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Abstract—Coding scheme for discrete memoryless multicast
networks with rate-limited feedback from the receivers and relays
to the transmitter is proposed. The coding scheme is based on
block-Markov coding, joint backward decoding and hybrid relay-
ing strategy. In each block, the relays use partial decode-forward
strategy to decode part of the source message. Meanwhile, the
receivers and relays use compress-forward strategy to compress
their channel outputs and send the compression indices to the
transmitter through the feedback links. In the next block, after
obtaining the compression indices, the transmitter sends them
together with the source message. Each receiver uses backward
decoding to jointly decode the source message and all compres-
sion indices. It is shown that our coding scheme generalizes
Gabbai and Bross’s results for the single relay channel with
partial feedback, where they proposed coding schemes based on
restricted decoding and deterministic partitioning. For the single
relay channel with relay-transmitter feedback, our coding scheme
can strictly improve on noisy network coding, distributed decode-
forward coding and all known lower bounds on the achievable
rate in the absence of feedback. Furthermore, motivated by the
feedback coding scheme, we propose a new coding scheme for
discrete memoryless multicast networks without feedback, which
also improves noisy network coding and distributed decode-
forward coding.

I. INTRODUCTION

The relay channel [1] describes a 3-node communication
channel where the transmitter sends a message to the re-
ceiver with the assistance of relay. Cover and El Gamal
[2] proposed two basic coding strategies: compress-forward
and decode-forward that are based on block-Markov coding.
The compress-forward strategy has the relay compress its
outputs and send the compression index to the receiver. The
decode-forward strategy has the relay first decode all or part
of the message and then send the decoded message to the
receiver. Both strategies have been generalized to multiple-
relay channels in [3]. The compress-forward strategy was
later extended to multi-message multicast and multi-messages
networks, called noisy network coding (NNC) [4], [5], [6].
Recently, a distributed decode-forward coding (DDF) scheme
was proposed for multicast [7] and broadcast relay networks
[8], which uses the partial decode-forward strategy at the
relays and backward coding at the transmitter.

Both decode-forward and compress-forward require sophis-
ticated operations. A much simpler strategy, called amplify-
forward, was introduced by Schein and Gallager [9] for the
4-node Gaussian diamond network. In amplify-forward, the

relay scales its received signal and forwards it to the receiver.
A hybrid coding scheme for the general noisy-relay networks
was proposed in [10] that unifies both amplify-forward and
NNC.

Perfect feedback from the receiver to the relay makes the
relay channel physically degraded [2], and therefore decode-
forward achieves the capacity. If there is feedback from the
receiver or relay to the transmitter, the capacity is unknown
in general. In [11] Gabbai and Bross studied this problem
and proposed inner bounds by using restricted decoding and
deterministic partitioning [12].

In this paper, we consider the general discrete memoryless
multicast network with rate-limited feedback. This network
consists of N ≥ 3 nodes where the transmitter sends a source
message to different receivers with the assistance of multiple
relays and in the presence of rate-limited feedback from the
receivers and relays to the transmitter. We propose a new
coding scheme based on block-Markov coding, joint backward
decoding and hybrid relaying. In our scheme, In each block,
the relays use partial decode-forward strategy to decode part
of the source message. Meanwhile, the receivers and relays
compress their channel outputs and send the compression in-
dices to the transmitter through the feedback links. In the next
block, after obtaining the compression indices, the transmitter
sends them together with the source message. Each receiver
uses backward decoding to jointly decode the source message
and all compression indices.

Our coding scheme is reminiscent of the noisy network
coding for general networks [5], [6] in the sense the relays
and receivers compress their channel outputs and send these
compression indices over the feedback links. However, we
introduce combined compress-forward and partial decode-
forward strategy into the relays. And our scheme has the
transmitter forward the receivers and relays’ compression
messages, instead of creating a new compression message.
This is similar to the schemes in [13] for the broadcast channel,
where the transmitter forwards the receivers’ compression
messages. It is shown that our coding scheme generalizes
Gabbai and Bross’s results [11] for the relay channel with
relay-transmitter feedback. For some channels, such as the
Gaussian relay channel and Z relay channels, our coding
scheme improve over the NNC scheme [5], the DDF coding
scheme [7], [8] and all known lower bounds on the achievable



rate in the absence of feedback.
Motivated by our feedback coding scheme, we propose a

new coding scheme for multicast networks without feedback,
which can strictly improve NNC and DDF for some channels.

Notation: We use capital letters to denote random variables
and small letters for their realizations, e.g. X and x. For k, j ∈
Z+, let Xj

k := (Xk, . . . , Xj) and xjk := (xk,1, . . . , xk,j).
Given a set of integers A ⊆ [2 : N ] and k ∈ A, we denote by
|A| its cardinality and define Ac := [2 : N ]\A. A tuple of ran-
dom variables is denoted as X(A) := [Xk : k ∈ A]. Given a
positive integer n, let 1[n] denote the all-one tuple of length n,
e.g., 1[3] = (1, 1, 1). Define a function C(x) := 1

2 log2(1 +x).

II. SYSTEM MODEL

Consider an N -node discrete memoryless (DM) multicast
networks with feedback from the receivers and relays to the
transmitter, see Figure 1. Let R and D denote the set of relays
and receivers, respectively, where R ⊂ [2 : N ] and R =
[2 : N ]\D. This setup is characterized by 2N finite alphabets
X1, . . . ,XN ,Y1, . . . ,YN , a channel law PY1···YN |X1,...,XN

and
nonnegative feedback rates RFb,k, for k ∈ [2 : N ]. Specifically,
at discrete-time i, node j ∈ [1 : N ] sends input xj,i ∈ Xj
and then observes output yj,i ∈ Yj . After observing yk,i, for
k ∈ [2 : N ], node k sends a feedback signal fk,i ∈ Fk,i to the
transmitter, where Fk,i denotes the finite alphabet of fk,i. The
feedback link between the transmitter and node k is noiseless
and rate-limited to RFb,k bits per channel use. In other words,
if the transmission takes place over a total blocklength n, then

|Fk,1| × · · · × |Fk,n| ≤ 2nRFb,k , k ∈ [2 : N ]. (1)
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Fig. 1. N -node multicast network with partial feedback

The transmitter communicates a message m ∈ [1 : 2nR] to
the set of receivers D with the assistance of the relays R. A
(2nR, n) code for this channel has
• a message set [1 : 2nR],
• a source encoder that maps (m, yi−1

1 , f i−1
2 , . . . , f i−1

N ) to
the channel input x1,i(m, y

i−1
1 , f i−1

2 , . . . , f i−1
N ), for each

time i ∈ [1 : n],
• relay and receiver encoders that maps yi−1

k to a sequence
xk,i(y

i−1
k ), for each k ∈ [2 : N ] and i ∈ [1 : n],

• feedback-encoders that produce feedback symbols
fk,i(y

i
k), for each k ∈ [2 : N ] and i ∈ [1 : n],

• decoders that estimates m̂(d) based on ynd , for d ∈ D.
Suppose m is uniformly distributed over the message set. A
rate R with average feedback rates RFb,k, for k ∈ [2 : N ],
is called achievable if for every blocklength n, there exists

a (2nR, n) code such that the average probability of error
P

(n)
e = Pr[m̂(d) 6= m, for some d ∈ D] tends to 0 as the n

tends to infinity. The capacity is the supremum of the set of
achievable rates R such that limn→∞ P

(n)
e = 0.

III. MAIN RESULTS

This section presents our main results. The proofs are given
in Sections V and VI.

Theorem 1. For DM multicast networks with feedback from
the receivers and relays to the transmitter, the rate R is
achievable if

R ≤ I(X1; Ŷ N2 , Yd|UN2 , XN
2 ) + min

r∈R
I(Ur;Yr|Xr)

R ≤ I(X1, X(T ), U(T ); Ŷ (T c), Yd|X(T c), U(T c))
−I(Ŷ (T );Y (T )|UN2 , XN

1 , Ŷ (T c), Yd) (2)

for all d ∈ D, T ⊂ [2 : N ] with T c ∩ D 6= ∅, and for some
pmf [

N∏
k=2

PXkUk

]
PX1|XN

2 U
N
2
PY N

1 |XN
1

×

[∏
r∈R

PŶr|UrXrYr

][∏
d∈D

PŶd|XdYd

]
(3)

such that

RFb,r ≥ I(Ŷr;Yr|Xr, Ur), for r ∈ R (4a)

RFb,d ≥ I(Ŷd;Yd|Xd), for d ∈ D. (4b)

Proof: See Section V-A
By setting Uk = ∅, for all k ∈ [2 : N ], we obtain the

following corollary.

Corollary 1. For DM multicast networks with feedback from
the receivers and relays to the transmitter, the rate R is
achievable if

R ≤ I(X1, X(T ); Ŷ (T c), Yd|X(T c))
−I(Ŷ (T );Y (T )|XN

1 , Yd, Ŷ (T c)) (5)

for all d ∈ D, T ⊂ [2 : N ] with T c ∩ D 6= ∅ and for some
pmf [

N∏
k=2

PXk

]
PX1|XN

2
PY N

1 |XN
1

[
N∏
k=2

PŶk|XkYk

]
(6)

such that

RFb,k ≥ I(Ŷk;Yk|Xk), for k ∈ [2 : N ]. (7)

Remark 1. Comparing the lower bound in Corollary 1 with
the NNC lower bound [5, Theorem 1], our rates includes
NNC if the feedback rates are sufficient large, i.e., if (7) holds
for all pmfs (6), since in (6) we allow the joint distribution∏N
k=2PXk

PX1|XN
2

instead of
∏N
k=1PXk

.

Based on the coding scheme for Theorems 1, we propose
another coding scheme for DM multicast networks without
feedback. The new achievable rate is shown below.



R ≤ I(X1; Ŷ N2 , Yd|UN2 , V N2 , XN
2 ) + min

r∈R
I(Ur;Yr|Vr, Xr) (8a)

R ≤ I(X1, X(T ), U(T ), V (T ); Ŷ (T c), Yd|U(T c), V (T c), X(T c))− I(Ŷ (T );Y (T )|UN2 , V N2 , XN
1 , Ŷ (T c), Yd) (8b)

Theorem 2. For DM multicast networks without feedback, the
rate R is achievable if (8) holds for all d ∈ D, T ⊂ [2 : N ]
with T c ∩ D 6= ∅, and for some pmf[

N∏
k=2

PVk
PXk|Vk

PUk|Vk

]
PX1|V N

2 UN
2

× PY N
1 |XN

1

[∏
r∈R

PŶr|UrVrXrYr

][∏
d∈D

PŶd|VdXdYd

]
(9)

such that∑
r∈T ∩R

I(Ŷr;Yr|Ur, Vr, Xr) +
∑

d∈T ∩D
I(Ŷd;Yd|Vd, Xd)

≤ I(X(T );Y1|UN2 , V N2 , X(T c), X1). (10)

Remark 2. Theorem 2 requires the transmitter to decode the
compression messages generated by all receivers and relays,
which may limit the performance if their are weak links from
the receivers or relays to the transmitter. One easy way to
improve the scheme is to allow the transmitter to decode
some nodes’ compression messages. Suppose the transmitter
decodes only the compression messages generated by the set
of nodes A ⊆ [2 : N ]. Then by a scheme similar to that for
Theorem 2, we obtain a new lower bound satisfying (11) for
all d ∈ D, T ⊂ [2 : N ] with T c ∩ D 6= ∅, and for some pmf[

N∏
k=2

PVk
PXk|Vk

PUk|Vk

]
PX1|V (A)U(A)

×PY N
1 |XN

1

[∏
r∈R

PŶr|UrVrXrYr

][∏
d∈D

PŶd|VdXdYd

]
(12)

such that∑
r∈TA∩R

I(Ŷr;Yr|Ur, Vr, Xr) +
∑

d∈TA∩D
I(Ŷd;Yd|Vd, Xd)

≤ I(X(TA);Y1|U(A), V (A), X(T cA), X1) (13)

where TA = T ∩ A, T cA is the complement of TA in A.
This lower bound reduces to the lower bound in Theorem 2

when A = [2 : N ], and to the NNC lower bound when A = ∅
and Vk = Uk = ∅, for all k ∈ [2 : N ].

IV. EXAMPLES

A. The relay channel with relay-transmitter feedback

Consider the relay channel with perfect feedback from the
relay to the transmitter, see Figure 2.

Let U3 = Ŷ3 = ∅, then Theorem 1 specializes to

R ≤ I(X1; Ŷ2, Y3|U2, X2) + I(U2;Y2|X2)

R ≤ I(X1, X2;Y3)− I(Ŷ2;Y2|U2, X1, X2, Y3) (14)

M                  PY2Y3|X1X2
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Fig. 2. Relay channel with relay-transmitter feedback

for some pmf PX1X2U2
PŶ2|X2U2Y2

.
Let Ŷ3 = ∅, then Corollary 1 specializes to

R ≤ I(X1; Ŷ2, Y3|X2)

R ≤ I(X1,X2;Y3)−I(Ŷ2;Y2|X1,X2,Y3)} (15)

for some pmf PX1X2
PŶ2|X2Y2

.
In [11] Gabbai and Bross studied this channel and proposed

coding schemes based on restricted decoding and deterministic
partitioning. The rates (15) and (14) recover Gabbai and
Bross’s rates of Theorems 2 and 3 in [11], respectively.

By using NNC [5], the rate R satisfying

R ≤I(X1; Ŷ2, Y3|X2)

R ≤I(X1, X2;Y3)−I(Ŷ2;Y2|X1, X2,Y3)} (16)

is achievable for any pmf PX1
PX2

PŶ2|X2Y2
, which coincides

with the compress-forward lower bound [2, Theorem 6].
By using DDF [7], [8], the rate R satisfying

R ≤ I(X1, X2;Y3) (17a)
R ≤ I(U2;Y2|X2) + I(X1;Y3|X2, U2) (17b)

is achievable for any pmf PX1X2U2
, which coincides with the

partial decode-forward lower bound [2, Theorem 7].
The lower bound (14) includes (16) and (17). In [11] Gabbai

and Bross showed that for the Gaussian and Z relay channels,
the lower bound (14) improves on the known lower bounds on
the achievable rate in the absence of feedback, including the
compress-forward lower bound in (16), and the partial decode-
forward lower bound in (17). In view of this fact, we have the
following corollary:

Corollary 2. For the DM single-relay channel with relay-
transmitter feedback, our coding scheme recovers Gabbai and
Bross’s results, and can strictly improve on NNC [5], DDF
[7] and all known lower bounds on the achievable rate in the
absence of feedback.

B. Enhanced Gaussian relay channel

Consider an enhanced Gaussian relay channel where the
transmitter can access the output Y1, see Figure 3. The channel



R ≤ max
A⊆[2:N ]

{
I(X1; Ŷ N2 , Yd|UN2 , V N2 , XN

2 ) + min
r∈R

I(Ur;Yr|Vr, Xr)
}

(11a)

R ≤ max
A⊆[2:N ]

{
I(X1,X(T ),U(T ),V (T ); Ŷ (T c),Yd|U(T c),V (T c),X(T c))−I(Ŷ (T );Y (T )|UN2 ,V N2 ,XN

1 ,Ŷ (T c),Yd)
}

(11b)
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Fig. 3. The enhanced Gaussian relay channel

outputs are: Y1 = g21X2 + Z1, Y2 = g12X1 + Z2 and Y3 =
g13X1 + g23X2 +Z3, where g21, g23, g12 and g13 are channel
gains and Z1 ∼ N (0, 1), Z2 ∼ N (0, 1) and Z3 ∼ N (0, 1)
are independent Gaussian noise variables. The input power
constraints are E|X2

1 | ≤ P1 and E|X2
2 | ≤ P2. Let s12 =

g2
12P1, s13 = g2

13P1, s23 = g2
23P2 and s21 = g2

21P2.
We compare the lower bound in Theorem 2 with the cut-

set outer bound and the previous known lower bounds, such
as amplify-forward, NNC, DDF and Cover-El Gama’s general
lower bound [2, Theorem 7].
Achievable rate in Theorem 2: Let U3 = V3 = Ŷ3 = ∅, then
Theorem 2 reduces to

R ≤ I(X1; Ŷ2, Y3|U2, V2, X2) + I(U2;Y2|V2, X2)

R ≤ I(X1, X2;Y3)− I(Ŷ2;Y2|U2, V2, X1, X2, Y3) (18)

for some pmf PV2PX2|V2
PU2|V2

PX1|V2U2
PŶ2|X2V2U2Y2

such
that I(Ŷ2;Y2|U2, V2, X2) ≤ I(X2;Y1|U2, X1, V2). To com-
pute (26), we choose distributions as in [14]:

U2 = aV2 +W0, X2 = cV2 +W2

X1 = bU2 +W1, Ŷ2 = Y2 + Z ′ (19)

where V2 ∼ N (0, P1),W0 ∼ N (0, ᾱβP1

b2 ),W1 ∼
N (0, αP1),W2 ∼ N (0, γP2) and Z ′ ∼ N (0, N ′) are inde-
pendent, for α, β, γ ∈ [0, 1]. For this choice, we have,

I(X1; Ŷ2, Y3|X2, V2, U2) = C
(
αs13 +

αs12

1 +N ′

)
I(U2;Y2|V2, X2) = C

( s12βᾱ

αs12 + 1

)
I(X1, X2;Y3) = C

(
2

√
ᾱβ̄γ̄s13s23+s13+s23

)
I(Ŷ2;Y2|U2,V2,X1,X2,Y3) = C

( 1

N ′

)
, (20)

and

I(Ŷ2;Y2|U2, V2, X2) = C
(1 + αs12

N ′

)
I(X2;Y1|U2, X1, V2) = C(γs21). (21)

Thus we obtain the lower bound

R ≤min
{
C
(
αs13 +

αs12

1 +N ′

)
+ C

( s12βᾱ

αs12 + 1

)
,

C
(

2

√
ᾱβ̄γ̄s13s23 + s13 + s23

)
− C

( 1

N ′

)}
(22)

subject to the constraint

N ′ ≥ 1 + αs12

γs21
. (23)

Amplify-forward: For the general Gaussian relay channel with
linear relaying functions, finding the channel capacity is a non-
convex optimization problem for blocklength k ≥ 2, which is
almost intractable. The paper [15] proposed an achievable rate:

R ≤ max
0<α≤1

1

2
C
(

2αP
(

1 +

(√
(1− α)/α+ g12g23d

)2
1 + g2

23d
2

))
where d =

√
2P2/(2αs2

13 + 1).
NNC: When using NNC [5], the achievable rate is:

R ≤ I(X1; Ŷ2, Y3|X2)− I(Ŷ1;Y1|X1, X2, Ŷ2, Y3),

R ≤ I(X1, X2;Y3)−I(Ŷ2;Y2|X2,Y3)−I(Ŷ1;Y1|X1,X2, Y3)

for some pmf PX1
PX2

PŶ2|X2Y2
PŶ1|X1Y1

. It’s easy to check
that the optimal choice of Y1 is Ŷ1 = ∅, which leads to the
compress-forward lower bound (16). The optimal distribution
of Ŷ2 is generally unknown. Choose Ŷ2 = Y2 + Z ′ where
Z ′ ∼ N (0, σ2) and optimise over σ2. We obtain the achievable
rate

R ≤ C
(
s13+

s12s23

s13+s12+s23+1

)
. (24)

DDF: When using DDF [7], the achievable rate is same as
the partial decode-forward lower bound (17). For the Gaussian
relay channels, partial decode-forward coding doesn’t improve
the decode-forward lower bound [15], thus we obtain the
achievable rate

R ≤ min
{
C(s13+s23+2ρ

√
s13s23), C

(
s12(1−ρ2)

)}
(25)

for 0 ≤ ρ ≤ 1.
Cover–El Gamal’s general lower bound [2, Theorem 7]: In
[2] Cover and El Gamal proposed a general lower bound for
the relay channel by combining compress-forward and decode-
forward, which can be written as:

R ≤ I(X1; Ŷ2, Y3|X2, U2) + I(U2;Y2|V2, X2),

R ≤ I(X1, X2;Y3)− I(Ŷ2;Y2|U2, X1, X2, Y3) (26)

for some pmf PV2
PX2|V2

PU2|V2
PX1|U2

PŶ2|X2U2Y2
such that

I(Ŷ2;Y2|U2, X1, X2, Y3) ≤ I(X2;Y3|V2).



Choosing the distributions as in [14], we obtain the lower
bound with same expression as (22) but subject to the con-
straint

N ′ ≥ (α(s13 + s23) + 1)
(β − αβ + α)s13 + 1

γs23(αs13 + 1)
. (27)

Comparing (23) with (27), if

1 + αs12

s21(α(s13 + s23) + 1)
<

(β − αβ + α)s13 + 1

s23(αs13 + 1)
(28)

for all α, β ∈ [0, 1] (e.g. s21 > s23, s12 < s13), our coding
scheme always improves Cover–El Gama’s general lower
bound [2, Theorem 7]. This general lower bound includes
both the partial decode-forward and compress-forward lower
bounds [2], thus we have the following corollary:

Corollary 3. For the enhanced Gaussian relay channel which
satisfies (28), our coding scheme improves the known inner
bounds, including the NNC and DDF lower bounds and
Cover–El Gama’s general lower bound [2, Theorem 7].

Note that both NNC and DDF fail to use Y1. (In NNC ,
the optimal choice of Ŷ1 is Ŷ1 = ∅, which means that the
transmitter doesn’t compress Y1). As we will see in Theorem
2 (see Section VI), instead of compressing or ignoring Y1,
the transmitter decodes the compression messages sent by the
receivers and relays based on Y1. This is particularly useful
when the link from the relay to the transmitter is stronger than
the link from the relay to the receiver.

Based on (22–27), the achievable rates for g12 = g13 =
g21 = 1, g23 = 0.7, and P1 = P2 = P are shown in figure 4.
Note that Cover-El Gama’s general lower bound is better than
NNC but worse than our proposed lower bound (not shown).
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Fig. 4. Achievable rates for the enhanced Gaussian relay channel

Table I compares achievable rates for this enhanced Gaus-
sian relay channel for g12 = 1/d, g13 = 1, g23 = g21 =
1/|1− d|, and with P1 = 5, P2 = 1. Here RNNC, RDDF, RCE,
RPro1 and RPro2 denote rates achieved by NNC, DDF, rates
from [2, Theorem 7] and rates from our proposed Theorem 1
and 2, respectively. The feedback scheme (RPro1) obtains the

TABLE I
ACHIEVABLE RATES FOR THE ENHANCED GAUSSIAN RELAY WITH AND

WITHOUT FEEDBACK

d RNNC RDDF RCE RPro1 RPro2

0.73 1.6908 1.6881 1.6927 1.7069 1.6996
0.74 1.6971 1.6703 1.6971 1.7111 1.7032
0.75 1.7033 1.6529 1.7033 1.7153 1.7077
0.76 1.7094 1.6358 1.7094 1.7195 1.7129

best performance, and our non-feedback scheme for Theorem
2 (RPro2) strictly improves the known lower bounds in the
absence of feedback.

V. ACHIEVABLE RATES FOR DM MULTIPLE-RELAY
CHANNELS WITH PARTIAL FEEDBACK

A. Scheme 1B

Note that in Scheme 1A above, the relays and receivers
use only compress-forward. In this subsection we present a
scheme where relays perform mixed compress-forward and
partial decode-forward.

1) Codebook: Fix pmf in (3). Transmission takes place in
B + 1 blocks each consisting of n transmissions. For block
b ∈ [1 : B], split the message mb into (m′b,m

′′
b ), where m′b

and m′′b are independently and uniformly distributed over the
sets [1 : 2nR

′
] and [1 : 2nR

′′

], respectively, where R′, R′′ ≥ 0
and so that R = R′ +R′′. Let m′′B+1 = m′B+1 = 1.

For each r ∈ R and block b ∈ [1 : B + 1],
randomly and independently generate 2n(R′+R̂r ) sequences
xnr,b(m

′
b−1, lr,b−1) ∼

∏n
i=1 PXr

(xr,b,i), with m′b−1 ∈
[1 : 2nR

′
] and lr,b−1 ∈ [1 : 2nR̂r ]. For each

(m′b−1, lr,b−1), randomly and independently generate 2nR
′

se-
quences unr,b(m

′
b|m′b−1, lr,b−1) ∼

∏n
i=1 PUr|Xr

(ur,b,i|xr,b,i).
For each (m′b,m

′
b−1, lr,b−1), randomly and independently

generate 2nR̂r sequences ŷnr,b(lr,b|m′b,m′b−1, lr,b−1) ∼∏n
i=1 PŶr|UrXr

(ŷr,b,i|ur,b,i, xr,b,i).
For each d ∈ D and block b ∈ [1 : B +

1], randomly and independently generate 2nR̂d sequences
xnd,b(ld,b−1) ∼

∏n
i=1 PXd

(xd,b,i), ld,b−1 ∈ [1 : 2nR̂d ].
For each ld,b−1, randomly and independently generate 2nR

′

sequences und,b(m
′
b|ld,b−1) ∼

∏n
i=1 PUd|Xd

(ud,b,i|xd,b,i). Sim-
ilarly, for each ld,b−1, randomly and independently generate
2nR̂d sequences ŷnd,b(ld,b|ld,b−1) ∼

∏n
i=1 PŶd|Xd

(ŷd,b,i|xd,b,i).
For each (m′b,m

′
b−1, lb−1), randomly and independently

generate 2nR
′′

sequences xn1,b(m
′′
b |m′b,m′b−1, lb−1) ∼∏n

i=1 PX1|UN
2 X

N
2

(x1,b,i|x2,b,i, u2,b,i, . . . , xN,b,i, uN,b,i).
Encoding and decoding are explained with the help of Table

II.
2) Source encoding: In each block b ∈ [1 : B+ 1], assume

that the transmitter already knows lb−1 through the feedback
links. It sends xn1,b(m

′′
b |m′b,m′b−1, lb−1).

To ensure that the transmitter perfectly knows lb−1, we have

R̂k ≤ RFb,k, for k ∈ [2 : N ]. (29)



TABLE II
CODING SCHEME 1B FOR MULTICAST NETWORK WITH PARTIAL FEEDBACK

Block 1 2 . . . B B + 1

X1 x1,1(m′′1 |m′1, 1, 1) x1,2(m′′2 |m′2,m′1, l1) . . . x1,B(m′′B |m
′
B ,m′B−1, lB−1) x1,B+1(1|1,m′B , lB)

Xr xr,1(1, 1) xr,2(m1, lr,1) . . . xr,B(m′B−1, lr,B−1) xr,B+1(m
′
B , lr,B)

Ur ur,1(m′1|1, 1) ur,2(m′2|m1, lr,1) . . . ur,B(m′B |m
′
B−1, lr,B−1) ur,B+1(1|m′B , lr,B)

Ŷr ŷr,1(lr,1|1, 1) ŷr,2(lr,2|m1, lr,1) . . . ŷr,B(lr,B |m′B−1, lr,B−1) ŷr,B+1(1|m̂′B , lr,B)
Xd xd,1(1) xd,2(ld,1) . . . xd,B(ld,B−1) xd,B+1(ld,B)
Ud ud,1(m

′
1|1) ud,2(m

′
2|ld,1) . . . ud,B(m′B |ld,B−1) ud,B+1(1|ld,B)

Ŷd ŷd,1(ld,1|1) ŷd,2(ld,2|ld,1) . . . ŷd,B(ld,B |ld,B−1) ŷd,B+1(1|ld,B)

Yd m̂′′1 ← (m̂′′2 , m̂
′
1, l̂1) . . . ← (m̂′′B , m̂′B−1, l̂B−1) ← (m̂′B , l̂B)

3) Relay encoding: Relay nodes perform hybrid compress-
forward and decode-forward. For each block b ∈ [1 : B + 1],
assume that Relay r ∈ R already knows m̂′b−1 from block
b− 1. It looks for a unique index m̂′b such that1(
xnr,b(m̂

′
b−1, lr,b−1),unr,b(m̂

′
b|m̂′b−1, lr,b−1),ynr,b

)
∈ T nε/4(PXrYrUr ).

then it compresses ynr,b by finding a unique index lr,b such that(
unr,b(m̂

′
b|m̂′b−1, lr,b−1), xnr,b(m̂

′
b−1, lr,b−1),

ŷnr,b(lr,b|m̂′b,m̂′b−1, lr,b−1),ynr,b
)
∈ T nε/2(PUrXrYrŶr

).

Then, it sends lr,b through the feedback link at rate R̂r ≤ RFb,r
and in block b+ 1 sends xnr,b+1(m̂′b, lr,b).

By the covering and packing lemmas, this is successful with
high probability if

R′ < I(Ur;Yr|Xr)− δ(ε/4)

R̂r > I(Ŷr;Yr|Xr, Ur) + δ(ε/2), for r ∈ R. (30)

4) Receiver encoding: Receiver d ∈ D compresses ynd,b by
finding a unique index ld,b such that(

xnd,b(ld,b−1), ŷd,b(ld,b|ld,b−1), ynd,b
)
∈ T nε/2(PXdYdŶd

).

Then, it sends ld,b through the feedback link at rate R̂d ≤
RFb,d and in block b+ 1 sends xnd,b+1(ld,b).

By the covering lemma, this is successful with high proba-
bility if

R̂d > I(Ŷd;Yd|Xd) + δ(ε/2), for d ∈ D. (31)

5) Decoding: Receiver d ∈ D performs backward de-
coding. For each block b ∈ [B + 1, . . . , 1], it looks for
(m̂′′b , m̂

′
b−1, l̂b−1) such that 2(

xn1,b(m̂
′′
b |m̂′b, m̂′b, l̂b−1), xnb (R), xnb (D),unb (R),

unb (D), ŷnb (R), ŷnb (D), ynd,b
)
∈ T nε (PXN

1 U
N
2 Ŷ

N
2 Yd

)

where xnb (R) := [xnr,b(m̂
′
b−1, l̂r,b−1) : r ∈ R], xnb (D) :=

[xnd,b(l̂d,b−1) : d ∈ D], unb (R) := [unr,b(m̂
′
b|m̂′b−1, l̂r,b−1) :

1Since each Relay r∈R makes its own estimate of m′b, the precise notation
m̂
′(r)
b . For simplicity, we omit the superscript (r).
2Receiver d ∈ D knows ld,b−1 since it generated this index. Since each

Receiver d makes its own estimate of (m′′b ,m
′
b−1, lb−1), the precise notation

is (m̂
′′(d)
b , m̂

′(d)
b−1, l̂(d)b−1). For simplicity, we omit the superscript (d).

r ∈ R], unb (D) := [und,b(m̂
′
b|l̂d,b−1) : d ∈ D] and

ŷnb (R) := [ŷnr,b(l̂r,b|m̂′b, m̂′b−1, l̂r,b−1) : r ∈ R], ŷnb (D) :=

[ŷnd,b(l̂d,b|l̂d,b−1) : d ∈ D].
By the independence of the codebooks, the Markov lemma,

packing lemma and the induction on backward decoding, the
decoding is successful with high probability if

R′′ < I(X1; Ŷ N2 , Yd|UN2 , XN
2 )− δ(ε), (32)

R+ R̂(T ) <

I(X1, X(T ), U(T ); Ŷ (T c), Yd|X(T c)))
+

∑
k∈R∩T

H(Ŷk|Uk, Xk) +
∑

j∈D∩T
H(Ŷj |Xj)

−H(Ŷ (T )|XN
2 , U

N
2 , Ŷ (T c), Yd)− δ(ε) (33)

satisfying T ⊇ R, and

R′′ + R̂(T ) <

I(X1, X(T ), U(T ); Ŷ (T c), Yd|X(T c)))
+

∑
k∈R∩T

H(Ŷk|Uk, Xk) +
∑

j∈D∩T
H(Ŷj |Xj)

−H(Ŷ (T )|XN
2 , U

N
2 , Ŷ (T c), Yd)− δ(ε) (34)

for all T ⊂ [2 : N ] with T c ∩ D 6= ∅.
For convenience, we ignore the constraints (33) and (34)

by introducing the following constraint which is stricter than
both (33) and (34):

R+ R̂(T ) <

I(X1, X(T ), U(T ); Ŷ (T c), Yd|X(T c), U(T c))
+

∑
k∈R∩T

H(Ŷk|Uk, Xk) +
∑

j∈D∩T
H(Ŷj |Xj)

−H(Ŷ (T )|XN
2 , U

N
2 , Ŷ (T c), Yd)− δ(ε) (35)

for all T ⊂ [2 : N ] with T c ∩ D 6= ∅.
Combining (29–32) and (35), and using Fourier-Motzkin

elimination to eliminate R′, R′′, R̂2, . . . , R̂N , we obtain The-
orem 1.

VI. DISCRETE MEMORYLESS MULTICAST NETWORK

In Section V we proposed a block-Markov coding scheme
for DM multicast networks in the presence of instantaneous,
rate-limited and noisy-free feedback. Recall the NNC scheme



[4], [5], [6] for DM multicast networks without feedback,
where each node (including the transmitter) compresses its
observation and sends the new compression index in the next
block. Comparing our coding scheme with NNC, we observe
that both schemes involve block-Markov coding, compressing
channel outputs and sending compression messages. However,
our scheme allows hybrid relaying strategies at relay nodes,
and in each block, instead of creating a new compression
index, the transmitter forwards all compression indices sent by
receivers and relays from the previous block. In our scheme,
different nodes operate differently according to the features
of the network, which leads to a larger achievable rate than
NNC, as shown by examples in Section IV.

Motivated by our feedback coding scheme, we propose an-
other scheme for the N -node DM multicast networks without
feedback. The main idea is as follows: in each block b, each
node k ∈ [2 : N ] creates a compression index lk,b−1 and
sends (lk,b−1, lk,b−2). The transmitter, after observing Y n1,b,
first decodes compression indices lb−1, which is in essence
a coding problem on a multiple access channel PY1|X2,...,XN

with side information X1. Then in block b+1, the transmitter
sends compression messages lb−1 with source message mb+1.

1) Codebook: Fix the pmf in (9). Transmission takes place
in B+ 2 blocks each consisting of n transmissions. For block
b ∈ [1 : B], split the message mb into (m′b,m

′′
b ), where m′b

and m′′b are independently and uniformly distributed over the
sets ∈ [1 : 2nR

′
] and [1 : 2nR

′′

], respectively, where R′, R′′ ≥
0 and so that R = R′ + R′′. Let l−1 = l0 = 1[N−1] and
m′′B+1 = m′B+1 = m′′B+2 = m′B+2 = 1.

For each r ∈ R and block b ∈ [1 : B + 2],
randomly and independently generate 2n(R′+R̂r)

sequences vnr,b(m
′
b−1, lr,b−2) ∼

∏n
i=1 PVr (vr,b,i),

with m′b−1 ∈ [1 : 2nR
′
] and lr,b−2 ∈ [1 : 2nR̂r ].

For each (m′b−1, lr,b−2), randomly and independently
generate 2nR̂r sequences xnr,b(lr,b−1|m′b−1, lr,b−2) ∼∏n
i=1 PXr|Vr

(xr,b,i|vr,b,i). For each pair (m′b−1, lr,b−2),
randomly and independently generate 2nR

′
sequences

unr,b(m
′
b|m′b−1, lr,b−2) ∼

∏n
i=1 PUr|Vr

(ur,b,i|vr,b,i). For
each (m′b,m

′
b−1, lr,b−2, lr,b−1), randomly and independently

generate 2nR̂r sequences ŷnr,b(lr,b|m′b,m′b−1, lr,b−2, lr,b−1) ∼∏n
i=1 PŶr|UrXrVr

(ŷr,b,i|ur,b,i, xr,b,i, vr,b,i).
For each d ∈ D and block b ∈ [1 : B + 2],

randomly and independently generate 2nR̂d sequences
vnd,b(ld,b−2) ∼

∏n
i=1 PVd

(vd,b,i), with ld,b−2 ∈ [1 : 2nR̂d ].
For each ld,b−2, randomly and independently generate 2nR̂d

sequences xnd,b(ld,b−1|ld,b−2) ∼
∏n
i=1 PXd|Vd

(xd,b,i|vd,b,i).
For each ld,b−2, randomly and independently generate 2nR

′

sequences und,b(m
′
b|ld,b−2) ∼

∏n
i=1 PUd|Vd

(ud,b,i|vd,b,i).
For each (ld,b−2, ld,b−1), randomly and independently
generate 2nR̂d sequences ŷnd,b(ld,b|ld,b−2, ld,b−1) ∼∏n
i=1 PŶd|XdVd

(ŷd,b,i|xd,b,i, vd,b,i).
For each (m′b,m

′
b−1, lb−2), randomly and independently

generate 2nR
′′

sequences xn1,b(m
′′
b |m′b,m′b−1, lb−2) ∼∏n

i=1 PX1|UN
2 V

N
2

(x1,b,i|v2,b,i, u2,b,i, . . . , vN,b,i, uN,b,i).

Let

v′nb (R) := [vnr,b(m̂
′
b−1, l̂r,b−2), r ∈ R]

v′nb (D) := [vnd,b(l̂d,b−2), d ∈ D]

x′nb (R) := [xnr,b(l̂r,b−1|m̂′b−1, l̂r,b−2) : r ∈ R]

x′nb (D) := [xnd,b(l̂d,b−1|l̂d,b−2) : d ∈ D]

u′nb (R) := [unr,b(m̂
′
b|m̂′b−1, l̂r,b−2) : r ∈ R]

u′nb (D) := [und,b(m̂
′
b|l̂d,b−2) : d ∈ D]

ŷ′nb (R) := [ŷnr,b(l̂r,b|m̂′b, m̂′b−1, l̂r,b−2, l̂r,b−1) : r ∈ R]

ŷ′nb (D) := [ŷnd,b(l̂d,b|l̂d,b−2, l̂d,b−1) : d ∈ D].

2) Source encoding: At each block b ∈ [1 : B + 1], after
observing Y n1,b, it looks for l̂b−1 such that(

xn1,b(m
′′
b |m′b,m′b−1, l̂b−2), v′nb (R), v′nb (D), x′nb (R),

x′nb (D),u′nb (R),u′nb (D),yn1,b
)
∈T nε/8(PV N

2 XN
1 U

N
2 Y1

)

where m̂′′b = m′′b , m̂′b = m′b and m̂′b−1 = m′b−1 in (36) since
the transmitter knows the source messages it sent.

After finding compression indices l̂b−1, in block b + 1 the
transmitter sends xn1,b+1(m′′b+1|m′b+1,m

′
b, l̂b−1).

By the packing lemma, this step is successful with high
probability if for T ⊆ [2 : N ], we have

R̂(T ) < I(X(T );Y1|X(T c), V N2 , UN2 , X1)− δ(ε/8). (36)

3) Relay encoding: Relay nodes perform mixed compress-
forward and partial decode-forward. In each block b ∈ [1 :
B + 1], Relay r ∈ R looks for a unique index m̂′b such that3(

vnr,b(m̂
′
b−1, lr,b−2), xnr,b(lr,b−1|m̂′b−1, lr,b−2),

unr,b(m̂
′
b|m̂′b−1, lr,b−2), ynr,b

)
∈ T nε/6(PXrYrUrVr

),

then it compresses ynr,b by finding a unique index lr,b such that(
vnr,b, u

n
r,b, x

n
r,b, y

n
r,b,

ŷnr,b(lr,b|m̂′b, m̂′b−1, lr,b−2, lr,b−1)
)
∈ T nε/4(PVrUrXrYrŶr

).

Then, in block b+ 1 it sends xnr,b+1(lr,b|m̂′b, lr,b−1).
By the covering and packing lemma, this step is successful

with high probability if

R′ < I(Ur;Yr|Vr, Xr)− δ(ε/6)

R̂r > I(Ŷr;Yr|Vr, Xr, Ur) + δ(ε/4), for r ∈ R. (37)

4) Receiver encoding: Receiver d ∈ D compresses ynd,b by
finding a unique index ld,b such that(

vnd,b(ld,b−2), xnd,b(ld,b−1|ld,b−2),

ŷd,b(ld,b|ld,b−2, ld,b−1), ynd,b
)
∈ T nε/4(PVdXdYdŶd

).

Then, in block b+ 1 it sends xnd,b+1(ld,b|ld,b−1).
By the covering and packing lemmas, this step is successful

with high probability if

R̂d > I(Ŷd;Yd|Vd, Xd) + δ(ε/4), for d ∈ D. (38)

3Since each Relay r ∈ R makes its own estimate of m′b, thus the precise
notation should be m̂

′(r)
b . For simplicity, we omit the superscript (r).



TABLE III
CODING SCHEME FOR MULTICAST NETWORK WITHOUT FEEDBACK

Block 1 . . . B B + 1 B + 2

X1 x1,1(m′′1 |m′1, 1, 1) . . . x1,B(m′′B |m
′
B ,m′B−1, lB−2) x1,B+1(1|1,m′B , lB−1) x1,B+2(1|1, 1, lB)

Vr vr,1(1, 1) . . . vr,B(m′B−1, lr,B−2) vr,B+1(m
′
B , lr,B−1) vr,B+2(1, lr,B)

Xr xr,1(1|1, 1) . . . xr,B(lr,B−1|m′B−1, lr,B−2) xr,B+1(lr,B |m̂′B , lr,B−1) xr,B+2(1|1, lr,B)
Ur ur,1(m′1|1, 1) . . . ur,B(m′B |m

′
B−1, lr,B−2) ur,B+1(1|m′B , lr,B−1) ur,B+2(1|1, lr,B)

Ŷr ŷr,1(lr,1|m′1, 1, 1, 1) . . . ŷr,B(lr,B |m′B−1,m
′
B , lr,B−2, lr,B−1) ŷr,B+1(1|m′B , 1, lr,B−1, lr,B) Ŷr,B+2(1|1, 1, lr,B , 1)

Vd vd,1(1) . . . vd,B(ld,B−2) vd,B+1(ld,B−1) vd,B+2(ld,B)
Ud ud,1(m

′
1|1) . . . ud,B(m′B |ld,B−2) ud,B+1(1|ld,B−1) ud,B+2(1|ld,B)

Xd xd,1(1|1) . . . xd,B(ld,B−1|ld,B−2) xd,B+1(ld,B |ld,B−1) xd,B+2(1|ld,B)

Ŷd ŷd,1(ld,1|1, 1) . . . ŷd,B(ld,B |ld,B−2, ld,B−1) ŷd,B+1(1|ld,B−1, ld,B) ŷd,B+2(1|ld,B , 1)

Yd m̂′′1 . . . ← (m̂′′B , m̂′B−1, l̂B−2) ← (m̂′B , l̂B−1) ← l̂B

5) Decoding: Receiver d ∈ D performs backward de-
coding. For each block b ∈ [B + 2, . . . , 1], it looks for
(m̂′′b , m̂

′
b−1, l̂b−2) such that4(

xn1,b(m̂
′′
b |m̂′b, m̂′b−1, l̂b−2), v′nb (R), v′nb (D), x′nb (R), x′nb (D),

u′nb (R),u′nb (D),ŷ′nb (R),ŷ′nb (D),ynd,b
)
∈T nε (PV N

2 XN
1 U

N
2 Ŷ

N
2 Yd

).

By the independence of the codebooks, the Markov lemma,
packing lemma and induction on backward decoding, the
decoding is successful with high probability if

R′′ < I(X1; Ŷ N2 , Yd|XN
2 , U

N
2 , V

N
2 )− δ(ε) (39)

and

R+ R̂(T ) <

I(X1,V (T ),U(T ),X(T );Ŷ (T c),Yd|V (T c),X(T c),U(T c))
+

∑
k∈R∩T

H(Ŷk|Xk, Uk, Vk) +
∑

j∈D∩T
H(Ŷj |Xj , Vj)

−H(Ŷ (T )|V N2 , XN
1 , U

N
2 , Ŷ (T c), Yd)− δ(ε) (40)

such that T ⊇ R, and

R′′ + R̂(T ) <

I(X1,V (T ),U(T ),X(T );Ŷ (T c),Yd|V (T c),X(T c),U(T c))
+

∑
k∈R∩T

H(Ŷk|Xk, Uk, Vk) +
∑

j∈D∩T
H(Ŷj |Xj , Vj)

−H(Ŷ (T )|V N2 , XN
1 , U

N
2 , Ŷ (T c), Yd)− δ(ε) (41)

for all T ⊂ [2 : N ] with T c ∩ D 6= ∅.
For convenience, we ignore the constraints (40) and (41)

by introducing the following constraint which is stricter than
both (40) and (41):

R+ R̂(T ) <

I(X1,V (T ),U(T ),X(T ); Ŷ (T c),Yd|V (T c), X(T c), U(T c))
+

∑
k∈R∩T

H(Ŷk|Xk, Uk, Vk) +
∑

j∈D∩T
H(Ŷj |Xj , Vj)

−H(Ŷ (T )|V N2 , XN
1 , U

N
2 , Ŷ (T c), Yd)− δ(ε) (42)

4Receiver d ∈ D knows ld,b−2 since it generated itself. Since each
Receiver d ∈ makes its own estimate of (m′′b ,m

′
b−1, lb−2), the precise

notation is (m̂′′(d)b , m̂
′(d)
b−1, l̂(d)b−2). For simplicity, we omit the superscript (d).

for all T ⊂ [2 : N ] with T c ∩ D 6= ∅. .
Combining (36–39) and (42), and using Fourier-Motzkin

elimination to eliminate R′, R′′, R̂2, . . . , R̂N , we obtain The-
orem 2.
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