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Zusammenfassung

Die Nutzung von Biomarkern zur Diagnostik von Umweltexpositionen,

Erkrankungswahrscheinlichkeiten und dem Vorhandensein von Erkrankungen ist ein wertvoller

Bestandteil des klinischen Alltags, was die Etablierung von eben solchen Markern zu einem ein

Hauptziel der biomedizinischen Forschung macht. Neben einer hohen Spezifität und Sensitivität

sollten Biomarker auf möglichst nichtinvasivem Wege bestimmbar sein. Die Analytik von volatilen

organischen Substanzen (volatile organic compounds, VOCs) aus dem Atem stellt eine nichtinvasive

Methodik zur Überwachung von Stoffwechselfunktionen und Erkrankungen dar. Eine Verschiebung

des VOC-Musters wurde bereits in verschiedenen Pathologien  beschrieben, allerdings besteht selbst

in gesunden Menschen eine erhebliche intrapersonelle Varianz und die (biochemische) Herkunft der

diagnostisch relevanten VOCs ist oftmals noch ungeklärt. Die Verwendung von Mausmodellen kann

zur Beantwortung der in Humanstudien offenen Fragen beitragen.

Die Zielsetzung dieser Dissertation war die Etablierung und Weiterentwicklung einer neuen Methode

zur Bestimmung von VOCs in unfixierten und nicht anästhesierten Mäusen zum Zwecke der

metabolischen Phänotypisierung. Hierzu wurde eine Analyseplatform entwickelt, welche aus

Akkumulationsprofilen der einzelnen VOC Emissionsraten (bezeichnet als Quellstärke) berechnet.

Dies basiert auf Daten welche mittels eines Protonen-Transfer-Reaktions Massenspektrometers mit

Flugzeitdetektion (PTR-TOF-MS) erhoben wurden. Darauf aufbauend wurden die Auswirkungen von

Diätinterventionen und Adipositas in Mäusen untersucht. Die Dissertation wurde in zwei Studien

unterteilt.

In der ersten publizierten Studie wurde der Effekt der Futtermatrix auf VOC Quellstärken untersucht,

welche als Unterschied zwischen einem Getreide-basierten Standardfutter und einer aufgereinigten

Experimentaldiät definiert wurden. Zu diesem Zweck wurden VOCs von männlichen C57BL/6J

Mäusen  gemessen, welche zunächst mit Standarddiät gefüttert wurden. In der Folge wurden die Tiere

auf vier Gruppen aufgeteilt, welche sich in Quantität und Qualität des Fettanteils der aufgereinigten

Diäten unterschieden, und wiederholt gemessen. Mittels eines random forest Models wurden

diejenigen VOC Quellstärken bestimmt, welche auf die Futterumstellung reagierten. In einer Gruppe

von drei VOCs wurde eine drastische Reduzierung der Quellstärke festgestellt; diese wurden

vorläufig als Methanol, Methylacetat/Propionat und Dimethylsulfon identifiziert. Die Matrix der Diät

stellt somit einen relevanten Einflussfaktor der gemessenen VOC Konzentrationen und des
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verbundenen Stoffwechsels dar. Weiterhin ist sie eine potentielle Quelle von Varianz, welche in

humanen VOC-Studien beobachtet wird.

In der zweiten publizierten Studie wurde der Effekt von Adipositas auf das gemessene VOC Muster

untersucht. Zu diesem Zweck wurden Mäuse auf einer Hochfettdiät (HFD) und mono-genetische

adipöse Mäuse (globale knock-in Mutation im Melanokortin-4-Rezeptor, MC4R-ki) sowohl unter ad

libitum Zugang zu Futter als auch gefastet analysiert. Für jeden Versuch wurde ein random forest-

Model erstellt; es ergaben sich 26 VOCs in MC4R-ki und 22 VOCs in HFD Mäusen mit relevanten

Änderungen. Die Schnittmenge zwischen den beiden Adipositasmodellen betrug acht VOCs.

Interessanterweise stammen die vorläufig identifizierten VOCs aus Prozessen wie Lipidperoxidation,

Ketogenese und Pheromonproduktion. Zusätzlich konnte gezeigt werden, dass die Anwendung

Gaußscher Graphischer Modelle sowohl die chemische als auch die metabolische Herkunft mehrerer

VOCs offenbaren kann. Diese Ergebnisse unterstreichen das Potential von VOCs im Hinblick auf

Identifikation und Überwachung von Stoffwechsel assoziierten Erkrankungen.

Zusammenfassend demonstriert der deutliche Einfluss von Diät und Adipositas auf eine Reihe von

VOCs dass Rückschlüsse auf den Energiestoffwechsel aus VOC Muster gezogen werden können.

Auch müssen Diät und Adipositas als Einflussfaktoren in Studien am Menschen Beachtung finden.

Weiterhin existiert eine Gruppe an VOCs welche langfristig die Möglichkeit zur nichtinvasiven

Beurteilung von Adipositas assoziierten Erkrankungen verspricht.
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Abstract

The use of biomarkers associated with environmental exposure, disease presence or risk is a common

strategy in clinical diagnosis and thus the establishment of such markers a primary goal for

biomedical research. Besides high specificity and sensitivity, biomarkers should preferably be

measureable applying a minimal invasive technique. The analysis of volatile organic compounds

(VOCs) from breath is a non-invasive method to measure exhaled metabolites in order to monitor

metabolic functions and disease states. Changes in VOC signature have been described in various

diseases, however even healthy humans show considerable inter-individual variability and

(biochemical) origins of changed VOCs are not understood in many cases. These limitations in human

studies can be addressed using mouse models.

The aim of this thesis was the establishment and further development of a novel method to analyze

VOCs in un-restrained and non-anaesthetized mice as a tool for metabolic phenotyping. An analysis

platform was developed to calculate emission rates (so-called source strengths) from VOC

accumulation profiles measured using a proton transfer reaction mass spectrometer with time-of-flight

detection (PTR-TOF-MS). Based on this, the effects of dietary interventions and obesity in mice on

the VOC signature was studied. The thesis was divided in two studies.

In publication I, the effect of the diet-matrix, defined as the difference between a grain-based chow

diet and semi-purified intervention diets, was analyzed. Therefore, VOCs of male C57BL/6J mice

were quantified while having ad libitum access to chow diet and after diet switch to four semi-purified

diets varying in fat quantity and quality. A random forest model was created to identify VOC source

strengths responsive to this diet matrix change. Interestingly, a set of three volatiles dropped

drastically after the diet switch and were tentatively identified as methanol, methyl acetate/propionate

and dimethyl sulfone. Thus, diet matrix is a relevant modulator of measured VOC levels as well as

underlying metabolic functions and is one potential source of variability in exhaled VOCs observed in

human studies.

In publication II, the aim was to determine the effect of obesity on the VOC signature. For this, both

high fat diet-induced obese (HFD) and mono-genetic obese mice (global knock-in mutation in

melanocortin-4 receptor MC4R-ki) were analysed in ad libitum fed as well as fasted state. After

building random forest models for both experiments, 26 candidate VOCs in MC4R-ki versus 22

candidate VOCs in HFD mice were detected. In overlap, eight VOCs were found to be altered in both

mouse models. Interestingly, among tentatively identified VOCs processes like lipid peroxidation,
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ketogenesis and pheromone production were detected. In addition, it could be shown that by applying

a gaussian graphical model both chemical and metabolic origins of several VOCs can be revealed.

These findings show the potential of VOCs to identify and monitor metabolic disease states.

In conclusion, the clear impact of both diet and obesity on a variety of VOCs underline that

conclusions about the status of energy metabolism can be drawn from VOC signatures and that diet

and obesity need to be accounted for in human studies. Furthermore, a set of VOCs offers the

opportunity to be used to non-invasively assess obesity associated disease risks.
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1. Introduction

1.1. Breath gas analysis as a window to metabolic functions: history and

methodological evolvement

An important goal in biomedical research is the discovery of biomarkers, which can be used to assess

current health or future disease risks of a person. A range of biomarkers can only be determined

invasively, e.g. with assays requiring blood or tissue samples. The sampling of such material is often

inconvenient or even painful. The analysis of volatile organic compounds (VOCs) from breath is a

rapidly emerging field, which by the mode of sampling is non-invasive and thus patient-friendly.

Furthermore, the time necessary for breath analysis is typically low, in the range of seconds to hours

depending on the methodology. This allows for fast diagnostic read outs as well as for monitoring of

long term changes. Volatile organic compounds originating from different tissues are transported by

the blood and also transferred to alveolar gaseous phase (Herbig and Amann, 2009). Thus, breath

VOCs can be a window to whole body metabolic processes which are typically not measurable in

traditional (liquid) metabolomics techniques due to their volatility.

Volatile organic compounds are legally defined as any organic compound having an initial boiling

point less than or equal to 250 °C (482 °F) measured at a standard atmospheric pressure of 101.3 kPa

(European Parliament, Council of the European Union, 2004). Although this includes only organic,

thus carbon containing compounds, other volatiles like e.g. volatile sulfur compounds (VSCs) not

covered by this definition are typically also analyzed from breath with the same methodologies and in

parallel. Interestingly, VOCs contain a variety of chemical heterogeneous substances, including but

not limited to alcohols, aldehydes, ketones, acids, esters or hydrocarbons.

Historically, such compounds have been detected by smell and were known to be informative since

ancient Greece, when Hippocrates of Kos first mentioned fetor oris and fetor hepaticus (Amann et al.,

2014a). A major step forward in breath analysis was the work of Antoine Lavoisier, who discovered

carbon dioxide in breath in the late 18th century (Donovan, 1996). His discoveries led to the

development of indirect calorimetry, still one of the most widely-used breath-based methods.

Following in the late 19th century, first organic volatiles like acetone could be described and

quantified from breath (Müller, 1898). However, the modern era of VOC analysis from breath was

initiated from Linus Pauling’s article which highlighted 250 substances in a sample of breath (Pauling

et al., 1971), with now up to 1849 known and further 1765 identified volatiles from various

biomaterials of the body (Costello et al., 2014).
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This scientific gain in knowledge was only possible due to technical progress in volatile compound

analysis. For the analysis of VOCs in gaseous phases, a variety of technologies have been established.

In many respects, the “gold-standard” for the analysis of VOCs is still the gas chromatography – mass

spectrometry technique with optional additional fragmentation. Herein, a pre-concentrated gaseous

sample is injected into a carrier gas flowing over a capillary column to chemically separate volatiles

and to obtain a retention time. In an additional step, mass spectra of the fragments of a certain volatile

can be recorded to identify the molecule structure using established databases. However, despite the

high specificity, GC-MS is not the ideal technique for every application. GC-MS time requirements

are rather high due to the necessary pre-concentration step as well as the measurement time, which

can be in the range of hours for several samples (Cikach and Dweik, 2012). In addition, the sensitivity

for different chemical classes of volatiles in the system is affected by pre-concentration. The selected

column material is crucial for sensitivity, which is further reduced due to dilution of VOCs in the

carrier gas. Also high water content in the sample as it is present in breath can be problematic

(Miekisch and Schubert, 2006). Other analytical methods were developed to overcome these

limitations in breath matrices, as Ion Mobility Spectrometry (IMS), selected ion flow tube mass

spectrometry (SIFT-MS) and proton-transfer reaction mass spectrometry (PTR-MS). The later

technique was specifically designed to detect volatile organic molecules from air in a concentration

smaller than ppm and down to ppt range (Lindinger et al., 1998). In contrast to GC-MS, especially in

PTR-MS a high time resolution is combined with high sensitivity due to the fact that the exhaled air

itself is used as carrier gas for VOCs. Although some of the molecule specificity of GC-MS is lost,

PTR-MS is highly useful to follow dynamics in VOC responses in the range of seconds (Biasioli et

al., 2011).

1.2. Human volatile organic compounds in biomedical research and

application in clinics

Along with technical progress, VOCs have been used in various ways in medical research and

diagnosis over the past decades (Amann et al., 2014b). There are now several stable-isotope based

challenge tests where compounds are metabolized and degradation products as 13CO2 are measured.

Probably known best are those targeting microbial degradation like 13C-Urea test diagnosing gastric

Helicobacter pylori infections, the use of breath hydrogen for certain carbohydrate intolerances or

intestinal overgrowth (Eisenmann et al., 2008; Klein et al., 1996). In addition, challenges targeting

endogenous metabolism like the 13C-methacetine or the 13C-aminopyrine breath tests to estimate

hepatic enzyme activity (e.g. CYP1A2) are actively used in clinics (Giannini et al., 2005; Lalazar et
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al., 2009). Further interests include the measurement of the human exposome, e.g. environmental

noxes or the cultivation or infection of VOC-emitting bacteria or fungi as reviewed in (Amann et al.,

2014b). Another major approach in VOC research is the analysis of breath in certain diseases to detect

volatile biomarkers for non-invasive screening and monitoring. Such biomarker discovery studies are

performed in pathologies of liver (Chen et al., 1970; Morisco et al., 2013; Van den Velde et al., 2008),

kidney (Kohl et al., 2013; Meinardi et al., 2013) and respiratory diseases like asthma (Paredi et al.,

2000; Simpson and Wark, 2008), cystic fibrosis (Barker et al., 2006) and chronic obstructive

pulmonary disease (McCurdy et al., 2011). Furthermore, cancers in lung (Bajtarevic et al., 2009;

Hakim et al., 2012), liver (Qin et al., 2010), breast (Li et al., 2014) and other organs (Peng et al.,

2010) are known to change VOC signature. However, the outcome of these mostly small trials is

typically a set of volatile marker substances associated with a certain disease. The field has just started

to attribute parts of those disease associations to general pathophysiological states e.g. of oxidative

stress, inflammation and carcinogenesis (Boots et al., 2012), but many are not described in origin and

metabolism yet. Another research area in which breath gas analysis can be used is the field of energy

homeostasis and associated diseases.

1.3.  Obesity is a result of disturbed energy homeostasis

The etiology of the most common diseases has changed in the industrialized western world.

Historically, the main causes for death were infectious diseases, nowadays taken over by non-

communicable diseases like cancer, cardiovascular disease or type 2 diabetes (Mendis and World

Health Organization, 2014). Obesity is a risk factor for all of the mentioned diseases. Normal weight

is defined as a body mass index (BMI, height/ mass²) between 18.5 and 25 kg/m², whereas overweight

starts from 25 kg/m² and obesity is specified with a BMI of greater than 30 kg/m², with class II from

35 kg/m² and class III from 40 kg/m² on. According to the World Health Organization, the obesity

epidemic is no longer only taking place in industrialized but also in emerging nations leading to a

doubling in obesity rates from 1980 and to a prevalence 11% in male and 15% of female adults

worldwide (Mendis and World Health Organization, 2014).

Obesity as a state of extensive systemic energy storage is a result of a disturbed energy

homeostasis by altered in- and effluxes to the system. A positive energy balance is fundamental for

the change of body mass and the development of obesity, thus either elevated energy flux into the

system or reduced energy expenditure must be present (Hall et al., 2012). Energy intake consists

predominantly of the metabolizable energy from three macronutrients carbohydrates, proteins and fat



Introduction

4

out of beverages and food. The proportion of energy which can be assimilated and metabolized from a

diet varies depending on diet composition or food processing. The metabolized energy is either

utilized to maintain ongoing metabolic processes or stored to enable the organism to endure periods of

limited energy intake. Energy is predominantly stored in adipose tissue in the form of triglycerides,

although stored carbohydrates like glycogen are utilized for short term energy supply. In addition,

amino acids can be mobilized from body protein for energy demand. The energy expenditure, on the

other side, consists of basal metabolic rate, dietary induced thermogenesis, thermoregulation, physical

activity, growth and sexual reproduction.

1.4. Selected mechanisms leading to obesity

Basically, mechanisms leading to extension of stored energy and finally obesity can be found within

all physiological processes associated with energy balance regulation. Over the past decades, multiple

mechanisms and underlying physiological systems leading to obesity have been identified.

1.4.1.Mechanisms in neuronal and endocrine regulation of energy

homeostasis

The energy homeostasis needs to be regulated in a very precise manner to maintain body weight at a

certain set point. In humans, for example, there are estimates that for becoming obese at the age of

50+, a 25 year old person with a BMI of 25 needs an over-consumption or under-expenditure of 680

kcal/day (Katan and Ludwig, 2010). Smaller deviations, which occur from day to day, are typically

balanced by endogenous regulatory systems. For the control of energy balance, the hypothalamus

plays a major role in integrating central and peripheral signals of short and long term energy storage

and demands. A major afferent signal for adipose energy storage is leptin (Zhang et al., 1994). This

peptide hormone is secreted to bloodstream by white adipose tissue proportional to the amount of fat

stored. From circulation, leptin activates a subpopulation of hypothalamic neurons in the arcuate

nucleus carrying leptin receptors. Those neurons express proopiomelanocortin (POMC) and project to

melanocortin-receptor 4 positive cells. In POMC expressing neurons, α-melanocyte-stimulating

hormone (α-MSH) is cleaved from POMC and activates MC4R-positive cells to inhibit food uptake

and increase energy expenditure (Myers et al., 2009). In states of low adipose fat storage or fasting,

leptin levels are reduced (Ahima et al., 1996). Along with that, other signals like ghrelin activate

neurons projecting to agouti-related peptide (AgRP) expressing neurons. AgRP positive neurons are
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activated and inhibit both MC4R-positive as well as POMC neurons mediated by γ-aminobutyric acid

(GABA) release. Several well established mouse models for obesity knock out genes relevant in this

system, as the ob/ob (Leptin receptor), db/db (leptin) or mc4r-/- mice. A variant of the later mouse

mutant using a knock-in of a nonsense mutation (W16X) found in obese human patients (Marti et al.,

2003) was studied in this thesis.

1.4.2. Environmental obesogenic stimuli

BMI is reported to feature a heritability of 40-70 %, of which common variations found in GWAS are

estimated to explain up to 20% (Locke et al., 2015). The vast majority of the obesity heritability

cannot be explained in genome-wide association studies, thus other mechanisms like epigenetic

inheritance are discussed to drive this phenomenon. Environmental factors and lifestyle are known

major modulators of both epigenetics and obesity risk, in interaction with genetic predisposition

(Temelkova-Kurktschiev and Stefanov, 2012). On population level, both increased availability of

energy dense diets and sedentary lifestyle are observed and contribute to the obesity epidemic. The

so-called “western diet” includes high intake of animal protein, saturated and ω-6 fatty acids

combined with simple carbohydrates, of which a considerable amount is consumed in beverages. In

addition such a diet is typically rich in sodium chloride, low in other micronutrients as e.g. potassium,

features only small amounts of unprocessed fruit and vegetables and is thus low in fiber (Cordain et

al., 2005). Typically, to study the effects of such dietary challenge rodent models are used and

exposed to variants of either high sugar and/or high fat containing diets. This leads, at least in diet-

induced obesity susceptible mice as the C57Bl/6J strain used in this thesis, to an obese phenotype in

comparison to control diets.

1.4.3. Obesity-associated shifts in metabolism and related pathologies

The storage of triglycerides in adipose tissue is a physiological necessity. In obesity, the most

associated adverse effects on health do not originate in excessive energy storage per se, but are due to

a set of processes increasing risks for comorbidities. The pathophysiological state often found to be

associated with obesity includes low-grade chronic inflammation and oxidative stress, insulin

resistance and resulting elevated (fasting) glucose levels, elevated triglycerides, low high density

lipoprotein (HDL) levels, high low density lipoprotein levels, ectopic fat deposition and elevated

blood pressure (Després and Lemieux, 2006). In consequence, the prevalence of cardio-vascular
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diseases, type II diabetes, musculoskeletal disorders like osteoarthritis and several types of cancer is

elevated in obese populations (Guh et al., 2009). Given that in obesity a multitude of risk factors arise,

the potential benefit of monitoring obese people to prevent development of comorbidities is obvious.

Therefore, biomarkers for such personalized risk assessment need to be established which are robust,

cheap to measure and ideally non-invasive to ensure subject compliance and practical feasibility. All

these characteristics can potentially be met by analysis of VOCs from breath.

1.4.4. Energy metabolism and diet relevant findings in VOC analysis

Interestingly, a number of studies focusing on the diagnosis and monitoring of nutrition, energy

metabolism and associated diseases has been conducted. Regarding the influence of diet on breath

VOC signatures, multiple mechanisms of contribution are known (Ajibola et al., 2013). Volatiles can

be released directly from foods and diet and, after systemic passage and potential modification in

metabolism can be found in breath. The time range of such compounds found in breath is known to be

from minutes up to days for more lipophilic substances (Pellizzari et al., 1992). Furthermore, diet can

induce physiological changes and adaptions, which transfer to altered VOC emission. Diets lacking

carbohydrates, for example, induce gluconeogenesis as well ketogenesis. The ketone body acetone is

highly correlated to both acetoacetate and β-hydroxybutyrate and can be used to monitor systemic

ketone body levels from breath (Musa-Veloso et al., 2002). In addition, diet is known to be the major

modulator for microbial composition in the gut (Cotillard et al., 2013; David et al., 2014; Zarrinpar et

al., 2014). Microbial degradation is another mechanism by which diet can contribute volatiles in

breath. This is well described for fiber consumption, for example, where methane and hydrogen are

released and can be measured in breath (Rumessen, 1992), two volatile substances which interestingly

have been associated with increased BMI when elevated after lactulose breath test (Mathur et al.,

2013).

In the area of energy metabolism and associated diseases, a limited number of VOC studies in human

subjects can be found. In a study to address sleep apnea in obesity, no clear separation according to

sleep parameters could be found, although obese patients showed elevated VOCs for inflammatory

processes  (Dragonieri et al., 2015). In obese children, elevation in four volatiles, namely isoprene, 1-

decene, 1-octene, ammonia and hydrogen sulfide could be found (Alkhouri et al., 2015). Regarding

obesity-associated diseases, some work was performed on hepatic pathologies like non-alcoholic fatty

liver and liver cirrhosis (Alkhouri et al., 2014; Morisco et al., 2013), showing changes in the

volatilome. The detection and monitoring of a diabetic state has drawn some interest, probably
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originally from the fact that acetone is generally found elevated in diabetic groups but highly variable

between persons (Španěl et al., 2011; Tassopoulos et al., 1969). In several studies, the identification of

gestational, type1 and type 2 diabetes was possible using not a single but a set of volatiles (Greiter et

al., 2010; Halbritter et al., 2012; Novak et al., 2007). There are even efforts to model glucose (Lee et

al., 2009; Minh et al., 2011) or plasma triglycerides and fatty acids (Minh et al., 2012) from GC-MS

measured VOCs. Therefore, there is potential to use breath analysis to non-invasively diagnose and

monitor diseases in the area of energy metabolism despite the variation and confounders found in

human studies.

1.5.  Limitations in human VOC analysis and the laboratory mouse as model

organism

Despite several findings showing interesting associations between disease and the volatilome, there

are limitations and questions which are hardly addressable in human studies. Human subjects are

exposed to a complex environment contributing to the volatilome, e.g. by the so-called “wash-in” of

airborne VOCs, which are distributed in the system and exhaled over time (Beauchamp, 2011).

Furthermore, diet and in consequence also microbiota in mouth and gastrointestinal tract do vary in

humans and are a source of - (potentially useful) - variation which add to the fact of a diverse genetic

background in human populations (Le Chatelier et al., 2013). Depending on methodology, peak

identification is still an issue, especially in e-NOSE and PTR-MS studies without confirmation using

further - (but probably less-sensitive) - methods. In addition to that, discussions on sampling

standardization and mouth or nose breathing are ongoing in the field (Beauchamp et al., 2008;

Beauchamp and Pleil, 2013; Thekedar et al., 2009). One way to complement and fill several gaps of

knowledge evident from human VOC analysis is the use of model organisms. For the study of

volatiles, cell culture and in the last years also more rodent models are discussed and used (Boots et

al., 2015). Especially rodents are a promising model for broadening the understanding of volatile

biology. The issues of environmental contributions to emitted volatiles can be controlled for multiple

ways. First of all, a defined diet can be applied to rodents, and defined diet switches as well as food

restriction are possible. In addition, light cycle and housing temperature can be kept constant or, if

necessary, be varied according to the question to study. An environmental “wash-in” of volatiles via

inhaled air is a lot less variable compared to the human situation. A controlled microbial status is

further reducing variance in rodent measurements. And, especially in mice, the genetic homogeneity

of inbred strains in combination with the broad tools of genetic manipulation available can address

open questions in volatile metabolism.
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1.6. Aims of this thesis

In this thesis, the non-invasive method of VOC analysis in un-restrained mice was established

(Szymczak et al., 2014) and further developed by using a time-of-flight PTR-MS. This includes

establishment of a software routine for processing and analysis of high dimensional time-of-flight

mass spectrometric data. Based on this methodological development, further aims could be set and

answered in two publications. One aim of this thesis was the characterization of effects a change in

dietary matrix from a chow based diet to diets typically used in obesity studies on emitted VOCs.

Results on this question are referred to as publication I. Furthermore, the existence of VOCs with

diagnostic potential in the fields of energy metabolism and obesity associated diseases as e.g. type II

diabetes mellitus is hypothesized and needs to be verified. Results regarding this question are referred

to as publication II.
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2. Methods

2.1. Housing conditions

All mice were housed at the German Mouse Clinic (Fuchs et al., 2009) in a S1 facility. A room

temperature of 24 +/- 1 °C and humidity of 50 - 60 % were maintained. Light regime was a 12:12

hour light-dark cycle (lights on at 6:00 am). Mice were kept in isolated ventilated Type II long cages

(Tecniplast Deutschland GmbH, Deutschland). Housing was under specific pathogen free conditions

according to FELASA recommendations (Nicklas et al., 2002). Per cage, individual mice (if ordered

externally) or groups of 2 – 5 mice were housed on wood shavings as bedding material (LIGNOCEL

¾-S –Fichte, Rettenmaier GmbH, Germany). A plastic house was supplied to all cages as an

opportunity to retreat, additionally tissue paper was provided to individually housed mice as nesting

material (Mouse Igloo red, Plexx, Netherlands; Kimtech Science Labortücher 7216, Kimberly-Clark

Professional, Germany). All animals had ad libitum access to water and chow diet (altromin 1314,

Total Pathogenfreies Zucht- und Haltungsfutter, Altromin Spezialfutter GmbH & Co. KG, Germany)

if not specified otherwise. All experiments were performed following animal welfare regulations with

permission from the district government of Upper Bavaria (Regierung von Oberbayern).

2.2. Animals and diets

2.2.1. Cohorts for effects of diet matrix

For the analysis of diet matrix effects, two cohorts of male C57BL/6J mice (n=40, age 12 weeks) were

either ordered from Charles River Laboratories (Germany; Lard groups) or obtained from in-house

breeding from C57BL/6J founder animals (tallow/soy based diet groups). Mice had ad libitum access

to chow diet from weaning/ arrival on until the VOC analysis; afterwards mice were assigned to four

groups with different semi-purified diets (Table 1). The purified diets contained low amount of soy oil

versus a high amount of soy oil and tallow fat (LF, HF) or low versus high amount of soy oil and lard

(LL, HL). Both LF and HF diets were pelleted (LF, E 15000-04, Ssniff, Germany; HF, E 15741-347,

Ssniff, Germany). LL diet was based on a purchased pre-mixture (S5741-E761, Ssniff). HL diet was

based on different a purchased pre-mixture (S5741-E762, Ssniff) to match ingredients excluding

macronutrients. Lard was molten at 50 °C and added to both lard diet-premixes to achieve 10 en%

(LL) or 60 en% (HL) from lard. Before import into the facility, all diets and the respective separate

ingredients were sterilized with 25 kGy/min γ-radiation (Isotron Deutschland, Germany). Diets were

replaced weekly (pelleted) or twice a week (self-mixed).
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  Table 1: Diet composition and energy content shown in metabolizable energy percent (calculated

using Atwater factors).

Diet Manufacturer

identification

Carbohydrates Protein Fat Energy

content [kJ/g]

Used in

publication

Laboratory chow (chow) Altromin 1314 60 en% 27 en% 13 en% 12.5 1, 2

Low soy oil diet (LF) Ssniff, E 15000-04 66 en% 23 en% 11 en% 15.0 1, 2

High soy oil/tallow fat diet

(HF)

Ssnif, E 15741-347 21 en% 19 en% 60 en% 21.4 1, 2

Low soy oil/lard diet (LL) Self-mixed, based

on S5741-E761,

Ssnif

74 en% 16 en% 10 en% 15.6 1

High soy oil/lard diet (HL) Self-mixed, based

on S5741-E762,

Ssniff

25 en % 15 en% 60 en% 22.3 1

2.2.2. Diet induced obese mice

For the generation of the diet-induced obesity model, 20 male BL6/J mice from in house breeding

were randomly assigned to two diet groups. The two mouse groups were switched from chow to either

pelleted semi-purified low fat or high fat diet (low fat: E 15000-04; high fat: E 15741-347; both:

Ssniff) at the age of twelve weeks to the time of the VOC measurement (24± 2 weeks) on.

2.2.3. Genetic obese mouse model MC4R (W16X)

A melanocortin-4-receptor nonsense allele W16X knock-in mouse line as published by (Bolze et al.,

2011) was used to address the question of the impact of (mono-)genetic obesity on emitted VOC

pattern. Mice carrying the mc4r knock-in sequence (MC4R-ki) were on C57BL/6J background. 15

knock in - mice as well as 15 controls of both sexes had ad libitum access to drinking water and chow

from week 3 on.
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2.3.  Methods for body mass and body composition monitoring

2.3.1. Body mass monitoring

Body mass of mice was monitored to the nearest 0.1 g weekly and before every breath gas

measurement (balance: 440-47N, Kern & Sohn GmbH, Germany). Mice were placed onto an elevated

holder to prevent escaping. Balances were calibrated regularly to minimize systemic measurement

error.

2.3.2. Nuclear magnetic resonance (NMR) body composition monitoring

The body composition expressed as lean mass and fat mass was determined using a time domain

(TD)-NMR scanner (Minispec LF50 body composition analyzer, Bruker Optic GmbH, Germany).

Calibration was performed using varying amounts of chicken muscle and pork fat, so that the whole

body mass of lean and fat tissue can be measured non-invasively. Mice were weighted before

measurement (balance: Kern 440-47N, Kern & Sohn GmbH), placed into a restraining container and

measured in the NMR for 2:46 min. Estimation of lean and fat mass in gram was performed by

MinispecPlus (Bruker Optic GmbH) und OPUS (OPUS Version 5.0, Bruker Optic GmbH) software.

2.4. Analysis of volatile organic compounds in unrestrained mice

2.4.1. Proton transfer mass spectrometry

2.4.1.1. Measurement principle and instrument

A proton transfer reaction mass spectrometer with time of flight detection (PTR-TOF-MS) was used

to analyze volatile organic compounds (VOCs) emitted from mice. The PTR-TOF-MS consists of two

functional parts, one relevant for ionization of molecules and the other for the detection of those ions.

For the chemical ionization as originally described in the 1960s (Munson and Field, 1966), the ion-

source hollow cathode charges water to hydronium ions. Hydronium ions as primary ions are most

suitable for the analysis of volatile molecules in air, as the most abundant air components have a

lower proton affinity (PA) and are therefore not reacting with and consuming primary ions. In contrast

most VOCs do have higher PA and can be protonated using hydronium ions. This “soft”, low energy

ionization of VOCs is low in fragmentation compared to other methods and therefore easier to

interpret in samples with a mixture of VOCs. Unlike other methods, which need a buffer or carrier gas
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for transfer of the VOCs, in PTR-MS the air itself is used for that purpose, leading to an outstanding

sensitivity down to pptv range (Lindinger et al., 1998). The ionization of volatiles is taking place in

the drift tube part of the instrument.

	

ଷܱାܪ + ܥܱܸ → ାܪܥܱܸ + ଶܱܪ	

The protonated volatiles are accelerated by an electrical field E from the drift tube through a lens

system to detection part of the instrument. The electrical field and especially its ratio with the density

of the buffer gas N is furthermore relevant for water cluster formation (low E/N) and fragmentation

due to collisions with neutrals (high E/N) of the drifting ions. In the second part of the instrument, the

time of flight t of the accelerated ions is detected to determine the mass m of the ion per charge q,

which is a recent addition to PTR technology (Herbig et al., 2009). Ions are deflected by voltage

pulses from the constant ion stream with a known potential U and a known distance d. A reflector

reverses the flight direction of the extracted ions and focuses the kinetic energy distribution of ions to

enhance mass resolution. Following reflection, ions are detected in a chevron-configured set of

detector plates. After signal multiplication by secondary electrons, the time of the voltage pulse in

combination with the extractor time is used to determine the time of flight according to

ைி்ݐ = 	
݀

√2ܷ
ඨ
݉
ݍ

The fact that complete spectra can be recorded in the range of milliseconds allows for monitoring of

highly dynamic signals and is thus suitable for breath gas analysis (Herbig et al., 2009). Mass

resolution is defined as the ratio of mass and the half-maximal width of a peak. In the spectrometer

used, a resolution of up to 2000 m/Δm can be achieved. This allows differentiation of isobaric

compounds unlike in the classical quadrupole PTR-MS while maintaining higher sensitivity compared

to PTR-TOF instruments with mass resolution of up to 8000 m/Δm.

The format in which the spectrometry data is recorded is counts per second [cps]. In order to

express these signal intensities as a fraction of the analyzed gas volume e.g. as parts per billion,

further conversions have to be made. As the signal intensity is dependent on the specific collision rate

constant k and the amount of primary ions H3O+, it needs to be corrected for both parameters as

following
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[ାࡴࡻࢂ] = 	 ൫ࡻ[ାࡻࡴ] − ൯࢚[ࡻࢂ]ିࢋ ≈ 	 ࢚[ࡻࢂ]ࡻ[ାࡻࡴ]

This simplified relationship is fulfilled only for [VOCH+] < [H3O+], thus an excess of primary ions

(Lindinger et al., 1998). k is specific for a volatile and will determine the amount of VOCH+ ions

which can be produced in the reaction time t. As k-rates are not known for unidentified VOCs, a

constant k-rate of 2 x 10-9 cm³/s was used. In addition, raw data needs to be corrected for the

transmission, thus the proportion of ions entering the spectrometer later on being detected in the

instrument.

2.4.1.2. Operation settings and recording of spectra

PTR settings and measurements were controlled using the software PTR-Manager (Ionicon Analytik

GmbH). The ion source was operated with a current of 5 mA. A water flow in the range of 5.0 – 5.5

sccm to supply the ion generation was maintained. Hydronium ions (H3O+) were kept in the range of

3000 – 10.000 cps at pk21 (m/z 21.0221, H3
18O+, 1/500 of H3

16O+ which is not measureable due to

detector saturation). This was achieved by stepwise increasing the detector voltage between 2100 and

2800 V to compensate detector ageing. A drift tube pressure of 2.3 mbar and voltage of 600 V were

maintained, resulting in an E/N ratio of 140 Td. Drift tube temperature was 80 ºC. Water cluster

formation was kept lower than 10 percent (as monitored by the ratio H3O+.H2O /  H3O+). Ammonia

was kept at approximately 2% but lower than 5%. Protonated oxygen levels were kept lower than 2%

of primary hydronium ions. NO+ levels were minimized to approximately 1% of primary ions.

Resolution of the instrument was routinely controlled for peaks 21, 30 and 59 and found to be in the

range of 1000 – 2000 m/Δm. Transmission was determined by measuring a mixture of volatiles with

varying masses using a gas calibration unit to set steps of defined concentrations (Transmission gas

standard; GCU-a; both: Ionicon Analytik GmbH). A transmission curve was generated to correct for

transmission losses of unknown volatiles of known masses over a range of concentrations (Figure 1).

Transmission measurements were performed regularly, before and after experimental campaigns. A

mass range from m/z 0 to 349.5 was recorded with a repetition rate of 77 kHz and the sum spectra

integrated over 3 s stored (TOF-DAQ, Tofwerk AG, Switzerland). Spectra were calibrated using the

known peaks  NO+  (m/z  29.9971)  and protonated  acetone  (m/z  59.0491,  C3H6O.H+ ) in

publication I and  H3
18O+ (m/z   21.0221),   NO+ and  protonated  acetone in publication II. In

publication I, a manual selection of peaks using TOFViewer (Version 3.0.1, Ionicon Analytic GmbH,

Austria) yielded 164 peaks. 306 peaks were selected manually from spectra in publication II using
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PTR-MS Viewer (Version 3.2.6, Ionicon Analytic GmbH). Concentrations were calculated from cps

data using PTR-MS Viewer (k=2 x 10-9 cm³/s, transmission curves see Figure 1).

Figure 1: Transmission curves determined for publications I and II (individually for cohorts HFD and MC4R)

2.4.2. A setup to measure volatile organic compounds in mice

The measurement setup for analysis of volatile organic compounds emitted from unrestrained and un-

anaesthetized mice is used as previously published (Szymczak et al., 2014). A polypropylene box with

a volume of 600 ml was utilized as respiratory chamber (Lock&Lock GmbH, Germany). The chamber

was connected to a supply tube for synthetic air (20 % oxygen, 80 % nitrogen, concentration of

hydrocarbons < 0.1 ppm, Linde AG, Germany) on one end and to the PTR-MS from the top cover

(constant flow 60 mL min-1 controlled by PTR). A PTFE membrane filter (pore size 2.0 lm, PALL

Corporation, USA) was installed between chamber and PTR-MS to avoid particular contaminations.

Connections to the PTR-MS were heated to avoid condensation of humid breath and trapping of

VOCs (before filter > 40 °C, after filter 80 °C). The chamber itself was not actively temperature

controlled; the repeated flushing of the chamber and continuous diluting of the headspace in the

presence of a mouse kept the temperature within the chamber roughly at ambient temperature (20 – 25

°C) comparable to home cage conditions. The supply of synthetic air could be switched by a PTFE-

coated valve (Series 1 &2, Parker, USA) between a PTFE air reservoir (Welch Fluorocarbon Inc.,

USA) during measurement or a flow of 3 l min-1 during flushing of the chamber. Custom made

feedthroughs out of PEEK were deployed at both the gas inlet and outlet in the chamber. The
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feedthroughs were designed to split into 6 paths rectangular to original gas flow. This provided an

indirect air supply during flushing the chamber with higher flow rates at the inlet, thus lower

disturbance of the mouse in comparison to a direct air jet. In addition, the multiple-path outlet reduced

concentration fluctuations due to direct sniffing at the feed-through by the mouse. A one-way valve

(Bürkle GmbH, Germany) was mounted to the top to prevent over-pressure during high-flow flushing

of the chamber. Flow meters for both measurement and flushing flow (TD9411M, Aalborg, USA)

were included and monitored for drops indicating system leakage. Valves for controlling gas flow

through the system are operated using an USB-relay (ABACOM Ingenieurbüro GbR, Germany) and

custom made software interface (based on ProfiLab, ABACOM Ingenieurbüro GbR).

2.4.3. Measurement protocol and contamination monitoring

The basal setup and modifications have been described in (Kistler et al., 2016, 2014; Szymczak et al.,

2014). Before the measurement, mice were placed in an acclimatization chamber for several minutes.

This chamber is equal to the measurement chamber with a supply of laboratory room air. In addition,

a soft tissue paper (Kimtech Science, Kimberly-Clark) was placed in the chamber to reduce fur

contamination in case of urine or feces events. On top of the chamber, a cover was placed over half

the chamber to allow the mouse to retreat and reduce potential stress of being restrained in the

transparent box.

A measurement chamber is connected to the mass spectrometer and flushed 2 minutes with a flow rate

3 l/min to dilute enclosed laboratory room air. The recording of mass spectrometry data is started right

after start of flushing. After flushing, VOCs from the empty respiratory chamber are measured (5 min,

flow 60 mL min-1) to detect system leakage and background VOC concentrations and being able to

correct for them. Signals monitored for leakage from laboratory air are acetone (m/z = 59.05) and

propanol (m/z = 41.06) concentration, which are typically several orders of magnitude higher

concentrated compared to synthetic air. Following this blank measurement, the system is switched to

flushing state and the mouse is placed into the chamber. Entered laboratory air is replaced by flushing

2 min. After that, measurement phases alternate with flushing of the chamber, allowing the volatiles

to accumulate in the gaseous phase. Generally, three or more valid accumulation phases are measured

per mouse.

During accumulation of VOCs in the headspace of unrestrained and non-anaesthetized mice,

contaminations can arise e.g. from urination and defecation and add variance and bias to the data.

Thus, mice were cleaned prior to the measurement to remove fur contaminations if necessary. The
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measurement chamber was monitored for macroscopic signs of contamination repeatedly during

measurements. In addition, several volatiles were used as marker substances for urine or feces events.

Urine was detected due to sudden changes in humidity (determined as water-cluster (H2
18O)2.H+, m/z

= 39.05), concentration of trimethylamine (m/z = 60.07) and pk127B (tentatively dimethyl trisulfide,

m/z = 127.02). Concentration of methanethiol (m/z = 49.02) indicated presence of feces. In case of

feces contamination, feces were removed and accumulation phase was skipped. If urine was present,

the respirometry chamber was replaced, the mouse was gently cleaned using soft tissue paper

(Kimtech Science, Kimberly-Clark) and the measurement was restarted.

2.5. Primary data analysis

2.5.1. Calculation of source strengths

In the respiratory chamber, the emission of volatiles from the mouse and the dilution due to gas flow

to the PTR-MS and replacement of this volume by VOC-reduced synthetic air contribute to a

measured count rate per second [cps]. An equilibrium will be reached after more than 15 minutes at a

flow of 90 ml min-1 and will vary with background and starting concentration of volatiles (Szymczak

et al., 2014). Therefore, the quantification of VOC emission was based on dynamic changes during

the saturation curve using a compartment model. The concentration of certain VOC ci at time t was

described with the following equation (Szymczak et al., 2014):

ܿ(ݐ) = ܿ ∗ 	݁
ିி௧ + 	 ܵ

ܨ
	൬1 −	݁ି

ி
௧൰

Herein, the flow F in the chamber as well as the volume V of the chamber are known and kept

constant. c0 represents the starting concentration of the volatile, which is kept minimal by flushing

with synthetic air. Si, which was termed source strength, can then be derived from a nonlinear least-

square fitting and utilized to quantify the emissions of specific VOCs in exhaled breath.

2.5.2. Profile selection and quality control

For publication 1, a custom matlab script was used to detect blank measurements and saturation

profiles from PTR-MS concentration data in a fully automated way (Matlab VersionR2012a, The

Mathworks Inc., MA, USA). Herein, signals from multiple VOCs (ethanol, acetone, water clusters at

pk39 and pk55) were used to determine local minima and maxima of the data as well as trend-
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breaking events in source strengths. These events were used to segment saturation profiles. Nonlinear

regression fitting with both gaussian and poison noise modeling was then performed in the segments.

Goodness of fit was evaluated by comparison of mean and variance of both fits. Identification and

flagging of contaminations and disturbances of the measurements were automated. This included

urine and feces contamination, box opening and time scale misalignment (“dejavu” data). Data was

carefully checked manually and discarded if false positive flagging and miss-segmentation of profiles

was present. For urine and feces, measurements with a source strength higher than Si(pk127B) > 300 ppb

mL min−1 and Si(pk49) > 100 ppb mL min−1 thresholds were excluded.

As part of this thesis project, a custom server-based application based on R and the shiny package

(Chang et al., 2015; R Core Team, 2015) was developed and applied on PTR-MS concentration data

in publication II (Figure 2A). Compared to the previous data analysis protocol, this web-application

has several improvements. Concentration is visualized over time instantly after upload of data and

according to a selectable chosen signal, blank measurements and segments can be selected manually

after automatic pre-detection. For the analysis acetone and propanol peaks were used for profile

selection.

Furthermore, profiles which need to be segmented due to urine or feces events can be chosen

manually. Thus, no discarding of information is necessary if a single segmentation criterion cannot

achieve correct segmentation. For the evaluation of contamination events, visualization of marker

volatiles directly next to other VOCs is possible. In addition, protocolled events can be read in and

displayed right next to the data allowing correct and reproducible evaluation of measurements. In

publication II, concentrations greater 1 ppb and sudden increases in source strengths of methanethiol

(m/z =49.02), trimethylamine (m/z = 60.07) and pk127B (m/z =127.02) were used to discard profiles.

For the analysis of source strengths, nonlinear regression fitting with gaussian noise modeling was

then performed in the segments and shown instantly right next to the data. Additionally, further

models e.g. without noise modelling can be calculated simultaneously and overlayed on the same plot.

Using the AIC criterion, goodness of fit of the models can be compared directly. In publication II,

nonlinear regression fitting with gaussian noise modeling was applied.

Unlike previous static reports from matlab scripts, data can be zoomed and segmented in real-time

during analysis. This is especially useful in prolonged experiments e.g. glucose tolerance testing or to

visualize VOC correlations within a certain profile (Figure 2B). Maximum and minimum data

thresholds can be set to exclude e.g. high propanol levels from room air while inserting the mouse.
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For reproducible and transparent data analysis, metadata can be entered and are exported with the

calculated source strengths. Furthermore, first capabilities to analyze data on cohort level (e.g.

plotting, mixed effects modelling) and export a reduced dataset for MausDB upload have been

implemented.

Figure 2: Web application for processing and evaluating PTR-MS concentration data from mouse

headspace measurements. A: Data analysis tool with source strength calculation and protocol event

visualization. B: Correlation matrix plot with visualization of individual peak correlations from selected data

segments.

In both publications, VOC source strengths measured during blanks were subtracted from VOC

source strengths of mouse accumulation profiles. This was performed to ensure no undetected micro-

leakage in respiratory chambers could affect mouse source strengths. In addition, peaks which had a

non-different or smaller source strength during measurement compared to blank source strength were

removed from data set in publication II. Negative source strength was determined using differences of

mean source strengths. Significant increases in source strengths were determined using linear

regression modelling. A p < 0.1 threshold was set to ensure that potential very low signal marker

volatiles were not filtered out.

A B
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2.6. Secondary data analysis

2.6.1. Machine learning protocol for feature selection

The analysis of volatiles from gaseous phases using PTR-MS results in data sets of with a high

number of variables, typically several hundreds and therefore typically around 10 times more

variables p than individual mice n are part of the experiment. The arising issues regarding the

correction for multiple hypothesis testing, especially in a screening approach, is therefore commonly

found in methods dealing with p>>n datasets like metabolomics or transcriptomics (Lay Jr. et al.,

2006). One approach in narrowing down the number of candidate volatiles is applying machine

learning algorithms to rank importance for feature selection.

In publication I, a decision tree and a bagging based algorithm, namely random forest ++ (RF++,

(Karpievitch et al., 2009)), was applied. In this algorithm, subject-based bootstrapping allows to

extend the power of random forest by circumventing using means over repeated-measures data. For

the classes chow and semi-purified, baseline and one week data was analyzed (5000 trees, 13 splitting

variables per tree). The top three independent VOCs were further analyzed.

In publication II, another supervised feature selection approach, namely the AUC-RF algorithm, was

implemented (Urrea and Calle, 2012). Here, a receiver operating characteristic curve and ranking of

predicting volatiles are computed from an initial random forest. Less important variables are then

removed in an elimination process until an optimal ROC-AUC is found. For both HFD-fed and

MC4R-ki datasets strata were set to allow only one measurement per mouse and fasting status in

every decision tree. As over-fitting of the resulting model and reproducibility are possible in a single

model, a five-fold cross validation was applied with 20 iterations. Only peaks with a selection

probability of more than 70% in the cross-validation were further analyzed. In addition, the complete

analytical pipeline was repeated using randomly permuted class labels to ensure robustness of the

classification approach.

2.6.2. Data visualization

Source strength data was visualized using r package ggplot2 with default settings (Wickham, 2009).

The top of each box in the boxplots indicates the 75% percentile, the bottom the 25% percentile, and

the thick bar inside the box is the median. Whiskers are defined as 25% percentile – 1.5 * Interquartile
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range and 75% percentile + 1.5 * Interquartile range, respectively. Data points higher or lower than

Whiskers are defined as outliers.

For both heatmaps and gaussian graphical modelling in publication II, missing values were imputed

using chained equations (mice R package (Buuren and Groothuis-Oudshoorn, 2011)).

Heatmaps in publication 2 were performed using the Heatplus (Ploner, 2014) package from the

Bioconductor project (Gentleman et al., 2004). Mean ad libitum fed as well as mean fasted source

strength data per mouse was used and shown individually. Data has been scaled and centered.

Annotation according to genotype, diet, fasting status and mouse weight was performed on the right

side. Hierarchical clustering was performed on both volatiles (columns) and mice in fasted and ad

libitum state (rows), sub clusters of mice were color-coded.

Recently, gaussian graphical models were shown to reconstruct metabolic pathways without a-priori

information (Krumsiek et al., 2012, 2011). These models rely on a partial correlation matrix, in which

every two variables correlation is corrected for contribution of all other variables from the dataset. For

the creation of a gaussian graphical model, source strengths were log-transformed to achieve

normality. A shrinkage approach to estimate a partial correlation matrix was applied as this is n < p

data set (Schäfer and Strimmer, 2005). Additionally, the data was of longitudinal structure, thus a

dynamic partial correlation was estimated (Opgen-Rhein and Strimmer, 2006) using the GeneNet R

package (Schaefer et al., 2015). A local FDR of 3% was used to extract a network from the partial

correlation matrix. As two cohorts of mice were measured individually, a “dummy” variable

correcting inter-experimental differences was introduced but not plotted. The percentaged coefficients

from linear mixed effects models are shown in the nodes as a pie-chart for every peak with significant

intervention or fasting effects. Subnetworks of significant peaks and direct positive correlated

neighbors were highlighted. Top 20% of connections are shown with bold lines; minor 20% with grey

lines, negative partial correlations with dotted lines. Peaks identified in feature selection but without

significant connections were included in the graphical model for illustration purposes.

2.6.3. Statistical testing

Linear mixed effects models with repeated measures as random effects were applied to test for

intervention effects (publication I: diet matrix & diet quality; publication II: fasting state & diet or

fasting state and genotype). This was performed using the nlme R package (Pinheiro et al., 2015).

Source strength data was logarithmized to achieve normality (as tested visually in qq-plotting). In
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publication I, models were reduced using AIC to remove irrelevant parameters (stepAIC function, R).

In publication II, mixed effects models were maintained. In addition, post-hoc test for individual

groups were performed on significant interaction. Control of false discovery rate after Benjamini and

Hochberg (Benjamini and Hochberg, 1995) was applied to avoid cumulation of the Type I – Error. All

p-values were adjusted according to a false discovery rate of 10% in publication II.
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3. Results

3.1. Publication I

Effects of diet-matrix on volatile organic compounds in breath in diet-induced obese
mice

M. Kistler, W. Szymczak, M. Fedrigo, J. Fiamoncini, V. Höllriegl, C. Hoeschen, M.
Klingenspor, M. Hrabě de Angelis, J. Rozman

Journal of Breath Research, Volume 8, Number 1 (2014)

Abstract

Breath gas analysis in humans proved successful in identifying disease states and assessing metabolic

functions in a non-invasive way. While many studies report diagnostic capability using volatile

organic compounds (VOC) in breath, the inter-individual variability even in healthy human cohorts is

rather large and not completely understood in its biochemical origin. Laboratory mice are the

predominant animal model system for human disorders and are analyzed under highly standardized

and controlled conditions. We established a novel setup to monitor VOCs as biomarkers for disease in

the breath gas of non-anesthetized, non-restrained mice using a proton transfer reaction mass

spectrometer with time of flight detection. In this study, we implemented breath gas analysis in a

dietary intervention study in C57BL/6J mice with the aim to assess the variability in VOC signatures

due to a change in the diet matrix. Mice were fed a standard laboratory chow and then exposed to four

semi-purified low- or high-fat diets for four weeks. Random forest (RF ++) was used to identify

VOCs that specifically respond to the diet matrix change. Interestingly, we found that the change from

a chow diet to semi-purified diets resulted in a considerable drop of several VOC levels (Figure 3).

Our results suggest that the diet matrix impacts VOC signatures and the underlying metabolic

functions and may be one source of variability in exhaled volatiles.



Results

23

Key figures

Figure 3: Effects of a switch from chow (week 0) to purified diets (weeks 1–4) on emitted breath VOCs

(a)–(c) are shown (5–10 mice per group and date). If an interaction in diet quantity and quality was detected,

different capital letters were used to show significant differences between diet groups tested with pairwise

Student’s t-test at a time point (significance level: p < 0.05). For pk95A, no differences at a time point were

found in pairwise t-testing. Water isotope cluster pk39 (d) is shown as a measure for humidity to estimate

activity and breath frequency.
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Candidates own contribution:

Idea of the manuscript, together with supervisor J. Rozman

Design and execution of experiments

Processing and analyzing all data in R statistics

Interpretation of data and drafting manuscript

Writing and finalizing paper in consultation with co-authors
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3.2. Publication II

Diet-induced and mono-genetic obesity alter volatile organic compound signature in mice

Kistler M., Muntean A., Szymczak W., Rink N., Fuchs H., Gailus-Durner V., Wurst W., Hoeschen C.,
Klingenspor M., Hrabě de Angelis M., Rozman J.

Journal of Breath Research, Volume 10, Number 1 (2016)

Abstract

The prevalence of obesity is still rising in many countries of the world resulting in an increased risk

for associated metabolic diseases. In this study we aimed to describe the volatile organic compound

(VOC) patterns symptomatic for obesity. We analyzed high fat diet-induced obese (HFD) and mono-

genetic obese mice (global knock-in mutation in melanocortin-4 receptor MC4R-ki). The source

strengths of 208 VOCs were analyzed in ad libitum fed mice and after overnight food restriction.

Volatiles relevant for a random forest-based separation of obese mice were detected (26 in MC4R-ki,

22 in HFD mice). Eight volatiles were found to be important in both obesity models. Interestingly, by

creating a partial correlation network of the volatile metabolites, the chemical and metabolic origins

of several volatiles were identified. HFD-induced obese mice showed an elevation in the ketone body

acetone and acrolein, a marker of lipid peroxidation, and several unidentified volatiles. In MC4R-ki

mice, several yet-unidentified VOCs were found to be altered. Remarkably, the pheromone

(methylthio)methanethiol was found to be reduced, linking metabolic dysfunction and reproduction.

The signature of volatile metabolites can be instrumental to identify and monitor metabolic disease

states, as shown in this screening of two obese mouse models. Our findings show the potential of

breath gas analysis to non-invasively assess metabolic alterations for personalized diagnosis.
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Key figures

Figure 4: Machine learning strategy for selection of obesity relevant peaks. The performance of

classification models was evaluated using ROC curves. For high fat diet fed mice (HFD, (a)) and melanocortin-

4-receptor W16X knock-in mice (MC4R-ki, (c)), ROC curves are shown for a single 5-fold cross-validation of

the recursive feature selection using AUC-RF algorithm. Results for real class labels are shown in dark solid

lines. In comparison, light dashed lines represent ROC curves from using randomly permuted class labels in the

classification procedure. The variation in area under the curves (AUCs) under ROC curves is shown in boxplots

(HFD (b), MC4R-ki (d)). For this, 20 different 5-fold cross-validation sets were analysed. Dark boxplot fills

represent real class labels while light colors represent permuted labels. For further analysis, peaks with more

than 70% selection probability in the repeated cross-validation procedure were selected. The variable
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importance of selected peaks is shown (HFD, (e); MC4R-ki, (f)). Colour gradients indicate selection probability

after 20 iterations of a five-fold cross validation procedure. Overlapping of selected peaks is shown as Venn

diagram (g).

Figure 5: Gaussian graphical model for VOC identification. Gaussian graphical model with nodes

corresponding to peaks (labelled with nominal mass and letter for multiple peaks at the same nominal mass)

and edges corresponding to shrinkage estimated partial correlation. Highest and lowest 20 percent of

correlations are highlighted (bold black/ thin grey). Dotted edges indicate negative partial correlation. Peaks

with significant mixed effects model main effects (as seen in Fig. 4 and Fig. 5) are shown as pie charts in nodes.

Coloring of model coefficients is according to diet increase/ decrease (red/ dark red), genotype increase/

decrease (blue/ dark blue) and fasting increase/ decrease (grey/ dark grey). Mean fasting coefficients are shown

if significant in both obesity models. Subnetworks of peaks with significant effects and directly connected nodes

with positive partial correlation are plotted on colored background. Peaks without significant edges selected in

AUC-RF were added for illustration purposes.
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Interpretation of data and drafting manuscript

Writing and finalizing paper in consultation with co-authors
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4. Discussion

Fundamental for the analysis of volatile organic compounds emitted from unrestrained and non-

anaesthetized mice was the establishment of the methodology (Szymczak et al., 2014). Herein, VOCs

from mice are measured using a small box with supply of synthetic air and a PTR-Quad-MS. The

obtained saturation curves are described by applying a compartment model with the assumption of

constant source strength of a particular VOC during a curve. In a prove-of-principle experiment,

source strengths of several volatiles were affected by changing from a chow to a purified high-fat diet

feeding. However, this diet switch consists of a variety of changed experimental parameters, namely

diet energy content, diet matrix (chow versus purified), progression in age and obesity of mice. To

dissect and answer those questions individually, additional experiments were performed and

published. These experiments resulted in a novel catalogue of candidate VOCs associated with diet

matrix changes or obesity and will be discussed in the following sections.

4.1. The effect of diet matrix on the emitted VOC pattern

4.1.1. Change from chow to semi-purified diets

In obesity research, a change from a grain-based chow diet to breed and maintain mice to a semi-

purified or synthetic experimental diet is a common procedure. However, the effects of the diet-matrix

change per-se are not always considered. Typically, such a shift towards a purified diet comparable in

macronutrient composition leads to various physiological effects, such as microbial change (Daniel et

al., 2014; Sonnenburg et al., 2016) or higher body weight gain in rats on a synthetic diet (Moraal et

al., 2012). In addition, the generally elevated but also highly variable content of phytoestrogens like

isoflavones are known to be present in chow diets. For example, for Altromin 1324 isoflavone levels

vary from ~ 220 to 530 µg/g chow (Jensen and Ritskes-Hoitinga, 2007) and can lead to activation of

hepatic phase I and II metabolism (Rudolf et al., 2008).

Due to such profound alterations it was hypothesized that the VOC emission pattern could be

altered as well. Therefore, the shift from a chow diet to four different semi-purified diets was

analyzed in respect to emitted volatiles. Interestingly, a massive drop in three volatiles was observed,

which were tentatively identified as methanol, methyl acetate or propionate and dimethyl sulfone.
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4.1.2. Methanol (pk33B, pk15, pk34B, pk35B, pk51B)

In chow fed mice, high amounts of methanol in breath are present, which are massively reduced on

semi-purified diets. The presence of methanol in human breath was detected in the 1960s (Eriksen and

Kulkarni, 1963) and can originate from various precursors. One major source is the consumption of

pectin and microbial cleavage of methyl groups. In addition, other sources like aspartame,

demethylation of proteins and S-Adenosylmethionine can contribute to methanol levels (Axelrod and

Daly, 1965; Dorokhov et al., 2012; Lindinger et al., 1997; Morin and Liss, 1973; Siragusa et al.,

1988). Pectic polysaccharides from soy, which is a major ingredient in chow diets, might be the

dominant source of systemic methanol in chow fed mice. Interestingly, not only a switch from chow

to a semi-purified diets but also overnight food restriction leads to massive drop in methanol as shown

in chow fed MC4R-Ki mice. This might be an effect of retained pectin supply to microbiota and

indicates that breath methanol is massively and acutely influenced by diet supply.

Notably, mice on LFD remained higher compared to other semi-purified diets for the first four

weeks after diet change. According to the manufacturer, raw fiber content is 5.0% compared to 6.0%

of the corresponding HFD and 5.0% cellulose in lard-based diets. It is likely that cellulose will not be

metabolized to methanol but to short-chain fatty acids by the gut microbiota (Peng et al., 2013).

Comparing LFD and HFD, fiber composition might vary and a higher content of pectins might be

present in LFD. Another possibility is that the HFD induced modification of the gut microbiota is

interacting with pectin metabolism and leading to lower methanol release.

4.1.3. Methyl acetate (pk75, 76B)

Another finding in publication I was the massive drop in a peak of the mass 75.02 (pk75), tentatively

identified as either methyl acetate or propionate. Interestingly, after fasting challenge in chow fed

MC4R-ki mice in manuscript II, pk75 was also reduced. In an approach to reconstruct biochemical

pathways as well as fragmentation, isotopes and chemical reactions, a gaussian graphical model

indicated methanol and acetic acid with a significant partial correlation. Thus, the assumption that

methyl acetate is dominantly contributing to pk75 is further substantiated. The origin of methyl

acetate in breath can be endogenously, as shown e.g. in human bronchial epithelial primary cells in

vitro (Filipiak et al., 2010). As shown for longer lipid esters, it could possibly be synthesized out of

methanol and acetate by liver, duodenal mucosa, and pancreas (Diczfalusy et al., 2001). In addition,

the gut microbial production of methyl acetate has been shown and can be modulated by uptake of

symbiotic food (fructooligosaccharides and the probiotic strains) as measured in feces (Vitali et al.,
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2010). As indicated by the graphical model, breath levels of methyl acetate might be driven by a

synthesis from high methanol levels, either endogenously using acetate or acetyl-CoA or by the

microbiota using acetate out of fiber fermentation. Thus, upon lack of methanol supply, both by diet

matrix change or food restriction, methyl acetate levels decrease.

In humans, breath methyl acetate is acutely responsive to exercise, with a ~2-5 fold rise and

plateauing after 5 minutes. This exercise-induced rise in concentration is closely accompanied by

elevations in the cardiac output or blood pressure (King et al., 2010). Regarding the setup of

unrestrained and non-anaesthetized mice, varying locomotor activity could modify methyl acetate

source strengths. This might be especially true for mice within a measurement, beginning with an

active exploring phase and calming down after several repetitions. However, as shown in manuscript

I, humidity in the box is not affected, which is assumed to be driven by increased activity (Szymczak

et al., 2014). Hence, acute locomotive induced changes in cardiac output are unlikely to contribute

relevantly to the drop of methyl acetate levels after diet switch in this mouse setup using a small

respiratory chamber.

4.1.4. Dimethyl sulfone (pk95A)

Another volatile compound affected by the diet matrix change was found at a mass of 94.97. In rodent

breath, three candidate VOCs with a nominal mass of m/z 95 have been described, namely dimethyl

sulfone (DMSO2, also methylsulfonylmethane), phenol and substances with the sum formula C7H10

(Aprea et al., 2012). According to the exact mass of 94.97, pk95A was tentatively assigned to DMSO2

(m/z = 94.998479). Interestingly, in publication I again a massive drop in source strength was

identified when switching from chow to semi-purified diets. The same was true after overnight fasting

in chow fed MC4R cohort (data not shown in publication II/ see Supplementary figure 1). DMSO2 is

known to be widely available in human diet, especially from vegetables, fruits, beverages and grains

(Buśko et al., 2010; Pearson et al., 1981). Hence, a direct contribution from the grain-based diet is a

likely origin. Another suggested source of DMSO2 is the microbial degradation of methionine, which

is metabolized via methanethiol to dimethyl sulfide and further to DMSO2 by the host (He and

Slupsky, 2014). However, both methanethiol (m/z 49.01) and dimethyl sulfide (m/z 63.03) are volatile

and could be detected in breath if present systemically. Although it is possible that oxidation of both

precursors is extremely efficient and no alterations in systemic and breath concentrations are

measureable, this seems rather unlikely. In conclusion, in case of DMSO2 the majority of the

determined source strengths can likely be attributed to a direct dietary effect.
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Notably, as emitted DMSO2 levels vary massively between chow and semi-purified diets, it is of

high importance to specify dietary composition in models of obesity and choose an appropriate

control. DMSO2 has a history of use as a diet supplement for its anti-oxidative, anti-inflammatory and

anti-apoptotic properties (Amirshahrokhi and Bohlooli, 2013; Gregory et al., 2008; Kamel and Morsy,

2013). These effects might be mediated by inhibition of the NLRP3 inflammasome activation, thus

attenuating the transcriptional expression of IL-1α, IL-1β, IL-6 and reducing production of

mitochondrial reactive oxygen species (ROS) (Ahn et al., 2015). Therefore, the level of DMSO2 in

breath is an interesting candidate to monitor for information on the oxidative state, which might

modulate obesity associated pathologies like a diabetic phenotype. Interestingly, DMSO2 was found

to be reduced in rats with NASH by feeding a HFD compared to a LFD (Aprea et al., 2012).

However, the control diet was referred to as “typical pellet diet”, but not clarified if chow or purified.

Thus it is possible that the reduction might at least partly reflect the change in diet matrix and grain-

derived dietary DMSO2. This is further substantiated as in HFD fed mice no such reduction in

DMSO2 was observed when compared to a semi-purified LFD (Kistler et al., 2016).

4.2. Obesity-induced changes in the volatilome

In publication II, the aim was to identify common and model-specific changes in the emission of VOC

using two obesity mouse models. Therefore, both a model of diet induced obesity as well as

monogenetic obesity was analyzed.

4.2.1. A common VOC signature of obesity

4.2.1.1. Acetic acid (pk61 and pk43A)

Acetic acid was identified in both obesity models as potentially relevant by random forest models.

Although adding fasting as a factor to the mixed effects modelling only the acetic acid fragment

pk43A in HFD fed mice is significant, acetic acid still seems an interesting volatile for metabolic

readouts. Acetic acid is central in energy metabolism via its metabolite acetyl-CoA which can be

derived from carbohydrates, amino acids and fatty acids. The enzymes acetyl-CoA synthetase and

acetyl-CoA hydrolase can regulate free acetic acid levels, in addition exogenous sources like gut fiber

fermentation contribute to serum levels predominantly after food intake (Wolever et al., 1997). Serum

acetic acid levels were reported to be dependent on glucose tolerance status (Wolever et al., 1997) and

inversely correlated to insulin levels in mice and humans (Layden et al., 2012; Sakakibara et al.,
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2009). Glucose-induced insulin secretion from rat pancreas is attenuated by acetic acid (Tiengo et al.,

1981). This inhibition is mediated by pancreatic FFAR2 and FFAR3. These receptors can be activated

both by overall systemic acetic acid levels as well as by pancreas secreted acetate, which is produced

from glucose as a negative feedback (Tang et al., 2015).

However, effects of HFD on systemic acetic acid levels in mice have been reported to be

either elevated or decreased. These conflicting results are probably due to the fact that dietary fiber

content was not reported or not accounted for. Lower serum levels in HFD fed mice without fiber

were measured compared to chow diet (Shearer et al., 2008). In addition, mice fed an HFD with

unspecified fiber content have lower portal acetate levels compared to chow fed mice, which can be

restored after antibiotic intervention (Carvalho et al., 2012). By feeding a HFD with 5.0% fiber

content, a higher systemic level of acetic acid has been found in obese mice compared to control chow

(Tang et al., 2015). This finding of elevated acetate is reproduced in a D12492 HFD with 6.5% fiber

content compared to standard chow (McNelis et al., 2015). The later findings match the trend of

increase in HFD fed mice within this thesis (D12492 mod., 5.0% fiber content).

Notably, hepatic release of acetic acid was reported to be essential for energy supply to extra-

hepatic tissues in rats and mice, especially in ketogenic state (Sakakibara et al., 2009; Yamashita et

al., 2001). Serum levels in mice were reported to be reduced from 0.20 to 0.15 mM after 24h of

fasting (McNelis et al., 2015), but to rise in plasma compared to ad libitum state  from ~0.20 to 1.50

mM after 48h fasting (Sakakibara et al., 2009). This indicates that upon food restriction, dietary and

microbial influx of acetate is reduced, which is then reversed and overcompensated to supply energy

upon prolonged fasting. Hence, after overnight fasting a small reduction of plasma acetic acid level

might be present. In breath acetic acid, however, only a slight reduction in fasted MC4R-ki mice but

no effect in the HFD mice on was detected.

4.2.1.2. Methanol (pk33B and 35B)

In addition to the effects of chow diet matrix on methanol, no obesity effect in MC4R-ki mice could

be detected. In contrast to this mono-genetic model, mice fed a semi-purified LF or HFD diet showed

only a minor increase after fasting. A small reduction in short term HFD fed (publication I) and no

significant effect in long term HFD fed mice (publication II) could be detected. In obese humans,

methanol levels were reported to be reduced (Halbritter et al., 2012; Turner et al., 2006) but increased

in liver cirrhosis (Morisco et al., 2013). Methanol levels, as discussed previously, are strongly diet and

microbiota dependent, thus altered diet or gut microbiome composition in obese patients could be
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responsible for decreased levels. Elevations in cirrhotic patients can be explained by reduced hepatic

alcohol dehydrogenase (adh1) activity, which is the primary detoxification mechanism in humans

(Dorokhov et al., 2015). So regarding publications I and II it can be concluded that diet derived

methanol can be the dominant source in terms of effect size, while obesity per se, at least in the used

models, has only a minor effect on emitted methanol levels. However, it has to be noted that

detoxification of methanol in humans is primarily adh1 driven while in model organisms like rodents

and other mammals, peroxidative activity of catalase is more relevant for degradation (Dorokhov et

al., 2015; Karinje and Ogata, 1990). This alternative methanol metabolism needs to be considered

when comparing human and mouse breath methanol findings.

4.2.1.3. Carbon dioxide*H2O / Dimethyl sulfide (pk63, pk64B, pk65)

In both obesity models peaks 63 (m/z 63.01) and 65B (m/z 65.01) were elevated; in HFD fed mice

additionally also 64B (m/z 64.01). These peaks can be assigned to a both carbon dioxide water cluster

(CO2.H3O+, m/z 63.00) and Dimethyl sulfide (DMS, C2H6S.H+, m/z 63.02) and its respective most

common carbon (+ 1.003 m/z) and oxygen/sulfur (+ 2.004 m/z) isotope peaks. Although carbon

dioxide has a proton affinity of 548 kJ/mol, which is lower than water (697 kJ/mol), it is present in a

concentration several dimensions higher than typical VOCs. Thus, although the reaction [ଶܱܥ] +

[ାܪ.ଶܱܪ] ≪ −> 	 [ାܪ.ଶܱܥ] + is strongly in favor of the back reaction, some protonated [ଶܱܪ]

carbon dioxide can be detected. Carbon dioxide is the terminal oxidation production of most energy

containing molecules and therefore used together with oxygen consumption to determine metabolic

rate. Metabolic rate in various species is known to depend on ambient temperature and body mass

(Gillooly et al., 2001). Indeed the used obese models do have an increased overall amount of

metabolic active tissue. This increase consists not only of fat mass, which is considered to have a

lower but not negligible metabolic activity per gram (Kaiyala et al., 2010), but also highly active lean

mass is elevated. Thus, higher emission of carbon dioxide in heavier mice is not surprising (Butler

and Kozak, 2010; Tschöp et al., 2012).

Dimethyl sulfide is the other volatile potentially contributing to peaks 63, 64B and 65. DMS

was found to be elevated in rats fed a HFD, liver cirrhotic patients, obese children and is part of the

fetor hepaticus (Alkhouri et al., 2014; Aprea et al., 2012; Morisco et al., 2013; Van den Velde et al.,

2008). After methionine ingestion, DMS can be found in breath, indicating methionine (and possibly

other sulfur-containing amino acids) as potential precursor (Kaji et al., 1979). DMS was also observed

to be produced by rat skeletal muscle cells, possibly by the transamination pathway out of methionine
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and cysteine (Mochalski et al., 2014). Thus, after further insight in its metabolism DMS could be used

a non-invasive biomarker of altered systemic or hepatic metabolism of sulfur containing amino acids.

4.2.1.4. (Methylthio)methanethiol (MTMT, pk62)

A volatile which was identified in both obesity models is (methylthio)methanethiol (MTMT, fragment

at pk62). Unexpectedly, the MTMT response in both male obesity mouse models is opposed. MC4R-

ki mice show a marked decrease in MTMT source strength, while in HFD fed mice, an increase in ad

libitum fed state but not in fasted state could be detected. MTMT was originally found in male mouse

urine while screening for responses in mitral cells (Da Yu Lin et al., 2005). As Lin and colleagues

showed, MTMT is attractive to females, but needs the context of other urinary odors to be fully

effective. If detected mass spectrometrically, a fragment with m/z 61 after loss thiol group was

observed, which is in this setup protonated using a PTR-MS and detected as pk62. Interestingly, they

also found that MTMT is already present in bladder urine (Da Yu Lin et al., 2005); hence a

contribution of fecal contamination, local bacterial metabolism or glandular secretion is not likely.

Besides the identification of the receptor MOR244-3 in olfactory bulbus (Duan et al., 2012), no

further studies on MTMT are available. Thus, no organ or pathway of synthesis is known. The link

between sexual reproduction and the energy regulatory system, namely α-MSH and MC4R was

shown previously (Faulkner et al., 2015; Van der Ploeg et al., 2002). Probably, part of the reported

diminished sexual motivation in male MC4R knockout mice could be due to reduced MTMT levels.

In addition to the expression in the brain, MC4R has also been shown to be expressed in gut, kidney,

liver and testis with a sex dependent expression level (Panaro et al., 2014; Qu et al., 2014). As MTMT

is at least ~100 times higher in males than in females, the testis might be a potential location of

MTMT synthesis.

In contrast to MC4R-ki mice, ad libitum fed HFD fed mice show increased MTMT source

strengths. After overnight fasting, MTMT source strengths are further elevated but no longer different

from LFD mice. HFD fed mice have elevated systemic leptin levels both acutely after lipid feeding

and due to increased fat mass (Butler et al., 2001). Inverse to the global knockout in MC4R-ki mice,

leptin in HFD-fed mice can lead to α-MSH mediated MC4R activation. Thus, the same mechanism

(not) present in MC4R-ki mice can lead to modulation of MTMT emission. However, central

resistance to leptin signals following a HFD feeding was described and is present already in 12 week

HFD fed mice (Lin et al., 2000). Thus, it is still to answer if hypothalamic neurons expressing MC4R

modulate MTMT emission or peripheral MC4R is of relevance.
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In addition to obesity effects, a strong increase after overnight fasting was observed in both

models. It is not clear if MTMT is induced by fasting or a circadian rhythmicity is present. In fasting,

leptin levels have been reported to drop massively and out of proportion to remaining fat mass

(Ahima et al., 1996). If MTMT levels would be singularly leptin signaling dependent, a reduction but

not an increase in source strengths would be expected. However, if MTMT levels show a circadian

rhythmicity, the disturbance of internal clocks induced by high fat diet provides another hypothesis

for explaining elevated source strengths (Eckel-Mahan et al., 2013; Kohsaka et al., 2007).

4.2.2. Volatiles specifically altered in diet-induced obesity

4.2.2.1. Ammonia (pk18)

Regarding the literature about breath ammonia, elevated concentrations could be found in liver

pathologies (Adeva et al., 2012) and in obese children (Alkhouri et al., 2015). In a rat study using

PTR-TOF-MS, animals fed a purified HFD versus low fat “standard” diet had increased breath

concentrations (Aprea et al., 2012). In contrast to that mice fed a purified HFD had lower ammonia

source strengths compared to purified LFD fed animals. This seems also true for a comparison of

HFD mice to both groups in the MC4R experiment. The reproducibility of breath ammonia in human

studies is under debate as it is influenced by a variety of factors (Blanco Vela and Bosques Padilla,

2011). Ammonia breath concentration in addition to blood concentration varies due to mode of

breathing, airway or mouth pH (Solga et al., 2013), exercise and subject training status (Solga et al.,

2014) and mouth bacteria expressing urease (Chen et al., 2014). The preference of nasal breathing is

very high in mice, thus mouth contaminations seem unlikely in the present setting. However, HFD fed

mice do tend to have reduced spontaneous activity (Wong et al., 2015), although it is unclear if this

could contribute to the difference in a setting were also LFD fed mice settle down quickly.

Systemic ammonia levels underlie a complex regulation and are dependent on endogenous and

exogenous sources as well as acid-base status. Generally, ammonia is removed from circulation via

hepatic metabolism in the urea cycle (Adeva et al., 2012). Mice fed a high fat diet do show higher

rates of ketogenesis, as visible in acetone source strengths. In addition, HFD contains more relatively

more protein (24.1 % in HFD versus 20.8 % in LFD). Both facts might contribute to a metabolic

acidosis, a status which has recently discussed to be relevant for insulin resistance and type II diabetes

(Akter et al., 2015; Fagherazzi et al., 2014). As pH is a known modulator of ammonia volatility, the

massive differences in ammonia source strengths in ad libitum fed and in a smaller extend also in

fasted mice might be attributed to changes in the acid-base-system. Furthermore, substrate
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competition may also play a role. The supply of fatty acids as an alternative energy source to renal

tubular cells can lead to reduce glutamine metabolism, thus freeing less ammonia (Abate et al., 2004).

4.2.2.2. Acrolein (pk57B)

Acrolein (also: propenal) is, in comparison to many other volatile organic compounds, extensively

studied. As a highly reactive environmental pollutant, exogenous acrolein exposure via respiration

(cigarette smoke, automobile exhaust, biocide use) and dermal routes has been identified. In addition

to that, oral exposures include fried food, alcoholic beverages and charred meat; furthermore

endogenous production via lipid peroxidation, anti-cancer drugs, polyamines and threonine

contributes to acrolein levels (Moghe et al., 2015). In HFD fed mice, acrolein levels are increased

compared to LFD fed mice. HFD feeding results in a pro-oxidative state and increased lipid

peroxidation, thus creating more acrolein (Matsuzawa-Nagata et al., 2008).

Interestingly, the effect on breath acrolein levels is more pronounced in ad libitum state. In ad libitum

state, both dietary acrolein from oxidation of the HFD and endogenously produced acrolein due to

oxidative stress and ROS production add up. Notably, acrolein is considered both a product and an

initiator of lipid peroxidation (Adams Jr. and Klaidman, 1993; Uchida et al., 1998), therefore

potentiating its contribution to systemic oxidative stress. Breath acrolein might thus be used as a non-

invasive marker of redox-status and oxidative stress levels.

4.2.2.3. Methyl acetate (pk75)

Interestingly, in addition to the strong diet matrix induced source strength drop of pk75 in publication

I, an overall increase in HFD-fed mice was observed. As there is no effect in the mono-genetic

MC4R-Ki mice, this is likely not a general obesity but HFD model specific phenomenon. Feeding a

high fat diet is known to increase volatile esters in the feces headspace of obese humans suffering

from non-alcoholic fatty liver disease (Raman et al., 2013). The emission of esters is thought to be

derived from the high fat diet induced shift in gut microbiota. Another potential origin is the synthesis

within the mouse organism, as synthesis of methyl acetate from e.g. human bronchial epithelial

primary cells is known (Filipiak et al., 2010). In HFD fed mice, acetic acid is increased by trend in

breath and described to be elevated in plasma when standardizing for fiber content as discussed
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earlier. Thus, either intestinal or systemic changes induced by a high dietary fat content lead to

elevated volatile esters like methyl acetate.

4.2.2.4. 18O16O oxygen (pk34A)

In the experimental setup higher consumption of oxygen leads to stronger decrease during a

measurement phase, which is detectable in the oxygen isotope 18O-16O (as in 16O2 the detector is

saturated). A stronger consumption of oxygen measured as more negative source strength in oxygen

isotope is observed in HFD fed mice. As shown in publication II, HFD fed mice do consist of more

metabolic active tissue, as both lean and fat mass are elevated. Thus, higher demand for energy

supplied by primarily oxidative processes in the mitochondria lead to higher oxygen consumption

(Tschöp et al., 2012).

4.2.2.5. H3O+.(H2O)2 water cluster and fragments of aldehydes

(pk55B)

Pk55B is likely to consist of both H3O+.(H2O)2 water cluster and fragments of aldehydes e.g. butanal,

hexanal, octanal or nonanal (Buhr et al., 2002). In HFD fed mice, elevated source strength of pk55B

was found; in addition fasted mice were increased as well. It is not clear why humidity and water

clustering should be increased in obese mice. However, a chronic increase in subclinical inflammation

is known in obesity (Wellen and Hotamisligil, 2003). Breath (and breath condensate) in inflammatory

oxidative stress with associated endogenous lipid peroxidation is known to contain elevated

concentrations of aldehydes (Amann et al., 2014c).

4.2.2.6. Acetone and propanol (pk59, pk43B)

Source strengths of acetone and propanol were found to be elevated on HFD (acetone) and after

fasting (both). The major energy source in states of food restriction or prolonged HFD uptake is

shifted from glucose metabolism to lipid oxidation. Especially hepatic lipid oxidation fuels

ketogenesis which provides ketone bodies for energy supply. Acetone is the only ketone body

measurable from breath and is correlated to blood concentrations of the other two ketone bodies ß-
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hydroxybutyrate and aceto-acetate in humans (Musa-Veloso et al., 2006; Qiao et al., 2014). Thus,

elevations of acetone can be used to monitor states of enhanced ketogenesis and lipid oxidation.

Acetone has a history of studies associating it with diabetic states of ketoacidosis (Leopold et al.,

2014). Interestingly, the acetone - correlated ketone bodies ß-hydroxybutyrate and aceto-acetate were

associated to elevated fasting and 2h plasma glucose levels (Mahendran et al., 2013). Furthermore

aceto-acetate could be used to predict increased GTT AUC and 5-year diabetes incidence. However,

due to inter-individual variation, acetone itself is not suitable as a single signal biomarker for diabetes

phenotyping (Leopold et al., 2014). In this context it has to be noted that in the gaussian graphical

network model of publication II, a fasting responsive subnetwork connected to acetone was found.

Two fragments of propanol, pk41 and pk43B, show a high partial correlation to acetone. This likely

reflects the conversion from iso-propanol to acetone, which is catalyzed by alcohol dehydrogenase

and elevated in states of ketosis (Lewis et al., 1984; Petersen et al., 2012). Breath iso-propanol in

clinical settings are observed to be highly correlated to environmental air concentrations, which are

originated likely from disinfectant use (Ghimenti et al., 2013). This reflects a relevant “wash-in” of

iso-propanol, which can, as shown for ingested iso-propanol, influence exhaled acetone

concentrations in the range of minutes (Ruzsanyi et al., 2014). Thus, propanol levels derived from

various sources contribute to acetone breath levels and explain part of the variance observed. It might

be possible to enhance the biomarker potential of acetone by measuring humans in a propanol reduced

environment and taking exhaled propanol levels into consideration.

4.2.3. Volatiles specifically altered by MC4R nonsense knock-in

4.2.3.1. Cluster of unknowns 151, 153, 137B and 81B

In publication II, a subnetwork of VOCs was affected especially in MC4R-ki mice, including peaks

151, 153, 137B and 81B. Although impossible to interpret on individual level, a similar combination

of peaks was observed in a PTR-MS study of monoterpenes like α- and β-pinene, 3-carene, limonene

and camphor, which produced fragment ions of masses 67, 81 and 95 as well as a protonated

molecular ion of mass 137 or 153 (Tani et al., 2003). Regarding the literature of mono-terpenes and

metabolic diseases, a link to liver cirrhosis in humans was suggested (Morisco et al., 2013),Herein,

the authors hypothesize a changed dietary pattern in cirrhotic subjects to cause altered mono-terpene

levels. In addition, the modelling of plasma TG and FFA levels in a human lipid infusion study

included β-limonene and β-pinene (Minh et al., 2012). In contrast, MC4R-ki mice show no changes in

plasma TG/FFA (GMC primary screen, data not shown) indicating that this link does not explain
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elevated monoterpenes. Therefore in MC4R-ki mice either increased dietary monoterpene intake due

to hyperphagia, more storage in adipose tissue of this lipophilic substance class or an alteration

monoterpene metabolism can provide explanations the elevated levels.

Regarding the hypothesized molecules, it has to be noted that the peak mass does not match the

theoretical masses exactly. In PTR-MS measurements, typically an internal calibration is applied,

using H3
18O+ (21.02), NO+ (30.00) and protonated acetone (59.05). As the highest calibration mass is

far lower than the peaks of interest, an additional calibration using external VOCs should be applied

in future studies.

4.2.4. Unassigned candidate VOCs altered in obesity and strategies for

identification

Furthermore, peaks 50, 81B and 117B were identified to be changed in response to obesity but could

not be tentatively assigned to candidate VOCs. In HFD fed mice, the same was true for peaks 249B,

253A, 57A, 36B and 74B, while in MC4R-ki mice, peaks 44A, 123B, 135B, 36A, 122B, 137B, 113,

94B, 80B, 87B, 211 and 95B were altered but molecular structure is still unknown. Although these

peaks are not yet identified, they do provide chances for further potential biomarkers for obesity and

associated disease risks.

The obtained sets off candidate VOCs can be used to gain further insight into the origins and biology

of VOCs in individual experiments. However, for understanding of physiological changes associated

with the peaks a reasonable certainty of the volatile molecule needs to be achieved. This is a common

problem in singly PTR-MS based studies, as this technology trades off specificity and detailed

chemical information for extraordinary sensitivity and the possibility of measuring dynamics

(Cappellin et al., 2013). Identification could be addressed using Fast-GC-PTR-TOF-MS or , the “gold

standard”, GC-MS with pre-concentration (Romano et al., 2014). However, these methods do have

decreased sensitivity in comparison to direct PTR-MS measurements and would probably demand

changes in sampling procedure. Approaches like the nose-mask in rat provide undiluted breath

sampling but do have limitations as well like animal stress and the necessity of train to avoid this

(Aprea et al., 2012). In addition, data-driven approaches can be applied to address isotope ratios,

formation of water clusters and underlying metabolic pathways to gain further insight on the potential

molecules. Here, heatmaps combined with hierarchical clustering as well as gaussian graphical

models as a novel tool for breath analysis were successfully utilized to clarify molecular origin of
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certain candidate peaks for obesity. In extending the adaption of established tools found in other

“omics”-technologies, further insight into the large PTR-TOF-MS datasets can be gained.

4.3. On the methodology of breath gas analysis in rodents

4.3.1. On the evolution of the unrestrained mouse VOC measurement and

the corresponding data analysis

Based on the initial methodology, the analysis of VOCs in unrestrained and non–anesthetized mice

was developed further to address needs of both secondary screening of mice within the systemic

phenotyping in the GMC as wells as individual VOC-driven projects. The implementation of the

PTR-TOF-MS allowed a reduction from 15 to 5 min measurement time per profile while monitoring

all volatiles simultaneously with massively higher precision in terms of mass resolution. However,

this implementation did increase the amount of data per mouse by several orders of magnitude,

therefore demanding a revision of the available data procession and data analysis tools. A server

based data analysis platform was implemented to cope with the massively increased amount of data

(Chang et al., 2015). Herein, source strength calculation can be performed in a semi-automated way

still allowing for manual intervention and visual quality control during the analysis process. In

addition, data exploration and quality control tools like a correlation heatmap and a visualizer of mass

spectrometer machine parameters were implemented. Especially for the screening approach, the

possibility to visualize data on cohort level in the server platform can be used to gain fast insight into

experimental data.

The analysis of VOCs from mouse headspace typically results in n<<p datasets, thus a lot more

parameters than animals are measured. The evaluation of such datasets from screening experiments

with wide experimental hypothesis can be challenging with conventional statistical methods as e.g.

interference testing. The more parameters are tested for differences at a certain significance level, the

more likely a false positive finding gets (cumulation of alpha error). Methods have been developed to

correct for multiple testing by e.g. Bonferroni’s control of family-wise error rate or Benjamini and

Hochberg’s control of the false discovery rate which vary in power and beta error rate (Benjamini and

Hochberg, 1995). Another approach to model such datasets is the use of machine learning techniques.

Although computationally more expensive than classical statistics, machine learning algorithms as

e.g. random forest based techniques can be used both for predicting responses on the basis of existing

data as well as selecting the most important parameters different between experimental groups

(Breiman, 2001). For the analysis of mouse VOC data, the selection of relevant VOCs is performed
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by using RF-based methods in combination with cross validation and permutation analysis to obtain

robust sets of candidate VOCs. These methods, which are state of the art in the field breath research

(Smolinska et al., 2014), were established using R-based scripts to allow for rapid and custom

evaluation of data.

4.3.2. Advantages and limitations of the established setup in comparison to

published literature and implications on human breath analysis

Model organisms such as the laboratory mouse are widely used in biomedical research to study

systemic responses in controlled and defined experimental situations. Concerning the mouse as a

model organism for VOC analysis, some model characteristics have to be noted. The tidal volume of a

mouse is only 0.2 - 0.3 ml while breathing frequency varies between 80 and 230 per minute (Reinhard

et al., 2014). Thus, single breath exhalation VOC analysis as performed in humans is technically

challenging if not impossible. In the initial methodology developed by Szymczak et. al, the emission

of VOCs is calculated from saturation curves measured by a high sensitivity PTR-Quad-MS and

expressed as a source strength which is an elegant way of assessing this information (Szymczak et al.,

2014). Over the recent years, the lack of VOCs analysis in model organisms was recognized by the

field and several other groups developed solutions to measure rodent VOCs. Table 2 gives an

overview over the developed approaches and presents several key characteristics of the methods.
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Table 2: Established methods for VOC measurements in rodent models

Method
description

Saturation
profiles of

unrestrained
mouse in
chamber

Mouse in tube,
Head-space using

constant flow

Tracheal
intubation

Tracheal
intubation &

ventilation & bag
collection

Nose mask
sampling

Tracheotomy &
ventilation

Publications (Kistler et al.,
2016, 2014;

Szymczak et al.,
2014)

(Li et al., 2015) (Neuhaus et al.,
2011; Vautz et al.,

2010)

(Zhu et al., 2013a,
2013b)

(Aprea et al.,
2012)

(Albrecht et al.,
2015; Fink et al.,
2015, 2014; Wolf

et al., 2014)
Model Mouse,

C57Bl/6J and N
Mouse,

C57Bl/6J
Mouse,
BALB/c

Mouse, C57Bl/6J Rat,
Wistar

Rat,
Spraque Dawley

Detection method PTR-TOF-MS Secondary electron
spray ionization

(SESI) –MS

Ion mobility
spectrometry

(IMS) &
 solid phase micro
extraction (SPME)

-GC MS

Secondary electron
spray ionization

(SESI) - MS

PTR-TOF-MS Ion mobility
spectrometry

(IMS)

Food restriction
before

measurement

Yes
(overnight)

 & No

No No No No Yes
(12h)

Restrained No Partly, small
container

No No Yes No

Anesthesia No No Yes
(ketamine,
xylazine)

Yes
(pentobarbital,
pancuronium

bromide)

No Yes (sevoflurane,
sodium

pentobarbital)

External ventilation No No No Yes No Yes

Invasiveness None None Moderate Moderate - High None High

Time per single
data point / animal

3s conc.;
5 - 15 min source

strength/
 21 – ≥ 60 min

10 s /
 90 min

5-10 min /
5-10 min

40 – 60 min /
40 – 60 min/

20 s /
 40 s

20 min /
 up to 24 h

Maximum
repetitions/
Performed
time range

arbitrarily
repeatable /

Several weeks

arbitrarily
repeatable /

90 min

arbitrarily
repeatable, limited
due to anesthesia /

3 days

arbitrarily
repeatable, limited
due to anesthesia /

several days

arbitrarily
repeatable /

 2 days

Terminal
experiment /

24h

VOC sources /
Dilution of VOCs

Whole body/
yes

Whole body/
yes

Breath/
no

Breath/
no

Breath/
no

Breath/
no

Animal stress
potential

low Low to moderate Moderate Moderate Moderate to high
(if no training)

Moderate

Contamination
possible /

controllable

Yes /
 yes

Yes /
 possible, not

mentioned

No / - No / - No / - No / -

Supply of synthetic
air for breathing

Yes Yes No No No Yes

Training necessary No,
acclimation
performed

No No No Yes No

Research
question(s)

Diet, Obesity Drug pharmaco-
dynamics

Allergy Lung infections Steatohepatitis Inflammation,
Sepsis, Fasting,

Glucose infusion
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The available methods are designed for a wide range of experimental questions and therefore differ in

their particular implementations. The methodology applied in this thesis, which is based on the

emitted VOCs from an un-restrained and non-anaesthetized mouse in a respiratory chamber, is

established with the needs of large-scale phenotyping in mind. When a mouse is systemically

phenotyped by using multiple experimental procedures within a limited time span, potential additional

tests need to consider the impact on the following pipeline in terms of duration and burden. The

implementation as a non-invasive method allows screening with low animal stress, reasonable

throughput and the possibility to repeat measurements as often as desired. As a freely moving mouse

in a box does emit VOCs from fur, urine and feces if present, one has to consider ways to control for

such contaminations. We have established marker substances for urine and feces, which by using fast

online VOC measurement are immediately indicating such contaminations. Other factors like

emission of gases through skin are typically rather low in endothermal organisms (Feder and

Burggren, 1985), although production on the skin and fur can occur. In addition, changes in

respiratory activity can alter measured VOC source strengths; to what extend needs to be addressed in

detail. The mouse in a box principle does not lead to simple concentrations but saturation curves. This

data structure is more complex to handle (here by calculating source strength) but does give a robust

estimate of VOC emission over the timespan of several minutes.

Interestingly, methods can be categorized by certain common design principles as summarized in

table 2. A major decision is whether the complete rodent’s headspace or just the breath is sampled. In

the headspace situation, there is some dilution of the VOCs, potential fur contribution and the

necessity to control for contamination. The direct sampling of breath in rodents is, unlike in the

human situation, essentially combined with either restrainment or anesthesia. Although pure breath

seems comparable to the human situation, animal stress and anesthesia do change e.g. on blood

glucose and lactate levels, indicating a profound effect on rodent metabolism (Schwarzkopf et al.,

2013). It thus depends on the specific research question whether this is acceptable or not. State of the

art in most studies is the use of online measurement techniques which increases sensitivity, and,

depending on the method applied, allows high time resolution. Bag sampling can be applied as well,

but dynamics are lost and storage time needs to be as short as possible (Beauchamp et al., 2008;

Steeghs et al., 2007).

Unfortunately, the use of multiple detection methods and VOC standards to get robust peak

identification is not standard in the field yet. Thus, findings of altered VOC patterns and tentatively

assigned candidates often cannot be related to the underlying biological mechanisms. This is,
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especially in rodent studies where mechanistic experiments in single organs or tissues could be

performed, a major barrier on the way of VOC analysis from laboratory to patient use.

Rodent studies have the potential to overcome several limitations of human studies. Environments can

be controlled, genetic background of the study population is narrowed down tremendously and

defined diets can be applied. However, the question whether and how long diet should be restricted (a

rather common strategy to eliminate variation in human studies) is not answered yet, although

relevant dietary contributions to VOC emissions are shown in publication I (Kistler et al., 2014). It

might be favorable to restrict diet access before measurement, but depends on the very experiment if

this restriction should be extended so that animals are already in a fasted state, which in itself leads to

a relevant shift in VOC patterns as seen in publication II (Kistler et al., 2016).

Another often discussed problem in human measurements is the contribution of mouth microbiota to

measured VOCs, thus the emerging question whether to sample from mouth or nose (Beauchamp and

Pleil, 2013; Chen et al., 2014). In rodents, this problem is avoided in most approaches by directly

sampling from the trachea, thus circumventing the upper respiratory system completely.

Independently of sampling, rodents are obligatly breathing through the nose and oral breathing occurs

only in extreme situations like hypoxia (Drazen et al., 1999). Because of this characteristic, also non-

invasive rodent methods do not suffer from mouth microbiota contribution as much as human

measurements.

The so-called “wash-in/ wash-out” effect in human studies describes the phenomenon that VOCs

present in inhaled air or incorporated via diet will be transferred to and be present in the organism.

Consequently, such external VOCs will then be exhaled over time as soon as environmental

concentrations are reduced, thus being washed-out (Maurer et al., 2014). Such “wash-in/wash-out”

effects are dependent on the chemical properties of the volatiles and do contribute to the variability in

human studies (Španěl et al., 2013). In rodents as model organisms, this wash-in from the cage

environments is present but very comparable between animals due to controlled conditions. Before

and during the measurement, it is probably good practice to use synthetic, thus VOC-reduced, air

supply for the animals. Laboratory air is, similar to the clinical situation, often rich in VOCs used for

disinfection as e.g. 2-propanol, which can be converted to acetone after ingestion and probably also

after inhalation (Ruzsanyi et al., 2014). Notably, not all approaches do use synthetic air although this

would be an easy way to further reduce VOC variability in rodent measurements.
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5. Conclusion and Outlook

In this thesis, the effects of diet-matrix and both diet induced and mono-genetic obese mouse models

on VOC signature were studied. In result, both diet-matrix and obesity show profound effects on the

volatilome emitted and are as such very relevant to be standardized in further rodent and human

measurements. In addition to that, especially the findings in both obesity models show potential for

non-invasive biomarkers associated to obesity and/or its changed risk profile. In human breath

analysis, recently efforts have been made to catalogue and summarize the volatilome from breath and

various other sources (Amann et al., 2014a). Building on this, the field of rodent VOC analysis can

add multiple contributions to deepen the understanding of VOC biology. First of all, the volatilome of

the rat and the mouse also needs to be described in its completeness, without much of the human

environmental contributions. This in comparison with its human counterpart could lead to a

mammalian core volatilome, omitting external VOC sources. In addition to this catalogue, in rodents

the origin and biological relevance of the encountered VOCs can and needs to be studied in detail,

mapping VOCs to metabolic functions. The implicit knowledge of biological mechanisms will further

aid to evolve laboratory-based breath analysis into a non-invasive diagnostic alternative applied in the

clinic setting. In addition, screening studies in larger human cohorts are rare to date and will be

needed to facilitate the breakthrough of breath analysis in every day clinics. And, hand in hand with

the advanced knowledge on volatile metabolism, challenge tests using e.g. stable isotope labelled

VOCs precursor molecules can be used as non-invasive clinical read-outs in the future. Those, as

well, can and need to go back to rodent models to be established. Thus, as it has been stated, the field

of breath analysis is currently in the process of “validating volatile promises” (Boots et al., 2015) and

the use of rodent models is about to be a relevant part of that.
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8. Appendix

8.1. Supplementary figure

Supplementary figure 1: DMSO2 in chow and purified diet fed mice
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8.2.1. Abstract

Breath gas analysis in humans proved successful in identifying disease states and assessing metabolic

functions in a non-invasive way. While many studies report diagnostic capability using volatile

organic compounds (VOC) in breath, the inter-individual variability even in healthy human cohorts is

rather large and not completely understood in its biochemical origin. Laboratory mice are the

predominant animal model system for human disorders and are analyzed under highly standardized

and controlled conditions. We established a novel setup to monitor VOCs as biomarkers for disease in

the breath gas of non-anesthetized, non-restrained mice using a proton transfer reaction mass

spectrometer with time of flight detection (PTR-TOF-MS). In this study we implemented breath gas

analysis in a dietary intervention study in C57BL/6J mice with the aim to assess the variability in

VOC signatures due to a change in diet matrix. Mice were fed a standard laboratory chow and then

exposed to four semi-purified low- or high-fat diets for four weeks. Random forest (RF++) was used

to identify VOCs that specifically respond to the diet matrix change. Interestingly, we found that the

change from a chow diet to semi-purified diets resulted in a considerable drop of several VOC levels.

Our results suggest that diet matrix impacts VOC signatures and the underlying metabolic functions

and may be one source of variability in exhaled volatiles.
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8.2.2. Introduction

The analysis of volatile organic compounds (VOCs) in human breath as a non-invasive tool to

diagnose and monitor various diseases recently attracted increasing attention. Technological

advancements combined with mass spectrometric (MS) measurement as the selected ion flow tube -

MS [1], ion mobility-MS [2], proton transfer-MS [3,4] and pre-concentration methods in combination

with gas chromatography - mass spectrometry (GC-MS) [5] led to a high sensitivity in the analysis of

VOCs. Analysis of VOCs even in low concentrations in the range of parts per billion allows the

access to a large quantity of molecules that may provide additional information beyond blood, urine

or tissue based metabolomics techniques or classical gas exchange analysis of carbon dioxide and

oxygen concentrations for indirect calorimetry. Several studies using VOCs exhaled with breath as a

diagnostic procedure were conducted [6], for example in the fields of cancer [7], liver cirrhosis [8],

pulmonary diseases [9,10] and systemic infections [11]. Despite the success in identifying diagnostic

targets, volatiles detected in breath vary notably even between age-matched healthy humans [12]. This

inter-individual variability in breath VOCs is not fully understood yet and is thought to consist of

several components. Volatiles measured in breath may originate from enzymatic activity in tissues or

non-enzymatic reactions depending on the chemical state of the organism (e.g. pH or redox state)

[13]. Furthermore, the complex endogenous variability may be difficult to be distinguished from

environmental wash-in contributions [14]. A further contribution from mouth or gut microbial

metabolism and food ingredients is also known [15,16] and in some cases even dominates the

endogenous emission [17]. This variability is difficult to control for in a human studies. In contrast to

human cohorts, inbred strains of laboratory mice (Mus musculus) are housed under standardized

conditions and can be fed highly defined diets. Under such controlled conditions, specific effects of

the diet on the emission of VOCs can be studied avoiding confounding factors attributed to other

environmental factors. In the field of energy metabolism and associated diseases, diets with an

elevated relative fat content are frequently used to model “western-style” energy rich human diet-

induced obesity in mice. Typically, in those dietary studies not only macronutrient composition of the

diet is varied but the matrix of the diet also changes from raw material-based laboratory chow diets to

highly specific semi-purified diets containing refined components. In this study, we aim to

particularly explore the impact of diet matrix on VOC signatures of laboratory mice superimposing

effects of a switch of macro-nutrient composition.



Appendix – Publication I –Methods

65

8.2.3. Methods

8.2.3.1. Animals

Two cohorts of male C57BL/6J mice (n=40, age 12 weeks, 10 per diet group) were obtained either

directly from Charles River Laboratories (Sulzfeld, Germany, Lard groups) or from in-house breeding

from C57BL/6J founder animals (tallow/soy based diet groups). Mice were housed in isolated

ventilated cages at a temperature of 24 +/- 1°C. A 12:12h light/dark cycle and air humidity of 50 to

60% was applied. Animals were located in the German Mouse Clinic [18] and kept under specific

pathogen-free conditions in type II polycarbonate cages in individually ventilated caging systems

(IVC). Mice were maintained in groups of up to four animals (tallow/soy oil based diets) or were

singly housed after arrival (Lard/soy oil based diets). Wood shavings were used as bedding (Altromin

GmbH, Germany); if singly housed, tissue paper and a mouse house were supplied. Mice were

weighed every week to the nearest 0.1 g and body composition was monitored by non-invasive

qNMR scans (Bruker Minispec LF50 body composition analyzer, Ettlingen, Germany). All

experiments were performed following animal welfare regulations with permission from the district

government of Upper Bavaria (Regierung von Oberbayern).

8.2.3.2. Experimental diets

Mice had ad libitum access to a pelleted standard laboratory chow diet (no. 1314, Altromin, Lage,

Germany) and drinking water from weaning on. After a baseline breath gas analysis at the age of 12

weeks, diets were switched to semi-purified diets containing low amount of soy oil versus a high

amount of soy oil and tallow fat (LF, HF) or low versus high amount of soy oil and lard (LL, HL).

The low fat soy oil-based diet was pelleted and semi-purified (LF, E 15000-04, Ssniff, Soest

Germany). The corresponding high fat diet was a pelleted diet with 60% of the energy coming from

fat (HF, E 15741-347, Ssniff, Soest, Germany). A third group of mice (LL) was fed a low fat diet with

90% lard and 10% soybean oil in the dietary fat. The fourth group of mice (HL) was fed a high-fat

diet with the same ratio of lard to soybean oil in the lipid fraction (see Table 1 for an overview of the

used diets). Lard was added to pre-mixtures directly in the animal facility. All diets and the respective

separate ingredients were sterilized with 25 kGy/min γ-radiation (Isotron Deutschland - Allershausen,

Germany) before import into the facility. Diets were refreshed on weekly (pelleted) or twice a week

basis (self-mixed).
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Table 3. Diet composition related to percentages of metabolizable energy content (estimated from the

conversion of weight percentages using Atwater factors).

Diet Carbohydrates Protein Fat Energy content

[kJ/g]

Matrix

Laboratory chow 60 en% 27 en% 13 en% 12.5 Grain-

based

Low soy oil diet (LF) 66 en% 23 en% 11 en% 15.0 Semi-

purified

High soy oil/tallow fat

diet (HF)

21 en% 19 en% 60 en% 21.4 Semi-

purified

Low soy oil/lard diet

(LL)

74 en% 16 en% 10 en% 15.6 Semi-

purified

High soy oil/lard diet

(HL)

25 en % 15 en% 60 en% 22.3 Semi-

purified

8.2.3.3. Proton-transfer time-of-flight mass spectrometry

The PTR-TOF2000 MS is a high sensitivity PTR-MS (e.g. benzene 100 cps/pppv) with a medium

mass resolution of Δm/m <= 2000. The PTR-MS principle and the implementation of a TOF-mass

analyser is well documented [4,19]. The sensitivity and the sub-ppbV limits of detection in

combination with short integration times of the full mass range comply with the standards in on-line

breath analysis in mice.

The PTR-MS was operated with a drift temperature of 80 °C, drift voltage of 600 V and drift pressure

2.3 mbar. A mass range from m/z 0 to 349.5 was recorded with a repetition rate of 77 kHz and the

sum spectra integrated over 3s stored (TOF-DAQ, Tofwerk AG, Switzerland).

The stored sum spectra were analyzed using TOFViewer (Version 3.0.1, Ionicon analytic GmbH,

Innsbruck, Austria). Spectra were mass calibrated internally using m/z=29.9971 (NO) and 59.0491

(C3H7O+; protonated acetone). Peak borders of 164 peaks in the TOF spectrum were set manually.

The deconvolution of overlapping, multiple peaks was performed using a gauss-based fit in

TOFViewer. Peak concentrations in ppbV were calculated using the semi-quantitative estimation
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formula [4] with a constant k-rate of 2. The performance of the PTR-TOF2000 was routinely

controlled by transmission measurement. With a gas calibration unit (GCU, Ionicon Analytic GmbH,

Innsbruck, Austria) a mixture of substances (VOC gas standard, Ionicon Analytic GmbH, Innsbruck,

Austria) with a stepwise changing concentration was fed into the PTR-MS inlet. From the resulting

linear calibration curve the instrumental sensitivity for each standard compound was determined and

the transmission factor calculated.

8.2.3.4. Setup for real-time breath gas analysis in unrestrained mice

The accumulation of exhaled VOCs of an unrestrained mouse was monitored in the headspace inside

a respirometry chamber as previously described [20]. In brief, a polypropylene box (volume 600 mL)

was connected to a proton transfer time-of-flight mass spectrometer (PTR-TOF2000-MS, Ionicon

Analytic GmbH, Innsbruck, Austria) and face-to-face to a gas supply of synthetic air (20% oxygen,

80% nitrogen, concentration of hydrocarbons ≤ 0.1 ppm, Linde AG, Germany). Whereas the inlet

capillary (PEEK) and the drift tube of the PTR-MS was heated to 80°C. The respirometry chamber

was in equilibrium with ambient temperature. The repeated flushing of the chamber and continuous

diluting of the headspace in presence of a mouse kept the temperature within the chamber roughly at

ambient temperature (20 - 25°C) comparable to home cage conditions. A membrane filter (PTFE,

pore size 2.0 µm, PALL Corporation, Ann Arbor, U.S.A.) cleans the air stream into the PTR-MS from

particular contaminations. After flushing with synthetic air blank samples were drawn from the empty

box to control for leakage and contaminations (5 min, flow 60 mL min-1 controlled by PTR). During a

second flushing with synthetic air, the mouse was placed into the respirometry chamber and the

accumulation of exhaled VOCs was monitored. The cycle of flushing (2 min, flow 3 L h-1) and

accumulation of VOCs (5 min, flow 60 mL min-1 controlled by PTR) was repeated three times.

During the accumulation the continuous loss of sampled air was replenished from a Teflon bag

reservoir (capacity of 10 L, Welch Fluorocarbon Inc., Dover, U.S.A.) connected to the chamber

8.2.3.5. Monitoring of and controlling for contaminations

This setup facilitated measuring unrestrained, non-anaesthetized mice without inducing obvious

stress-derived alterations in volatile organics emissions of the animal [21]. However, as the

concentration of VOCs was monitored in a headspace, other sources, e.g. not endogenous, of VOCs

may confound the accumulation profile. If necessary, mice were cleaned before starting the
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measurement to remove fur contaminations (e.g. remaining wood shavings, dust). In blank

measurements, e.g. an occasional increase in the acetone (m/z= 59.05) and propanol (m/z = 41.06)

concentration pointed to leakage and high concentration in the laboratory air. The accumulation

profile of humidity measured at (H2
18O)2*H+, (m/z = 39.05)), a distinct breath-driven profile due to

the exhaled humidity, was affected by changes in locomotor behavior as mice showed a typical

behavioral pattern from activity to settling down. The induced variation in the source strength was

about a factor of two to mice at rest and to active mice [20]. Furthermore small droplets of urine in the

respirometry chamber not only distorted the accumulation profile of humidity but polluted the head

space. Feces and urine contaminations in the VOC profile were identified by a sudden increase in the

concentration of methanethiol (m/z=49.02), trimethylamine (m/z=60.07) and pk127B (m/z=127.02).

In case of crossing a threshold concentration of about 5 ppbV, feces were removed and in the case of

an urine contamination the respirometry chamber was replaced, the mouse was gently cleaned using

soft tissue paper (Kimtech Science, Kimberly-Clark), and the measurement was restarted.

8.2.3.6. Data analysis

The peak integral values exported from the TOF-Viewer were plotted as function of time (track) for

all 164 masses to visualize the blank profile and the subsequent accumulation profiles (figure 1). The

start and endpoint of the accumulation profiles were determined with the help of a subset of high-

count mass signals (the water cluster, aceton and ethanol). This was done by looking for the local

maxima and minima of the smoothed selected signals in order to identify increasing signals during

accumulation. The profiles were fitted (nonlinear least-square fit) with the solution function of a

simple compartment model [20]. In this approach, we described the concentration of a VOC Ci at

time through a constant source strength Si which is counterbalanced by the steady flow rate F out of

the respirometry chamber (figure 1). The solution function included two free parameters, Co (basal

concentration after the ventilation) and Si (source strength given in ppb*mL*min-1). The fit include

two noise models, which were the standard Gaussian uniform noise model (used as a first, rough

baseline) and a uniformly linearly scaled Poisson noise model. This second model is based on the

Poisson noise approach for electronic counting measurements, linearly scaled to roughly compensate

the effect of count rate normalization to the primary ion count rate.  Closeness of mean and variance

estimates for these two models was later used as an indicator of goodness of fit.

If necessary the tracks were split into consecutive, non-overlapping subsets according to the statistical

properties of the differential signals of the selected masses within the tracks. This was done in order to
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accompanied with loss of information and poorer classification [23]. To account for this, RF++ was

used which implements a subject-based bootstrapping in the original Random Forest algorithm (5000

trees, 13 splitting variables per tree; RF++, http://sourceforge.net/projects/rfpp/). For the factor diet-

matrix (chow vs. semi-purified), blank-corrected source strengths data from baseline measurement

were compared to week 1 data. The model was evaluated using the internal out-of-bag error. For the

top 3 independent factors identified by the Random Forest, we calculated a linear mixed effects model

accounting for longitudinal data (repeated measures ANOVA) to confirm the effects on the chosen

volatile compounds. We started with a full model consisting of the factors diet matrix (chow vs. semi-

purified), fat content (low vs high), fat quality (soy/tallow vs. lard) and the interaction of fat quality

and quantity; mouse ID was used as random effect (nlme package, method: maximum likelihood, R

[24]). Akaike information criterion (AIC) was then used to stepwise reduce the model (stepAIC, R).

Homogenity of variances was checked for plotting residuals versus fitted values. Normal distribution

was monitored using Q-Q plotting; data for peaks 33B, 75 and 95A was log-transformed to achieve

normality. As this is a study with rather exploratory character, lme model p values were not adjusted

for multiple testing [25]. However, in case of a diet quality and quality interaction, we used pairwise

t-testing to identify differences between single groups (pairwise.ttest, R) and adjusted the post-hoc

testing using Bonferroni correction.
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8.2.4. Results

8.2.4.1. Body mass gain in response to feeding the semi-purified diets

Within the first week after the diet switch mice on low calorie diets gained 1.6 g (LF) respectively 1.7

g (LL) in body mass whereas the high calorie diets induced higher body mass gain with 3.3 g (HF)

respectively 2.2 g (HL). After four weeks the absolute difference in body mass was even more

pronounced (LF: 3.2 g, HF: 7.5 g, LL: 3.8 g, HL: 6.4 g). About 40% of this mass gain could be

attributed to an increase in body fat reserves as detected by qNMR (LF: 1.2 g, HF: 3.1 g, LL: 1.6 g,

HL: 2.6 g).

8.2.4.2. Identification of discriminating volatile organic compounds for diet matrix

For the change of diet matrix from chow to semi-purified diet, an out-of-bag error of 0.00 was

calculated in the RF++ and the confusion matrix showed showed no false classifications (n(chow)=27,

n(semi-purified)=26), indicating that the groups were strongly classifiable. The importance of volatiles

relevant for classification is shown as the mean decrease in margin for the diet matrix switch (figure

2). Here, three independent VOCs and related isotopes as well as water clusters were identified.
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Figure 2. Variable importance (as mean decrease in margin) calculated by RF++ to identify effects of

the diet matrix switch on VOCs comparing weeks zero and one.

8.2.4.3. Reduced source strengths of volatiles after change from laboratory chow to

semi-purified diets

Pk33B - Methanol

The methanol signal is found in the spectrum at pk33B (m/z=33.05, figure 3(a)). In comparison to

baseline, methanol levels drop significantly in response to a change to semi-purified diets (pmatrix

<0.0001, table 2). Interestingly, increased methanol levels in the LF group compared to other semi-

purified diets were detected (pqual:quant<0.0001, table 2; pairwise ttest: figure 3(a)). Furthermore, the

intense methanol signal on baseline chow feeding dominates as a C-13 isotope at pk34B (m/z=34.06)

as well as a water cluster at pk51B (m/z=51.03) and is therefore found in the RF++ variable

importance (figure 2(b), boxplot data not shown).
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Pk75 - Methyl acetate/ Propionate

Pk75 (m/z=75.02, figure 3(b)), which we assigned to methyl acetate or propionate, shows a massive

reduction in source strength from chow to semi-purified diets (pmatrix<0.0001). Additionally, the linear

mixed effects model also shows a slight decrease on low fat mice, in the soy oil/tallow-based diets

and over time (pquant=0.0189, pfatqual= 0.0397,ptime=<0.0001). Furthermore, pk76B (m/z=76.01)

identified in the RF++ approach corresponds to C-13 isotope of pk75 (figure 2(b), boxplot data not

shown).

Pk95 - Dimethyl disulphone

In rodent breath three candidates with a nominal mass of 95 (DMSO2, phenol, C7H10) are present and

can be detected with a high-resolution PTR-ToF-MS [26]. Pk95A (m/z=95.97, figure 3(c)) is assigned

to dimethyl disulphone (DMSO2, m/z=94.998479). Pk95A showed a decrease from baseline to semi-

purified diet breath measurements (pmatrix <0.0001). In addition, a diet quality to quantity interaction

was detected, however none of the four groups differed from each other at the single time points

(pqual:quant=0.0182, table 2).
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Figure 3. Effects of a switch from chow (week 0) to purified diets (weeks 1-4) on emitted breath

VOCs (a-c) are shown (5-10 mice per group and date). If an interaction in diet quantity and quality

was detected, different capital letters were used to show significant differences between diet groups

tested with pairwise student’s t-test at a time point (significance level: p < 0.05). For pk95A, no

differences at a time point were found in pairwise t-testing. Water isotope cluster pk39 (d) is shown as

a measure for humidity to estimate activity and breath frequency.
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Table 4. A nested linear mixed effects model was applied on repeated measures of unique VOC

signals identified in the RF++-approach. A stepwise reduction to identify the best model according to

AIC was performed, not included parameters are marked (n.i.). Significance level: p < 0.05.

Name Mouse

weight

Fat

quantity

Fat

quality

Diet

matrix

time Quantity :

quality

interaction

Pk33B - Methanol 0.0876 0.4672 0.5167 <0.0001 0.0664 <0.0001

Pk75 – Methyl

acetate/ Propionate

n.i. 0.0189 0.0397 <0.0001 <0.0001 n.i.

Pk95A – DMSO2 n.i. 0.0400 0.1333 <0.0001 0.0888 0.0182

Pk39 – H2O*H3O n.i 0.0017 n.i <0.0001 n.i n.i

8.2.5. Discussion

We analyzed breath volatiles in C57BL/6J mice that experienced the shift from a standard laboratory

chow to four different defined regularly used experimental diets which model high fat containing

western style human diets. Chow diets contain considerable amounts of homogenized grain material

that constitute the major matrix of the diet and depending on the season and harvesting time as well as

the location of origin those diets can vary [27,28]. In contrast, semi-purified experimental rodent diets

contain defined pure ingredients that are mixed according to the requirements of individual

researchers and study aims. In our study, we particularly analyzed the immediate effects within one

week after the diet shift. Those VOCs that showed the strongest contribution for the separation of

VOC signatures between the experimental groups by Random Forrest were followed up over the

consecutive four weeks.

Interestingly, the matrix switch from chow to semi-purified diets resulted in a massive drop in a set of

volatiles. Methanol is one of the most evident reduced VOCs and its presence in (human) breath has

been known for decades [29]. A significant contribution to methanol levels in breath may be related to

the consumption of fruit-derived pectin [30,31]. Soy is a major ingredient of laboratory chow

containing pectic polysaccharides that may be the main origin of methanol in the breath of chow-fed

mice [32]. Interestingly, the source strength of methanol was found to be increased in mice fed the
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low-fat soy-oil based diet (LF). In the literature a reduction of methanol in breath is reported for obese

humans and rats whereas an increase was described in human individuals suffering from non-

alcoholic fatty liver disease [8,26,33]. In obese individuals it was discussed whether the decline is due

to decreased intake of soluble fibres or altered microbial cultivation and endogenous enzymatic

activities. Small chain alcohols like methanol can also be produced by intestinal microbiota from

water-soluble and non-resorbed carbohydrates[34]. The absorption of luminal glucose is increased in

diabetic individuals and might be already present in an obese state, therefore less methanol might be

produced[35]. In this mouse study, methanol source strengths did not depend on body mass, but on

diet matrix and feeding the LF diet. Hence, these findings indicate that the production of methanol

from dietary substrates by gut microbiota may be dominant over shifts due to metabolic alterations on

high fat diet or obesity.

Another volatile with blunted source strengths on purified diets is pk75, which can be assigned to

either methyl acetate or propionate. Both substances are short chain fatty acids (SCFA) or their

derivates. SCFA are also known to be predominantly produced by intestinal microbiota from dietary

fibre, although there is some basal endogenous production of acetate [36,37]. The biochemical

endogenous origin of methyl acetate is unknown so far. In vivo emission of pk75 could be shown in

human primary bronchial cells [38]. As methanol source strengths similar pattern as methyl acetate, it

can be hypothesized that part of the methyl acetate signal may be explained by an esterification of

methanol and acetate.

Methyl acetate and in particular isoprene are known to be influenced by exercise or exercise-induced

changes in cardiac output or blood pressure in humans [39]. This might hint to increased locomotor

activity which could not be systematically monitored. However, the mice explored the respiratory box

during the first measurement but habituated to the conditions later on and decreased activity levels.

This change in behavior may provide an alternative explanation for the temporal pattern observed in

this VOC. However, humidity (monitored in H2O cluster isotope m/z39, Figured) and isoprene (data

not shown) as additional markers for physical activity do not present an equivalent reduction (~19%

reduction in humidity vs. ~82% reduction in pk75) after chow feeding, suggesting this drop being

mainly an effect of the diet matrix switch and not decrease of activity levels due to habituation.

The third signal identified was found at pk95A, which we assigned to dimethyl sulphone (alias:

methylsulfonylmethane). In the basal measurement on a chow diet, high levels of pk95A were

present. Dimethyl sulphone (DMSO2) breath levels are reported to be slightly reduced in obese rats

and, in combination with dimethyl sulphide, might be used to detect non-alcoholic fatty liver disease

(NAFLD) [26]. However, mice on normal laboratory chow with low fat and calorie content are
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unlikely to be affected by NAFLD. Hence, the pk95A signal might originate rather from plant raw

material e.g. grain included in the chow diet [40]. As this potential biomarker for NAFLD differs

between chow and purified diets, it has to be emphasized that beyond macronutrient composition and

disease state the diet matrix has a notable impact on VOC profiles.

The emphasis of the method for volatile measurement in unrestrained and non-stressed mice excluded

alternative more invasive techniques as breath masks or anesthesia. Therefore, contributions to

volatile source strengths from non-breath sources as urine or feces, from the skin, dust from home

cage wood shavings stuck in the fur, might confound the monitoring. For the major contaminations

urine and feces, marker substances were identified and only undisturbed profiles were further

considered. Changes in locomotor behavior, e.g from active exploration to settling down in the

chamber, modulate to the derived source strength of exhaled VOCs [20].

The analysis of the spectra was performed using the software TOF-Viewer (Version 3.0.1) and the

concentration was calculated using the semi-quantitative estimation formula [4]. To improve the

quantification would include additional steps in spectra analysis as noise reduction, baseline removal

and (automated) peak deconvolution and extraction as decribed by other groups [41]. The peak

deconvolution with gaussion peaks used by the Tof-Viewer does not reflect the skewed shape of the

peaks. This might over- or underestimate the peak area of the deconvoluted peaks.

8.2.6. Conclusion

To our knowledge, this is the first assessment of the effect of dietary matrix on breath gas analysis in

non-anesthetized and non-restrained mice. Here we demonstrated that the switch from a plant-material

based chow diet to several semi-purified diets independent of the main experimental factor fat content

already results in considerably affected VOC signatures. Despite controlling for macronutrient

composition, the respective diet matrix is highly relevant for breath gas analysis in rodents. This

finding may be relevant because it is hypothesized to provide an explanation for the high inter-

individual variability in rodent studies as well as in human clinical studies.
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Abstract

The prevalence of obesity is still rising in many countries, resulting in an increased risk of associated

metabolic diseases. In this study we aimed to describe the volatile organic compound (VOC) patterns

symptomatic for obesity. We analyzed high fat diet (HFD) induced obese and mono-genetic obese

mice (global knock-in mutation in melanocortin-4 receptor MC4R-ki). The source strengths of 208

VOCs were analyzed in ad libitum fed mice and after overnight food restriction. Volatiles relevant for

a random forest-based separation of obese mice were detected (26 in MC4R-ki, 22 in HFD mice).

Eight volatiles were found to be important in both obesity models. Interestingly, by creating a partial

correlation network of the volatile metabolites, the chemical and metabolic origins of several volatiles

were identified. HFD-induced obese mice showed an elevation in the ketone body acetone and

acrolein, a marker of lipid peroxidation, and several unidentified volatiles. In MC4R-ki mice, several

yet-unidentified VOCs were found to be altered. Remarkably, the pheromone

(methylthio)methanethiol was found to be reduced, linking metabolic dysfunction and reproduction.

The signature of volatile metabolites can be instrumental in identifying and monitoring metabolic

disease states, as shown in the screening of the two obese mouse models in this study. Our findings

show the potential of breath gas analysis to non-invasively assess metabolic alterations for

personalized diagnosis.
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8.3.1. Introduction

Obesity has progressed to a worldwide epidemic linked to a number of co-morbidities, such as

diabetes, cardiovascular disease, dyslipidemia and certain types of cancers (Guh et al 2009). Easily

accessible biomarkers are central to the assessment of the individual risks of patients suffering from

such pathologies and developing personalized medicine approaches for prevention and treatment. The

dysregulation of metabolic pathways and the associated changes in body fluid metabolite

concentrations are increasingly studied and also used for risk prediction (Mahendran et al 2013, Elliott

et al 2015, Wahl et al 2015). A variety of normal and disease-associated metabolic reactions produce

small volatile organic compounds (VOCs), which can be detected in body fluids but also non-

invasively in exhaled breath. Over the past decade, advances in the methodology have made it

possible to determine VOCs online in a concentration range of ppm to ppt and led to studies linking

VOC signatures to various pathologies (Boots et al 2012). Regarding diseases associated with energy

metabolism, several human studies were conducted in an attempt to monitor glucose levels (Lee et al

2009, Minh et al 2011), identify gestational, type1, or type 2 diabetes (Halbritter et al 2012, Novak et

al 2007, Greiter et al 2010), and characterize non-alcoholic fatty liver disease and liver cirrhosis

(Morisco et al 2013, Alkhouri et al 2014). Prerequisites for broader clinical application are (1) clear

identification of the molecules that are exhaled as VOCs and (2) a better understanding of the

considerable inter- and intra-individual variation in VOCs found in breath even in healthy humans

(Phillips et al 1999, Basanta et al 2012, Martinez-Lozano Sinues et al 2014). Environmental “wash-

in”, diet and associated microbial changes as well as circadian rhythm might increase this variation.

Animal models, and especially rodent models, for human diseases are a tremendously valuable tool

used to deepen the understanding of molecular mechanisms and decipher the various sources of

volatiles in a controlled environment (Rosenthal and Brown 2007). In this study, we were particularly

interested in differences in the VOC signatures of normal weight mice and mice with manifested

obesity induced either by feeding a high fat diet (HFD) or induced by targeted loss of function

mutation of the melanocortin 4 receptor (Bolze et al 2011). VOC signatures could reflect the degree of

obesity but could also be due to changes in diet composition, which is a confounding interaction that

cannot be avoided in diet induced obesity studies (Baranska et al 2013, Kistler et al 2014). In contrast

to diet-induced modifications of VOC signatures, to our knowledge no investigation on the effects of

genetically-induced obesity on the volatilome, defined as the total amount of all VOCs emitted, has

yet been conducted. Therefore, the aim of this study was to characterize alterations in exhaled VOCs

both in a diet-induced and a mono-genetic obese mouse model and to evaluate whether a symptomatic

pattern of VOCs related to obesity can be determined. In addition, individual changes in the

volatilome of two specific obese models with distinct metabolic deregulations are of interest. We
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employed statistical analysis methods that identified typical correlations between VOC emission rates,

in the following called source strengths, that could be used to unravel the biochemical origin of the

respective molecules.

8.3.2. Material and methods

8.3.2.1. Mice,	animal	housing	and	challenge	experiments	

Mice were housed in type IIL polycarbonate cages in individually ventilated cages (Tecniplast, Italy).

A 12:12 h light/dark cycle at a temperature of 24 ± 1 ºC and air humidity of 50–60% were maintained.

Animals were housed in groups of 2-5 animals per cage in specific pathogen-free conditions at the

German Mouse Clinic (GMC) (Fuchs et al 2009). Wood shavings were used for bedding (Altromin

GmbH, Germany). For the generation of the diet-induced obesity model, 20 male C57BL/6J mice

from in-house breeding were fed a pelleted laboratory chow from weaning onwards with ad libitum

access to food and drinking water (no. 1314, Altromin, Lage, Germany). From the age of 12 weeks

until the start of the VOC measurement (24 ± 2 weeks), their diet was changed to pelleted purified

low fat and high fat diets (low fat: E 15000-04; high fat: E 15741-34; both: Ssniff, Soest, Germany).

Assignment to diet groups was performed randomly using existing cage stocking to avoid single

housing while ensuring balanced group numbers. A mono-genetic hyperphagic obesity model having

a melanocortin-4-receptor nonsense allele W16X was used (Mc4r-ki mouse, as previously published

(Bolze et al, 2011)). Fifteen homozygous MC4R-ki BL6/J mice as well as 15 controls were

transferred to the GMC from the provider’s laboratory at the age of 5 weeks and analyzed at the age

of 24 ± 2 weeks. Mice had ad libitum access to drinking water and a pelleted laboratory chow from

weaning onwards (<5 weeks: ‘RM-Z autoklavierbar’, Ssniff; >5 weeks: no. 1314, Altromin, Lage,

Germany). All experiments were performed following animal welfare regulations with permission

from the district government of Upper Bavaria (Regierung von Oberbayern).

For the analysis of VOCs from ad libitum fed mice, gas measurements took place between 1 pm and 6

pm. During this time, food consumption is low compared to night-time. Therefore, this period was

chosen to reduce the contribution of food-derived volatiles to measured VOC patterns. Mice were

measured in a random order and alternating between control and obese mice to remove potential

systemic bias. For the fasted VOC measurements, mice were food deprived overnight beginning

around 5-6 pm and were measured in the same order as in the ad libitum state between 8 to 12 am the

following day. Mice were weighed before every VOC measurement to the nearest 0.1 g and body

composition was monitored by non-invasive quantitative nuclear magnetic resonance scans in an ad
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libitum fed state (Bruker Minispec LF50 body composition analyser, Ettlingen, Germany). The

comparisons of body, lean and fat mass between groups were performed by using a linear regression

model.

8.3.2.2. Proton-transfer	 reaction	 time-of-flight	mass	 spectrometry	 and	protocol	

for	real-time	breath	gas	analysis	in	unrestrained	mice	

A high-sensitivity proton transfer reaction mass spectrometer (PTR-MS, e.g. benzene 100 cps/pppV;

PTR-MS, Ionicon Analytic GmbH, Innsbruck, Austria) with a resolution of Δm/m <= 2000 was used.

The principle of PTR-MS using H3O+ ions to softly ionize and detect VOCs was developed in the late

1990s (Lindinger et al 1998, Petersson et al 2009). A drift tube temperature of 80 ºC, a drift tube

voltage of 600 V and a drift pressure 2.3 mbar were applied. A mass range from m/z 0 to 349.5 was

recorded (repetition rate of 77 kHz); the sum spectra with an integration time of 3 s were recorded

(TOF-DAQ, Tofwerk AG, Switzerland). For the integration of peaks from the TOF-spectra, the PTR-

MS Viewer software was used (Version 3.2.6, Ionicon analytic GmbH, Innsbruck, Austria). An

internal calibration with the known peaks H3
18O+ (m/z 21.0221), NO+ (m/z 29.9971) and protonated

acetone (m/z 59.0491, C3H6O.H+) was performed. 306 peaks were selected manually from the spectra.

The deconvolution of overlapping peaks was performed by fitting a Gaussian distribution to the peaks

in the PTR-MS Viewer. VOC concentrations were calculated using a constant k-rate of 2 * 10-9 [cm³

* s-1] in the semi-quantitative estimation formula (Lindinger et al, 1998). The system sensitivity was

controlled regularly using a gas calibration unit (GCU, Ionicon Analytic GmbH, Innsbruck, Austria)

with a mixture of substances (VOC gas standard, Ionicon Analytic GmbH, Innsbruck, Austria)

regularly. From a set of compounds, a linear calibration curve obtained from multiple concentrations

was used to calculate the individual transmission factors.

A setup and protocol for real-time measurement of breath gas in unrestrained mice using respiratory

chambers was applied as described previously (Szymczak et al 2014; Kistler et al 2014). Deviating

from the published set up, mice were acclimated to a training respiratory chamber for 7 min to reduce

stress levels in the mice and consequently contamination by urine and feces.

8.3.2.3. Data	analysis	and	statistics	

Calculation of source strength and data pre-procession. A compartment model was used to describe

the emission of a certain peak from recorded saturation curves  as a source strength in ppb*ml/min

(non-linear regression, described in (Szymczak et al 2014)) and data pre-procession was performed as
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described previously if not stated otherwise (Kistler et al 2014). Measurement starts and ends were

defined manually using an in-house web-application based on R and shiny package (R Core Team

2015, Chang et al 2015). The information of group membership was not recorded in raw data files but

added later on to ensure fully blinded analysis of saturation curves. As a further contamination control

step, data was filtered for high concentrations or sudden increases of urinary and feces markers

(pk127B, pk60 and pk49 > 1 ppb). For every peak, outliers (defined as greater than five standard

deviations from mean) were removed. Peak data and single measurement data with more than 10%

missing values were excluded. Peaks with source strengths not different or lower compared to

corresponding blank source strengths were excluded as well (linear regression modeling with p < 0.1

to ensure enclosure of low signal candidate VOCs). An exception was made for known oxygen

isotopes, as the negative source strength (=consumption) is expected. These filter steps resulted in

final group sizes of 15 for fasted MC4R-wt mice, 14 for fasted MC4R-ki mice, 11 for ad libitum fed

MC4R-wt mice and nine for every other experimental group. As a complete data-matrix is required to

calculate random forest (RF) and Gaussian graphical models, missing data was imputed using chained

equations (mice R package (van Buuren and Groothuis-Oudshoorn, 2011)), which accounted for

0.29% of data.

Feature selection and statistical testing of individual VOCs. By using TOF mass spectrometric

detection of volatiles, the dataset consisted of a large number of peaks relative to animal numbers. We

applied the area under the curve – RF (AUC-RF) algorithm as recently published (Calle et al 2011) to

find a reduced set of candidate volatiles. In this algorithm, an initial RF is computed to obtain a

ranking of predictors and an area-under-the receiver operating characteristic (ROC) curve. During the

elimination process, less important variables are removed and AUCs of the resulting RFs are

computed; an optimal set of predictors based on the AUC is finally reported. We used this algorithm

for both HFD-fed and MC4R-ki datasets independently; setting strata to allow only one measurement

per mouse and fasting status in every decision tree. A five-fold cross validation was applied 20 times

to avoid over-fitting of each of the resulting RF model (using again a modified version of the

algorithm allowing for stratification). Receiver operating characteristic (ROC) curves were created

using R package pROC (Robin et al, 2011). The complete feature selection pipeline was repeated

using randomly permuted class labels and plotted for comparison. Average and variability of areas

under the ROC curves were visualized in boxplots for all 20 iterations of both pipelines. Peaks with a

selection probability higher than 70% in the cross-validation AUC-RFs were used for further analysis.

For the analysis of genotype-induced and diet-induced effects on the VOC source strengths, two-sided

mixed effects models were applied (Pinheiro et al, 2015). Both diet and genotype subsets of data were
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log-transformed to approximate a normal distribution (tested visually by qq-plotting). The variance

between groups was controlled using both boxplots of source strength as well as residuals and residual

versus fitted data plots. For every peak of both subsets of data, effects of the corresponding

intervention variable (diet or genotype, respectively), the fasting status as well as the interaction of

both were tested using a mixed effects model accounting for repeated measures. If a significant

interaction could be detected, individual group comparisons were performed by using the multcomp r

package (Hothorn et al 208). As a larger number of tests leads to summation of type I – error, control

of false discovery rate after Benjamini and Hochberg (1995) was applied and all p-values were

adjusted according to a 10% false discovery rate.

Data visualization. Both sets of data were visualized in a clustered heatmap using the Heatplus

(Ploner 2015) package from the Bioconductor project (Gentleman et al 2004). Mean ad libitum fed as

well as mean fasted source strength data per mouse was used and shown individually. Boxplots were

created using the R package ggplot2 using all repeatedly measured source strength data (Wickham,

2009). In addition we applied a Gaussian graphical model to log-transformed source strengths of

breath volatiles to visualize information about fragmentation, isotopic, water cluster and/or metabolic

correlations. The complete dataset features more variables than number of mice, therefore we used a

shrinkage approach to estimate a partial correlation matrix (Schäfer and Strimmer 2005). As the data

has a longitudinal structure, we created a network accounting for that using dynamic (partial)

correlation (Opgen-Rhein and Strimmer 2006). A network was extracted from the estimated partial

correlation matrix using a local false discovery rate of 3% (GeneNet R package (Schaefer et al, 2015).

A ‘dummy’ variable to correct for inter-experimental differences between HFD-fed and MC4R-ki

mice was included in the network but not plotted. For every peak within a selected subset with

significant fasting state, genotype or diet effect, the percentaged coefficients from mixed effects

model are shown in the nodes as a pie-chart. The top 20% of connections is shown with bold lines,

minor 20% with gray lines and negative partial correlations with dotted lines. Direct positive

connections of significant nodes were highlighted and combined for overlapping subnetworks

containing multiple significant nodes. Peaks included in AUC-RF model data-subsets but without

significant connections were included in the graphical model for illustration purposes.
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8.3.3. Results

8.3.3.1. Obesity	state	of	HFD	fed	and	mono-genetic	mice	

Figure 1: Body mass, lean mass and fat mass. Body mass (a), lean mass (b) and fat mass (c) for high-fat diet

fed (HFD, dark red) and melanocortin-4-receptor W16X knock-in (MC4R-ki, dark blue) mice as well as

corresponding controls (low-fat diet LFD, red; melanocortin-4-receptor wild type, MC4R-wt, blue) is shown in

boxplots. Significant differences between controls and respective obesity mouse models are shown as black lines

over individual boxes (linear regression model, p < 0.05). Group sizes: MC4R-wt ad lib (n = 11), other groups

(n = 9).

Both HFD and the MC4R-ki mutation resulted in clear states of obesity as was evident from increased

body mass as well as lean and fat mass. HFD-fed mice were heavier compared to littermate controls

(44.21 ± 4.17 g versus 27.94 ± 1.47 g, p = 4.01*10-8, figure 1(a)). This gain in mass was partly due to

an increase in lean mass (24.64 ± 1.7 g versus 18.47 ± 1.08 g, p = 2.56*10-7, figure 1(b)) as well as an

increase in fat mass (16.83 ± 2.88 g versus 5.69 ± 0.65 g, p = 2.16*10-8, figure 1(c)). For MC4R-ki

mice, also a considerable difference in body mass compared to littermate controls could be detected

(50.99 ± 3.19 g versus 28.01 ± 1.28 g, p = 2.00*10-14, figure 1(a)). This difference was in part

attributed to lean mass (26.28 ± 1.4 g versus 17.8 ± 0.64 g, p = 5.67*10-13, figure 1(b)), but largely

due to elevated fat mass (21.3 ± 2.09 g versus 6.2 ± 0.83 g, p = 1.77*10-14, figure 1(c)). Overall, the

impact of the MC4R-ki on body mass and body composition was more pronounced compared to the

HFD model.
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8.3.3.2. Selection	of	VOCs	relevant	for	classification	

Figure 2: Machine learning strategy for selection of obesity relevant peaks. The performance of classification

models was evaluated using ROC curves. For high-fat diet fed mice (HFD, (a)) and melanocortin-4-receptor

W16X knock-in mice (MC4R-ki, (c)), ROC curves are shown for a single five-fold cross-validation of the

recursive feature selection using AUC-RF algorithm. Results for real class labels are shown in dark solid lines.

In comparison, light dashed lines represent ROC curves from using randomly permuted class labels in the

classification procedure. The variation in area under ROC curves (AUCs) is shown in boxplots (HFD (b),

MC4R-ki (d)). For this, 20 different 5-fold cross-validation sets were analyzed. Dark boxplot fills represent real

class labels while light colors represent permuted labels. For further analysis, peaks with more than 70%

selection probability in the repeated cross-validation procedure were selected. The variable importance of

selected peaks is shown (HFD, (e); MC4R-ki, (f)). Color gradients indicate selection probability after 20
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iterations of a five-fold cross validation procedure. Overlapping of selected peaks is shown as Venn diagram

(g).

For both obesity models, feature selection was performed using the AUC-RF algorithm. In this

algorithm, an optimal set of features is created by optimization of the area under the receiver

operating characteristics (ROC) curve in a series of RF models. The ROC curves for a five-fold cross

validation are shown for HFD (figure 2(a)) and MC4R (figure 2(c)). In addition, the ROC curves for

the same procedure but with randomly permuted labels are plotted. For both datasets, a series of 20

different five-fold cross validations was computed both for real and permuted class labels to analyze

robustness of the classification. Here, a drop of AUCs was observed in both permuted datasets

(figures 2(b) and (d)). A cut-off of at least 70% selection probability was used to select 22 candidate

peaks with the highest variable importance in HFD mice (figure 2(e)). For MC4R-ki mice, 26

candidate peaks fulfilled the cut-off criterion (figure 2(f)). Interestingly, within these peaks with the

highest classification importance an overlap of eight peaks could be detected between the two mouse

models (figure 2(g)). The eight peaks present in both groups were pk33B (methanol), pk50

(unassigned), pk61 (acetic acid), pk62 (MTMT), pk63 (CO2, dimethyl sulphide (DMS)), pk65B (CO2,

DMS isotopes), pk81B (unassigned) and pk117B (unassigned).
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8.3.3.3. Visualization	of	selected	source	strength	data	

Figure 3: Heatmaps of selected VOCs. Heatmap of selected peaks in HFD fed (a) and MC4R-ki mice (b) are

shown with hierarchical clustering of individual mice (mean data, rows, sub-clusters colored) and VOC peaks

(columns, labels according to nominal mass). Data is scaled and centered. Color-coding legend shown on the

left. Classification of individual mice is annotated on the right ((a): diet = LFD or HFD; (b): gt = MC4R-wt or

MC4R-ki; both feed = ad libitum fed or fasted, body mass [g], subcluster-membership coloured). Group sizes:

MC4R-ki fasted (n=15), MC4R-wt fasted (n=14), MC4R-wt ad libitum (n=11), other groups (n=9).
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Heatmaps consisting of RF-selected peaks for both models were created to gain further insight into

data structure by using unsupervised hierarchical clustering (figure 3). HFD-fed mice clustered in the

top half of the heatmap with a remote subgroup within the dark blue sub cluster (figure 3(a)).

Interestingly, despite the selection for obesity relevant peaks, a clustering according to fasting status

was observed (fasted within light red, light green and dark blue, predominantly). Contrary to the

findings in HFD-fed mice, the feeding status seemed to be the dominant clustering principle with

MC4R wild type and knock-in mice showing fasted mice in the light green, dark blue and light blue

sub clusters (figure 3(b)). Notably, fasted MC4R-ki mice clustered together mostly in the dark blue

subcluster, whereas ad libitum fed knock-in mice showed a weaker clustering in the “warm colored”

sub clusters.
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8.3.3.4. Effects	on	VOC	signature	in	diet-induced	and	monogenetic	obesity	

Figure 4: VOC source strengths with significant high fat diet effects. Source strengths for nominal mass-

labeled peaks 18 (a), 57B (b), 65B (c), 63 (d), 75 (e), 62 (f), 253A (g), 117B (h), 57A (i), 34A (j), 81B (k), 74B

(l), 55B (m), 36B (n), 43A (o), 59 (p) and 64B (q) are shown as boxplots (ordered after selection probability in

cross-validated AUC-RF algorithm). Box fill corresponds to diet (red: low fat diet; dark red: high fat diet). Box

border corresponds to fasting state (black: ad libitum fed; gray: fasted). Significant main effects in mixed effects

model are shown as dotted lines (black: diet, gray: fasting state). In case of interaction, significant group

differences are shown as black lines. P-values are adjusted for a false discovery rate of 10 %. Group sizes (n =

9).

In addition to obesity effects, we were interested in the effect of fasting on obesity candidate VOCs.

Thus, we used statistical interference modeling to assess both diet and the food restriction effects.

Linear mixed effects models were used to reflect the repetitive structure of the data (see

supplementary Table 1 for details). For the HFD, a significant increase in source strength could be
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found in 11 peaks (figure 4). Those peaks are 65B (unassigned, figure 4(c)), 63 (CO2*H2O/ DMS,

figure 4(d)), 75 (methyl acetate, figure 4(e)), 253A (unassigned, figure 4(g)), 117B (unassigned,

figure 4(h)), 57A (unassigned, figure 4(i)), 81B (unassigned, figure 4(k)), 74B (unassigned, figure

4(l)), 55B (H3O+.H2O/ C4H6.H+, figure 4(m)), 43A (C2H2O.H+, figure 4(o)), 59 (acetone, figure 4(p))

and 64B (13CO2.H3O+/ 13CCH6S.H+, figure 4(q)). Source strength in peak 34A (16O18O, figure 4(j))

was decreased in diet-induced obese mice.

In the HFD mouse model, several volatiles were affected by the fasting status of the mouse. Fasting

induced higher emitted source strength in the seven peaks: 50 (unassigned, supplemental figure 1(a)),

55B (H3O+.H2O/ C4H6.H+, figure 4(m)), 43B (C3H6.H+, supplemental figure 1(c)), 43A (C2H2O.H+,

supplemental figure 1(o)), 33B (methanol, supplemental figure 1(e)), 59 (acetone, figure 4(p)) and

64B (13CO2.H3O+/ 13CCH6S.H+, figure 4(q)). Three volatiles were reduced after overnight food

restriction: 249B (unassigned, supplemental figure 1(b)), 34A (17O2, figure 4(j)) and 81B (unassigned,

figure 4(k)).

In four peaks, an interaction of HFD feeding and food restriction was present. Ammonia (figure 4(a),

pk18) was decreased in HFD mice (with a larger decrease in source strengths in the ad libitum fed

state) and upon overnight fasting. Acrolein (Fig 4(b), pk57B (2-propenal, C3H4O.H+)) was elevated in

obese mice in both states. Upon fasting source strength was increased in wild type mice but decreased

in HFD fed animals. Peak 62 was assigned to a thiol-loss fragment of (methylthio)methanethiol

(MTMT, CH3SCH2.H+) as described in (Da Yu Lin et al, 2005) (figure 4(f)). MTMT was increased

upon fasting in both groups. Furthermore, ad libitum fed HFD mice showed a higher source strength

of MTMT compared to LFD fed mice, an effect which was no longer present when fasted mice were

measured in the morning. pk36B was decreased in HFD ad libitum fed mice and fasted LFD fed mice

(Fig 4(n), unassigned).
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Figure 5: VOC source strengths with significant genotype effects. Source strengths for nominal mass-labeled

peaks 63 (a), 62 (b), 81B (c), 65B (d), 151 (e), 50 (f), 135B (g), 36A (h), 122B (i), 137B (j), 44A (k), 80B (l),

109A (m) and 95B (n) shown as boxplots (ordered after selection probability in AUC-RF feature selection). Box

fill corresponds to genotype (blue: melanocortin-4-receptor wild type; dark blue: melanocortin-4-receptor

W16X knock-in). Box border corresponds to fasting state (black: ad libitum fed; gray: fasted). Significant main

effects in mixed effects model are shown as dotted lines (black: genotype, gray: fasting state). In case of

interaction, significant group differences are shown as black lines. P-values are adjusted for a false discovery

rate of 10 %. Group sizes: MC4R-ki fasted (n = 15), MC4R-wt fasted (n = 14), MC4R-wt ad libitum (n = 11),

MC4R-ki ad libitum (n = 9).

In MC4R-ki mice several VOC source strengths differed between genotypes as shown by

multifactorial linear mixed effects modeling using genotype and fasting status (figure 5, detailed

model results can be found in supplementary table 1). A significant increase was found in eight

volatiles: peak 63 (CO2*H2O/ DMS, figure 5(a)), 81B (unassigned, figure 5(c)), 151 (unassigned,
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figure 5(e)), 135B (unassigned, figure 5(g)), 122B (unassigned, figure 5(i)), 137B (unassigned, figure

5(j)), 44A (C2H3O / 13CCH2O.H+, figure 5(k)) and 95B (unassigned, figure 5(n)). In five volatiles, a

decrease in source strength was observed in MC4R-ki mice: peak 62 (MTMT, figure 5(b)), 50

(unassigned, figure 5(f)), 36A (unassigned, Fig 5(h)), 80B (unassigned, figure 5(l)) and 109A

(unassigned, figure 5(m)).

In addition to genotype effects, overnight food restriction affected four peaks positively and eleven

peaks negatively. An increase in fasted state was observed in peaks 62 (MTMT, figure 5(b)), 44A

(C2H3O / 13CCH2O.H+, figure 5(k)), 87B (unassigned, supplemental figure 2(i)) and 95B (unassigned,

figure 5(n)). Decreased fasting source strengths were found for peaks 63 (CO2*H2O/ DMS, figure

5(a)), 81B (unassigned, figure 5(c)), 123B (unassigned, supplemental figure 2(a)), 61 (acetic acid,

supplemental figure 2(c)), 36A (unassigned, figure 5(h)), 117B (unassigned, supplemental figure

2(d)), 137B (unassigned, figure 5(j)), 113 (unassigned, supplemental figure 2(e)), 94B (unassigned,

supplemental figure 2(f)), 35B (CH3
16OH.H+, supplemental figure 2(g)) and 211 (unassigned,

supplemental figure 2(k)).

An interaction of MC4R-ki genotype and food restriction was present in peak 65B (figure 5(d),

unassigned). Here, source strength was increased in fasted but not in ad libitum fed MC4R-ki mice

and reduced in wild type mice in response to fasting.
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8.3.3.5. Gaussian	graphical	modeling	as	a	tool	to	identify	VOCs	

Figure 6: Gaussian graphical model for VOC identification. Gaussian graphical model with nodes

corresponding to peaks (labeled with nominal mass and letter for multiple peaks at the same nominal mass) and

edges corresponding to shrinkage estimated partial correlation. Highest and lowest 20 % of correlations are

highlighted (bold black/ thin gray). Dotted edges indicate negative partial correlation. Peaks with significant

mixed effects model main effects (as seen in figures 4 and 5) are shown as pie charts in nodes. Coloring of

model coefficients is according to diet increase/ decrease (red/ dark red), genotype increase/ decrease (blue/

dark blue) and fasting increase/ decrease (gray/ dark gray). Mean fasting coefficients are shown if significant in

both obesity models. Subnetworks of peaks with significant effects and directly connected nodes with positive

partial correlation are plotted on colored background. Peaks without significant edges selected in AUC-RF

were added for illustration purposes.
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Gaussian graphical models were proposed recently to identify metabolites and model metabolic

pathways from metabolomics data (Krumsiek et al 2012, 2011). As in a large p, smaller n dataset, a

full partial correlation matrix cannot be directly applied, we estimated a partial correlation network

using by a shrinkage approach for longitudinal data (Schäfer and Strimmer, 2005; Opgen-Rhein and

Strimmer, 2006). In this graphical model, several obesity relevant subnetworks can be detected with

additional information on VOC identity (figure 6). In addition to genotype and diet effects, fasting

effects are visualized in gray (increase) and dark gray (decrease) pie slices. If both cohorts showed

fasting coefficients, we calculated mean coefficients. Fasting coefficients from MC4R cohort

contribute to peaks 33B, 35B, 36A, 44A, 61, 62, 63, 65B, 80B, 81B, 87B, 94B, 95B, 109A, 113,

117B, 123B, 137B, 153 and 211 while fasting coefficients from HFD models are contribute to 18,

33B, 34A, 36B, 43A, 43B, 50, 55B, 57B, 59, 62, 64B, 81B and 249B. Interpretations of peak-peak-

connections are given in supplementary table 2.
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8.3.4. Discussion

The success of personalized medicine approaches for metabolic diseases depends on inexpensive and

minimally invasive but also sensitive and specific diagnostic tools. The analysis of VOCs in human

breath has the potential to provide such an ‘easy-access’ view to a broad range of metabolic pathways.

However, the origin and the link to physiological functions of many volatiles are still unknown, thus

hindering the implementation of a breath gas screening in clinical settings. Here in this study, we

screened the breath of obese mice for disease related alterations in VOC patterns under controlled and

standardized circumstances. The application of so-called -omics technologies generates datasets with

a high ratio of measured parameters to the specimen included in the study. This requires adequate

statistical methods to account for, e.g. multiple testing. In breathomics, machine learning strategies

can be applied for both classification and feature selection (as comprehensively reviewed (Smolinska

et al  2014)). In our study, we used a RF-based recursive feature selection algorithm, AUC-RF, to

derive VOCs altered in obesity. We used multiple iterations of five-fold cross validation to avoid

model overfitting. Furthermore, a cut-off of 70% selection probability was set to reduce selection

false positive features. It has to be noted that, although RF is rather robust to collinearity in typical

breath data (Smolinska et al  2014), some highly correlated features might remain undetected by using

a selection probability cut-off as they are almost equally likely to be selected. However, when

applying this approach to data with randomly permuted class labels, no (HFD) or a single (MC4R-ki)

peak is selected in the process. This, in combination with the massive drop in the area under the ROC

curve, underlines the robustness of the procedure. Permutations as a tool for model validation are used

in the field of breath research (Halbritter et al 2012, Hauschild et al 2013). Regarding the slightly

elevated median and the observed variation of the area under the ROC curves, we support the idea to

combine both cross-validations and label permutations to validate classification models. Interesting

additions or variations to the applied approach might be the use of bootstrapping procedures or the

Boruta algorithm, which conveniently implements benchmarking against random variables in a single

all-relevant feature selection algorithm (Kursa and Rudnicki, 2010).

We found that a variety of volatiles were affected in obese mice or varied depending on the feeding

status of the animals. For both visualizing and identifying altered patterns of VOCs, we estimated a

Gaussian graphical model as a data-driven approach novel in PTR-MS based breath gas analysis.

Known from metabolomics studies (Krumsiek et al 2011, 2012), graphical modeling here helped to

identify contributions to single peaks; for example, isotopes of MTMT (pk62) and CO2.H3O+/DMS

(pk63) to peak 64B. In addition, visualizing fragmentation patterns like propanol fragments at peaks

41 and 43B is possible (Schwarz et al 2009). In addition to chemical properties, biochemical pathway
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information could be included, such as the conversion of acetone to 2-propanol by ADH1 (Lewis et al

1984). The combination of this information can shed light on previously unknown peaks and the

corresponding volatiles. In addition, the graphical model resembles the hierarchical clustering shown

in the two heatmaps in several edges but emphasizes numerous further connections as it can be built

on both complete data sets with correction for intra-experimental effects. In the following, the

tentatively identified volatiles altered in obese mice are discussed individually with a special emphasis

on the available obesity and metabolic disease relevant literature.

8.3.4.1. A VOC signature altered in the volatilome both obesity

models

In the present study we found that in both diet-induced and genetically induced obesity source

strengths of several emitted VOCs were altered. Interestingly, a set of eight peaks was changed in

both obesity models, of which four were tentatively identified and four remain unknown.

Acetic acid (pk61, pk43A) A volatile identified in both groups by the feature selection algorithm as

potentially relevant was acetic acid (pk61 and fragment pk43A in HFD mice). In this untargeted

screening approach mixed effects modeling did not find significantly changed source strengths in

acetate but in the fragment pk43A in HFD mice. Interestingly, despite the non-significant increase in

source strength, the increased variance and outlying data in both obesity models might be used for

stratification of obesity related pathologies such as disturbances in glucose homeostasis. The enzymes

acetyl-CoA synthetase and acetyl-CoA hydrolase regulate free acetic acid levels, in addition

exogenous sources such as gut fiber fermentation contribute to serum levels predominantly after food

intake (Wolever et al 1997). Serum acetic acid levels were reported to be inversely correlated to

insulin levels in mice and humans (Layden et al 2012, Sakakibara et al 2009). Acetate reduces

glucose-induced insulin secretion via pancreatic free fatty acids receptors (FFAR) 2 and 3. This is

likely mediated by pancreas secreted acetate produced from glucose as a negative feedback as well as

from overall systemic acetic acid levels (Tang et al 2015). It is therefore coherent that acetic acid in

breath could be used to model glucose levels during an oral glucose tolerance test and to detect

individuals with gestational diabetes (Halbritter et al 2012). In addition, short chain fatty acids like

acetate have been recognized to induce a PPARγ-dependent switch from lipid synthesis to lipid

utilization in white adipose tissue and liver (den Besten et al 2015). Thus, if the variance in acetic acid

could be attributed to associated (patho)physiological states in obesity, it might be a relevant non-

invasive marker.
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Methanol (pk33B) Methanol was selected in both models (peaks 33B and MC4R-ki mice also 18O-

isotope 35B). A massive increase of methanol was found in the MC4R experiment during the fed

state. These mice were fed a so-called chow diet comparably high in pectin/fiber content thus

affecting VOC signatures mediated by altered microbial digestion as previously described (Kistler et

al 2014). We could not detect a general effect of obesity status on methanol. Thus, the effect of diet

on methanol breath levels seems to exceed the endogenous variation. This is in accordance to other

studies, identifying methanol to originate mainly from microbial digestion of consumed pectins with a

smaller fraction from other dietary and endogenous sources as aspartame or S-adenosylmethionine

(Axelrod & Daly 1965, Siragusa et al 1988, Lindinger et al 1997, Dorokhov et al 2012). Notably,

methanol was used together with a set of VOCs to model blood glucose in type 1 diabetics (Minh et al

2011) and was found to be reduced in HFD fed rats (Aprea et al 2012), inversely correlated to BMI in

humans (Turner et al 2006, Halbritter et al 2012) but increased in liver cirrhosis (Morisco et al 2013).

Those findings may be related to differences in lifestyle or eating habits (e.g. reduced fruit (pectin)

consumption) affecting gut microbiota in obese patients. In addition, a reduction of methanol

detoxification capacity could be present in those states. However, to verify this in a mouse model, it

has to considered that detoxification of methanol in humans is primarily adh1-driven, while in

rodents, peroxidative activity of catalase is relevant for degradation (Dorokhov et al 2015, Karinje

and Ogata 1990).

Carbon dioxide *H2O / Dimethyl sulphide (pk63, pk64B, pk65) Another peak elevated in both obese

models is peak 63 as well as isotopes at 64B (in HFD mice) and 65, which are probably a mixed

signal from carbon dioxide-water cluster and DMS. Carbon dioxide, as a terminal mitochondrial

oxidation product of most energy-containing molecules, is directly related to the amount of energy

used in the organism. Indeed, the utilized obese models do have an increased overall amount of

metabolic active tissue (figure 1). This increase consists not only of fat mass, which is considered to

have a lower but not negligible metabolic activity per gram (Kaiyala et al 2010), but also of highly

active lean mass which is elevated. Hence a higher emission of carbon dioxide in heavier mice is not

surprising (Butler and Kozak 2010, Tschöp et al 2012).

DMS, the second candidate, was found to be increased in obese rats with steatohepatitis, obese

children, liver cirrhotic patients and is a known constituent of the fetor hepaticus (Aprea et al 2012,

Alkhouri et al 2015, Morisco et al 2013, Van den Velde et al 2008). DMS can be found in breath after
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methionine ingestion and is altered in hepatitis and cirrhosis patients showing an increased half-life

(Kaji et al 1979). Furthermore, rat skeletal muscle cells were observed to be releasing DMS, possibly

produced by the transamination pathway out of methionine and cysteine (Mochalski et al, 2014).

Thus, after further insight in its metabolism, DMS could be used as a non-invasive biomarker of

altered systemic or hepatic metabolism of sulfur-containing amino acids.

(Methylthio)methanethiol (MTMT, pk62) The source strength of a fragment of

(methylthio)methanethiol (MTMT, pk62 and part of pk64B signal in HFD fed mice) is ~100 times

higher in male mice compared to females (as shown for MC4R-ki animals in supplementary figure 3).

This long-distance pheromone was initially described to be detected in the main olfactory bulb, being

involved in the attractiveness of male urine to female mice and can be reduced in urine by castrating

male mice (Da Yu Lin et al 2005). Unexpectedly, we found the source strength of MTMT

significantly increased in ad libitum fed diet-induced obese mice but reduced in MC4R-ki mice. The

tissue and mechanism of endogenous MTMT synthesis are currently unknown. However, a link

between the melanocortin 4 receptor and sexual reproduction has been shown (Van der Ploeg et al

2002) and reduced mating success is observed in models with reduction in melanocortin production

(Faulkner et al 2015). In contrast to the MC4R-ki mice, upon HFD feeding an elevation in MTMT in

ad libitum state but not in the fasted state is observed. Upon HFD feeding, an acute compensatory

activation of MC4R signaling is known (Butler et al 2001) and could also modulate MTMT levels via

an MC4R-dependent mechanism.

8.3.4.2. Significant HFD specific peaks

Ammonia (pk18) Ammonia is elevated in liver pathologies (Adeva et al 2012) and was found

increased in obese children (Alkhouri et al 2015). In addition, in a rat study featuring diet-induced

obesity measured with similar instrumentation, breath ammonia was increased in purified HFD versus

low fat standard diet fed rats (Aprea et al 2012). Unexpectedly, we found reduced breath ammonia

source strength of in HFD-fed mice in comparison to control mice. Generally, values from HFD-fed

mice seem to be lower than both groups in the MC4R experiment as well. In the field of breath

research, the reproducibility of breath ammonia measurements is in discussion (Blanco Vela and

Bosques Padilla 2011), as aside from changed blood ammonia concentrations, breath ammonia altered

by physical activity level (Solga et al 2014), mode of breathing, airway or mouth pH (Solga et al

2013) and mouth bacteria expressing urease (Chen et al 2014). As mice show a strong preference for
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nasal breathing, some of the above-mentioned effects should not be present here. A higher dietary

protein load in this particular HFD (24.1% in HFD versus 20.8% in LFD) can contribute to a

metabolic acidosis. This in combination with the ketoacidosis in ad libitum HFD and fasting could

lead to an increased urinary ammonia excretion to compensate acidosis and therefore reduced breath

ammonia.

Acrolein (pk57B) Interestingly, another VOC increased in HFD-fed mice both in ad libitum as well as

in fasted state but not selected as relevant in MC4R-ki mice is likely acrolein. In humans, acrolein

exposure from exogenous sources as diet as well as inhalation of polluted air and smoking are known

to be relevant. In addition, endogenous production from lipid peroxidation in oxidative stress,

degradation of methionine/ threonine and spermine/ spermidine can contribute to the observed

concentrations (Stevens and Maier 2008). Notably, in HFD mice a slight reduction in fasted state is

observed, probably indicating that both directly diet-derived and endogenous produced acrolein

contribute to the elevation compared to LFD fed littermates. Acrolein is contributing to metabolic

pathologies via a wide range of mechanisms and target tissues, including protein adduction, induction

of oxidative stress, mitochondrial dysfunction, inflammation and immune alterations, ER stress,

structural and membrane effects and deregulated signal transduction as reviewed by Moghe et al

(2015). Hence it can be an interesting breath resource for monitoring carbonyl stress and redox state.

Methyl acetate (pk75) An increase in pk75 in HFD mice was observed, which is possibly

predominantly methyl acetate as suggested by the Gaussian graphical model. In addition to the

individually discussed literature on acetate and methanol, methyl acetate in breath is only described to

be increased acutely after exercise (King et al 2010). In obese patients with non-alcoholic fatty liver

disease, an increase in various fecal volatile esters including methyl acetate could be observed and

associated to a gut microbial shift (Raman et al 2013). Emitted methyl acetate therefore indicates such

a shift, or alternatively can be created from acetate and methanol within the mouse metabolism.

18O16O oxygen (pk34A) An increased consumption of oxygen isotope 18O-16O is observed in HFD-fed

mice. This can likely be explained by a higher amount of metabolic active tissue and therefore higher

absolute oxygen demand in the heavier HFD mice (Tschöp et al 2012).
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H3O+.(H2O)2 water cluster and fragments of aldehydes (pk55B) Pk55B is increased in HFD mice and

is likely to consist of both H3O+.(H2O)2 water cluster and fragments of aldehydes e.g. butanal,

hexanal, octanal or nonanal (Buhr et al 2002). Although it is unclear why humidity and water

clustering should be increased in obese mice, aldehydes in breath (and breath condensate) can be

increased in oxidative stress pathologies with associated lipid peroxidation (Amann et al 2014), which

can be elevated in obese state.

Acetone and propanol (pk59, pk43B). In HFD-induced obesity, energy demands are to an extended

portion satisfied by lipid oxidation and hepatic ketogenesis. One of the ketone bodies is acetone,

which is thought to be produced by spontaneous decarboxylation of acetoacetate. Therefore, in both

states of increased fatty acid oxidation, namely HFD and food restriction, acetone source strengths are

elevated. In humans, fasting breath acetone levels were shown to be highly correlated to ß-

hydroxybutyrate and acetoacetate blood concentrations (Qiao et al 2014, Musa-Veloso et al 2006).

Both were associated with increased fasting and 2 h plasma glucose levels and acetoacetate could be

used to predict both an increased OGTT AUC and 5-year diabetes incidence (Mahendran et al 2013).

Notably, in a subnetwork of fasting responsive volatiles (figure 6), acetone showed a significant

partial correlation to both propanol fragments at nominal masses 41 and 43B (which showed a

significant fasting but no diet effect). The conversion from acetone to iso-propanol is known and can

be enhanced in a ketogenic setting (Lewis et al 1984, Petersen et al 2012). As conversion from

propanol to acetone is also possible and breath propanol is highly correlated to environmental

concentrations in a clinical setting (Ghimenti et al 2013), this can be one reason why in human breath

analysis high variance in acetone levels is observed.

8.3.4.3. MC4R-ki specific peaks

Cluster of unknowns 151 (F), 153 (G), 137B (N) and 81B (C) In the gaussian graphical model, a

subnetwork affected in MC4R-ki mice was observed, featuring peaks 151 (F), 153 (G), 137B (N) and

81B (C). A literature search on similar PTR-MS fragmentation patterns revealed that monoterpenes

like α- and β-pinene, 3-carene, limonene and camphor produced fragment ions of masses 67, 81 and

95, as well as a protonated molecular ion of mass 137 or 153 (Tani et al 2003). Notably, in a human

lipid infusion study to predict plasma TG and FFA levels from breath volatiles, β-limonene and β-

pinene were relevant for the models (Minh et al, 2012). Also monoterpenes (137.137) and terpene-

related peak (135.119) have been found as breath markers for liver cirrhosis in a human study
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(Morisco et al, 2013). An altered diet composition, as one explanation the authors named, can be

excluded here. So either increased food consumption in MC4R-ki mice or the suggested alteration

hepatic terpene metabolism in this study can explain the elevated levels in obese mice. However, it

has to be noted that the observed peaks do not match the theoretical masses exactly. Possibly, the fact

that those peaks are far from the internal calibration masses typically applied in PTR-MS

measurements using H3
18O+ (21.02), NO+ (30.00) and protonated acetone (59.05) should be causing

this mass shift. Especially in the used PTR-TOF-2000 instrument with a resolution of <= 2000 m/Δm,

an added high molecular internal calibration gas can be useful to be included in future studies.

8.3.4.4. Unassigned volatiles

In addition, three further volatiles - namely peaks 50, 81B and 117B - were identified to be altered in

both obese mouse models. Unidentified peaks were also found in HFD-fed mice, including peaks

249B, 253A, 57A, 36B and 74B. Even more volatiles are considered unknown in MC4R-ki mice,

including peaks 44A, 123B, 135B, 36A, 122B, 137B, 113, 94B, 80B, 87B, 211 and 95B. Those

candidates are worth further exploration using complementary methods like classical pre-

concentration combined with gas chromatography–tandem mass spectrometry or a novel combination

of a fast-GC device to the PTR-MS for additional chemical information (Romano et al 2014).

However, altered experimental settings leading to increased VOC concentration can be necessary due

to the lower sensitivity of those methods. Alternatively, nose mask sampling could be applied despite

its obvious need for extensive acclimation of rodents to avoid stress induced effects on the measured

volatiles (Aprea et al 2012). Interestingly, data-driven models such as the applied Gaussian graphical

model can at least in part contribute to the identification of VOCs. In addition to the volatiles showing

effects in mixed effects models, peaks 126A and 48B did not show effects and are considered false

positives in the selection process.

8.3.5. Conclusion

In this study we characterized alterations in exhaled volatile organic compounds in both diet-induced

and mono-genetic obese mouse models and aimed to evaluate whether a common pattern of VOCs

altered in obesity can be determined. Alterations in the volatilome could be detected with a common

obesity VOC signature. Notably, different adiposity models create distinct shifts in the volatilome as

well, thus showing the potential of VOC analysis to monitor and distinguish different obesogenic
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mechanisms. Identified VOCs originate from various metabolic pathways and biological processes

including ketone body metabolism, lipid peroxidation and pheromones; allowing a broad overview

over metabolic state in a fast and non-invasive way. In addition, we suggest Gaussian graphical

models as a helpful tool in understanding and characterizing the volatilome. Thus, the analysis of the

volatile metabolome has the potential to contribute to a personalized medicine by aiding in the

stratification of patients with heterogeneous metabolic phenotypes and risk profiles.
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8.3.6. Supplements

Supplementary figure 1: VOC source strengths without significant high fat diet effects. Source strengths for

nominal mass-labelled peaks 50 (a), 249B (b), 43B (c), 61 (d) and 33B (e) are shown as boxplots (ordered after

selection probability in cross-validated AUC-RF algorithm). Box fill corresponds to diet (red: low fat diet; dark

red: high fat diet). Box border corresponds to fasting state (black: ad libitum fed; grey: fasted). Significant main

effects in mixed effects model are shown as dotted lines (black: diet, grey: fasting state). In case of interaction,

significant group differences are shown as black lines.  P-values are adjusted for a false discovery rate of 10 %.

Group sizes (n=9).
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Supplementary figure 2: VOC source strengths without significant genotype effects. Source strengths for

nominal mass-labelled peaks 117B (a), 61 (b), 33B (c), 123B (d), 153 (e), 113 (f), 94B (g), 35B (h), 126A (i),

87B (j), 211 (k) and 48B (l) shown as boxplots (ordered after selection probability in AUC-RF feature

selection). Box fill corresponds to genotype (blue: melanocortin-4-receptor wild type; dark blue: melanocortin-

4-receptor W16X knock-in). Box border corresponds to fasting state (black: ad libitum fed; grey: fasted).

Significant main effects in mixed effects model are shown as dotted lines (black: genotype, grey: fasting state).

In case of interaction, significant group differences are shown as black lines. P-values are adjusted for a false

discovery rate of 10 %. Group sizes: MC4R-ki fasted (n=15), MC4R-wt fasted (n=14), MC4R-wt ad lib (n=11),

MC4R-ki ad lib (n=9).
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Supplementary figure 3: Source strengths of pk62 in males and females. Source strengths of pk62 (MTMT)

are shown as boxplots. Box fill corresponds to genotype and sex (blue: male melanocortin-4-receptor wild type;

dark blue: male melanocortin-4-receptor W16X knock-in, yellow: female melanocortin-4-receptor wild type;

dark yellow: female melanocortin-4-receptor W16X knock-in). Box border corresponds to fasting state (black:

ad libitum fed; grey: fasted).
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Supplementary table 1: Linear mixed effects model testing showing genotype, diet and fasting effects

on VOC source strengths
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Supplementary table 2: Tentative assignment of peaks with significant diet, genotype or fasting effects and

interpretation of partial correlations to other peaks as depicted in the gaussian graphical model (figure 6).

Subnet peak
1

formula / assignment(s)
(mass)

prot.
mass

peak
2

formula  / assignment(s)
(mass)

prot.
mass

partial
cor.

Interpretation/
pathway

1 / red 18 NH3.H+

Ammonia (18.03) 18.03 46C
C2H7N structure:

CH3CH2NH2.H+/ Ethylamine
(46.07)

46.06 0.086 (bio)chemical reaction

2 / orange

63

CO2.H3O+ / Carbon
dioxide water cluster

(63.00)
C2H6S.H+ / Dimethyl

sulphide (63.02)

63.01 64B

13CO2. H3O+  / Carbon
dioxide water cluster (64.00)
Dimethyl sulphide (64.03) /

13CCH6S.H+

64.01 0.081 C-13 Carbon isotope

62
CH3SCH2.H+ /

(Methylthio)methanethiol
fragment (62.02)

62.02

64B CH3
34SCH2.H+ / MTMT
fragment (64.02) 64.01 0.074 S-34 Sulphur isotope

44B
13CCH3O.H+ / propanol

fragment (44.07) 44.07 0.077 Both increase in fasting/
morning

59 C3H6O.H+/ acetone (59.05) 59.05 0.083 Both increase in fasting/
morning

43B
C3H6.H+(43.06) /

propanol fragment (after
–OH loss)

43.07

45B
C2H4O.H+ / Acetaldehyde

(45.03)
C3H8.H+ / Propane (45.07)

45.05 0.078 Unknown/ (Bio)
chemical reaction

42
13CC2H4.H+ / propanol

fragment (42.05) 42.05 0.081 Carbon isotope of other
propanol fragment

27 C2H2.H+ (27.02) 27.01 0.084 Fragment

59 C3H6O.H+/ acetone (59.05) 59.05 0.091
(Bio) chemical reaction

catalyzed by alcohol
dehydrogenase (adh1)

44B
13CCH3O.H+  / propanol

fragment (44.07) 44.07 0.108 Carbon isotope

41 C3H4.H+/ propadiene,
propanol fragment (41.04) 41.05 0.204 Alternative propanol

fragment

59 C3H6O.H+  / Acetone
(59.05) 59.05

60B
13CC2H6O.H+  / acetone

(60.05) 60.05 0.077 C-13 Carbon isotope

62
CH3SCH2.H+ /

62.02 0.083 Both increase in fasting/
morning(Methylthio)methanethiol

fragment (62.02)

41 C3H4.H+/ propadiene,
propanol fragment (41.04) 41.05 0.089

(Bio) chemical reaction
catalyzed by alcohol

dehydrogenase (adh1)

43B C3H6.H+(43.06) / propanol
fragment (after –OH loss) 43.07 0.091

(Bio) chemical reaction
catalyzed by alcohol

dehydrogenase (adh1)

44B
13CCH6.H+  / propanol

fragment (44.07) 44.07 0.094
(Bio) chemical reaction

catalyzed by alcohol
dehydrogenase (adh1)

45B
C2H4O.H+  / acetaldehyde

(45.03)
C3H8.H+  / Propane (45.07)

45.05 0.096 (Bio) chemical reaction/
unknown

3 / yellow
75 C3H6O2.H+

Methyl acetate (75.04) 75.03

43A C2H3O+ / acylium ion (43.02) 43.03 0.087 Acetate fragment (-H2O
loss)

61 C2H4O2.H+ / acetic acid
(61.03) 61.03 0.090

Biochemical pathway /
chemical reaction

product / educt

33B CH3OH.H+  / methanol
(33.03) 33.04 0.090

Biochemical pathway /
chemical reaction

product / educt

60C C3H9N.H+ / Trimethylamine
(60.08) 60.08 0.093

High in chow ad libitum
/ Both can be affected in
presence of urine, e.g.

during cleaning behavior

76B
13CC2H6O2.H+  / Methyl

acetate (76.02) 76.02 0.095 Carbon isotope

61 C2H4O2.H+ / acetic acid
(61.03) 61.03 43A C2H3O+ / acylium ion (43.02) 43.03 0.157 Acetate fragment (-H2O

loss)
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33B CH3OH.H+  / methanol
(33.03) 33.04

95A C2H6S2.H+   / dimethyl
sulfone (94.99) 94.96 0.076

Both high in chow ad
libitum / methyl group

fragmentation

27 C2H2.H+  / fragment of
propanol (27.02) 27.01 -0.079

Inverse response to
fasting in propanol &

acetone subnetwork (2) /
possible reaction to

propanol

75 C3H6O2.H+  / Methyl acetate
(75.04) 75.03 0.090 (Bio) chemical reaction

60C
C3H7O.H+ / ? (60.06)

60.08 0.096

Both high in chow ad
libitum / Can be affected
in presence of urine, e.g.
during cleaning behavior

C3H9N.H+ / Trimethylamine
(60.08)

34B
13CH3OH.H+  / methanol

(34.04) 34.05 0.095 Carbon isotope

51B CH3OH.H3O+ / methanol
water cluster (51.05) 51.05 0.113 Water cluster formation

4 /olive
green

50 Not assigned 50.01 36A Not assigned 36.04 0.090 Relation unknown

36A Not assigned 36.04
50 Not assigned 50.01 0.090 Relation unknown

124A Not assigned 123.84 0.108 Relation unknown

109A Not assigned 108.87
124A Not assigned 123.84 0.074 Relation unknown

126A Not assigned 126?? 0.078 Relation unknown

5 / green 57A Not assigned 56.94
110A Not assigned 109.87 0.074 Relation unknown

198A Not assigned 197.65 0.079 Relation unknown

6 /
aquamarine 34A

17O2 / oxygen isotope
(34.00) 34.00

123A Not assigned 122.85 0.078 Relation unknown

213 Not assigned 213.94 0.078 Relation unknown

58B
C2H3NO.H+  (58.03)
CH3N3.H+ (58.04)
C3H5O.H+  (58.04)

58.03 0.076 Relation unknown

7 / cyan

81B

Not assigned
(pot. C4H4N2.H+  /
Pyrazine (81.05),
C6H8.H+ / hexenal

fragment / monoterpene
fragment (81.07))

81.04

151 Not assigned (pot. C10H14O
(151.10)) 150.99 0.099 Relation unknown

137B Not assigned (pot. C10H16.H+ /
Monoterpenes (137.14)) 137.00 0.112 Relation unknown

151 Not assigned (pot.
C10H14O (151.10)) 151.00

138B Not assigned 138.01 0.080 Relation unknown

137B Not assigned (pot. C10H16.H+ /
Monoterpenes (137.14)) 137.00 0.094 Relation unknown

81B

Not assigned
(pot. C4H4N2.H+  / Pyrazine

(81.05), C6H8.H+ /
monoterpene fragment

(81.07))

81.04 0.099 Relation unknown

153 Not assigned (pot.
C10H16O (153.12)) 152.99

137B Not assigned (pot. C10H16.H+ /
Monoterpenes (137.14)) 137.00 0.088 Relation unknown

96C Not assigned 95.97 0.098 Relation unknown

137B
Not assigned (pot.

C10H16.H+ /
Monoterpenes (137.14))

137.00

153 Not assigned (pot. C10H16O
(153.12)) 152.99 0.088 Relation unknown

151 Not assigned (pot. C10H14O
(151.10)) 151.00 0.094 Relation unknown

81B

Not assigned
(pot. C4H4N2.H+  / Pyrazine
(81.05), C6H8.H+ / hexenal
fragment / monoterpene
fragment (81.07) )

81.04 0.112 Relation unknown

8 / blue 74B Not assigned (pot.
C2H3NS (74.01)) 74.00

249A Not assigned 248.61 0.079 Relation unknown

86B Not assigned (C3H3NO2
(86.02)) 86.02 0.095 Relation unknown

87A Not assigned (86B C-Isotope) 87.00 0.106 Relation unknown
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9 / dark
blue 123B Not assigned (C7H6O2.H+

/ Benzoic acid (123.04)) 123.00 67B C3H2N2.H+  (67.03)
C5H6.H+  (67.05) 67.04 0.131 Relation unknown

10 / purple 135B Not assigned 134.98
68B Not assigned (pot. C4H5N.H+

(68.05)) 68.05 0.077 Relation unknown

253B Not assigned 252.96 0.081 Relation unknown

11 / light
pink 122B Not assigned 121.98 128B Not assigned 128.01 0.087 Relation unknown

12 / pink 95B

Not assigned (pot.
C6H6O.H+  e.g. Phenol

(95.05) / DMSO2
(95.01))

95.04 31B CH2O.H+ / Formaldehyde
(31.02) 31.02 0.089 Relation unknown

No
significant

positive
connections

to other
VOCs

211 Not assigned 210.97 110A Not assigned 109.88 -0.070 Relation unknown

35B CH3
16OH.H+ (35.04) 35.05

36B Not assigned (NH3.H3O+

(36.05)) 36.07

44A C2H3O (44.03) /
13CCH2O.H+ (44.03) 44.03

55B

H3O+.(H2O)2 / Water
cluster (55.04)

C4H6.H+  / butadiene as
fragment of aldehydes

(55.05)

55.05

57B acrolein (2-propenal,
C3H4O.H+) (57.03) 57.03

65B

Unassigned (pot.
C2H6

34S.H+   / DMS
sulphur isotope (65.03)
C18OO.H3O+ oxygen

isotope (65.01))

65.01

80B Not assigned 80.01

87B Not assigned 87.04

94B Not assigned 94.00

113 Not assigned 112.98

117B Not assigned 117.01

249B Not assigned 248.94

253A Not assigned 252.60
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