numerical solution. While spatial discretization
is based on the finite element method (FEM), the generalized-o method, an implicit, one-step
finite difference time integration scheme, is employed for temporal discretization. In the context
of finite element methods for solid mechanics, it is often more convenient to perform time dis-
cretization on the semi-discrete problem setting resulting from spatial discretization. Here, just
the opposite succession, i.e. the initial time discretization is followed by a subsequent spatial
discretization, is chosen. This second variant is often applied in the development of geometri-
cally exact beam finite element formulations and will lead to simpler discrete expressions. The
differences arising from these two discretization successions will briefly be discussed in Ap-
pendix B.2. In Section 3.1.1, the basics of the standard generalized-o method as proposed by
Chung and Hulbert [50] will be presented. In Section 3.1.2, a recently proposed extension of the
generalized-a method from vector spaces to Lie groups [8, 40, 41], which is directly applicable
to the beam element formulations proposed in this thesis, will be presented and compared to
the standard generalized-o method. Afterwards, in Section 3.2, some basics of the FEM as well
as different alternatives for the spatial discretization of the translational and rotational primary
variable fields are presented. Based on these alternatives and the theory presented in Chapter 2,
different beam element formulations will be proposed in Sections 3.3-3.7. There, the resulting
element residual vectors will be derived. Since the linearization of the residuum by using either
analytic techniques or automatic differentiation tools is rather straightforward, not for all consid-
ered element formulations this step is executed in detail. Finally, in Section 3.8, these concepts
and the resulting element formulations will be verified by means of proper numerical test cases.

3.1 Temporal Discretization Methods for Primary Fields

Often, finite difference methods are applied in combination with the finite element method in or-
der to discretize the problem of interest in time. A large variety of such finite difference schemes
is available in the literature. Based on the introduction of a constant time step size At, the con-
sidered total time interval ¢ € [0, T is subdivided into equidistant subintervals [¢,,, t,+1], where
n € Ny is the time step index. Consequently, the solution for the primary variable fields describ-
ing the current configuration C'(s, t) := (r(s, ), A(s,t)) is computed at a series of discrete points
in time with associated configurations C'(s, t,,) :=(r(s,t,), A(s,t,)) =: (rn(s), An(s)).

One possible classification of time integration methods distinguishes between implicit and ex-
plicit schemes. For implicit schemes, the fully discretized problem are typically represented by a
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3 Finite Element Formulations for Geometrically Exact Beams

system of equations that is nonlinear in the unknown discrete primary variables, which requires
the application of a nonlinear solver, i.e. a Newton-Raphson scheme. On the contrary, explicit
schemes allow for a direct extrapolation of the known configuration C), to the unknown configu-
ration (), ;1. The resulting system of equations is linear in the discrete unknowns such that only
a linear solution step is required, which can often be further simplified by applying for example
lumping techniques (see e.g. [73, 78, 97]. Within this thesis, solely implicit schemes will be
considered. These are favorable for problems that are dominated by a low frequency response,
while explicit schemes are rather suited to model high frequency responses and wave-like phe-
nomena such as high velocity impacts. At least in the geometrically linear regime, implicit time
integrators can be proven to be unconditionally stable, thus typically allowing for considerably
larger time step sizes as compared to explicit schemes. Mechanical systems of slender beams
typically result in a system of stiff differential equations as consequence of an increasingly large
gap between the high-frequency and the low-frequency band with increasing beam slenderness
ratio. Especially for such applications, implicit schemes are preferable. Nevertheless, implicit
methods are arguably more challenging than their explicit counterparts, since typically a con-
sistent linearization of all deformation-dependent quantities is required and the convergence of
the nonlinear solution scheme has to be ensured. Particularly for highly complex configurations,
which might for example occur when the contact interaction of many slender fibers shall be mod-
eled (see Section 4.5.3.4), this is a demanding task. Further details concerning time integration
in the context of nonlinear finite element methods can e.g. be found in [22]. In order to simplify
notation required for subsequent derivations, the weak form G (see e.g. (2.52) or (2.110)) is split
into the contributions G,,,; of internal forces, GG, of kinetic forces and G,,; of external forces:

G:Gint+Gkin_Gext~ (31)

Within this thesis, the standard generalized-a method will be applied in combination with the
torsion-free beam element formulation proposed in Section 2.4.2.1, while a recently proposed ex-
tension of this method to Lie group time integration (see Section 3.1.2) will be used for temporal
discretization of the general Reissner and Kirchhoff type beam elements considered herein. This
distinction is made since the former finite element formulation is based on additive increments
of primary variables formulated in a global vector space, which results in a constant and sym-
metric mass matrix. These properties are comparable with well-known nonlinear finite element
formulations for solid mechanics and perfectly suited for the standard generalized-a method. On
the contrary, the latter beam element variants will be formulated on the basis of multiplicative
rotation increments defined on the tangent space of a nonlinear manifold. The resulting mass
matrices are typically deformation-dependent and non-symmetric. Under such circumstances, a
standard generalized-a scheme is not directly applicable and some modifications of the method
are required in order to preserve the consistency of the finite difference scheme (see [8, 40]).

3.1.1 Generalized-a method for vector space time integration

The standard generalized-a method has been proposed by Chung and Hulbert [50] and repre-
sents a generalization of the well-known Newmark time integration scheme [166], the HHT-«
method [96] and the WBZ-a method [232]. The generalized-a method applies a Newmark
scheme in order to express the velocity r,.1(s) and acceleration field t,,1(s) at the end of a
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3.1 Temporal Discretization Methods for Primary Fields

interval [t,,, ,,+1] in terms of known quantities at time ¢,, and the unknown position field r,,; 1 (s):

i1 = T, + Ati, + A2[(0.5 — B)F, + Bingi],

. . . . (3.2)
Tnp1 =1y + At[(1 = 7)F, + Y0l

Solving this system of equations for the unknown velocities r,,,; and accelerations ¥, yields:

Friy = = (r _r)_v—ﬁf_v—%
n+1 BAt n+1 n 6 n 26
1 1 1-2
'I:n—f—l = —(rn—i—l - rn) - r, — ﬁrn
BAP BAL 23

Ati,,
(3.3)

Here, § €]0,0.5] and v € [0, 1] are two parameters of the method determining the properties
of the resulting time integration scheme. The basic idea of the generalized-a method lies in the
introduction of generalized midpoints ¢,,11_q, , tnti—a ; € [tn, tni1] at which the individual con-
tributions to the weak form are evaluated. The following interpolations are commonly employed:

Tnyia; = (1 = ap)rppy + agry,

Tryia, = (1 — ap)tpiy + agiy,

Friloa, = (1 — ap)tpi + apiy, (3.4)
Gext,nﬂ—af (1 —ay)Geptnt1 + afGegin,
Gintmi1-a; = (1 = af)Ging(Tny1,0T) + @ pGing(Tn, 0T).

Here, the contributions of the external forces to the weak form at time ¢,, and ¢,,,, are given as:

Gext,n - Geact(rn7 (SI', fna m,, fa,n: mU,n)a (3 5)
Gemt,n—l—l - Gezt (rn+1> 61‘, fn—l—l; Ihn+17 fa,n—l—l; mcr,n+1>-

Remark: In this work, the contributions of the internal forces are considered by the trape-
zoidal rule. Alternatively, Gint n+1—a ; could also be determined based on a midpoint rule:

Gint,n+1—af - Gint(rn-i—l—ozfa 51') .
Obviously, the two definitions coincide in the context of linear finite element problems.

Adding the weak form contributions of internal, kinetic and external forces yields the counterpart
of equation (3.1), evaluated at the generalized midpoints ¢,,11_,,, and t,,11_4 P>

Gint,n+l—af +Gk1n (fn+1—amu (51‘) - Ge$t,n+1—af :0 (36)

The generalized-a method combines the properties of second-order accuracy, unconditional sta-
bility (within the linear regime), controllable damping of the high-frequency modes and mini-
mized damping of the low-frequency modes. As soon as one of the four parameters (3, 7, o, and
oy 1s prescribed by the user in order to control the desired amount of high-frequency damping
(third property), the remaining three parameters are fixed such that the first, second and fourth of
the properties mentioned above are fulfilled. The degree of high-frequency damping is typically
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3 Finite Element Formulations for Geometrically Exact Beams

prescribed by means of the spectral radius p..,, which eventually plays the role of the only free
parameter of the method. Depending on the choice of p,, the system parameters are given by:

1 — o+ ay)? 1
( " f),vzé—am+w. (3.7)

2000 — 1 Poo 5
am —= EE— oy = —_—, =
Poo 1 T pet1

The special choice p,, =0 leads to an integration scheme which introduces no numerical dissi-
pation into the system. Furthermore, the choice o, =0, oy =0 represents the Newmark method,
the choice o, =0, oy # 0 leads to the HHT-« scheme and the choice a,, # 0, oy = 0 yields the
WBZ-a method. Furthermore, it should be emphasized that the succession of spatial and tempo-
ral discretization makes no difference as long as the generalized-o method is combined with a
spatial discretization scheme that depends linearly on nodal (discrete) degrees of freedom. This
is the case for the torsion-free beam element formulation considered here (see also Section 3.7).
For completeness, in Appendix B.1, the perhaps more common variant of applying temporal
discretization to the already spatially discretized problem is shown. The variant presented here
will enable detailed comparisons with the Lie group generalized-a scheme presented in the next
section. There, the succession of spatial and temporal discretization indeed makes a difference.

Finally, a brief outlook shall be given concerning possible extensions of the employed time inte-
gration scheme. The arguably most important properties of a time integration scheme concern the
stability as well as the accuracy of the method. In the geometrically linear regime, the focus often
lies on the accuracy of the method since the requirement of unconditional stability is already sat-
isfied by implicit schemes. However, when applied within the geometrically nonlinear regime of
large displacements and rotations, these implicit schemes typically loose the property of uncon-
ditional stability. A sufficient condition for stability in nonlinear systems is given by the energy
criterion which requires that the total system energy either is conserved or decreased within one
time step, a property which is denoted as energy stability. Basically, three main categories of
algorithms have been proposed in the literature in order to satisfy this energy criterion: meth-
ods which enforce conservation of energy by means of additional constraint equations, methods
which satisfy algorithmic conservation of energy by construction as well as methods which em-
ploy numerical dissipation in order to fulfill the energy criterion (see also [131] for a detailed
classification of these methods). Furthermore, besides accuracy and stability, also conservation
of linear and angular momentum can be considered as desirable properties.

The first category of algorithms was established by Hughes et al. [105], who proposed the Con-
straint Energy Method. These algorithms enforce an additional constraint equation of constant
system energy by means of Lagrange multipliers. However, it has been observed (see [132])
that these methods conserve the system energy perfectly in case an equilibrium solution can be
found, but that these schemes often lead to non-convergent Newton-Raphson iterations which
take place at configurations where algorithms without enforced energy conservation typically
become unstable. A currently very popular category of time integration schemes which ensures
exact conservation of energy, linear momentum as well as angular momentum by their algo-
rithmic design are the so-called energy-momentum methods, which represent the second of the
three categories mentioned above. The basic idea of these methods is to define the relation be-
tween the internal forces evaluated at a generalized midpoint within the interval [t,,,t,1] and
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3.1 Temporal Discretization Methods for Primary Fields

the configurations at time ¢,, and ¢, such that the resulting discrete values of energy and mo-
mentum are identical for two subsequent time steps. The first representative of this type, the
energy-momentum method (EMM) proposed by Simo and Tarnow [207] was subsequently ex-
tended by Gonzalez [87] and supplemented by the possibility of including numerical dissipation,
which yields the so-called generalized energy-momentum method (GEMM) [131, 133]. Finally,
the generalized-a method is a representative of the third category. The basic idea of these well-
known methods is to provide controllable high-frequency dissipation by the algorithmic design.
The resulting schemes cannot guarantee for exact conservation of energy, linear and angular
momentum. Also the parameter choice leading to stability in the linear regime does in general
not guarantee for stability in the nonlinear regime. Nevertheless, the generalized-o method still
combines the desirable properties of second-order accuracy and controllable dissipation of the
high-frequency regime at minimal numerical dissipation of the lower modes. This behavior is
not only favorable from a numerical point of view - since especially the high-frequency modes
are affected by discretization errors - but also mimics, at least to some extent, the physical re-
ality of low-frequency dominated mechanical systems. There, high-frequency contributions are
often damped out by various physical sources of dissipation. Finally, the generalized-a method
is simple to implement and very flexible: It can directly be applied to different types of element
formulations, whereas e.g. energy-momentum methods would require specific adaptions. This
holds especially for the beam element formulations presented in this thesis. Thereto, in the next
section an extension of the standard generalized-o method will be presented that allows for time
integration on Lie groups, as needed in the context of geometrically exact beam formulations.
This integration scheme can directly be applied to the different variants of geometrically exact
Simo-Reissner and Kirchhoff-Love beam elements without requiring further adaptions and thus
allows for a straightforward comparison of different formulations. Of course, a future extension
of the proposed beam elements to energy-momentum conserving algorithms is thinkable.

3.1.2 Generalized-o method for Lie group time integration

In this section, a Lie group extension of the standard generalized-a method originally proposed
by [8, 40, 41] will be presented. This method will be applied for time discretization of the gen-
eral Reissner and Kirchhoff type beam element formulations presented in subsequent sections,
whose configuration space C'(s,t) = (r(s,t), A(s,t)) € R? x SO(3) is defined by the position
field r(s,t) and the rotation field A(s,t). It is emphasized that the following procedure is in-
dependent from the rotation parametrization of A(s) employed to these different beam element
formulations. The aim is again to express translational velocities and accelerations 1, (s) and
¥,11(s) as well as angular velocities and accelerations W, ; and A, ; at the end of a time
interval [t,,, t,,+1] in terms of known quantities at time ¢,, and the unknown position field r,, 1 (s)
as well as the unknown rotation field A, (s). Thereto, the vectors én+1 and (:)n+1’ representing
the multiplicative rotation increment between the time steps ¢,, and ¢,,, 1, are introduced:

eXp(S(én+1)):A£An+1, én—l—l :Agén-i-l :A§+1én+1. (38)

Besides the distinctions already made for vector space time integrators in the last section (e.g.
implicit or explicit scheme, one-step or multi-step scheme, employed methodology in order to
guarantee stability and/or conservation properties) two further classifications can be made for
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3 Finite Element Formulations for Geometrically Exact Beams

time integration schemes applied to rotational variables: First, depending on the type of spatial
rotation interpolation employed for example in the context of geometrically exact beam finite
elements, the succession of spatial and temporal discretization will in most cases influence the
resulting discrete solution. Secondly, it can be distinguished between approaches that apply a
time integration scheme directly to the vectors ((:) W, A) and approaches that express angu-
lar velocities and accelerations by means of (additive) rates of the primary variables and apply
a time integration scheme to these additive rates, e.g. to the vectors (1), ¢ 1#) in the case of
a rotation vector parametrization (see also (2.67)). This distinction has already been indicated
by equation (2.69) for the Reissner case and by equation (2.103) for the Kirchhoff case. Since,
for example, the vectors 4 and ¥ simply represent additive changes of a vector v and all of
these vectors are defined in the same global vector space, any standard vector space time in-
tegration scheme such as the well-known generalized-a method presented in the last section
can be employed if such additive rates are considered. On the contrary, ©.,W and A are ax-
ial vectors associated with elements of the Lie algebra so(3), which forms the tangent space of
the Lie group SO(3). Consequently, time integration schemes that are directly applied to the
quantities ((:), W, A) are commonly denoted as Lie group time integration schemes. In this con-
text, it can be further distinguished between Lie group schemes that are based on the material
vectors (@, W, A) and schemes that are based on their spatial counterparts (6, w, a). How-
ever, following the results derived in [210], only the former variant will be applied within this
thesis. Arguably, one of the first Lie group time integration schemes, at least in the context of
geometrically exact beam formulations, has been proposed by Simo and Vu-Quoc [209] and rep-
resents the Lie group extension of the classical Newmark scheme. On the contrary, the scheme
of [8, 40, 41], which will be presented in the following, is the Lie group extension of the standard
generalized-a method. Similar to the last section, this scheme is based on the four parameters
8,7, oy, and oy and simplifies to the variant of Simo and Vu-Quoc [209] for the special choice
o, =y =0. A distinctive feature of the Lie group generalized-a scheme lies in the fact that all
terms of the weak form are evaluated at the end point ¢,,,; of the considered time interval:

GnJrl = G<rn+1; I.'nJrla f'n+17 AnJrl; Wn+1> AnJrl; fn+17 Iﬁn+1, fa,n+17 mo,nJrl)iO' (39)
The update formulas for translational quantities are given by a standard Newmark scheme

ﬁn—l—l =Tpt1 — Iy,
ﬁn+1 = Atrn + +At2[(05 - 5).I;mod,n + ﬁf'mod,n+l]a (310)
I.‘n—i-l = rn + At[(l - ’Y).I;mod,n + ’yf.mod,n-l—l}a

which is slightly changed in form of a multiplicative configuration update for the rotations:
eXP(S(énH)) = AZAn%

(:)nJrl = Atwn + +At2[(05 - ﬂ)Amod,n + BAmod,TrH]a (311)
Wn+1 = Wn + At[(l - V)Amod,n + ’yAmod,n—l—l]'

The only difference between (3.10) and (3.2) lies in the definition of modified acceleration vec-
tors 1,04, Which are related to the real / physical acceleration vectors r according to:

(1 — am)f'mod,n-i-l + ami‘mod,n = (1 — Oéf)f‘n_H + CYff‘n with fmod,0:f0~ (312)
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In a similar manner, the modified as well as the real/physical angular accelerations are related:
(1 — am)Amod,nJrl + OfmAmod,n = (1 — Oéf)AnJrl + OéfAn with Amod,OZAO- (313)

For later use, it is favorable to express 1, and 1,1 in terms of the primary unknown r,, 1:
Tpyl = #ﬁn—‘rl + (1 — %) r, + At (1 — 21) Trmod,ns
. l—a, . l1—a, .
T BART —ap) T BAIT —ap) "
N [_ (1 — @) (0.5 = 15) o,
A1 —ay) 1 —ay

A similar relation can be formulated for the angular velocities W, and accelerations A, ,;:

(3.14)

ay

.I;mod,n - rn
1-— Oéf

Wn+l = &énﬂ-l + (1 - %) Wn + At (1 - %) Amod,na

1 -« ~ l -«
- M @ - M W
BALR(L—aj) " BAHI—ay) "

(1= an)(0.5-8) o B
" { Bl —ay) 1— af] Amodn

In [40] and [41], it has been proven that the integration scheme given by equations (3.9)-(3.15)
yields the same favorable properties as the standard generalized-o method, which are second-
order accuracy, unconditional stability (within the linear regime), controllable damping of the
high-frequency modes and minimized damping of the low-frequency modes. Remarkably, the
parameter choice leading to this optimal behavior is identical to (3.7). Furthermore, it is shown
that this scheme can consistently treat non-constant mass matrix contributions, such as the term
AC,A occurring in geometrically exact Reissner and Kirchhoff type beam formulations, as well
as the presence of equality constraints (which might occur for Kirchhoff type element formula-
tions where inextensibility is enforced by Lagrange multipliers). An extension of this scheme to
inequality constraints (e.g. contact constraints which are enforced via Lagrange multipliers) is
given in [48]. Similar to the last section, it has to be stated that also the extended generalized-«
scheme cannot guarantee for exact conservation of energy, linear and angular momentum. Also
in the field of Lie group time integration schemes, a large variety of methods aiming to guarantee
these conservation properties has been proposed [17, 26, 35, 62, 86, 109, 119, 144, 189, 210].
However, the perhaps most essential advantage of the extended generalized-a scheme as com-
pared to these alternatives lies again in its simplicity and flexibility. Independent of the beam
theory (Reissner or Kirchhoff type), the employed spatial interpolation schemes as well as the
chosen set of nodal primary variables (e.g. in terms of rotation parametrization), this time inte-
gration scheme can directly be applied without the need for any further adaptions.

App = (3.15)

ay

A,
1-— Oéf

3.2 Spatial Discretization Methods for Primary Fields

Spatial discretization is exclusively considered in the context of finite element methods within
this thesis. It represents the core topic in the development of geometrically exact Kirchhoff beam
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elements considered in this work. In the following Section 3.2.1, some basic concepts of the fi-
nite element method, already particularized to the 1D case of geometrically exact beams, are
presented. However, this section solely intends to provide the most essential tools and concepts
required for subsequent derivations. For a detailed introduction to the finite element method,
the reader is referred to the literature, e.g. by Bathe [13], Belytschko et al. [22], Hughes [103],
Reddy [182], Strang and Fix [216], Zienkiewicz and Taylor [242] and Zienkiewicz et al. [243].
Subsequently, in Sections 3.2.2 and 3.2.3, specific finite element interpolations employed to the
translational and rotational primary variable fields considered in this thesis will be proposed.
Finally, in Section 3.2.4, the most important requirements on the employed spatial discretiza-
tions and the resulting finite element formulations will be stated. In the subsequent sections, the
fulfillment of these criteria will be verified for the finite element realizations presented there.

3.2.1 Basic concept of the finite element method

The starting point of the finite element discretization is given by the weak form of the balance
equations (e.g. (2.52) for the Simo-Reissner beam theory, (2.110) for the general Kirchhoff-Love
beam theory, (2.134) for the reduced isotropic beam theory or (2.139) for the reduced torsion-
free beam theory) based on properly defined solution and weighting spaces U and V:

U = {r € WmTQ(Ql), A(q) € WmA72(Ql)|(r,A(q))(s,t) = (ry, A(q,)) on I‘u} ,

U = {dr € W(QY), 6q € W™ ()|(ér,dq)(s) =0 on T, } . ©.16)
Here, the notations q(s, ) and dq(s) have been employed as generalizations of the rotational
primary variable field and its variation, which differ for the different beam theories considered
in Chapter 2. Furthermore, $#/"2(Q);) represents the Sobolev space of functions with square
integrable derivatives of order i for ¢ = 0, ..., m. Here and in the following, m, and m, de-
note the highest (arc-length) derivatives of the translational and rotational primary variable field
occurring in the weak form, and consequently also in the associated hyper-elastic energy func-
tion. Throughout this thesis, the values my = m, = 1 for Reissner type beam formulations
and my = 1, m, = 2 for Kirchhoff type beam formulations with corresponding Sobolev spaces
W12(Q;) as well as #/22(€);) will be relevant. Now, the different weak forms derived in Chap-
ter 2 can be summarized by the following general problem statement:

Find (r, A(q)) € U such that G(r, A(q),dr,dq) =0V (dr,0q) € V. (3.17)

The basic concept of the finite element method relies on the Galerkin approach of approximating
the analytic, space-continuous solution (r, A(q)) by means of a discrete solution (ry, Ay(qp))
represented by a weighted sum of shape functions out of a proper (square-integrable) func-
tion space #/™2();). The finite element method particularizes the Galerkin approach to shape
functions with local (element-wise) support, which offers several advantages with respect to
the subsequent numerical solution process. Thus, the finite element discretization process sim-
ply represents a confinement of the trial and weighting space to finite-dimensional subspaces
U CU and V), C V), yielding the following discrete equivalent to the weak form (3.17):

Find (ry, An(qn)) € Uy, such that G(ry,, Ay(qp), 0rn, dqn) = 0V (Or,, 0q,) € Uy (3.18)
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Figuratively, in the FEM discretization process, the 1D beam domain described by the arc-length
coordinate s € [0,(] = € is subdivided into n.. finite elements confined by 7. + 1 element
boundary nodes with coordinates s* and s**! for i =1, ..., n... The centerline curve r(e)(s, t) on
element e is approximated by local interpolation functions Nﬁe)i(s) according to

r(s,t) m ) (s,) = Y Ni(s)d' (1), i (s) ~rly) (s Z N@()\d,  (3.19)
=1

where the nodal vectors &i, &g € 3 represent e.g. nodal positions in case of Lagrange shape
functions N\%"(s) = L(9(s) or nodal positions and tangents in case of Hermite shape functions
N9 (s)=H®i(s) and n, denotes the number of nodes of one finite element (¢) associated with
the centerline interpolation (3.19). Here and in the following, the hat (A) refers to nodal primary
variables. Moreover, throughout this thesis, the index (.), refers to the discrete representation
of a quantity and the superscript (.)(®) to a specific finite element. For simplicity, these indices
will often be omitted in the following if there is no danger of confusion. In (3.19), the initial
and current centerline interpolation, and consequently also the interpolation of the displacement
field uy(s,t) :=ru(s,t) — ron(s), are based on the same shape functions, an approach denoted
as isoparametric concept. Typically, the arc-length space s € [s(¢)'!| 5(®)2] underlying one finite
element is mapped onto an elementwise parameter space { € [—1;1]. The element Jacobian
J(&) == ||rone(€)|| is defined by the interpolation of the initial beam centerline curve and de-
scribes the mapping between infinitesimal increments in the parameter space and the arc-length
space according to ds = J(&)d{. Throughout this thesis, (.) ¢ = d%(.) represents the derivative
with respect to the parameter coordinate &. The interpolation of the beam centerline variation
dr(s) considered in this thesis is based on the Bubnov-Galerkin approach of applying identical
shape functions as trial and test functions, yielding the following parameter-based descriptions:

ri) (6, 1) =)  N(Ed'(t), rf)(s ZN’ i, (€)= Ni(©)sd.  (320)
i=1 =1

As a consequence of the parameter space representation, the shape functions N!(£) do not longer
depend on the considered finite element (e) as it was the case for N,Se)i(s). In contrary to (3.20),
a Petrov-Galerkin approach would allow for different trial and test functions. Next, similarly
to (3.20), also the rotational field q(s, ¢) and it variation dq(s) have to be approximated:

Al (&, 0)=nl(@"(t), ... "(1), €), alf)(€) =nl(@}, ..., a55 €),

A . ) ) 3.21
Sy (6,1)=) Ni(6,0)0¢" with N(&,1)=nl(q(t), ..., q"t), €). 21
=1

Throughout this thesis, the operator nl(.) represents a function that depends on its arguments in
a nonlinear manner. In (3.21), the vectors ', 4} and 6q’ represent the nodal values of the fields
an(s,t),qon(s) and dqn(s,t) and n, denotes the number of nodes of one finite element (e) as-
sociated with the rotation interpolation (3.21). According to (3.21), the interpolation schemes
applied to the rotation fields will in general depend on the associated nodal values in a nonlinear
manner. Furthermore, the weighting functions 5q§f) (&, t) are linear functions with respect to the
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associated nodal variations. However, the employed generalized shape functions NZ(&“ ,t) con-
sidered in this thesis will in general depend on the current deformation state, expressed by the
nodal rotational degrees of freedom ‘. Furthermore, for the rotation field, also Petrov-Galerkin
approaches, i.e. [qy] # dqp, will be considered. In Figure 3.1, the employed element-local node
numbering is visualized. Figure 3.1(a) represents the special case n, =n,. Within this thesis, a
discretization with n,, =2 and n, = 3 as illustrated in Figure 3.1(b) will typically be applied to
Kirchhoff type element formulations. Due to this numbering, the boundary nodes of the transla-
tional as well as the rotational interpolation scheme are addressed by the indices 1 =1, 2.

k=1 k=3 .. . k=n, k=2 k=1 k,=2=n,
ka=1 k,=3 ... v ka=npy kp=2 k=1 ka=3=n, k=2
(a) Arbitrary node numbering with n,. =mnj,. (b) Node numbering applied to Kirchhoff elements.

Figure 3.1: Element-local node numbering of translational and rotational primary fields.

Throughout this thesis, the discrete nodal vectors X' := (d7T, . dmT G T, g as well
as 0x“:= (6d'T, ... 6d™T 57T, ..., 6§™T)T collect all nodal primary variables and variations
associated with one finite element. In a similar manner, the global vectors X and dX collecting the
nodal primary variables of all finite elements as well as their variations can be defined. In order
to simplify the notation for subsequent derivations, and since there is no danger of confusion,
the (A) marking nodal primary variables, are omitted for assembled, global vectors such as X. By
making use of these abbreviations and inserting the discretizations (3.20) and (3.21) into one of
the considered weak forms, the element residual vectors r (which should not be confused with
the symbol r representing the beam centerline) and the g