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Abstract— This paper is concerned with erroneous history learning enhances a model predictive control architecture
stack elements in concurrent learning. Concurrent learnig-  for nonlinear systems. The synchronization of agents with
based update laws make concurrent use of current measure- uncertain dynamics in a network is discussed in [6] and [7],

ments and recorded data. This replaces persistence of exaiion h y . . lied to | the desired
by a less restrictive linear independence of the recorded da. where concurrent learning IS applied to learn the desire

However, erroneous or outdated data prevents convergence t polici_es_ in _the presence_of unknown dynamics_. Another
the true parameters. We present insights into the convergere  promising field of application for concurrent learning-eds

properties of concurrent learning and propose a routine to  ypdate laws are switched systems. Both adaptive control of
recognize and remove erroneous data online. We charactesz switched systems [8] and adaptive identification of piesewi

erroneous data based on its inconsistency with the current . . .
measurement-based update. We numerically validate that affine systems [9] benefit from concurrent learning. The use

proposed routine restores the tracking ability and improves the ~ Of memory allows to continuously u_pdate all subsystems,
convergence properties of concurrent learning. even those that are currently not active.
l. INTRODUCTION Despite growing interest in concurrent learning and its
dvantages, the use of memory also introduces drawbacks:

Many control engneering appllcat_|ons are charactenze@noneous data in the history stacks deteriorates the glener
by unknown and time-varying dynamics. In such cases, co%

| ith adaoti hani bl atio erformance. In [2], it is stated that the tracking error is
trol systems with adaptive mechanisms enable estimatian a niformly ultimately bounded and that the adaptive weights

thracklng of tr|1e unknown parameters. Mostdadaﬁtlve SySterT1.C°‘0nverge to a compact ball around the ideal weights in the
owever, only gu_arante(_a convergence under t _e_assump_tmsence of erroneous history stacks. While this is a d@sira
that thefsyste_zm_ls pelzarélstehntly er)](C'tEdH MalnFammg Rers %roperty for small errors, it implies that we converge to the
ten(_:e 0 excitation ( . ) t roug out the _ent|re a aIOtat'owrong parameters in case of larger errors, which are for
perlpd Is very restrictive g_nd Is not easﬂyl momtor_ed anstance induced by parameter changes of the system.
runtime. Also, from a practitioner’s point of view, persist Techniques proposed in [8] or [10] remove outdated and

excitation mtroduce; unwanted OSC'”at'.OnS Into th(_aayst therefore erroneous history stack elements by repeatedly
The central idea in concurrent learning [1]-[3] is to use

: S'placing the entire history stack. Those techniques hewev
cur_rent measurement_s concurrently with pas_t .measuremer}gll to selectively remove a single erroneous element. is th
which are stored in history stacks. The repetitive use of pa

: . ﬁger, we propose a routine which recognizes and replaces
measurements bears a major advantage: PE is replaced by . .
roneous history stack elements online. The suggested rou

. . : i €
simpler requirement of linear independence of the record%(ﬁ]e exploits the fact that the erroneous stack elementbigxh

ggtibt';?r:;h deirr:ngrﬁr’n:;ggargri:)n ddg?i&deewit??oﬁu;f?virxsno & largest disagreement in terms of update directionseo th
P current measurement-based term. We validate numerically

external excitation. . -
. . .that 1.) the proposed routine restores tracking propedies
A connection between concurrent learning and Recursive ) brop g prop

Least Squares (RLS) [4, chap. 11] is indicated by [1]. Thconcurre_nt Iearn_mg and 2.) reduces the parameter error of
) . e obtained estimates.
difference between the two concepts is in the update laws. In__, . ; . . .
. S This paper is organized as follows. In section II, we dis-
RLS, the parameter estimates are updated in discrete steps . ; o !
: . Uss concurrent learning-based parameter identifiers;hwhi
with every measurement taken. Concurrent learning, on the
other hand, utilizes the measurements in the history sfacks

a gradient descent. As we will show later, this step allows t

evaluate each measurement individually and reject erlumecwe validate the algorithm numerically in section IV with two

data quickly. simulation studies. Conclusions follow in section V.
Concurrent learning-based update laws have been applleEf1 ' '

in various fields over the last years. In [5], concurrent

propose a routine to remove erroneous history stack element
In section Il and present arguments to support the algworith
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wherex € R™ andu € RP are the state and input vectorscase. History stack elements are flexible and should be
of the system. We wish to recursively identify the unknowneplaced appropriately. In [10], it is shown that replacing
system parameters € R"*", B € R"*P and f € R"™ based old data points actually increases the convergence rate-if e
on measurements aft) andu(t). Let us therefore introduce ments are replaced such that the linear independence bretwee
the time-varying estimatesi(t) e R™»*7, B(t) e R™*P  history stack elements grows. During all manipulationdhef t
and f(t) € R". With carefully designed update laws, thesaecorded data, the following two assumptions on the history
estimates must provably converge to the true parameters.stacks should be fulfilled.

The update laws in concurrent learning-based adaptive Assumption 1: The history stacké and U contain ele-
identification (and control) consist of two parts. The firattp ments, such that there exist+ p + 1 linearly independent
depends on current measurements of states and contra$inpugctors|z], u] , 1]7.
as well as estimation errors. The second part is calculatedAssumption 2: GivenX and U, all elements;j ¢
with past measurements stored in history stacks. The upddte ..., ¢} of history stackX fulfill Az; + Bu; + f = ;.
laws thus make concurrent use of instantaneous and recordef\ssumption 1 ensures that the recorded data contains
data. We first introduce both parts of the update laws iBnough information for the identification task. The existen
detail. Afterwards, we discuss their interplay. of linearly independent history stack elements for Assump-
. tion 1 is guaranteed under PE. Note however that PE is by
A. Update with Current Data no means necessary for the collection of the history stack

Parameter identifiers [11, Ch. 5] enable the recursive idetements.
tification of the state space system (1) based on estimationAssumption 2 requires that the recorded data is correct.
errors. The state of the system is estimated with In other words, the recorded derivativge must match the

. . N . N derivatives for the corresponding statg and inputu;. Note

&= Ami + (A - Am) ¢+ Bu+tf, @ that Assumption 2 is very strict and usually not fulfilled
in practice. Particularly in cases where the state deveati
cannot be measured, one resorts to techniques such as fixed
point smoothing to obtain a sufficiently accurate estimate
(see e.g. [13, chap. 9]). We will show in Theorem 1, however,
Eat small errors in the state derivative are acceptabla suc
at estimates ofi obtained with fixed point smoothing
are sufficiently accurate. Nonetheless, the violation of As

AC — I Pex”, BS = —IyPeu”, fC— —IyPe, (3) Sumption 2 constitutes the main motivation of this paper as

more severe errors can be introduced to the history stacks
with estimation errore = & — x and scaling constants either due to parameter changes of the system or outliers
I, I, I3 € RT. The update laws (3) share the samen the smoothing process. The ability to detect and remove
limitation as most adaptive algorithms: they require PEe Thsuch outliers thus improves the tracking performance and
estimated parameters only converge to the true paramétergjecision of concurrent learning.
the system is persistently excited (see e.g. [11] and [12]). et us now define:; as the error between estimated and
recorded time derivative of the state for tli¢h triplet:

whereAy, € R"*" is a stable (Hurwitz) design matrix which
ensures boundedness #f Since A, is stable, we always
find a symmetric, positive definite matrik € R™*"™ such
thatAL P+ PAn = —Q. for a positive definite matrix). €
R™*", The following update laws are solely based on currer{
measurements (hence the supersatjpt t

B. Update with Recorded Data

Concurrent learning improves the performance of adaptive gi(t) 2 A(t)x; + B(t)u; + f(t) — . 4)
update laws, such as (3), by storing selected measurements i ] o
history stacks. The recorded data is then repeatedly emgloy AS the history stack elements;, u; andi; in (4) are
to update the system parameters in a gradient descent. THR{IStant, changes in; must stem from the time-varying

increases convergence rates and in the case of switcHtjimatesd, B and f. We enhance the update laws in (3)
systems even allows to update inactive subsystem parmeﬁé’fth an additional part which is based on the recorded data

(see [8], [9]). (hence the superscrig) and the errors;:

We record data in form of triplets. Byc{ € R", u; € RP, ) q i a
z; € R™), we denote thej-th triplet consisting of state, AR=_n Zgj;p?7 BR = _FQZEJ“JT’
control input and state derivative, respectively. A totél o j=1 j=1
q € N such triplets are recorded and stored in the three . q ()
history stacksX £ [x1,22,...,74), U & [ug,us, ..., ug fR=—oI3 Zej.
and X £ [#1,40,...,4,]. The number of recorded triplets j=1

¢ is upper bounded by practical considerations, i.e. memo
limitations only allow a finite number of data points. The

lower bound ony, given byn+p+1 < ¢, is due to theoretical ~ For concurrent learning adaptive identification, we com-
insights which we discuss shortly. bine the current data-based update laws in (3) with the

Note that the stack elemenis, u; andi; need not be recorded data-based update laws in (5). We obtain the fellow
constant. As a matter of fact, the opposite is the desirabled theorem on the convergence of the parameter estimates.

®. Concurrent Learning



Theorem 1: Consider the affine systdf) and let the Also, the derivative of the estimation error is now given
state of the system be observed(By Update the estimates in terms of¢ by
A, B and f by

A=A+ AR, B=B°+BR  f=fC+fR (6)
H T
We choose the quadratic Lyapunov functidn= ¢* Pe +

» If Assumptions 1 and 2 hold, the estimates converge'p-1j ang with (12) and (13) obtain its time derivative:
exponentially to the true parameters B and f.

« If only Assumption 1 holds, the estimates converge to a V =—e"Q.e — 07 Qg0 — 2A70, (14)

compact ball around the true parameters.

We state now the essential steps of the proof for th@hereQe £ —(ATP + PAn) and @y = E' + E. Recall
erroneous case in which Assumption 2 is violated. The prodfat Q. was chosen to be positive definite in the design of
delivers insights which constitute the starting point foe t the update laws (3). Also, the matri and in turn alsaQs
intended detection of erroneous history stack elements. are positive definite because of Assumption 1.

Proof: We begin by modeling the violation of As- Note that (14) also incorporates the ideal case in The-
sumption 2. We observe a discrepancy between the measugs@m 1. If we sety; = 0, Vj € {1,...,q}, the A-term
derivative and the true derivative of the state if Assumpflo Vvanishes and the derivative of our candidate Lyapunov func-
is violated. In order to model this, we define the meation is indeed negative definite. Hence, the estimationrgrro
sured/estimated derivativig in our history stack as the true ¢ and parameter errors converge to zero exponentially.
derivativei(z;,u;) = Ar; + Bu; + f at the corresponding  In the erroneous case however, we héye- 0. Therefore,
state and control input minus an error tefme R™: (14) is quadratic ine and 61 but is also linear inf. This
divides the error space” 67]7 € R™""+P+2) in two sets.

é= Ame + ¥7T0. (13)

LB a8 .
T = (5, u5) = 0. ) For some small values df the linear term outweighs the
We insert (7) in the definition of; in (4). This yields quadratic terms, which results in a first closed set for which
e = ij + Buj it 5, 8) V' > 0. This first set is surrounded by a second set in which

o T L the quadratic terms outweigh the linear term &het 0. The
with parameter errord = A—A, B= B—Bandf = f—f. outer set withV’ < 0 guarantees boundednessecfind.
While (4) specifies how to calculatg online, the expression  Next, we approximate the compact set to which the param-
in (8) — which cannot be calculated due to the unknowater error$) converge by analyzing the shape of the boundary
parameter errors — is beneficial in the following convergenmetween the two sets. This boundary is characterized by
analysis. V = 0. Rearranging (14) wittV’ = 0 yields

In order to formulate a quadratic Lyapunov function in

terms of the parameter errars B and f, we combine them 7 47 |:Qe 0 ] ﬁ +[0 2A7] H —0. (15)
in a single column vector 0 Qo 0

0
T , : : -
j_ T NT 7T n(n+p+1) With (15), we easily verify that the origin and the state
6= |ved4)", vedB)", f } <R - O with e = 0 andd = —2(Q, )T A belong to the boundary
With the Kronecker producd, we introduce the matrices set. Furthermore, (15) defines an ellipsoid in the error spac

ni,, 0 0 2 which is centered at. = 0 andf, = —(Q, )T A. Another
ra 0 LI, 0 |, U2 |u|l e, representation of the ellipsoid (15) is
0 0 Tsln 1 [T — T éT—éT}¥ Qe 0] je—ec =1
a [z ¢ CTATQ A [0 Qe [0 6. '
- A T T
=2 Z uj [:Cj u; 1] ® I, (20) s
j=1 11

whereT,, I, and I, are identity matrices of dimensions The_ eigenvectors of the positi_ve definite matfixdefine .
n % n, nn x nn andnp x np, respectively. This allows us to the pr_mm_pal axes of the ellipsoid. The Igngth of t_he semi-
express most equations in a more compact form, which #<€S iS given by the square root of the inverse eigenvalues

turn simplifies our later analysis. First, we rewrite (8) as ©°f £+ The maximal semi-principal axig,.. is thus charac-
T terized by the minimal eigenvalug,,(-). Its length is
Ty

gi= 1|1y | ®IL, 0+ ;. (11) Ivmaxl = ( Ami Q )\ °
1 max min ATQ;lA .

Figure 1 visualizes the ellipsoid for an exemplary two-
dimensional parameter vectér = [0; 6,]7. We exploit

Moreover, we transform the update laws (6) with the help
of (9), (10) and (11) and obtain

P . q_|%j the triangle inequality on the centroif. of the ellip-
0=0=-TUPe—T=0-T (> |u;| @5 |. (12) soid and its maximal semi-principal axigna,. This ap-
i=1 |1 proximates the ball around the true parameters to which

x our estimates converge in the presence of erdrsby



. V=0 We know that our estimates are wrongif£ 0 (or greater
V>0 than some threshold in the presence of noise). We then
0. . detect erroneous stack elements by comparing the individua
V<0 L .
contributions in the update laws (6). Let us refer to the
contribution of the current measurements and of jhth
history stack triplet by

L

01 6 (2(t), u(t)) = —T'TPe (16)
Fig. 1. Visualization of the ellipsoidal set for whidh > 0 and approxima- *R o — T ) .
tion of the maximum parameter erfmax || in terms of the centroid. and 93 (@), u5,&5) = —T=0 —=TA;, jedl,....q}, (17)
maximal semi-principal axigmax of the ellipsoid (|[vmax|| = 1/vAmin)- where
- - T T
05l < IATQy | + [|vmax|l Where the poing},, isalso  Z; = | |u;| [z7 of 1] | &L, A;j=|uj| ®6;.
highlighted in Fig. 1. [ ] 1 1

The proof of Theorem 1 shows that history stack elements . . L : L
. We are interested in the directional information in the up-
may be arbitrarily replaced as long as the two assump-

. I : . 'date vectors (16) and (17). Recall that under the assumption
tions remain intact. From a control theoretic perspective

the replacement of stack elements amounts to switchi df persistent excitation, the update law (16) with curreatbd

) . "Hone drives the parameter estimates to the true parameters
between different stable dynamics that share the common :

Lyapunov functionV. Note however that in the erroneous I herefore < serves as a reference point. _
case, changing the history stack elements also changes th&l0té that the requirement of PE does not constitute a
ellipsoidal region to which our estimates converge. limitation at_ this point. Once we know that th_e history
The size of the ellipsoidal region is a critical factor wherStack contains erroneous elements, we should in any case
reasoning whether the obtained estimates are sufficienfyfCite the system in order to obtain new measurements to
accurate. Findings in [9] suggest that errors introducelfill Assumption 1. While collecting new measurements,
during the estimation of state derivatives usually leadcto aWe €xploit the excitation to reason which elements are
ceptable levels of accuracy. Single outliers in the smagthi €Toneous and need to be replaced. While PE guarantees that
process might however deteriorate the achievable accuratyf Obtain measurements satisfying Assumption 1, it is not
It is thus important to obtain good estimates of the statg Necessary condition. Future work could analyze how the
derivatives withd; ~ 0. Therefore, obtaining measurementgellowing ideas perform without the PE condition. As shown
for the history stacks is considered expensive and carriéd[12], we ensure PE by choosing uncorrelated input signals
out sparsely. This is a difference compared to RLS, whe¥fficiently rich of ordem + 1.
frequent measurements are needed to update the estimates'Ve analyze to which extent the memory-based update laws
While concurrent learning provides various advantageél7) coincide with this reference vectéf’. We define for
such as faster convergence rates or replacing PE by magach stack elementthe angley; betweendg® andéf:
easily monitored linear independence, it comes at the price R .
of one limitation. With the introduction of memory, the () =< (9%), Hf(t)). (18)
algorithm loses its adaptation capabilities. Assume that t
history stack contains measurements taken when the systenfUrthermore, note that the angles only allow for mean-
was accurately modeled by the parameter configuration ingful statements if the corresponding vectors are;uﬁttye
Then, the system abruptly switches or gradually changégng. We introduce the two thresholdS” andv* for 6 and
its parameters t@”, which renders the history stack ele-%, respectively. If||0€ || < ¥, then the current data-based
ments outdated. In that case, Assumption 2 is violated anghdate vector fails to qualify as a reliable reference point
the obtained parameter estimates veer away from the triféis is usually the case if our parameter estimates are in
parameters. In order to restore the adaptive capabilities ghe vicinity of the true parameters. m@ﬂ < 9E. then the
concurrent learning-based algorithms, we need mechanisgishtribution of thej-th history stack element is very small.
to identify errors in the history stacks online. We propose ghis is for instance the case if the current estimatesan

solution to this problem in the next section. not be falsified by thei-th history stack tripletx;, u;, ;).
I1l. DETECTING ERRONEOUSHISTORY STACK Therefore, falling below the two thresholds corresponds to
ELEMENTS good estimates. We thus set the angleto zero whenever

In this section, we present the main contribution of thi%calllng below any of the two thresholds:

paper. Itis based on the analysis done in the previous sectio (1) « ¢,  if (HécH < 9€ or HéRH < 193) . (19)
if the history stacks contain erroneous elements, then our !

estimates converge to an ellipsoidal set in the parameterThe parameter estimates and anglgsare time-varying
space (depicted in Fig. 1). Next, we provide a routine whicdue to the excitation:. With a sinusoidal excitation in,
detects and removes erroneous stack elements online. the parameter estimates and angles are forced into a limit



6=0 into the ellipsoid. Also the current data-based update (16)
R— points towards the true parameter configuration on average.
N\ V=0 Wrong parameter estiamtes occure if there is at least one
\ erroneous stack element pointing out of the ellipsoid. It
follows that the averaged angle of at least one erroneous

: N history stack element is greater thaf2. This insight affirms
limit cycle™ y ;. Algorlthm 1. -
o It is left for future work to analyze how Algorithm 1
O4 performs in case the system is not persistently excited.
Fig. 2. Exemplary limit cycle in a two dimensional paramesgace. 1IV. NUMERICAL VALIDATION
History stack has 4 elements for which ony # 0. The update vectors . . . . .
4™ are an orthogonal projection one@;. In this section, we numerically validate Algorithm 1 for the

detection of erroneous history stack elements in two ggttin

First, we show that Algorithm 1 allows concurrent learniag t
cycle. As we assume knowledge of the excitatigrwe can track parameter changes in the system. Afterwards, we com-
approximate the frequency of this limit cycle. We are onlypare the proposed method with RLS and with an alternative
interested in the update directions on average and theref@pproach to enable tracking in concurrent learning [8].
consider the Iow-p_ass f|ltered angles, where the cut_-off A. Tracking Parameter Changes
frequency of the filter is lower than the lowest excitation ' _ _
frequency inu. With the filtered anglesp;, we propose the  We consider an exemplary switched affine system=(
following routine to detect and remove erroneous history» P = 1) which changes its parameters ft= 1000

stack elements. from 0/ = [O -2 1 =3 0 1 0 O}T to 9"
Algorithm 1: Consider the concurrent Iearning-based[o -5 1 -1 0 3 0 —0.2]T.
update law in Theorem 1 with erroeg. Monitor the filtered We initialize the history stacks of sizg = 4 with

anglesp; according to(18) and (19). Whenever the param- measurements of;, »; and erroneous state derivatives
eter estimates enter a limit cycle (i.e.# 0 and ¢, ~ 0),  with normally distributeds; ~ AN(0,0.5). We choose the
replace thek-th history stack triplet, where design parameterdy, = —Ip, I' = I, P = Iy, 9¢ = 0.05

o T and 98(t) = 0.5max;(||[0%(t)||) and excite the system
k:argmjax{%‘cpjzg}, (20) (t) 5 (165511 Yy

with u(t) = 0.5(sin(3¢t) + cos(t)). During the simulation
by a new measurement withhew < @i in order to reduce

we generate estimates; with normally distributed errors
the number and/ or magnitude of errors in the history stacki ™ N(0,0.01). Furthermore, we add normally distributed
Our Algorithm 1 is further justified with Fig. 2. First, note

noise with zero mean and a variance @f to the state
that each triplet in the history stack spans a subspace in tAigasurements:(¢) in (2) and (3). Figure 3 shows the
parameter space. The subsp&eassociated with thg-th

simulation results.
triplet contains all parameter configurations that canret b Within the first100s, the proposed algorithm successfully
falsified by the measurements;, u;, &;):

replaces the initial history stack elements by new measure-
ments with smaller variance ify. Our estimated converge
0, = {é ’ A(é)xj + E(é)uj + f(é) — j;j} ) (21) to the true parameter®. The system parameters change to
0" at time instance = 1000 s and the system consequently
The parameter configurations@y form the solution of an enters a limit cycle. This can be seen in Fig. 3 by strongly
underdetermined system of linear equations (21). From thisscillating parameter estimates. These oscillationsrakigu
system we derive the dimension 6f; to be dim(©;) = trigger the proposed algorithm, which then replaces oettiat
dim(¢) —n = n(n + p). history stack elements. After approximat8iy0 s, the history
In the errorless casé (= 0, Vj) and under Assumption 1, stacks do not contain any outdated measurements taken with

all subspaces intersect at a single paintwheref = 0. ¢’ and our estimates converge to the true parametéers
In case of errorsd; # 0), the subspaces most likely do

not intersect at this common point. In Fig. 2, the subspac&s Comparison with Cyclic Replacement and RLS

of three correct history stack triplets are displayed agmre Note that the ability to reduce the parameter etan
lines. The red line is shifted away from the intersectiompoi the presence of error§; constitutes a major advantage of
due to errors in the state derivative of the correspondinpe proposed algorithm over other approaches. We show
history stack element. Due to this error, the estimates dbis for a stable, randomly chosen system of higher order

not converge to the true parameter configuratidmut enter (n = 5,p = 2). We excite the system with the input
a limit cycle in the ellipsoidal set discussed in the proof ofignalsu, (t) = sin(2t) + cos(1.1t) + sin(1.7¢t) andus(t) =
Theorem 1. sin(3t) + cos(t) + sin(%t). We initialize the history stacks

Now note that the recorded data-based update laws (IWjth ¢ = 10 measurements and draw the errors in the history
correspond to an orthogonal projection onto the subspacsscks from a normal distributio; ~ A(0,0.3). During
©;. For the correct history stack triplet, this projectionmei a period 0f2000s, the detection mechanism according to



/Cyclic réplacement

— "WWM‘M |

: Wy <
] Error detection”” ‘ RL%
" 0 500 1000 1500 2000
t[s]
: Fig. 4. Comparison of the proposed detection mechanism rfoneous
1500 2000

stack elements (blue) with a cyclic replacement of the erttistory stack
(red) and Recursive Least Squares (green).

to a compact ball around the true parameters. This paper
shows how to selectively detect erroneous or outdated
history stack elements at runtime. The proposed routine
utilizes the insight that the update directions of errorseou
history stack elements exhibit the largest disagreement to
the traditional update laws. Replacing the corresponding
elements restores the tracking ability of concurrent liayn
and provides better estimates. Future work is devoted to
Algorithm 1 replaces the stack elements with the greatetite formulation of guidelines for the choice of the design
errors by new measurements. Note that the new elements afggameters and the evaluation of the proposed detection
contain errorsy; which follow the same normal distribution mechanism for adaptive control systems with concurrent

1000 1500
t[s]

Fig. 3. Tracking a parameter changetat= 1000s with the proposed

detection mechanism for erroneous stack elements in camtulearning.

Solid lines represent the parameter estimates and dotted indicate the

true parameters.

0 500 2000

as the initial errors. The chosen design parameters are tiearning.

same as in section IV-A.

We compare our approach with the cyclic replacement
approach proposed in [8] and RLS [4, chap. 11]. Following
[8], we model the aging of data with an exponential decayll
(e~ %91 on the current history stack. Once a new history
stack outperforms the current history stack, the entinohjs  [2]
stack is replaced. RLS was implemented on the history
stack measurements;, u; and; with a forgetting factor
v = 0.95. (3]

Figure 4 shows the estimation process for all three ap-
proaches. The parameter error for the cyclic replacemeny,
approach is greater than the error obtained with our error
detection approach. This is due to the fact that the entiré
history stack is replaced at once. In that case, it is very
likely that the history stack contains elements with simifla  [6]
large errors. Even though RLS performs slightly better
than concurrent learning with cyclic replacement, it idl sti (7
affected by the errors;. The proposed algorithm on the
other hand selectively replaces the most erroneous histor[)é]
stack element. After about00s, the algorithm has found
history stack elements with sufficiently small errors which
cause the update terms to fall below the thresholdsand
9% in (19). This terminates our detection algorithm and the
history stack is left unchanged. [10]

El

V. CONCLUSIONS

This paper is concerned with concurrent Iearning-basétljl]
adaptive identification: a framework where instantaneous2]
data and history stack elements are concurrently used
to update estimates of the unknown system parametefs;
The introduction of memory however compromises the
tracking ability which is essential for adaptive algorithm
Furthermore, erroneous stack elements restrict conveegen
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