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geblieben und ohne die vielen Diskussionen mit ihm wüsste ich nicht viel von microRNAs

und Pathways.

Ich danke Hans-Werner Mewes für die Zweitbetreuung meiner Doktorarbeit. Durch seine

Vorlesungen hatte ich meinen ersten Kontakt zur Bioinformatik und auch meine Masterar-

beit hat er schon betreut. Iris Antes danke ich für den Vorsitz in der Prüfungskommission.
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Abstract

MiRNAs are small, ca. 22 nucleotide long endogenous RNAs which regulate gene expres-

sion. The landscape of post-transcriptional regulation, and gene expression in general,

changed dramatically with their introduction in the early 1990s. Today, it is widely

accepted that miRNA-mediated gene regulation influences most mammalian genes and

almost all biological processes. In many cases, however, the actual function of miRNA-

mediated regulation in vivo is not clear.

The network of miRNA-mediated regulation is highly complex and both the quantitative

aspects of miRNA-mRNA interactions as well as the cell specific e↵ect size are poorly

understood. Several long-standing paradigms of miRNA binding have recently been ques-

tioned by new experimental technologies using next-generation sequencing of miRNA-

target complexes.

In this thesis, we seek to identify the biological function of miRNAs. In order to deal

with the uncertainties in miRNA targeting data and capture the inherent complexity of

miRNA regulation, we include three systemic features of miRNA regulation into functional

analyses. Firstly, we show that distance-dependent cooperativity of miRNAs is a predictor

for their functional impact. Secondly, we demonstrate that miRNA regulation of biological

pathways is tissue specific. Thirdly, we identify novel regulatory mechanisms involving co-

regulation by miRNAs and miRNA-independent RNA-binding proteins.

The regulatory features are incorporated into three web applications which are developed

to support experimental miRNA research: miRco, miTALOS v2 and simiRa. They allow

to identify candidates with a high biological relevance from lists of potentially interesting

miRNAs. Researchers working with miRNAs can thereby generate new hypotheses for

functional regulation involving miRNAs.

The functional miRNA analyses presented in this thesis requires integration of a wide range

of public data sources. We develop a unified graph data model of the cell which allows

integration of molecular data and functional annotations. The noSQL graph database

neo4j is used for a reference implementation to demonstrate the advantages of our data

model in terms of flexibility and query structure.

In summary, we use systemic features of miRNA-mediated gene regulation to improve

functional analyses and share our methods as web applications. A novel graph data model

is used to integrate data throughout the individual analyses.
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Zusammenfassung

MiRNAs sind kurze, ca. 22 Nukleotide lange RNAs, welche die Genexpression regulieren.

Unser Bild der post-transkriptionalen Genregulation wurde revolutioniert, als die lange

unbeachteten miRNAs in den 1990ern entdeckt wurden. Heute wird allgemein anerkannt,

dass fast alle Gene in vielzelligen Tieren von miRNAs reguliert werden und miRNAs somit

an allen wesentlichen biologischen Prozessen beteiligt sind. Ihre tatsächliche Funktion in

vivo ist jedoch häufig unbekannt.

Das regulatorische Netzwerk aus miRNAs und Zielgenen ist sehr komplex und sowohl die

Parameter der miRNA-mRNA-Bindung als auch der quantitative Einfluss von miRNAs auf

die Genregulation sind umstritten. Einige Paradigmen der miRNA-basierten Regulation

sind durch neue experimentelle Methoden basierend auf next-generation sequencing von

miRNA-mRNA-Komplexen in Frage gestellt worden.

In dieser Arbeit analysieren wir die biologische Funktion von miRNAs. Um mit der

Komplexität von miRNA-Regulation und der Unsicherheit bezüglich miRNA Zielgenen

umzugehen, nutzen wir systemische Merkmale der miRNA-basierten Regulation für funk-

tionale Analysen. Zuerst zeigen wir, dass distanzabhängige Kooperativität von miRNAs

genutzt werden kann, um ihren funktionalen Einfluss vorherzusagen. Zweitens legen wir

dar, dass die Regulation von Pathways durch miRNAs gewebespezifisch ist. Drittens

identifizieren wir neue regulatorische Zusammenhänge basierend auf Coregulation durch

miRNAs und RNA-Bindeproteine.

Diese regulatorischen Merkmale werden in drei Webanwendungen eingebaut, die experi-

mentelle miRNA-Forschung unterstützen sollen: miRco, miTALOS v2 und simiRa. Sie

identifizieren Kandidaten für experimentelle Tests aus Listen von potentiell interessanten

miRNAs und generieren so neue Hypothesen für regulatorische Zusammenhänge.

Die funktionalen Analysen, die hier vorgestellt werden, nutzen Daten aus vielen verschiede-

nen ö↵entlichen Quellen. Wir entwickeln ein allgemeines Graphmodell einer Zelle, mit

dem wir molekulare Daten mit Annotationen integrieren. Eine Referenzimplementierung

mit der Graphdatenbank neo4j wird genutzt, um die Vorteile des Datenmodells bezüglich

Flexibilität und strukturierten Abfragen zu zeigen.

Zusammengefasst nutzen wir in dieser Arbeit systemische Merkmale von miRNAs um ihre

funktionale Analyse zu verbessern und entwickeln Webanwendungen aufbauend auf un-

seren Methoden. Ein neuartiges Graphmodell wird zur Datenintegration über die einzelnen

Analysen hinweg genutzt.
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Chapter 1

Introduction

The development and homeostasis of living organisms depends on fine-grained regulation

of the complex interactions that occur in its basic building block, the cell. After discovery

of cellular structures and the principles of heredity, a fundamental question arose: How

is information stored, inherited from parents to progeny and translated into the complex

molecular interactions underlying all biological processes.

In the early 20th century, geneticists defined a ’gene’ as a unit of inheritance and located

them on the chromosomes. Without knowledge of the molecular basis, Thomas Hunt

Morgan generated genetic maps of the fruitfly Drosophila melanogaster by crossing wild-

type flies with mutants and observing ratios of inheritance. Proteins as distinct biological

macromolecules have been known from the beginning of the 19th century. It took until the

1920ies, however, until their pivotal role in biological processes became evident. James B.

Sumner demonstrated in 1926 that urease, the enzyme that catalyzes hydrolysis of urea,

is a protein [1].

From that point, the molecular nature of genes and inheritance was established. It was

unclear, however, how the genotype and the molecular phenotype are related. In 1941,

Beadle and Tatum proposed the ”one gene one enzyme” hypothesis, stating that a single

gene gives rise to a single enzyme which catalyzes a single step in a metabolic process

[2]. Consequently, they assumed a linear relationship between genotype and phenotype.

This oversimplified view has been extended from the 1950ies, when Watson, Crick and

others cracked the ”genetic code” and described the ”central dogma” of molecular biology:

Genes are encoded in the DNA, transcribed into messenger RNA and then translated into

proteins [3, 4, 5]. In this process, referred to as gene expression, sequence information is

not transferred backwards.
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The principles of their discoveries still hold true today. But while there is a flow of

information from gene via transcript to protein, there is no linear relationship between

transcriptional activity and protein production. On a cellular level, the correlation of

transcript abundance to corresponding protein levels is limited [6, 7]. Moreover, the level

of correlation varies between di↵erent cell types and cell type specific protein levels cannot

be explained by changes in gene expression only [7]. A plethora of molecular mechanisms

govern the regulation of gene expression and their complex interdependencies are still not

fully understood. It is clear, however, that correct regulation of gene expression is essential

and abnormalities in this fine-tuned process lead to diseases.

RNA was thought to merely act as a template for proteins. During the last decades,

however, a multitude of RNAs with functions beyond encoding of proteins were discovered.

The first non-coding RNA was described in 1965 when the structure of transfer RNA was

elucidated [8]. This was followed by ribosomal RNAs and RNAs with enzymatic activity

in splicing [9, 10]. In the 1990ies, the world of non-coding RNAs was revolutionized

when previously overlooked small RNAs were shown to participate in post-transcriptional

silencing of genes [11, 12]. Among the small non-coding RNAs, microRNAs (miRNAs)

stand out as universal regulators of gene expression. They emerged as a key component

in cellular regulation and were shown to play a role in almost all biological processes and

pathogenesis of many diseases.

Many functional details of miRNA mediated regulation remain poorly understood. While

regulation of individual genes has been demonstrated in numerous studies, their system-

level e↵ect in vivo is often unclear [13]. The main goal of this thesis is to analyze the

biological function of miRNAs. Systemic features of miRNA mediated regulation are

included in the analysis to capture the complex role of miRNAs in regulation of biological

processes.
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Figure 1.1: Principle of miRNA and RBP mediated regulation of gene expression. A)
Pre-miRNAs are either transcribed from individual loci as pri-miRNAs and subsequently
cleaved or spliced from host genes as intronic miRNAs. Dicer produces 22 nt long double
stranded miRNAs. One of the two strands is then embedded in the AGO protein to
form the miRISC while the other is discarded. B) MiRNAs regulate gene expression by
binding to mRNAs and either repress translation or promote degradation of the target.
C) MiRNA-independent RBPs are involved in regulation of gene expression on all levels
of the mRNA life-cycle.

1.1 MicroRNA Mediated Gene Regulation

MiRNAs are small, ca. 22 nucleotide long endogenous RNAs which regulate gene expres-

sion [14, 15]. The landscape of post-transcriptional regulation, and gene expression in

general, changed dramatically with their introduction in the early 1990s. The first discov-

ery was lin-4, a miRNA which participates in regulation of developmental timing in the

nematode C. elegans [16, 17]. In 2000, let-7 was found as the second miRNA regulating

the same process [18]. Let-7 was also shown to be evolutionary conserved from C. elegans

to Drosophila, zebrafish and human. With this finding, the general relevance of RNA

based regulation of gene expression became evident.

MiRNAs have been predominantly described to silence gene expression by repressing trans-

lation or promoting degradation of mRNAs [19]. They execute their function by binding

to target mRNAs as part of ribonucleoprotein complexes usually referred to as miRNA-
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induced silencing complex (miRISC) or micro-ribonucleoprotein particles (miRNP). The

miRNA is embedded into an Argonaute (AGO) protein, a family of proteins with four con-

served family members in mammals (AGO1 to AGO4)[20]. MiRNAs guide the miRISC

to its target RNA and mediate sequence specific binding, however, they are not necessary

for the regulatory e↵ect [21]. miRISCs also include other proteins which participate in

assembly and mediate target regulation [22].

In metazoans, miRNAs arise from two genetic origins: They are either transcribed by

RNA Polymerase II from individual loci, resulting in pri-miRNA molecules, or as parts of

introns of protein coding genes (Figure 1.1A). Pri-miRNAs are further processed by the

Drosha/DGCR8 protein complex to produce smaller, ca. 80 nucleotides long precursor

miRNAs (pre-miRNAs). Pre-miRNAs usually have a hairpin structure and the mature

miRNA sequence is located in the stem region. Intronic miRNAs are processed into pre-

miRNAs during splicing. The pre-miRNA is transported to the cytoplasm where it is

cleaved by Dicer and subsequently embedded in an AGO protein upon formation of the

miRISC [23]. Dicer is indispensable for miRNA maturation and, consequently, a knock-

out of the Dicer gene results in a complete loss of all miRNA function. Early in miRNA

research, Dicer knock-outs have been used to show that miRNAs are necessary for almost

all biological processes.

Many details of the mechanism behind miRNA-mediated gene regulation remain unclear.

It has been shown that mammalian AGO2 is able to endonucleolytically cleave mRNA

[24, 25] if there is perfect base pairing between miRNA and target mRNA. However,

base pairing is usually incomplete whereupon AGO proteins exert their function through

recruitment of e↵ector proteins. This leads to either deadenylation of the mRNA and

subsequent degradation or inhibition of translation (Figure 1.1B). The process of dead-

enylation is initiated through interaction of AGO with glycine-tryptophan protein of 182

kDa (GW182), which, in turn, recruits the CCR4–NOT deadenylating complex. The

molecular mechanisms behind translational repression are poorly understood and di↵er-

ent modes of action have been proposed. This includes repression of translation at the

initiation stage as well as elongation.

Generally, the binding properties of miRNA-mRNA interactions are not fully understood.

Two points remain widely discussed: Firstly the miRNA-mRNA hybridization structure of

e↵ectual binding sites and secondly the localization of binding sites on the target mRNA.

Early studies based on known lin-4 and let-7 binding sites and computational analysis of

evolutionary conservation suggested that complementary binding of nucleotide 2 to 8 from

the 5’ end of the miRNA nucleates the binding [26, 27, 28]. Later, this was supported
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by analyses of the crystal structures of AGO-RNA complexes. These studies showed that

nucleotides 2 to 10 of the miRNA are stacked within the AGO protein. Nucleotides 2 to 6

are oriented for nucleation with the target mRNA while nucleotides at position 10 and 11

are less likely to hybridize [29, 30, 31]. The nucleotides 2 to 8 have hence been named ’seed

region’ and binding sites with seed complementarity are referred to as ’canonical’. Today,

seed complementarity is widely accepted as one of the major determinants of functional

repression of target mRNAs [32]. Lin-4 and let-7 have the vast majority of their binding

sites in the 3’ UTR of their target mRNAs [18] and binding sites in the 3’ UTR were

shown to be under strong evolutionary selection [32, 33]. Based on these observation,

functional miRNA binding sites were thought to be preferably located in the 3’ UTR of

protein coding genes.

Since the early days of miRNA research, computational methods based on seed comple-

mentarity in the 3’ UTR have been developed for de novo prediction of miRNA target

genes. Many methods also include free energy of miRNA-mRNA binding and binding site

accessibility [34]. Beyond that, individual target prediction methods employ various addi-

tional features to improve their performance. TargetScan, a well-known target prediction

tool, uses evolutionary conservation of the binding site as well as additional sequence fea-

tures such as A-U content and location at the end of the 3’ UTR [26, 28, 35, 36]. Various

other target prediction tools have been extensively reviewed [37, 34, 38]. However, the

results of di↵erent prediction methods are often inconsistent and their performance can

only be assessed based on the small set of known miRNA-mRNA interactions [39, 40].

Moreover, all common prediction methods produce high numbers of false positive results

[41].

More recently, biochemical methods to elucidate miRNA-mRNA interactions were devel-

oped. They are based on sequencing of cross-linked AGO-RNA complexes (CLIP-seq)

and allow to generate maps of all miRNA binding sites on their target mRNAs. Several

modifications of this approach have been reported: HITS-CLIP [42, 43], PAR-CLIP [44],

iCLIP [45], CLASH [46] and CLEAR-CLIP [47]. All methods use UV cross-linking which

forms irreversible, covalent bonds between proteins and nucleic acids in close proximity

and does not cross-link proteins. Subsequently, the protein-RNA complex of interest is

immunoprecipitated with an antibody and the bound RNA is extracted, transcribed into

cDNA and sequenced. Binding sites of the protein are recovered by mapping the sequences

to a reference genome. PAR-CLIP extends this approach by introducing the photoreac-

tive ribonucleoside analog 4-thiouridine, which is incorporated into all transcripts. After

cross-linking, characteristic sequence changes from T to C are detected in the sequenced

cDNA. These changes mark binding sites and allow to discriminate RNA which is pre-
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cipitated but not bound. CLASH and CLEAR-CLIP ligate the miRNA and the bound

mRNA and sequence these hybrid. This allows to directly identify the binding site, while

other CLIP methods map to the genome by assuming complementarity in binding of

miRNA and mRNA. In summary, these studies complemented the aforementioned inter-

action paradigms and suggested that binding occurs in all parts of the target mRNA and

that the majority of binding sites is non-canonical, i.e. they do not show full comple-

mentarity of the miRNA seed region [46]. This finding contradicts the basic assumptions

used for computational target prediction methods and questions their utility for functional

miRNA research.

In CLIP-seq data analysis, the exact binding site and specific miRNA have to be deter-

mined computationally. Next to the straight forward approach of sequence alignment to

the reference genome, several computational models were developed for the prediction of

binding site properties from CLIP-seq data. ”PAR-CLIP miRNA assignment” (PARma)

integrates sequence position and characteristics of the experiments, such as the specific

processing signature of the nuclease used in sequencing library preparation, into a gener-

ative model that scores the most likely miRNAs [48]. MicroMUMMIE combines various

additional features such as the type of miRNA seed, evolutionary conservation, sequence

composition and positioning of the binding site within the peaks of CLIP-seq reads in a

framework that outperforms sequence-only methods in prediction of the specific miRNA

[49]. Lastly, MIRZA uses a biophysical model of miRNA-mRNA interactions that does not

assume seed complementarity or other binding paradigms [50]. The energy parameters of

the interaction model were inferred from CLIP-seq data. Interestingly, without assuming

seed complementarity, this model identified even more non-canonical binding sites than

previous methods.

Next to silencing of target genes, there is also few evidence for positive regulation of gene

expression by miRNAs [51, 52, 53]. Possible explanations for these e↵ects are subsumed

under the concept of competing endogenous RNA (ceRNA) [54] which describes indirect

regulatory e↵ects between RNAs. There can be more potential miRNA binding sites than

available miRNA molecules and target genes thus compete for binding to shared miRNAs.

Up-regulation of a transcript with many binding sites for a given miRNA can decrease or

abolish the e↵ect on other target genes by acting as a miRNA sponge. These regulatory

networks have been demonstrated to participate in formation of various cancer types [55,

56, 57, 58]. The ceRNA hypothesis was also considered to explain tissue specific regulatory

e↵ects which have been demonstrated for many miRNAs. Next to gene silencing, other

miRNA functions have been suggested. In 2004 already, miRNAs were shown to play a

role in DNA methylation [59] and recently the evidence for an involvement in epigenetic
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regulation accumulated.

Ambiguity of individual miRNA-mRNA interactions and complex regulatory relationships

severely hinder functional miRNA analyses. Despite recent advances in CLIP-seq technolo-

gies, the results still su↵er from a lack of reproducibility [60]. Moreover, miRNA-mediated

regulation identified by in vitro over-expression and loss-of-function experiments is often

not supported in vivo [13].

1.2 MicroRNA-independent RNA-binding proteins

AGO, as a key component of miRISC, binds to the mRNA and can thus be categorized as

a RNA-binding protein (RBP). However, next to AGO there are a multitude of miRNA

independent RBPs. Throughout their life-cycle of transcription, processing, transport,

translation and decay, mRNAs are bound and accompanied by various di↵erent proteins

in messenger-ribonucleoprotein (mRNP) complexes (Figure 1.1C) [61, 62]. In a recent

e↵ort to catalogue RBPs, more than 1500 proteins have been identified [63].

Since the early 1990ies, biochemical in vitro methods have been used to study RNA-protein

interactions. In particular, systematic evolution of ligands by exponential enrichment (SE-

LEX) has been employed to identify RNA-binding elements of proteins [64]. Based upon

this in vitro data, many new RBPs were identified through sequence homology and predic-

tion of protein domains [65]. Later on, methods based on immunoprecipitation of cross-

linked RNA-protein complexes followed by microarray analysis of the RNA component

allowed further insights into RNA-protein interactions [66].

The universe of RBPs was greatly expanded with new high throughput methods based

on next-generation sequencing and mass spectrometry. Interactome capture methods were

developed to map the complete RNA-bound proteome. Here, RNAs and proteins are cross-

linked with UV light. Subsequently, complexes of polyadenylated RNAs and proteins are

extracted and the RNA-binding proteins are analyzed with mass spectrometry [67, 68, 69].

In a reciprocal approach, CLIP-seq methods have been used to identify the targets of

individual RBPs [70, 71]. All methods not including a ligation step are suitable for all

miRNA-independent RBPs.

Despite advances in experimental technologies to identify RNA-protein interactions, sim-

ilar issues exist as described for miRNA-mediated gene regulation. There is currently no

way to reliably predict all target mRNAs of an RBP and the prospective e↵ect of the RNA-

protein interaction. While many binding-motifs are known [72] and sequence-independent
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binding determinants such as mRNA structure were discovered [73], the RNA-protein

interaction network is not fully deciphered. Moreover, RBPs are very diverse in their

function, ranging from the splicing machinery to post-transcriptional regulation.

1.3 Functional Analysis of MicroRNAs

Today, the number of genes, transcripts and proteins can be be reasonably estimated,

at least in human and mouse [74, 75]. As such, we have an overview of the molecular

components of a cell and hence the nodes of the cellular interaction network. However, it

is often unclear how these molecular components interact in order to carry out a specific

biological process. The size and structure of the cellular interactome remains ellusive.

Consequently, functional genomics approaches employ high-throughput technologies to

map the regulation, interaction and function of genes and their products.

On DNA level, ChIP-seq experiments provide insights in transcription factors binding

to DNA and epigenetic modifications regulating gene activity. On the transcript level,

the aforementioned CLIP-seq experiments yield RNAs which are bound by miRNAs and

RBPs, interactome capture methods identify sets of RNA-bound proteins and RNA-seq

experiments find regulated transcripts. On the protein level, mass spectroscopy based

methods are able to identify regulated proteins or proteins undergoing modifications.

These high-throughput methods, collectively named omics technologies, often generate

lists of genes or proteins relevant in the context under investigation. Ever since microar-

rays have been widely adopted to measure gene expression, a central question arose in

high-throughput biology: What is the biological function of the identified genes, tran-

script or proteins?

The biological function itself is often di�cult to capture and the description of a function

is a matter of perspective and the designated level of detail. Mitogen-activated protein

kinases (MAPK), for example, are a class of proteins that phosphorylate other proteins.

As such, their function can be described as ’protein phosphorylation’. They carry out their

function in a signaling pathway consisting of a cascade of protein phosphorylations. On

this level, the function can be described as ’MAPK signaling pathway’. The pathway is

involved in regulation of cell proliferation and di↵erentiation. Consequently, the function

of MAPK can be characterized as ’regulation of proliferation’.

The two main categories used for classification of gene sets are biological pathways and

functional ontologies. A plethora of computational approaches were developed to associate
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gene sets to these categories in order to describe their function.

1.3.1 Biological Pathways

A biological cell requires tight regulation in order to maintain its function. The elements of

a cell, that is genes, macromolecules such as RNAs and proteins, and metabolites, interact

to process external signals, transport information and control changes of cellular processes.

In order to structure the cellular regulation map, the large and complex interaction network

was sub-divided into distinct smaller modules, referred to as biological pathways. They

subsume all components of a cell which interact to perform or change a specific process.

Accordingly, pathways are used as a functional category to study the systemic e↵ects and

functional role of gene sets such as miRNA targets.

While there is no consistent definition of a pathway, its size or members, they can be cat-

egorized in di↵erent classes. Signal transduction pathways transfer information, such as

external stimuli, and lead to a change in behavior. The Wnt-signaling pathway, for exam-

ple, transduces the binding of secreted glycolipoproteins of the Wnt family to cell surface

receptors and is involved in embryogenesis and cell proliferation [76]. Metabolic pathways

describe enzymatic processing of metabolites, such as glycolysis and gluconeogenesis. Next

to classification based on function, pathways can be defined by other properties such as

association to a disease [77].

Various public databases compile, curate and maintain biological pathways [78]. They

focus on di↵erent aspects of cellular regulation with varying levels of detail, ranging from

presence of an interaction to quantitative chemical reaction rates. Among the most popular

are KEGG [79], Reactome [80] and WikiPathways [81]. KEGG was established in 1995

as the first pathway database. It includes both signaling and metabolic pathways with

curated, easily interpretable visualizations. However, it gives a high-level overview of the

interactions and contains limited metadata. Reactome provides a more detailed view on

the individual interactions within a pathway. Enzymatic reactions are described with all

input and output components. WikiPathways, on the other hand, is a community e↵ort

for curation of pathways. A plethora of other databases collects pathways with a focus on

various aspects of cellular regulation. Chowdhury et. al provide a comprehensive, recent

overview [82].
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1.3.2 Functional Ontologies

Ontologies provide a formal, controlled vocabulary for a body of knowledge in various do-

mains in biology and medicine. They have been developed to describe biological processes,

diseases, cellular components or experimental setups. Ontologies increase interoperability

of data and allow standardized description of biological topics. Similar to pathways, they

are used as a functional categories to classify genes.

One of the key applications of ontologies in biology is to annotate genes, proteins or other

molecular components. The most widely used biological ontology and annotation project

is the Gene Ontology (GO) [83]. GO consists of three independent ontologies for biological

processes (BP), molecular function (MF) and cellular component (CC) which currently

contain more than 40.000 terms. They are used to describe processes such as ”cell cycle”,

specific molecular functions such as ”protein phosphorylation” and localization within the

cell such as ”cytoplasm”. Each ontology has a single root node and terms are hierarchical,

that is child terms are generally more specific than parent terms. However, child terms

can have multiple parents and can be connected to parents with multiple relationships.

The GO consortium compiles and maintains annotation of gene products, providing the

most comprehensive collection of functional annotations. In 2015, more than 50 million

gene products for more than 400,000 organisms were annotated. The vast majority of

annotations was generated automatically, only 300,000 were manually curated [84]. The

annotations are classified by evidence codes which describe the source of the information

and, consequently, can be used to filter for more reliable data points.

The number of ontologies for biomedical research is constantly growing [85]. Projects

such as the OBO foundry have been established to collect, coordinate and harmonize

ontologies [86]. The Ontology Lookup Service [87] and BioPortal [88] integrate a wide

range of ontologies and provides a centralized interface.

A plethora of other ontologies and associated annotation projects exist. Disease Ontology

for human diseases [89], BRENDA Tissue Ontology for tissues and cell types [90] and the

Ontology for Biomedical Investigations for the description of experimental research [91].

The pathway databases described above can be considered as controlled vocabularies as

well. They define terms for individual pathways and provide annotation of genes and

proteins. They usually do not use all concepts of structured ontologies and do not adhere

to data formats commonly used for ontologies.
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1.3.3 Functional Enrichment Methods

A multitude of di↵erent methods have been developed to associate the lists of genes pro-

duced in high-throughout experiments with pathways and GO terms. Here, pathways

and GO terms are treated as functional categories and as indicator of biological function.

Many of these methods detect an enrichment of the genes of interest in pathways and

GO terms [92]. They generally assume that a functional category is relevant if it contains

more genes from the analyzed list than expected by chance. The enrichment is usually

described with an odds ratio of the genes within a category compared to a background.

The significance of the enrichment is determined with a hypergeometric test or the equiv-

alent Fisher’s exact test [93]. The simple enrichment approach of using fixed lists of genes

has been extended by gene set enrichment analysis (GSEA). Here, the complete result of

a high-throughput experiment, such as all genes with fold-changes in a gene expression

study, are used to rank functional categories [94]. GO terms are structured hierarchically

and if a gene is annotated to a term it is also annotated to all parent terms. This leads

to a large number of related terms with overlapping annotations. Recently, probabilistic

methods were developed which include all functional categories at once and account for

dependencies between the categories [95].

While functional enrichment analyses provide valuable insights into the biological context

of gene sets, they su↵er from major drawbacks. Firstly, the enriched categories cannot

be validated. There is no comprehensive catalogue of validated gene-category associations

and thus no ground truth to assess the accuracy of the enrichment method. Comparing

associations to limited curated sets of known associations is therefore subject to a large

bias in manually curated data. Secondly, the mere association of a gene list to functional

categories does not implicate an actual impact on the process. Over-representation of genes

in a signaling pathway does not determine the regulatory e↵ect, that is if the pathway

signal is activated, silenced or not a↵ected at all. Thirdly, associated categories need

further interpretation. If a pathway or GO term is too broadly defined, the relation

between functional categories and the biological context under investigation are di�cult

to deduce.

1.3.4 Functional Enrichment with miRNAs

MiRNAs are important components of the cellular regulation network and, consequently,

their impact on biological pathways has long been under investigation. Specifically, miRNA

mediated regulation of signal transduction pathways was studied extensively. These path-
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ways generally translate an external signal from a cell-surface receptor into gene expres-

sion. The strength of this signal and the specific genes which are a↵ected are modulated

through signal processing by the pathway. Among the first observations was that miR-

NAs preferentially target downstream components of signal transduction pathways [96].

Also, specific regulatory motifs involving miRNAs were uncovered. Both Feedback and

feed-forward loops where miRNAs and their target genes are either positively or nega-

tively co-regulated by an upstream factor have been shown to be a dominant factor of

miRNA-mediated regulation in signal transduction [97].

Signaling pathways are able to activate target genes, however, in absence of the signal,

the target genes have to be switched o↵. MiRNAs were shown to participate in the

repression of signaling targets and realize the ’default repression’ of those genes. In a

reciprocal case, miRNAs also participate in ’default activation’ of genes which are later

switched o↵ in a response through external signals [98]. In addition to regulating the

default behavior of signaling pathway targets, miRNAs participate in context-dependent

processing of signaling. That is, the binding of a ligand to a cell surface receptor can

have di↵erent results in di↵erent cell types. Here, di↵erent expression levels of miRNAs

confer the cell type specific response. This e↵ect has been demonstrated for both TGF�-

signaling [99] and the Wnt/�-catenin pathway [100]. The e↵ects of miRNAs on signal

transduction were extended to signaling robustness, that is the ability of the pathway to

retain its function under perturbations from internal or external sources. MiRNAs were

shown to confer robustness and participate in accurate timing of cellular signaling and

precise regulation of biological changes such as cell-fate decisions in development [101].

Functional enrichment of miRNA target genes provides a way to categorize the functional

role of the miRNA. However, the uncertainty in miRNA targeting data poses a challenge.

The complete set of e↵ectual miRNA-mRNA interactions is not known and target pre-

diction methods and biochemical approaches for target identification yield contradictory

results. Also, the e↵ect size of miRNA-mediated regulation of target genes is ambiguous.

It has been shown that miRNAs mostly have mild e↵ects on the protein level of their tar-

get genes [102]. Hence, even if a miRNA is thought to target genes of a specific pathway,

the pathway as a whole might not be a↵ected at all.

The genome wide distribution of miRNA target genes is unclear. The breadth of research

discovering miRNA regulation of biological processes lead to the general assumption that

all genes are potential miRNA targets. A general preference for particular target genes

might question the applicability of functional enrichment methods for miRNA target genes.

Indeed, recent studies suggested a general bias of miRNA targets towards gene with high
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transcriptional noise [103] and uncovered a bias in functional enrichment analyses [104].

Several computational methods were developed to mitigate problems in functional en-

richment of miRNAs. ”Functional assignment of miRNAs via enrichment” (FAME), for

example, considers the predicted e↵ect sizes of miRNA-mRNA interactions to improve

the relevance of associated functional categories [105]. FAME utilizes a weighted, directed

bipartite graph of miRNAs and their target genes. Both the number of miRNA binding

sites and the predicted strength of the repression, as represented by the TargetScan score,

were thus considered. Statistical significance is calculated through comparison to degree-

preserving permutations of the miRNA-mRNA graph. FAME detects specific functions

for miRNAs with similar seed sequence which are often overlooked by common enrichment

methods.

1.4 Data Storage for Functional Analyses

Functional analyses rely on data generated by recent high-throughput omics technologies.

They measure di↵erent types of molecules and thus capture multiple levels of cellular

regulation. The key challenge in analyzing regulatory processes in a systemic way is to

integrate data from di↵erent omics levels. However, the combined analysis of multiple

omics datasets from di↵erent sources is di�cult. In order to integrate them and draw

conclusions, biological knowledge about interactions between the omics levels as well as

functional annotation such as GO terms and pathways have to be included.

For example, to asses the impact of a transcription factor on gene expression, ChIP-seq

experiments have been combined with complementary RNA-seq approaches [106]. The

ChIP-seq experiment yields genomic positions of the transcription factors’ binding sites

while the RNA-seq experiment quantifies the amount of mRNA. To answer the biological

question which genes are regulated by this transcription factor, however, additional infor-

mation about transcribed genes, splice variants and gene promotors have to be considered.

We assume a functional interaction only when the transcription factor binds within or near

the promoter of a transcribed gene and the mRNA products of this gene can be mapped

backed to their genomic origin.

This simple problem comprising two regulatory levels is well studied and can be handled

with standardized methods of gene expression analysis [107]. If we add more regula-

tory levels, however, the required amount of prior knowledge increases exponentially. For

example, miRNA expression can be quantified in addition to mRNA from an RNA-seq
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experiments [108, 109]. To include miRNAs in the analysis, we need information about

miRNA target mRNAs. To cover feedback loops, we need to know if the analyzed tran-

scription factor also regulates expression of miRNAs and if the expressed miRNAs regulate

the transcription factor. The complexity increases further, if we also include ChIP exper-

iments to analyze the epigenomic landscape of histone modifications, as is done in recent

functional epigenetic analyses [110, 111].

In summary, the growing variety of experimental technologies and the complexity of the

interactions between measured molecules are key challenges in the e↵ort to answer func-

tional biological questions on a systemic level by integrating omics data sets.

1.4.1 Graph Databases

Relational database management systems (RDBMS) such as MySQL or PostgreSQL have

served as the primary means to store all types of data. They generally adhere to the

relational data model and use SQL as query language for data retrieval. All data is stored

in strongly typed tables where rows represent records and columns denote attributes.

Relationships between records are implemented with key attributes.

In recent years, a wide range of new database technologies were developed in answer to

the growing challenges of big data. While big data lacks a universal definition, it is usually

associated with the growth in data volume, increased velocity of data input and output,

and large variety of data types. These new technologies are collectively called ’noSQL’

databases, short for ’not only SQL’. They extend the relational data model and provide

new paradigms for storage and retrieval of data. Usually, they are classified in four groups:

I) Key-value stores provide a simple data model by storing only key-value pairs. II) Wide-

column stores implement table like structures which can be describes as nested hash maps.

They are geared towards scalability and distributed deployments. III) Document stores

use a semi-structured data model to deal with diverse data. IV) Graph databases use a

network model to store data as nodes connected by edges.

NoSQL databases have been adopted for the storage and retrieval of biological data sets,

especially in the field of next-generation sequencing [112]. Various noSQL data models

have been developed which show an increased query performance and scalability compared

to relational databases [113].

Graph databases are particularly promising for high-dimensional biological data sets. They

store data in a property graph model, that is nodes are connected by relationships and
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Figure 1.2: (A) Simplified graph representation of molecular entities in a cell with an-
notation elements such as pathways and GO terms. (B) Detailed example of the direct
modeling of molecular entities and their relationships. (C) A query example from the
graph database neo4j selecting the gene ’MAPK’ and returning the proteins encoded by
the gene.

key-value properties stored on both. They allow to directly model biological interac-

tion networks which consist of molecular entities and their interactions. Figure 1.2A

shows a simplified general graph model of the molecular components of a cell (e.g. genes,

transcripts, miRNAs) and associated annotation data (e.g. pathways, tissue expression).

Relationships between the nodes in a graph database can be denoted with meaningful

relationship types (Figure 1.2B), resulting in straightforward queries directly describing

the biological question (Figure 1.2C).

Compared to relational databases, they excel for queries where multi-step paths are re-

trieved from the graph. The equivalent query in a relational database would use multiple

nested JOIN operations which show a significantly lower performance [114, 115]. More-

over, graph databases provide linear local path query performance independent of global

graph size. Since many of the questions in todays biology are centered on the interactions

between elements of a cell and thus on relationships in the graph model of a cell, graph

database have a huge potential to improve storage for high-dimensional biological data.

Graph databases have been used in various fields of biology. Most applications are based

on neo4j, the most widely used graph database. The Disease Ontology project is a knowl-
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edge base of human diseases [116]. Other ontology related projects have used neo4j to

integrate clinical ontologies with medical patient records [117] and to perform semantic

text-mining [118]. Structured models from modeling markup languages such as SMBL

were also translated to graph databases [119, 120]. Data analysis tools for high-content

microscopy [121] and visual data prioritization [122] use neo4j as principal data storage.

Also, recent studies store data on protein interactions [123] and Arabidopsis signal trans-

duction [124]. The alternative graph database OrientDB was used for the analysis of

networks of non-coding RNAs [125].
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Figure 1.3: (A) Additional regulatory features are introduced to capture systemic e↵ects
of miRNA-mediated regulation in functional pathway analysis. (B) Neighboring miRNA
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(C) Genes are not uniformly expressed among tissues. MiRNA regulation of pathways
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1.5 Research Questions

Post-transcriptional down-regulation of target genes by miRNAs is a widespread phe-

nomenon that influences most mammalian genes. In many cases, however, the actual

function of miRNA-mediated regulation in vivo is not clear.

The primary question addressed in this thesis was how we can elucidate the biological

function of miRNAs (Figure 1.3A). Current functional analyses do not account for the

complexity of miRNA regulation due to limitations of targeting data and enrichment

methods. We thus included three systemic features of miRNA mediated regulation into
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functional miRNA analysis in order to capture systemic e↵ects (Figure 1.3B-D):

1. We first addressed distance-dependent cooperativity of miRNAs (Figure 1.3B). It is

generally believed that mammalian mRNAs carry multiple miRNA binding sites and

are in fact regulated by multiple miRNAs simultaneously. Experimental studies with

reporter constructs suggested that binding sites in close proximity increase the down-

regulation of target genes and produce cooperative e↵ects, that is the repression of

the target gene is higher than the additive e↵ects of the individual binding sites

[126, 127]. We asked if binding-site distance functions as a genome-wide predictor

of miRNA cooperativity and if cooperative regulation has implications for miRNA

function (Section 2.1).

2. Protein coding genes are not uniformly expressed among di↵erent cell types and tis-

sues [128]. Consequently, miRNA mediated regulation of biological pathways could

be tissue-specific and may contribute to cell-type specific modulation which has been

reported for various signaling pathways [129] (Figure 1.3C). We addressed the ques-

tion if tissue specific gene expression is relevant for functional miRNA analysis and

how the biological significance of pathway enrichment methods can be improved by

incorporating gene expression data to account for tissue specific miRNA regulation

(Section 2.2).

3. RNAs are constantly bound by numerous RNA-binding proteins. They participate

in regulation of all steps of the mRNA life-cycle from transcription to translation.

It has been shown that miRNAs and other RBPs interact in regulation of gene

expression (Figure 1.3D). We asked if miRNA target genes are also regulated by

miRNA independent RBPs and if combined activity of miRNAs and RBPs predicts

novel regulatory mechanisms (Section 2.3).

Secondly, we asked if we can use these regulatory features to develop tools for experimental

miRNA research. Here, a central issue is to choose individual candidate miRNAs from

larger sets of potentially relevant ones. We used the analyses presented in this thesis to

develop three tools which allow to filter miRNAs for cooperative regulation, tissue specific

e↵ects and co-regulation with RBPs (Section 3.1).

Thirdly, we investigated novel data storage solutions and specifically addressed the use

of graph databases for biological data sets. We devised a unified graph data model for

functional miRNA analysis in order to cope with the challenges posed by integration of

heterogenous public data sources (Section 3.2).
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Figure 1.4: Graphical overview. Chapter 2 summarizes the publications composing this
thesis. Publication 1, 2 and 3 extend functional miRNA analysis with additional features
beyond individual miRNA-mRNA interactions to increase their biological relevance. Pub-
lication 4 describes a reference database for genetic interactions in the developing mouse
brain. In Chapter 3 we discuss a unified graph data model for the presented analyses and
the overall advances in functional analysis of miRNAs.

1.6 Overview of this Thesis

The following provides an overview of this thesis. A graphical overview is presented in

Figure 1.4.

The first-author publications composing this thesis are summarized in Chapter 2. Pub-

lications 1 to 3 describe three novel regulatory features for the functional analysis of

miRNAs and present accompanying web applications. For each publication, the compre-

hensive computational analysis of the regulatory feature is briefly summarized, followed

by an overview of the respective web application and the connection to the unified graph

data model. Publication 4 is similar in scope but does not involve miRNAs or the unified



20 CHAPTER 1. INTRODUCTION

graph data model.

In Chapter 3.1 we summarize the aggregated advances in functional miRNA analysis

through publication 1, 2 and 3.

Chapter 3.2 provides a detailed description of the unified graph data model which was

used to integrate datasources in publication 2 and 3.

Lastly, in Chapter 3.3 we discuss possible extensions and future projects.



Chapter 2

Publications

In this chapter, the key findings of the first author publications are summarized. The con-

tribution of the author of this thesis is highlighted. Shared first authorships are indicated

by * symbols in bibliographic nominations.
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2.1 miRco

Rinck A*, Preusse M*, Laggerbauer B, Lickert H, Engelhardt S, Theis FJ. The human

transcriptome is enriched for miRNA-binding sites located in cooperativity-permitting dis-

tance. RNA Biol. 2013;10(7):1125–35.

In this publication we investigated the cooperative regulation of miRNA target genes

(Figure 1.3B). We addressed the question if binding-site distance functions as a predictor

of miRNA cooperativity and further analyzed if cooperativity is a functional aspect of

miRNA regulation.

We analyzed the distance distribution of miRNA binding sites genome-wide and found

that computationally predicted sites with a distance of 26 nucleotides were enriched. The

over-representation demonstrates the biological relevance of distance-dependent coopera-

tivity. Next, we showed that the fraction of cooperative target genes increases if multiple

di↵erent miRNAs are analyzed together. The increase was significant for miRNA target

genes predicted by miRanda and TargetScan as well as target genes identified by HITS-

CLIP and PAR-CLIP. Interestingly, the CLIP-seq data sets showed a higher increase. We

further analyzed miRNAs which are either co-expressed in a tissue or co-regulated in a

disease context. They had a higher number of cooperatively regulated target genes than

unrelated miRNAs, indicating that functionally similar miRNAs regulate their target genes

in a cooperative manner. In summary, our results demonstrated that distance-dependent

miRNA cooperativity is a wide-spread phenomenon that is especially relevant for regula-

tion by multiple di↵erent miRNAs.
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In order to support experimental miRNA research, we developed miRco, a user friendly

web tool that predicts cooperative miRNA regulation. It was designed to either predict

genes which are cooperatively regulated by a given set of miRNAs or, reciprocally, miRNAs

which cooperatively regulate a given gene. miRco thereby allows filtering of miRNA lists

for candidates which are expected to down-regulate specific genes with a large e↵ect-size.

The data model for this publication was initially implemented using the relational database

mySQL. All relevant data, that is the binding sites of miRNAs from prediction tools and

CLIP-seq studies, were later included in a graph data model which constituted the first

building block of the unified graph data model used in the following publications (Figure

2.1).

The author of this thesis designed and performed the computational analyses presented in

this publication in joint work with Andrea Rinck. The underlying data sources, database

infrastructure and the web application miRco were developed by the author. The corre-

sponding results, methods and discussion were written by the author.
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Figure 2.2: The partial data model for this analysis uses miRNAs and their target tran-
scripts from the unified graph data model and augments the molecular data with annota-
tions of tissue expression and pathways (orange line).

2.2 miTALOS

Preusse M, Theis FJ, Mueller N. miTALOS v2: Analyzing Tissue Specific microRNA

Function. PLOS One. 2016. Accepted.

In this publication, we analyzed the tissue specific regulation of biological pathways by

miRNAs (Figure 1.3C). We addressed whether tissue-specific gene expression is relevant

for miRNA target genes and pathway enrichment methods. We further analyzed how func-

tional enrichment methods can account for tissue-specific regulation in order to increase

the biological relevance of the results.

Firstly, we provide evidence that both miRNA target genes and pathway genes are indeed

expressed in a tissue specific manner. On average, only 75% of the miRNA target genes are

expressed among 42 human tissues. Pathway genes show an even lower average expression

rate with a much higher variance compared to miRNA target genes. Previous tools for

functional miRNA analysis do not consider the tissue specificity but instead use the full set

of miRNA targets independent of their expression. We thus developed a novel methodology

for tissue specific pathway analysis of miRNAs. Here, we filter both miRNA target genes

and pathway genes for expression in a given tissue and calculate a pathway enrichment as

a proxy for the miRNA function. We highlight the power of the tissue specific enrichment

with a comprehensive analysis of miR-199a-3p, miR-199b-3p, miR-571 and the miR-200

family which have been shown to be dysregulated in hepatocellular carcinoma and liver

fibrosis. When the tissue filter for liver is applied, our methodology identifies pathways
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which are in accordance with recent findings regarding the role of the aforementioned

miRNAs in pathogenesis. Moreover, we suggest cross-talk of MAPK and Wnt signaling

in cancer formation for the miR-200 family and a role of miR-571 in up-regulation of

Notch signaling during liver fibrosis. The pathway analysis uses data from various public

resources. Pathways from KEGG, Reactome and WikiPathways were included. MiRNA

target genes from TargetScan and Miranda as well as from CLIP-seq studies collected

by StarBase were used. The tissue filter was based on expression data from the EBI

expression atlas.

To support experimental miRNA research, the enrichment methodology was included in

the updated miTALOS v2, a web application that predicts tissue specific pathway regula-

tion by single or multiple miRNAs. The user can select miRNAs and a tissue of interest

and miTALOS v2 calculate a tissue specific pathway enrichment. miTALOS v2 thereby

helps researchers to identify miRNAs which are likely to influence biological processes in

a tissue of interest.

For this publication, we extended the graph data model which was derived from the initial

relational data model used in miRco (Section 2.1). MiRNA targeting data curated for the

analysis of miRNA cooperativity was augmented with the aforementioned pathway and

gene expression date sets (Figure 2.2). The graph data model implemented in neo4j has

several advantages compared to relational databases: Data queries are more flexible, data

updates are easier and, most importantly, changes to the data structure can be performed

more easily.

The author of this thesis designed the study, performed all computational analyses, de-

veloped the novel database backend and pathway enrichment methodology, implemented

the miTALOS v2 web application, and wrote the paper.
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Figure 2.3: In this study the graph data model was further extended with GO annotations
and links between RBPs and their target transcripts (green line).

2.3 SimiRa

Preusse M, Marr C, Saunders S, Maticzka D, Lickert H, Backofen R and Theis FJ.

SimiRa: A tool to identify coregulation between microRNAs and RNA-binding proteins.

RNA Biol. 2015;12(9):998–1009.

In this publication, we analyze co-regulation between miRNAs and miRNA-independent

RBPs (Figure 1.3D). We addressed the question whether genes are regulated by both

miRNAs and RBPs on a genome wide scale. We further asked if we can combine RBPs

and miRNAs in pathway and GO term enrichment methods to predict functional similarity

and regulatory interactions.

We localized a set of 19 RBPs on di↵erent levels of mRNA processing based on a GO

term analysis. We further showed that RBPs have on average more target genes than

miRNAs but indeed have distinct target sets, which indicates specific functions. We

analyzed two features of RBPs to highlight their importance in gene regulation: Many

genes are targeted by more RBPs and miRNAs than statistically expected and RBPs,

but not miRNAs, preferably target cellular interaction network hubs. This suggested

that some genes are under tight control by both RBPs and miRNAs and that RBPs

regulate genes with important roles in signaling. For this study, we used CLIP-seq based

targeting data for both miRNAs and RBPs. While CLIP-seq methods provide more

reliable target genes than computational prediction, they still su↵er from large error rates.

In order to overcome these errors and to identify functionally similar miRNAs and RBPs,

we developed a method which compares enriched functional categories such as pathways
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and GO terms for both classes of regulators. We compared pairs of miRNAs and RBPs and

showed that similarity in target genes and similarity in enriched categories do not correlate.

In a case study with human Pumilio proteins, we identified a known interaction with miR-

221 and miR-222 in regulation of the tumor suppressor gene p27. The similarity of enriched

pathways and GO terms is in the top 10% of all miRNA-RBP pairs. The similarity of

target gene sets, however, is ranked at 78%. Next, we suggested a cooperation of the

nuclear RBP TAF15 with miR-590-3p and miR-495 with a potential role in regulation of

cell cycle and di↵erentiation.

Our method to compare post-transcriptional regulators was included in simiRa in order to

support experimental miRNA research. SimiRa is a web application that allows to identify

similar miRNAs and RBPs by exploring their functional neighborhood. Here, the user can

select a miRNA or RBP of interest and display the network of similar miRNAs and RBPs

defined by both overlap in target genes and associated pathways and GO terms. SimiRa

thereby identifies miRNA candidates which participate in combined regulation with RBPs.

For this study, the graph data model from the miTALOS v2 study (Section 2.2) was

extended with data on RBPs by including a link from proteins to transcripts (Figure

2.3). Moreover, GO annotations for proteins for proteins were included further expanding

the functional annotations. The flexibility of the neo4j implementation supported the

extension of the graph data model without refactoring of existing data.

The author of this thesis designed this study, performed all computational analyses, cu-

rated all miRNA data, developed the database backend, implemented the simiRa web

application and wrote the paper.
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2.4 IDGenes

Matthes M*, Preusse M*, Zhang J*, Schechter J, Mayer D, Lentes B, Theis FJ, Prakash

N, Wurst W, Trümbach D. Mouse IDGenes: a reference database for genetic interactions

in the developing mouse brain. Database (Oxford). 2014;2014(0): bau083 – bau083.

The development of the brain in the mouse and other vertebrates is a complex process

of patterning along all axes in the embryo. Knowledge of this process is necessary for

the understanding of complex neurodegenerative diseases such as Parkinson’s disease and

Alzheimer’s disease as well as neuropsychiatric disorders such as schizophrenia and autism.

Public databases provide gene expression data of the developing mouse brain with high

spatio-temporal resolution. However, they neglect the genetic interactions that control

neural development. In this study, we developed Mouse IDGenes, a reference database of

genetic interactions in the mouse brain. The database is manually curated and contains de-

tailed information on gene expression and gene-gene interactions. A novel spatio-temporal

model of the developing mouse brain at stages E8.5, E10.5 and E12.5 was developed to

allocate interactions with high resolution. To highlight the utility of Mouse IDGenes,

we used a support vector machine to infer new target genes of Wnt/�-catenin signaling.

Dkk3 was predicted as a direct Wnt1 target and validated experimentally using luciferase

reporter assays.

Mouse IDGenes was made publicly available as a web application. The interface allows to

search for specific genes or brain regions and developmental stages. The gene expression

and genetic interaction data are displayed in a single result table. Gene-gene interaction

are further classified as direct or indirect and activation or repression. The published

source of the interaction is directly linked to PubMed. A key concept of Mouse IDGenes

is its extensibility. New gene expression data and genetic interactions can be added by

the research community. Mouse IDGenes can thus keep up with new findings in brain

development and serves as an important resource for future research into neuronal diseases.

The author of this thesis primarily implemented the data input and update methodology,

developed the web interface and wrote the respective result chapters.
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Chapter 3

Discussion

In this chapter, we will discuss the overarching topics of the publications presented in

this thesis. Firstly, the novel approaches for functional miRNA analyses are discussed

with respect to recent developments in this fields. Secondly, we derive a unified graph

data model from the database infrastructure which was developed to support the miRNA

analyses. The model is described in detail and applications beyond miRNA research are

discussed. Lastly, the outlook is presented.

3.1 Functional MicroRNA Analysis

There is no doubt that silencing of gene expression is a central function of miRNAs. The

recent advances in system-level analyses of miRNAs with new omics technologies provided

valuable insight into the concepts behind miRNA mediated regulation. However, they also

left many questions unanswered and raised concerns about paradigms which have been

commonly accepted before.

Ambiguities in miRNA-mRNA interactions hinder system-level analyses of miRNA regu-

lation. Indirect regulatory e↵ects in the miRNA-mRNA network have been shown but the

relevance of the ceRNA concept has to be strengthened. Further, the impact of miRNAs

and their mis-regulation on biological processes and complex phenotypes is di�cult to

decipher and the apparent tissue and cell type specificity of miRNA regulation is not yet

explained.
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Functional enrichment analyses are a key tool in miRNA research in order to circum-

vent incomplete miRNA targeting data and improve the system-level understanding of

miRNA-mediated regulation of biological processes. They map the presumed target genes

of miRNAs onto known functional categories and look for distinctive features such as

over-representation. The basic assumption is that these features do not occur by chance

and hold a biological meaning. Consequently, if the target genes of a miRNA are over-

represented in a MAPK signaling pathway, one would assume that the miRNA actually

influence this signaling cascade and its corresponding biological processes. Functional

enrichment tools were developed to bridge the gap between individual miRNA-mRNA

interactions and biological functions [130]. However, they rely on miRNA target genes

and are therefore subject to the uncertainties in miRNA targeting data. Moreover, en-

richment methods are di�cult to validate and falsify. The predicted functions can only

be tested for individual cases. As long as there is no commonly accepted, comprehensive,

accurate and stable catalogue of defined miRNA functions, in silico predictions cannot

be compared and evaluated systematically. Even though some methods use self-compiled

sets of miRNA-function associations as benchmark [105], the limited knowledge of miRNA

function is likely biased and incomplete.

In the publications presented in this thesis, we sought to address the targeting uncertain-

ties and problems with functional enrichment methods by incorporating additional features

beyond individual miRNA-mRNA interactions. We used distance-dependent miRNA co-

operativity, tissue specifc gene expression and interaction of miRNAs and RBPs. We only

used features which have been demonstrated experimentally and did not infer them from

miRNA targeting data. This was done in order to deal with the problem of limited as-

sessability of functional predictions by providing a clear line of argument from biological

motivation to our genome-wide analyses and extensive case studies.

First, we analyzed the concept of distance-dependent miRNA cooperativity. It was shown

that miRNAs which bind in close proximity show a drastically increased e↵ect on tar-

get regulation [127]. Presumably, this e↵ect is a result of interactions between adjacent

miRISCs which stabilize the miRISC-mRNA complex. It has long been known that miR-

NAs target multiple mRNAs and that mRNAs carry binding sites for multiple miRNAs

[28, 35]. Consequently, it has been assumed that multiple miRNAs act in concert to achieve

target regulation [131] and miRNAs and mRNAs form a complex regulatory network. The

concept of cooperativity sheds light on this network and moves the target analyses towards

are more quantitative perspective. If multiple miRNAs target a gene cooperatively, i.e.

they bind in very close proximity, one can assume a strong e↵ect on target regulation. This

assumption can then be used to filter the large number of potential miRNA target genes
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for those which are more strongly repressed and therefore more relevant for the function of

the analyzed miRNA. A similar study recently published another distance-dependent co-

operativity analysis, supporting our approach [132]. Schmitz et al. incorporate minimum

free energy predictions, molecular dynamics simulation of the cooperative targeting and

resulting binding a�nity into their workflow. However, their analysis focuses on triplets

of two miRNAs and one mRNA while our approach can predict cooperative regulation for

groups of miRNAs. Indeed, our analysis indicated that cooperativity is more prevalent if

multiple miRNAs are considered, that is clusters of miRNA binding sites in cooperative

distance are likely composed of alternating sites for several miRNAs. More importantly,

the concept of distance-dependent cooperativity has recently been shown to be relevant

for miRNA-mediated regulation in myotonic dystrophy type 1 [133], neural stem cells

[134] and Hepatitis C virus replication [135]. These findings clearly support the notion

of miRNA cooperativity, its impact on biological processes and our in silico method to

predict cooperative regulation.

We then moved from the level of miRNA-mRNA interactions to the functional aspects of

miRNAs. More specifically, we focused on the influence of miRNA regulation of biological

pathways. We considered pathways as a proxy for the e↵ect of miRNAs on biological

processes and used them to narrow done the miRNA function. However, only a subset

of genes is expressed in each cell at any given point in time. Consequently, only a subset

of miRNA target genes and pathway genes are available for regulation. Indeed, many

miRNAs show tissue or cell type specific e↵ects and the limited reproducibility of in vitro

e↵ects in in vivo studies has been partly attributed to the absence of suggested target

genes [13]. Other miRNA enrichment tools, such as DIANA-miRPath [136] or miRGator

[137], do not consider this e↵ect. In order to improve the biological relevance of the

predicted pathway associations, we incorporated tissue specific e↵ects into a pathway

enrichment. Most importantly, we used the latest version of the EBI Expression Atlas

which introduces the concept of baseline expression derived from RNA-seq experiments

[138]. Compared to microarray based gene expression experiments, this allows to define

whether a gene is expressed or not over several tissues and cell types. We were able to

show that filtering miRNA target genes and pathway genes for tissue expression drastically

changes the result of the pathway enrichment and therefore the biological interpretation

of the results. In conjunction with expression of the miRNA itself, this also provides a

step towards understanding of the ceRNA hypothesis. If only few miRNA target genes

are expressed, repression of these targets might be elevated because competition for the

miRNA from other binding sites decreases.
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We then extended the functional analysis of miRNAs and also considered other miRNA-

independent RNA-binding proteins. In a cell under physiological conditions, RNAs are

constantly bound by many di↵erent proteins and packaged into ribonucleoprotein parti-

cles. MiRNA-AGO complexes are only a part of the mRNA interactome. Many examples

for regulatory interactions between miRNAs and miRNA-independent RBPs are known

and data from CLIP-seq methods was used to generate mRNA binding maps of both

regulators. Similar to the idea of miRNA cooperativity, it has been shown that RBPs

bind in close proximity to e↵ectual miRNA target sites [139, 140]. Hence, the hypothesis

that miRNAs and RBPs cooperate in order to carry out their biological function ensues.

We used 19 RBPs and their CLIP-seq derived target genes from the doRiNA database.

We first found that all RBPs have distinct sets of targets ranging from hundreds to few

thousands of genes. While this observation may seem trivial, it does prove an important

point: All RBPs, even those which have been described as generic splicing factors, interact

only with specific, di↵ering genes. This implies that they convey regulatory functions for

specific biological processes. Therefore, we extended the functional analysis of individual

miRNAs and moved on to comparing the functional environment as a whole in order to

find possible interactions between miRNAs and RBPs. We performed a pathway and GO

term enrichment for all miRNAs and RBPs. By comparison of the functional neighbor-

hood we identify miRNAs and RBPs which are functionally similar and likely interact.

We used this approach to predict miRNAs interacting with the RBP TAF15. TAF15

has been shown to indirectly interact with miR-17-5p and miR-20a-5p in regulation of

cell-cycle and proliferation. We proposed a combined role of TAF15 and miR-590-3p, a

miRNA which has been poorly characterized at that time. Intriguingly, several very recent

experimental studies support an involvement of miR-590-3p in cell-cycle, proliferation and

migration in the context of di↵erent cancer types [141, 142, 143]. In general, the combined

analysis of miRNAs and RBPs came more into focus. Other in silico tools studied the

cooperation of both in post-transcriptional regulation [144]. However, HafezQorani et al.

focus on the combined regulation of individual target genes while we demonstrated that

known interactions between miRNAs and RBPs are evident in their functional similarity.

Next to in silico e↵orts, several new miRNA-RBP interactions have been demonstrated

experimentally [145, 146]. This further supports the idea of combined, functional analysis

of miRNAs and RBPs.

In summary, our computational approaches use additional features of miRNA regulation

to identify novel regulatory e↵ects. They stepwise extended the scope of the analysis,

from cooperative miRNA-mRNA interactions through functional analysis of individual

miRNAs to comparing the complete functional environment of miRNAs and RBPs. All

the used features have been demonstrated experimentally and are not only deduced from
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theoretical analyses. The basic concepts of our computational methods have been picked

up by related and complimentary tools. The most important evidence for the impact of

our methods, however, is the growing experimental evidence for the proposed regulatory

mechanisms.

We used the presented concepts of functional miRNA analysis to develop three web ap-

plications: miRco, miTALOS v2 and simiRa. They all share a common purpose: Identify

testable candidates from a set of potentially interesting miRNAs. In experimental miRNA

research, large-scale experiments such as di↵erential expression analysis in the system of

interest often result in lists of dozens of potentially interesting miRNAs. Also, due to

the extensive and confusing amount of literature on miRNAs, a simple PubMed search

yields many potentially relevant miRNAs. However, in many cases functional testing is

not feasible for so many candidates. High-throughput screenings are not possible in all

biological systems and individual testing is labour intensive and costly. Therefore, the long

list of interesting miRNAs has to be narrowed down to a smaller set that can be handled

experimentally. Our tools were developed to achieve just that. The workflow generally

starts by selecting a miRNA of interest, such as the top regulated one from a di↵erential

expression study. Our analysis tools then highlight functional features of this miRNA and

allow the experimental researcher to select the miRNA that is most likely relevant for his

biological question.

3.2 A Unified Graph Data Model

In the three presented publications dealing with functional miRNA analysis, we used

many data sets from various public resources. They include data on di↵erent molecular

levels, that is genes, transcript, proteins and miRNAs, as well as annotation data such as

pathways and GO terms. The extended approaches for functional miRNA analysis based

on these datasets required a way to integrate them and perform queries spanning di↵erent

data sources and molecular levels. During development of the functional analysis tools,

we developed a novel data management system to store all used data in a central place.

Such a system has to fulfill specific requirements in order to handle biological data sets:

• The underlying data sources are updated frequently and, therefore, data updates

must be simple and fast.

• Scientific development requires a data model that is easy to refactor.
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• The data model must be extendable and allow to store additional entities and rela-

tions from future data sources.

• Experimental resources are often burdened by missing data. The data management

system must be able to flexibly store and query incomplete data.

• Queries are generally centered around biological entities (i.e a miRNA) and their in-

teraction or annotation (i.e. the target genes of a miRNA within a specific pathway).

Thus, e�cient queries over multi-step paths must be possible.

• In order to increase accessibility of the database, query mechanisms for complex

questions have to be simple and straight-forward.

Requirements for data management became more demanding because the data generated

in biology has changed during the past decade. This change was driven by two major

developments: The new omics technologies allow the study of biological processes on the

systems level and multiple omics data sets are combined to answer biological questions.

Arguably the most important experimental technologies are next-generation sequencing

(NGS) in the field of genomics, epigenomics and transcriptomics and mass spectroscopy

based methods for proteomics and metabolomics. They were refined, improved and, most

importantly, became a↵ordable for researchers in all fields of biology. As a consequence,

the volume of data grew exponentially. A single NGS experiment analyzing, for example,

binding of a transcription factor to DNA, produces sequence data in the range of 10 to 20

gigabyte. Projects like the Roadmap Epigenomics Mapping Consortium [147] have to deal

not only with a single NGS data set but with hundreds of those experiments. Another

example are population scale whole-genome sequencing projects which aim at elucidating

human genome variation. The ”1000 genomes” [148] project and the 100,000 genomes

project of the UK Department of Health have to handle massive amounts of sequencing

data.

However, the sheer size of the data is not the most pressing problem. In comparison

to the data volume that is produced by social networks like Facebook or Twitter, who

have been driving the development of new big data technologies, even the large genomics

and epigenomics projects are manageable. Big-data solutions to store large datasets are

well-suited to handle them and parallel computing approaches are used for processing and

analysis. The central issue in modern biology lies within the complexity of the data under

study. Firstly, the data is very heterogenous and, secondly, multiple data sets have to be

integrated in order to answer biological questions.
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To cope with these challenges, we developed, over the course of the presented publications,

a graph model of molecular biological entities, their molecular interactions and annota-

tions. Parts of the graph model were implemented for the respective analyses. From this

we derive a unified graph data model, laying the groundwork for a comprehensive model

of the cell which can be extended to incorporate all known entities and their interactions.

3.2.1 Implementation of the Combined Graph Model

A

B

Annotation Layer

Molecular Layer

Nodes & Relationships

Nodelabel
RELATIONSHIP TYPE

property: value

Figure 3.1: Combined graph model used in this thesis. Following general neo4j conven-
tions, node labels are capitalized and relationship types are all capitals. A) Molecular
entities are modeled as nodes, their interactions as relationships. The annotation layer
models annotation elements and links them to the molecular layer. B) Multiple databases
for the same molecular entity are modeled with nodes carrying the data source as property.
The mappings are modeled by relationships.

The combined graph model of the analyses presented in this thesis contains a molecular

layer with genes, transcripts, proteins and miRNAs and an annotation layer with path-
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ways, GO terms and tissues (Figure 3.1A). Relationship types were chosen for expressive

and easy-to-understand queries. Data was extracted and integrated from various public

resources, including the large genome consortia (ENSEMBL, NCBI Gene) and UniProt,

the principal protein knowledge base (Table 3.1).

The model was implemented with the graph database neo4j which allows to natively

store data as a labeled property graph (Section 1.4.1). In a relational database, each

node type would be modeled with a separate table. The properties are predefined by the

table structure. Similarly, all relationship types would be modeled in tables with primary

keys linking to the respective entities, resulting in a total of 13 tables. Each relationship

between previously unconnected entities would need an additional table, leading to a

growing complexity in database structure. Moreover, adding properties to single entities or

relationships requires expensive refactoring of the complete table structure. In neo4j, nodes

and relationships are schema-free and properties can be added or removed for individual

nodes and relationships.

For a single organism, the combined graph data model contains several hundred thousand

nodes for molecular entities and several ten thousand nodes for the annotation layer. The

number of relationships is two orders of magnitudes larger. The core data on miRNA-

transcript interactions curated from TargetScan, miRanda and StarBase adds up to more

than 14 million relationships. The data model is implemented for both mouse and human

independently, that is all molecular entities are specific for the respective organism.

Table 3.1: Datasources used for the combined graph data model
Node label Datasource Relationship type Datasource

Gene ENSEMBL, NCBI Gene Gene-CODES-Transcript NCBI Gene
Transcript NCBI RefSeq Transcript-CODES-Protein UniProt
Proteins UniProt Mirna-BINDS-Transcript TargetScan, Miranda, StarBase
miRNAs miRBase Gene-MEMBER-Pathway KEGG, Reactome, WikiPathways
Pathways KEGG, Reactome, WikiPathways Transcript-EXPRESSED-Tissue EBI Gene Atlas
GO Terms Gene Ontology Protein-MEMBER-Goterm Gene Ontology
Tissues EBI Expression Atlas

3.2.2 Advantages of the Graph Model

The query language of neo4j, Cypher, provides a simple way to retrieve data by describing

path patterns. A query that finds all target genes of the human miRNA hsa-miR-21 first

matches the miRNA as start node, moves along the path to transcripts which are bound

by the miRNA and subsequently gets the genes coding for the transcript (Listing 3.1).
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Listing 3.1: Query to find miRNA target genes

MATCH (m: Mirna {name : ”hsa�miR�21”}) � [ :BINDS]�>( t : Transc r ip t )<�[:CODES]

�(g : Gene )

RETURN d i s t i n c t ( g . name)

A key advantage of our novel data model is that more complex queries retain readability

and are still easy to understand. The query in Listing 3.1 can be extended to return all

KEGG pathways which contain target genes of hsa-miR-21 along with the respective target

genes (Listing 3.2). If data was stored in a relational database with entities modeled in

normalized tables and relationships implemented with primary keys, the equivalent SQL

query would be more complex due to three sequential JOIN operations. Neo4j outperforms

relational databases for path queries typical in biology [149].

Listing 3.2: Query to find miRNA target genes in KEGG pathways

MATCH (m: Mirna {name : ”hsa�miR�21”}) � [ :BINDS]�>( t : Transc r ip t )<�[:CODES]

�(g : Gene ) � [ :MEMBER]�>(p : Pathway { source : ’ kegg ’ } )
RETURN p . name , c o l l e c t ( g . name)

When multiple datasources are combined and integrated, ID mapping is a common prob-

lem. For all molecular entities, there are several competing consortia that collect and

maintain information, e.g. ENSEMBL and NCBI Gene for genes, ENSEMBL and NCBI

RefSeq for transcripts and ENSEMBL and UniProt for proteins. They usually have dis-

tinct basic assumptions on the definition of the respective molecular entity and thus in-

compatible naming schemes. ID mapping is, in fact, not a trivial problem and has been

discussed for a long time [150, 151]. It is most evident on the level of genes since the large

reference genome annotation projects do not agree on a common definition of a gene.

The consensus coding sequence (CCDS) project has been established to generate a unified

source of protein coding genes for mouse and human with stable mappings to other gene

identifiers [152].

Our novel graph data model allows to transparently include mapping data. We included

genes with their primary ID from ENSEMBL, NCBI Gene and HGNC, and added mapping

relationships between them (Figure 3.1B). This approach allows to include the ID mapping

in path queries without relying on external ID conversion tools. The central advantage is

that the mapping step can be included in the query without altering path elements left

and right of the mapping.

Public resources from the same field often use di↵erent ways to identify data. The pathway

database KEGG, for example, contains genes identified by NCBI gene IDs. WikiPathways,

on the other hand, does not specify the gene identifier and uses NCBI gene IDs, ENSEMBL
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IDs and gene names concurrently. With our graph data model, all gene identifications in

WikiPathways can be mapped to nodes representing the specific gene ID source. Then,

flexible queries allow to include all possible gene nodes in the aforementioned example of

identifying pathways targeted by a miRNA (Listing 3.3). The mappings were used for

both miTALOS v2 and simiRa and highlight the extensibility of our data model. If, for

example, a new database with gene identifiers is developed, it can easily be included into

the existing model.

Listing 3.3: Query with gene ID mapping

MATCH (m: Mirna {name : ”hsa�miR�21”}) � [ :BINDS]�>( t : Transc r ipt )<�[:CODES]

�(g : Gene { source : ’ ensembl ’ } ) � [ :MAPS]�( g2 : Gene { source : ’ ncbi ’ } )
� [ :MEMBER]�>(p : Pathway { source : ’ kegg ’ } )

RETURN p . name , c o l l e c t ( g . name)

ID mapping becomes drastically more di�cult when multiple levels of molecular entities

are considered. Here, biological conditions increase the complexity. Not only di↵erent

concepts of a gene have to be integrated but also the complex relationships between

the central axis of genes, their transcripts and encoded proteins. Generally, genes can

have multiple transcripts and protein-coding transcripts can give rise to multiple proteins.

Several public resources provide ID mapping service spanning molecular levels, however,

as assessment of their performance demonstrated large discrepancies between the results

and lack of data updates [153]. While our data model does not solve the ID mapping issue

per se, it provides valuable advantages by, firstly, integrating ID mapping steps into the

biology-centered queries and, secondly, allowing to transparently use several data sources

for each mapping step.

3.2.3 Concept of a Unified Graph Data Model

As described for functional miRNA analysis, our combined graph model is able to capture

biological questions and integrate multiple molecular levels and associated annotations. In

general, novel methods for data integration in biology became more relevant with the new

omics technologies [154]. We thus developed the concept of a unified graph data model of

the cell based on the model presented above. Graph databases are scalable, highly flexible

and allow to directly map biological systems in the way we usually depict them. This

provides the ideal basis for a system that stores all molecular entities, their interactions

and annotations. The result is a native and easy-to-interpret graph model of the cell which

can be used to integrate complex, heterogenous biological datasets.
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Sydney Brenner described this approach as a ”Cell Map” [155]. He envisioned the cell map

as ”at once a map of the molecules within cells and a map of the cells in the organism”,

based on the assumption that everything in biology can be represented as a graph. He

further argued that a complete cell map takes the middle-ground between a gene-centric

bottom-up and a more organismic top-down approach and therefore allows to integrate

data from the genome through all omics levels up to physiological processes which can be

mapped back to cells and their interactions. However, such a ”Cell Map” would need to

be complete in order to allow for precise answers of biological questions.

With our combined graph model and its implementation in a graph database we took a

first step towards a unified graph data model of the cell, or a ”Cell Map”. The concept

of mapping molecular entities and enriching them with an annotation layer enabled our

functional miRNA analyses. During development of our methods, we gradually extended

the model and demonstrated that it can adapt to incorporate new data sources without

altering existing structures. For example, it is straight forward to integrate more classes

of molecular entities, such as metabolites, and their interactions with existing data. Re-

lational databases are, of course, theoretically able to store the same set of data that is

included in a graph database. However, the complexity of the database structure would

increase exponentially and subsequent changes of the data model would be almost impos-

sible to handle.
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3.3 Outlook

While the functional miRNA analysis provided useful insight into miRNA-mediated reg-

ulation, we considered additional features for miRNA regulation separately. In future, a

combination of the described approaches will allow to decipher further regulatory e↵ects

and thus increase the biological relevance.

By extending distance-dependent cooperativity to RBPs, we can generate a clearer pic-

ture of the complex network of post-transcriptional regulation. The proposed mechanism

behind the cooperative e↵ects is stabilization of protein complexes. By considering all

proteins that bind a specific mRNA, we can deduce the strength of the e↵ect of combined

regulation through miRNAs and RBPs. The cooperative regulation could be introduced

into the functional analysis as a quantitative property, that is by assigning weights to the

relationships between miRNA/RBPs and mRNAs. The concept of tissue specificity can be

extended in two ways. Firstly, it should not only consider expression of target genes and

pathway genes, but also expression of miRNAs and RBPs themselves. Secondly, tissue-

specific expression should be included in the cooperativity analysis. By integrating all

feature into a single analysis pipeline, we will close the loop from regulators to regulated

genes and allow explain tissue specific e↵ects on a much more detailed level. It would

allow a tissue specific, combined functional analysis of miRNAs and RBPs with inclusion

of cooperativity as a way to predict the strength of regulation.

The combined data model can easily be extended to include more public data sources.

Several other pathway databases exist which would extend the scope of pathway analyses.

Next to the gene ontology, there are a multitude of ontology and annotation projects which

would allow association not only to functional categories but also to diseases. Data sources

on genetic variation can be included to link positional data from genome annotations to

their molecular manifestations and analyze e.g. the role of SNPs in miRNA function.

In this thesis, we focused on miRNAs and RBPs. However, in future other classes of

molecules might be involved in regulation of gene expression. Long non-coding RNAs are

a growing field of research and interesting candidates to be included into the extended,

combined pipeline for tissue-specific functional analysis.
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CPEB and miR-15/16 Co-Regulate Translation of Cyclin E1 mRNA during Xenopus

Oocyte Maturation. PloS one, 11(2):e0146792, jan 2016.

[147] Bradley E Bernstein, John A Stamatoyannopoulos, Joseph F Costello, Bing Ren,

Aleksandar Milosavljevic, Alexander Meissner, Manolis Kellis, Marco A Marra,



BIBLIOGRAPHY 59

Arthur L Beaudet, Joseph R Ecker, Peggy J Farnham, Martin Hirst, Eric S Lan-

der, Tarjei S Mikkelsen, and James A Thomson. The NIH Roadmap Epigenomics

Mapping Consortium. Nature biotechnology, 28(10):1045–8, oct 2010.
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Introduction

MicroRNAs (miRNAs) are small single-stranded non-coding 
RNAs, which are endogenously expressed and predominantly 
downregulate the expression of mRNA targets. They achieve 
post-transcriptional regulation of gene expression as part of 
the miRNA-induced silencing complex (miRISC), which con-
sists of a miRNA and several proteins, including a member of 
the Argonaute (AGO) protein family. Binding of miRISC to its 
target sequence is guided by the miRNA and most commonly 
occurs within the 3'-untranslated region (3'-UTR) of the mRNA, 
thereby inducing translational repression or degradation of the 
mRNA (reviewed in refs. 1−3).

It becomes increasingly apparent that deregulated expression of 
miRNAs is causally related to the development of various complex 

MiRNAs are short, non-coding RNAs that regulate gene expression post-transcriptionally through specific binding to 
mRNA. Deregulation of miRNAs is associated with various diseases and interference with miRNA function has proven 
therapeutic potential. Most mRNAs are thought to be regulated by multiple miRNAs and there is some evidence that such 
joint activity is enhanced if a short distance between sites allows for cooperative binding. Until now, however, the concept 
of cooperativity among miRNAs has not been addressed in a transcriptome-wide approach. Here, we computationally 
screened human mRNAs for distances between miRNA binding sites that are expected to promote cooperativity. We find 
that sites with a maximal spacing of 26 nucleotides are enriched for naturally occurring miRNAs compared with control 
sequences. Furthermore, miRNAs with similar characteristics as indicated by either co-expression within a specific tissue 
or co-regulation in a disease context are predicted to target a higher number of mRNAs cooperatively than unrelated 
miRNAs. These bioinformatic data were compared with genome-wide sets of biochemically validated miRNA targets 
derived by Argonaute crosslinking and immunoprecipitation (HITS-CLIP and PAR-CLIP). To ease further research into 
combined and cooperative miRNA function, we developed miRco, a database connecting miRNAs and respective targets 
involved in distance-defined cooperative regulation (mips.helmholtz-muenchen.de/mirco). In conclusion, our findings 
suggest that cooperativity of miRNA-target interaction is a widespread phenomenon that may play an important role in 
miRNA-mediated gene regulation.

The human transcriptome is enriched  
for miRNA-binding sites located  

in cooperativity-permitting distance
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disorders. This includes cardiac disease,4,5 lung cancer,6 leuke-
mia,7 neurological disorders such as Alzheimer disease,8 metabolic 
abnormalities like diabetes mellitus,9 and rheumatoid arthritis.10

Unbiased approaches to miRNA function, for example, by 
application of synthetic miRNA libraries to cells,11 indicated that 
cellular pathways are regulated by multiple miRNAs12,13 or are 
subject to regulation by a single miRNA acting on different lev-
els.14 On the other hand, almost every miRNA investigated has 
been assigned several, often contradictory, physiological roles.15 
Obviously, identifying the target mRNAs is crucial to understand 
the function of a disease-related miRNA and, consequently, to 
develop therapeutic approaches. To achieve this goal, we need to 
know the criteria according to which miRNAs (in the context of 
miRISCs) are guided to their respective targets and the principles 
leading to effective target regulation.
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same or different miRNAs instead of a single one, which is there-
fore useful as a predictor of miRNA target regulation.35

The possibility that miRNAs could regulate their targets in 
a concerted—potentially cooperative—fashion has already been 
considered short after their identification, when the 3'-UTR of 
C. elegans lin-41 mRNA was shown to contain multiple targets 
sites (seven) for miRNA lin-4.37,38 Later, the integrity of more 
than one site for miRNA let-7 on the same target has been shown 
to be essential for efficient translational repression.39 Additional 
support comes from assays which showed that luciferase reporter 
mRNAs with two or four binding sites for an exogenous small 
RNA (CXCR4 siRNA) in their 3'-UTR were more efficiently 
repressed than single-site constructs.40

In principle, the combined regulation of a mRNA by several 
miRNAs could be achieved by (1) independent or (2) coopera-
tive target interaction (Fig. 1A). Independent binding of sev-
eral miRNAs (in the context of a miRISC) to the same mRNA 
may be presumed to confer additive regulatory effects, whereas 
cooperative binding enhances the individual regulatory potency 
of miRNAs. Depending on their experimental design, assays 
for translational repression of reporter constructs verified both 
independent23,41,42 and cooperative42,43 activities of small RNAs. 
According to these studies, additive effects on the same mRNA 
are, at best, moderate, whereas regulation by two or more sites 
within a certain distance amplified miRNA-mediated repression 
to an extent greater than expected from independent sites, sup-
porting a concept of cooperative activity.

However, only one of these studies42 characterized cooperative 
RISC binding in a quantitative way. The authors used siRNAs 
(i.e., small interfering RNAs of 18–21 nucleotides, which com-
pletely hybridize to their targets) instead of miRNAs and mul-
tiple binding sites on one reporter mRNA molecule. The Hill 
coefficient, a measure of cooperativity,44 was determined by fit-
ting reporter repression as a function of the siRNA concentra-
tion to the Hill equation. Next to the identity of the involved 
Argonaute protein, Broderick et al.42 showed strong dependency 
of cooperative silencing on the distance between two adjacent 
binding sites. They could show that at least for AGO 1, 3 and 
4, miRNA cooperativity is limited to directly adjacent binding 
sites. This is in accordance with previous approaches studying 
the spacing pattern between neighboring binding sites leading to 
cooperative repression. Although the conclusions drawn in these 
studies were not fully unanimous, they concurred that coopera-
tive effects are facilitated when miRNA binding sites are directly 
adjoining40,42 (i.e., the distance from the 5'-end of one miRNA to 
the 5'-end of the next is 20−22 nucleotides or the length of exactly 
one miRNA). Enhanced repression of mRNAs with two (vs. one) 
miRNA binding sites was also observed when sites partially over-
lapped (5'-end of downstream site moved four nucleotides into 
the accessory but not the seed region of the upstream site) or 
when they were separated by few additional nucleotides (5'-to-
5' distance of 25 nucleotides).43 It seems, however, unclear what 
mode of combined miRNA activity (independent or cooperative) 
underlies translational repression of these constructs. Broderick 
et al.42 found that cooperative effects are lost when miRNA sites 
(except bulged AGO 2 sites) were separated by 19 nucleotides 

However, the mechanisms of miRNA-mRNA interactions 
are still about to be elucidated, and versatile, often contradictory 
modes of action have been reported.16-19 In metazoans, the sup-
pressive effect of an individual miRNA on a target is often small,20 
potentially due to the fact that miRNAs form only imperfect and 
thermodynamically unfavorable RNA-RNA hybrids with their 
targets over a short sequence (called the miRNA seed region 
nucleating the interaction).

A set of interaction rules has been formulated1 based on bio-
chemical and bioinformatic analyses, but functional miRNA 
sites often show aberrant characteristics. In spite of these diffi-
culties, there is good evidence that contiguous and perfect base 
pairing of nucleotide positions 2–8 of the miRNA (seed region) 
with the cognate mRNA sequence is predictive of true interac-
tions between them.1,21

Therefore, one comparably successful approach to bioinfor-
matically predict miRNA targets is to focus on the seed region 
in miRNA targets. The online tool TargetScan searches for 
conserved seed regions of 7 and 8 nucleotides in length as well 
as for 3' compensated sites in 3'-UTRs. It ranks its predicted 
results based on further miRNA-mRNA binding properties 
summarized in a so called context+ score, including seed-pairing 
stability and target-site abundance.22-24 A similar tool to pre-
dict miRNA target sites, miRanda, scores and ranks its results 
based on a machine learning algorithm called mirSVR.25-27 The 
authors use support vector regression (SVR) to train on target 
site information as well as context features and calibrate their 
scores to correlate with observed downregulation of a published 
experimental data set.

More recently, computational methods were successfully com-
bined with experimental miRISC-RNA crosslinking approaches 
to identify target mRNAs and characterize their miRNA bind-
ing sites: High-throughput sequencing of RNA isolated after UV 
crosslinking and immunoprecipitation (HITS-CLIP),28 photoac-
tivatable ribonucleoside-enhanced CLIP (PAR-CLIP)29 and indi-
vidual nucleotide resolution CLIP (iCLIP).30 These approaches 
are helpful to reduce the search space for miRNA targets since 
they select for RNA fragments that are bound to active miRISC 
complexes. By UV irradiation of living cells, native protein-RNA 
contacts will be covalently crosslinked and, thereby, the informa-
tion about the binding region preserved for later miRNA bind-
ing site predictions. Next to CLIP methods, there is a range of 
approaches used for target identification that do not rely on cross-
linking, such as pull down of biotinylated miRNAs.31

However, miRNA-target interactions are not only bidirec-
tional but rather form complex networks.32,33 For the formation 
of a RISC on mRNA, seed pairing with as little as 6 or 7 nucleo-
tides between miRNA and mRNA target seems sufficient (albeit 
thermodynamically unfavored and most likely dependent on 
further interaction between RISC components and the mRNA). 
Therefore, almost every miRNA known to date is computation-
ally predicted to target more than one mRNA, and experimental 
evidence confirms this notion.17,22-24,34-36 Further, one mRNA is 
often controlled by multiple miRNAs. It has been shown that 
mRNAs with strong miRNA-mediated effects on their expres-
sion level typically contain multiple miRNA binding sites for the 
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Here we present a systematic distance analysis of predicted 
miRNA target sites in human 3'-UTRs. Compared with ran-
domized controls, distances shown by experimental studies to 
generate cooperative effects were enriched for naturally occurring 
miRNAs and miRNA binding sites. Further, functionally related 
miRNAs tend to bind more distance-defined cooperative targets, 
as the number increases for groups of miRNAs co-expressed in 
the same tissue or co-regulated in specific disease contexts. Our 
results, which are based on binding sites predicted by TargetScan 
are in good agreement with both a second computational target 
site predictor (miRanda/mirSVR) and experimentally verified 
miRNA interaction sites derived from HITS-CLIP or PAR-CLIP 
experiments.

Our findings support the importance of inter-site distance as 
a parameter defining miRNA-mediated repression. The com-
prehensive analysis of multiple miRNAs per target rather than 
miRNA-mRNA pairs appears essential to exploit disease-asso-
ciated miRNAs and respective targets suitable for therapeutic 
purposes. To facilitate further research in miRNA cooperativity 
we developed miRco, a public web application that predicts coop-
erative miRNA-target interactions based on inter-site distance 
constrains: www.mips.helmholtz-muenchen.de/mirco.

(5'-to-5' distance 40 nucleotides). These studies suggest that 
direct adjacency of binding sites promotes cooperative miRNA 
activities, whereas deviation from this rule may result in loss of 
combined effects or a shift toward independent activities. A sche-
matic drawing of these correlations is shown in Figure 1B. Some 
outliers with larger 5'-to-5' distance of cooperative binding sites 
may be explained by spatial proximity due to suitable secondary 
structure of the mRNA sequence.

Mechanistically, distance constraints between miRNA bind-
ing sites have been suggested to result from interactions between 
adjacent RNA-induced silencing complexes which stabilize target 
mRNA binding and increase the probability of occupancy (bind-
ing cooperativity).41,42 Another possibility would be a cooperative 
influence on the recruitment or effectiveness of further proteins 
leading to enhanced target degradation or repression (functional 
cooperativity42). Too close sites might be underrepresented due to 
steric hindrance of neighboring RISCs resulting in reduced effec-
tiveness, possibly even lower than for a single site. On the other 
hand, if binding sites are too distant, the RNA-protein complexes 
might not be able to positively interact. However, it has to be elu-
cidated if cooperative target regulation reflects a general concept 
of miRNA mediated mRNA regulation.

Figure 1. Distance between multiple miRNA binding sites as predictor of cooperative target regulation. (A) Concerted miRNA target regulation (in 
the context of miRISCs) may be described by independent or cooperative activities. An independent mode of repression has been described for 
very close and for very distant sites. Non-additive effects would be expected if overly close sites exclude simultaneous binding of miRNAs.  
Additive effects may occur when miRNAs occupy sites autonomously without activity-enhancing interactions between their miRISCs. In contrast, 
cooperative activity has been shown for miRNAs, whose binding sites on a specific mRNA are within a certain distance referred to as cooperativ-
ity range. The term cooperativity refers to a synergistic effect amplifying miRNA-mediated repression to an extent greater than expected from 
independent sites. (B) Summary of previous experimental studies investigating distance-dependency of cooperative target repression by multiple 
small RNA binding sites. Inter-site distances (d) tested in the reports (squares) are shown as the distance between adjacent miRNA 5' ends on 
the respective mRNA target. Square colors, light and dark blue indicate that the repressive effect of multiple binding sites was weaker/similar or 
stronger than for a single target site. Brown squares emphasize 5'-to-5' distances for which repression has been reported significantly greater than 
expected from additive effects (cooperative miRISC binding mode). The accumulation of cooperative regulation for distances between  
15−26 nucleotides indicates that directly adjacent miRISCs (with certain variations) have the highest potential to repress their target in a coop-
erative way. Cooperative regulation outside of the core cooperativity range might occur due to secondary structure formations of the target 
sequence.23,41-43



1128 RNA Biology Volume 10 Issue 7

To test for statistical significance, the results were compared 
with two different null models: (1) randomly chosen binding 
sites and (2) predicted target sites for scrambled miRNA-like 
sequences. For the first null model, we randomly selected tar-
get sites in a sequence-independent manner and, thus, generated 
artificial target sets with random binding positions. We picked 
random positions from the complete set of real human 3'-UTRs. 
The number of sites was normalized to predictions for human 
miRNAs. For the second, we designed arbitrary sequences of 
22 nucleotides with the constraint that they are not similar to 
known miRNAs. We predicted targets with TargetScan and 
kept only those results that have a similar number of targets than 
native human miRNAs.

The distribution of all pairwise distances significantly differed 
for endogenous miRNAs and randomly selected binding sites in 
the range of 15−26 nucleotides (Fig. 2B, P value < 2.2 × 10–16). 
This is in accordance with experimental findings (Fig. 1B) and 

Results

MiRNA target sites are enriched within cooperativity-pro-
moting distance. If a cooperative mode of action was function-
ally relevant, then cooperativity-promoting distance between 
target sites should be statistically overrepresented for intact 
binding sites of miRNAs. To test this, we computed the dis-
tribution of pairwise distances between predicted binding sites 
of evolutionary conserved human miRNAs. MiRNA targets 
were predicted using TargetScan, version 6.2.45 The data set 
contained 1,537 conserved human miRNAs. We calculated 
the distribution of distances between all binding sites of each 
miRNA individually. In addition, we determined distances for 
all binding sites of groups of two and five miRNAs (Fig. 2A). 
These group sizes have been defined in order to analyze combi-
natory effects. They were sampled 1,000 times from the com-
plete set of miRNAs.

Figure 2. Naturally occurring miRNA binding sites are more frequently spaced within the cooperativity range (15−26 nucleotides) than expected by 
chance. (A) The pairwise distance between all binding sites of a single (1) or multiple (2) miRNAs is calculated for each mRNA 3'-UTR. (B) The distribu-
tion of pairwise distances shows an enrichment of the cooperativity permitting distance for miRNAs compared with randomly picked sites (1) and 
predicted binding sites of scrambled sequences (2) (P < 2.2 × 10–16, Wilcoxon Rank Sum test).
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This picture changed when groups of two or five miRNAs 
were taken into account. While both data sets retrieved by 
experimental methods exhibited the same tendency as the tar-
get prediction tools, both HITS-CLIP and PAR-CLIP showed a 
stronger gain. The mean fraction of cooperative targets increased 
to 4.7% and 12.5% for HITS-CLIP and to 3.4% and 5.7% for 
PAR-CLIP. The mean percentage of coperative targets for the 
controls increased only to 0.4%/0.8% for random positions and 
1%/1.3% for random sequences. In general, miRanda/mirSVR 
resembled HITS-CLIP and PAR-CLIP more closely while for 
TargetScan the number of cooperative targets was slightly lower.

These results show that cooperative regulation is likely to 
involve different miRNAs. Most importantly, the data for com-
putational target prediction was confirmed with two indepen-
dent sets of experimentally validated miRNA targets.

Functionally related miRNAs show an enrichment of tar-
get sites within cooperativity permitting distance. As shown 
above, endogenous miRNAs are more likely to posess target sites 
in a cooperativity range than randomly picked sites or scrambled 
sequences. If cooperativity is relevant in miRNA-mediated gene 
regulation, then functionally related miRNAs may share more 
cooperative targets than others. As most miRNAs are not com-
prehensively understood with respect to function, the field widely 
relies on two criteria that may be indicative of functional rela-
tion: (1) Co-expression of miRNAs within a particular tissue 
and (2) co-regulation in a common disease context. To put the 
first criterion to the test, we used the miRNA expression profiling 
database mimiRNA.46 For the second, we employed PhenomiR,47 
a database of differentially regulated miRNA expression in dis-
eases. For all miRNAs in both databases, targets were retrieved 
from TargetScan as described before.

The mimiRNA database employs normalized human miRNA 
expression profiles from four different sources: Sequencing data 
from the miRNA Atlas,48 quantitative real-time PCR data from 
Gaur et al.49 and Lee et al.50 and microarray and deep sequencing 
data from the Gene Expression Omnibus (GEO).51 The complete 
data set for 188 different tissues was used to calculate the pro-
portion of cooperative targets among all targets for single and 
groups of two and five miRNAs. Co-expressed miRNAs were 
compared with all non-expressed miRNAs as a control. As shown 
exemplary for brain, liver, heart and lung (Fig. 4), miRNAs that 
are co-expressed in a tissue target more mRNAs in a potentially 
cooperative manner than miRNAs that are not co-expressed in 
a particular tissue (one-sided Wilcoxon Rank Sum test with P 
< 2.2 × 10–16). Moreover, the difference increases for groups of 
two and five co-expressed miRNAs, suggesting that these co-
expressed miRNAs are in a functional relation with each other.

To test for the second presumed indicator of functional inter-
relation, i.e. co-regulation in disease, we applied the latest release 
of PhenomiR, a database which comprises 126 diseases and 615 
associated miRNAs. Again, the fraction of cooperative targets 
was determined for single and sampled combinations of two and 
five miRNAs. The complete set of non-regulated miRNAs was 
used as control for each disease. Targeting with at least two bind-
ing sites within the cooperativity range was more often found for 
co-regulated miRNAs than for control groups not associated with 

is hence referred to as cooperativity range. This holds true for 
individual as well as for combinations of two and five different 
miRNAs. The enrichment of miRNA binding sites shows a peak 
for an inter-site distance of ~21 nucleotides (i.e., when two miR-
NAs bind in immediate vicinity). The distance distribution of 
predicted binding sites for scrambled sequences was also found 
to be different from miRNAs, again with significant underrepre-
sentation within the cooperativity range (Fig. 2B).

In summary, when only small distances are considered 
(< 3 miRNA lengths), predictions for randomly picked sites and 
scrambled sequences produced similar results, while predicted 
target sites for human miRNAs displayed significant enrichment 
of inter-site spacing between 15−26 nucleotides. These findings 
correlate with previous studies (Fig. 1B) and, thus, we used this 
window of inter-site spacing in subsequent analyses to determine 
cooperatively regulated miRNA targets.

HITS-CLIP and PAR-CLIP data sets show cooperativity. 
We calculated the fraction of targets that are potentially regu-
lated in a cooperative manner for four distinct sets of miRNA 
targets: (1) TargetScan predictions for human miRNAs,44 (2) 
miRanda/mirSVR predictions for human miRNAs as a second 
target prediction tool,26,27 (3) experimentally validated data from 
a HITS-CLIP28 and (4) from a PAR-CLIP study.29 All data sets 
were compared with random target sites and random sequences. 
As above, we analyzed single as well as groups of two and five 
miRNAs to take combined activity into account.

Looking at target prediction, both tools show significantly 
more cooperative targets than random binding sites and random 
sequences (p-values < 2.2 × 10–16). This holds true for single 
and groups of two and five miRNAs. Interestingly, in all cases, 
miRanda/mirSVR has a higher percentage of cooperative targets. 
We find a mean of 2%, 4%, and 8% for miRanda/mirSVR and 
a mean of 1%, 1.7%, and 2.2% for TargetScan.

The difference between miRNAs and controls increased with 
the number of miRNAs and we found the largest difference for 
groups of five naturally occurring miRNAs. This indicates that 
targets controlled by multiple different miRNAs are more fre-
quently regulated in a cooperative fashion than mRNAs with 
multiple binding sites for an identical miRNA species.

Recently, biochemical methods to identify miRNA bind-
ing sites on a genome-wide scale have been developed. For an 
experimental validation of our in silico results, we analyzed 
the published HITS-CLIP and PAR-CLIP data sets. The for-
mer contains mRNA binding sites for the 20 most abundant 
miRNAs from mouse brain while the latter contains 47 human 
miRNAs. Both HITS-CLIP and PAR-CLIP identifie similar 
numbers of targets as TargetScan and miRanda/mirSVR and, 
thus, allow for comparison with our findings for computational 
prediction.

We retrieved all binding sites for both data sets and calcu-
lated the proportion of cooperative targets (Fig. 3, brown and 
blue boxes). For a single miRNA, only HITS-CLIP shows sig-
nificantly more cooperative targets than controls with a mean of 
2.5% compared with 0.5% and 0.2% for random sequences and 
random sites. PAR-CLIP data shows a mean of 0.4% cooperative 
targets and thus is not different from controls.
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based on our findings and reported experimental data.23,41-43 
Alternatively, the user may define a custom lower and upper limit 
of the distance. The tool includes miRNAs and mRNAs from 
human, mouse and rat. Target predictions are obtained from the 
current release of TargetScan (version 6.2).

First, the user is asked to choose the species for which the 
search is to be performed. Then, a list of miRNAs, or genes, or 
both may be submitted. If either miRNAs or genes are left blank, 
the complete data set is used for analysis. Our tool is connected 
to the PhenomiR database. The user can select a disease anno-
tated in PhenomiR and input a set of disease-associated miRNAs 
(Fig. 5B). The output of miRco is presented as a list of target genes 
with corresponding binding sites in the aforementioned coopera-
tivity range. Data are initially sorted based on the context+ score 
calculated by TargetScan and can subsequently be listed by tar-
get gene symbol and average distance between the binding sites. 
Furthermore, the result table can be filtered for the occurrence of 
one or multiple miRNAs within the list of candidate mRNAs.

The improved data set of the latest TargetScan release is a 
solid fundament for prediction of cooperative targets for three 
major model organisms used for medical research. miRco may 
serve as a hypothesis-generator to aid further research on the 

a particular disease (one-sided Wilcoxon Rank Sum test with P 
< 2.2 × 10–16) (data not shown). Notably, this holds true for all 
diseases covered by PhenomiR. Similar to co-expressed miRNAs, 
we found an increase of the difference between disease-associated 
miRNAs and controls for groups of two and five miRNAs.

miRco: A tool to predict miRNA targets with binding sites 
in a cooperativity-permitting distance. We have shown that 
miRNA binding sites are more often located in the cooperativity 
range than expected by chance. Additionally, functionally related 
miRNAs show an enrichment of cooperative binding sites. Still, 
the biological relevance of cooperativity in miRNA function has 
to be shown experimentally. To support further research in this 
topic, we developed the web application miRco, a tool to predict 
potentially cooperative miRNA interactions and their mRNA 
targets. Upon user input of miRNAs and distance allowance 
between miRNA binding sites, miRco identifies mRNAs that 
may be controlled by cooperative miRNA activities. Additionally, 
miRco can find all miRNAs that bind cooperatively to a given list 
of genes or mRNAs (Fig. 5A and B). To predict mRNAs that are 
cooperatively regulated, miRco searches by default for target sites 
within a distance of 15–26 nucleotides between two consecu-
tive miRNA 5' ends. As described above, this setting was chosen 

Figure 3. The fraction of cooperative targets per total targets grows for increasing numbers of miRNAs. Analysis of cooperative targets was performed 
with computationally predicted (TargetScan, red; miRanda, brown) and experimentally identified (HITS-CLIP, light blue; PAR-CLIP, dark blue) target 
sets. The proportion of cooperative targets is plotted for single miRNAs and sampled groups of two and five miRNAs. The mean is always higher for 
existing miRNAs than either of the controls (P < 2.2 × 10–16, tested with Wilcoxon Rank Sum test), except PAR-CLIP data for single miRNAs. This indicates 
that they are more often located in a potential cooperative distance than expected by chance.
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with miRNA sites in cooperativity range than from control set-
ups. Third, the higher proportion of such mRNAs goes along 
with the co-regulation of miRNAs in tissue as well as similar 
disease context, underscoring the suspected functional interplay 
of these miRNAs on the respective mRNAs. The enrichment of 
miRNA binding sites in cooperativity-promoting distance speaks 
for a prevalently concerted, maybe cooperative way of miRNA 
target regulation.

However, the mechanisms of targeting are complex. 
Apparently, the type of Argonaute protein involved in a particu-
lar silencing complex has great influence on the nature of tar-
get regulation.42 For example AGO 1 and AGO 2 show distinct 
characteristics with respect to the distance requirement between 
binding sites leading to cooperative targeting.42 While bulged 
binding of miRNAs within AGO 1-complexes shows cooperativ-
ity only for adjacent binding sites, bulged sites of AGO 2-contain-
ing RICSs can act cooperatively in adjacent as well as in extended 
compositions. Consequently, the cell-specific proportion of the 
different AGO subtypes as well as the concentration of other 
potential effector proteins may be important. Furthermore, the 
sequence context around miRNA sites might affect cooperative 
actions of miRISCs, with other protein binding sites and second-
ary structure as the most likely determinants.

Therefore, the next step in studying miRNA cooperativity 
will be to more comprehensively analyze it in a biological context. 
Analysis of several instead of single miRNAs and their potential 
cooperativity could lead to a better understanding of the complex 
interplay of miRNAs and genetic networks in health and disease.

Cooperativity as a moderator of strongly increased effects 
would be interesting for the therapeutic use of miRNAs: If two 
miRNAs downregulate an mRNA target cooperatively, a lower 

mechanisms underlying concerted miRNA-mediated target 
regulation.

Discussion

The study presented here addresses a largely unresolved question 
in miRNA research: Do miRNAs confer physiological effects on 
their own, or do they function in a concerted, possibly coopera-
tive manner?

Literature provides certain evidence: Experiments in which 
a single small regulatory RNA binds to a single site within a 
mRNA often fail to show effects (e.g. refs. 23 and 40). On the 
other hand, studies indicated that miRNA-mediated target regu-
lation is particularly effective if several miRNAs bind within a 
close distance.23,41-43 However, these results rely on expression of 
artificial reporter constructs and do not provide comprehensive 
evidence that cooperativity is a general principle of miRNA-
mediated target regulation.

In principle, one way to explain the basic concept of miRNA 
cooperativity is that proximity of binding sites on mRNAs sta-
bilizes miRISCs’ binding to their mRNA targets, leading to an 
increased silencing effect. This proximity concept has already 
been discussed in literature and several of our observations provide 
further support for it on a genome-wide scale: First, we showed 
that mRNAs with more than one miRNA site are more likely to 
have these sites placed in cooperativity-promoting distance (15–
26 nucleotides, 5'-to-5') than randomized controls. Interestingly, 
the peak distance of ~21 nucleotides reflects binding of two 
miRNAs in direct neighborhood. Second, by in silico prediction 
(TargetScan, miRanda/mirSVR), as well as experimentally sup-
ported (HITS-CLIP, PAR-CLIP), we retrieved more mRNAs 

Figure 4. Functionally related miRNAs show an enrichment of target sites within the cooperativity range. Fraction of potentially cooperative targets 
for miRNAs in four exemplary tissues (blue) compared with a control set of miRNAs not expressed within the respective tissue (gray). Targeting within 
the cooperativity permitting distance is over-represented for co-expressed miRNAs (one-sided Wilcoxon Rank Sum test with P < 2.2 × 10–16).
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Figure 5. Functionality of the miRco web application. (A) A search for cooperative miRNA-target interactions is performed by selecting miRNA candi-
dates, relevant target genes or both. The user is able to specify parameters for the range in which the spacing between two adjacent miRISC binding 
sites (d) is assumed to lead to cooperative target repression. Default values are 15−26 nucleotides. Predictions for three species are available: human, 
mouse, and rat. (B) Screenshot of the user interface of the online tool.
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prediction is performed on a multiple sequence alignment of 
18413 3'-UTRs from 23 species. For miRanda/mirSVR, we used 
the predictions for conserved miRNAs with a good mirSVR 
score. The release contains 249 human miRNAs.

Random distribution of target sites. Randomly distributed 
target positions were used as a null model for cooperativity. We 
picked random positions within the real set of human 3'-UTRs. 
UTR data for all human genes (assembly GRCh37.p10) was 
downloaded from ENSEMBL BioMart (http://www.ensembl.
org/). The number of positions per UTR was normalized to lie 
within the range of TargetScan predictions. This approach is 
completely independent of miRNAs, their sequences and pairing 
determinants. Thus, this represents the most basic null model for 
binding site allocation and does not rely on any prior knowledge.

Random miRNA-like sequences. To augment the basic ran-
dom position control, we generated 1000 completely random 
22 nucleotides long sequences. We only used sequences which are 
not known human miRNAs and do not contain seeds (nucleo-
tide 2–8) of known human miRNAs. We predicted targets for 
these seeds with the TargetScan 6.2 software and the UTR data 
provided by TargetScan. For the subsequent analyses, only ran-
dom sequences that produce the same numbers of targets (i.e., 
between 10–2,719) as human miRNAs were taken into account.

Sampling of groups. For analyses using single miRNAs, the 
complete data set was considered. Groups of two and five miR-
NAs or controls were sampled randomly 1000 times from the 
complete set with no recurrence.

HITS-CLIP data set. The data set of Chi et al.28 is available at 
ago.rockefeller.edu, including mapping of miRNA binding sites 
onto genomic positions. The authors of this study used neocor-
tex of P13 mouse brain, crosslinked RNA binding proteins and 
RNA with UV irradiation and immunoprecipitated AGO-RNA 
complexes. Subsequently, RNA was purified and sequenced. 
Computational analysis produced a miRNA-mRNA interaction 
map. We used the mapping on mouse genome assembly mm9.

PAR-CLIP data set. The data set of Hafner et al.29 is avail-
able through starBase (starbase.sysu.edu.cn), a database provid-
ing gene mappings for a wide range of CLIP experiments.58 We 
used the “target site interaction” tool of starBase with settings for 
at least one microRNA read and “stringent miRNA targets” as 
described in the starBase publication.

Statistics. The distributions of pairwise distances (in a given 
distance window) as well as the percentage of cooperative tar-
gets were tested for a significant difference between miRNAs and 
controls with a one-sided Wilcoxon Rank Sum test.59 We used 
the wilcox.test function in the “stats” package of the R statistical 
computing software with a confidence interval of 0.95 to calcu-
late P values. P values < 2.2 × 10–16 occur due to the limits in 
floating point precision in R.

miRco web application. The miRco web tool is implemented 
as a JAVA EE application running on a Tomcat 6 servlet engine, 
using the same MySQL database described above. It employs 
TargetScan release 6.2. For a given set of mRNAs and miRNAs, 
miRco produces groups of miRNA binding sites that fulfill the 
user set distance criteria. Whenever two binding sites are at the 
exact same position or overlap (i.e., their distance is smaller than 

level of expression might suffice to exert the designated effect. 
This would potentially decrease side effects of the miRNAs or 
miRNA mimics and, thereby, lead to a more tolerable treatment.

In addition, combinations of miRNAs could be employed to 
improve experimental protocols. Similar to the idea of decreased 
side effects of therapeutic miRNAs, the combination of different 
miRNAs might increase the specific effect on the targets of inter-
est. Interestingly, the combined activity of multiple miRNAs has 
recently been reported to facilitate the reprogramming of fibro-
blasts to cardiomyocyte-like cells52 as well as the induction of plu-
ripotent stem cells (iPSCs).53,54

Recently, several studies highlighted the interaction of AGO/
miRNAs with other RNA binding proteins (RBP).55-57 In the 
future, the concept of cooperativity may extend to all RBPs in 
order to better predict mRNA regulation.

In the context of this work, we also developed miRco (mips.
helmholtz-muenchen.de/mirco), a web application meant to aid 
experimental research into the cooperative action of miRNAs. 
It predicts potentially cooperatively targeted mRNAs based on 
binding site distances and, thus, might help to identify key regu-
latory miRNA-mRNA networks. miRco serves as a starting point 
for wet lab scientists: It allows one to input miRNAs and search 
for cooperative targets. In addition, the user can specify a set of 
genes and find all miRNAs that target these genes in a coopera-
tive fashion. This dual approach helps to narrow down lists of 
candidate genes and miRNAs and makes it more feasible to test 
cooperativity in a complex biological context.

Taken together, our data indicate that cooperativity of 
miRNA-target interaction is a wide-spread phenomenon that 
may play an important role in miRNA-mediated gene regulation.

Materials and Methods

Criteria for the prediction of cooperativity. Cooperativity of 
two miRNAs is defined by the distance between the 5'-starts 
of their binding sites. We used 15 nucleotides as the lower and 
26 nucleotides as the upper limit of the cooperative distance, fol-
lowing experimental studies of distance-dependent cooperative 
effects and our data showing an enrichment of binding sites for 
human miRNAs in this window.

To determine whether a mRNA may be cooperatively regu-
lated, we take a single gene, acquire all binding sites of a given set 
of miRNAs on this mRNA and cluster them in groups where the 
distance between two adjacent sites lies within the cooperativity 
interval. If at least two binding sites fulfill this criterion, a mRNA 
is considered to be potentially regulated in a cooperative manner.

All data sets are stored in a MySQL database containing tables 
for genes, miRNAs and binding sites as well as their relations. 
Analyses are performed with Python programs combined with 
data plotting using R.

MiRNA target prediction. We used computational target pre-
diction of human miRNAs from TargetScan22,45 release 6.2 and 
miRanda/mirSVR release August 2010.26,27 For TargetScan, we 
used the predictions for conserved miRNAs and targets. Scores 
of target sites are the context+ scores calculated by TargetScan. 
The release 6.2 contains 1,536 conserved human miRNAs and 
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Abstract
MicroRNAs are involved in almost all biological processes and have emerged as regulators
of signaling pathways. We show that miRNA target genes and pathway genes are not uni-
formly expressed across human tissues. To capture tissue specific effects, we developed a
novel methodology for tissue specific pathway analysis of miRNAs. We incorporated the
most recent and highest quality miRNA targeting data (TargetScan and StarBase), RNA-
seq based gene expression data (EBI Expression Atlas) and multiple new pathway data
sources to increase the biological relevance of the predicted miRNA-pathway associations.
We identified new potential roles of miR-199a-3p, miR-199b-3p and the miR-200 family in
hepatocellular carcinoma, involving the regulation of metastasis through MAPK andWnt
signaling. Also, an association of miR-571 and Notch signaling in liver fibrosis was pro-
posed. To facilitate data update and future extensions of our tool, we developed a flexible
database backend using the graph database neo4j. The new backend as well as the novel
methodology were included in the updated miTALOS v2, a tool that provides insights into
tissue specific miRNA regulation of biological pathways. miTALOS v2 is available at http://
mips.helmholtz-muenchen.de/mitalos.

Introduction
MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression post tran-
scriptionally through binding to a target mRNA. They are predicted to target hundreds of
genes in mammals and most genes are thought to be regulated by miRNAs [1]. Consequently,
most biological processes involve miRNAs and miRNA-mediated control of gene expression.

Functional analysis of miRNAs depends on accurate identification of gene targets in a given
biological context [2]. Since there is no comprehensive catalogue of tissue and cell type specific
miRNA-mRNA interactions, computational target prediction tools are still widely used.
Although these prediction tools have improved in accuracy, they still suffer from large numbers
of false-positive miRNA-mRNA interactions [2]. Recently, biochemical methods using sequenc-
ing of target RNA isolated after UV crosslinking and immunoprecipitation of Ago/miRNA

PLOSONE | DOI:10.1371/journal.pone.0151771 March 21, 2016 1 / 15

OPEN ACCESS

Citation: Preusse M, Theis FJ, Mueller NS (2016)
miTALOS v2: Analyzing Tissue Specific microRNA
Function. PLoS ONE 11(3): e0151771. doi:10.1371/
journal.pone.0151771

Editor: Bibekanand Mallick, National Institute of
Technology, Rourkela, INDIA

Received: December 16, 2015

Accepted: March 3, 2016

Published: March 21, 2016

Copyright: © 2016 Preusse et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are in
the paper and on the web application described in the
article: http://mips.helmholtz-muenchen.de/mitalos.

Funding: This work was supported by Deutsche
Forschungsgemeinschaft (InKoMBio: FKZ TH 900/3-
2) to MP, an ERC starting grant award
(LatentCauses) to FJTand Deutsche
Forschungsgemeinschaft (PsyCourse: FI 981/9-1) to
NSM. The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



complexes (CLIP-seq) were developed [3,4]. They produce a map of miRNA binding sites on
their target mRNAs. CLIP-seq data is collected in the StarBase database [5], providing a con-
stantly growing resource of experimentally supported interactions. While these experimental
methods increase the specificity of miRNA target data, their explanatory power is limited due to
differences in experimental procedures and lack of reproducibility [6]. Moreover, all human
data sets in StarBase were measured in immortalized cell lines (HEK293, HeLa) and not in pri-
mary tissue.

Next to limitations of in-silico and experimental gene target identification, miRNA-medi-
ated regulation suggested by in-vitro and cell culture experiments is often not supported by in-
vivo validation studies [7]. This can be partly explained by the fact that most miRNAs show
only limited effects on the level of individual target mRNAs under physiological conditions [8].
In addition, target prediction and CLIP-seq studies demonstrated that most mRNAs are regu-
lated by multiple miRNAs [9–11]. Thus, the down-regulation of a target gene depends on the
combined effect of multiple miRNAs. And analysis of individual miRNA-mRNA interactions
is not sufficient to explain the regulatory role of miRNAs in biological process.

Computational approaches often perform a pathway analysis to increase the explanatory
power of target gene sets and to circumvent the shortcomings in targeting data. They use the
complete set of miRNA target genes and pathway genes to associate miRNAs to biological
pathways as an indication of their biological function. In doing so they do not account for the
characteristic tissue expression signature of mammalian genes [12] and thus disregard tissue
specific effects of miRNAs. Indeed, miRNAs were shown to facilitate tissue specificity of gene
regulation [13]. Moreover, other pathway analysis tools such as DIANA mirPath rely on target
prediction only and do not use CLIP-seq based target data [14].

Tissue-specific gene expression data can be obtained using next-generation sequencing of
RNA (RNA-seq). The EBI Expression Atlas [15] collects highly curated gene expression data
sets and also includes baseline expression data for healthy tissue or untreated cell lines in vari-
ous organisms. Baseline expression describes the abundance of a gene and is extracted from
large-scale expression studies such as ENCODE cell lines.

We developed a novel pathway analysis methodology leveraging this high-quality tissue
expression data in order to predict miRNA function. We used our new methodology to first
analyze the role of miRNAs in hepatocellular carcinoma and identified the liver-specific effect
of miR-199a/b-3p on pathways associated with proliferation and cell migration, a novel func-
tion that a recent study proposed. We next dissected the individual functions of the two geno-
mic clusters of the miR-200 family and found hints to new signaling relationships, which were
studied in other tissues and cell culture but not yet in liver cancer. We finally extended our
analysis to liver fibrosis, which is in general less well studied than liver cancer. miR-571 is
known to play a role here and we identified Notch signaling as a putative function. Interest-
ingly, Notch signaling has already been proposed as a drug target for fibrosis in other tissues.
With the three case studies we demonstrated the necessity to use tissue-specific target gene
information for miRNA function prediction.

To make our novel pathway analysis methodology publicly available, we systematically inte-
grated 1) high-quality miRNA targeting data from TargetScan and CLIP-seq studies from Star-
Base v2 [5], 2) tissue specific gene expression from the latest version of EBI Expression Atlas
[15] with 3) three major pathway databases KEGG [16], WikiPathways [17] and Reactome
[18]. A graph database was used to store the data in a flexible manner and increase the query
performance compared to relational data stores. The data backend and the corresponding
pathway analysis methodology were integrated into miTALOS version 2 (v2), a user-friendly
web application to identify pathways regulated by miRNAs in a tissue specific manner. With
miTALOS v2 users can analyze multiple miRNAs together to account for combinatorial effects.

miTALOS v2: Analyzing Tissue Specific microRNA Function
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MiTALOS v2 is complementary to other functional miRNA analysis tools such as miRGator
[19] and ToppMir [20] and adds value with a tissue specific analysis of miRNA impact on sig-
naling pathways. The integration of multiple new state-of-the art data sources increases the
biological relevance of the results and a novel tissue filter allows every user to decipher complex
miRNA functions.

Results
Tissue specific pathway enrichment
MiRNA target prediction tools and CLIP-seq based methods for target identification yield the
full set of potential miRNA-mRNA interactions, i.e. all potential gene targets of a miRNA.
However, different tissues and cell types have a characteristic gene expression signature and
only a subset of genes are expressed in any cell under physiological conditions [12]. Thus, the
function of miRNAs, which is exerted through repression of target genes, is tissue specific.

To learn about the tissue-specificities of miRNAs, we first analyzed the expression of all tar-
get genes of hsa-let-7a (TargetScan, see methods) in 42 human tissues from EBI Expression
Atlas. The expression of target genes varied greatly between tissues (Fig 1A). To quantify the
extent of tissue specificity of a miRNA, we calculated for each of the 42 tissues the fraction of
target genes being expressed. The fraction is depicted in Fig 1B (color coded from green = 0 to
red = 1). Fig 1C shows the respective distributions for ten representative miRNAs. Thereof, the
median of target genes expressed in a tissue was 75%, with many tissues expressing only 60%
target genes (Fig 1C). This is in line with studies showing tissue specific functions of miRNAs
[13].

Next, we performed the same tissue-specificity analysis now only for genes of the same
pathway. The pathway genes in well-described human MAPK signaling (KEGG) showed
highly tissue specific expression (Fig 1D). Interestingly pathways showed a characteristic distri-
bution of the fraction of expressed target genes when compared to miRNAs. Ten representative
distributions across all 42 tissues are shown in Fig 1E. Some pathways (such as Cell adhesion
molecules, Fig 1E) were more tissue specific than others, indicating highly tissue specific
functions.

Having established that both miRNA and pathway associated genes have a characteristic
gene expression signature across tissues, we next outlined the approach of standard miRNA
pathway analysis methods. Typically the set of all miRNA targets are tested for over-represen-
tation in the set of all pathway genes (Fig 1F, left). This global analysis of all target and pathway
genes will overlook miRNA-pathway associations with a small gene-overlap, while this gene-
overlap may in turn be tissue-specific and, thus, functionally highly relevant. Pathway analysis
tools that use all target genes to identify miRNA-pathway associations cannot capture tissue
specific effects.

We thus propose a novel methodology for miRNA pathway analysis by using a tissue filter
in order to increase the relevance of the association. If the target genes or pathway genes out-
side of the overlap are not expressed in a tissue, the relation of miRNA and pathway is much
stronger (Fig 1F, right). Consequently, if the overlapping genes found in a miRNA-pathway
association are not expressed in a tissue, the relation is discarded. The novel methodology cal-
culates an enrichment of the target genes of a miRNA in all pathways of different pathway data
sources. Significance of the associations is calculated with Fisher's exact test (see methods).
Individually for each miRNA-pathway association test, we filtered for expression in a tissue by
removing all miRNA target genes and pathway genes that are not expressed in this tissue. We
thereby accounted for the highly tissue specific expression of many genes and seek to increase
biological relevance of the pathway enrichment.

miTALOS v2: Analyzing Tissue Specific microRNA Function
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Fig 1. miRNA target genes and pathway genes are tissue specific. (A) Heatmap of all target genes of hsa-let-7a and their expression in 42 human
tissues. Tissues are depicted in rows, genes in columns. (B) Fraction of target genes of hsa-let-7a expressed in each tissue, color coded in green (0) to red

miTALOS v2: Analyzing Tissue Specific microRNA Function
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Case study: microRNAs in liver disease
We analyzed miRNAs known to be involved in liver disease with our novel methodology to
evaluate the power of tissue specific pathway analysis. We focused on miRNAs in hepatocellu-
lar carcinoma (HCC) and liver fibrosis. Both diseases involve uncontrolled proliferation of
liver cells.

First, we analyzed miR-199a-3p and miR-199b-3p. Both miRNAs are up-regulated in some
tumor types, such as ovarian cancer and breast cancer [21]. In HCC, conversely, both miRNAs
have been shown to be down-regulated [22,23]. While the function of miR-199a-3p and miR-
199b-3p is not fully defined, they target members of Raf/MEK/ERK signaling [23]. In general,
inhibition of Raf/MEK/ERK signaling will limit proliferation of cells. Thus, downregulation of
miR-199a-3p and miR-199b-3p might be a part of the regulatory changes leading to increased
proliferation of HCC cells. These miRNAs have consequently been considered as therapeutic
targets for treatment of HCC [24].

When performing standard pathway analysis for miR-199a-3p and miR-199b-3p, no can-
cer-associated pathways were enriched (human, TargetScan). Using our methodology and the
Illumina Body Map tissue filter for liver additionally identified two significantly associated
pathways: Regulation of actin cytoskeleton (KEGG) and Regulation of Microtubule Cytoskele-
ton (WikiPathways) (Table 1). The miRNAs were previously not directly associated to regula-
tion of the cytoskeleton, yet both pathways are fundamental for the processes of cell migration,
EMT and metastasis. The regulation of actin cytoskeleton (KEGG) pathway overlaps with the
MAPK signaling pathway from KEGG and includes several key components of Raf/MEK/ERK
signaling (Fig 2A). The liver filter thus identified the known association of miR-199a-3p and
miR-199b-3p with Raf/MEK/ERK signaling through associated regulatory pathways. Interest-
ingly, the involvement of miR-199a/b-3p in cell migration and EMT has been described in
other tissues [25,26].

(1). (C) Fraction of target genes expressed in all tissues for 10 representative miRNAs. (D)-(F) Corresponding analysis for pathway genes. (G) Pathway
analysis with the global set of miRNA targets and pathway genes (left). The miRNA and pathway have only few common genes (gene B, gene C) compared
to the other pathway genes (gene A) and miRNA targets (gene D, gene E). When applying a tissue filter (right), genes not in the set of miRNA targets and not
in the pathway are discarded. The association derived from the overlap is much stronger, indicating a tissue specific regulation of the pathway by the miRNA.

doi:10.1371/journal.pone.0151771.g001

Table 1. Pathway enrichment used in the case studies with liver filter.

source Pathway E Corrected p-value MP, Mn, Pn, U

hsa-miR-199a, hsa-miR-199b-3p
wp Regulation of Microtubule Cytoskeleton 3,814 0,034 4, 232, 18, 3982

kegg Regulation of actin cytoskeleton 2,010 0,049 11, 225, 95, 3905

hsa-miR-200b, hsa-miR-200c, hsa-miR-429
kegg Focal adhesion 1,895 0,008 25, 593, 83, 3730

wp Focal Adhesion 1,791 0,024 22, 596, 77, 3736

wp Wnt Signaling Pathway 2,765 0,028 8, 610, 18, 3795

hsa-miR-200a, hsa-miR-141-3p
wp MAPK Cascade 3,194 0,047 5, 408, 15, 3910

reactome NR1D1 (REV-ERBA) represses gene expression 19,095 0,017 2, 411, 1, 3924

hsa-miR-571-3p
wp Notch Signaling Pathway 9,844 0,000 3, 62, 20, 4069

kegg Notch signaling pathway 8,945 0,001 3, 62, 22, 4067

doi:10.1371/journal.pone.0151771.t001

miTALOS v2: Analyzing Tissue Specific microRNA Function
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Our novel methodology with tissue filter suggested a role of miR-199a/b-3p in cell migra-
tion, EMT and ultimately metastasis through regulation of cytoskeleton. The decrease of miR-
199a/b-3p in HCC might increase metastatic potential in HCC. Indeed, a recent study indicates
a role for miR-199a/b-3p in HCC proliferation [27].

Second, we investigated the miR-200 family consisting of two genomic clusters
(miR-200b/c/miR-429 and miR-200a/miR-141) that was shown to be involved in EMT and
cell migration [28]. The family has been described as a potential cancer therapy target [29].
The miRNAs of the miR-200 family are often analyzed together. Here, we look at specific

Fig 2. tissue specific enrichment of miRNAs in liver disease. (A) Targets of miR-199a/b-3p in the human KEGG Actin Cytoskeleton pathway (red). Only a
section is shown, other parts are not targeted. Blue stars show genes also present in MAPK signaling. (B) Pathway analysis of miR-200 family using the liver
filter. MiR-200b/c and miR-429 target Focal adhesion andWnt signaling, pointing towards a regulatory interdependence in cancer formation. MiR-200a and
miR-141 have different associated pathways but also target cancer related signaling. (C) MiR-571 is elevated in fibrosis and associated with notch signaling
when using the liver filter. Notch inhibitors are in clinical studies for treatment of early stages of fibrosis.

doi:10.1371/journal.pone.0151771.g002
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functions of the two clusters to show the power of combined pathway analysis of multiple
miRNAs. When performing pathway analysis with liver filter for miR-200b/c/miR-429 (Illu-
mina Body Map, TargetScan, human) we identified significant associations with focal adhe-
sion pathways from both KEGG and WikiPathways (Table 1). This finding clearly points
towards an involvement in cell migration and EMT (Fig 2B). Interestingly, we also identified
Wnt pathway (KEGG) (Table 1). As of today, there was no direct evidence reported for
involvement of Wnt signaling in regulation of cell migration, EMT and metastatis in HCC.
There was, however, evidence for a connection in other diseases such as breast cancer [30],
vitreorenopathy [31] and prostate cancer [32].

Our novel methodology suggested new roles for miR-200b/c/miR-429 in HCC and a func-
tional connection of Wnt signaling with cell migration and EMT (Fig 2B). Pathway analysis
with liver filter (Illumina Body Map, TargetScan, human) for the other genomic cluster (miR-
200a/141) identifies MAPK signaling and MAPK associated NR1D1-(REV-ERBA) pathway
(WikiPathways) (Table 1). MAPK signaling was indeed elevated in HCC [33,34] and has been
suggested as target for HCC treatment with success in mouse model [35] (Fig 2B). In summary,
our novel methodology found specific HCC related functions for both genomic clusters of the
miR-200 family. Analyzing the entire miRNA-200 family did not identify focal adhesion, Wnt
or MAPK as significant results.

MiRNAs also play a role in liver fibrosis [36] but are in general less well studied in this dis-
ease context. There is only few functional evidence or mechanistic insight into the role of miR-
NAs in fibrosis. This represents an interesting example for the primary use case of our novel
methodology: To generate new hypotheses and filter candidate miRNAs to be tested in the wet
lab. The serum levels of miR-571 were found increased in cirrhosis (the final stage of fibrosis)
and miR-571 has been suggested as a biomarker [37]. With our pathway analysis, we identified
Notch signaling (KEGG) as target of miR-571 with liver filter (Illumina Body Map, human,
TargetScan) (Table 1). Interestingly, Notch signaling was shown to be over-active in fibrosis
[38] and Notch inhibitors have been discussed as potential drugs for treatment of fibrosis
[38,39]. As a result, our novel methodology suggests that miR-571 could potentially inhibit
Notch signaling in liver tissue. Thus, miR-571 might be a potential therapeutic target in the
context of fibrosis (Fig 2C). In summary, our updated novel methodology supported new func-
tional hypotheses through tissue filtered pathway analysis.

Data sources
In order to make the novel methodology publicly available, we first integrated several data
sources on miRNA targeting, biological pathways and gene expression for both mouse and
human. We downloaded and integrated computational target prediction data from TargetS-
can 6.2 [40] and miRanda [41]. We also added miRNA-target interaction data of CLIP-seq
studies from StarBase v2 [5]. TargetScan contained the majority of mammalian miRNAs
while miRanda and StarBase only represented a small subset (Table 1). Due to the limited
availability of CLIP-seq studies, we still rely on target prediction data for many miRNAs.
Pathway data was extracted from KEGG [16], Reactome [18] and WikiPathways [17]. Path-
ways in the Reactome database were structured in top-level pathways with smaller sub path-
ways. This lead to larger numbers of pathways overall compared to KEGG and WikiPathways
(Table 1). To allow for a tissue-specific pathway analysis, we used baseline gene expression
data for a total of 68 human and mouse tissues and cell lines from the latest EBI Expression
Atlas [15]. Baseline expression data was based on reliable RNA-seq experiments and repre-
sents abundance levels in healthy tissue or cell lines. We integrated tissue data sets from 6 dif-
ferent expression studies (Table 2).
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Database backend
Any system that integrates heterogeneous research data has to deal with two major challenges:
I) Data has to be stored in a way that it can be queried efficiently and II) the data model must
allow for easy updates for new releases of the underlying data sources.

Traditionally, SQL based relational database systems such as MySQL or PostgreSQL were
the go-to solution for all data storage needs. In recent years however, new database technolo-
gies collectively termed noSQL (short for not-only SQL) were developed to cope with problems
arising from big data. Such noSQL technologies have been used successfully in solutions for
computational biology, especially in the field of NGS [42]. Among the diverse landscape of
new database technologies, graph databases are particularly promising for biological data sets.
They enable storing data natively as a property graph, i.e. nodes connected by edges with prop-
erties stored on both. Thus, they allow us to directly model biological systems as nodes repre-
senting molecular entities connected by edges representing their interaction. This leads to
simple queries over multi-step paths through the interaction network and increased perfor-
mance compared to JOIN operations in relational databases [43,44]. Since queries on biological
data are usually centered on relationships between molecular entities (such as genes and miR-
NAs), graph database have a huge potential to improve data storage solutions. The key advan-
tages are query performance and simple query syntax.

For our study, we used the graph database neo4j and developed a novel graph data model to
integrate the data sources described above (Fig 3A). MiRNAs, genes, pathways and tissues were
represented as nodes. MiRNAs were connected to genes with 'REGULATES' relationships,
genes to tissues with 'EXPRESSED`relationships and genes to pathways with 'MEMBER' rela-
tionships. This data structure allowed us to e.g. query the target genes of a miRNA expressed in
a tissue (Fig 3B, top) or the pathways in which the target genes are involved (Fig 3B, bottom).

Another challenge in studies based on integration of third party data sources is to keep up
with data updates and new releases. Small, specialized data sources publish new versions on
their own schedule and changes in one data source are not synchronized with others. Since
neo4j is schema-less, changes of parts of the underlying data (e.g. miRNA targeting data for a
single data source) and refactoring of the data structure (e.g. renaming of miRNAs) are easier

Table 2. Overview of data sets.

Human Mouse

# miRNAs

TargetScan v6 1529 1322

Miranda 249 238

StarBase v2 383 296

# Pathways

KEGG 295 291

Reactome 2224 1882

WikiPathways 293 160

# Tissues

Mammalian Tissues 8 6

Illumina Body Map 16 -

ENCODE Cell Lines 18 -

Vertebrate Tissues - 5

6 Mouse Tissues - 6

Nine Mouse Tissues - 9

doi:10.1371/journal.pone.0151771.t002
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to implement. We thus seek to regularly update our pathway analysis with new data sets espe-
cially focusing on NGS based data for miRNA targets and gene expression.

miTALOS v2
In order to make our integrated, tissue specific pathway analysis available to the research com-
munity, we included the new analysis methodology and data backend in an update to our
miTALOS web application.

MiTALOS v2 is a user-friendly tool to perform tissue specific pathway analysis for a set of
miRNAs and tissues of interest (Fig 4). It is available at http://mips.helmholtz-muenchen.de/
mitalos. The user can analyze miRNAs from mouse and human. The user begins by selecting
the organism and miRNA prediction method (Fig 4A) and then selects one or multiple miR-
NAs (Fig 4B). The pathway analysis is carried out dynamically by calculating the pathway
enrichment (see Methods) on all pathway data sources. If more than one miRNA is selected,
the union of target genes will be used for the analysis. All target genes are counted once and no
additional ranking is applied. MiTALOS v2 thereby captures the biological impact of co-target-
ing by multiple miRNAs. If the user selects a tissue filter, all gene sets (miRNA target genes and
genes in pathways) are filtered for this tissue (Fig 4C). All results with a corrected p-
value> 0.05 and E> 1 are presented in a sortable table and can be accessed with a user specific
URL for one week. For KEGG pathways, the user can access a graphical representation of the
pathway with highlighted miRNA targets by clicking on a pathway name.

If a tissue filter is used, miTALOS v2 displays the expression score of the selected miRNAs
inaddition to the tissue specific pathway enrichment. The user can thereby assess the impact of
the selected miRNAs under physiological conditions. The absolute expression score is extended
by a rank of the selected miRNA among all miRNAs expressed in this tissue and the miRNA
with the overall highest expression value. This allows estimating the relative importance of the
selected miRNA in the analyzed tissue.

MiTALOS v2 is geared towards wet-lab researchers working with miRNAs. MiTALOS v2
was designed for scenarios where a set of miRNAs (e.g. from expression studies or literature
research) has to be filtered to identify the most promising miRNAs for testing in wet-lab exper-
iments. With the tissue filter, the user can analyze the supposed biological effect of miRNAs in
the particular tissue or cell line the user is working on.

Fig 3. Database structure of miTALOS v2. (A) The miTALOS v2 dataset is stored in a graph database. The network structure allows for easy extension of
the dataset. (B) The Cypher query language allows for simple queries on the network. With one query, the targets of a miRNA in a pathway can be accessed
and filtered for tissue expression.

doi:10.1371/journal.pone.0151771.g003
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Discussion
It has been established that miRNAs participate in almost all cellular processes but the func-
tional impact of individual miRNAs and the precise mode of target gene regulation remains
controversial. Consequently, the dynamic regulatory network of miRNAs and mRNAs under
physiological conditions is not fully understood. One of the key issues in miRNA resarch is the
identification and quantification of miRNA-mRNA interactions. While computational predic-
tion methods and CLIP-seq approaches yield global sets of gene targets for individual miRNAs,
they still suffer from lack of accuracy and fail to predict the regulatory landscape in-vivo.

One way to circumvent shortcomings in miRNA targeting data is to analyze the biological
pathways which are incluenced by miRNAs. They can be considered a proxy for the miRNAs
effect on biological processes and thus allow to classify miRNAs and generate new hypotheses.
While pathway analyses have proven useful, they do not consider that most genes which are
targeted by a miRNA or part of a pathway are not uniformly expressed across all cell types. The
tissue specifity of miRNAs, which has been demonstrated extensively, is thus not taken into
account.

Fig 4. User interface of miTALOS v2. (A) The user starts by selecting the organism and miRNA prediction tool. Next, multiple miRNAs can be selected by
filtering the list of available miRNAs (B). Lastly, a tissue filter can be applied by selecting an expression experiment and tissue or cell line (C).

doi:10.1371/journal.pone.0151771.g004
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By integrating tissue specific gene expression into our pathway analysis methodology, we seek
to close this gap and improve the biological relevance of our miRNA-pathway associations. With
our case studies, we recapitulated a common approach to generate new miRNA hypotheses for
wet lab research: Based on prior knowledge, i.e. disregulation of several miRNAs in a disease con-
text, the best candidates for experimental testing have to be identified. Our methodology aims at
creating functional insight which is as specific as possible for the system studied by the user.

The distinctive feature of miTALOS v2 is the tissue specific pathway enrichment. Other
pathway analysis tools, such as DIANA mirPath [45], do not account for this effect. MiTALOS
v2 complements other methods for functional miRNA analysis. Tools analyzing the expression
of miRNAs, such as MiRGator [19], aid in selecting the best miRNA candidates for a specific
biological system. Ranking approaches, such as ToppMir [20], are used to limit the number of
miRNAs based on preference for user-defined gene sets. MiTALOS v2 can be used in conjunc-
tion with these methods and adds a tissue specific perspective.

MiTALOS v2 includes CLIP-seq based miRNA targeting data from the StarBase database.
CLIP-seq experiments generate the full set of target genes based on biochemically identified
miRNA-mRNA interactions and likely produce more reliable targeting data than computa-
tional prediction. Several public resources, such as miRTarBase [46] and miRecords [47], col-
lect miRNA targets validated in individual experiments. However, since these target sets
contain only a potentially small subset of miRNA-mRNA interactions they would introduce a
bias to the analysis and are thus not suitable for global pathway enrichment.

Next to TargetScan and miRanda, which were used in this study, there are several other
miRNA target prediction tools. However, it is difficult to compare their performance due to
the lack of a gold standard of known miRNA targets and systematic comparisons of target pre-
diction tools generated inconsistent results [48–51]. TargetScan and miRanda were chosen
based on their widespread use in the miRNA research community. If novel miRNA target data
sources arise, the miTALOS v2 data can easily be integrated in miTALOS v2.

In general, the effect of a miRNA on its target genes cannot be quantified cell wide. The
complexity of the miRNA-mRNA network was further increased when regulatory effects came
into focus [52]. It was demonstrated that the total number of potential binding sites for a
miRNA regulates its effect size. If the number of binding sites exceeds the number of miRNA
molecules, mRNAs compete for binding to the miRNA and the regulatory impact decreases
[53]. This has been subsumed under the concept of competing endogenous RNAs (ceRNAs).
Recently, combined computational and experimental studies quantified these effects on a sys-
tems level [54]. Including these indirect effects into a pathway analysis presents a future direc-
tion for miTALOS v2. Here, using the relative expression levels of miRNAs and their target
genes would allow to capture binding competition. However, more data on specific, quantita-
tive effects will be necessary to devise a computational approach that properly describes the
biological impact of competing RNAs.

When developing tools for the research community, the underlying data infrastructure is of
pivotal importance. The state of the art, especially in research of post-transcriptional regula-
tion, changes quickly and new methods for miRNA target identification might arise. We there-
fore developed a new database backend using neo4j, the leading graph database. It helps to
integrate the numerous datasets used in miTALOS v2 and to keep up with new developments.
The flexible backend also allows to integrate new aspects like lncRNAs as regulators of gene
expression or disease specific expression profiles to extend tissue specific gene expression. New
database technology is therefore instrumental in building tools which can adapt to the rapid
generation of new research results.

In summary, our pathway analysis methodology and miTALOS v2 have been developed to
generate testable hypotheses and to increase efficiency in experimental miRNA research.
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Methods
Datasets
We integrated several data sources on miRNA targeting, biological pathways and gene expres-
sion in order to analyse tissue specific miRNA functions. For mouse and human, we offer
computational target prediction data from the latest releases of TargetScan 6.2 [40] and
miRanda [41]. We added miRNA-target interaction data of CLIP-seq studies from StarBase v2
[5] to the miTALOS v2 pathway analysis. Pathway data was extracted from KEGG, Reactome
andWikiPathways. In order to analyze tissue specific pathway regulation, miTALOS v2 uses
baseline gene expression data for 68 tissues and cell lines from the latest EBI Expression Atlas
[15] for both mouse and human.

Pathway analysis
We calculate an enrichment of miRNA target genes in pathways. For a miRNAM and Pathway
PmiTALOS v2 calculates a 2x2 cross table, whereMP is the number of targets ofM in P, Pn is
the number of not targeted genes in P,Mn is the number of targets ofM not in P and U is the
union of all pathway genes and miRNA targets withoutMP, Pn andMn (Table 3):

An enrichment score E is calculated as the odds ratio ofM and P:

EðM; PÞ ¼ ðMP=PnÞ=ðMn=UÞ

E describes the dependence of variablesM and P. E> 1 indicates an over-representation of tar-
gets of miRNAM in the pathway P. A p-value is calculated using Fisher’s exact test and results
for multiple pathways are corrected using the Benjamini-Hochberg procedure [55].

To perform a tissue specific pathway enrichment, we remove all genes fromMP,Mn, Pn
and U that are not expressed in the analyzed tissue. We then calculate E as described above. A
gene is considered expressed if its baseline expression value is> 0.5 (as defined in the EBI
Expression Atlas).

When multiple miRNAs are selected, the union of target genes is used for the analysis.

Database and webinterface
The integrated database backend is uses a neo4j graph database (v2.3.1). The miTALOS v2
frontend was developed with AngularJS 1.4.
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microRNAs and microRNA-independent RNA-binding proteins are 2 classes of post-transcriptional regulators that have
been shown to cooperate in gene-expression regulation. We compared the genome-wide target sets of microRNAs and
RBPs identified by recent CLIP-Seq technologies, finding that RBPs have distinct target sets and favor gene interaction
network hubs. To identify microRNAs and RBPs with a similar functional context, we developed simiRa, a tool that
compares enriched functional categories such as pathways and GO terms. We applied simiRa to the known functional
cooperation between Pumilio family proteins and miR-221/222 in the regulation of tumor supressor gene p27 and show
that the cooperation is reflected by similar enriched categories but not by target genes. SimiRa also predicts possible
cooperation of microRNAs and RBPs beyond direct interaction on the target mRNA for the nuclear RBP TAF15. To further
facilitate research into cooperation of microRNAs and RBPs, we made simiRa available as a web tool that displays the
functional neighborhood and similarity of microRNAs and RBPs: http://vsicb-simira.helmholtz-muenchen.de.

Introduction

Post-transcriptional gene regulation
With the discovery of small regulatory RNAs the landscape of

gene regulation changed dramatically: It became clear that the
abundance of a gene’s protein products is not only determined
by mRNA processing and the resulting level of mRNA transcripts
but also controlled by a whole new layer of regulatory elements.1

Post-transcriptional gene regulation has since been associated
with almost all biological processes and diseases.2 MicroRNAs
(miRNAs) were the most prominently analyzed species of post-
transcriptional regulators but recently microRNA-independent
RNA-binding proteins (RBPs) came into focus.3 Moreover, func-
tional cooperation between miRNAs and RBPs has been shown
in various processes such as cancer formation4 and angiogenesis.5

Recent advances in elucidating the functional roles of both
classes were supported by new experimental technologies, which
extract RNA-protein complexes followed by sequencing of the
RNA: HITS-CLIP,6 PAR-CLIP,7 iCLIP8 and CLASH9 (specific
for miRNAs). These methods facilitate global identification of
functional binding sites of miRNAs and RNA-binding proteins.

A broad overview of the targeting capabilities is necessary
to decipher the complex network of post-transcriptional gene

regulation and ultimately define the functional targets of miRNAs
and RBPs. Moreover, the global perspective on targeting allows to
deduce functional impact beyond regulation of single targets by
analyzing effects on functional modules such as signaling pathways.

miRNAs
miRNAs are small endogenous RNAs that bind to target

mRNAs and down-regulate the expression by translational
repression or degradation of the mRNA.1,10,11 It has been estab-
lished that the majority of genes in most eukaryotes are post-tran-
scriptionally regulated by miRNAs.2 To bind and regulate target
mRNAs, miRNAs are first integrated into an AGO protein,
which is part of the RNA-induced silencing complex (RISC).

The most important issue in miRNA research is to determine
their functional targets. It has been shown that complementary
binding between miRNA and target mRNA occurs mostly
between nucleotide 2 and 8 of the miRNA (seed region).1,10-12

CLIP-Seq studies emphasized the importance of the seed region
for a significant number of target sites but also demonstrated that
non-canonical binding exists and accounts for a significant part
of miRNA target sites.9

Experimental methods indicated that miRNAs have many
(dozens to hundreds) targets and most mRNAs are bound by a
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miRNA at one stage. However, miRNAs regulate their targets
only to a small extent and fine-tune protein expression.13,14 In
addition, some parts of the cellular interaction network, such as
signaling pathways, are targeted more frequently than others.15

The dynamics of miRNA-mediated down-regulation change
over time16 and activity of miRNAs depends on the tissue-spe-
cific expression of mRNAs17 and competing binding sites.18

Thus the complete miRNA-target interaction network is very dif-
ficult to predict and the functional classification of miRNAs is
still challenging.

RNA-binding proteins
miRNAs are able to guide a functional protein complex to an

mRNA target. However, mRNAs interact with a multitude of
other miRNA independent RNA-binding proteins during their
life cycle from transcription through processing, splicing, relocal-
ization, translation and degradation.3,19 While the involvement
of regulatory proteins in mRNA biogenesis has long been known,
CLIP-Seq studies expanded the genome-wide picture of RBP-
mRNA interactions and protein occupancy of RNAs.20-22

Several hundred proteins are annotated with RNA-binding
domains and therefore classified as RBPs.20,21,23 Interestingly,
CLIP-Seq studies identified new RBPs not predicted by protein
domains or homology.19 Many RBPs have thousands of targets
although their biological function is not well understood. Similar
to the difficulties in determining relevant miRNA targets, the
binding mode and potential recognition sequences for RBPs are
often not known. Secondary binding determinants such as stabi-
lization by interaction partners or structure of the mRNA have
been shown to be important for RBP binding.24

Cooperation of miRNAs and RNA-binding proteins
Interaction between miRNA and RBPs occurs via different

modes of action: the 2 regulatory partners can act either coopera-
tively or competitively, directly or indirectly to change expression
levels of their target. A cooperative regulation is where both regu-
latory partners work together, whereas a competitive regulation is
where one regulator antagonizes the normal function of the
other. A direct regulation occurs when both regulatory partners
interact with the target simultaneously (usually with physically
close binding sites on the RNA transcript). For the case of direct
interactions, several computational studies analyzed the occu-
pancy of mRNAs for proteins and miRNA/AGO complexes and
showed that RBPs bind in close proximity to functional miRNA
target sites.25,26 Supporting this notion, there is both computa-
tional and experimental evidence that miRNA-binding sites clus-
ter in close proximity leading to increased down regulation of the
target mRNA.27,28

A well-studied example for a direct interaction with miRNAs
are human RNA-binding Pumilio proteins. Downregulation of
the tumor suppressor gene p27 by miR-221 and miR-222 has
been shown to promote cancer cell proliferation.29,30 Interest-
ingly, the Pumilio protein PUM1 binds to p27 mRNA, which
increases the accessibility of the target site of miR-221/222 by
remodeling the mRNA structure.31,32 Because of low Pumilio
levels, quiescent cells have a stable expression of p27 despite high

levels of miR-221/222. Thus, both regulators are necessary to
promote cancer cell proliferation. The same PUM1 protein has
also been shown to bind genes of the pluripotency network in
embryonic stem cells (ESC) and facilitate differentiation.33 Abla-
tion of PUM1 hinders the exit from pluripotency and leads to
severe defects in the differentiation process. In addition, there is
growing evidence that miRNAs are necessary for ESC differentia-
tion and regulation of the pluripotency network.34-37 The com-
bined regulation of pluripotency genes is a prime example for
possible interactions between miRNAs and RBPs in the fine-tun-
ing of a complex biological process. Moreover, Pumilio proteins
have also been shown to be associated with the miRNA-based
regulation of the E2F3 oncogenes.38 There are also examples for
competitive regulation where miRNA function is inhibited by
RBPs. The RBP Dnd1 has been shown to inhibit the action of
miR-21 on its target MSH2 and this regulation has also been
implicated in in cancer devlopment.39 More experimental evi-
dence for miRNA-RBP interactions is reviewed in Ciafre 2013.40

An indirect regulation occurs when a previous regulatory
effect by one regulatory partner causes a subsequent regulation of
target transcript levels by the second regulatory partner. In addi-
tion, an important consideration is the cellular location of each
regulatory partner. miRNA-mediated regulation always takes
place in the cytoplasm, whereas some RBPs can also act in the
nucleus. Due to their spatial separation, coregulation between
nuclear RBPs and miRNAs must be indirect.

For example, if splicing of a transcript is regulated by RBPs
within the nucleus and the same transcript is later regulated by
miRNAs, the gene might be indirectly coregulated. Moreover, a
RBP can influence the expression level of a miRNA and thereby
indirectly affect the expression level of the miRNA’s target genes.
To our knowledge there is currently no experimental evidence
for indirect interaction on the same gene while experimental evi-
dence supports functional regulation of miRNAs by RBPs.41

Identification of interaction via functional similarity of
miRNA and RBP targets

While some functional interactions might be identified by
comparing target sets, most will be difficult to identify due to
incomplete targeting data. Even though recent CLIP methods
perform better than computational methods, it has been shown
that target detection depends on target mRNA expression and
binding affinity of the used antibody.42 Moreover, the size of tar-
get sets can vary between replicates.42

Methods that analyze the functional context of target sets try
to overcome these shortcomings by focusing on biological pro-
cesses instead of individual target genes. In general, the most
widely used techniques to define the functional context of gene
sets are GO-term43 and pathway enrichment.15,17,44,45 They
assume that the over-representation of genes in a pathways or
GO term indicates a functional association. Next to enrichment
methods, the challenge of deducing biological functions from
miRNA/RBP target genes and binding sites was approached by
inferring highly regulated targets based on binding site coopera-
tivity27,28 and integrating miRNA targets with other omics data
sets.46,47
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In this study, we analyzed the combined activity of miRNAs
and RBPs to infer functional cooperation between both classes of
regulators. We focus on pathway and GO term enrichment to
highlight the functional role of miRNAs and RBPs. By compar-
ing the enriched categories for RBPs and miRNAs, we identified
regulators with a similar biological function.

To facilitate research into combined action of RBPs and
microRNAs, we developed simiRa, a web application that allows
to find similar regulators for given input sets of microRNAs and
RBPs. It was developed to act as a hypothesis-generator for wet
lab scientists that run into common limitations of microRNA
research: miRNAs have environment-specific functions and act
in concert. To find miRNAs that influence a biological process,
over-expression of single miRNAs is usually not sufficient. Sim-
iRa extends the analysis beyond miRNAs and detects similar
RBPs which might be necessary for miRNA effects and explain
complex functional regulation. SimiRa is available at http://
vsicb-simira.helmholtz-muenchen.de.

Results

Dataset
In this study, we used miRNA and RBP target sets identified

with biochemical methods based on cross-linking of RNA-pro-
tein complexes followed by immunoprecipitation and sequencing
(CLIP-Seq). Data for human RBPs was extracted from the doR-
iNA database48 and data for human miRNAs from StaRBase
v2.49 Our compiled data set contains 19 RBPs and 366 miRNAs
and a total of 14356 unique gene targets. 268 genes are only tar-
geted by RBPs, 1496 are unique for miRNAs and 12592 are tar-
geted by both. In general, we find more targets for RBPs (892 to
7153) than for miRNAs (161 to 1588).

RNA-binding proteins are located in different cell
compartments

RBPs can be classified by their cellular localization. In the
nucleus, they cannot directly interact with miRNAs on a target
mRNA. In the cytoplasm, they can directly cooperate with a
miRNA in regulating an mRNA. We analyzed the GO-terms
associated with the 19 RBPs in order to elucidate their cellular
localization (see Table 1 for an overview of relevant terms). The
selected terms indicate the cellular localization either by biologi-
cal process (e.g., splicing) or cellular component (nucleus or cyto-
plasm). We associated the 19 RBPs with their putative role in the
mRNA life cycle (Fig. 1A). 13 are nuclear while 6 classify as
cytoplasmic and all but 3 RBPs have been described in their func-
tion (Fig. 1B). We found no significant difference in the number
of targets between nuclear and cytoplasmic RBPs (Wilcoxon
rank-sum test, p-value 0.19).

RNA-binding proteins have distinct target sets
To quantify RBP target-set similarity, we use the Jaccard

index (J) defined as the intersection of targets divided by their
union (Fig. 2B, see methods). Even though some RBPs are char-
acterized as global regulators of splicing (such as TARDBP), the

target sets have a Jaccard index between J D 0.05 and J D 0.65,
implying that many RBPs have distinct, non-overlapping target
sets. We thus conclude that RBPs are likely to have different
functional roles and are in this respect similar to miRNAs.

We performed a hierarchical clustering of the similarity
between RBP target sets (Fig. 2A). Interestingly, nuclear and
cytoplasmic RBPs were not clearly separated with respect to their
target genes in the hierarchical tree. The respective groups did
not cluster together, and did not show a high overlap of target
genes.

Genes are targeted by more RBPs and miRNAs than
expected

In order to compare the global targeting properties of RBPs
and miRNAs, we analyzed the number of RBPs and miRNAs tar-
geting each gene (Fig. 3A). Real target-number distributions
were compared to random samplings of targets by constructing
artificial target sets following the distributions of targets for real
RBPs and miRNAs (see methods).

Interestingly, we find that many genes are targeted by more or
fewer RBPs and miRNAs than expected by chance. While ran-
dom samplings result in 0 to 8 RBPs and 0 to 25 miRNAs per
gene (Fig. 3C), real RBPs and miRNAs show a wider distribu-
tion (Fig. 3B). Most importantly, 15% of the genes are targeted
by both more than 8 distinct RBPs and more than 25 distinct
miRNAs (not counting multiple target sites for a single miRNA/
RBP). Genes are targeted by both nuclear and cytoplasmic RBPs.
The distribution of targeting RBPs per gene is similar for both
groups and the correlation to miRNAs does not change.

We performed a GO term analysis of the 2034 highly targeted
genes (targeted by more than 25 miRNAs and more than 8
RBPs) to elucidate the functional role. Among the significantly
enriched GO terms are many top-level processes essential for reg-
ulatory mechanisms and cell cycle: Chromatin modification (224
associated genes, multiple testing corrected p-value 0.00052), cell
cycle (341 associated genes, multiple testing corrected p-value
0.022), protein transport (276 associated genes, multiple testing
corrected p-value 0.031), transcriptional regulation (173 associ-
ated genes, multiple testing corrected p-value 0.040) and gene
expression (512 associated genes, multiple testing corrected
p-value 0.042).

RNA-binding proteins prefer to target network hubs
As shown above, many genes are targeted by more RBPs and

miRNAs than expected. We hypothesized that highly regulated
genes have an important role in the regulatory network of a cell
as has been shown before.50

We therefore constructed the complete human protein-pro-
tein interaction network from the STRING database (Fig. 3A),
one of the most comprehensive interaction databases.51 We then
calculated the degree (i.e., number of direct neighbors in the net-
work) of all genes in the network and compared it to the number
of RBPs (Fig. 3D) and miRNAs (Fig. 3E) targeting the gene.
Interestingly, genes that are targeted by many RBPs have a signif-
icantly higher degree (Wilcoxon rank-sum test, p-value D 0, see
Methods), while this is not the case for miRNAs.
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Taking into account that
genes belonging to essential
processes are more tightly
regulated, the preference of
RBPs for network hubs sug-
gests that RBPs confer regu-
latory specificity that
augments the more global
fine-tuning activity of miR-
NAs. In summary, the RBP
targetome shows evidence
for specific regulation of
essential biological processes.

SimiRa: miRNA-RBP
cooperation revealed by
pathway and GO term
association

To further analyze com-
bined activity of miRNAs
and RBPs within their
functional context, we
developed simiRa, a web
tool that compares not only
genes but also functional
categories associated to
both classes of regulators.
By extending the analysis
beyond binding of single
genes, we are able to cap-
ture putative interactions
between nuclear and cyto-
plasmic RBPs that cannot
be explained by joint bind-
ing of a target mRNA. SimiRa performs an enrichment analysis
to find significant functional categories and subsequently com-
pares miRNAs and RBPs (Fig. 4A). We used KEGG pathways52

and GO-terms43 as functional categories to identify the biologi-
cal context of miRNA and RBP gene target sets.

We applied our compiled data set of 366 miRNAs and 19
RBPs on 285 KEGG pathways and 40624 GO terms, resulting
in 15,749,965 comparisons. Of those, 16,582 are significant
(with a multiple testing corrected p-value <0.05, see Methods).
We compared miRNAs and RBPs by calculating the similarity of
target genes and enriched categories using the Jaccard index
(intersection divided by union, see Fig. 2B and Methods). The
scatterplot of all gene similarities against all category similarities
is shown in Figure 4B. Interestingly, the Pearson correlation
between the target similarity and category similarity for all pair-
wise comparisons of RBPs and miRNAs is high (0.72). While
there is a trend toward higher term similarity for increasing gene
similarities, many outliers show a high similarity in either genes
or terms. The correlation indicates a connection between targets
and enriched categories but also highlights the fact that the cate-
gory enrichment finds similarities that are less likely to be identi-
fied by similar target genes.

Since RBPs generally have more targets than miRNAs, the
maximum Jaccard index between RBPs and miRNAs is lower
than between members of each group. Indeed, distributions of
similarities show that RBPs have a higher similarity with other
RBPs than with miRNAs (Fig. 4C). For miRNA-miRNA and
miRNA-RBP comparisons, the median gene similarity is higher
than the median category similarity. miRNA-miRNA similarities
show a distribution with low median and few very high similari-
ties. Many miRNAs are grouped into families with similar seed-
sequences and target binding characteristics (such as miR-221
and miR-222), thus explaining highly similar outliers not found
for RBPs.

From the top 100 RBP-miRNA pairs in terms of similar
enriched categories, only 53 are also in the top 100 in terms of
similar target genes. The other 47 show a disparity between their
target gene overlap and enriched functional categories. In sum-
mary, comparing enriched functional categories identifies new
potential interactions between miRNAs and RBPs that are not
obvious from gene targets.

To ease further research into this topic, we made simiRa avail-
able as a user-friendly web-tool that allows searching for similar
miRNAs and RBPs based on common targets and common

Figure 1. RNA-binding proteins act on all levels of the mRNA lifecycle. (A) The mRNA lifecycle from transcription to
translation. Multiple steps of processing are necessary to produce mature mRNAs from nascent transcripts. miRNAs
interact with their target mRNAs in the cytoplasm. (B) The 19 RNA-binding proteins used in this study are located on
different levels of the mRNA lifecycle. Their putative localization was inferred from GO term associations and selected
publications. 3 of the 19 RBPs have no described function.

1002 Volume 12 Issue 9RNA Biology

D
ow

nl
oa

de
d 

by
 [9

1.
46

.2
51

.2
17

] a
t 0

4:
32

 2
6 

Fe
br

ua
ry

 2
01

6 



enriched functional categories (Fig. 5). The basic workflow starts
with the input of an miRNA or RBP. The result is presented as a
network of similar miRNAs and RBPs. Search settings for the
Jaccard index cut-off can be set individually for gene and category
based similarity search. The default settings show term similari-
ties with J > 0.2 and gene similarities with J > 0.3 (see Fig. 4
for the distributions of Jaccard indexes). The edges of the pre-
sented network denote similar gene targets or enriched categories,
respectively. The user can change the cutoff for similar miRNAs/
RBP, leading to a dense or sparse similarity network.

In a next step, the user can select one or more nodes in the
network view to see the targets and enriched categories for the
selection. When only one node is selected, all targets/categories
are shown. When more nodes are selected, the common targets/
categories are shown. This allows for a fine-grained overview of
the targeting and functional context for subsets of the similarity
network. The network can be extended around single nodes.
This gives the user the opportunity to find more interesting
candidates.

Case study: the interaction of Pumilio and miR-221/222 is
reflected by enriched categories

Pumilio family proteins (e.g., PUM1 and PUM2) are neces-
sary for the regulatory function of miR-221/222 on the tumor
suppressor gene p27. Upon binding of PUM1, the binding sites

of miR-221 and miR-222
become accessible. PUM2
shows similar effects.32

This cooperation is a prime
example for combined
activity of miRNAs and
RBPs. The cooperation is
not limited to p27: there is
evidence for a deeper
involvement of both Pumi-
lio proteins and miR-221/
222 in the cell cycle mis-
regulation leading to cancer
progression.4,38

In human, miR-221 and
miR-222 have 90% identi-
cal targets with a total
union of »1200 targets.
The dataset of 19 RBPs
contains PUM2 with 4078
targets. PUM2 and miR-
221/222 share only 632
target genes, a similarity of
J D 0.16 and J D 0.17,
respectively (Fig. 6A).

In order to compare
PUM2 and miR-221/222
to other miRNAs and
RBPs, we calculated the
similarity of gene targets
for all pairs of miRNAs

and RBPs using the Jaccard index (see methods). The histogram
of the distribution of all pairwise similarities between miRNAs
and RBPs shows that most pairs have a Jaccard index < 0.2.
Interestingly, PUM2/miR-221 and PUM2/miR-222 are not in
the top quartile of miR-RBP pairs. Despite their known func-
tional cooperation, they rank at at the 72.9 percentile of the dis-
tribution (Fig. 6B). When only considering target sets, PUM2
and miR-221/222 would likely not have been identified as candi-
dates for an interaction. In comparison, the similarity of enriched
functional categories between PUM2 and miR-221/222 is higher
than the overlap of gene targets. 57 of 192 enriched categories
are shared between PUM2 and at least one miRNA. 31 categories
are shared by all 3 regulators (Fig. 6C). We compared all
miRNA and RBP pairs for their overlap in enriched categories.
In general, the similarity of enriched categories is slightly higher
than for gene targets. Here, PUM2/miR-221 and PUM2/miR-
222 are in the top 10% of all pairwise similarities between miR-
NAs and RBPs (Fig. 6D).

Thus, a comparison of functional categories renders PUM2
and miR-221/222 as potential candidates for a functional inter-
action that would likely be overlooked when only comparing
individual target sets. A closer look at the shared categories also
highlights the relevance for cancer: We find cancer pathways and
signaling cascades commonly functional in the formation of
cancer (Fig. 6E).

Figure 2. RNA-binding proteins have distinct sets of gene targets. (A) Pairwise comparison of the similarity of gene
targets of all 19 RNA-binding proteins. While some RNA-binding proteins form clusters with a similarity of J D 0.65,
many proteins have distinct target sets. This points toward functional differences and implicates that the proteins
take part in different cellular processes. The similarity among nuclear (red) and cytoplasmic (green) RBPs is not differ-
ent than between groups (Wilcoxon rank sum test, p-value D 0.42). (B) The similarity between 2 sets is calculated
with the Jaccard index (size of intersection divided by the size of union).
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Case study: candidates for functional interactions between
nuclear RBPs and miRNAs

The TAF15 protein is an interesting candidate for functional
analysis: Together with FUS and EWS it constitutes the FET
(FUS/EWS/TAF15) protein family53 that was first discovered as
genes frequently translocating in human sarcomas and

leukemias.54 Later, the family members have been shown to par-
ticipate in the transcriptional machinery as well as various steps
of mRNA processing, such as splicing and transport.55,56 While
their exact role remains unclear, recent publications point toward
cell-type specific expression and function as well as differences
between FUS, EWS and TAF15.57

Figure 3. Genes are targeted by more miRNAs and RBPs than expected. (A) We mapped the gene target sets of all miRNAs and RBPs in our compiled
data set onto a global gene interaction network constructed from STRING. (B) Number of targeting miRNAs and RBPs per gene with color coded density.
Red lines indicate the 95 percentile from random samplings (C). 2034 genes are targeted by more miRNAs and RBPs than expected. Due to the lower
number of RBPs in the data set, more genes are targeted only by miRNAs than vice versa. (C) Random samplings of gene targets for miRNAs and RBPs.
The distribution is more narrow than found for real data. Less genes are targeted by high numbers of miRNAs and RBPs. Red lines show the 95 percentile
located at 8 RBPs and 25 miRNAs per gene. (D) Network hubs are favored targets of RNA-binding proteins but not miRNAs. Genes were grouped by the
number of targeting RBPs and miRNAs, respectively. We counted the number of protein-protein interactions of all genes in the groups. Genes that are
targeted by many RBPs show an increased number of network interactions (denoted by ***, one sided Wilcoxon rank sum test, p-value D 0, see Meth-
ods). (E) For miRNAs, there is no correlation between the number of targeting entities and interactions within the gene interaction network.
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TAF15 is necessary for the cell cycle and proliferation but
the mechanism remains elusive. While direct targets have not
been validated outside of CLIP-Seq studies, it has recently been
reported that TAF15 cooperates indirectly with miR-17-5p and
miR-20a-5p to repress the cell-cycle gene CDKN1A/p21 by
increasing expression levels of the mature miRNAs, which sub-
sequently downregulate CDKN1A/p21.41 Upon depletion of
TAF15, the levels of the miRNAs decrease, CDKN1A/p21
increases and proliferation is impaired. Again, we found that
TAF15 and both miRNAs are similar in terms of enriched cate-
gories (»0.22, rank 94%) and less similar in terms of targets
(»0.15, rank 83%). Notably, other miRNAs have even higher
similarities to TAF15. Those miRNAs are candidates that either
collaborate with TAF15 in an indirect fashion like miR-17-5p/
miR-20a-5p or they could act on the same targets as TAF15,
leading to either cooperative activity or competitive inhibition
of the miRNA and TAF15. The top miRNAs showing similar
functional categories as TAF15 are miR-590-3p (J D 0.33) and
miR-495-3p (J D 0.29). MiR-495 has been shown to inhibit
differentiation of human mesenchymal stem cells58 and mouse
embryonic stem cells,36 pointing toward a similar regulatory
loop as for miR-17-5p/miR-20a-5p. MiR-590-3p, on the other

hand, is so far not associ-
ated with cell cycle pro-
gression and is thus a
highly interesting candi-
date for functional studies
in combination with
TAF15.

Ballarino et al.41 found
candidate miRNAs for an
interaction with TAF15 by
manually screening the
small set of validated bind-
ing sites from miRTar-
Base.59 Functionally
similar miRNAs identified
by our large-scale approach
are interesting candidates
to extend the TAF15/
miRNA interaction net-
work by direct and indirect
cooperation.

Discussion

The field of RBPs is
growing rapidly since
CLIP-Seq studies identi-
fied global binding sites.
Recently, such an approach
identified 300 new and
previously uncharacterized
RBPs.21 It is still unclear to
what extend RBPs carry

out specific regulatory functions. Some RBPs might be house-
keeping genes that mostly have a structural role in e.g., transport
or decay of mRNAs. To answer this question and provide first
insight into global targeting properties, we showed that genes are
regulated by very different numbers of RBPs. Moreover, RBPs
target network hubs. This indicates that they indeed have a more
specific rather than global house-keeping function.

To provide a basis for experiments investigating the com-
bined activity of multiple miRNAs and/or RBPs, we have
developed simiRa. The intuitive interface allows for easy
exploration of the functional neighborhood of a miRNA or
RBP. We expect that most users will start the search with a set
of miRNAs/RBPs they are investigating in the biological con-
text of interest. From this starting point, simiRa provides use-
ful candidates for functional cooperation partners which might
act in concert to carry out a biological function. For example,
Ballarino et al.41 identified candidate miRNAs for combined
activity with TAF15 by manually screening the small set of
validated binding sites from miRTarBase.59 Using our large-
scale approach, we are able to identify a lot more potential
partners that might function in the same fashion as miR-17-
5p and miR-20a-5p.

Figure 4. simiRa compares target gene and category similarities of miRNAs and RBPs. (A) simiRa compares RBPs and
miRNAs based on the similarity (Jaccard index) of significantly enriched functional categories and gene targets. (B)
Scatterplot of the Jaccard indexes for target gene similarity against category similarity of all pairwise comparisons
between miRNAs and RBPs. (C) Distributions of pairwise similarities separated by RBP/RBP, miRNA/miRNA and
miRNA/RBP comparisons for both target gene and category similarity.
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When comparing
PUM2 and miR-221/
222, the analysis of
enriched functional cate-
gories points toward a
combined activity in a
cancer context that has
been shown experimen-
tally. For TAF15, we find
miRNAs that might
cooperate in an indirect
regulatory loop. Consid-
ering combinations of
multiple miRNAs and
RBPs with a similar func-
tional background could
prove beneficial in experi-
mental settings where
researches look for new
regulators of a biological
process and single miR-
NAs did not show the
desired effects. By either
using more miRNAs or
adding RBPs to the
experimental set-up,
researchers could poten-
tially identify new regula-
tory elements.

The next step in analyz-
ing combined activity of
different post-transcrip-
tional regulators is func-
tional testing: Researches
working with miRNAs
could benefit from identi-
fying RBPs as potential
interaction partners. Cell-
type specific miRNA activ-
ity has been explained by
expression of competing
endogenous RNAs (ceRNAs) that fish miRNAs and thereby
repress their function on a specific cellular environment.18 RBPs
could be another way of creating tissue-specific effects. If a
miRNA requires a RBP to function or if the regulatory effect is
increased in the presence of a RBP, the expression of this RBP
confers specificity to the miRNA function. Similar to the
PUM1/miR-221/222 regulation of p27, RBPs could explain var-
iance in target regulation between different cell types.

We have previously developed miTALOS, a web-tool to
analyze the signaling pathways associated to single miRNAs.17

SimiRa extends the functionality of miTALOS by not only
considering a single miRNA and their function but rather
allowing to explore the functional neighborhood of a single
regulatory component. It thus extends our tool box of
miRNA-related applications that aim at providing the

functional context of miRNAs and new candidates for func-
tional testing.

The study presented here addresses an unresolved issue:
How is the complex process of post-transcriptional gene regu-
lation structured? miRNAs have hundreds of targets and only
small effect sizes. A miRNA does not have a unique function
but is part of a dense regulatory network whose output
depends on the cellular environment. The more we know
about the elements and connections within this network, the
better our predictions of miRNA function become. By adding
RNA-binding proteins to the mix, we extend the regulatory
network with a new type of node. Comparing miRNAs and
RBPs by their enriched categories takes a step back from indi-
vidual target relationships and reveals the global picture of
miRNA/RBP co-targeting.

Figure 5. SimiRa – a web application to identify similar miRNAs and RBPs. (A) Introduction and quick help for simiRa is
provided on the front page. (B) The user starts by searching for an miRNA or RBP in the search field in the ‘Find
miRNA/RBP’ panel on the left. The ‘Show full list’ button opens a list of all miRNAs and RBPs. A fuzzy search is carried
out upon typing of a miRNA/RBP name and results are shown in the ‘Select’ panel in the center. Clicking on a miRNA/
RBP loads the network view of similar miRNAs/RBPs. Settings can be adjusted in the ‘Search settings’ panel on the
right. (C) The resulting similar miRNAs/RBPs are displayed in a network visualization in the ‘miRNA-RBP similarity net-
work’ panel. Similarity in gene targets is indicated by green edges, common enriched categories are denoted by red
edges. The user can zoom by scrolling and pan by dragging. Targets and enriched categories of selected nodes are
shown below the network panel. The network can be extended by selecting a node and clicking ‘Expand selection’.
This allows for the stepwise exploration of the functional neighborhood of a miRNA/RBP of interest.
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Methods

CLIP-Seq data sets
We used miRNA targets provided by starBase v2.0,49 a data-

base that collects and integrates CLIP-Seq experiments. We
downloaded the complete set of human miRNA target sites with
the minimal requirement of one supporting experiment. The
data set contains 366 miRNAs with 536888 miRNA-mRNA
interactions (i.e., binding sites). RBP binding sites were extracted
from the doRiNA database.48

We calculated the enrichment of gene sets (miRNA and RBP
targets) on gene sets from 285 KEGG pathways52 and 40624
GO terms.43 KEGG pathways were obtained via the KEGG
REST API (http://www.kegg.jp/kegg/rest/). GO terms were
downloaded from http://www.geneontology.org/GO.downloads.
ftp.cvs.shtml.

Similarity between miRNAs and RBPs
We define the similarity of 2 non-empty sets A and B using

the Jaccard index (number of elements in intersection divided by
number of elements in union, [0,1]).

Generation of target set
null model

To compare distribu-
tions of miRNAs and RBPs
targeting genes we sampled
artificial target sets from all
human genes (as defined in
the NCBI Gene database)
in the same number as real
miRNAs and RBPs in the
respective data set. To
avoid degree bias, we con-
structed a bipartite graph
linking miRNAs/RBPs to
genes and resampled the
edges while preserving the
degree of miRNA/RBP
nodes. Thus, distribution
of the number of target per
entity resembles real miR-
NAs and RBPs. We per-
formed 100 sampling runs
and averaged over all
results.

Protein-protein
interaction network

We used protein-protein
interaction data from he
STRING 9.1 database.
Data was downloaded from
http://string-db.org. We
used all interactions with a
combined score >0.75. For

a description of the database and score see Von Mering et al.60

and Szklarczyk et al.61

Statistics
Enrichment of a miRNA/RBP (X) in a GO term or pathway

(C) was calculated by constructing a 2£2 cross table

Category C

miRNA/RBP X XC Xn
Cn U

where XC is the number of gene targets of X in C, Cn is the num-
ber of genes in C not targeted by X, Xn is the number of targets of
X not in C and the background U is the union of all target genes
and all genes in the tested category without XC, Xn and Cn.

The enrichment score E is calculated as the odds ratio of X and
C. E describes the dependence of variables X and C, E > 1 indi-
cates an over-representation of targets of X in the category C:

E X; Cð ÞD .XC//Cn///.Xn//U/

Figure 6. SimiRa case study. The interaction of miR-221/222 and Pumilio is reflected by enriched pathways but not
gene targets. (A) The overlap of gene targets of miR-221/222 and Pumilio Protein 2 (PUM2) is 632, containing only
one fifth of all targets of PUM2. (B) The pairwise overlaps of miR-221/PUM2 and miR-222/PUM2 rank at 78% of the
overall distribution of miRNA/RBP target similarities. (C) When considering enriched terms (Pathways and GO terms),
the similarity between miR-221/222 and PUM2 is larger compared to gene targets. (D) The pairwise similarities of
miR-221/PUM2 and miR-222/PUM2 rank in the top 10%, indicating a functional relationships beyond their gene tar-
gets. (E) Significantly enriched terms for miR-221/222 and PUM2 (corrected p-value <0.05, see methods). The terms
are associated with cancer, cancer signaling and transcriptional activity (terms are sorted by p-value). The genes
associated with miR-221/222 and PUM2 can be retrieved from the simiRa web application.
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P-values for the enrichment were obtained with Fisher’s exact
test62 using the ‘stats.fisher_exact’ module from the SciPy Python
package (v0.14.1). To control the false discovery rate (rate of type
I errors) in the enrichment analysis, all p-values were corrected
with the Benjamini-Hochberg procedure63 using the ‘sandbox.
stats.multicomp.multipletests’ module from the statsmodels
Python package (v0.5.0). Results with a an enrichment sore E >

1 and a corrected p-value < 0.05 were considered enriched.
The Wilcoxon rank-sum test was employed to test for differ-

ence in distributions of 2 samples,64 using the ‘stats.ranksum’
module from the SciPy Python package (v0.14.1). P-values of 0
occur due to occur due to the limits in floating point precision
and represent p-values smaller than 10¡238.

simiRa web-tool
The simiRa web frontend is implemented with the AngularJS

framework and Cytoscape.js for the network view. The backend

is implemented in Python using the SciPy stack for calculations
and the Flask web framework for the REST API. A neo4j 2.2.2
community edition database is used to integrate data for
miRNA/RBP targets and pathways/GO terms.
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Landstr. 1, 85764 Neuherberg, Germany, 5Technische Universität München, Zentrum Mathematik,
Boltzmannstr. 3, 85747 Garching, Germany, 6Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10,
80804 München, Germany, 7Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE),
Standort München, Schillerstr. 44, 80336 München, Germany, 8Technische Universität München-
Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter
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Abstract

The study of developmental processes in the mouse and other vertebrates includes the
understanding of patterning along the anterior–posterior, dorsal–ventral and medial–
lateral axis. Specifically, neural development is also of great clinical relevance because
several human neuropsychiatric disorders such as schizophrenia, autism disorders or
drug addiction and also brain malformations are thought to have neurodevelopmental
origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during
early neurodevelopment might also predispose to late-onset neurodegenerative
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disorders, such as Parkinson’s disease. The neural tube develops from its precursor tis-
sue, the neural plate, in a patterning process that is determined by compartmentalization
into morphogenetic units, the action of local signaling centers and a well-defined and lo-
cally restricted expression of genes and their interactions. While public databases pro-
vide gene expression data with spatio-temporal resolution, they usually neglect the gen-
etic interactions that govern neural development. Here, we introduce Mouse IDGenes, a
reference database for genetic interactions in the developing mouse brain. The database
is highly curated and offers detailed information about gene expressions and the genetic
interactions at the developing mid-/hindbrain boundary. To showcase the predictive
power of interaction data, we infer new Wnt/b-catenin target genes by machine learning
and validate one of them experimentally. The database is updated regularly. Moreover, it
can easily be extended by the research community. Mouse IDGenes will contribute as an
important resource to the research on mouse brain development, not exclusively by
offering data retrieval, but also by allowing data input.
Database URL: http://mouseidgenes.helmholtz-muenchen.de.

Introduction

Brain formation during vertebrate development is a com-

plex process that has been studied for decades. The under-

standing of neuronal development is a prerequisite for the

fight not only against neurodegenerative diseases, e.g.

Parkinson’s disease, but also toward neuropsychiatric dis-

orders in particular schizophrenia, autism disorders and

drug addiction.

The emergence of the neural tube from the neural plate

and the patterning of these structures along their anterior–

posterior, dorsal–ventral and medial–lateral axes are fun-

damental processes during vertebrate neural development.

The formation of forebrain, midbrain, hindbrain and spi-

nal cord is determined by well-defined and locally re-

stricted expression of genes and their gene regulatory

networks (1). Whereas the patterning of the dorso–ventral

axis depends on the relative amounts of dorsalizing and

ventralizing factors such as the bone morphogenetic pro-

tein (BMP) and Sonic hedgehog (Shh), respectively, the

patterning along the anterior–posterior axis is usually ac-

complished by local signaling centers such as the isthmic

organizer (IsO) (2). The IsO, which is necessary and suffi-

cient for the development of mesencephalic and metence-

phalic structures, is located at the boundary between

midbrain and hindbrain and is, therefore, also referred to

as the mid-/hindbrain boundary (MHB). The IsO also con-

trols the generation of clinically highly relevant cell popu-

lations such as the ventral midbrain dopaminergic neurons,

which are involved in Parkinson’s disease, schizophrenia

and drug addiction, or the rostral hindbrain serotonergic

neurons, which take part in mood disorders and depres-

sion. Therefore, the MHB or IsO is not only of develop-

mental importance but also of high clinical relevance and

thus subject of intense investigations (1–10). Up to now,

four stages are thought to be necessary for the development

of the MHB: (i) positioning and establishment, (ii) induc-

tion, (iii) maintenance and (iv) morphogenesis (1, 2, 7).

Positioning of the future MHB is almost exclusively

achieved by the cross-inhibitory interaction of orthoden-

ticle homolog 2 (Otx2) and gastrulation brain homeobox 2

(Gbx2), two transcription factors initially expressed in the

anterior and posterior part of the developing embryo, re-

spectively. The inductive mechanism for these two and

other factors of the IsO in the neural plate are still un-

known. Wingless-type MMTV integration site family

member 1 (Wnt1) and fibroblast growth factor 8 (Fgf8) are

two factors secreted from the anterior and posterior region

of the MHB, respectively. Wnt1 is required for the main-

tenance of the MHB, and Fgf8 is necessary for the pattern-

ing of the midbrain and rostral hindbrain. The engrailed

genes En1 and En2 as well as the paired box transcription

factors Pax2 and Pax5 act up- and downstream of Wnt1

and Fgf8, mediating their maintenance as well as pattern-

ing function at the MHB (1, 2).

Advances in understanding the signaling cascades that

give rise to distinct neuronal populations open new pro-

spects for clinical therapies, like stem cell–based treat-

ments. On the other hand, it allows clinicians to classify

malformations of the brain more precisely, as with the help

of embryology and genetics the major categories of a classi-

fication are the causative genes and their pathways and not

exclusively the clinical phenotype (8–10).

The gene expression in neural development has been

subject to many large-scale studies, and the results were

stored in publically available databases. The most import-

ant of these resources were recently reviewed (11) and

in the following a few will be exemplified. The mouse

gene expression database developed by Mouse Genome
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Informatics (MGI) is a community resource for gene ex-

pression information from the laboratory mouse (12). It is

designed as a database to collect and integrate raw expres-

sion data from a wide range of sources, such as RNA in

situ hybridization, immunohistochemistry, western blots,

northern blots and RT-PCR. Other databases focus on in

situ hybridization data: The Allen Developing Mouse

Brain Atlas [part of the Allen Brain Atlas (13)],

GenePaint.org (14) and the e-Mouse Atlas of Gene

Expression (15). Further, there is the Mouse Atlas of Gene

Expression, which collects expression data based on serial

analysis of gene expression (SAGE) (16). SAGE is more

quantitative than in situ hybridization but lacks the high

spatial resolution. While experimental methods like western

and northern blots as well as RT-PCR are not suitable to

derive information about exact spatial gene expression (e.g.

within single cell populations), the main disadvantage of

immunohistochemistry often represents the lack of a func-

tional antibody. Notably, for many of the genes expressed

at the MHB suitable antibodies are not available.

To facilitate, for example, dynamic modeling

approaches, which necessitate a priori knowledge, i.e.

highly curated data, a comprehensive collection of known

genetic interactions containing spatial and temporal infor-

mation is essential (17). These dynamic approaches are

means to provide valuable insight into biological problems

(17–20). Another interesting field for which integration of

interaction and expression data was applied represents the

prediction of new transcription factor binding sites (TFBSs)

by using statistical models (21, 22). Although, plenty of

gene expression data for the developing mouse brain are

publicly accessible, interaction databases such as STRING

(23), IntAct (24) or BioGRID (25) do not provide high spa-

tial resolution on a developmental time scale. Thus, add-

itional information about the interaction type [IEXP

(inferred from experiment and/or expression pattern), ‘dir-

ect’, ‘direct signaling’, ‘indirect’, ‘indirect signaling’ or

‘maintenance’, which means to keep a gene active/inactive

if it was already turned on/off] and mode (i.e. activation or

repression) is not yet available for the specific genetic inter-

action network at the MHB and other brain regions.

We thus developed Mouse IDGenes, which represents a

manually curated reference database for genetic inter-

actions in the developing mouse brain focusing on the

MHB, but with the possibility to add gene expression and

interaction data of the central nervous system (CNS) with

the help of a graphical user interface. The freely available

database can be accessed via a Web interface through

the URL http://mouseidgenes.helmholtz-muenchen.de.

The Web interface offers detailed information about the

expression of genes and their genetic interactions in the de-

veloping mid-/hindbrain region. Stored data were already

used in part to understand regulatory gene interactions on

the systems level (26, 27). Therefore, the resource provides

the possibility for the simulation of the processes occurring

at the MHB, which is a unique feature of the presented

Web page. The Mouse IDGenes project is conceived for a

continuous expansion of stored gene expression and inter-

action data. Users can enter new data in the database via

the Web interface. Currently, 89 spatio-temporally

resolved in vivo gene expression data sets and 145 genetic

interaction data sets from 154 original publications as-

signed to different anatomical regions at mouse embryonic

developmental stages E8.5, E10.5 and E12.5 (Theiler

Stages 13, 17 and 20) are available from the database.

Brain regionalization model

We introduced a CNS regionalization model, which covers

developmental stages E8.5, E10.5 and E12.5 (Theiler

Stages 13, 17, and 20) representing three crucial stages in

the development of the murine MHB and mid-/hindbrain

region (Figure 1, Supplementary Table S1). The develop-

ment of the MHB and of the mid-/hindbrain region initi-

ates after gastrulation is finished. At E10.5, the

establishment of the IsO at the MHB is completed, and its

function at this stage is well characterized, meaning that

most of the known interactions are taking place at this

time point. The neural tube already exists at this stage,

whereas specific neuronal populations have not developed

yet. These neuronal populations, however, are first identi-

fiable at around E12.5. Our model about the mouse anat-

omy is based on data reviewed from literature (28–32) and

the MGI database (http://www.informatics.jax.org). To

comply with the Edinburgh Mouse Atlas Project (EMAP),

ontologies of mouse developmental anatomy, which

provides a standard nomenclature for the description of

normal and mutant mouse anatomy (33) and, therefore, to

allow reusability of the data, we provide EMAP identifiers

and descriptions for the defined brain regions (Supplemen-

tary Table S1). Because EMAP ontologies were recently

updated to the EMAPA ontology (34), we mapped the pre-

sented brain regions also to these identifiers (Supplemen-

tary Table S1). The regionalization model was kept as

general as possible, but as exact as necessary and covers

initially the anterior–posterior compartmentalization of

the neural tube into the brain vesicles and spinal cord.

These brain vesicles correspond to the regions of the brain,

which have already developed at a given developmental

stage. Within these compartments, we further divided

the regions on the anterior–posterior (i.e. longitudinal)

axis into lateral and medial or dorsal and ventral parts

depending on the corresponding developmental stage.

Therefore, we developed a tripartition of a respective
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CNS region, which has the general structure of

vesicle!anterior–posterior localization!medial–lateral

or dorsal–ventral localization (column ‘Vesicle’, ‘Structure

AP’, ‘Structure ML/DV’ in Supplementary Table S1, re-

spectively). Whenever no further division was made, the

description ‘all’ was used.

The CNS regions defined at developmental stage E8.5

are the prosencephalon, mesencephalon, MHB, rhomben-

cephalon and spinal cord. Because the 2D neural plate has

not yet folded up to give rise to the 3D neural tube,

we only defined an anterior–posterior axis and a medial–

lateral axis at this stage. At E10.5, the 3D neural

tube undergoes further regionalizations on the anterior–

posterior axis as well as on the dorso–ventral (previous

medial–lateral) axis. For all CNS regions, the new regional-

ization on the dorso–ventral axis is roof plate (RP), alar

plate (AP), alar basal boundary (ABB), basal plate (BP) and

floor plate (FP). The prosencephalon separates along the

anterior–posterior axis into the telencephalon and the di-

encephalon, the developing mesencephalon separates into

anterior and posterior, the rhombencephalon splits into

met- and myelencephalon and further into eight rhombo-

meres. The metencephalon was defined as consisting only

of rhombomere one (r1).

Because these subdivisions are not defined as sharply as

before and distinct neuronal populations have already

arisen or are arising in the mid-/hindbrain region of the

E12.5 mouse embryo, we additionally defined individual

neuronal populations and new subdivisions of the regions

(compartments) tel-, di-, mesencephalon, MHB, met- and

myelencephalon and also spinal cord. At this stage, the tel-

encephalon as well as the diencephalon show additional

subdivisions along the dorsal–ventral axis, and the mesen-

cephalon is subdivided into regions or neuronal popula-

tions (or both) also along the dorsal–ventral axis. While

at E12.5 the MHB is still subdivided along the anterior–

posterior and dorsal–ventral axis, in the met- and myelen-

cephalon as well as spinal cord, dorsal and ventral regions

or neuronal populations (or both) are defined along the

dorsal–ventral axis. Along the anterior–posterior axis, the

diencephalon is now subdivided into anterior hypothal-

amus, posterior hypothalamus, prethalamus and thalamus.

In addition, at E12.5, the developing spinal cord is subdi-

vided into five anterior–posterior regions, namely cervical,

thoracic, lumbar, sacral and caudal.

Database and Web page

Mouse IDGenes was implemented as a relational database

using PostgreSQL (http://www.postgresql.org). Gene ex-

pression and interaction data were manually extracted

from literature and stored in the database including refer-

ences. Currently, the database contains 89 expression data

sets and 145 genetic interactions. Genetic interactions as

well as expression data sets are assigned to different ana-

tomical regions at the mouse embryonic developmental

stages E8.5, E10.5 and E12.5, as described before. To as-

sess the quality of our data, we compared all interactions

Figure 1. CNS regionalization of the mouse embryo at different developmental stages as used for the database structure. (A) Developmental stage

E8.5: The whole embryo is divided into five regions along the anterior–posterior axis: prosencephalon, mesencephalon, MHB, rhombencephalon, spi-

nal cord; along the medial–lateral axis the embryo is divided into medial and lateral, and the region in between is considered as mediolateral bound-

ary. (B) Developmental stage E10.5: The embryo regionalization along the anterior–posterior and along the dorsal–ventral (previous medial–lateral)

axis is as follows: telencephalon, diencephalon, mesencephalon, MHB, metencephalon (r1), myelencephalon (r2-r8) and spinal cord; for all CNS re-

gions, the new regionalization along the dorsal–ventral axis is RP, AP, ABB, BP and FP. (C) Developmental stage E12.5: The mouse embryo is region-

alized along the anterior–posterior axis as follows: telencephalon (anterior, posterior), diencephalon (anterior hypothalamus, posterior

hypothalamus, prethalamus, thalamus), mesencephalon (anterior, posterior), MHB (anterior, posterior), metencephalon (r1), myelencephalon (r2-r8)

and spinal cord (cervical, thoracic, lumbar, sacral, caudal); the telencephalon, diencephalon and MHB are subdivided along the dorsal–ventral axis

into RP, AP, ABB, BP and FP; the mesencephalon, metencephalon and myelencephalon are subdivided into dorsal and ventral regions and/or neur-

onal populations along the dorsal–ventral axis; the spinal cord is subdivided into roof plate, dl1, dl2, dl3, dl4, dl5, dl6, v0, v1, v2, v3, v4, mn and floor

plate, where dl1 to dl6 describe the dorsal interneurons, and v0 to v3 and mn denote the ventral interneurons (not shown).
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with the STRING database (v 9.1), a comprehensive re-

source of protein–protein interactions (23). All interactions

but one in the current Mouse IDGenes data set are present

in STRING with a high-confidence score (>0.7). The data-

base was made accessible online through a Java Web inter-

face, which was implemented using the Java Servlet class

and runs on an Apache Tomcat Server. The Web interface

allows the user to browse the Mouse IDGenes database for

expression data and genetic interactions. By subscribing to

a mailing list, it facilitates communication with other users

of the database, as well as with the developers of the data-

base and the Web page. Data can be retrieved in a legible

PDF file format and as tab-delimited flat files (by navigat-

ing to the ‘Download’ tab on the Web page). By allowing

external user an easy input (using the ‘Input Data’ tab on

the Web page), which will be curated and evaluated by the

authors, Mouse IDGenes will be continuously updated and

thereby stay an up-to-date research tool.

Detailed search

Navigation on the Mouse IDGenes Web page by the

‘Detailed Search’ tab allows users to search for gene ex-

pression and interaction data in specific regions of the em-

bryonic mouse CNS at mouse embryonic developmental

stages E8.5, E10.5 and E12.5 (radio button: ‘display genes

according to the chosen region’). CNS regions and devel-

opmental stages (according to Supplementary Table S1)

can be selected with the help of combo boxes. Having set a

specific developmental stage and an anatomical structure,

users are further able to analyze whether a specific gene of

interest is expressed during that specific developmental

stage in the selected anatomical structure.

Search for interactions

On the ‘Search for Interactions’ tab, the Mouse IDGenes

Web page allows users to search for specific interactions

between two genes of interest and for all interactions in

which one specific gene of interest is involved (by the

‘Search for specific interactions’ button). Information

about the region and at which stage the specific interaction

takes place in the embryonic mouse CNS can be retrieved.

Users can also search whether two genes of interest dis-

play an overlapping gene expression (by the ‘Search for

overlapping gene expressions’ button).

By selecting ‘all’ in either both or only one of the gene

selection boxes, users can search for all stored interactions

either of the whole database or in which a specific gene of

interest is involved.

The displayed interactions follow an overall scheme

consisting of the attributes ‘effect’, ‘type’ and ‘name’ for a

genetic interaction. The attribute ‘effect’ can be either acti-

vation, i.e. turning on gene expression, or repression,

which is defined as shutting down gene expression. The at-

tribute ‘type’ of an interaction is defined by the following

six values:

– direct: We define a direct interaction in case interaction

partner 1 binds directly to the promoter of interaction

partner 2.

– direct signaling: In case of a ligand that activates a sig-

naling cascade or any other component of a signaling

cascade that does not directly interact with (or binds to)

the promoter of a target gene of this signaling pathway,

a direct signaling interaction refers to the activation/

repression of a direct target gene of this signaling

pathway.

– indirect: Interaction partner 1 does not bind directly to

the promoter of interaction partner 2, and signaling or

genetic interaction cascades have to occur between the

two interaction partners.

– indirect signaling: In case of a ligand that activates a sig-

naling cascade or any other component of a signaling

cascade that does not directly interact with (or binds to)

the promoter of a target gene of this signaling pathway,

an indirect signaling interaction refers to the activation/

repression of an indirect target gene by a direct target

gene of this signaling pathway.

– maintenance: Interaction partner 1 is not required to

activate (i.e. turn on) or to repress (i.e. turn off) the pro-

moter (or expression) of interaction partner 2, but to

keep this promoter (or expression) activated (‘on’) or re-

pressed (‘off’) over (a longer period of) time.

– IEXP: Inferred from experiment (e.g. loss of function/

gain of function) and/or expression pattern

Currently, the database contains these general interaction

schemes: direct activation, direct signaling activation, IEXP

activation, maintenance activation, indirect activation, in-

direct signaling activation, direct repression, direct signaling

repression, maintenance repression, IEXP repression, indir-

ect repression and indirect signaling repression. The attri-

bute ‘name’ of an interaction, which is displayed on the

Mouse IDGenes Web page, is composed of the official gene

symbol according to MGI of interaction partner 1, followed

by an arrow symbol from the third column of Table 1 and

finally the gene symbol of interaction partner 2.

As pointed out before, the maintenance activation

occurs over a longer period to cause a downstream effect.

Time-wise, such an interaction can occur over several

developmental stages as, for example, is the case of the

development of midbrain dopaminergic (mDA) neurons.

There, initially a Wnt1-regulated network together with

a Shh-controlled genetic cascade establishes the mDA
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progenitor domain, by maintaining Otx2 expression in the

ventral midbrain (35). Another example is Lmx1b, which

is known to be necessary for the initiation of Fgf8 expres-

sion and for the maintenance of several other genes includ-

ing Engrailed 1 (En1), En2 and Wnt1 (3). Lmx1b,

therefore, falls into the interaction scheme ‘maintenance

activation’ for En1, En2 and Wnt1. On our Web page,

these interactions are depicted in the following way:

Lmx1b! En1, Lmx1b! En2 and Lmx1b!Wnt1, mean-

ing that Lmx1b keeps the expression of En1, En2 and

Wnt1, respectively, on overtime.

Furthermore, cooperative interactions, i.e. interactions

with more than two interaction partners, can be stored in

the database, for example, if two transcription factors or

one transcription factor and another cofactor will bind on

the promoter of a target gene, i.e. interaction partner 2.

Data input

One of the core functions of Mouse IDGenes is the possibil-

ity for data input by the user. This feature allows the per-

manent update of data by the respective experts in the field

of developmental neurosciences. To input new gene expres-

sion and interaction data into the database, the user is

asked to maintain the overall CNS regionalization scheme

(according to Supplementary Table S1), by choosing and

subsequently storing specifications given by combo boxes,

which follow our CNS model (Figure 2A). The database so

far has stored data exclusively about the developmental

stages E8.5 to E12.5, as these are the crucial stages in the

establishment of the MHB and development of the mid-/

hindbrain region, which is the authors’ main research inter-

est. To maintain the high degree of curation in the current

database, it is necessary to also introduce at least one rele-

vant publication as well as the corresponding PubMed ID.

Users can input gene expression data as well as inter-

action data into the database by selecting the respective

type of data on the Web page. All fields that are mandatory

for data input as well as storage in the database are labeled

by an asterisk (Figure 2A and B), which ensures the com-

pleteness of expression and interaction data sets. In add-

ition, it is automatically controlled from the PubMed

abstract by using the link to PubMed whether the given

year of the publication and the entered PubMed ID are

consistent (compare with the fields ‘Author and Year’ and

‘PubmedID’ in Figure 2A and B); otherwise, a warning

message is displayed, and storage of the data is prevented.

Further, gene symbols from MGI are auto-completed after

typing some letters in the field ‘Gene’ (Figure 2A) or ‘First

Factor’ or ‘Target Gene’ (Figure 2B), and they are intern-

ally stored via MGI identifiers. The use of predefined lists

by combo boxes for the selection of e.g. a specific brain re-

gion and/or the interaction type helps to comply with our

brain regionalization model as well as the model for gen-

etic interactions and therefore ensures data consistency. In

case of extending the database for an interaction, it is pos-

sible to input also cofactors and more targets of an inter-

action (Figure 2B). After completion of the data set, the

user is asked to review the input before final submission to

the database. Constraints in the PostgreSQL database pre-

vent data from being duplicated when stored.

To control for incorrect input, the data will be regularly

curated by the authors. Before curation, new data will be

distinguishable on the Web page from already curated data

by labeling the not yet validated gene expression or inter-

action data on the Web page (Figure 2C).

Confirmation of new data is performed by

– reading the given publications,

– comparing the indicated gene expression and/or genetic

interaction,

– comparing the developmental stage as well as the brain

regions with the data entered into the Mouse IDGenes

database.

Table 1. General scheme for interactions used at the Mouse

IDGenes Web page is listed; interactions are divided into a

type, which can be ‘direct’, ‘direct signaling’, ‘indirect’, ‘indir-

ect signaling’, ‘IEXP’ and ‘maintenance’, as well as an effect,

namely ‘activation’ or ‘repression’ of gene expression

Interaction type Interaction effect Symbol

Direct Activation - >

Direct signalling Activation - >

Indirect Activation - - >

Indirect signalling Activation - - >

IEXP Activation - >

Maintenance Activation - >

Direct Repression - j
Direct signalling Repression - j
Indirect Repression - - j
Indirect signalling Repression - - j
IEXP Repression - j
Maintenance Repression - j

Direct: a transcription factor (interaction partner 1) directly binds to the

promoter of a gene (interaction partner 2); direct signaling: an activation/re-

pression of a direct target gene of a specific pathway initiated by a ligand that

activates the signaling cascade of this pathway; indirect: interaction partner 1

does not bind directly to the promoter of interaction partner 2, and signaling

or genetic interaction cascades have to occur between the two interaction

partners; indirect signaling: an activation/repression of an indirect target gene

through a direct target gene of a specific pathway initiated by a ligand that ac-

tivates the signaling cascade of this pathway; IEXP: inferred from experiment

(e.g. loss of function/gain of function) and/or expression pattern; mainten-

ance: interaction partner 1 is not required to activate (i.e. turn on) or to re-

press (i.e. turn off) the promoter (or expression) of interaction partner 2 but

to keep this promoter (or expression) activated (‘on’) or repressed (‘off’) over

(a longer) time.
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A mailing list has been set up for users to discuss their

plan to submit new data.

After verification of new data, the flag ‘Data not vali-

dated yet!’ is removed from the database and the Web

page; otherwise, if the data could not be verified, they are

deleted from the database.

Output

The output of a specific search either in one of the gene

expression or the interaction menu items appears on the

same page underneath the user selection (Figure 3B),

organized in a table. In case of the gene expression data

(radio button: ‘display genes according to the chosen re-

gion’ (Figure 3A) in the ‘Detailed Search’ menu item), the

output table indicates the developmental stage the user is

looking at. The output further shows the specific subdiv-

ision of the chosen anatomical area and which genes are

expressed there in the column ‘Region’. Additionally, links

to the public databases NCBI, MGI, UCSC and Ensembl

are given in the column ‘Expression Data’, where further

general information about a displayed gene can be

retrieved. Most importantly, links to literature references

are indicated as evidence of gene expression information.

The last column ‘Interactions’ of the output shows the

interaction data, which can be retrieved for the actual

brain region at the actual developmental stage with the

corresponding literature references.

Application of the database

Prediction of a new Wnt1 target based on Mouse
IDGenes

To demonstrate the usefulness of the Mouse IDGenes data-

base for other research applications, we chose an example

from our own scientific interests focused on the role of the

Wnt signaling pathway in the development of the mid-/

hindbrain region and of neuronal populations located in

this region, such as the ventral midbrain dopaminergic

neurons. In this context, the Wnt signaling pathway plays

a crucial role because it participates in the regulation of re-

gional patterning, cell cycle, cell fate specification, cell dif-

ferentiation and cell survival. It is also involved in various

human diseases (36).

The manually curated, and thus, highly reliable data set

of Mouse IDGenes provides an ideal basis to further ana-

lyze, for example, the complex gene regulatory network

at the MHB and in the ventral midbrain in which Wnt1/

b-catenin signaling has so far been implicated (37, 38).

Figure 2. Dialogue of the data input and output of not yet validated data as found on the Mouse IDGenes Web interface. Input dialogue for (A) expres-

sion data and (B) interaction data. (C) The output of not yet validated data.
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We used the Mouse IDGenes database to predict novel dir-

ect or indirect targets of the Wnt1/b-catenin signaling path-

way that might be involved in the development of the

mid-/hindbrain region and of associated neuronal popula-

tions and validated our results experimentally.

We obtained known targets with the interaction type

‘direct signaling’ and ‘indirect signaling’ of the Wnt1/

b-catenin pathway from the Mouse IDGenes Web page by

choosing Wnt1 as search term in the ‘Search for

Interactions’ menu as well as from literature searches

(Figure 4A) (35, 39–52). One hallmark of the Wnt1/b-

catenin signaling pathway is the stabilization and nuclear

translocation of cytoplasmic b-catenin (Figure 5). In the

absence of a Wnt1 signal, the Lef1/Tcf transcription fac-

tors are bound to the promoter regions of the direct Wnt1

target genes together with other co-repressors, thereby

inhibiting the activation of these genes. In the presence of a

Wnt1 signal, the replacement of these co-repressors and

binding of b-catenin to the Lef1/Tcf transcription factors

activates the transcription of the direct Wnt1 target genes.

The frequent presence of, in particular, evolutionary con-

served Lef1/Tcf TFBSs in the promoter region of a gene is

therefore indicative that this gene might be a direct target

gene of the Wnt1/b-catenin signaling pathway. An indirect

target gene of the Wnt1/b-catenin pathway was defined as

a gene that is upregulated on Wnt1/b-catenin signaling ac-

tivity but is not directly bound by b-catenin and Lef1/Tcf

transcription factors and thus requires another mediator,

i.e. an intermediate gene regulatory step.

We performed an in silico promoter analysis for Wnt1

target genes of the interaction type ‘direct signaling’ and

‘indirect signaling’ in the training data set (Figure 4A) as

Figure 3. Output window of expression data and interaction data by the use of the ‘Detailed Search’ option on the Mouse IDGenes Web page. (A)

Search dialogue on the menu item ‘Detailed Search’. In this example, expression and interaction data for the roof plate of the anterior mesencephalon

at embryonic day 12.5 are requested. (B) Output for gene expression data as well as interaction data for the request according to (A).
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well as in the test set (Figure 4B) consisting of interesting

target genes for which the interaction type is not yet known

in the CNS (53–59). The MatInspector (Genomatix) pro-

gram was used to identify Lef1/Tcf binding sites in the pro-

moter sequences of these target genes with help of

predefined position weight matrices (PWMs) (60). For clas-

sification of the interaction type, we assigned ‘direct signal-

ing’ target genes of Wnt1/b-catenin pathway to class 1 and

‘indirect signaling’ targets to class 2. We computed two par-

ameters for each gene: (i) the number of evolutionary con-

served Lef1/Tcf TFBSs (V$LEFF). Orthologous promoter

sequences from human, chimp, mouse, rat, dog, horse, cow

and opossum were taken into account, and only binding

sites present in at least two species were considered. (ii) The

average matrix similarity of all Lef1/Tcf binding sites in the

promoter, a score indicating the similarity of a predicted

binding site with the consensus matrix of the TF (60, 61). It

lies in [0, 1] and reaches 1 only if the predicted sequence

corresponds to the most conserved nucleotide at each

position. While the matrix similarity allows the assessment

of the structural quality of a binding site, the number of

conserved binding sites supports the possibility that these

binding sites might be functionally relevant (62). It is

assumed that in case of direct interactions the matrix simi-

larity is higher and conserved binding sites are more fre-

quent than in case of indirect interactions.

We trained a support vector machine (SVM) with

‘direct signaling’ targets (class 1) and ‘indirect signaling’

targets (class 2) using both parameters (Figure 4C).

Classification via SVM has been successfully used not only

for feature selection of microarray data (63–65) but also to

integrate expression as well as genomic data, e.g. evolu-

tionary conservation or binding site clusters for the im-

provement of TFBS prediction (21, 22). The statistical

model was calculated with help of the ksvm function

from the kernlab package in R statistical software by

using a polynomial kernel matrix similarity (degree¼ 2), a

cost parameter C¼ 1 and a 13-fold cross validation

Figure 4. Training and test data for SVM classification. (A) Training data containing experimentally validated Wnt1 target genes. Genes were ex-

tracted from Mouse IDGenes, and number of conserved binding sites and average matrix similarity were computed with Genomatix MatInspector.

Class 1 contains Wnt1 targets of the type ‘direct signaling’ (i.e. direct Lef1/Tcf target genes), whereas class 2 includes Wnt1 targets of the type ‘indirect

signaling’. (B) Result of classification of selected genes from the test set. Direct Lef1/Tcf targets have more conserved binding sites and a higher aver-

age matrix similarity. (C) SVM classification (contour) plot showing training data. Filled objects indicate support vectors, blank objects remaining data

points. Red color indicates decision values of class 1 (i.e. direct Lef1/Tcf binding), while blue color indicates decision values of class 2 (indirect Lef1/

Tcf binding).
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(leave-ne-out cross validation). Class 1 consists of Otx2,

Lmx1a, En1, Ccnd1, Dkk1 and Sp5 and class 2 consists of

Msx1, Pitx3, Gbx2, Shh, Pou4f1 (Brn3a) and Six3 (Figure

4A). Additionally, Fgf20 was included in class 1.

Interaction data for this gene cannot be retrieved from

Mouse IDGenes, as expression of Fgf20 in the mouse neu-

ral tube starts only after E12.5 (66). We assigned En1 to

class 1 because it was shown that En1 expression under the

control of the Wnt1 enhancer in mice rescues the Wnt1-/-

mid-/hindbrain phenotype (41, 42), thus indicating that

En1 is the downstream target of Wnt1 signaling in mid-/

hindbrain development, and because a direct interaction of

the promoter of the homologous gene engrailed-2 (En2)

with the Lef1/Tcf transcription factor was observed in the

frog (43). For our statistical model, we obtained a training

error of 7.69% and a cross-validation error of 46.15%.

To further elucidate the Wnt1-controlled gene regula-

tory network at the MHB, we applied SVM prediction by

using the number of conserved Lef1/Tcf binding sites and

the average matrix similarity in the promoters of four

interesting genes, Fgf8, Lef1, Islet1 and Dkk3, representing

the test set (from Figure 4B) to predict whether they are

directly or indirectly activated by the Wnt1/b-catenin path-

way. For these four genes, it is not known whether they are

direct or indirect targets of Wnt1 in neural tissues, but it

was observed that Lef1 and Dkk3 are co-expressed with

Wnt1 in the midbrain (Götz, S. et al., unpublished data),

whereas Fgf8 and Islet1 are not co-expressed with Wnt1

but depend on Wnt1 expression in the mid-/hindbrain

region (53, 54, 58, 59). Using the SVM on the test set

(Figure 4B), our analysis predicts that Lef1 and Dkk3

are direct targets of Lef1/Tcf-mediated Wnt1/b-catenin

Figure 5. The Wnt/b-catenin signaling pathway. Left (red arrows): In the absence of Wnt ligand, b-catenin is bound by the destruction complex consist-

ing of the scaffolding proteins Axin and Adenomatosis polyposis coli (APC), and the protein kinases Glycogen synthase kinase 3 beta (GSK3b) and

Casein kinase I (Csnk1), and sequentially phosphorylated by these kinases. Phosphorylated b-catenin binds to and is ubiquitinated by the E3 ubiquitin

ligase b-TrCP, thereby targeting it for proteasomal degradation. In the absence of Wnt ligand, lymphoid enhancer binding factor 1 (Lef1) or T cell-

specific (TCF) transcription factors are bound to the promoters of Wnt target genes in the cell nucleus together with co-repressors of the Groucho/

transducin-like enhancer of split (Tle) family proteins, thereby repressing their expression. Right (green arrows): On binding of Wnt ligand to the

Frizzled (Fzd) receptor and low-density lipoprotein receptor-related protein (Lrp) co-receptor complex, Axin and GSK3b are recruited to the cell mem-

brane via Dishevelled (Dvl) and the destruction complex falls apart. Unphosphorylated b-catenin accumulates in the cytosol and translocates into the

nucleus, where it binds to the Lef1/TCF transcription factors and activates Wnt target genes by displacing the co-repressors and recruiting co-activa-

tors to this complex. Properties of Lef1/Tcf binding sites in the promoters of known Wnt target genes, i.e. the number of conserved Lef1/Tcf binding

sites as well as the averaged matrix similarity, were used to train a classifier and to predict direct or indirect interactions of potentially new target

genes and Lef1/Tcf transcription factors in the Wnt/b-catenin signaling pathway.
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signaling, whereas Fgf8 and Islet1 are not direct target

genes of this signaling pathway and interact indirectly with

the Wnt1 signaling cascade. Fgf8 and Islet1 therefore would

represent Wnt1/b-catenin target genes that are most likely

activated by other genes that in turn are activated by Wnt1/

b-catenin signaling. Direct binding of Lef1/Tcf transcription

factors to the Lef1 promoter was shown in colon cancer/

lymphocytes (55) as well as in HEK 293 cells (56), which is

in accordance with our prediction. A direct interaction of

Lef1/Tcf transcription factors with a larger promoter region

of the Islet1 gene was shown in embryonic heart tissue but

not in neural tissues (57). However, direct activation of

Fgf8 and Islet1 in the CNS by Lef1/Tcf binding sites was up

to now never observed although it was inferred from mu-

tant mouse embryo analyses (53, 54, 58, 59).

Experimental validation of the predicted Wnt1
target gene Dkk3

To show the predictive power of our approach, we experi-

mentally validated the so far unknown Wnt1 target gene

Dkk3 as a direct target gene of the Lef1/Tcf-mediated

Wnt1/b-catenin signaling cascade in vitro.

To identify conserved Lef1/Tcf binding sites in #700 bp

extended promoter region (as used for the SVM prediction)

of the Dkk3 gene of five different mammalian species

(mouse, rat, cow, pig and opossum), we applied the

DiAlign TF program in the Genomatix software suite

GEMS Launcher to evaluate the overall promoter similar-

ity and to identify conserved Lef1/Tcf binding sites in these

regions. For the alignment, we chose the five most con-

served Dkk3 promoter sequences among 14 organisms

from Genomatix homology group Hg3927. Four Lef1/Tcf

binding sites were predicted in the putative mouse Dkk3

promoter, of which one [binding site ‘c’, the most proximal

Lef1/Tcf binding site to the transcription start site (TSS)]

was highly conserved among all five species (Figure 6A).

To determine whether these predicted Lef1/Tcf binding

sites control the Wnt1/b-catenin and Lef1/Tcf-mediated ac-

tivation of the murine Dkk3 promoter, we cloned a 744-

bp-long fragment of this promoter containing three of the

four predicted Lef1/Tcf binding sites into a promoter-less

luciferase reporter vector (Figure 6E). Co-transfection of

increasing amounts of rat Lef1 complementary DNA (67)

or a constitutively active b-catenin [DN-b-catenin, which

mimics the activation of Wnt1 signaling, (68)] into ‘Wnt-

responsive’ HEK293T cells [exhibiting a basal level of

Wnt1/b-catenin signaling activity, Prakash, N. et al., un-

published data, (69)] led to a dose-dependent activation of

luciferase expression mediated by this mouse Dkk3

(mDkk3) promoter fragment (Figure 6F and G), indicating

that the promoter of the mDkk3 gene is a direct target of

Lef1-mediated Wnt1/b-catenin signaling in this in vitro

context. Additional in vivo evidence indicates that the mur-

ine Dkk3 gene is also a direct target of Lef1-mediated

Wnt1/b-catenin signaling in the mouse ventral midbrain

(Zhang, J. and Prakash, N., unpublished data).

To evaluate whether the predicted Lef1/Tcf binding

sites in the murine Dkk3 promoter are functional, we

mutagenized each of these binding sites either individually

(mutation of a single Lef1/Tcf binding site) or altogether

(mutation of all three Lef1/Tcf binding sites) within

the mDkk3 promoter fragment such that they cannot be

recognized by Lef1/Tcf transcription factors anymore

(Figure 6B–E) (46). Site-directed mutagenesis of single or

all three Lef1/Tcf binding sites in the mDkk3 promoter/

reporter constructs revealed that

– luciferace activity was significantly decreased relative to

the wild-type mDkk3 promoter after co-transfection of

Lef1 cDNA (Figure 6H),

– the activation of the mDkk3 promoter/reporter con-

struct carrying a mutagenized Lef1/Tcf binding site ‘c’

by Lef1 was completely abolished relative to the

pcDNA3.1 control, in contrast to a still significant acti-

vation of the mDkk3 promoter/reporter constructs car-

rying a mutagenized Lef1/Tcf binding site ‘a’ or Lef1/Tcf

binding site ‘b’ (Figure 6I).

This result strongly suggests that the most conserved

(by position and sequence similarity among five mamma-

lian species) and proximal (relative to the TSS) Lef1/Tcf

binding site ‘c’ is the functionally most important of the

three Lef1/Tcf binding sites for Lef1-mediated activation

of the murine Dkk3 gene by Wnt1/b-catenin signaling.

Lef1/Tcf transcription factors were predicted to directly

activate the mouse Dkk3 gene in the context of Wnt1/

b-catenin signaling by our SVM analyses. Therefore, the

experimental validation of Lef1/Tcf binding site ‘a’ and

Lef1/Tcf binding site ‘c’ with a matrix similarity of 0.867

and 0.961, respectively, confirm the result of our SVM

classification, indicating that direct Lef1/Tcf targets have

in general more conserved binding sites than indirect tar-

gets (Figure 4B). Altogether, our experimental results indi-

cated that the activation of the mouse Dkk3 gene is

mediated at least in part by the predicted Lef1/Tcf binding

sites in its promoter region and therefore highlight the im-

portance and predictive power of a database combining

both expression and interaction data.

Future directions

So far, the Mouse IDGenes database offers spatially

resolved and manually registered data about the develop-

mental stages E8.5, E10.5 and E12.5 of the mouse mainly
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Figure 6. Mouse Dkk3 is a direct target gene of Lef1-mediated Wnt/b-catenin signaling. (A) Representation of the putative Dkk3 promoter (50 proximal)

regions from mouse, rat, cow, pig and opossum and of the predicted Lef1/Tcf binding sites on the sense (upper blue boxes) and antisense

(continued)
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with gene expressions and interactions important for the

development of the mid-/hindbrain region because it

harbors important neuronal populations that are impli-

cated in several neurodevelopmental human diseases (1, 2,

7). We aim to enlarge the data sets to more entries that

would provide a good representation of the known gene

expression patterns and interactions in the developing

mouse CNS. This aim is already facilitated by allowing

users to input data to the database. With this, we intend to

attract experts in different fields of developmental neuro-

sciences to update the existing platform so that Mouse

IDGenes becomes the data source of choice, for experimen-

tal and in silico analyses related to gene expression and

interaction data in the developing murine CNS.

Additionally, a broader data set will lead to improvement

of dynamic modeling projects and to more precise predic-

tion methods (26, 27). As demonstrated, the genetic inter-

action data stored in the Mouse IDGenes database can be

used for the prediction of Wnt target genes, but with this

database in combination with publicly available PWMs

(70), it is also possible to predict new targets of other sig-

naling pathways (e.g. Shh, Fgf8 or BMPs), which are

equally important for CNS development. With our mailing

list, we seek to develop an open platform, which eases the

communication between neuroscientists.

Materials and methods

Bioinformatics prediction of Lef1/Tcf binding sites
in the promoter regions of Wnt/b-catenin target
genes

To discriminate interactions of the type ‘direct signaling’,

i.e. genes bound by Lef1/Tcf transcription factors activated

by Wnt1 signaling from correlations of the type ‘indirect

signaling’ and to predict the interaction type of new target

genes, a support vector machine (SVM) was applied. The

data matrix of the SVM is composed of two variables (col-

umns) for each object (row), i.e. the frequency as well as

the averaged matrix similarity of conserved TFBSs for each

promoter sequence of a specific gene. The classification of

the interaction type in training data set for each object

(gene), meaning whether Lef1/Tcf transcription factor

binds directly or indirectly to the promoter sequence, was

derived from the Mouse IDGenes database. Promoter se-

quences for Wnt/b-catenin target genes were derived from

the ElDorado genome database (Genomatix/Germany),

versions 12-2010 and 08-2011. Orthologous promoter

sequences from different mammalian species of the

Genomatix homology group (human, chimp, mouse, rat,

dog, cow, pig and opossum) were analyzed using the

MatInspector program (with the Matrix Family Library

Version 8.4) from Genomatix to identify potential Lef1/

Tcf binding sites and to extract matrix similarities.

Conserved binding sites were determined by using the

DiAlign TF program (Genomatix) and by searching for

common Lef1/Tcf sites occurring at the same position in

(aligned) orthologous promoter sequences of each Wnt/b-

catenin target gene. The length of the promoter regions

used for the detection of Lef1/Tcf sites to derive the total

number and the average matrix similarity of binding sites

both included in the SVM algorithm were generally in the

range of 600–1400 bp. In addition, a longer promoter re-

gion of mouse Dkk3 mRNA (with the Genbank identifier

AK013054, firstly detected in whole body of 10- and 11-

day-old mouse embryos) was defined as 1800 bp upstream,

including the proximal region, and 200 bp downstream of

the TSS. Dkk3 promoter sequences of 2000 bp length from

(lower blue boxes) strands within these Dkk3 promoter regions. The most conserved (by sequence similarity and position) and proximal (relative to

the TSS) predicted Lef1/Tcf binding sites were designated as ‘a’ and ‘c’ (green dotted boxes). The Lef1/Tcf binding site ‘b’ is only predicted in the

mouse Dkk3 promoter (asterisk). (B–D) Sequence alignments of the mutated (m) and wild-type (wt) Lef1/Tcf binding site ‘a’ in the mouse and rat Dkk3

promoter regions (B), ‘b’ in the mouse Dkk3 promoter region only (C) and ‘c’ in the mouse, rat, cow, pig and opossum Dkk3 promoter regions (D). The

blue rectangles delimit the sequence, and the red boxes frame the core sequence of the corresponding Lef1/Tcf binding site. The red bold letters indi-

cate the mutagenized nucleotides in the corresponding Lef1/Tcf binding site core sequence. (E) Schematic drawing of the murine Dkk3 (mDkk3) pro-

moter/luciferase reporter construct used in the following experiments, and of the approximate position of the three predicted and partly conserved

proximal Lef1/Tcf binding sites within this promoter fragment (red bars). CDS, coding sequence; pA, polyadenylation signal. (F–I) Luciferase reporter

assays in HEK293T cells using the wild-type and mutated mDkk3 promoter/reporter construct depicted in (E). (F) Co-transfection of increasing

amounts of Lef1 cDNA led to a dose-dependent activation of the wild-type mDkk3 promoter relative to the ‘empty’ (pcDNA3.1) vector control. (Rel.

luciferase activities: pcDNA3.1, 1.0 6 0.01; 75 ng Lef1 cDNA, 1.21 6 0.03; 150 ng Lef1 cDNA, 1.32 6 0.035; 300 ng Lef1 cDNA, 1.74 6 0.04). (G) Co-trans-

fection of increasing amounts of a constitutively active b-catenin (DN-b-catenin) led to a dose-dependent activation of the wild-type mDkk3 promoter

relative to the ‘empty’ (pcDNA3.1) vector control. (Rel. luciferase activities: pcDNA3.1, 1.0 6 0.01; 75 ng DN-b-catenin, 1.14 6 0.07; 150 ng DN-b-catenin,

1.49 6 0.06; 300 ng DN-b-catenin, 2.04 6 0.11). (H) Site-directed mutagenesis of single and of all three predicted Lef1/Tcf binding sites (‘a’, ‘b’, ‘c’, ‘abc’)

within the mDkk3 promoter fragment (Dkk3-mA, Dkk3-mB, Dkk3-mC, Dkk3-mABC) resulted in a site-specific and significant decrease of luciferase ac-

tivity relative to the wild-type mDkk3 promoter (Dkk3-wt) after co-transfection of 300 ng Lef1 cDNA. (Rel. luciferase activities: Dkk3-wt, 1.0 6 0.01;

Dkk3-mA, 0.85 6 0.05; Dkk3-mB, 0.86 6 0.06; Dkk3-mC, 0.71 6 0.04; Dkk3-mABC, 0.73 6 0.03). (I) Site-directed mutagenesis of the most conserved

(across species) and proximal (relative to the TSS) Lef1/Tcf binding site ‘c’ in the mDkk3 promoter completely abolished the activation of this pro-

moter after co-transfection of 300 ng Lef1 cDNA relative to the ‘empty’ vector control (pcDNA3.1). (Rel. luciferase activities: Dkk3-mA: pcDNA3.1,

1.0 6 0.01; Lef1 cDNA, 1.24 6 0.08; Dkk3-mB: pcDNA3.1, 1.0 6 0.01; Lef1 cDNA, 1.24 6 0.08; Dkk3-mC: pcDNA3.1, 1.0 6 0.01; Lef1 cDNA, 1.04 6 0.05).

*P< 0.05; **P< 0.01; ***P< 0.001; ns, not significant.

Database, Vol. 2014, Article ID bau083 Page 13 of 16

 at G
SF Forschungszentrum

 on July 20, 2015
http://database.oxfordjournals.org/

D
ow

nloaded from
 



five different mammalian species (mouse, rat, cow, pig and

opossum) were analyzed with the MatInspector to predict

Lef1/Tcf binding sites.

Cloning of a mouse Dkk3 (mDkk3) promoter/
reporter vector

A 744-bp fragment of the putative mDkk3 promoter

(Entrez Gene ID: 50781; chromosome 7, strand: $, pos-

ition: 112 158 266 to 112 159 009 bp, NCBI build 38) was

amplified from C57BL/6 mouse genomic DNA by PCR

using the forward primer 50-ctcgagTGACCAGATCCAGC

TTGCA-30 and reverse primer 50-aagcttCCTCCTGAGG

GTAGTTGAGA-30 that included an XhoI and HindIII re-

striction site (underlined sequences in italics), respectively.

The amplified fragment was cloned into the pCRVR II

TOPO TA vector (TOPOVR TA CloningVR Kit, Life

Technologies/Germany) and sequenced throughout its en-

tire length (Sequiserve/Germany). The mDkk3 promoter

fragment was excised from the pCRVR II TOPO TA vector

by XhoI/HindIII digestion and subcloned into an XhoI/

HindIII-digested pGL3-Basic Vector (Promega/USA).

Site-directed mutagenesis of the mDkk3 promoter
fragment

Site-directed mutagenesis of the most conserved and prox-

imal (relative to the TSS) Lef1/Tcf binding sites predicted

in the 744-bp mDkk3 promoter fragment was done using

the QuickChange Lightning Multi Site-Directed Mutagen-

esis Kit (Agilent Technologies/USA) according to the

manufacturer’s instructions. Mutagenic primers were the

following: Dkk3-mA: 50-ccagcttgcagctcagctgcgttcattcgaa

ttgggtg-30; Dkk3-mB: 50-gtccaagagatcccagtaatagaacggatgg

ggaaatagtaaaggaa-30; Dkk3-mC: 50-ggtggtcctgcagtctgcga

tagctttccgggac-30 (mutagenized nucleotides in bold; core

sequence of the corresponding Lef1/Tcf binding site in

italics). Mutated promoter fragments were confirmed by

sequencing (Sequiserve).

Cell culture, transfections and luciferase reporter
assays

HEK-293T cells were kept at 37%C and 5% CO2 in

DMEM mediumþ 10% fetal calf serum/glutamine (Life

Technologies). HEK-293T cells (1.25 & 105 cells/well of

a 24-well plate) were co-transfected with 300 ng/well

pGL3-mDkk3 promoter/reporter vectors (wild-type and

mutagenized sequences), 30 ng/well pRL-SV40 (as internal

transfection control, Promega) and 150–225 ng/well

pcDNA3.1 (Life Technologies) ‘empty’ vector, alone or

together with 75 ng/well, 150 ng/well or 300 ng/well

constitutively active DN-b-catenin (68) or rat Lef1 cDNA

(67) using Lipofectamine 2000 (Life Technologies). The

total amount of plasmid DNA transfected in each well was

630 ng. Cells were lysed in Passive Lysis Buffer (Promega)

after 24 h, and Firefly and Renilla Luciferase luminescence

were measured in a Centro LB 960 luminometer (Berthold

Technologies/Germany) using the Dual-LuciferaseVR

Reporter Assay System (Promega) according to the manu-

facturer’s instructions. Firefly luminescence was normal-

ized against Renilla luminescence for each well. Assays

were performed in triplicates, and data are derived from

three independent experiments.

Statistical analyses

All values shown are mean 6 SEM. Statistical significance

between groups was assessed by two-tailed independent-

samples t tests using the SPSS 18.0 software (SPSS Inc./

USA). A value of P< 0.05 was considered significant.

Supplementary Data

Supplementary data are available at Database Online.
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