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Abstract— This paper is concerned with erroneous history
stack elements in concurrent learning. Concurrent learning-
based update laws make concurrent use of current measure-
ments and recorded data. This replaces persistence of excitation
by a less restrictive linear independence of the recorded data.
However, erroneous or outdated data prevents convergence to
the true parameters. We present insights into the convergence
properties of concurrent learning and propose a routine to
recognize and remove erroneous data online. We characterize
erroneous data based on its inconsistency with the current
measurement-based update. We numerically validate that the
proposed routine restores the tracking ability and improves the
convergence properties of concurrent learning.

I. I NTRODUCTION

Many control engineering applications are characterized
by unknown and time-varying dynamics. In such cases, con-
trol systems with adaptive mechanisms enable estimation and
tracking of the unknown parameters. Most adaptive systems,
however, only guarantee convergence under the assumption
that the system is persistently excited. Maintaining persis-
tence of excitation (PE) throughout the entire adaptation
period is very restrictive and is not easily monitored at
runtime. Also, from a practitioner’s point of view, persistent
excitation introduces unwanted oscillations into the system.

The central idea in concurrent learning [1]–[3] is to use
current measurements concurrently with past measurements,
which are stored in history stacks. The repetitive use of past
measurements bears a major advantage: PE is replaced by the
simpler requirement of linear independence of the recorded
data. Furthermore, linearly independent measurements can
be obtained in a limited period of time with low or even no
external excitation.

A connection between concurrent learning and Recursive
Least Squares (RLS) [4, chap. 11] is indicated by [1]. The
difference between the two concepts is in the update laws. In
RLS, the parameter estimates are updated in discrete steps
with every measurement taken. Concurrent learning, on the
other hand, utilizes the measurements in the history stacksfor
a gradient descent. As we will show later, this step allows to
evaluate each measurement individually and reject erroneous
data quickly.

Concurrent learning-based update laws have been applied
in various fields over the last years. In [5], concurrent
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learning enhances a model predictive control architecture
for nonlinear systems. The synchronization of agents with
uncertain dynamics in a network is discussed in [6] and [7],
where concurrent learning is applied to learn the desired
policies in the presence of unknown dynamics. Another
promising field of application for concurrent learning-based
update laws are switched systems. Both adaptive control of
switched systems [8] and adaptive identification of piecewise
affine systems [9] benefit from concurrent learning. The use
of memory allows to continuously update all subsystems,
even those that are currently not active.

Despite growing interest in concurrent learning and its
advantages, the use of memory also introduces drawbacks:
erroneous data in the history stacks deteriorates the general
performance. In [2], it is stated that the tracking error is
uniformly ultimately bounded and that the adaptive weights
converge to a compact ball around the ideal weights in the
presence of erroneous history stacks. While this is a desirable
property for small errors, it implies that we converge to the
wrong parameters in case of larger errors, which are for
instance induced by parameter changes of the system.

Techniques proposed in [8] or [10] remove outdated and
therefore erroneous history stack elements by repeatedly
replacing the entire history stack. Those techniques however
fail to selectively remove a single erroneous element. In this
paper, we propose a routine which recognizes and replaces
erroneous history stack elements online. The suggested rou-
tine exploits the fact that the erroneous stack elements exhibit
the largest disagreement in terms of update directions to the
current measurement-based term. We validate numerically
that 1.) the proposed routine restores tracking propertiesof
concurrent learning and 2.) reduces the parameter error of
the obtained estimates.

This paper is organized as follows. In section II, we dis-
cuss concurrent learning-based parameter identifiers, which
were used to identify piecewise affine systems in [9]. We
propose a routine to remove erroneous history stack elements
in section III and present arguments to support the algorithm.
We validate the algorithm numerically in section IV with two
simulation studies. Conclusions follow in section V.

II. CONCURRENTLEARNING ADAPTIVE IDENTIFICATION

This section outlines the concurrent learning-based adap-
tive identification algorithm, which will be further discussed
in the subsequent section. The algorithm is motivated by [2]
and was previously applied for the identification of PWA
systems in [9]. We consider the affine state space system

ẋ(t) = Ax(t) +Bu(t) + f, (1)



wherex ∈ R
n and u ∈ R

p are the state and input vectors
of the system. We wish to recursively identify the unknown
system parametersA ∈ R

n×n, B ∈ R
n×p andf ∈ R

n based
on measurements ofx(t) andu(t). Let us therefore introduce
the time-varying estimateŝA(t) ∈ R

n×n, B̂(t) ∈ R
n×p

and f̂(t) ∈ R
n. With carefully designed update laws, these

estimates must provably converge to the true parameters.
The update laws in concurrent learning-based adaptive

identification (and control) consist of two parts. The first part
depends on current measurements of states and control inputs
as well as estimation errors. The second part is calculated
with past measurements stored in history stacks. The update
laws thus make concurrent use of instantaneous and recorded
data. We first introduce both parts of the update laws in
detail. Afterwards, we discuss their interplay.

A. Update with Current Data

Parameter identifiers [11, Ch. 5] enable the recursive iden-
tification of the state space system (1) based on estimation
errors. The state of the system is estimated with

˙̂x = Amx̂+
(

Â−Am

)

x+ B̂u+ f̂ , (2)

whereAm ∈ R
n×n is a stable (Hurwitz) design matrix which

ensures boundedness ofx̂. SinceAm is stable, we always
find a symmetric, positive definite matrixP ∈ R

n×n such
thatAT

mP +PAm = −Qe for a positive definite matrixQe ∈
R

n×n. The following update laws are solely based on current
measurements (hence the superscriptC):

˙̂
AC = −Γ1PexT ,

˙̂
BC = −Γ2PeuT ,

˙̂
fC = −Γ3Pe, (3)

with estimation errore = x̂ − x and scaling constants
Γ1, Γ2, Γ3 ∈ R

+. The update laws (3) share the same
limitation as most adaptive algorithms: they require PE. The
estimated parameters only converge to the true parameters if
the system is persistently excited (see e.g. [11] and [12]).

B. Update with Recorded Data

Concurrent learning improves the performance of adaptive
update laws, such as (3), by storing selected measurements in
history stacks. The recorded data is then repeatedly employed
to update the system parameters in a gradient descent. This
increases convergence rates and in the case of switched
systems even allows to update inactive subsystem parameters
(see [8], [9]).

We record data in form of triplets. By (xj ∈ R
n, uj ∈ R

p,
ẋj ∈ R

n), we denote thej-th triplet consisting of state,
control input and state derivative, respectively. A total of
q ∈ N such triplets are recorded and stored in the three
history stacksX , [x1, x2, . . . , xq], U , [u1, u2, . . . , uq]
and Ẋ , [ẋ1, ẋ2, . . . , ẋq]. The number of recorded triplets
q is upper bounded by practical considerations, i.e. memory
limitations only allow a finite number of data points. The
lower bound onq, given byn+p+1 ≤ q, is due to theoretical
insights which we discuss shortly.

Note that the stack elementsxj , uj and ẋj need not be
constant. As a matter of fact, the opposite is the desirable

case. History stack elements are flexible and should be
replaced appropriately. In [10], it is shown that replacing
old data points actually increases the convergence rate if ele-
ments are replaced such that the linear independence between
history stack elements grows. During all manipulations of the
recorded data, the following two assumptions on the history
stacks should be fulfilled.

Assumption 1: The history stacksX and U contain ele-
ments, such that there existn + p + 1 linearly independent
vectors[xT

j , u
T
j , 1]

T .
Assumption 2: GivenX and U , all elements j ∈

{1, . . . , q} of history stackẊ fulfill Axj +Buj + f = ẋj .
Assumption 1 ensures that the recorded data contains

enough information for the identification task. The existence
of linearly independent history stack elements for Assump-
tion 1 is guaranteed under PE. Note however that PE is by
no means necessary for the collection of the history stack
elements.

Assumption 2 requires that the recorded data is correct.
In other words, the recorded derivativeẋj must match the
derivativeẋ for the corresponding statexj and inputuj. Note
that Assumption 2 is very strict and usually not fulfilled
in practice. Particularly in cases where the state derivative
cannot be measured, one resorts to techniques such as fixed
point smoothing to obtain a sufficiently accurate estimate
(see e.g. [13, chap. 9]). We will show in Theorem 1, however,
that small errors in the state derivative are acceptable such
that estimates ofẋ obtained with fixed point smoothing
are sufficiently accurate. Nonetheless, the violation of As-
sumption 2 constitutes the main motivation of this paper as
more severe errors can be introduced to the history stacks
either due to parameter changes of the system or outliers
in the smoothing process. The ability to detect and remove
such outliers thus improves the tracking performance and
precision of concurrent learning.

Let us now defineεj as the error between estimated and
recorded time derivative of the state for thej-th triplet:

εj(t) , Â(t)xj + B̂(t)uj + f̂(t)− ẋj . (4)

As the history stack elementsxj , uj and ẋj in (4) are
constant, changes inεj must stem from the time-varying
estimatesÂ, B̂ and f̂ . We enhance the update laws in (3)
with an additional part which is based on the recorded data
(hence the superscriptR) and the errorsεj:

˙̂
AR = −Γ1

q
∑

j=1

εjx
T
j ,

˙̂
BR = −Γ2

q
∑

j=1

εju
T
j ,

˙̂
fR = −Γ3

q
∑

j=1

εj .

(5)

C. Concurrent Learning

For concurrent learning adaptive identification, we com-
bine the current data-based update laws in (3) with the
recorded data-based update laws in (5). We obtain the follow-
ing theorem on the convergence of the parameter estimates.



Theorem 1: Consider the affine system(1) and let the
state of the system be observed by(2). Update the estimates
Â, B̂ and f̂ by

˙̂
A =

˙̂
AC +

˙̂
AR,

˙̂
B =

˙̂
BC +

˙̂
BR,

˙̂
f =

˙̂
fC +

˙̂
fR. (6)

• If Assumptions 1 and 2 hold, the estimates converge
exponentially to the true parametersA, B and f .

• If only Assumption 1 holds, the estimates converge to a
compact ball around the true parameters.

We state now the essential steps of the proof for the
erroneous case in which Assumption 2 is violated. The proof
delivers insights which constitute the starting point for the
intended detection of erroneous history stack elements.

Proof: We begin by modeling the violation of As-
sumption 2. We observe a discrepancy between the measured
derivative and the true derivative of the state if Assumption 2
is violated. In order to model this, we define the mea-
sured/estimated derivativė̂xj in our history stack as the true
derivativeẋ(xj , uj) = Axj +Buj + f at the corresponding
state and control input minus an error termδj ∈ R

n:

ˆ̇xj , ẋ(xj , uj)− δj . (7)

We insert (7) in the definition ofεj in (4). This yields

εj = Ãxj + B̃uj + f̃ + δj , (8)

with parameter errors̃A = Â−A, B̃ = B̂−B andf̃ = f̂−f .
While (4) specifies how to calculateεj online, the expression
in (8) – which cannot be calculated due to the unknown
parameter errors – is beneficial in the following convergence
analysis.

In order to formulate a quadratic Lyapunov function in
terms of the parameter errors̃A, B̃ andf̃ , we combine them
in a single column vector

θ̃ =
[

vec(Ã)T , vec(B̃)T , f̃T
]T

∈ R
n(n+p+1). (9)

With the Kronecker product⊗, we introduce the matrices

Γ ,





Γ1Inn 0 0
0 Γ2Inp 0
0 0 Γ3In



 , Ψ ,





x
u
1



⊗ In,

Ξ ,





q
∑

j=1





xj

uj

1




[
xT
j uT

j 1
]



 ⊗ In, (10)

whereIn, Inn and Inp are identity matrices of dimensions
n×n, nn×nn andnp×np, respectively. This allows us to
express most equations in a more compact form, which in
turn simplifies our later analysis. First, we rewrite (8) as

εj =









xj

uj

1



⊗ In





T

θ̃ + δj . (11)

Moreover, we transform the update laws (6) with the help
of (9), (10) and (11) and obtain

˙̃
θ =

˙̂
θ = −ΓΨPe− ΓΞθ̃ − Γ





q
∑

j=1





xj

uj

1



⊗ δj





︸ ︷︷ ︸

∆

. (12)

Also, the derivative of the estimation error is now given
in terms ofθ̃ by

ė = Ame+ΨT θ̃. (13)

We choose the quadratic Lyapunov functionV = eTPe+
θ̃TΓ−1θ̃ and with (12) and (13) obtain its time derivative:

V̇ = −eTQee− θ̃TQθ θ̃ − 2∆T θ̃, (14)

whereQe , −(AT
mP + PAm) andQθ , ΞT + Ξ. Recall

that Qe was chosen to be positive definite in the design of
the update laws (3). Also, the matrixΞ and in turn alsoQθ

are positive definite because of Assumption 1.
Note that (14) also incorporates the ideal case in The-

orem 1. If we setδj = 0, ∀j ∈ {1, . . . , q}, the ∆-term
vanishes and the derivative of our candidate Lyapunov func-
tion is indeed negative definite. Hence, the estimation errors
e and parameter errors̃θ converge to zero exponentially.

In the erroneous case however, we haveδj 6= 0. Therefore,
(14) is quadratic ine and θ̃ but is also linear inθ̃. This
divides the error space[eT θ̃T ]T ∈ R

n(n+p+2) in two sets.
For some small values of̃θ the linear term outweighs the
quadratic terms, which results in a first closed set for which
V̇ > 0. This first set is surrounded by a second set in which
the quadratic terms outweigh the linear term andV̇ < 0. The
outer set withV̇ < 0 guarantees boundedness ofe and θ̃.

Next, we approximate the compact set to which the param-
eter errors̃θ converge by analyzing the shape of the boundary
between the two sets. This boundary is characterized by
V̇ = 0. Rearranging (14) witḣV = 0 yields

[

eT θ̃T
]
[
Qe 0
0 Qθ

] [
e

θ̃

]

+
[
0 2∆T

]
[
e

θ̃

]

= 0. (15)

With (15), we easily verify that the origin and the state
with e = 0 and θ̃ = −2(Q−1

θ )T∆ belong to the boundary
set. Furthermore, (15) defines an ellipsoid in the error space
which is centered atec = 0 and θ̃c = −(Q−1

θ )T∆. Another
representation of the ellipsoid (15) is

[

eT − eTc θ̃T − θ̃Tc
] 1

∆TQ−1
θ ∆

[
Qe 0
0 Qθ

]

︸ ︷︷ ︸

E

[
e− ec
θ̃ − θ̃c

]

= 1.

The eigenvectors of the positive definite matrixE define
the principal axes of the ellipsoid. The length of the semi-
axes is given by the square root of the inverse eigenvalues
of E. The maximal semi-principal axisνmax is thus charac-
terized by the minimal eigenvalueλmin(·). Its length is

‖νmax‖ =

(

λmin

(
Qθ

∆TQ−1
θ ∆

))
−

1

2

.

Figure 1 visualizes the ellipsoid for an exemplary two-
dimensional parameter vectorθ = [θ1 θ2]

T . We exploit
the triangle inequality on the centroid̃θc of the ellip-
soid and its maximal semi-principal axisνmax. This ap-
proximates the ball around the true parameters to which
our estimates converge in the presence of errorsδj by



θ̃ = 0

θ1

θ2

θ̃c νmin

νmax

θ̃∗max

V̇ < 0

V̇ > 0
V̇ = 0

Fig. 1. Visualization of the ellipsoidal set for whicḣV ≥ 0 and approxima-
tion of the maximum parameter error‖θ̃max‖ in terms of the centroid̃θc and
maximal semi-principal axisνmax of the ellipsoid (‖νmax‖ = 1/

√
λmin).

‖θ̃∗max‖ ≤ ‖∆TQ−1
θ ‖+ ‖νmax‖ ,where the point̃θ∗max is also

highlighted in Fig. 1.
The proof of Theorem 1 shows that history stack elements

may be arbitrarily replaced as long as the two assump-
tions remain intact. From a control theoretic perspective,
the replacement of stack elements amounts to switching
between different stable dynamics that share the common
Lyapunov functionV . Note however that in the erroneous
case, changing the history stack elements also changes the
ellipsoidal region to which our estimates converge.

The size of the ellipsoidal region is a critical factor when
reasoning whether the obtained estimates are sufficiently
accurate. Findings in [9] suggest that errors introduced
during the estimation of state derivatives usually lead to ac-
ceptable levels of accuracy. Single outliers in the smoothing
process might however deteriorate the achievable accuracy.
It is thus important to obtain good estimates of the state
derivatives withδj ≈ 0. Therefore, obtaining measurements
for the history stacks is considered expensive and carried
out sparsely. This is a difference compared to RLS, where
frequent measurements are needed to update the estimates.

While concurrent learning provides various advantages,
such as faster convergence rates or replacing PE by more
easily monitored linear independence, it comes at the price
of one limitation. With the introduction of memory, the
algorithm loses its adaptation capabilities. Assume that the
history stack contains measurements taken when the system
was accurately modeled by the parameter configurationθ′.
Then, the system abruptly switches or gradually changes
its parameters toθ′′, which renders the history stack ele-
ments outdated. In that case, Assumption 2 is violated and
the obtained parameter estimates veer away from the true
parameters. In order to restore the adaptive capabilities of
concurrent learning-based algorithms, we need mechanisms
to identify errors in the history stacks online. We propose a
solution to this problem in the next section.

III. D ETECTING ERRONEOUSHISTORY STACK

ELEMENTS

In this section, we present the main contribution of this
paper. It is based on the analysis done in the previous section:
if the history stacks contain erroneous elements, then our
estimates converge to an ellipsoidal set in the parameter
space (depicted in Fig. 1). Next, we provide a routine which
detects and removes erroneous stack elements online.

We know that our estimates are wrong ife 6= 0 (or greater
than some threshold in the presence of noise). We then
detect erroneous stack elements by comparing the individual
contributions in the update laws (6). Let us refer to the
contribution of the current measurements and of thej-th
history stack triplet by

˙̂
θC(x(t), u(t)) = −ΓΨPe (16)
˙̂
θRj (xj , uj , ẋj) = −ΓΞj θ̃ − Γ∆j , j ∈ {1, . . . , q}, (17)

where

Ξj =









xj

uj

1




[
xT
j uT

j 1
]



 ⊗ In, ∆j =





xj

uj

1



⊗ δj .

We are interested in the directional information in the up-
date vectors (16) and (17). Recall that under the assumption
of persistent excitation, the update law (16) with current data
alone drives the parameter estimates to the true parameters.

Therefore, ˙̂θC serves as a reference point.
Note that the requirement of PE does not constitute a

limitation at this point. Once we know that the history
stack contains erroneous elements, we should in any case
excite the system in order to obtain new measurements to
fulfill Assumption 1. While collecting new measurements,
we exploit the excitation to reason which elements are
erroneous and need to be replaced. While PE guarantees that
we obtain measurements satisfying Assumption 1, it is not
a necessary condition. Future work could analyze how the
following ideas perform without the PE condition. As shown
in [12], we ensure PE by choosing uncorrelated input signals
sufficiently rich of ordern+ 1.

We analyze to which extent the memory-based update laws

(17) coincide with this reference vector˙̂θC . We define for
each stack elementj the angleϕj between ˙̂θC and ˙̂

θRj :

ϕj(t) = ∢
(
˙̂
θC(t),

˙̂
θRj (t)

)

. (18)

Furthermore, note that the anglesϕj only allow for mean-
ingful statements if the corresponding vectors are sufficiently

long. We introduce the two thresholdsϑC andϑR for ˙̂
θC and

˙̂
θR, respectively. If‖ ˙̂θC‖ < ϑC , then the current data-based
update vector fails to qualify as a reliable reference point.
This is usually the case if our parameter estimates are in

the vicinity of the true parameters. If‖ ˙̂θRj ‖ < ϑR, then the
contribution of thej-th history stack element is very small.
This is for instance the case if the current estimatesθ̂ can
not be falsified by thej-th history stack triplet(xj , uj , ẋj).
Therefore, falling below the two thresholds corresponds to
good estimates. We thus set the angleϕj to zero whenever
falling below any of the two thresholds:

ϕj(t) ⇐ 0, if
(

‖
˙̂
θC‖ < ϑC or ‖ ˙̂θRj ‖ < ϑR

)

. (19)

The parameter estimates and anglesϕj are time-varying
due to the excitationu. With a sinusoidal excitation inu,
the parameter estimates and angles are forced into a limit



θ1

θ2

θ̃ = 0

˙̂
θC

Θ1

Θ2

˙̂
θR
2

Θ3

Θ4

˙̂
θR
4

V̇ = 0

limit cycle

Fig. 2. Exemplary limit cycle in a two dimensional parameterspace.
History stack has 4 elements for which onlyδ4 6= 0. The update vectors
˙̂
θR
j are an orthogonal projection ontoΘj .

cycle. As we assume knowledge of the excitationu, we can
approximate the frequency of this limit cycle. We are only
interested in the update directions on average and therefore
consider the low-pass filtered anglesϕ̄j , where the cut-off
frequency of the filter is lower than the lowest excitation
frequency inu. With the filtered angles̄ϕj , we propose the
following routine to detect and remove erroneous history
stack elements.

Algorithm 1: Consider the concurrent learning-based
update law in Theorem 1 with errorsδj . Monitor the filtered
anglesϕ̄j according to(18) and (19). Whenever the param-
eter estimates enter a limit cycle (i.e.e 6= 0 and ˙̄ϕj ≈ 0),
replace thek-th history stack triplet, where

k = argmax
j

{

ϕ̄j

∣
∣ϕ̄j ≥

π

2

}

, (20)

by a new measurement with̄ϕnew < ϕ̄k in order to reduce
the number and/ or magnitude of errors in the history stack.

Our Algorithm 1 is further justified with Fig. 2. First, note
that each triplet in the history stack spans a subspace in the
parameter space. The subspaceΘj associated with thej-th
triplet contains all parameter configurations that cannot be
falsified by the measurements(xj , uj, ẋj):

Θj =
{

θ̂
∣
∣ Â(θ̂)xj + B̂(θ̂)uj + f̂(θ̂) = ẋj

}

. (21)

The parameter configurations inΘj form the solution of an
underdetermined system of linear equations (21). From this
system we derive the dimension ofΘj to be dim(Θj) =
dim(θ) − n = n(n+ p).

In the errorless case (δj = 0, ∀j) and under Assumption 1,
all subspaces intersect at a single pointθ, where θ̃ = 0.
In case of errors (δj 6= 0), the subspaces most likely do
not intersect at this common point. In Fig. 2, the subspaces
of three correct history stack triplets are displayed as green
lines. The red line is shifted away from the intersection point
due to errors in the state derivative of the corresponding
history stack element. Due to this error, the estimates do
not converge to the true parameter configurationθ but enter
a limit cycle in the ellipsoidal set discussed in the proof of
Theorem 1.

Now note that the recorded data-based update laws (17)
correspond to an orthogonal projection onto the subspaces
Θj . For the correct history stack triplet, this projection points

into the ellipsoid. Also the current data-based update (16)
points towards the true parameter configuration on average.
Wrong parameter estiamtes occure if there is at least one
erroneous stack element pointing out of the ellipsoid. It
follows that the averaged angle of at least one erroneous
history stack element is greater thanπ/2. This insight affirms
Algorithm 1.

It is left for future work to analyze how Algorithm 1
performs in case the system is not persistently excited.

IV. N UMERICAL VALIDATION

In this section, we numerically validate Algorithm 1 for the
detection of erroneous history stack elements in two settings.
First, we show that Algorithm 1 allows concurrent learning to
track parameter changes in the system. Afterwards, we com-
pare the proposed method with RLS and with an alternative
approach to enable tracking in concurrent learning [8].

A. Tracking Parameter Changes

We consider an exemplary switched affine system (n =
2, p = 1) which changes its parameters att = 1000 s

from θ′ =
[
0 −2 1 −3 0 1 0 0

]T
to θ′′ =

[
0 −5 1 −1 0 3 0 −0.2

]T
.

We initialize the history stacks of sizeq = 4 with
measurements ofxj , uj and erroneous state derivativesẋj

with normally distributedδj ∼ N (0, 0.5). We choose the
design parametersAm = −I2, Γ = I8, P = I2, ϑC = 0.05

and ϑR(t) = 0.5maxj(‖
˙̂
θRj (t)‖) and excite the system

with u(t) = 0.5(sin(53 t) + cos(t)). During the simulation
we generate estimateṡxj with normally distributed errors
δj ∼ N (0, 0.01). Furthermore, we add normally distributed
noise with zero mean and a variance of0.1 to the state
measurementsx(t) in (2) and (3). Figure 3 shows the
simulation results.

Within the first100 s, the proposed algorithm successfully
replaces the initial history stack elements by new measure-
ments with smaller variance inδj . Our estimateŝθ converge
to the true parametersθ′. The system parameters change to
θ′′ at time instancet = 1000 s and the system consequently
enters a limit cycle. This can be seen in Fig. 3 by strongly
oscillating parameter estimates. These oscillations naturally
trigger the proposed algorithm, which then replaces outdated
history stack elements. After approximately300 s, the history
stacks do not contain any outdated measurements taken with
θ′ and our estimates converge to the true parametersθ′′.

B. Comparison with Cyclic Replacement and RLS

Note that the ability to reduce the parameter errorθ̃ in
the presence of errorsδj constitutes a major advantage of
the proposed algorithm over other approaches. We show
this for a stable, randomly chosen system of higher order
(n = 5, p = 2). We excite the system with the input
signalsu1(t) = sin(53 t) + cos(1.1t)+ sin(1.7t) andu2(t) =
sin(43 t) + cos(t) + sin(73 t). We initialize the history stacks
with q = 10 measurements and draw the errors in the history
stacks from a normal distributionδj ∼ N (0, 0.3). During
a period of2000 s, the detection mechanism according to
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Fig. 3. Tracking a parameter change att = 1000 s with the proposed
detection mechanism for erroneous stack elements in concurrent learning.
Solid lines represent the parameter estimates and dotted lines indicate the
true parameters.

Algorithm 1 replaces the stack elements with the greatest
errors by new measurements. Note that the new elements also
contain errorsδj which follow the same normal distribution
as the initial errors. The chosen design parameters are the
same as in section IV-A.

We compare our approach with the cyclic replacement
approach proposed in [8] and RLS [4, chap. 11]. Following
[8], we model the aging of data with an exponential decay
(e−0.01t) on the current history stack. Once a new history
stack outperforms the current history stack, the entire history
stack is replaced. RLS was implemented on the history
stack measurementsxj , uj and ẋj with a forgetting factor
γ = 0.95.

Figure 4 shows the estimation process for all three ap-
proaches. The parameter error for the cyclic replacement
approach is greater than the error obtained with our error
detection approach. This is due to the fact that the entire
history stack is replaced at once. In that case, it is very
likely that the history stack contains elements with similarly
large errors. Even though RLS performs slightly better
than concurrent learning with cyclic replacement, it is still
affected by the errorsδj . The proposed algorithm on the
other hand selectively replaces the most erroneous history
stack element. After about700 s, the algorithm has found
history stack elements with sufficiently small errors which
cause the update terms to fall below the thresholdsϑC and
ϑR in (19). This terminates our detection algorithm and the
history stack is left unchanged.

V. CONCLUSIONS

This paper is concerned with concurrent learning-based
adaptive identification: a framework where instantaneous
data and history stack elements are concurrently used
to update estimates of the unknown system parameters.
The introduction of memory however compromises the
tracking ability which is essential for adaptive algorithms.
Furthermore, erroneous stack elements restrict convergence

t [s]

0 500 1000 1500 2000
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0

0.5

1

RLS

Cyclic replacement

Error detection

Fig. 4. Comparison of the proposed detection mechanism for erroneous
stack elements (blue) with a cyclic replacement of the entire history stack
(red) and Recursive Least Squares (green).

to a compact ball around the true parameters. This paper
shows how to selectively detect erroneous or outdated
history stack elements at runtime. The proposed routine
utilizes the insight that the update directions of erroneous
history stack elements exhibit the largest disagreement to
the traditional update laws. Replacing the corresponding
elements restores the tracking ability of concurrent learning
and provides better estimates. Future work is devoted to
the formulation of guidelines for the choice of the design
parameters and the evaluation of the proposed detection
mechanism for adaptive control systems with concurrent
learning.
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