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Abstract
The focus of this thesis is joint control for humanoid robots from a mechatronic perspective.
Simulations and experiments were conducted using the robot LOLA developed at the
Institute of Applied Mechanics of the Technischen Universität München. The structure
of the resulting decentralized sensor/actuation network and real-time communication is
described in detail. A novel implementation of a motor velocity algorithm are presented.
The elastic joint model parameters are estimated during experiments on the real robot.
Methods for joint control to compensate for gear elasticity are discussed and compared.

Zusammenfassung
Thema der Arbeit ist die mechatronische Implementierung von Gelenkreglern für hu-
manoide Roboter. Als Experimentier-Plattform steht der am Lehrstuhl für Angewandte
Mechanik der Technischen Universität München entwickelte Zweibeiner LOLA zur Verfü-
gung. Die Struktur des dezentralen Sensor/Antriebsnetzwerkes ist im Detail beschrieben.
Die Implementierung der Kommunikationsprotokolle für die Sensordatenerfassung, Ver-
arbeitung und Echtzeit-Kommunikation wird vorgestellt. Eine neue Implementierung für
einen Motor Geschwindigkeitsschätzer wird präsentiert. Die Parameter des elastisches Ge-
lenkmodels werden unter Zuhilfenahme von experimentellen Daten geschätzt. Schließlich
werden verschiedene Regelungsstrategien für die elastischen Gelenkgetriebe diskutiert und
verglichen.
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“ I’ve seen things you people wouldn’t believe.
Attack ships on fire off the shoulder of Orion.

I watched C-beams glitter in the dark near the Tannhauser gate.
All those moments will be lost in time...

like tears in rain... ”

– Roy Batty, “Blade Runner”
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1 Introduction

The concept of automation, as we understand it today, was introduced in the 1940s by
the Ford Motor Company. This term incorporates two fundamental concepts: the use of
a mechanical device capable of performing a specific task and the use of some kind of
controlling system to direct the device’s actions. Such kind of devices drastically changed
industrial production and Robots are the state of the art in industrial automation. The
machines currently used in the industry are fixed robots which execute a very specific task
with high precision and at high speed.

Another category of robots that have been developed in various forms, and for different
purposes are Mobile Robots. They can be roughly divided between wheeled and legged
robots. Under the latter category, different types of machines have been realized with a
variable number of limbs. The two legged variant are generally of humanoid form and try
to reproduce human sensing and motion capabilities.

The first examples of a legged humanoid form robots date back more than 50 years to
the 1970s with the presentation of WABOT-I by Professor Ichiro Kato at Waseda University.
Subsequent interest in humanoids robots has grown constantly, especially in the last
30 years with numerous companies and universities having contributed widely to the
development of this research field.

The idea of a machines capable of working, facilitating or cooperating with humans in
daily activities is very appealing. The fields of application for humanoid robots are many
and varied. Service robotics is one of the most promising, where such machines can be
potentially used in industrial, medical and office environments. Those are spaces tailored
for human activities and having working companions with the same abilities and shape as
humans seems to be the best overall solution. Moreover, the use of human language and
imitation of natural human gestures can facilitate the acceptance of these machines.

In recent years, the DARPA1 Robotic Challenge2 (DRC) has promoted the deployment
of humanoid robots in harsh environments or in case of catastrophes. In dangerous
situations, the use of capable remotely controlled machines instead of humans can be very
advantageous and reduce the risk to human operators or rescue teams.

From an engineering point of view, robotics in general and human-like robots in par-
ticular, are the best example of a complete mechatronic system. Such systems represent
the perfect intersection of different disciplines such as mechanics, electronics, informa-
tion and sensor technology, control theory, computer programming, artificial intelligence,
speech synthesis and expression recognition. All of these research fields contribute to
the development and improvement of humanoids in terms of performance and human
interaction.

1 U.S. Department of Defense’s research and development
2 DARPA Robotics Challenge. U.S. Defense Advanced Research Project Agency. Oct. 2013. URL:

http://www.theroboticschallenge.org.
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4 1 Introduction

1.1 Literature Review and Related Works
Short Review of the Cultural Background

The word "ROBOT" has its origin in the 1920’s play “Rossum’s Universal Robots" from
the Czech author Karel Čapek’s [144] and laterally means “forced worker" in the Czech
language.

Nevertheless, the concept of a human-like machine have much older roots. Al-Jazari and
Leonardo Da Vinci each designed an "AUTOMATON" in the 13th and 15th century respectively.
The "Golem", mentioned in the Bible and Jewish folklore, is the perfect servant worker
made of inanimate matter and created to fulfill the orders of its master.

In the 20th century the idea of human-like robots has been brought to the general public
through many science-fiction novels and films. The works of Isaak Asimov and Philip K.
Dick, among many others, deserves to be mentioned for having inspired the imagination of
generations of scientists, novelists and the public with innovative and original ideas about
humanoid robots and their integration into society.

In recent years, the majority of exposure of about humanoid robots to the general
public has been through science-fiction films like Terminator, Bicentennial Man, I, Robot,
A.I., Ex-Machina etc.. Classic films such as Star Wars and Star Trek, also deserve to be
mentioned. Although excellent examples of science-fiction plays, they tend to provide
unrealistic expectations of the actual capabilities of such machines and, in some cases, can
evoke a misplaced perception of threat by this technology. To promote general acceptance
of human-like robots, the public must be educated about their real performance and
limits. This task must be accomplished by the researchers who develop and work with
these machines, since they alone are aware of the actual limits and possibilities of this
technology.

Relevant Technical Literature

The body of literature concerning humanoid robotics is wide and constantly increasing.
Hardware and software improvements which have enabled the implementation of complex
machines and algorithms have also contributed to the growth in this field.

The books [124, 125] must be cited as being comprehensive references for developing,
analyzing, modelling, simulating and control of robots.

Lewis [84] addresses the control problem, applied to various types of robots. The
authors present a thorough discussion regarding the analysis and implementation of
control methods from the classic PID3 to more advanced model based algorithms such as
robust or adaptive controllers.

In Kemp et al. [79] a general discussion about the application of humanoids is given.
The authors present the results achieved by different research groups on various humanoid
platforms. They describe the work on legged robots, manipulation and the problem of
communication between humans and robots. Specific information on legged robots can
be found in Kajita and Espiau [73]. The authors present specific methods for modeling,
simulation and control approaches for bipedal and multi-legged robots.

3 Acronym for Proportional Integral Derivative controller
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In Gienger [58] and Lohmeier [88], the authors give a comprehensive description of
hardware design aimed towards the realization of humanoid-legged robots. Buschmann
[20] presents a detailed survey of simulation tools, algorithms for gait, step and trajectory
generation, stabilization and control of humanoid robots. In Schwienbacher [118] efficient
algorithms for kinematic computation, self-collision avoidance and angular momentum
tracking for biped robot are discussed.

Historically, the research on bipedal humanoid robots started in 1973 with the devel-
opment of WABOT-I at Waseda University by Kato. The system was hydraulically actuated
and the first working robot of human-like scale. Many other robots were subsequently
developed at Waseda University, with WABIAN-2 being the last one [103].

Since then, Japan has a long history of research groups at universities and industry
developing humanoid robots prototypes.

Inoue from JSK-Laboratory at Tokyo University, in cooperation with Kawada Industries,
built the robot H6 and successor H7. Important characteristics of these robots are the
actuated toe joint, the development of a vision system for autonomous walking [101, 102].
In 2010, Urata et al. [143] developed a high power electrically actuated robot. In 2007,
Nakanishi et al. [99] built a complex experimental Musculo-Skeletal humanoid.

Kawada Industries also worked with the Japanese National Institute of Advanced Indus-
trial Science and Technology (AIST) research center on the “Humanoid Robotics Project"
(HRP). During this collaboration, the full-size human-like robots HRP-2 to HRP-4 were
developed. While HRP-2 [76] and HRP-3 [77] have the appearance of the robots depicted
in the manga series “PATLABOR", the last model HRP-4 has the appearance of a young
female. HRP-2 is one of the most commercially successful of such platforms. Many research
groups all over the world have purchased a prototype and focused on developing software
algorithms for motion and human-robot collaboration.

The car manufacturer Toyota have presented several so called “Partner Robots". The
project is focus on service robotics to support humans in medical, mobility, housework and
work spheres. The company have also presented in 2006 a fast running robot [134] which
could reach 7 km/h.

Honda started the development of humanoid robots in 1986. The research was initially
conducted in secrecy and focused on bipedal locomotion only. In this phase, the company
developed the so called “E-series” (E0 to E6) machines. The successive P-series (P1 to P3),
developed between 1993 and 1997, also had actuated arms and grippers. P1 to P3 were of
height between 190 cm and 160 cm and were the first examples of fully actuated man-like
robots. In 2000 Honda presented its last model of humanoid: ASIMO. At a height of
120-130 cm, the ASIMO series is smaller than its predecessors and has a number of Degrees
of Freedom between 26 and 57, depending on the generation. Honda ASIMO robots are
probably the most influential from a research perspective as well as being the most famous
prototypes known to the general public. In addition, the mechanical, sensor and actuation
approaches as well as the motion planning and control strategies applied by the company
are the most adopted. While many details on the development, hardware and software
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of Honda’s robots has been at first release only in the form of patents, in recent years
some scientific papers have been published [135, 136, 137, 138]. The running speed of
ASIMO is 10 km/h [135] which is the highest speed currently achieved by a humanoid robot.

The company Boston Dynamics, recently acquired by Google Inc., has developed two
prototypes of anthropomorphic robots based on a project originally founded by DARPA.
The first one is PETMAN [6], developed based on the same technology used to build the
four leg robot BIGDOG. PETMAN has hydraulic actuators and can walk in a straight line
at the speed of 7 km/h. The second humanoid built by the company in 2013, is the Agile
Anthropomorphic Robot ATLAS [1]. ATLAS is 180 cm tall, weighs almost 150 kg, has 28
hydraulically actuated Degrees of Freedom and has an external power supply.

In 2000 the Korea Advanced Institute of Science and Technology (KAIST) started the
development of the bipedal robot KHR-0 under the supervision of Professor Oh Jun-ho. The
first prototypes had no upper body, until the development of KHR-2 in 2004. The successive
year, KAIST presented the first version of its HUBO robot prototype. The following model
HUBO-2 is 130 cm height, weighs almost 45 kg, has 41 Degrees of Freedom and can walk at
the speed of 1.5 Km/h. The last version of the robot is DRC-HUBO which was developed to
participate at the DRC. DRC-HUBO is capable of bipedal walking and is also equipped with
leg mounted wheels for rapid movement. The team won the DRC in 2015 with DRC-HUBO.

In 2010, the German Aerospace Center (DLR) presented the DLR BIPED [106] and in
2014 the humanoid TORO [47]. TORO is based on the DLR-KUKA-LIGHTWEIGHT-ROBOT-III
and has electrically actuated joints with integrated torque sensors. The use of joint torque
sensors adds a certain level of compliance with the operational environment and further
facilitates interaction and collaboration with humans.

At the Institute of Applied Mechanics of the Technischen Universität München, Gienger
[58] and Löffler [86] have developed the humanoid robot JOHNNIE. JOHNNIE is 175 cm tall,
weighs 50 kg, has 14 driven joints actuated by electrical DC motors and was the first biped
robot capable of walking autonomously in an unknown environment.

The biped walking machine LOLA, developed by Lohmeier [88] and Buschmann [20,
25, 26], is the second generation bipedal walking machine developed at the Institute of
Applied Mechanics4. Based on the experience garnered with JOHNNIE, LOLA’s hardware
was drastically improved in comparison with JOHNNIE. LOLA is characterized by extremely
lightweight construction and that the 25 joints are actuated by high power density Perma-
nent Magnet Brushless Synchronous Motors. LOLA is 180 cm tall, weighs 60 kg and can walk
3.6 km/h. LOLA is equipped with a stereo camera head [88] and can walk autonomously.
Obstacle recognition vision software was developed by von Hundelshausen [146] at the
Autonomous Systems Technology Institute5 and adapted to LOLA. The capabilities of the
robot of walking in unknown environments and of recognizing and avoiding obstacles were
demonstrated in more than 25 presentations at the Hannover Messe 20106.

4 Contributors to the development of LOLA are also: Dr.-Ing. Markus Schwienbacher, Georg Mayr, Dr.-Ing.
Mathias Bachmayer, the author and students.

5 Universität der Bundeswehr. http://www.unibw.de/lrt8/index_html-en
6 The world’s largest industrial trade fair (http://www.hannovermesse.de).

http://www.unibw.de/lrt8/index_html-en
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1.2 Overview of the Thesis
In this thesis the problem of efficient joint control for humanoids robots is addressed from
a mechatronic prospective. The platform used in is the humanoid robot LOLA, developed at
the Institute of Applied Mechanics of the Technischen Universität München. A picture of
the robot can be seen in Figure 2.1 and in Figure 2.2 the joint structure of the system is
shown.

The main objectives of this work are: a) the development and implementation of a
hierarchical network of distributed sensing and actuation units and b) the implementation
of control methods to efficiently control the robot’s joints in the stiff and elastic case.

These aspects of development are frequently considered of “minor" interest in complex
robotic project such as humanoids or mobile robotic platforms. Typically, other “high
level” aspects are the primary focus of the researchers, such as the optimization of motion
and, in particular for bipedal locomotive machines, the feasibility of walking. However,
the challenges of generating stable movements and, the stabilization and control of such
complex machines are extremely important and have no trivial solution.

Nevertheless, the reliability of the electronics, communication systems and actuation
devices is of fundamental importance to achieve stability, robustness and performance
with mechatronic systems. To enable the development of new strategies and to solve the
problem of controlling such complex systems, the devices in the underlying sensor, commu-
nication and power subsystems must be carefully chosen and be capable of delivering the
performance required by the project objectives.

A unified and scalable method of interfacing system sensors and actuators is introduced
in this thesis. The sensing/actuation network is implemented with custom-made interface
boards developed at the Institute of Applied Mechanics. These boards are the key nodes for
data exchange with the central control unit of the system, the sensors and the actuators. The
communication protocol implemented to interface the sensors, actuators and the central
control unit are presented. The functionality of the “bare metal” software developed for the
custom made boards is presented. To efficiently read the motor position sensors, a custom
made interface implemented using programmable logic devices has also been developed.
Different algorithms for local motor velocity estimation are discussed and simulated. The
best performing methods are implemented in the available programmable logic devices and
tested in the system, improving the capabilities of the robot control and system analysis
possibilities. The actuation train of the robot’s joints are modelled taking into account
gear elasticity. The model parameters are estimated using and implementation of the
recursive least square algorithm. The latter is suitable for both the off-line and real-time
estimation of joint parameters. Various control algorithms are presented and analyzed
through simulation and experiments. The results achieved with the classical PID joint
control method are also discussed. Moreover, two model based control laws are presented
to improve the performance of the control system considering joint elasticity.

Chapters Summary
This thesis is divided into five chapters.

In Chapter 2 an overview of the humanoid robot LOLA is presented. The major focus is
on the hardware used for joint motion and control, i. e., the actuation train of the system.
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A custom designed local multi-axis joint controller and sensor interface device is presented.
The communication protocols used to read the sensor data, control the actuation units and
communicate with the central control unit are presented.

In Chapter 3 the development and implementation of the motor position sensor interface
is discussed. Taking advantage of the signal processing capabilities of the joint controller,
an implementation of an efficient velocity estimation algorithm is presented.

In Chapter 4 the control structure of LOLA is presented, focusing on the low level joint
controllers. A model for the actuation train of the elastic joints of the robot is presented
and a method for the estimation of the joint model parameters is proposed.

In Chapter 5 three joint control methods are discussed. The classic PID controller and
two model based control laws are analyzed in simulation and experiments.

In Chapter 6 the summary and final conclusions of this work are presented in addition
to suggestions for future development of similar projects are given.



2 Actuation, Sensor and Control Network of
Lola

2.1 Introduction
The development of a humanoid robot is a complex mechatronic task. On the one side the
mechanical structure of the anthropomorphic system must provide satisfactory dynamical
and robust characteristics while, on the other side, the electronic system architecture must
be reliable and deliver high computational performance.

The number of sensors installed on humanoid robots is constantly growing to improve the
performance and extend the perception capabilities of the systems. Many different kinds
of sensors, depending on the desired task and characteristics of the system, are available
nowadays with different interfaces. The quantity of information that these systems must
process, evaluate and react to is consequently increasing.

The number of joints in humanoids robots is growing as more and more functions are
integrated in order to realize “human-like" movements and behaviors, i. e., biped walking
and complex manipulation tasks. All these Degrees of Freedom (DoF) must be controlled.

For these reasons the complexity of the electronic system and the processing requirements
are increasing as well. As in every mechatronic system, humanoid robots generally have an
electronics architecture composed of: at least one Central Control Unit (CCU), Actuation
Units (AUs) and Sensors.

Usually, the following kinds of topologies are realized:

• Centralized architecture: all sensor signals are connected to a general purpose I/O
board which also is in general responsible for delivering the commands from the
CCU to the actuation devices [87].

• Decentralized architecture: specialized circuit boards distributed on the robot connect
the sensors and receive the commands for the actuation devices from the CCU. The
communication between CCU and distributed boards is via a communication bus
[103, 151].

• A combination of both centralized and decentralized: some sensors are directly
connected to the CCU via an I/O-card, others to distributed control boards [76, 77].

• Complete decentralized architecture: the sensors and actuators are connected to
local controllers which have cross communication capabilities. No CCU is present
[131].

9
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Figure 2.1: Photo of the humanoid robot Lola.

2.2 State of the Art
The humanoid bipedal robot JOHNNIE, realized at the Institute of Applied Mechanics of
the Technischen Universität München (see [58, 86, 87]) between 1998 and 2003, has a
centralized PC and a dedicated PCI/IO card to control the motors and read the sensor
data. In the last years, most humanoid robotics projects have adopted a decentralized
architecture.

ASIMO, developed by HONDA [151] uses PCs for vision and speech recognition. A
processor is used for control and planning with support from DSP boards and PCI-I/O
cards. HRP-3, from AIST and KAWADA Industries [77], integrates a central control for the
upper body, head, arm and hands of the robot and a decentralized structure for controlling
chest and legs. The communication bus used is CAN bus.1

ARMAR-III [13], by University of Karlsruhe is equipped with a PC and four PC/104
connected via Gigabit Ethernet. Moreover twelve distributed dedicated DSP/FPGA boards
are used for motor control.

1 Communication Area Network, is a message-based protocol, originally designed for multiplex vehicle
communication and developed by Robert Bosch GmbH.
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The DLR-KUKA-LIGHTWEIGHT-ROBOT-III (DLR-LWR-III) [68], by DLR, has a decentralized
motor control with dedicated control boards connected by a SERCOS-II bus2. Subsequently,
on the basis of DLR-LWR-III, two humanoid robots have been developed. JUSTIN [105] is
a human-like torso with a head and two DLR-LWR-III arms, four PCs and decentralized mo-
tion controllers. The research platform implements many different kinds of communication
buses to resolve the complex heterogeneous architecture: SERCOS-II, EtherCAT3, Gigabit
Ethernet and CAN. The DLR’S BIPED ROBOT [106] uses a modification of the DLR-LWR-III,
a PC running VxWorks4, a SERCOS-II bus and an RS485 bus5 in order to read the data from
the two force torque sensors.

The DLR HAND ARM SYSTEM [72], implements a heavily distributed system of dedicated
FPGA6/CPLD7 boards for motor control and sensor data processing. A real-time host
running QNX8 is connected via Spacewire9 buses to FPGA boards. The latter communicate
with the lowest control boards over a BiSS bus.10

ROBONAUT 2 [40], developed by NASA and General Motors, has a decentralized motor
control system with dedicated FPGA-PowerPC11 boards, connected by a custom bus inter-
face to a central PowerPC CPU.

The experience gained performing experiments with JOHNNIE, have shown the limits of
its electronic architecture. Having a centralized I/O card, all the sensors must be connected
with a complicated and long wiring. The sensor feedback signals (many of them are
analogue to be digitized on the I/O board) and motor command cables, cross the whole
robot, increasing the possibility of errors due to noise and disturbances. In order to avoid
these problems, the electronics architecture of LOLA has been designed as a decentralized
network (see [49, 88]).

2.3 Mechatronic System Overview
The development of a humanoid robot is a complex task. Many aspects of different
engineering domains (mechanics, electronics, IT, etc.) must be considered and optimized

2 Serial real-time Communication System [8]. It is a standardized open interface for the communica-
tion between industrial controls, motion devices and input output devices. The second version of the
interface use fiber-optic as communication medium.

3 Ethernet for Control Automation Technology. It is an Ethernet-based fieldbus system invented by
Beckhoff Automation. The protocol is standardized in IEC 61158.

4 VxWorks is a real-time operating system (RTOS) developed as proprietary software by Wind River.
5 ANSI/TIA/EIA-485 is a standard defining the electrical characteristics of transmitter and receivers for

use in digital multipoint system.
6 Field Programmable Gate Arrays, it is an integrated circuit designed to be configured i. e., programmed

by a customer or a designer after manufacturing.
7 Complex Programmable Logic Device, it is a non volatile programmable logic device.
8 QNX is a commercial real-time Unix-like real-time operating system. Originally developed by the

company Quantum Software Systems in the early 1980s (later QNX Software Systems), the company
has been acquired by the company BlackBerry in 2010.

9 Spacewire is a spacecraft communication network based on the IEEE 1355.
10 Bidirectional Serial Synchronous, it is a real-time communication protocol. It enables a digital, serial

communication between controller, sensor and actuator.
11 PowerPC (Performance Optimization With Enhanced RISC - Performance Computing) is a RISC instruc-

tion set architecture created in 1991 by an alliance of the companies Apple, IBM and Motorola.
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x y

z

Joint # DoFs Axis

Head 3 Pan
Tilt
Vergence

Shoulder 2 Flexion/extension
Adduction/abduction

Elbow 1 Flexion/extension
Pelvis 2 Internal/external rotation

Adduction/abduction
Hip 3 Internal/external rotation

Adduction/abduction
Flexion/extension

Knee 1 Flexion/extension
Ankle 2 Adduction/abduction

Dorsiflexion/plantarflexion
Foot (toe) 1 Flexion/extension
Total 25

Figure 2.2: Lola joints: schematic (left). List of actuated axis (right).

in order to obtain a system with satisfying performance. In the following subsections a
brief description of the robot LOLA, considering different topics as the mechanical electrical
and control design, is given.

2.3.1 Mechanics
The mechanical characteristic of a robot play a key part in the static and dynamic perfor-
mance of the system. In Lohmeier [88] a complete and comprehensive description of the
hardware development of a humanoid robot (with focus on LOLA) is given. Main overall
goals of the project are the development of a human-like robot capable of walking at a
speed of 5 km/h. The geometric proportions of the robot are based on human anatomy
(Figure 2.1).

Therefore, LOLA has 25 electrically actuated DoFs (Figure 2.2, left), that try to reconstruct
the structure of the human body. The legs have 7 DoFs each (3 in the hip, 1 in the knee, 2
in the ankle and 1 in the foot), the pelvis has 2 DoFs and each arm has 3 DoFs (2 in the
shoulder and 1 in the elbow). The head has 3 actuated DoFs: pan, tilt and vergence angle
(see [88, 89, 90]). For the mechanical design of the biped robot, the main, but not all,
priority design goals have been:

• Minimum overall mass.

• High center of mass.

• Sufficient structural stiffness.

• High joint stiffness.

• Low moments of inertia of the leg links.
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Figure 2.3: CAD section hip yaw joint from [48].

All of those contribute to improve the dynamic performance and acceleration capabilities
of the robot.

2.3.2 Actuation
Another important aspect of a high dynamic biped robot is the type and characteristics
of the actuation units. In order to provide a tailored solution to the actuation problem
which incorporate characteristics such as a) compactness, b) simple integration in the me-
chanic structure, c) high power density, d) high acceleration capabilities and e) robustness,
frameless high performance Permanent Magnet Brushless Synchronous Motors (PMSM) from
Parker Bayside [14] in combination with a gear transmission are used in all joints of the
robot.

All actuation units have structure similar to the one shown in Figure 2.3, but their
size is adapted depending on the motor and the type of transmission used to satisfy the
requirements of each link [90].

Except for the knee and ankle, all joints employ Harmonic Drive gears [4] (HD) as
power transmission devices (see Figure 2.3). In case of the knee joint (see Figure 2.4),
the actuation unit is composed of a PMSM and a screw-based linear transmission drive.
The ankle joint employs a parallel mechanism composed of 2 PMSM, 2 synchronous belt
and 2 screw-based linear transmission. The 3 DoFs of the robot’s head are actuated with 3
PMSM motors, HD gears for the tilt and pan joints and a lever coupler mechanism for the
vergence joint that allows the use of only one motor to move the 2 cameras of the robot.

2.3.3 Sensors
To reliably control a humanoid robot, different types of sensors are needed. They are used
to capture the state of the system and deliver the information to stabilize the walking
machine.

The sensor system of LOLA is composed of:

• Incremental position encoders.
• Absolute position encoders.
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1 Stator 8 Locknut 15 Spider (thigh)
2 Motor housing 9 Roller screw bearing B 16 Plain bearing
3 Permanent magnet rotor 10 Incremental encoder 17 Steel raceway
4 Rotor receptacle 11 Roller screw shaft 18 Cantilever axis (thigh)
5 Cone clamping 12 Roller screw nut 19 Adjustment shim
6 Roller screw bearing A 13 Immersion tube 20 Protective cover
7 Bearing spacer 14 Universal joint (shank) 21 Cable grommet

Figure 2.4: CAD section knee joint from [88].

• Force torque sensors.
• Inertial measurement unit (IMU).
• High resolution cameras.
• Light barrier.
• Temperature sensors.

Except for the 3 joints on the head of the robot, two type of position sensors are used
for each actuated DoF. An incremental encoder [7] is used to measure the motor position
and supply the necessary information to the power electronics to control the PMSM motor.
They are rotary magnetoresistive encoders which are characterized by a high resolution,
robustness and a high dynamic response.

On the link side an absolute encoder delivers the position of the load. It is used as
reference positioning and initialization devices and for the control of the joints. It is
an Extended Channel Interpretation (ECI) devices and utilize an inductive measurement
principle. On LOLA two sizes of absolute encoders are used. Those mounted on the ankles
and toes joints have a resolution of 16 bit while those on all other joints have a resolution of
17 bit. Both have a measurement accuracy of 0.1 °, a cutoff frequency 6 kHz and a latency
for continuous sampling of position values of 5µs.

The three motors on the head of the robot, while not having any link position sensors,
have 3 hall sensors which are used for the motor’s initialization.

Every joint also incorporates a limit switch to avoid problems of self-collision and cable
wind-up.

An IMU [10] is mounted in the chest of the robot. This sensor unit measures the linear
acceleration, angular velocities of the upper body of the robot and computes its orienta-
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Figure 2.5: Photo of the IMU iVRU-FC-C167.

tion. These measurements are some of the most critical for the robustness and reliability
of the robot stabilization while walking. The sensor, depicted in Figure 2.5, consists of
three open-loop fiber-optic gyroscopes and three MEMS accelerometers. A sensor fusion
algorithm, which compensates also for bias errors, is fully integrated into the sensor.

Fundamental measure for every walking robot are the ground reaction forces and mo-
ments. LOLA is equipped with two six-axes force torque sensors (FTS). A CAD section of
the device is shown in Figure 2.6. The sensors are highly integrated in the feet of the robot
and have been designed as supporting elements of the foot structure. This custom made
sensor has been developed at the Institute of Applied Mechanics. In [88, 117] a complete
and comprehensive description of the development, calibration and characterization of
the sensor is presented. The sensor uses a monolithic transducer in the form of a Maltese
cross with four shear beams. The force/torque sensing elements are 16 metal foil of strain
gauges integrated into eight Half Single Wheatstone Bridges. The sensor integrates all
necessary electronics for offset compensation, signal conditioning and digitizing electronics.

The vision system of the robot consists of two high resolution cameras [9] with a reso-
lution of 5 MPixel. The cameras are connected via Gigabit Ethernet to an external server
cluster.

Every AU is also equipped with a temperature sensor to monitor the temperature of the
integrated motor.

2.3.4 Electronics
A reliable and high performance computing system is a key aspect of every mechatronic
system. The elaboration of the system state, i. e., sensor reading, the control of the system,
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Figure 2.6: CAD section of the force torque sensor from [48].

the gait and trajectory generation and system safety, for the user and the system itself,
are some of the most important functions that must be designed and implemented in the
electronic system. For LOLA, a decentralized electronics topology has been developed and
its schematic representation is depicted in Figure 2.7. In [88] a brief description of the
system is presented, while in [49] more details of the system are described and some
performance measures are shown.

The electronic system is composed of four main parts:

• Central Control Unit.

• Distributed Sensor Control Board (DSCB).

• Communication System.

• Vision Processing Server (VPS).

Every component have its specific purpose. The CCU is a Core 2 Duo Mobile, 2.33 GHz,
running the QNX Neutrino real-time operating system. It is mounted on the back of the
robot on an embedded Mini-ITX board and is connected via a communication bus to nine
DSCBs. The CCU is also connected to a monitoring PC and the VPS through an Ethernet
Switch. The connection with the external PC allows to monitor the state of the robot and
to send basic commands to it, in case the video system is not in use. The commands that
can be send are for example the direction and the speed with which the robot should walk,
the parameters for the local controllers or to start/stop the sensor data logging. The CCU is
responsible for the trajectory generation of every joint of the robot and the stabilization of
the system dynamic. This task can be considered as the High Level Control of the machine,
while the control of the joints runs on every local controller, i. e., the DSCBs. The latter
represents the Low Level Control of the machine.

The DSCBs are custom-made embedded boards designed at the Institute of Applied
Mechanics (see [49]). They are able to interface all the sensors used on LOLA and to control
up to three motors each. A complete description of the DSCBs is given in Section 2.4.

The DSCB also integrates the power electronics driver for the PMSM motors. The servo
controllers are the commercially available ELMO servo drivers [3]. They are compact,
reliable and versatile servo controllers. Current, velocity, position and dual loop controller
algorithms are available to the user as single or cascaded control loop. The ELMO module
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Figure 2.7: Electronics architecture of Lola. In the picture, the five DSCB variant are highlighted.
For each of them a different combination of sensors and AUs are available.
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Table 2.1: List of the data interfaces of Lola sensors and drives.

Sensor Data Interface

Incremental Encoders Quadrature Signals
Absolute Encoders EnDat Protocol
Hall Sensors 3 Digital Signals
Force Torque Sensor SPI
IMU CAN
Temperature Sensor Analog Signal
ELMO CAN
CCU Sercos-III

supports a wide range of position and velocity sensor configurations with digital as well as
analogue outputs.

The communication between CCU and DSCB was initially implemented with 8 indepen-
dent CAN buses which delivered sufficient performance and data throughput to let the
robot walk at a moderate velocity. The revised implementation of the communication bus
runs on a SERCOS-III bus [121],12 which delivers better communication performance, higher
data bandwidth and advanced features like synchronous and asynchronous communication
channels.

Due to the large amount of data that need to be processed, the vision system requires
an external computation system. The VPS is composed of three servers, each of which
mounts a Dual Intel Xeon processors. Two of them are directly connected to the cameras
of the vision system via a Gigabit-Ethernet connection. In order to let the robot walk
autonomously, the VPS and CCU must exchange information and walking commands. The
vision system needs some information about the current state of the robot to generate the
walking commands in form of direction and speed. For more information about the vision
system and autonomous walking of LOLA see [20].

In Table 2.1 the data interfaces that the DSCBs must support is listed, while Figure 2.7
shows the electronic architecture of LOLA highlighting the key components CCU, VPS,
communication systems and the DSCB with different actuator and sensor configurations.

2.4 Distributed Sensor Control Boards
Having 25 fully actuated joints and 53 sensors with different communication interfaces,
LOLA is a rather complex system. The AUs, sensors and power electronics devices are
distributed on the robot body. All these components need to be supplied with power and
connected to the CCU in order to exchange information, i. e., send the current sensor data
and receive the new joints trajectories. This raises a problem for the wiring of the entire

12 SERCOS-III is the third generation of the Sercos Interface [8].
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system. Cables increase the weight of the robot and, if not carefully done, the cabling over
moving parts can cause major problems due to cable break or a possible reduction of the
moving capacity of the machine. Therefore, reducing the number of cables that cross the
robot to a minimum and designing a reasonable placement those problems can be reduced.
Moreover, using long wires across the machine increases the possibility of failure due to
electrical noise and disturbances, causing sensor transmission errors.

For these reasons a decentralized topology for the sensor control network of LOLA is
applied. The requirements of this solution can be summarized as follows:

• The wiring across the robot must be minimized.

• All the units that produce information on the robot state (sensors), must be in the
proximity of the device which collects this information.

• All sensors must be capable of internally performing the analogue to digital conver-
sion of the measured signal.

• All sensors are capable to send their measurements in digital form.

• The only cables that cross the robot are for power supply (12 V for the electronics
power generation and 80 V for the motor power) and the main communication bus.

• The power supply for the sensors and electronics, i. e., 5 V, 3.3 V and 1.2 V, are
generated locally to reduce power losses due to long cables.

• The decentralized devices must be robust and compact in order to be integrated in
the structure of the robot.

The key elements of the chosen decentralized topology are the DSCBs, which are a
customized electronics system developed to satisfy the mentioned requirements. They are
capable of interfacing all the sensors (Table 2.1), to interface the power drive units, i. e.,
the ELMO modules, to implement the communication with the CCU over the SERCOS-III
bus and to supply the required power for the sensors and the servo controllers.

2.4.1 Hardware
The DSCB is a system of three stacked Printed Circuit Board (PCB), each of which has its
specific function. Referring to Figure 2.8 they are identified as follows:

1. Control-Communication Board.

2. Power Electronics Support Board.

3. Incremental Encoder Module.

The Control-Communication board13 is the core of the DSCB and its main components
are: a Digital Signal Controller (DSC) MCF56F8367 from Freescale and a Spartan-3

13 The hardware development of the Control-Communication Board has been done by Dr.-Ing. Mathias
Bachmayer.
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Incremental Encoder Module

Power Electronics Support Board

Control-Communication Board

Incremental
Encoder
FPGA

EnDat FPGA

Digital Signal
Controller

SERCOS-III
FPGA

Figure 2.8: Distributed Sensor Control Board (DSCB): Incremental Encoder module, Power elec-
tronics Support Board and Control-Communication board.

xc3s200 FPGA from Xilinx. The FPGA implements the hardware stack for the communica-
tion with the CCU over the SERCOS-III bus as an IP-Core14. The latter has been developed
by the company AUTOMATA [2].

The DSC is responsible for:

• Communicate with the CCU, implementing the SERCOS-III software communication
stack15.

• Collect the data from the connected sensors.
• Implement the motor control algorithms.
• Communicate with up to three ELMO modules.
• Implementation of safety features.

The DSC has two CAN ports. The first (CAN-1) is used for communication with the
IMU and the second (CAN-2) is connected to the ELMO drives. Both ports can be seen in
Figure 2.10. In the same figure the two Ethernet connectors for the Sercos communication
are also highlighted.

The Power Electronics Support Board16 has been designed to interface:

• up to three ELMO controllers over CAN,

14 In the electronic design an Intellectual Property Core is a reusable unit of logic, cell, or chip layout
design. They are also addressed as Hard Cores. In the case of FPGA design an IP-Core, is written in
a hardware description language, such as Verilog or VHDL, to add specific functionality to the logic
design. They are also called Soft Cores

15 SERCOS-III software driver developed by AUTOMATA, the porting to MCF56F8367 and QNX has been
realized at the Institute of Applied Mechanics of the Technischen Universität München.

16 The hardware development of the Power Electronics Support Board has been done by Georg Mayr
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RS-232
Inc-Enc 1

RS-232
Inc-Enc 2SPICAN-2

Light-Barrier 1
Temp. Sens. 1

Light-Barrier 2
Temp. Sens. 2

Figure 2.9: Distributed Sensor Control Board stack: front view.

• up to two Incremental Encoder,
• up to three ENDAT Encoders,
• one Force Torque Sensor,
• up to two Light-Barriers,
• up to two Temperature Sensors.

Two out of three ELMO can be directly placed on the PCB as shown in Figure 2.11.
The third ELMO is placed as close as possible to its DSCB and connected over the CAN
connector on the same board.

The light-barriers and temperature sensor of the motors controlled by the ELMOS placed
on the board are routed to the corresponding ELMO controller. For the third motor, the
two sensors are directly wired to the ELMO drive.

On the board two Incremental Encoders can be connected. Their signals are routed to
the respective ELMO drives and to the Incremental Encoder Module where a connector for
the third encoder is also available. Three connectors for the link side absolute encoder are
available. The ENDAT17 interface is implemented as IP-Core in the FPGA. In Figure 2.9 the
communication connectors on the board are highlighted, while in Figure 2.10 the power
connection can be seen.

Two RS-232 ports are used as programming and debugging interface for the ELMO
modules. The SPI connector is used to interface one of the two force/torque sensors of the
robot. It is connected to the SPI port of the DSC and implements a filter for impedance
adaptation.

The Incremental Encoder Module18 is an interface board able to read the position of
up to three motors and to compute their velocity. The incremental encoder logic and the

17 The ENDAT interface, by the company HEIDENHAIN, is a serial, digital, bidirectional communication
interface for encoders.

18 The hardware development of the Incremental Encoder Module has been done by Georg Mayr. The
system definition and IP-Core development have been done in this work.



22 2 Actuation, Sensor and Control Network of Lola

Inc-Enc 3 CAN-1&2 SERCOS-III

MOTOR 1 80 V 12 VMOTOR 2

EnDat x3

Figure 2.10: Distributed Sensor Control Board stack: back view.

ELMO Drive 1 ELMO Drive 2

Figure 2.11: Distributed Sensor Control Board with ELMO servo drives: bottom view.

algorithm to compute the motor velocity are implemented as IP-Core in the Incremental
Encoder FPGA. On the PCB three additional CAN ports for future development are also
available.

On the head of the robot a DSCB is also used to control its three DoFs, read the sensor
positions and generate the camera picture trigger signal. The motors have a lower power in
comparison with the actuators used for the other joints. Therefore, they can be connected
to less powerful ELMOS. The modules need a lower input power voltage, 24 V instead of
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Figure 2.12: Distributed Sensor Control Board: diagram of the board’s interfaces.

80 V. A dedicated board power module PCB19 has been developed. It uses a DC/DC power
converter and two connectors for the camera trigger signal.

In Table 2.2, Table 2.3 and Table 2.4 the main connections and chips of the Control-
Communication Board, Power Electronics Support Board and Incremental Encoder Module
are listed.

The three PCBs are connected through Multichannel Connectors (MC). All the peripherals
and communication ports available for the DSC are routed to the MC. The MC are the
main communication gateway between the DSC and the other components of the DSCB.
The Inter Chip Communication20 between the DSC and the three FPGAs is realized over
the DSC’s External Memory Interface (EMI). Each FPGA has its own address space which
enables one chip at a time using a Chip Select signal. The DSC is the device that controls
the communication on the EMI.

Figure 2.12 shows a schematic view of all the communication ports available on the
DSCB and to which board they are connected.

19 Hardware development by Georg Mayr.
20 As Inter Chip Communication is intended the method used to exchange data between two or more

chips which are placed on the same PCB or on different boards but connected via a common connector.
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Table 2.2: Distributed Sensor Control Board: Control-Communication board features and
components.

Control-Communication board

Digital Signal Controller DSC-MCF56F8367 clock 60 MHz
Sercos FPGA FPGA xc3s200 clock 32 MHz

Available Connectors Ethernet Ports x2
CAN x2
SPI x3

Rs-232 x2
PWM outputs x12

Incremental Encoder x2
ADC 12bit x4

EMI Data Bus 16 bit
EMI Address Bus 24 bit

JTAG x2 (1x DSC, 1x FPGA)

Table 2.3: Distributed Sensor Control Board: Power Electronics Support Board features and
components.

Power Electronics Support Board

EnDat FPGA FPGA xc3s400 clock 32 MHz
Servo Drive ELMO x2

Available Connectors EnDat Ports x3
CAN x1
SPI x3

Rs-232 x2
Light-Barrier x2

Temperature sensor x2
Data Bus 16 bit

Address Bus 24 bit
JTAG x1 (FPGA)

2.4.2 Communication Protocols
In the previous section, the structure and the components of the actuation, sensor and
control network of LOLA is described. All these devices use different types of communication
protocols.

In this section, the relevant characteristics of the different interfaces and protocols are
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Table 2.4: Distributed Sensor Control Board: Incremental Encoder Module features and components

Incremental Encoder Module

Incremental Encoder FPGA FPGA xc3ANs400 clock 32 MHz

Available Connectors Incremental Encoder x1
CAN x3

Data Bus 16 bit
Address Bus 24 bit

JTAG x1 (FPGA)

presented. Moreover, it is explained how they are implemented and integrated in LOLA

using the DSBCs as the communication and data exchange nodes of the robotic system.

SPI

The SPI21 interface is used to transfer data between the FTS and the DSC. Introduced
by Motorola the interface has then become a de facto standard. It is a one to many
communication protocols where one master controls the data exchange with at least one
slave. Referring to Figure 2.13, where a system with one Master and three slaves is depicted,
the SPI bus defines four logic signals:

• SCLK : Serial Clock.
• MOSI : Master Output, Slave Input.
• MISO : Master Input, Slave Output.
• SS : Slave Select.

SCLK is the synchronization clock that is generated by the Master. The MOSI signal is
the master’s output while the MISO is the output of the slave. The SS-signal is used to
identify the slave for the next communication. The first three signals are shared between
every slave on the bus, while every slave has its dedicated SS-signal.

The communication is full duplex and the master always initiates a transmission opera-
tion setting the SS-signal of the desired slave and starting a clock sequence on SCLK. During
every clock cycle one bit is sent from the master to the slave on the MOSI and one bit in
the opposite direction over the MISO signal. The duration of the communication transfer
depends on the amount of data that is sent. It can be 8 bit, 12 bit or 16 bit depending
on the slave. To stop the communication the master stops the clock signal and resets the
SS-signal.

As an example of a possible SPI bus configuration in Figure 2.13 the actual topology of
LOLA FTS sensor is shown. The DSC controls three devices using the same bus:

• The ADC measures the voltage pf each Wheatstone Bridges of the sensor and send
this values to the DSC.

21 Serial Peripheral Interface.
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Figure 2.13: Diagram of the SPI communication between DSC and FTS.

• The DAC is used during the sensor initialization to compensate for offsets on each
Half Single Wheatstone Bridge.

• The EEPROM stores the calibration matrix of the sensor which are used to calculate
the force and torque information from the deformation ADC values.

To reduce the signal reflections and consequently possible transmission errors, each wire
of the interface has been terminated using 120Ω resistors. The frequency of the SCLK clock
is set to 3.75 MHz. The SPI connection cable also supplies the sensor power voltage of 5 V
and reference 0 V.

EnDat

The ENDAT Interface is a differential bidirectional serial interface for encoders developed
by HEIDENHAIN [5]. The detailed description of the interface is given in [67]. It is based
on the RS-435 standard and can transmit position data from the encoder as well as send,
update and store encoder parameters. The data is transmitted synchronously with the
clock signal and requires only four signal lines for transmission. In Table 2.5 the signals
used for this interface are listed.
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Table 2.5: Interface signal between DSC and EnDat FPGA.

Bus Number of bits Signal Name Purpose

Data Bus 16 D0-D15 Data Transmission
Address Bus 6 A0-A5 Component Address
Control Signals 8 M16 Select length of the data bus (8 or 16 bit)

Reset FPGA Hardware reset
Int EnDat Interrupt Output (Not Used)

Int6 EnDat Interrupt Input (Not Used)
Read y Data ready (Not Used)
St robe Strobe Signal (Not Used)

RD Read Request
WR Write Request

Chip Select 1 CS Chip Select

The use of differential signals allows a clock frequency of up to 8 MHz22 with high
robustness against disturbances and noises. The transmission clock used for the ENDAT

encoders in LOLA is set to 4 MHz in continuous send mode. Using this option the position
of the encoder is constantly sent via the ENDAT bus. The correctness of the transmission is
improved using a Cyclic Redundancy Check (CRC).

A subsequent electronic component is required to implement, on one side, the communi-
cation with the encoder over the ENDAT protocol and, on the other side, the communication
with the DSC. The subsequent electronics is implemented as an IP-Core which can inter-
face one encoder. The interface between the subsequent electronics and the application
processor (the DSC in the case of LOLA) is described in [96].

To reduce the number of chips and, consequently, the space required on the Power
Electronics Support Board, a new FPGA program has been designed. The new FPGA core
implements the logic to communicate with three encoders as three independent ENDAT

IP-Cores and a unified interface to exchange data with the DSC over the EMI interface. In
Figure 2.14 a block diagram of the communication interface between the DSC and the
ENDAT FPGA is given. Every core shares the same Data Bus and Address Bus. Each of
them is mapped with a specific address space in the DSC and it is selected asserting the
Chip Select signal (CSx). Figure 2.14 shows a diagram of the data interface between the
DSC and the ENDAT FPGA. In Table 2.5 and Table 2.6 the function of all the signals of the
interface is briefly explained.

The ENDAT encoders used are of type ENDAT 2.1. The protocol provides some basic
commands to communicate with the encoders:

1. Encoder transmit position values.
2. Encoder set read parameters:

• Selection of the memory area.

22 For special applications the clock frequency can also be set to 16 MHz.
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Figure 2.14: Interface between DSC and EnDat FPGA.

Table 2.6: Interface signal between EnDat FPGA and EnDat Encoder.

Bus Number of bits Signal Name Purpose

EnDat Interface 6 Clock Clock Signal (positive)
Clock Clock Signal (negative)
Data Data (positive)
Data Data (negative)
Vcc 5V (Encoder Power Supply)
GND 0V (Encoder Power Supply)

• Encoder receive parameters.

• Encoder transmit parameters.

3. Encoder receive reset.
4. Encoder test:

• Encoder transmit test values.
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• Encoder receive test commands.

The set of commands permits to setup the encoder, initialize it and receive the position
information. Each command is described in detail in [67].

The task of the ENDAT FPGA is to supply a standard communication interface between
the application and the encoder. The IP-Core provides the following registers:

• Send register
• Receive register 1
• Receive register 2
• Receive register 3
• Configuration register 1
• Configuration register 2
• Configuration register 3
• Status register
• Interrupt mask
• Test register 1
• Test register 2

Every register has its specific purpose. To send a command to the encoder, it must be
written into the Send register. The answer of the encoder will is stored in the Receive
register 1. The Status register deliver information about the state of the encoder. The three
Configuration registers are used to set the main communication parameters and option to
configure the communication with the encoder. The Interrupt register enables or disables
all the interrupt that can be triggered by the FPGA. The Test registers are used for test
purposes.

A complete explanation of how the registers works and the meaning of every one of their
bit is described in [96].

CAN

The Controller Area Network (CAN) bus is a message based protocol. It was originally
developed by Robert Bosch GmbH for automotive applications and the latest version of
the protocol is CAN 2.0. The protocol has been standardized in 1993 as ISO 11898.
Nowadays the protocol is used in a large variety of applications from industrial automation
to entertainment.

CAN is a Multi-Master serial bus and the connected devices are called nodes. The nodes
are connected via two wires and use a differential standard. The first and the last nodes of
the bus must be terminated with a 120Ω resistor to avoid signal reflections. The clock is
embedded in the data transmission and the nodes are able to autonomously lock themselves
to the transmitted data message. The transmission rate varies from 40 kbps up to 1 Mbps.

The nodes are identified by a Message Identifier (Msg-ID), which can be 11 bit if the
device supports CAN 2.0 part A [28] or 29 bit if the devices supports CAN 2.0 part B [29].
Every node can start a communication with each other nodes. If two nodes contemporary
start to transmit, a communication collision happens. In this case the protocol implements a
method of auto arbitration based on the Message Identifier: the node that sends a message
with lower Msg-ID has higher priority and can proceed with the transmission.
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Table 2.7: CAN Frame: fields description (CAN 2.0 Part A).

Field name Length (bits) Purpose

Start-of-frame 1 Start of frame transmission
Identifier 11 Message Identifier
Remote transmission request (RTR) 1 0

Identifier extension bit (IDE) 1 0 for 11 bit Message-ID;
1 for 29 bit Message-ID.

Reserved bit 1 Reserved bit (Set to 0)
Data length code (DLC) 4 Number of bytes of data (0-8Bytes)
Data field 0-64 (0-8Bytes) Data to be transmitted
CRC 15 Cyclic redundancy check
CRC delimiter 1 Set to 1

ACK slot 1 Transmitter sends 1,
receiver can assert a 0

ACK delimiter 1 Set to 1

End-of-frame (EOF) 7 Set to 1

The CAN standard has four frame types:

1. Data frame: containing node data for transmission.
2. Remote frame: to request the transmission of a specific identifier.
3. Error frame: transmitted by any node which detects an error.
4. Overload frame: inject a delay between data and remote frame.

A data frame is composed of different fields. Each of these fields has a specific purpose
defined in the ISO standard and are listed in Table 2.7.

The dimension of the messages varies between 44 bit and 108 bit depending on the
quantity of data that is sent. The number of Bytes which can be sent in a message varies
between 0 Byte and 8 Byte.

In Figure 2.15 the configuration of the CAN bus to communicate with the ELMOS and
the IMU is shown. The DSC has two independent CAN ports (CAN-1 and CAN-2). The first
one is used for a point to point communication with the IMU. The latter is shared between
up to three ELMOS.

The IMU also has an RS-232 interface. It must be used to initially setup the device and
enable the CAN Interface communication. Once it has been configured, the CAN interface
provides 14 memory slots for the sensor data output available for the device. Each of them
is identified by an offset in the Message-ID. For LOLA the IMU is configured to automatically
send at a rate of 200 Hz the following data:

• 3 angular positions.
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• 3 angular velocities.
• 3 angular accelerations.
• Information about the sensor’s state.

The format of the data is a 16 bit Integer, thus four CAN messages are used to send
all 10 values. The DSC periodically controls if new IMU data has been send. In this way,
the communication over the CAN bus is optimized reducing the traffic to a minimum and
receiving all the needed information.

The ELMO modules use the CANopen23 protocol for communication. CANopen is a high
level application layer protocol. It has been developed as a standard layer for embedded
applications in automation. The standard describes the communication mechanisms
(communication profile) and the functionalities of communicating devices (device profile).
Every CANopen device have a standardized device description in the form of an object-
dictionary. In the object-dictionary the features, data type, parameters functions etc. of the
device are available over a Client-Server protocol.

The standard provides the following type of communication message, listed in order of
priority:

• Network management (NMT): these messages are used to issue state machine change
commands, e. g., to start and stop the devices connected on the network, to detect
device bootups or error conditions.

• Synchronization Object (SYNC): a synchronization message is used to synchronize
all the devices in the network and to trigger the execution of synchronous tasks.

• Time-Stamp Object (TimeStamp): usually, the Time-Stamp object represents an
absolute time after midnight and the number of days since January 1,1984. It is
expressed in milliseconds.

• Emergency Object (EMCY): emergency messages are sent if a device encounters an
internal fatal error situation and are transmitted from the concerned application
device with high priority.

• Process Data Object (PDO): used for process real time data. The PDOs can be
synchronous or asynchronous. The first are sent in responds to a SYNC message,
while the seconds are triggered by a specific event or in response to a specific object
of the dictionary.

• Service Data Object (SDO): used for setting and getting values from the object
dictionary of a device. An SDO message exchange always follows the sequence:
a) one device sends an SDO request to another device in the network, b) the second
device sends one or more SDO message in response to the request.

The description of the implementation of the CANopen protocol for the ELMO modules
is defined in [44]. The available parameters in the object-dictionary and implemented
functionalities are defined in [42].

23 Version 4.0 of CANopen [27], published by the CAN in Automation Organization (CiA) in 1999, has
become the European Standard EN 50325-4.
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Figure 2.15: CAN Interface between DSC ELMO and IMU.

Sercos-III

SERCOS-III is a real-time Ethernet-based communication protocol developed for industrial
automation. The specifications of the SERCOS-III interface are described in [121]. SERCOS-
III supports the Fast-Ethernet standards24, therefore the communication bandwidth is
100 Mbit/s. The bus can have either ring topology or line topology25. It is a synchronized
Master-Slave protocol, where the communication cycle is triggered by the master.

The cycle time depends on the amount of data to be transferred and on the number of
slaves connected to the bus. The minimum value is 31.25µs with 2 slaves and 4 Byte of
exchanged data.

SERCOS-III offers two different communication channels:

• Real-Time channel (RTC), used for synchronous and asynchronous communication
in real time.

• Non Real-Time channel (NRT), used to transfer other types of data and to enable
normal Ethernet connectivity.

Within one communication cycle two types of telegrams are sent: at least one Master Data
Telegram (MDT) and at least one Acknowledge Telegram (AT). The first contains, among

24 IEEE 802.3 and ISO/IEC 8802-3 100Base-TX or 100Base-FX.
25 Ethernet itself has an inhered ring topology
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Figure 2.16: Sercos-III Communication Cycle.

other data, commands and new desired values for every slave. The second transports,
among others, feedback sensor data and the status of the slave devices. The number of
MDTs and ATs that are sent within a communication cycle, depends on the number of
slaves connected to the network and can be up to four each. The rest of the communication
cycle time is set free for other types of Ethernet telegrams, e. g., TCP-IP, UDP or Cross
Communication (CC) telegrams between SERCOS-III devices. The arrangement of the
telegrams transmission can be configured as shown in Figure 2.16. Configuration a) is the
standard, while configuration b) is typically used if the slaves require a long time to get the
sensor data. Both MDT and AT are sent by the master. The MDT contains information from
the master to the slaves. The AT is sent as an empty telegram that is filled with the data by
each slave in a predefined slot and sent back to the master.

In MDT and AT telegrams Real-Time Data (RTA) and the Service Channel (SVC) are
embedded. The RTA is the data which is exchanged every cycle between master and slave.
The SVC is used to send asynchronous data. Considering a servo system, an example of
RTA are the new desired position set points for the slaves and the measured position values.
The first are sent in the MDT and the latter in the AT. The SVC can be used to trigger a
command or to send (or request) data that does not need to be sent every cycle.

The SERCOS-III telegrams are always broadcast messages, i. e., they are received from
every device in the network. In the data fields of the MDT, and AT as well, each slave have
its own well defined reading (for the MDT) and writing (for the AT) space. The slaves still
have a specific address to be identified from the master. During the initialization of the bus
each slave receives a SERCOS-III address, a number between 1 and 511. The slaves must
also support Ethernet MAC addressing. While not essential for the bus operations a MAC
address is used for NRT channel communication.

The protocol defines four Communication Phases (CP1 to CP4) which are necessary to
reach the real-time communication stage. CP1 is a transition phase to CP2 where the SVC
channel is available to the master to configure the slaves. CP3 is also a transition phase to
CP4, the actual real-time stage of the bus. Once the communication bus reaches CP4, the
real-time channel is available and the system is ready to start the control application.
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Figure 2.17: Sercos-III topology on Lola.

Every SERCOS-III slave has an internal data base. In the data base all the characteristic,
capability and parameters of the slave are listed and organized in Identification Numbers
(IDN). A detailed description of the IDNs is available in [123]. The data base is the core
information structure of the SERCOS-III protocol. All exchanged data between master and
slave are stored in it.

The protocol defines a number of standard parameters which must be available in
every SERCOS-III slave device. At application level, the standard also describes a generic
definitions and grouping of the IDNs defining the so called Generic Device Profile and
Function Specific Profiles [122]. The goal of this classification is to define a slave device
depending on its function. For example, specific IDNs are available in an actuator slave
while an input output slave device must have other IDNs.

Nevertheless many IDNs are available for a custom definition of a slave. Those are
useful to define extended characteristic or capability of a standard slave or to profile a
non-standard device.

In Figure 2.17 the line topology of the LOLA SERCOS-III bus is shown. The SERCOS-III
Master is a PCI26 board developed by AUTOMATA. The DSCBs are connected in cascade and
their position on the robot is listed in Table 2.8, under the column Position. In the same
table the number of AUs and sensors for each DSCB is listed, as well as the MAC address.

Since the DSCBs of LOLA manage many custom components, it is convenient to define
custom profiles for every configuration variant listed in Table 2.8. Specific IDNs have been
introduced to characterize the DSCB’s non-standard sensors like the FTS, the IMU and the
cameras. Being an interface mainly developed for automation purposes, the SERCOS-III
interface has specific IDNs dedicated to control the behavior of standard slaves and to
receive information on their status, i. e., the Drive Control Drive Status IDNs. Nevertheless,
to control the behavior of the DSCBs and ATs and to improve the flexibility and the debug

26 Peripheral Component Interconnect is a local computer bus for attaching hardware devices in a general
purpose computer.
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Table 2.8: List of the DSCB and their AUs and sensors in the Sercos-III network.

Slave MAC Address Position Number Available Software
(MAC in ASCII) of AUs Sensors Variant

DSCB-0 76:79:76:64:83:48 Right Shoulder 3 3 Incremental Encoders m
(L :O :L :A :S :0) 3 Absolute Encoders

DSCB-1 76:79:76:64:83:49 Left Shoulder 3 3 Incremental Encoders m
(L :O :L :A :S :1) 3 Absolute Encoders

DSCB-2 76:79:76:64:83:50 Front Right Pelvis 3 3 Incremental Encoders m
(L :O :L :A :S :2) 3 Absolute Encoders

DSCB-3 76:79:76:64:83:51 Back Right Pelvis 2 2 Incremental Encoders j
(L :O :L :A :S :3) 2 Absolute Encoders

DSCB-4 76:79:76:64:83:52 Right Knee 3 3 Incremental Encoders i
(L :O :L :A :S :4) 3 Absolute Encoders

1 FTS
DSCB-5 76:79:76:64:83:53 Front Right Pelvis 3 3 Incremental Encoders m

(L :O :L :A :S :5) 3 Absolute Encoders
DSCB-6 76:79:76:64:83:54 Back Left Pelvis 2 2 Incremental Encoders

(L :O :L :A :S :6) 2 Absolute Encoders
IMU

DSCB-7 76:79:76:64:83:55 Left Knee 3 3 Incremental Encoders i
(L :O :L :A :S :7) 3 Absolute Encoders

1 FTS
DSCB-8 76:79:76:64:83:56 Head 3 3 Incremental Encoders h

(L :O :L :A :S :8) 2 Cameras

capability of the robotic system, they have been extended with specific commands and
variables. In Appendix B are listed all the standard and LOLA custom IDNs used to control
the robot.

2.4.3 Software Functions
The DSCB must perform two basic, but important tasks which are: a) control the behavior
of the joints of the robot and b) deliver the sensor data to the CCU. Besides them, they
must monitor the state of the sensors, the state of the AUs, inform the CCU in case of errors
and safely stop the joint control and the AUs. The software of the DSCBs is implemented
as “Bare Metal” due to the limited memory resources available on the DSC.

The DSCB boards introduce an abstraction layer to the hardware of the robot taking care
of all hardware-specific configuration tasks required by the peripherals of the robot, i. e.,
the sensors and AUs. It allows the CCU to access the robot hardware trough a simplified and
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standardized interface making it transparent for the user. The user defines only the data
that must be exchanged every cycle, while the DSCBs makes them available, carry all the
necessary operation of signal processing and the required control actions for the robot joint.

As show in Table 2.8, the nine DSCBs used on LOLA must deal with different sensor
and actuators combination. All boards have the same hardware interfaces and capabilities
making them easily interchangeable. Nevertheless, 5 variants, or profiles from the SERCOS-
III point of view, of the boards are defined via software. Depending on the number of AUs
that must be controlled and depending on the type of sensors that must be interfaced the
following variants are defined (see Figure 2.7):

1. Variant m: 3 motor side and 3 link side position sensors, 3 servo drivers (DSCB-0,
DSCB-1, DSCB-2, DSCB-5).

2. Variant j: 2 motor side and 2 link side position sensors, 2 servo drivers (DSCB-3).

3. Variant i: 3 motor side and 3 link side position sensors, 1 FTS sensor, 3 servo drivers
(DSCB-4, DSCB-7).

4. Variant n: 2 motor side and 2 link side position sensors, 1 IMU sensor, 2 servo drivers
(DSCB-6).

5. Variant h: 3 motor side position sensors, 2 cameras, 3 servo drivers (DSCB-8).

Due to the many configuration options it is necessary to define a simple method to
develop and configure the required functionality of the software for each DSCB variant.
The DSCB software must satisfy two development criteria: a) modularity: the DSCB code is
organized in functional modules which synergically work together enabling the execution
of complicated tasks. A set of API27 has been programmed to interface all the hardware
components of the robot and to exchange data between the DSCBs and the CCU as well as
between other software modules; b) configurability: each variant of the DSCB’s software
is defined at compile time as a mandatory configuration option. Joint control parameters
and some sensor configuration options are available at run time. The latter are set during
the robot initialization (for example the availability of current or velocity measurement for
every joint) or while an experiment is performed (for example control gains).

The API is organized in the following function groups (FG28):

• DSC Configuration and System management.

• Communication.

• Sensor driver.

• Actuator driver.

• Joint control.

• Spindle kinematics.

27 Application Program Interface.
28 A list of all the file in the FGs are in Appendix C.
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• Safety and error management.

• Utility and debug.

The DSC configuration and System management FG supplies functionalities to setup the
DSC’s hardware registers and prepare the controller to communicate and configure all the
external components, i. e., AUs and sensors. The FG also defines and implements the FSM
functionalities necessary for the system to work properly.

The communication FG is the core of the entire DSCB’s software. This FG consists of low
level drives which implement the basic hardware communication (drivers for CAN, SPI and
EMI interfaces) and of high level communication drivers which are founded on the former.
The latter supply a more convenient access to AUs and sensors of the robot delivering
extensive information like error data and status data. The ELMO and IMU drivers both use
the CAN API, the ENDAT, the incremental encoders and the SERCOS-III drivers are based on
the EMI API and the FTS uses the SPI API.

The Sensor FG defines the high level function to read and elaborate the sensor data. It is
based on the Communication FG, as is the Actuator driver FG which defines the functions
to control the ELMOS.

The Joint control API defines all the control related function available to the user, i. e.,
position velocity and current control routines.

The Spindle kinematics API is used by the Joint Control and Sensor FGs to convert the
sensor data from the joints actuated by a spindle, i. e., knees, ankles joints and also the
head vergence joint, and the control data available for the relative AUs.

The Safety and error management FG supplies function, macros and error definitions to
facilitate the error identification and manage a safe shutdown of the robotic system.

The Utility and debug API provides the DSC system with useful functions to debug and
measure system performance. These functions provide timing measurement, interrupt
request, file backup, among others.

The core of every DSCB unit implements a Finite State Machine (FSM) which controls
the DSCBs state change and implements system commands. The different state and their
transitions are depicted in Figure 2.18. After an initialization phase, the DSCB enters the
main state of the FSM.

The followings sections describe the DSCB software features.

DSCB Software Initialization

When the robot system is switched on, the DSCBs executes a start-up procedure (Boot
phase), which prepares the boards to receive new commands from the CCU. After the
configuration of the DSC hardware peripheral (DSC HI phase in Figure 2.18), the SERCOS-III
system is initialized to the communication phase CP2 (SCI). The DSCBs then initialize
and configure the sensors and actuators hardware (SAI). If all the previous steps complete
successfully without errors, the DSCBs enters the Main Communication Stage (MCS). At
this point, the DSCBs must perform three steps before being able to reach the real-time
communication phase.
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DHI : DSC Hardware Initialization
SCI : Sercos-III Communication Initialization
SAI : Sensor Actuators Initialization
MCS : Main Communication Stage
MFM : Motor Free Mode
PM : Position Mode
VM : Velocity Mode
TM : Torque Mode
PEM : Position ELMO Mode
UF : Utility Functions

Figure 2.18: DSCB Software States.
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The CCU must send the commands to set the offset of every ENDAT sensor,29 then the
BLDC motors must be aligned30 and finally the head subsystem must perform a homing
procedure.31 If all the previous steps have been performed without errors, the CCU starts
the transition to real-time communication mode, i. e., the SERCOS-III protocol changes from
CP2 to CP4. Once in real-time mode, the robot can be actuated and it is ready for walking
experiments.

DSCB FSM

Once the initialization phase has been completed successfully, the DSCB enters in the MCS.
The latter is the core function of the DSCB communication and control software. The MCS
is the root function of the DSCB FSM. It implements eight operational states and nine
utility functions. The state change and the utility function execution is controlled by the
CCU via the SERCOS-III communication protocol.

The CCU can send commands to the DSCB via RTC or SVC. The real-time command
are sent using by the IDN Drive Control (see Table B.1). This IDN can only be used for
FSM state changes. Via SVC, and using the IDN DSC Command over Service Channel (see
Table B.1 and Table B.9 for the explanation of the bit’s meaning), the CCU can trigger an
FSM state change as well as a utility command. The latter is used to control the DSCB state
also before the real-time mode is initialized. Moreover, the DSC Command over Service
Channel extends the SERCOS-III protocol, implementing the specific functionalities required
to control the behavior of every robot joint. Information about the state of each DSCB and
the joint that they control are send to the CCU using Drive Status (see Table B.1), via the
RTM, or the DSCB Current fsm state (see Table B.1 and Table B.8 for the meaning of every
bit) via the SVC.

The FSM has four control states, three service states and one fall back state in case of
error. The main difference between the control states and the others is that the motors are
enabled and the sensors send their data to the DSCB. In the following, the possible states
of the FSM are listed and described.

1. Service States

• Idle : default state of the FSM. The DSCB does not perform any action and waits
for new commands from the CCU. It also serves as an intermediate state during
the state change, i. e., before every state change the DSCB must first be set to
idle and then the change to the new state can be performed.

29 The calibration of every ENDAT sensor is performed using a kinematic calibration jig which has been
designed by Dr.-Ing Markus Schwienbacher and assembled at the Institute of Applied Mechanics. More
information on the jig and on the calibration procedure can be found in [118].

30 The alignment procedure is a fundamental setup step to control the BLDC electrical motors. The posi-
tion of the permanent magnet on the rotor must be precisely known in order to initialize the electronic
control of the machine and determine its initial position. To perform this step the position sensors of
the motor are used.

31 Because the motors on the robot’s head have no absolute position sensors, the incremental encoders
must be calibrated. Knowing the exact distance, which has been previously measured and saved in
the DSC memory, all the three joints of the head are moved from their current position until one of
the limit switches is activated. Once they have reached the end of stroke, the current position is set as
calibration offset, the exact zero position can be calculated.
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• Motor On : motor initialization stage. Each motor joint performs the alignment
procedure.

• Motor Free Mode : sensor read state without motor control. The DSCB reads the
sensor data and send them to the CCU. The motor control is switched off. This
state is particularly useful to check if all the sensors are sending plausible data.

2. Control States

• Position Mode : main control mode of the robot. The position joint controller is
computed by the DSCB or by the CCU. In this state the DSCB sends a desired
velocity value to the AUs. The AUs then control the joint velocity and current.

• Position ELMO Mode : control mode, the DSCB sends desired position value to
the AUs. The latter controls position, velocity and current of the joints. The
DSCB is used only as a feed trough device.

• Velocity Mode : control mode, the DSCB controls the joints velocities and sends
reference current trajectories to the AUs.

• Torque Mode : control mode, the DSCB directly controls the current of the
motors. The AUs are used as input output devices.

3. Fall Back State

• Fault Mode : in the case that some hardware or software errors occur the DSCB
automatically switches the motors off and reaches this state. The CCU can ask
for error information for debugging purposes.

The FSM also integrates nine utility functions. Three are dedicated to the AUs, five are
used to change sensors parameters and the last one is used to reboot the DSCB system.

1. AUs Utility Function

• ELMO Message Mapping : sets the mapping of the PDOs messages. Depending
on the chosen joint control different desired data are send to the AUs (i. e.,
position, velocity or current) in every control cycle. The function can also be
used to set desired feedback values that can be sent from each or some AUs to
the DSCB.

• Homing : perform the homing procedure for the head joints.

• ELMO Binary Commands : tunnels a Binary Command to the AUs (see [45] for
more information).

2. Sensor Utility Function

• Reset FTS : triggers the automatic FTS calibration.

• Reset IMU : triggers a reset and recalibration if the IMU sensor.

• Set Offset : set the joint position offset. Using the absolute position sensor
calibration value, both joint and motor side position sensors are accurately set.

• Get Rated Current : read the nominal current value used by the AU to control
the motor current. This value is also needed in case of current feedback to
translate the current sensor data into a value expressed in amperes.
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• Set Rated Current : write the nominal current value used by the AU to control
the motor current.

3. System Utility Function

• Reboot : triggers a software reboot of the DSC.

All the utility functions can be triggered via the SVC and are executed only if the FSM is
in IDLE state for safety reasons. In case one of the functions is triggered during one of the
control modes, its execution is discarded.

DSCB Safety Function and Failure State

The DSCBs are the first component of the robot system that can detect hardware failures
and communication errors or sensor errors. They must quickly intervene by disabling the
motor power and informing the CCU of the failure event.

The possible source of errors are the AUs and sensors. In the case of AUs the possible
failure sources are communication errors via the CAN bus, CANopen protocol errors,
connected sensor errors or motor failures. Each of them is defined in [43], [44] and
[42]. The error codes are also stored in the DSCB software to improve and simplify the
debugging process.

The sensors can have different sources of errors which may depend on the communication
system used or on the hardware. The ENDAT protocol defines specific bits in the Status
Register, which must be accessed every time a new position is read from the sensor, to
identify the cause of the of the error [96]. The possible errors that can occur can be
hardware errors (temperature, mechanical tolerance issues, etc.) or data transmission
errors (CRC or internal sensor errors). The IMU errors that can be recognized are only
communication time out errors. For the FTS possible errors are those due to communication
over SPI, initialization errors, sensor saturation or sensor drifting. The latter is a rather slow
process that is difficult to automatically recognize. A good strategy to avoid this problem is
to perform a sensor calibration procedure between successive walking experiments. The
chosen incremental encoder sensors are simple and robust sensors. To identify an error
the position value variation between two successive sensor sampling cycles is controlled.
Depending on the current joint velocity, the position variation is not allowed to be greater
than a predefined value.

The last, and safety dedicated sensors, are the light barriers. They are connected to the
ELMOS general purpose input and evaluated every control cycle. A software running on
the AU detects if a light barrier has been activated and communicate the failure event to
the DSCB over CAN.

Since LOLA is built for laboratory conditions, in order to avoid injuries, environmental
and self-damage the motors are shutdown as soon as an error occurs. Right after the motor
shutdown operation, the DSCB enters into Failure State, collects the failure information
and sends it to the CCU using the predefined SERCOS-III Shutdown Error variable (see
Table B.1). For a more complete and extensible error information and classification, a
custom error variable has also been defined: the Extra error information (see Table B.2).
The latter is a vector containing additional error information. The CCU can request the
values of both variables via SVC. Examples of the provided extra information are: which of
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the joints has encountered the error, the CANopen code of the ELMO failure, the current
and previous value of the incremental encoder in case of a variation error and so on.

2.5 Chapter Summary
In this chapter the robotic system LOLA has been introduced. The mechanical structure
of the system has been briefly described. The AUs used for every actuated joint and the
different sensors of the robot have been presented. The main part of the chapter has
been dedicated to the introduction and description of the DSCB functionality. The custom
embedded board plays a major role in the sensor-control network of the robot. It is the
key component between the physical state of the robot and the CCU. The different sensor
interfaces requires a flexible system component that can read all the data and make it
available to the main control unit.

Another key point of the chapter is the description of all the different digital communica-
tion protocols used. On the sensors side, their implementation is an important features of
the sensor-control network. It allows the local digitization of the analogue sensor values
and their transmission via robust digital communication channels. On the CCU communi-
cation side, the implementation of the SERCOS-III protocol enables a high bandwidth and
high data density transfer.

The features of the DSCB “Bare Metal” software has been presented and described. All
the functions that interface the sensors, the AUs and manage the CCU communication
have been integrated in a finite state machine structure which enable the user to access
all the parameters and features of the sensors and AUs in a simple and intuitive way
using the SERCOS-III IDNs. The flexibility and extensibility of the software system are
fundamental for a research platform like LOLA. They are achieved with a complete custom
software development which has been necessary due to the many different sensor and
communication protocols needed by the application.



3 Motor Position Measurement and Motor
Velocity Estimation

3.1 Introduction
The motor position is a fundamental measurement of the robot joints. It is needed by
the joint control and by the CCU to get information about the joint state. As described in
Section 2.3.3, LOLA has two sensors for the position of every joint1: incremental encoder on
the motor side, absolute position encoder on the joint side. In an infinitely stiff mechanical
system, there is no difference between the two positions and the use of two sensors would
be redundant. Nevertheless, LOLA is a real physical system which inevitably presents both
structural compliance and joint compliance. Even small elasticity in the gear box can
cause a loss of motion and positioning errors, especially at high joint speed and if the joint
actuates a long segment (for example the robot legs). To reduce these effects two position
sensors are used for LOLA. While the interface between the DSCB and the link encoders
has been described in Section 2.4.2, in this chapter the incremental encoder interface is
defined and its development is described.

To achieve high control performance, to improve the system analysis possibilities and to
implement advanced control algorithms, the use of a motor velocity estimation method
is a consequent step. Many different mathematical algorithm have been proposed during
the years to solve this problem for servo systems with only position sensing. The use of
microprocessor and micro-controllers has become the state of the art in motion control
systems, leading to a growing interest in discrete time systems.

Different techniques have been proposed and they can be divided in two main categories:

• methods based on signal processing, and

• model based methods.

The first types use only the information of the available position sensor, while the latter
requires a system model to be implemented and, therefore, a deeper system knowledge.
Moreover, if the velocity estimation is used to improve the control of the system, the
method must be computable in real-time. Therefore, it should not be too complex or
require too much computation power.

In this chapter the implementation of the position sensor extension feature of the LOLA

hardware is discussed. Different methods to compute an on-line estimate of the velocity of
a mechanical system based on position measurements will be analyzed and compared. At
first, a mathematical overview of the problem is given and then various approaches are
compared to find an optimal algorithm, which takes advantage of the system architecture.

1 Exception are the three joints of the head of the robot.

43
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3.2 Incremental Encoders and Sensor Augmented
Functions

The DSC used in the DSCB custom embedded boards can be configured to read from up to
two incremental encoders at once. Each interface uses two hardware counters (internal
peripheral of the DSC) and four DSC pins. Recalling the DSCB interface requirement
discussed in Section 2.3, the DSCB must be able to interface up to three motors. Therefore,
the internal DSC resources don’t satisfy this important requirement.

One possible solution would be to use the two incremental encoder interfaces of the DSC
and implement the third as an external device. In this case the latter must still be connected
to the DSC to send the position data of the third motor. This solution has the disadvantages
of reserving hardware resources of the DSC that can be used for other purposes, e. g., as
high precision internal timers or to measure timing performance of the software, and to use
mixed interfaces to access the same kind of data. This case is highly undesirable because
introduces a mixed methods to retrieve the position data increasing the complexity of the
system.

Another possibility is to use three external incremental encoder counters, or one device
that can interface all three position sensors, with a unified connection to the DSC. In a first
implementation, the ELMOS were used as external encoder counter devices. The ELMOS

need the position information for the motor alignment procedure and for computing the
motor velocity. They have a common interface to the DSC, i. e., CAN bus. The motor
position information can be mapped to a CANopen PDO message (see Section 2.4.2) which
is automatically sent to the DSC every time a predefined event occurs, e. g., a new desired
trajectory value has been sent to the AUs. In this configuration LOLA walked for the first
time and performed more than 25 presentation at the Hannover Messe 2010.

The limitation of this solution is the time needed by all three ELMOS to send the new
measured position value to the DSC. It must be recalled that the three AUs are connected
to the DSC via the same CAN channel, reducing the communication bandwidth. Moreover,
these communication tasks on the ELMO do not have the highest priority compared to the
control tasks, meaning that the ELMOS send this data when the higher priority tasks have
been completed. The time needed by all three ELMOS to send their position via CAN is
about 3 ms. This leads to a limitation of the control cycle time to 3.5 ms, i. e., a control
frequency of 286 Hz (also considering the time needed by the DSC to read the other sensor
data, compute the joint control and manage the CCU communication tasks).

Another variant of this solution is to develop an external hardware module that can
be simply integrated in the DSCB stacked board architecture to implement the needed
functionality and that can be easily extended augmenting the system capabilities. To
achieve this kind of flexibility a hardware programmable device must be used, e. g., an
FPGA. The Incremental Encoder Module (see Section 2.4.1) has been developed to solve
this problem. The board is integrated in the DSCB and connected to the DSC via the
Multichannel Connectors. It uses the two incremental encoder connectors of the Power
Electronics Support Board and mounts only one connector for the third motor encoder.
Because the PCB must have a reduced dimension to fit between the Control-Communication
Board and the Power Electronics Support Board, an FPGA with FLASH memory integrated in
package is chose. This design decision has the advantage of saving space on the PCB which
can be used for other components. Three differential drivers and three CAN connectors are



3.2 Incremental Encoders and Sensor Augmented Functions 45

mounted on the board for a future parallel implementation of the CAN communication
between DSC and AUs.

3.2.1 Incremental Encoder: Principle of Operation

An incremental encoder is a position transducer that generates a cyclical output only when
the device rotates. It employs two Quadrature Digital Signals (normally called A and B) as
output which are 90 Degrees out of phase. The two signals supply embedded information
about the rotating direction of the joint and an encoded position counter. The information
about the rotating direction depends on which of the signals has the leading phase, while
each raising or falling transition of the signals means an increment (or decrement) of the
joint position.

In Figure 3.1 the quadrature signals in the two possible configurations of positive and
negative rotation direction are depicted. The signals follow two defined stream patterns
and the rotation direction can be identified by comparing their current value with the
previous ones. A movement of the encoder in the positive direction causes an increment of
the position count, while a movement in the negative direction causes a decrement.
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Figure 3.1: Incremental Encoder Quadrature Signals.
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3.3 FPGA IP-Core Design
Developing an FPGA module means developing an IP-Core that satisfies the requirements
needed for the application. The interface between the DSC and the FPGA must be defined
as well as the interface with the incremental encoders. All necessary components of the
IP-Core must be defined in order to a) decode the A and B signals, b) estimate the joint
velocity c) and implement the CAN driver.

Referring to Figure 3.2 and Table 3.1, the input output interface of the IP-Core have been
implemented as follows:

1. The communication with the DSC is realized via the EMI interface as for the other
FPGA in the DSCB. A dual port RAM2 is used to read from the DSC side (Port A)
the sensors data and write parameters to the internal modules. On the other side of
the RAM (Port B), the FPGA internal modules write the current motor positions and
velocities.

2. The Data bus of the EMI has a data width of 16 bit while the position and velocity
value are computed in 32 bit. A Multiplexer/Demultiplexer3 buffer (Mux/Demux)
is needed to let the communication work properly. The latter is used to control the
communication on both sides.

3. The incremental encoder signals A and B are differential and must be converted to
single-ended.

4. Four LEDs are used to highlight some basic and debug information: one LED is used
to indicate if the device receives power, while the other three are connected to the
0 bit of each Encoder Counter and blink if the relative counter receives data from the
sensors.

5. Three CAN interfaces for a parallel and efficient connection with the ELMOS.

The IP-Core is composed of different units having specific purposes: a) three incremental
encoder decoders and counters, b) one joint velocity computation module, c) three CAN
drivers and d) one Communication Control Logic unit (CCL). The latter is needed to
arbitrate the internal and external communication with the dual port RAM. It must manage
the read and write requests from the DSC, update the position and velocity data values
and exchange data with the CAN drivers.

In the following subsections each unit of the IP-Core is introduced and its operation
principles described.

3.3.1 IP-Core Interface and Communication Control Logic
The communication between DSC and FPGA uses the EMI interface of the DSC. The
interface is composed of a 16 bit Data Bus, a 24 bit Address Bus, Read (RD), Write (WR)
and Chip Select (CS) signals. The Incremental Encoder FPGA (IEF) has its own address

2 A particular kind of RAM with two identical communication ports that can be accessed independently
from each side.

3 A Multiplexer is a device that selects one of several analog or digital input signals and forwards the
selected input to a single output. A Demultiplexer is a device that takes a single input signal and selects
one of many data-output lines.
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Figure 3.2: Incremental Encoder Module: FPGA Interfaces.

space that is mapped to a specific bit of the DSC peripheral memory definition. When the
IEF address is set, the DSC automatically sets the IEF Chip Select signal, enabling it to
receive the read or write request. After the CS signal is set, RD (or WR) is asserted and the
data on the Data Bus is accessed. Every unit of the IEF also has its unique address space.
The later are listed in Table D.7. Each Incremental Encoder has 16 registers that can be
addressed (see Section 3.3.2 for a detailed register description) while each CAN module
has 64 registers (see [149] for a definition of every available CAN register). Each register
is 32 bit wide.

As already described in the previous section, a Mux/Demux buffer is needed to enable
the external communication. The communication is controlled by the CCL. This unit
coordinates the read/write requests from the DSC, controls the Mux/Demux buffer, enables
the position data store operation in the dual port RAM, triggers the velocity estimation
computation, saves the computed velocity value in RAM and manages the read/write tasks
with the CAN modules. It is implemented as a Finite State Machine. While position values
are constantly written to RAM using the polling technique,4 velocity values are computed
and stored in RAM only on request. To guarantee data consistency of the RAM, every time

4 The polling techniques refers to the data sampling of an external device by a controller. The external
device sends his data only if the controller requests it.
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Table 3.1: Interface signals specification of the Incremental Encoder Module FPGA.

Bus Number of wires Signal Name Purpose

Data Bus 16 D0-D15 Data Transfer
Address Bus 9 A1-A9 Data Addressing
Control Signals 4

Reset Reset
RD Read Request
WR Write Request
CS Chip Select

Incremental 6
Encoder Ap Signal A (positive)
Interface(x3) An Signal A (negative)

Bp Signal B (positive)
Bn Signal B (negative)
Vcc 5V (Power Supply)
GND 0V (Power Supply)

CAN Interface(x3) 4
CANH CAN-H (positive)
CANL CAN-L (negative)
Vcc 5V (Power Supply)
GND 0V (Power Supply)

LED 4
Counter1 Position Counter 1 bit 0
Counter2 Position Counter 2 bit 0
Counter3 Position Counter 3 bit 0
Power ON FPGA Working

the DSC performs a data request, the CCL disables the RAM access to all the other units.
A block diagram of the external interface and CCL is depicted in Figure 3.2. The Enc/Vel
Modules Controls bus and CAN Interfaces, shown in Figure 3.3, groups the signals needed to
synchronize all the operations of the internal units of the IP-Core. These control signals
are: Velocity Estimation Control group (Figure 3.4), Encoder Position Velocity Mux control
group (Figure 3.4), the RAM control signal on Port B and the CAN Module Control group
(Figure 3.5).

3.3.2 Implementation of the Incremental Encoder Decoder
To decode the A and B signals from the encoders the following components are needed:
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Figure 3.3: Incremental Encoder Module: FPGA Dual RAM interface with DSC.

• differential to single-end logic,

• debounce filter for the physical signals,

• signal decoder,

• position counter.

The encoder signals are transmitted as differential in order to reduce the effects of
disturbances. They must be converted to single-end to be decoded and to extract the
position information. The debounce filter is needed to avoid false signal transition to be
considered in the position counting. This unit can be seen as low pass filter. When a signal
has a transition, the unit waits a certain number of cycles before validating it and makes it
available for the subsequent modules. An important parameter to avoid the loss of signal
information is the maximum count transition frequency (MCF). This parameter indicates
the maximum frequency of counts at the motor maximum speed. MCF depends on the
encoder resolution and on the maximum motor revolution speed. It defines how many
transitions per seconds an incremental encoder can generate. The decoding logic must be
able to read every transition of the encoder signals, therefore, the clocking frequency of the
module must be at least twice MCF. In Table A.1 the MCF parameter for every joint of LOLA

is listed. Since the FPGA frequency fF PGA = 32 MHz and considering the maximum value
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Figure 3.4: Incremental Encoder Module: Encoder decoder, Velocity estimator and Dual RAM
interface.
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of MC F = 1.632 MHz, the maximum number of waiting cycles is computed as follows:

Wait CycleMAX =
fF PGA

2MC F

�

MHz

MHz

�

=
32

2 · 1.632
≈ 9. (3.1)

The default value of this parameter is set to 8, but it can be changed by the user.
Once the signals have been filtered, they are passed to the incremental encoder decoder.

This module compares the current and previous state of the signals A and B detecting the
rotation direction. If a valid transition has been recognized, the module commands the
encoder counter to increment (or decrement) the current position value.

An important configuration parameter for the Incremental Encoder Decoder is the
Position Offset. The encoder must be initialized to a proper value to avoid data inconsistency
and control errors. The offset value is related to the initial position of the joint and to
the calibration value of the absolute encoder and, therefore, set every time the robot is
switched on. During the DSCB initialization (see Section 2.4.3), this value is automatically
computed and sent to the FPGA.

The last parameter that can be set is the encoder counting direction. The positive rotation
direction for each joint is defined in the multibody model of the robot. The latter must be
identical also in the real robot otherwise the joint control will fail. Due to the mounting
and sensor cabling it is possible that the positive encoder counting direction is opposite to
the one defined in the model.

To access the encoder related data and set the parameters mentioned above, five register
are defined:

1. Encoder Position: current position value.

2. Encoder Velocity: current velocity value.

3. Encoder Offset: current sensor offset.

4. Encoder Debounce Filter: number of wait cycles for the debounce filter.

5. Encoder Configuration Register: triggers the offset and wait cycle storing operation,
sets the positive rotation direction parameters and performs a software reset of the
decoder unit.

The value of each register can be read from the DSC, while write operations are permitted
only on the last three. The block diagram for each unit is shown in Figure 3.4.

3.3.3 Encoder Velocity Estimation Module
The Encoder Velocity Estimation Module accepts as input the position of the three encoders,
one at a time, and computes an estimation of the motor velocity for the last sampling
period.

The module is controlled by the CCL. Every time the DSC requests the velocity estimation
for one of the motors, the CCL stops the polling write operations for the Incremental Encoder
Decoder and triggers the velocity computation via the Velocity Estimation Control group.
Once the estimation has been computed, the value is copied to the Dual Port RAM and
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Figure 3.5: Incremental Encoder Module: CAN interface.

is transmitted to the DSC. After this operations is completed, the normal position storing
operations are enabled again.

The algorithm used for the velocity computation will be described in the following
section. A detailed description of the interface is given in Appendix D.

3.3.4 CAN Module Implementation
The CAN Module is implemented using the Xilinx CAN v3.2 IP-Core. Description of the core
parameters, registers and functionalities can be found in [149]5.

The communication with the core is managed by the CCL. Figure 3.5 shows a diagram
of the unit interface. A detailed description of the interface is given in Appendix D. Two
independent Data buses are used: Bus2IP_DATA for the write operations and IP2Bus_DATA
for the read operations. To address each register of the core the Bus2IP_ADD bus is used.

On the CAN bus side, the signals can_phy_tx and can_phy_rx are used to exchange data
whit the PHY chip. The latter is used to convert the differential CAN bus signals CAN-H
and CAN-L into single end.

At the initialization stage, the unit must be configured with the bus parameters depending
on the CAN clock frequency and on the bus Baud rate. The unit needs two clocks, one
is the FPGA system clock (32 MHz) used for the communication with the CCL and one
for the CAN bus Communication (24 MHz). The latter is generated with a Digital Clock
Management unit (DCM) from the system clock. The DCM is an embedded unit of the
FPGA in use that manages the clock synthesis. For more information see [148].

5 Each of the three units can be parameterized and a basic CAN communication has been tested. A
complete DSC API to control the core is not available at this time. Yet the communication between DSC
and ELMO is still available using the DSC CAN interface.
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3.4 Velocity Estimation Algorithm

3.4.1 Overview

The problem velocity computation from position data has been addressed many times over
the last years. Many different approaches have been proposed and they can be divided in
two categories: a) methods based on signal processing and b) model based methods.

The main difference between the two approaches is the quantity of system information
needed by the estimation method. While the methods based on signal processing need
only information from the position sensor, the others also need a physical model of the
system to compute its velocity.

The signal processing category can be divided in two subcategories: a) discrete differen-
tiation and b) differentiation filters.

Discrete differentiation is the oldest and simplest method and can be implemented in
different forms. Hoffman [69], Kreyszig [81] and Hamming [64] give a good introduction
to the classic mathematical methods of numeric differentiation. In Brown et al. [19]
an overview of fixed-position, fixed-time and least square algorithms until third order is
given. In Hamming [65] and Lyons [93] the problem of signal differentiation is appointed
starting from the discrete differentiation to wide-band filters. Differential filters have
recently gained importance especially in the field of communication engineering but they
have also been used in automation and for motion control (see Carpenter et al. [31]).
In Selesnick [120], a low pass FIR6 digital filter for differentiation is presented and in
Dutta and Kumar [41] a relation between minimax digital differentiation filter and Hilber
transformation is exploited.

The second category of velocity estimation algorithms can also be divided in two groups:
system observers and Kalman filters. System observers have been successfully used in many
application as shown in [16, 75, 95, 100]. In Belanger [15] a Kalman filtering approach is
presented and applied to estimate the velocity of a position controlled joint robot.

Different hardware and software implementations to estimate the velocity are discussed
as in Habibullah et al. [62] where a digital speed transducer using a discrete electronics
implementation and an approximated computation of the encoder impulse train frequency
is presented. In Galvan et al. [53] an FPGA implementation for a wide range speed
estimator combining a fixed-position and a fixed-time algorithm is discussed. The control
unit on the FPGA use the best approximation of the two methods depending on the current
speed range of the system. In [112, 113, 147] the authors present different microprocessor
based approaches, with the support of some custom electronics. Kavanagh [78] proposes a
hybrid software/hardware solution also using an FPGA and a microprocessor.

In the next subsections, an introduction to the different estimation approaches is given
and the motivation for the final implementation of the LOLA velocity estimation method is
discussed.

6 Finite Input Response filter.
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3.4.2 Mathematical Background
The computation of the derivative of a function f (t) : t ∈ IR is equivalent to the computa-
tion of its rate of change as the variable t changes of the quantity ∆t → 0 :

d f (t)
d t

= lim
∆t→0

f (t +∆t)− f (t)
∆t

, (3.2)

and it is equivalent to the computation of the line tangent to the function f (t) at point t.
Considering a quantization of the function f (t) with a quantization step h, its derivative
can be computed at every point tn with n= 0,1, . . . N + 1 as:

d f (tn)
d t

≈
f (tn+ h)− f (tn)

h
, n= 0,1, . . . N + 1. (3.3)

In this case, the line secant to the points tn and tn + h will be computed, which is an
approximation of the tangent line at point tn.

Many numerical methods have been developed to compute the derivative of a discrete
function of time. Basically, all of them use the function values and the time data available
at the discrete time tn to calculate the estimation of the function derivative.

Considering a discrete function f (t) with N equally spaced sample points, and the
sampling period h, the values of the function computed at each point can be calculated
using the Taylor series expansion (see [69]):

f (t) = f (t0) + f
′
(t0)(t − t0) +

f
′′
(t0)
2!
(t − t0)

2+
f
′′′
(t0)
3!

(t − t0)
3+ . . .

+
f N(t0)

N !
(t − t0)

N +O(hN+1),

(3.4)

where t0 is a known point of the function, h = t − t0 is the sampling period, f N(t0) is
the N th derivative of the function f (t) and O(hN+1) is the residual error of the function
expansion (proportional to h). Truncating (3.4) at the second term on the right hand side
of the equation and solving for f

′
(t0):

f
′
(t0) =

f (t)− f (t0)
t − t0

+O(h) =
f (t)− f (t0)

h
+O(h), (3.5)

an expression for the first derivative of the function f (t) at the point t0 is obtained. Using
the Taylor function expansion it is possible to elaborate different types of approximation for
the first and successive derivatives of the function f (t) with different orders of precision.

Substituting the value of the function at time t0 = tn and t = tn + h in (3.5), the first
forward difference approximation is obtained:

f
′
(tn) =

f (tn+ h)− f (tn)
h

+O(h), (3.6)

which is equivalent to (3.3).
Substituting the value of the function at time t0 = tn and t = tn − h in (3.5), the first
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Table 3.2: First derivative backward difference approximation coefficients for different accuracy
orders.

Accuracy Order n n− 1 n− 2 n− 3 n− 4 n− 5 n− 6

1 1 −1
2 3/2 −2 1/2
3 11/6 −3 3/2 −1/3
4 25/12 −4 3 −4/3 1/4
5 137/60 −5 5 −10/3 5/4 −1/5
6 49/20 −6 15/2 −20/3 15/4 −6/5 1/2

Table 3.3: First derivative central difference approximation coefficients for different accuracy orders.

Accuracy Order n− 4 n− 3 n− 2 n− 1 n n+ 1 n+ 2 n+ 3 n+ 4

2 −1/2 0 1/2
4 1/12 −2/3 0 2/3 −1/12
6 −1/60 3/2 −3/4 0 3/4 −3/2 1/60
8 1/280 −4/105 1/5 −4/5 0 4/5 −1/5 4/105 −1/280

backward difference approximation is obtained:

f
′
(tn) =

f (tn)− f (tn− h)
h

+O(h). (3.7)

Subtracting (3.6) and (3.7) the first central difference approximation algorithm can be
computed:

f
′
(tn) =

f (tn+ h)− f (tn− h)
2h

+O(h2). (3.8)

In Figure 3.6 an example of the three methods applied to a function f (t) is depicted.
The derivative is computed at point tn. As can be seen in Figure 3.6, the central difference
method gives the best approximation of the tangent of the function at f (tn) compared to
the other two methods.

From (3.4), if the successive derivatives are considered, higher order formulas can be
computed. Those expressions yield a smaller residual error but need more sampling points
to be calculated and tend to magnify measurement errors (see [56]). Some examples of
coefficients for higher order differentiation approximation formulas are listed in Table 3.2
and Table 3.3 (see [52]).

From a real-time control point of view, in the case of the central difference and first
forward difference approximations, the computation of the function derivative at point
f (tn), must be performed with a delay of one sampling time because both methods need
the function value at f (tn+1). In many practical application this delay is not acceptable
because it can lead to instability. For this reason, in many practical real-time control
systems the first backward difference approximation is the preferred method for signal
differentiation.
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Figure 3.6: First derivative first order approximation.

3.4.3 Fixed Time and Fixed Position Increment

The backward difference approximation (3.7) is the most used and simple algorithm in
control applications. It can be implemented in two different ways: Fixed-Time Increment
(FTI) and Fixed-Position Increment (FPI). Defining:

∆θ = θ(tn)− θ(tn− h), (3.9)

∆t = tn−1− tn, (3.10)

for FTI the position Θ is read at constant time intervals ∆t = h. At each interval the
velocity Θ̇ is then computed (3.11). In the FPI, the time ∆t between constant position
∆Θ = Θc is measured. Every time that the position increment is equal Θc a new velocity
value is computed (3.12).

Θ̇ ≈
∆Θ

∆t

�

�

�

�

∆t=const.

= (∆Θ)
1

h
, (3.11)

Θ̇ ≈
∆Θ

∆t

�

�

�

�

∆Θ=const.

=
Θc

∆t
. (3.12)
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Mathematically the two methods are equivalent. Nevertheless, it is shown in [19] that FTI
delivers the best results at higher velocities when the number of position increments are
very large. On the other side, FPI performs better at lower speed when the time between
two successive position increments is long. For medium velocities the approximation
performance of the two methods are similar. These effects are due to both the position
information delivered from the encoder and the measured time (available as clock counts),
which are integer values. Normally neither on micro-controllers nor on FPGAs floating
point arithmetic7 is implemented.

3.4.4 Narrow and Wide-Band Differentiators
The wideband differentiations have their roots in the frequency domain. The main idea
of their development is the approximation of the ideal derivative of a sinusoidal signal.
Defining a sinusoidal signal of amplitude A and frequency f (or angular velocity ω = 2π f ):

θ(t) = Asin(ωt), (3.13)

its derivative with respect to time t is:

θ̇(t) =ωAcos(ωt). (3.14)

If the signal (3.13) is sampled with a sampling frequency fs, the response of (3.14) in
the normalized discrete frequency domain8 HIdeal(ω) is a straight line (see Figure 3.7)
proportional to the signal angular velocity ω times the signal amplitude A.

The normalized discrete frequency response of the central difference differentiator (3.8)
Hcd and the first difference backward differentiator (3.7) H f d can also be computed. The
results are shown in Figure 3.7. The main difference between the two filters is that the
latter acts like a high pass filter (HPS), while the first does attenuate high frequency com-
ponents of the input signal. Because real signals are affected by noise, i. e., high frequency
components, the central difference algorithm presents better attenuation performance.
Nevertheless, its response is delayed by one sampling period.

To obtain better approximations of HIdeal(ω), other methods to determine filter coeffi-
cients have been developed and are mainly used in the field of communication technology.
They are normally implemented as FIR filters. Once defined the number N of the filter
coefficients, the algorithm delivers their value in the normalized frequency domain. The
general form of a FIR filter is as follows:

θ̇(n) =
N−1
∑

k=0

h(k)θ(n− k), (3.15)

where:

• θ is the input variable,

7 Floating point arithmetic cores can be implemented in FPGA, but the number of logical gates needed is
very large, especially for older FPGA models. Thus, if this units are implemented, they will use many of
the logic gates available on the chip leaving less resources for other functionalities.

8 Refer to Hamming [64] and Lyons [93] for the definition of normalized discrete frequency domain.
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• θ̇ is the filter output,

• h(k) is the filter coefficient at index k,

• N is the number of filter coefficients.

Hamming [65] proposes the so called Low-noise Lanczos filter. The filter presents a
strong high frequency attenuation and is defined as a Narrow-Band Differentiation Filter.
Its coefficients are computed as follows:

hL(k) =
−3k

M(M + 1)(2M + 1)
, with M =

(N − 1)
2

. (3.16)

If M = 1, i. e., FIR with 3 coefficients, the central difference differentiator are obtained.
Assigning M = 2 the filter coefficients are:

hl = [0.2;0.1; 0;−0.1;−0.2]T . (3.17)

The frequency response of the latter is shown in Figure 3.7.

Another category of FIR filters proposed in the literature are Wide-Band Differentiation
Filters. These filters give a better approximation of HIdeal . Nevertheless, they also present
an amplitude oscillation in the pass band and a very sharp high frequency attenuation in
the stop band. The value of the filter cut-off frequency ωc can be normally defined as input
of the algorithm. In order to obtain a small oscillation in the pass band, the filter must
have a high number of coefficients. An expression of wide-band differentiator coefficients
computation proposed in [93] is:

hwb =ωc

cos(ωc(k−M))
π(k−M)

−
sin(ωc(k−M)))
π(k−M)2

. (3.18)

An improvement of the latter expression is the Parks-McClellan algorithm, proposed in
[109].

In Figure 3.7, the normalized frequency response of a 32 coefficients FIR Differentiation
Wide-Band filter and Parks-McClellan filter is depicted.

The Narrow and Wide-Band differentiation FIR filters have clear advantages in com-
parison with the first difference algorithms. They approximate the ideal differentiation
frequency response in a better way and give the user the possibility to choose the cut-off
frequency to reject the signal high frequency components. On the other side they also have
the disadvantage of having many coefficients to reduce the amplitude oscillation in the pass
band. This also causes an initial delay before the filter can deliver a valid differentiation
value. Moreover, the dependency of the latest filter output from previous input values can
cause undesired oscillations of the filter output in the time domain.

3.4.5 Constant Elapsed Time
The Constant Elapsed Time (CET) velocity estimation method was introduced in [112].
It combines the FTI and FPI methods. The main idea is to measure the occurrence time
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tcur rent of each incoming increments from the position sensor θcur rent . The velocity is then
computed on request using the last position and time information and the same values
from the last computation interval, i. e., told and θold:

θ̇cur rent =
θcur rent − θold

tcurent − told
. (3.19)

The algorithm is an improved version of the first difference method previously discussed.
The latter computes the velocity with a constant frequency and does not consider the
time jitter between the encoder increment incoming time and the time of the actual
algorithm computation. The precise measurement of the occurrence moment of the last
encoder increment in (3.19) improves the method with a sort of sampling frequency
adaptation. An essential requirement for the CET to correctly work is to have access
to a high resolution timing resource which can precisely measure the occurrence time
of every encoder increment. In [112], the author proposes a combined hardware and
software solution to implement the CET algorithm. The hardware consists of a custom
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electronic buffer system that can save the last and current position and time information
of the encoder increments, while a microprocessor handles the algorithm computation
and requests the information to the custom hardware. In [113] the CET algorithm is
extended to the lower speed range enabling the estimation of velocities below the limit
of one increment occurrence per sampling frequency cycle. The major requirement for
this method to correctly work is that the clock frequency fck of the custom hardware must
be fast enough to identify with sufficient precision the incoming time of each encoder
increment. The latter depends on the encoder resolution R and the maximum moving
speed of the system θ̇MAX measured in [Hz]. The maximum frequency of incoming encoder
counts fic can be computed as:

fic = (Rθ̇MAX ). (3.20)

(3.20) indicates the minimum value for fck to correctly identify the input encoder counts.
In order to increase the reliability of the system and to reduce the error in the time
measurements, it is convenient to increase fic by a factor βck:

fck ≥ βck fic. (3.21)

Increasing the hardware clock frequency as described in (3.21) reduces the time measure-
ment error by a factor of 1/βck.

3.4.6 State Observer
The State Observer is a method to estimate the state vector of a dynamic system. It is
used in control theory to retrieve information about those system states that are not
directly available as measured outputs. This method of system state estimation was first
discussed by Kalman [74] for statistical systems and revised for linear invariant system by
Luenberger [92]. State observers have been widely used to stabilize real systems. The main
requirement of this method is the availability of a model of the system under investigation.
Considering a Linear Time Invariant (LTI) system:

ẋ (t) = Ax (t) + Bu(t), (3.22)

y(t) = C x (t), (3.23)

where:

• x (t) is the state vector,

• u(t) is the input vector,

• y(t) is the measured output vector,

• A is the system matrix,

• B is the input matrix,

• C is the output matrix.
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The estimation of the state vector x̂ (t) of the system (3.22)-(3.23) can be computed as
follows:

˙̂x (t) = Ax̂ (t) + Bu(t) + L(y(t)−C x̂ (t)), (3.24)

ė(t) = (A− LC)e(t), (3.25)

where:

• e(t) is the observer error vector,

• L is the observer gain matrix,

• x̂ (t) is the estimated state vector.

The time needed by the error e(t) to tend to zero, depends on the proper choice of
the gain matrix L which places the eigenvalues of the error dynamics matrix (A− LC).
The value of the gain matrix L can be set arbitrarily high to obtain a fast error dynamic,
i. e., a small error settle time. Nevertheless, the stability of the error dynamic matrix, i. e.,
all eigenvalues must have negative real part, must be guaranteed. This fact introduces a
practical limit for real world systems where sensor noise in the measured system output can
endanger the observer stability. Equations (3.24)-(3.25) can also be reduced to estimate
only a part of the state vector x .

A well designed state observer can deliver good performance and a smooth estimation
of the state vector x (t). On the other side, it needs a system model and it is particularly
sensible to system parameter errors. Also, a small error of a few percent in the system
dynamic matrix A can lead to a non-negligible error in the observer output x̂ (t).

3.4.7 Velocity Estimation Methods Comparison
As a benchmark for the comparison of the mentioned velocity estimation methods, the
velocity profile shown in Figure 3.8 is chosen. It is the typical velocity trajectory of LOLA’s
hip join when the robot walks forward at 3.6 km/h. The related position trajectory is
shown in Figure 3.9. This velocity profile is chosen to directly test the different algorithms
with a real joint movement. It also has a large dynamic containing slow as well as fast
movements of the joint.

All the aforementioned estimation methods have been simulated using Matlab and
Simulink9. The wide band differentiator is a 32 coefficient Parks-McClellan filter. The
state observer has been simulated using a continuous time model of LOLA hip joint with a
relative error in the dynamic matrix A of 1 %. The finite difference and Constant Elapsed
Time algorithms have been simulated as described in Section 3.4.2 and Section 3.4.5.
The position signal used for the simulations has a superposed random error of 0.005 rad
(1 encoder increment).

Absolute error θ̇Ae and relative error θ̇Re between the estimated velocity and the real
joint velocity have been computed es follows:

θ̇Ae(t) = θ̇est im(t)− θ̇(t), (3.26)

9 MATLAB and Simulink are commercial numerical computing environments, developed by THE MATH-
WORKS, INC. (http://www.mathworks.com/).
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θ̇Re(t) =
θ̇Ae(t)

θ̇(t)
100, (3.27)

where:

• θ̇(t) is the real joint velocity,

• θ̇est im(t) is the estimated joint velocity using the investigated estimation algorithm.

To compare the algorithms, different statistical values of the absolute and relative error
have been computed: root mean square (RMS), maximum value (Max), mean value (Mean)
and standard deviation (Std). The results are listed in Table 3.4 and Table 3.5 for the
absolute and percentage relative error respectively. As can be seen from the simulation
results, the CET algorithm is the one which outperforms in all the considered statistics. It
presents the lowest absolute and relative error in terms of root mean square value, peak
error, mean value and standard deviation in comparison with the other methods. For this
reasons it is the preferred algorithm to be implemented as joint velocity estimation method
on LOLA.

Table 3.4: Velocity methods absolute estimation error statistics computed in [rad/s].

Estimation Method RMS Max Mean Std

Finite Difference 3.96 308 0.76 3.89
Wide Band Differentiator 5.52 231 2.06 5.52
State Observer 7.86 175 3.06 9.97
Constant Elapsed Time 1.57 82 0.72 1.40

Table 3.5: Velocity methods percentage relative estimation error statistics.

Estimation Method RMS Max Mean Std

Finite Difference 9.05 69 3.35 10.61
Wide Band Differentiator 17.56 88 6.98 16.11
State Observer 9.89 48 5.48 11.16
Constant Elapsed Time 3.60 43 3.33 10.81

3.5 Extended Constant Elapsed Time Algorithm
In the previous section it is shown that the algorithm which delivers the best performance
for velocity estimation is the CET. It is a signal processing method, i. e., independent from
the system model, and requires only few parameters. On the other side it requires a micro-
controller external hardware component with a high resolution clock to be implemented.

In this work, some extensions to the original algorithm to further improve the perfor-
mance for the low velocity range estimation and computation time are proposed. This
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improvement take advantage of the hardware topology of LOLA, but can easily be extend to
any multi-axis servo system.

By exploiting the capabilities of the FPGA programmable logic, an integer division unit
can be implement in hardware without the micro-controller support. In this way, the
external hardware can directly deliver the velocity information when the micro-controller
requests it without further computations. Because the velocity requests for each joint
are always sequential, only one division unit in the FPGA can be shared between all the
controlled axis. This improves the usage of the limited FPGA programmable electronics,
leaving resources available for the implementation of other features. The latter is a very
desirable feature because the hardware division does require many logic gates on the FPGA
chip. The FPGA chip is also equipped with configurable hardware multipliers which have
been used to speed up the computation and to further save logic resources.

A further improvement is the low velocity range extension. This is especially useful for
feedback controlled system because it helps improving the behavior during the transition
between the no-motion (or very slow motion) state to the beginning of motion. It avoids
jumps in the control command of the motor. Considering a classic finite difference method,
which is the basic algorithm for the CET implementation, the lower detectable velocity
θ̇low depends on the sampling frequency of the estimation system tsamp. If the position of
the encoder changes of one increment, positive or negative, within a sampling cycle, the
lowest detectable velocity is:

θ̇low =
1

tsamp
. (3.28)

If the time detection counter used to measure the incoming time of each increment of
the position sensor is not strictly limited by the sampling period tsamp. It can measure
also longer periods of time between successive encoder increments. The limit set by
(3.28) can be arbitrarily reduced enabling the counter to measure longer periods of time
between successive encoder inputs. Parameter t l imit defines the upper saturation value
of the counter and, therefore, the minimum velocity that can be measured. The smallest
recognizable velocity is reduced to the following lower value:

θ̇Llow =
1

t l imit
, with t l imit > tsamp (3.29)

θ̇Llow < θ̇low. (3.30)

Another feature that can be implemented to improve the transition between the slow
motion to no-motion, is the inverse velocity decrement. Whenever a joint is slowing down
to the no-motion state, a jump from θ̇low to 0 rad/s occurs. To reduce this hard transition
an inverse polynomial decrement of the joint velocity can be implemented. The current
value of the velocity estimation θ̇cur rent is computed by dividing the previous value θ̇old by
a suitable reduction constant factor βr:

θ̇cur rent =
θ̇old

βr
. (3.31)

The major effect of this feature is the improvement of the smoothness of the joint control
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Figure 3.10: Comparison between the Extended CET and finite differences algorithms.

trajectory.

The velocity estimation unit of LOLA has all the aforementioned features. A 32 Bit integer
division IP-Core from the Xilinx IP-Core Generator10 is implemented. The lower limit of
the unit time counter has been set to t l imit = 4.5 ms, i. e., three times the control sampling
frequency of the robot. The reduction constant factor is set to βr = 2.

In Figure 3.10 a comparison between the extended CET and the backward finite differ-
ences algorithms for low velocities is shown. The picture is generated from real measure-
ment on LOLA’s hip joint. The velocity computed with the extended CET presents a finer
resolution of the joint velocity, a smoother transition between the no motion and start of
motion region and a smoother velocity decrement to 0 rad/s.

3.6 Programmable Hardware Implementation
The velocity estimation module is implemented in the Incremental Encoder FPGA. The unit
is composed of two parallel processes and two FPGA computation modules:

• one input and control process (ICP),

• one velocity algorithm process (VAP),

• one 32 bit hardware multiplier,

10 The IP-Core Generator is a software program supplied with the Xilinx ISE design development suite.
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• one 32 bit division module.

To maintain a modular architecture, the input and algorithm process are kept separated.
In this way, it is easier to implement improvement or different algorithms in the future.

The ICP receives the position counter information from each incremental encoder decoder.
The incoming time of every position count is saved for each encoder. The time source is
a process local counter running at the FPGA clock frequency. Once a velocity request is
detected, ICP triggers VAP to start the velocity estimation for a specific encoder. The passed
information to VAP are the current encoder count θcur rent and its detection time tcur rent .

The VAP analyses the input data and, depending on the position values of the last
computation θold , performs one of the following actions:

1. if θcur rent 6= θold: The velocity is computed using the CET algorithm. For a more
precise time computation, the remaining time between the end of the sampling
period tsamp and tcur rent is computed and saved to be used in the next computation.

2. if θcur rent = θold:

• if tcur rent < t l imit: The value told is incremented with tcur rent and θ̇cur rent is
decremented using (3.31).

• if tcur rent > t l imit : The value told is saturated to value t l imit until a new position
increment is detected.

VAP uses the hardware multiplier and the division module to compute the new velocity
value. The hardware multiplier is a silicon embedded component of the FPGA chip11 and it
needs only one clock cycle per operation. The division module is implemented in the FPGA
logic [150] and does have constant latency of 36 clock cycles. This value depends on the
number of bits of dividend and quotient.

3.7 Chapter Summary
This chapter introduces the sensor features extensions for the robot LOLA. The problem of
receiving the motor position information for a reliable control of each joint of the system is
solved using a dedicated electronic module. The latter drastically reduces the transmission
time of the position information to the DSC, and consequently to the CCU. In the first
implementation, the transmission of the position over CAN bus caused a limitation of the
control cycle period. For a research platform, this kind of performance limit is highly
undesirable. Taking advantage of the Incremental Encoder FPGA chip, this limitation are
drastically reduced.

A robust and efficient velocity estimation is a very desirable feature in servo controlled
systems. The information delivered by the velocity signal can be used for analysis purposes
and to improve the dynamic control of the system. Different velocity estimation algorithms
have been presented and analyzed in this chapter. Their advantages and disadvantages
are discussed and their performance is compared using real measurement data of joint
trajectories of the robot. The best performing algorithm in terms of maximum, mean and

11 More recent Xilinx FPGAs also provide more advanced hardware units called DSP Slice. This compo-
nent can implement advanced mathematical operations.
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RMS value of the absolute and relative error, i. e., the Constant Elapsed Time, is chosen. This
estimation method presents advantages in terms of parameterization simplicity, requiring
only the nominal sampling period of the servo system. Furthermore, improvement for the
low velocity range are proposed as an extension of the aforementioned method, i. e., the
extended CET algorithm.





4 Joint Model Simulation and Parameter
Identification

4.1 Introduction

A simulation program for a mechatronic system is a valuable instrument for the design
of the system, to choose the right sensors for the system specifications and to design the
system control. The system behavior and performance can be analyzed in ideal conditions
and in the presence of disturbances and noises.

In [21, 22, 23] different aspects and improvements of the simulation of JOHNNIE and
LOLA are presented. In [20] a complete overview of a simulation library for electrically
actuated humanoid robots is discussed. Every aspect of the dynamic simulation, methods
for direct and inverse kinematics computation, path and gait generation as well as control
aspect is discussed. In the simulation different models for each hardware component
of the system are available: rigid and elastic joints, Harmonic Drive gears, rotational to
linear movement transformers (ball screws drivers for JOHNNIE and roller screw drives for
LOLA), electrical actuators, sensors, environment and obstacles models. The simulation
and control program is written in the C++ programming language and, thanks to its
modular structure, can be easily extended with new software modules. In Schwienbacher
[118] advanced algorithms for system dynamics solving, direct and inverse kinematics,
self-collision avoidance and angular momentum control are proposed. These methods are
part of the system simulation for JOHNNIE and LOLA.

Using this software framework, different models of LOLA and JOHNNIE can be simulated.
Depending on the purpose, simulation programs with different levels of complexity, and
consequently different execution time can be built. A reduced model simulation assumes
perfect joint tracking control and neglects effects like gears elasticity, drive dynamics and
uses a simplified model of the feet contact forces. This simulation is mainly used to test high
level tasks like robot trajectory planning, step sequence generation, inertial stabilization,
etc. A family of complete model simulations considers the previously neglected effects and
the complete joint tracking control. These simulations can be used for system design, joint
control design and to simulate fast walking scenarios.

In this chapter, the Low level control aspects of the simulation software are discussed,
i. e., the joint control, motor and power electronics. The implementation of a model for the
joint actuation train for LOLA is introduced and the estimation of joint parameters, with the
final goal of improving the system control using model based methods, is discussed.

69



70 4 Joint Model Simulation and Parameter Identification

4.2 Control System Overview
A humanoid robot is a complex mechatronic system. Its control system must take into
account many different physical effects to guarantee the stability of the overall system
and its performance. Especially for biped walking robots the reliability of the control and
gait generation must be well organized to achieve the desired system performance. It is
useful and convenient to subdivide the control of the robot in dedicated parts, each with
its specific purpose, in order to keep a good overview and maintenance of the complete
system. Every component has a specific interface for input and output values. This modular
approach allows the developers to change and improve every component of the control
system and reducing the risks of failures as long as the module interfaces compatibility is
guaranteed.

For these reasons, the control system of LOLA can be divided in different functional parts
that have different purposes. With reference to Figure 4.1, the modules can be identified
as:

1. Input system: The interface of the robot user. Walking direction and velocity are
given as input to the robot. The inputs can be generated by the user using a graphical
user interface, a joystick or can be autonomously generated by the robot if the vision
system is p. In the latter case the vision system does generate the required inputs
depending on the environment in which the robot is moving avoiding obstacles that
can be encountered along the walking path.

2. Finite state machine: Depending on the desired input, this module triggers and
coordinates the gait generation and step sequence planning. If the robot should not
move, no gait nor step sequence is generated.

3. Step sequence planning: this module generates the step sequence that the robot must
accomplish to move in the direction and velocity requested by the input.

4. Trajectory planning: Once the step sequence has been planned, this module calculates
the desired task space trajectories and the ideal contact forces to achieve the desired
movement.

5. Inertial stabilization: The ideal planned contact forces must be modified depending
on the state of the robot.

6. Hybrid position/force control: The stabilized trajectories in task space and contact
forces must be mapped to each joint of the robot, i. e., to the joint space through
inverse kinematics computation, to accomplish the desired movement. The output of
this module are the desired position and velocity of every joint of the robot. These
trajectories and contact force are planned to achieve the desired movement.

7. Direct Kinematics: Depending on the current state of the robot, this module computes
the task space state of the system. Its output is used by the inertial stabilization and
hybrid position/force control.

8. Position Control: the joint space trajectories must be controlled by local controllers.
This module represents the DSCB joint controllers.
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9. Velocity control, Current control and Actuation: This module represents the joint
actuation train. The DSCBs output is the desired velocity. The module controls motor
velocities, motor currents and, through the AUs, gears and motors, generates the
desired torque.

10. Robot Joints and Sensors: This last module represents the robot joints and the sensors
that read the robot state, i. e., motor positions, velocities, current, joint positions,
contact forces and upper body orientation.

The complete system can be seen as composed of two interacting parts: High Level
Control (HLC), composed by the first seven parts and Low Level Control (LLC) with the last
three units. All the tasks are executed in real-time on the CCU and on the DSCBs.

4.2.1 High Level Control
The HLC monitors the state of the overall robot system. Major tasks of the HLC of LOLA are:
the walk pattern generation (see [22]) and the stabilization of the robot (see Buschmann
et al. [23]). Another important task is to ensure safety for the humans that work with
the robot and for the robot itself. In order to extend the low level error check routines
available on the ELMO servo drive and on the DSCBs, the following safety functions are
implemented:

1. watch dog: monitoring all the HLC running processes ([20]),

2. safety check: inspection of the sensor data to detect data inconsistency ([20]),

3. self-collision: avoidance of self-collisions based on the current robot pose and shut-
down in the case of an imminent collision ([118, 119]).

LOLA can be controlled in different ways (see Figure 4.1). The input data needed by the
Finite State Machine (FSM) are the desired walking direction and speed. This information
can be sent from a human user by a graphical user interface, a joystick or from the vision
system.

The FSM triggers the gait generation and the step sequence planning. After that, the
ideal contact force (λid) and task space trajectories (w id) are computed. These trajectories
must be stabilized against model imperfections and external disturbances (λd and w d).
The desired joint-space positions (Θd) and velocities (Θ̇d) are computed and transmitted
to the LLC.

4.2.2 Low Level Control
In Section 2.4.3 the main software features of the DSCB boards are presented. In control
function mode the DSCB starts the motor control and tracks the desired trajectories received
from the CCU. The implemented control algorithm uses cascaded PID controllers for motor
position, velocity and current.

The current and velocity loops run on the ELMO servo drives. The first has a cycle
time of 70µs and the second of 140µs. The position loop is implemented as proportional
controller with a velocity feed-forward. The cycle time of the position controller is 1.5 ms,
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Figure 4.1: Overview of the walking control system. Where: λ: are the contact forces. w : are the
trajectories in task-space. Θd , Θ̇d : are the joint trajectories in joint-space. ν : is the vector of
the upper body positions and orientations. φd , φ̇d are the desired motor positions and velocities.
τ are the joints torques. Θ , ϕ , ϕ̇, I are the measured joint positions, motor positions, velocities
and currents respectively.
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i. e., one cycle of the SERCOS-III bus. It can run directly on the DSCB or on the CCU. In the
first case the DSCBs control the motors position, while in the second case they are used
as I/O devices which forward the desired velocity to the ELMO and sends the measured
position to the CCU. When the position control runs on the CCU, the complete state of the
robot is available. Advantages of this control structure is the availability on the CCU of
a floating point unit (FPU) and that, in the case of modifications of the control law, the
update must be compiled and programmed for only one device instead of eight. The FPU
allows a slightly increase in the precision performance of the position controller, while
the easier programmability is a more practical aspect that still must be considered for a
research platform where the experimentation and consequently the changes in the software,
are very frequent. The disadvantage of this implementation is a latency of one SERCOS-III
cycle (ts =1.5 ms) in the position control loop.

In Table 4.1 the mean tcl mean and maximum tcl max duration of a complete control loop
on the DSCBs are reported. The values are computed over 168960 cycles (253.44 s). The
measurements consider the time consumed by a DSCB to read the new desired trajectories
t t r , sample the sensors tss, control the actuators tca and send the feedback data to the CCU
t f b:

tcl = t t r + tss + tca + t f b (4.1)

As can be seen, the mean and maximum values depend on the considered DSCBs. That can
be explained recalling that the number of sensors and actuators connected to a DSCB can
vary, see Section 2.4. Considering DSCB4 and DSCB7, which interface the same sensors
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Table 4.1: DSCBs Control Loop time.

DSCB Name tcl mean
�

µs
�

tcl max
�

µs
�

DSCB0 566 672
DSCB1 558 663
DSCB2 547 650
DSCB3 423 509
DSCB4 644 750
DSCB5 550 650
DSCB6 495 618
DSCB7 644 750

and actuators (see Figure 2.7, Distributed Sensor Control Board i), they need the same time
to complete a control cycle.

An interesting comparison is the percent of Sercos cycle time consumed by every DSCB in
the worst case, i. e., tcl max (Figure 4.2). As can be seen none of the DSCBs overcame the 50%
of the SERCOS-III cycle. This means that the DSCBs have enough available computation
resources and, from the LLC point of view, it would be possible to further reduce the
SERCOS-III cycle time.

4.3 Lola Multibody Simulation
To design the control of a mechatronic system a dynamic model is required. Buschmann
[20] has developed a multibody simulation to simulate both LOLA and JOHNNIE. Methods
to develop the dynamic equation of a mechanical systems can be found in [110, 142].
Specific reads about industrial robotic systems are [33, 125] and [73] describe the model of
legged robots. The Lagrangian dynamic model of a humanoid robot, actuated by electrical
motors with unilateral ground contacts, and its Equation of Motion (EoM) can be written
as follows1:

M(q)q̈ +C(q , q̇)q̇ +G(q) = Qdrive +Qex t , (4.2)

where:

• q = [ν ,Θ]T : is the vector of the generalized coordinates of the robot, or configuration
space. ν is the vector of upper body positions and orientations and Θ is the vector of
the joint space coordinates,

• M(q): is the mass matrix of the system,

• C(q , q̇): is the matrix of centrifugal and Coriolis forces,

• G(q): is the generalized gravity force vector.

1 To reduce the complexity of the equation the time dependency of the variable is omitted.
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• Qdrive = [0,τ]T : is the joint actuation torque vector,

• Qex t : is the vector of the forces generated by ground contacts2.

The main objective of this work is the control of the joints, for these reason from now
on only the joint space part of the model is considered. Considering only the joint space
coordinates Θ and the dynamic model of motors and rigid gears, the following dynamic
equations can be written:

M J(Θ)Θ̈+C J(Θ, Θ̇)Θ̇+GJ(Θ) = τ+QJex t +Qν , (4.3)

Lİ +RI + kMϕ̇ = U , (4.4)

kτI = τm, (4.5)

τ = N(Θ)τm, (4.6)

where:

• M J(Θ): is the joint space mass matrix.

• C J(Θ, Θ̇) : is the joint space matrix of Coriolis and centrifugal forces.

• GJ(Θ) : is the vector of gravitational forces acting on the joints.

• τ : is the vector of the joint actuation torques.

• QJex t : is the vector of the external contact forces projected into the joints coordinates.

• Qν : is the vector of the forces related to the upper body coordinates ν acting on the
joints.

• Θ, Θ̇, Θ̈: are the joint positions, velocities and accelerations respectively.

• U: is the vector of the voltage applied to the motors.

• τm: is the vector of motor torques.

• L: is the diagonal matrix of motor inductance.

• R: is the diagonal matrix of motor resistance.

• kM : is the diagonal matrix of motor back EMF3 constants.

• kτ: is the diagonal matrix of motor constants. This value models the properties of
the motor of transform the current I into the actuating torque τm

4.

• N(Θ): is the diagonal matrix of joint gears reduction ratio. In the case of LOLA this
matrix is variable with the joint configuration Θ due to the non-linear kinematic of
the knee and ankle joints.

2 Qex t contains the resulting generalized forces due to ground contact. Unilaterality conditions are not
shown for simplicity.

3 Electromotive Force.
4 For many motors used in servo applications kτ ' kM .
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Figure 4.3: Structure of the joint control of Lola.

• ϕ, ϕ̇, ϕ̈: are the vectors of motor positions, velocities and accelerations respectively.

The system (4.3) represents a very general model of a multibody system and permits to
easily consider non-linear effects, disturbances and friction forces. Equations (4.4)-(4.5)
are the dynamic equations of a DC motor. Nevertheless, they can still be used for PMSM
motors if the Clarke [34] and Park [108] transformation and a Field Oriented Control
(FOC) (see [17, 98]) algorithm are used. In Park’s coordinates, the current has two
components: the magnetizing current Id and current producing torque Iq. In the FOC
control algorithm the first is regulated to 0, while the latter is controlled to track the
desired current and, consequently, to produce the required torque profile. Under these
conditions, the PMSM motor can be considered equivalent to a DC machine. Equation
(4.6) considers the amplification of the motor torque through the joint gears.

For further details about the development of the dynamic model (4.3)-(4.6) and kine-
matic model of LOLA (and JOHNNIE) see [20] and [118].

4.4 Extension of Lola Multibody Simulation: Actuation
System

The multibody simulation of LOLA is a comprehensive software that considers every aspect
of the robotic system. Nevertheless, the joint control can be extended considering the
characteristic of the actuation train. This includes the implementation of: models for the
AUs, the use of the real cycle time of the control loops (considering also the latency of the
control signals) and the use of integer arithmetic in the LLC and sensor data.

As it is shown in Chapter 2 and previously in this chapter, the LLC implemented for LOLA

has a distributed structure of independent local joint controllers. In Figure 4.3 the structure
of one of the joint controller of the robot is depicted. The current and velocity controls take
place in the AUs, i. e., the ELMOS, while the position control can be implemented either on
the DSCBs or directly on the CCU.

This kind of joint control is one of the simplest but still very robust technique to achieve
satisfying results in terms of tracking errors, disturbance rejection and effort for controller
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tuning. Considering the reduced joint space system of the actuated joint DoFs (4.3), the
approach proposed in [125] can be used. Left-multiplying by the constant diagonal matrix5

N−1, (4.3) can be rewritten on the motor side of the joint:

N−1M J(Θ)N
−1ϕ̈ + N−1C J(Θ, Θ̇)N−1ϕ̇+N−1GJ(Θ) = τm

+N−1QJex t + N−1Qν ,
(4.7)

N−1τ = τm. (4.8)

For high values of gear transformation ratio N, as it is the case for LOLA, and for medium
or slow velocities, the effects due to the robot position configuration vectors C J(Θ, Θ̇)
and GJ(Θ) can be considered as disturbances. Neglecting the joint coupling effect of
off-diagonal elements of the mass matrix Ma j(Θ) and observing that the diagonal elements

can be seen as sum of the mean values of joint inertia Ma j and a configuration dependent
term ∆Ma j(Θ), the following equation can be written as:

Ma j(Θ) = Ma j +∆Ma j(Θ). (4.9)

Consequently, (4.7) can be rewritten as:

τm =N−1Ma j N
−1ϕ̈ + d, (4.10)

d =N−1∆Ma j(Θ)N−1ϕ̈ + N−1C J(Θ, Θ̇)N−1ϕ̇ + N−1GJ(Θ)

−N−1QJex t + N−1Qν ,
(4.11)

where d represents all the configuration dependent terms, the external forces applied to
the robot and the joint friction. Equation (4.10) is a linear decoupled system of equations,
while (4.11) is a non-linear coupled system.

For high gear reduction ration N and moderate joint velocities, (4.10) can be used to
design control schemes for decoupled single input single output systems. Vector d can be
considered as the vector of system disturbances to be rejected. This control scheme has
been demonstrated to be successful for LOLA, letting the robot reach a walking velocity of
2.7 km/h (Favot et al. [48]), 3.34 km/h (Buschmann et al. [24]) and also 3.6 km/h.

4.4.1 Lola Control Scheme

Current Control Loop

The current control loop is implemented in the AUs. It is a proportional integral (PI)
tracking controller. Defining the tracking error as eI = Id − Im, the control law is defined as
follows:

CI = KpieI + KiieI i, (4.12)

eI i =

∫

eI d t, (4.13)

5 This assumption is explained in detail in Section 4.5.1.
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Figure 4.4: Block diagram of the motor current controller.

where Kpi is the proportional gain, Kii is the integral gain, Id is the desired motor current,
Im is the measured motor current and eI i is its integral of the tracking error. Considering a
single actuated joint of the motor dynamics equations (4.4)-(4.5) and applying (4.12), the
motor current error equation can be written as:

İ =−
R

L
I +

1

L
U −

kτϕ̇

L
, (4.14)

ëI i +
�

R

L
+

Kpi

L

�

ėI i +
Kii

L
eI i =

1

L

�

kτϕ̇+ RėI i

�

. (4.15)

The current control is shown as a block diagram in Figure 4.4. The current scaling factor s fI

converts the current signals (Id is the desired current and Im is the measured current) from
[A] into the integer value used by the AU current controller (Ids is the scaled desired current
and Ims is the scaled measured current). The Limit Protection block at the controller output
protect the power electronics from too high input signals which could cause over-voltages
and loss of stability of the control loop. The power electronics is a first approximation
model of an impressed voltage inverter in Parks coordinates. Its input Ud is −1< Ud < 1
and UDC = 80 V is the maximum available voltage for the motors. The output voltage U is
then −UDC < U < UDC .

The tuning of the PI controller, i. e., the search of the optimal values for Kpi and Kii, is an
automatic procedure implemented in the ELMO (see [45], [43] and [46]). This procedure
must be executed directly on the system to be controlled when the unit is initialized for the
first time. It can also be repeated for further improvements of the system or in case the
system is changed. The values can also be manually set by the user.

In Figure 4.5, an example of the current tracking performance of the left knee AU is
shown. The measured current Im perfectly follows the desired current trajectory Id . This
profile was measured while the robot was stepping on the spot. Because of the good
performance of the current control loop the electrical dynamic can be neglected for the
design of the position and velocity loop. With this assumption each motor can be considered
as a torque generator and modeled as:

kτI = τm. (4.16)
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Figure 4.6: Block diagram of the motor velocity controller.

Velocity Control Loop

The velocity controller is also implemented in the AUs. One of the major advantages is
the fast execution time of this control loop. It offers a valuable smoothness and adds a
desirable velocity dependent damping to the joint control loop. It is implemented as a
proportional (P) controller:

Cϕ̇ = Kpveϕ̇, (4.17)

eϕ̇ = ϕ̇d − ϕ̇m. (4.18)

The velocity control is shown as a block diagram in Figure 4.6. The current velocity of the
motor is computed by differentiating the position signals ϕm every sampling cycle. The
velocity scaling factor s fϕ̇ converts the velocity signals (ϕ̇d , desired motor velocity and
ϕ̇m measured motor velocity) in [ counts

s
] (ϕ̇ds scales desired motor velocity and ϕ̇ms scales
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measured motor velocity).

Position Control Loop

The position control loop is implemented as a proportional tracking controller with velocity
feed-forward signal. It can be executed on the DSCB or on the CCU:

Cϕ = Kppeϕ + ϕ̇ f f , (4.19)

eϕ = ϕd −ϕm. (4.20)

The position control is shown as a block diagram in Figure 4.7. The desired joint position
Θd and velocity Θ̇d are converted to motor position ϕd and velocity ϕ̇d using the joint gear
transformation function N(Θ).

The position scaling factor s fϕ converts the position signals (ϕd desired motor position
and ϕm measured motor position) from [rad] into a suitable scaled integer value (ϕds is
the scaled desired motor position and ϕms is the scaled measured motor position). The
latter is then converted on the DSBC into encoder counts. s fϕ is computed in order to take
advantage of all the range of a 32 Bit integer value on the DSC. The joints have different
encoder resolution (see Table A.1) and with the goal of using only one value for each all
joints, the maximum common multiplier between all the encoder resolutions is computed.
Having only one scaling factor for all joints improves the transparency of the hardware to
the programmer and simplifies the control algorithm. The use of the velocity feed-forward
signal improves the trajectory tracking of the joint position reducing the phase lag between
the desired and measured position.

Control Loops in the Robot Simulation

The previously discussed control loop is implemented in the full model simulation of LOLA.
Each loop is executed with it is own cycle time as described in Section 4.2.2. Implementing
the complete control structure of the robot gives the advantages of a powerful detailed
analysis tool. It allows to analyze the system performance at every control level, to observe
and understand its limits and to understand the causes of eventual problems and failures
that may occur during the experiments. On the other side, the implementation of such a
detailed model, causes longer simulation times and the generation of a bigger amount of
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data. The program must be executed with an integration time step constant well below the
sampling time of the current control loop (70µs) and is typically set to 7µs.

With these improvements, the full multibody simulation of LOLA uses the same control
loop gains as for the real robot.

4.5 Lola Joint Model
To improve the joint control of the robot, a suitable model is required. Effects like friction
and stiffness must be taken into account to reduce the tracking error. Especially in the case
of fast walking speeds, i. e., fast trajectory tracking, those effects play a major role.

The transmission component of the actuation train of LOLA are roller screw drives
for the knee and ankle and Harmonic Drive gears for the other actuated DoFs. Both
elements present high but limited stiffness which can lead to deformation in the gears.
This deformation induces a time varying displacement between the position of the motors
and the position of the joint after the transmission. This effect can lead to instabilities
of the control chain and of the entire robot system. For joints with a long actuation link
as the hip (0.984 m) or knee (0.544 m), an error of a few mrad in the position tracking
result in positioning errors of the end effector, i. e., the foot, in the order of cm. The
latter also leads to stronger impact to the ground, higher impulse disturbances in the
actuation train and consequently to bigger deformation in the joints. All these effects can
be classified as disturbances that the joint control must handle and limit their impact on
the system stability. In this section, two kinds of model are considered: reduced model of
the robot joints which considers an ideal transmission elements with infinite stiffness, an
extended model implements joints with finite stiffness. To simplify the analysis and the
implementation of a control scheme, a joint local approach based on the reduced actuation
system described in (4.7) is chosen. Contrary to the system global approach in Section 4.3,
the latter considers a model in the joint local coordinates with concentrated parameters.

4.5.1 Reduced Model
If the electrically actuated joints are considered ideally stiff, they can be modeled using
three elements:

• the motor inertia Jm,
• the transmission ratio N(Θ),
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• the link inertia Jl .

Figure 4.8 shows a block diagram of this model. The torque τm acts on the motor inertia
generating the motion described by the motor position, velocity and acceleration ϕ, ϕ̇ and
ϕ̈ respectively. b(ϕ̇) is the motor side friction as a function of the motor velocity and is
part of the transmission model. The link side motion described by position, velocity and
acceleration Θ, Θ̇ and Θ̈ respectively, is linked to the motor states by the transmission ratio
N(Θ), τl is the load torque acting on the joint link. For the joints of the system which use
Harmonic Drive gears the transmission ratio is constant and independent from the joint
position. Consequently, the relation between the motor and link side variables become a
linear relations:

N =
τ

τm
=
ϕ

Θ
=
ϕ̇

Θ̇
=
ϕ̈

Θ̈
, (4.21)

where τ is the actuation torque available on the link side after the joint transmission.
For the knee and ankle joints the transmission ratio is a non-linear function of the

position of the joints Θ. The relation between motor side and link side variables can be
written calculating the first and second time derivative as follows:

ϕ = Λi(Θ), (4.22)

ϕ̇ =∇ΘΛi(Θ)Θ̇, (4.23)

ϕ̈ =∇2
ΘΛi(Θ)Θ̇

2+∇ΘΛi(Θ)Θ̈. (4.24)

∇ΘΛi is the first function derivative with respect the variable Θ, while ∇2
ΘΛi is the second

function derivative. Figure 4.9 and Figure 4.10 illustrate the relation (4.22) for the right
and left knee joints. In [20] and [118] the computation of the previous expressions is
described. Since (4.22)-(4.24) are kinematic relations, their values can be precomputed
offline and stored in look-up tables. In this way a fast availability of the values is guaranteed
for the real-time control of the robot.

Applying the same approximation approach as in Section 4.4, the non-linear transmission
ratio in (4.22) can be considered as the sum of a constant N im and a configuration
dependent term ∆Λi(Θ):

Ni(Θ) = N im+∆Λi(Θ). (4.25)

Neglecting the second term of the equation for limited variation of the angle Θ, Ni can be
considered constant. In this case (4.21) can be also used to model the knee and ankle joint
transmissions. Consequently, the matrix of the gear reduction ratios N becomes a constant
diagonal matrix.

Considering, (4.21) the generalized joint model dynamic equations can then be written
on the motor side of the joint6 as a function of the variable ϕ:

(Jm+ Jlm)ϕ̈+ b(ϕ̇) = τm+τlm, (4.26)

6 Note that the equations could have equivalently been rewritten on the link side of the joint as function
of the variable Θ.
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Figure 4.9: Relation between motor and link side angles of the right knee.

−2.5 −2 −1.5 −1 −0.5 0 0.5
−140

−120

−100

−80

−60

−40

−20

0

20

θ[rad]

ϕ
[r
a
d
]

Figure 4.10: Relation between motor and link side angles of the left knee.
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Jlm =
Jl

N 2 , (4.27)

τlm =
τl

N
, (4.28)

where Jlm is the load inertia reported on the motor side of the gear and τlm is the load
torque also reported on the motor side of the joint.

4.5.2 Extended Model
In [20] the mechanical model of each joint of LOLA is described. The author proposes
a model that defines the effects of friction and stiffness as concentrated parameters in
the joint transmissions. This model is based on the catalog data available for those
components and has been proved to deliver good results for the dynamic simulation of
LOLA in comparison with the data collected during the experiment with the robot.

For the joint friction of the Harmonic Drive gears, Buschmann [20] proposes a modeling
function dependent on both the motor shaft velocity and the load torque:

τ f (ϕ̇,τl) =− sgn(ϕ̇)(τ f 0+µ‖τl‖)− (bv + γ‖τl‖)ϕ̇. (4.29)

The model parameters τ f 0, no-load starting torque/no-load back driving torque, µ and γ
were determined by least square fitting. τl is the load torque acting on the link side of
the gear divided by the transmission ration N . This model has proven to fit well with the
catalog data of the Harmonic Drive gears, improving the model proposed by Rossmann
[114] and Löffler [86].

For the knee and ankle joints, the only available catalog data for the roller screws are the
direct ηD and indirect ηI efficiency. Buschmann [20] uses the model (4.29) computing the
equivalent friction torque parameters. The result is a function dependent from the motor
torque and the efficiency η:

τ f (ϕ̇,τm) =− sgn(ϕ̇)‖(1−η)τm)‖ . (4.30)

In the previous equation η = ηD when the joint is actuated, i. e., ϕτm > 0, and η = ηI

when the roller screw is moved by an external force, i. e., ϕτm < 0.

To correctly model the joint behavior, another important parameter is its elasticity. Every
real mechanical system presents some deformation when subject to forces or torques, which
can be external forces or forces caused by the normal work of the system. The elasticity
characteristics of a robot arm can be modeled as concentrated in the joint or distributed
along the link. In [38] the authors discuss modeling methods and control techniques for
the regulation and the tracking control of robotic arms.

The presence of flexible elements in the actuation train causes small but high frequency
oscillations on the link side of the joint. This can lead to errors in the trajectory tracking
and, therefore, errors in the positioning of the end effector. Having elastic elements in the
actuation train leads to a mechanical resonance which limits the bandwidth of the control
loop and consequently the value of the control gains. On the other side, taking into account
the elasticity, leads to a more complex system model and a more complex control problem.
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Table 4.2: Lola joint deformation while walking at 2.3 km/h.

Joint Name ∆Θmean ∆ΘMAX

[mrad] [mrad]

Pelvis rotation 0.085 2.069

Pelvis adduction 0.013 1.743

Hip rotation right 0.082 0.529

Hip adduction right 0.680 0.681

Hip flexion right 0.717 3.174

Knee flexion right 3.028 12.488
Ankle adduction right - -
Ankle flexion right - -
Toe flexion right 0.452 1.996

Hip rotation left 0.101 0.870

Hip adduction left 0.723 1.085

Hip flexion left 0.762 3.391

Knee flexion left 5.000 14.735

Ankle adduction left - -
Ankle flexion left - -
Toe flexion left 0.637 1.529

Arm flexion right 0.097 0.747

Arm adduction right 0.075 0.971

Elbow flexion right 0.129 0.756

Arm flexion left 0.081 1.664

Arm adduction left 0.074 0.429

Elbow flexion left 0.187 2.069

The number of state variables necessary to model a flexible joint is twice that for the rigid
model if the flexibility is considered concentrated in the joint transmission. For the case of
distributed flexibility along the link a continuous system must be considered. The latter is
even more complex than in the previous case. Since LOLA has relative short and stiff links
between the joints, the elasticity is considered concentrated in the transmission. Position,
velocity and acceleration on the motor side are decoupled from the one on the link side
and the relation (4.21) can not be used directly.

The possibility of measuring the position on the motor and link side of the transmission
enables the quantification of the relative deformation of the joints. Table 4.2 shows the
mean and maximum value of the joint deformation ∆Θ = (Θ−ϕl) (where ϕl is the motor
position reported on the link side of the joint) for each joint of the robot equipped with a
link side encoder7. The data was measured while the robot walks at a velocity of 2.3 km/h.

7 For the ankle joints no measurement is available. The link side encoder is sensitive to mechanical
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Figure 4.11: Deformation on knee and hip flexion joints (walking velocity 3.4 km/h).

As it can be seen, the maximum value of the deformation is around 1 mrad for almost all
joints, except for the hip flexion and knee joints. In those cases the error between the
motor and link side positions reaches values over 3 mrad for the hip flexion and 12 mrad
for the knee. These indicates that this joints are more subject to deformation effects.

Figure 4.11 shows the deformation of the right hip and right knee joints when the robot
is walking at 3.6 km/s. As can be seen the deformation increases for both the joint in
comparison with the previous experiment. The maximum difference between motor and
link side position is 4 mrad for the hip and 20 mrad for the knee.

The joint stiffness model proposed by Buschmann [20] for the Harmonic Drives gears is
described as a progressive and piecewise linear torque/torsion function [85]:

τK =







K∆Θ for τk ≤ τe1

τe1+ K1∆Θ for τe1 ≥ τk ≤ τe2

τe2+ K2∆Θ for τk > τe2

(4.31)

τk is the elasticity torque, ∆Θ is the gear deformation, τe1 and τe2 are the limit torques of
the low to middle and middle to high torque range for the Harmonic Drive gears, K, K1

and K2 are the equivalent stiffness parameters also for the low, middle and high torque
range. The values of the limit torques and equivalent stiffness for the Harmonic Drive gears
are listed in Table E.1, Appendix E. Figure 4.12 shows the schematic diagram of the elastic
joint, where the joint stiffness K , modeled as a torsional spring, is added on the motor side

deflection of the inductive measuring disk. For these joints the deformation of the support structure of
the disk causes the sensor to fail.
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Figure 4.12: Model for an elastic joint.

of the joint. Θm, Θ̇m and Θ̈m are the link position, velocity and acceleration respectively,
reported on the motor side. The dynamic model of the elastic link can then be written on
the motor side of the gear as:

JlmΘ̈m+ K(Θm−ϕ) = τlm (4.32)

Jmϕ̈+ b(ϕ̇) + K(ϕ−Θm) = τm, (4.33)

Jlm =
Jl

N 2 , (4.34)

τlm =
τl

N
, (4.35)

N =
Θm

Θ
=
Θ̇m

Θ̇
=
Θ̈m

Θ̈
. (4.36)

Here, Jlm is the link inertia reported on the motor side and τlm is the disturbance torque
also considered on the motor side of the joint. Instead of the model (4.31) the joint
elasticity is modeled as a torsional spring with constant stiffness K .

For the knee joint, no information is available on the stiffness of the spindles. As it is
shown in Figure 4.11 this component shows the largest deformation in comparison with
the other joints. To correctly model the behavior of the knee joint, its stiffness function is
needed. Without any catalog data, the parameters must be determined by an estimation
using experimental measurements.

In the next section the joint parameter estimation for the knee is discussed. The stiffness
and friction parameters for the other joints are also computed to confirm the values from
the catalog data.

4.6 Joint Parameter Identification
The challenge of the parameter estimation in dynamic systems has been addressed many
times. The determination of real system parameters is very important for the validation of
system models and the design of control laws.

The classical problem is the identification of the inertial parameters of a stiff robots.
The procedure is generally based on Least Square Estimation (LSE) using measurement
data from torque, position, velocity and acceleration as described in Siciliano et al. [125]
and Hollerbach et al. [70], while in Christensen and Hager [32] the sensor fusion and
estimation methods are considered in a more extended view of the robot perception.
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The estimation of other joint parameter like friction and stiffness has also been widely
discussed in the literature. In Pham et al. [111] the authors describe a parameter identifi-
cation method based on LSE with emphasis on correct data filtering before computing the
estimation algorithm to avoid bias in the results due to noisy measurement. Albu-Schäffer
and Hirzinger [12] obtain good results in the identification of the friction and elastic
elements of a 7 DoF robot using motor and link side position measurement and link torque
sensors. The inertia parameters of the robot are computed using the CAD data of the robot.
Gautier et al. [55] present a method to estimate the friction and stiffness parameters of
a single DoF robot using only motor torque measurement and then minimizing the error
between measurement and simulated data. In Flacco et al. [51] the authors use motor
position and velocity data to estimate nonlinear stiffness characteristics using a residual
model based estimation and a black-box model of the stiffness. Flacco et al. [50] a method
based on a combination of a residual-based stiffness estimator and Kalman filter using
motor side position information is presented. In Tuttle [141], Taghirad et al. [133] and
Kircanski et al. [80] detailed identification of stiffness and friction for Harmonic Drive
gears with satisfactory experimental results are presented. In Carbone et al. [30] the
authors analyze the stiffness property of the humanoid Robot WABIAN-RIV from a purely
theoretical point of view to estimate the stiffness property of the robot’s joints.

Detailed methods to specifically estimate the friction characteristic of an industrial robots
addressing also the control problem have been published. In Le Tien et al. [82] the authors
propose a friction observer based on the measurements of a torque sensor on the link
side of the joint gear. In Grotjahn and Heimann [59] and Grotjahn et al. [60] a two step
method with weighted least squares estimation to determine the friction parameters for an
industrial robot is defined. In Thuemmel and Rossner [139] and Thuemmel et al. [140],
the authors describe an identification method for joint friction for a generic mechanisms
based on iterative parameter estimation using simulation and measurements.

Tuttle [141], Swevers et al. [132] and Otani and Kakizaki [104] among others, address
the problem of how to properly excite the robot joint. They use optimized trajectories to
properly estimate the joint parameter in presence of measurement noise and actuation
disturbances.

In the case of LOLA, experiments have shown that the inertial parameters are sufficiently
well know from the CAD model of the robot. Also, the kinematic and dynamic model have
been proved to deliver good performance in comparison with the experiments as shown in
Buschmann [20]. Nevertheless, to improve the precision of the full multibody simulation
and to enable a model based design of the robot joint control, an experimental estimation
of the friction and stiffness parameters of the joints is desirable, especially for the hip
flexion and knee joints of the robot, which are shown to have the biggest tracking error on
the link side of the joint.

4.6.1 Parameter Identification — Method
In Crassidis and Junkins [35] and Simon [126] a good introduction to estimation methods,
from the classic linear LSE to more advanced non-linear algorithms, is presented. In
this work, the recursive LSE with forgetting factor method is used. The LSE problem
can be stated as follows: having a known regression matrix H , with the system output
measurement y , the estimation χ̂ of the constant parameter vector χ must be determined.
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The relation between the system output and its model can be stated as:

y = Hχ , (4.37)

e = Hχ̂ − y . (4.38)

In (4.37) it is assumed that the parameters in the vector χ have a linear relation to the
output vector y which is described by the regression matrix H .

Defining the residual error, due to measurement noise and modeling errors, between the
measurements and the system model estimation as in (4.38) the optimal solution to the
problem, originally proposed by Gauss [54], is the minimization of the following function
of the residual error:

J =
1

2
eT e. (4.39)

Computing the derivative of (4.39) with respect the estimated parameter vector χ̂ , a
necessary and a sufficient condition for the minimization problem solution can be found:

∇χ̂ J =
∂ J

∂ χ̂
= H T Hχ̂ −H T ȳ , (4.40)

∇2
χ̂ J =

∂ 2J

∂ χ̂∂ χ̂
= H T H � 0. (4.41)

Setting the Jacobian ∇χ̂ J of (4.39) equal to zero (necessary condition) and if its Hessian
(4.41) is positive semi-defined (sufficient condition) the minimization problem can be
solved from (4.40) and the estimation vector χ̂ can be directly computed as:

χ̂ = (H T H)−1H T y . (4.42)

The assumption for the previous method is that all the elements of the measurement
vector y are available at the moment of the computation. This is true if the estimation
is performed off-line after the conclusion of the experiment. If the estimation must be
performed during the experiment, i. e., on-line, the previous LSE method can be rewritten
in recursive form (RLSE). In this case only one set of measurements is needed at each
computation step k.

The RLSE algorithm can be stated as follows8:

K k = Pk−1H T
k[H kPk−1H T

k +R]−1, (4.43)

Pk = [I − K kH k]Pk−1, (4.44)

χ̂ k = χ̂ k−1+ K k(y k −H kχ̂ k−1). (4.45)

Where:

• χ̂ k−1 : is the previous step estimation of χ .

• χ̂ k : is the current step estimation of χ .

8 A complete derivation of the RLSE algorithm from LSE can be found in Crassidis and Junkins [35] and
Simon [126].
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• y k : is the current step measurement vector.

• H k : is the current step system parameter matrix.

• K k : is the estimator gain.

• Pk−1 : is the previous step covariance matrix.

• Pk : is the current step covariance matrix.

• R : is the measurements noise covariance matrix.

• I : is the identity matrix.

To initialize (4.43)-(4.45) at the first step, Crassidis and Junkins [35] suggest to use an
a priori estimate of the vector χ̂ and the covariance matrix or to compute them using the
first measurement (k = 1) vector as follows:

P1 = [
1

α2 I +H T
1R1H1]

−1, (4.46)

χ̂1 = P1[
1

α
β +H T

1 ȳ], (4.47)

α� 1, (4.48)

β � 1. (4.49)

The RLSE algorithm is also a suitable choice for off-line implementation. The evolution
of the error, covariance and estimator gain can be saved for post computation analysis
purposes.

In both LSE and RLSE algorithms, it is assumed that the vector χ to be estimated is
constant. In case of a slowly changing vector, this assumption can be relaxed introducing a
suitable Forgetting Factor γ in (4.44) (see [71, 116]):

Pk = γ
−1[I − K kH k]Pk−1, (4.50)

0< γ≤ 1. (4.51)

If γ = 1 the normal RLSE as stated in (4.43)-(4.45) is obtained. When γ < 1 the effect
of older data is limited for the current computation of the covariance matrix Pk reducing
the averaging trough the complete measurement set. Normally, the value of γ used in
practice are between 0.99 and 0.95 for slow or very fast variation of the estimation of χ .
The RLSE algorithm can be also used for a non-linear model as long as the parameters to
be estimated are linear with the functions used in the regression matrix H .

4.6.2 Parameter Identification — Implementation
To estimate the required joint parameters for the extended joint model of LOLA applying
the RLSE method with forgetting factor, the model (4.32)-(4.33) must be rewritten in
regression matrix form as in (4.37). The model parameters that will be estimated for the
two hip and two knee joints are the friction function b(ϕ̇) and the joint stiffness k. The
identification of the stiffness is the major goal. The inertia parameters of the motors and
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link side of the gear are assumed to be known from the CAD data of the robot. For the
hip joints the estimation is carried out to prove the correctness of the model based on the
catalog data, while for the knee those parameters are unknown.

The measurements available for the estimation are: motor and link position, motor
velocity and motor current. The motor constant value kτ is considered as known from the
motor catalog data. With this assumption, the motor torque can be directly computed from
(4.5). The sampling time of the data is equal to the position control loop Ts = 1.5ms. The
link velocity, motor and link acceleration are also needed. They can be computed from link
position and motor and link velocity respectively, using the central difference derivative
(3.8) for each sampling point k of the measurement:

Θ̇k =
Θk+1−Θk−1

2Ts
, (4.52)

Θ̈k =
Θ̇k+1− Θ̇k−1

2Ts
, (4.53)

ϕ̈k =
ϕ̇k+1− ϕ̇k−1

2Ts
, (4.54)

where the indexes k− 1, k and k+ 1 indicate the previous, current and next measured
position and velocity respectively.

All the input data are filtered with a first order Butterworth low pass filter with a cut-off
frequency of 30 Hz, which has two positive effects: it limits the sensor noises amplification
effect of the discrete differentiation, i. e., for the velocity and acceleration signal and set
the same phase lag for the complete input vector of the estimation system ensuring its
time coherence. Because of the need of discrete differentiation, the availability of the
velocity and acceleration data are shifted of one and two sampling period with respect to
the position measured data. To maintain the signals time synchronization, the estimation
is then started after two sampling periods.

Considering the measurement data available and the signals that can be computed from
them, the joint model presented in the previous section must be adapted accordingly. The
friction function (4.29) has two components which depend on the load torque of the link.
Having no possibility to directly measure this quantity those term are neglected in the
regression matrix. With this simplification (4.29) reduces to:

b(ϕ̇) = sgn(ϕ̇)τ f 0+ bvϕ̇. (4.55)

The parameters that must be identified are then the viscous friction coefficient bv and the
static friction coefficient τ f 0. This model is used for both the hip and knee joints.

Regarding the excitation trajectories of the joints, some consideration must be made.
The estimation must be performed directly on the robot while it is walking. The normal
approach used in the literature for industrial robots is to move each joint of the robot
one at a time using trajectories optimized for parameter excitation (see [12, 59, 66]).
Nevertheless, the industrial robots do normally have an integrated mechanical brakes
for every joint. This is not the case for LOLA for the reasons explained in Chapter 2.
Therefore, the excitation trajectories used for the parameter identification are the normal
walk trajectories of the robot. In Figure 4.13 the discrete Fourier transformation (DFT) of
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the current signal for the knee motor is shown. The signal has 5 distinct major frequency
components, which are sufficient to excite the system for the parameter identification9.
Having a direct measure of the input signals, the effect of the closed loop feedback control
can be neglected.

Another consideration to be made regards whether the model should be written on the
motor or link side of the joint. The first choice seems to be the more promising for the fact
that all friction and elastic components are concentrated only at one side of the joint and
the link side is considered as a pure inertial load. This is particularly useful in case the
estimation is performed on-line during the experiments. For the joints with variable gear
transformation ratio, only the link inertia must be reported on the motor side of the joint.

To model the effect of the load torque τlm and of the unmodeled non-linear effects of
the disturbance d, the parameter vector χ is augmented with an element de.

Finally, with all the previous assumption the joint model (4.32)-(4.33) can be rewritten
in regression form:

�

τm− Jmϕ̈

−JlmΘ̈m

�

=
�

−Θ ϕ ϕ̇ sgn (ϕ̇) 0
Θ −ϕ 0 0 cd

�















K
K
bv

τ f 0

de















, (4.56)

y = Hχ . (4.57)

All known quantities are grouped in the input vector y: the input motor torque τm and
torques due to inertial effects Jmϕ̈ and JlmΘ̈. The parameters that must be identified are
grouped in the vector χ: the stiffness K , the viscous friction bv, the static friction τ f 0 and
an estimation of the system disturbance torque d. The components of the regression matrix
H are the measured values of the motor position and velocity ϕ, ϕ̇ and sgn (ϕ̇), the joint
position Θm reported to the motor side and the disturbance constant cd = 1.

4.6.3 Parameter Identification — Results
To test the previously introduced estimation method, a set of experiment at different
walking velocities are performed. The robot walks in forward direction for 5 m. Each
experiment is characterized by different combinations of maximum and minimum step
length and step time. The step length defines how long is each step taken by the robot.
The step time defines how fast the step must be performed.

The experiment is divided in three phases: acceleration, walk at maximum speed and
deceleration. In the first phase, the robot starts walking from the steady state with the
desired minimum step length and step time and increases the step length until the desired
maximum is reached. In the second phase, the robot performs one or two steps at the
maximum step length depending on the maximum defined speed. In the third phase, the
robot decelerate to steady state. In Table 4.3 the parameters set for each experiment are
shown.

For each run of the RLSE algorithm, the parameter estimation converged to stable values.
The results are listed in Table 4.4 for the joint stiffness, Table 4.5 for the viscous friction

9 See [71, 116] for the concept of sufficiently rich input signal.
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Figure 4.13: Discrete Fourier Transformation of the knee motor current (I), joint (Θm) and motor
(ϕ) position (walking velocity 3.6 km/h).

Table 4.3: Joint model estimation experiment parameters.

Experiment Minimum Step Maximum Step Step Time Maximum Speed
Length Length
[m] [m] [s] [km/h]

Exp. 1 0.3 0.5 0.8 2.25

Exp. 2 0.4 0.6 0.8 2.7

Exp. 3 0.4 0.6 0.7 3.09

Exp. 4 0.45 0.65 0.7 3.34

Exp. 5 0.45 0.65 0.65 3.6

and Table 4.6 for the static friction. The mean value over the five experiment is computed
in order to compare the experimental values with the model parameters based on catalog
data. As can be seen in Table 4.7, the results show that the hip joints have a lower stiffness
parameter value and the friction parameter have a higher value with respect to the catalog
data.

The higher compliance of the joint are due to the mechanic construction, bearings and
assembling of the joint. Moreover, a direct relation between the stiffness variation and the
joint deformation could not be established, suggesting that the stiffness of the joint is also
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Table 4.4: Estimated stiffness.

Experiment Right Hip Right Knee Left Hip Left Knee
[Nm/rad] [Nm/rad] [Nm/rad] [Nm/rad]

Exp. 1 14.932 3.138 15.457 2.808

Exp. 2 18.097 3.316 16.140 3.176

Exp. 3 19.892 3.890 17.316 3.274

Exp. 4 20.794 5.307 17.600 3.779

Exp. 5 20.184 3.697 17.059 3.623

Mean 18.780 3.860 16.714 3.332

Table 4.5: Estimated viscous friction.

Experiment Right Hip Right Knee Left Hip Left Knee
[Nms/rad] [Nms/rad] [Nms/rad] [Nms/rad]

Exp. 1 9.294 · 10−3 0.253 · 10−3 6.255 · 10−3 1.266 · 10−3

Exp. 2 7.809 · 10−3 1.452 · 10−3 5.936 · 10−3 1.422 · 10−3

Exp. 3 8.356 · 10−3 1.011 · 10−3 5.371 · 10−3 1.771 · 10−3

Exp. 4 7.886 · 10−3 1.970 · 10−3 5.156 · 10−3 1.643 · 10−3

Exp. 5 7.469 · 10−3 1.389 · 10−3 4.373 · 10−3 2.353 · 10−3

Mean 8.163 · 10−3 1.215 · 10−3 5.418 · 10−3 1.691 · 10−3

highly influenced by the load torque on the output of the gear.
Regarding the friction parameters, the higher values can be explained considering

that the estimated model does not consider the friction terms related to the load torque.
Therefore, the effect of the neglected components merge into the remaining two terms of
the estimation model.

To verify the validity of the estimated parameters, the multibody simulation of LOLA

is used. The walking experiments are reproduced in the simulation using the estimated
parameter values instead of the catalog data. Comparing the measured joint positions
and velocities at each walking speed showed a close match between the experiment and
the simulated data. Figure 4.14-Figure 4.15 and Figure 4.16-Figure 4.17 show the joint
deformation of the right hip and knee joint at the walking velocity of 3.0 km/h and 3.6 km/h
respectively. As can be seen the deformation in the simulation shows a good match with
the experiment especially for the knee joint while the robot is walking.
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Table 4.6: Estimated static friction.

Experiment Right Hip Right Knee Left Hip Left Knee
[Nm] [Nm] [Nm] [Nm]

Exp. 1 0.264 0.377 0.366 0.290

Exp. 2 0.378 0.393 0.348 0.310

Exp. 3 0.291 0.360 0.452 0.331

Exp. 4 0.682 0.379 0.762 0.405

Exp. 5 0.452 0.416 0.523 0.324

Mean 0.413 0.385 0.490 0.332

Table 4.7: Estimated joint parameters and catalog data joint parameters.

Joint K bv τ f 0

Estimated Model Estimated Model Estimated Model

Hip Right 18.780 22 8.163 · 10−3 0.152 · 10−3 0.413 0.246

Hip Left 16.714 22 5.418 · 10−3 0.152 · 10−3 0.490 0.246

Knee Right 3.860 − 1.215 · 10−3 − 0.385 −

Knee Left 3.332 − 1.691 · 10−3 − 0.332 −

4.7 Chapter summary
In this chapter the structure of the control system of LOLA is presented. The HLC and LLC
are introduced and their role for the motion generation, stabilization of the robot and
trajectory tracking are discussed. The full multibody simulation of LOLA is augmented with
a model of the actuation train with the result of using the same control gain implemented
in the real robot also in the simulation program.

A model for the robot joint is presented for the stiff and elastic case. The latter is a
concentrated parameter model of the joint stiffness and friction. Based on experimental
measurements, the model parameters are estimated using the RLSE algorithm. A compari-
son between the measured and simulated deformation for the validation of the estimated
parameters is also shown.
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Figure 4.14: Comparison between measured and simulated joint deformation for the right hip at
3.0 km/h.
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Figure 4.15: Comparison between measured and simulated joint deformation for the right knee at
3.0 km/h.
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Figure 4.16: Comparison between measured and simulated joint deformation for the left hip at
3.6 km/h.
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Figure 4.17: Comparison between measured and simulated joint deformation for the left knee at
3.6 km/h.





5 Advanced Joint Control

5.1 Introduction
The main focus of this chapter is the discussion and presentation of different joint control
methods for humanoid robots in the presence of gear elasticity. This can be led back to
the problem of controlling a two mass oscillating system with only one control input. The
control of flexible robotic joints for industrial robots has been addressed by researchers
since the early 1980’s.

In [18, 107] a good survey on the modeling approaches and control techniques for
flexible robotic joint is presented. Some of the early works on flexibility in robot joints
are a series of papers addressing non-linear approaches to the solution of the problem
(see [94, 129]) and the application of singular perturbation theory (see [130]). The latter
approach has been developed over the years. The main result is the separation of the
flexible system in two parts with different time scales, a fast dynamics part and a slow
dynamics one. They can be in some way connected to the motor and link side dynamic.
Different approaches have been proposed to stabilize these two time scale models. The
majority of them tend to use a PD controller to asymptotically stabilize the fast time
scale part of the system. To stabilize the slow time scale dynamic feedback linearization,
Lyapunov based methods (see Al Ashoor et al. [11]), adaptive methods (see Ghorbel et al.
[57]) and neural network (see Zeman et al. [152]) methods have been proposed.

Slotine and Li [127] present an adaptive tracking controller showing good experimental
results also for high speed operations. Lozano and Brogliato [91] also use a stable adaptive
controller without any assumption on the a priori knowledge of the joint flexibility. A
comparison of different control laws for flexible joint of the humanoid robot RH-2 can be
found in Villagra and Balaguer [145]. In Lee et al. [83] the authors discuss methods to
identify the compliance in the joints of humanoid robots and on how to integrate these
parameters in the simulation of a robotic system.

In Moberg [97] the identification and control of industrial robots with flexible joints
is presented with extensive discussion on different control methods from the classic PD
controller to computed torque and feedback linearization. Feedback linearization has been
proposed also in De Luca [37], De Luca and Lucibello [39] and De Luca and Book [38].
In Albu-Schäffer and Hirzinger [12] and Le Tien et al. [82] the authors present a control
method based on the passivity principle for a lightweight industrial robot with torque
measurements on the link side.

The control of robots considering joints flexibility is a large research field and in the
literature many different approaches have been proposed as can be seen from the previous
brief discussion. While the vast majority of the articles regards industrial robot because of
their importance in the industrial automation, their results can partially be extended also
for humanoid robots.

Almost all the humanoid robots which have been developed over the years use different
implementations of decentralized joint controllers (see [151], [77], [13], [105] and [40]).

99
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Table 5.1: Cascaded PID gain stability conditions.

Measure Kpp Kpv Stable

Link position and velocity (Θ Θ̇) / / No
Link position and Motor velocity (Θ ϕ̇) < K > 0 Limited
Motor position and velocity (ϕ ϕ̇) > 0 > 0 Yes

For the joint trajectories tracking the most used control scheme is the PID for its simplicity
of tuning and the good performance if high gear ratios are used in the joints to limit the
non-linear coupling effects and load torque disturbances.

In his chapter different joint control algorithms are discussed, based on the model and
results of Chapter 4. Keeping in mind that the control laws must be implemented on the
DSCBs or on the CCU, some of the basic methods are investigated in this thesis.

5.2 Cascaded PID Controller
The first discussed control law is the cascaded PID controller introduced in Chapter 4. This
classic general method is extensively discussed in Siciliano et al. [125] for the rigid robot
case. Considering the system (4.32)-(4.33), with constant stiffness K and neglecting the
static friction τ f 0, the joint model can be written as follows:

JlmΘ̈m+ K(Θm−ϕ) = τlm (5.1)

Jmϕ̈+ bvϕ̇+ K(ϕ−Θm) = τm. (5.2)

Under these assumptions, the system model is linear and can be rewritten in the fre-
quency domain using the Laplace transformation. Defining s = ω, the open loop in-
put/output transfer functions of the system are:

Θm

τm
=

1

JmJlm

K

(s3+ bv

Jm
s2+ K Jm+Jlm

JmJlm
s+ bv K

JmJlm
)s

, (5.3)

ϕ

τm
=

1

JmJlm

(Jlms2+ K)

(s3+ bv

Jm
s2+ K Jm+Jlm

JmJlm
s+ bv K

JmJlm
)s

. (5.4)

Considering the limit case of a pure elastic joint without any dissipation effects (which is
anyway the worst case scenario) the transfer functions can be written as:

Θm

τm
=

1

JmJlm

K

(s2+ K Jm+Jlm

JmJlm
)s2

, (5.5)

ϕ

τm
=

1

JmJlm

(Jlms2+ K)

(s2+ K Jm+Jlm

JmJlm
)s2

. (5.6)

In Figure 5.1 and Figure 5.2, the typical transfer functions of the input torque to motor
and link position respectively is shown.



5.2 Cascaded PID Controller 101

Figure 5.1: Transfer function of the hip flexion joint motor position.

Figure 5.2: Transfer function of the hip flexion joint link position.
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Equation (5.5) has a double pole in the origin, two imaginary poles and two imaginary
zeros. The zero pair occurs at the frequency ωl =

p

K/Jlm which characterizes the
oscillation of the joint when the motor is locked. The presence of ωl imposes a limit on the
bandwidth and, consequently, on the gain of the motor feedback control loop. To avoid
oscillations in the execution of the required trajectory, the bandwidth of the controller
should be below ωl . Equation (5.6) has a double pole in the origin, two imaginary poles
and no zeros. For a detail discussion on the characteristics of the transfer functions (5.6)
and (5.6) see Lohmeier [88] and De Luca and Book [38].

In Buschmann [20], De Luca and Book [38], the authors discuss the stability of the
system (5.1)-(5.2). They consider different combinations of motor and joint position and
velocity measurements in the feedback control loop and analyze each situation using
Routh’s criterion and Lyapunov stability theory respectively.

The use of link measurements only leads always to instability in the control loop inde-
pendently of the values of the control gains (see Buschmann [20], De Luca and Book [38]).
A combination of motor velocity and link position imposes limits on the gain values due to
the elasticity: Kpp < K and Kpv > 0. The less restrictive measurement combination is the
use of motor side position and velocity measurements. The latter imposes that both the
position and velocity feedback gains must be positive: Kpp > 0 and Kpv > 0. The results are
summarized in Table 5.1.

Considering (4.16), (4.17) and (4.19) the control law for the joints of LOLA can be
written as follows:

τm = kτ[KpvKpp(ϕd −ϕ)− Kpvϕ̇]. (5.7)

By reorganizing the terms, the previous equation can be rewritten as a PD controller with
velocity feed-forward compensation:

τm = kτp(ϕd −ϕ)− kτvϕ̇, (5.8)

kτp = kτKpvKpp, (5.9)

kτv = kτKpv. (5.10)

Applying (5.8) to the model (4.32)-(4.33), De Luca and Book [38] show that (5.8) can
globally stabilize the robotic joint system. Using motor side measurement only, the joint
controller (5.8) is very robust and for high values of the gains kτp and kτv a very small
tracking error on the motor side can be achieved. Nevertheless, due to the joint elasticity,
the deformation of the gear leads to an increased error on the trajectory tracking on the
link side.

Figure 5.3 shows tracking errors on the link (eΘ = Θd−Θ) and motor side (eϕ = ϕd−ϕ)
for the hip flexion joint while the robot is walking forward at a speed of 3.4 km/h. The
effect of the joint deformation can be seen comparing the two signals. The link side tracking
error eΘ is clearly larger in the static case at the beginning of the experiment when the
robot stays and also while it is walking.

Figure 5.4 shows eΘ and eϕ in the same experiment also for the knee joint. The static
deformation of the joint is bigger in comparison with the hip flexion. While the robot is
walking also a larger peak to peak errors for both the motor and link side tracking error
can be seen.
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Figure 5.3: Tracking errors on the motor eϕ and link side eΘ for the right hip joint (walking velocity
3.4 km/h). The motor tracking error has been projected to link side of the joint.
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Figure 5.4: Tracking errors on the motor eϕ and link side eΘ for the right knee joint (walking
velocity 3.4 km/h). The motor tracking error has been projected to link side of the joint.
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An interesting question is in which walking phase do the hip and knee joints present
their biggest tracking error. To answer this question the measurement of the force torque
sensor can be used. Plotting the normal contact force (Fz) of the right leg of the robot,
the walking step can be divided into two phases: a) when the leg has contact with the
floor, the sensor measures the total weight of the robot ≈ 600 N. b) when the leg is moving
forward to perform the step, the sensor measures a normal force of ≈ 0 N.

Figure 5.5 and Figure 5.6 show a comparison between the leg normal force and the
tracking error for the two considered joints. From the pictures two causes can be recognized
for the decrease of tracking quality. The first one is when the joints experience the largest
torque load for each phase a. This case can be clearly seen in the middle of the experiment
between 6 s and 8 s, when the robot walks at the highest speed. The other source of error
is the phase change to perform the walking step. The joints are commanded to execute
a highly demanding trajectory, i. e., they are subject to large accelerations. For the hip
joint this case can be seen between phase b and a when the leg must be moved forward.
For the knee joint a similar situation occurs in the transition between phase a and b. In
these transition, the robot is concluding the walking step and the leg must be correctly
positioned on the ground. In this situation the tracking error presents its peak for both
joints.

5.3 Integral Deformation Compensation
It has been shown that the presence of elasticity in the robot joints causes an increase of
the trajectory tracking error on the link side in comparison with that on the motor side.
Especially in the case of the knee the deformation of the joint mechanism causes a large
error in comparison with all the other joints of the robot. Increasing the walk velocity, the
loss of tracking performance causes instability in the control loop and, in the worst case,
can lead to experiment fails and also the robot to fall.

In the proposed cascaded control loop (5.8) only feedback measurement from the motor
side is used. To improve the tracking performance on the link side, the link position
feedback must be introduced in the control law. Using the information delivered from
the sensor, the goal is to reduce the static deflection caused by the gear elasticity and to
improve the tracking performance on the link side of the joint.

A measurement of the gear deformation can be combined to (5.8) in order to compensate
for the mentioned effects. The computation of the integral of the measured deformation
(Θm −ϕ) can be added to the control law. The potential energy introduced by the joint
stiffness is physically limited. Too large gear deformation would irremediably damage the
joint (see [61]). For this reason the cascaded control law (5.8) can be improved as follows:

τm = kτp(ϕd −ϕ)− kτvϕ̇+ Kτi

∫

(Θm−ϕ)d t. (5.11)

Under static control conditions, i. e., when the robot does not move but just stands, the
static deformation of the joints is reduced and, consequently, leads the positioning error to
zero. While the robot walks, the integral term reduces the mean value of the tracking error.
The value of the integral gain Kτi determines the time constant of the deformation zeroing.
The drawback of a too high value of the integral gain is a memory effect that can lead to
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Figure 5.5: Hip link tracking error compared with normal contact force.
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Table 5.2: Knee and hip joint tracking error statistics for the cascaded PD and cascaded PD+I
control methods.

Knee PD+I PD Hip PD+I PD
[mrad] [mrad] [mrad] [mrad]

Mean −0.060 −5.557 0.238 −1.168

Peak 87.420 38.765 33.396 16.091

RMS 222.505 257.187 152.452 115.746

delays in the reaction of the feedback control and to an increase of the peak tracking error.
This can happen if the desired trajectory requires high dynamic, i. e., for high speed and
accelerations.

In Figure 5.7 and Figure 5.8 a comparison is shown between the link side tracking
error when the PD control law (5.8) and PD+I control law (5.11) are used. The cascaded
control law with integral deformation compensation removes the error offset caused by
the gear deformation. In Table 5.2 the relevant statistics (mean, peck and RMS values) of
the tracking error for the PD and PD+I are reported. For the hip joint the controller shows
no further improvements in terms of tracking errors and reduction of the peak error. In
the case of the knee joint the situation is different. The static offset has been successfully
removed and the tracking error is lower than for cascaded controller. Nevertheless, it
shows higher peaks.

5.4 Feed-Forward Compensation
The control laws presented in the previous section can stabilize the joint system and have
been shown to deliver good tracking performance of the desired position trajectories for
moderate walking velocities. Nevertheless, to further improve the control of the joints it
is possible to take advantage of the system model and integrate more information in the
control structure.

Siciliano et al. [125] propose the use of a model based feed-forward compensation for
improved trajectory tracking in the case of a rigid industrial robots and for different control
laws. In De Luca [36] and De Luca and Book [38] the authors discus the implementation of
feed-forward compensation and feedback linearization techniques for the case of industrial
robots with elastic joints.

The use of a feed-forward signal helps to, roughly speaking, leading the controlled
system in to the "right direction", i. e., to follow the desired trajectory. In the ideal case
of perfect modeling the latter is sufficient to let the system follow the imposed system
trajectory. In any case, the use of feedback controllers is necessary for real systems. The
feedback control helps to compensate for modeling errors and noise adding robustness.
The feedback linearization is a control method that leads to a decoupling and linearization
of the system, dynamically compensating its non-linear effects. The linearized system can
then be controlled using a linear controller.

In Rouchon et al. [115] the authors discus the implementation of both feed-forward
compensation and feedback linearization methods for industrial robots with elastic joints.
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They also show the equivalence between feedback linearization and differential flatness
(see Moberg [97]). If the measurement of the link position Θ is chosen as flat output of
the system, the model of the flexible robotic joint can be rewritten in terms of Θ and its
successive time derivatives. In Hagenmeyer [63] the author investigates the application of
feed-forward linearization of non-linear differential flat systems. He also demonstrates that
a robust trajectory tracking performance can be achieved in presence of model parameter
errors and limited inconsistent system initial conditions.

It must be mentioned that both the feed-forward compensation and feedback lineariza-
tion control scheme, strongly depends on the correctness of the system model and on
the smoothness of the trajectories used to drive the system under control. These are two
fundamental requirements for a successful implementation of the mentioned methods.

Recalling that the proposed control law should be equally implementable on the DSCBs
and the CCU, a controller based on the combination of a feed-forward steering signal and
feedback action based on previously described local joint model is proposed.

5.4.1 Tracking Error System

The motor side elastic joint model described in Section 4.5.2, with constant stiffness and
the friction function (4.29), constant link equivalent inertia and no load torque, can be
written as follows:

JlmΘ̈m+ K(Θm−ϕ) = τlm (5.12)

Jmϕ̈+ bvϕ̇+τ f 0 sgn(ϕ̇) + K(ϕ−Θm) = τm, (5.13)

Jlm =
Jl

N 2 , (5.14)

τlm =
τl

N
= 0, (5.15)

N =
Θm

Θ
=
Θ̇m

Θ̇
=
Θ̈m

Θ̈
. (5.16)

The link equation can be differentiated two times:

Jlm
...
Θm+ K(Θ̇m− ϕ̇) = 0, (5.17)

JlmΘ
[4]
m + K(Θ̈m− ϕ̈) = 0. (5.18)

where x [n] denotes the nth time derivative of x: dn x/d tn.

From (5.18) the expression of ϕ̈ can be computed:

ϕ̈ =
Jlm

K
Θ[4]m + Θ̈m. (5.19)

Substituting (5.19) into (5.13) and reorganizing the terms, the following equation is
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obtained:

Θ[4]m +
bv

Jm

...
Θm+ K

Jlm+ Jm

JlmJm
Θ̈m+ K

bv

JlmJm
Θ̇m

+ K
τ f 0

JlmJm
sgn(Θ̇m) =

K

JlmJm
τm.

(5.20)

The latter is equivalent to the system (5.12)-(5.13) in terms of the link position Θm and its
subsequent derivatives Θ[4]m ,

...
Θm, Θ̈m and Θ̇m. The function sgn(ϕ̇) has also been substituted

by sgn(Θ̇m), under the assumption of a non-negligible stiffness coefficient.
The reference torque τmf f can be computed by inverting the system equation (5.20):

τmf f =
JlmJm

K

h

Θ[4]m +
bv

Jm

...
Θm+ K

Jlm+ Jm

JlmJm
Θ̈m

+ K
bv

JlmJm
Θ̇m+ K

τ f 0

JlmJm
sgn(Θ̇m)

i

.
(5.21)

By Substituting Θm and its subsequent derivatives with their measurement, (5.21) can be
seen as the feedback linearizing torque of the system. On the other side, substituting the
desired trajectories Θmd yields the feed-forward torque reference.

Applying the reference torque signal (5.21) to the system equation (5.20) the following
is obtained:

Θ[4]m −Θ
[4]
md =

bv

Jm
(
...
Θmd −

...
Θm)

+ K
Jlm+ Jm

JlmJm
(Θ̈md − Θ̈m)

+ K
bv

JlmJm
(Θ̇md − Θ̇m)

+ K
τ f 0

JlmJm
∆ f

∆ f = sgn(Θ̇md)− sgn(Θ̇m).

(5.22)

Defining the tracking error as eΘm
= (Θmd −Θm) the equation can be rewritten as:

e[4]Θ =−
bv

Jm

...
e Θm

− K
Jlm+ Jm

JlmJm
ëΘm

− K
bv

JlmJm
ėΘm

− K
τ f 0

JlmJm
∆ f .

(5.23)

A necessary but not sufficient condition for a stable error dynamics is that equation
(5.23) must fulfill the Hurwitz criterion (see Slotine and Weiping [128]), i. e., all the
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coefficients on the right hand side of the equation must be negative. This condition is
satisfied, since the system parameter are all positive.

The last step to solve the trajectory tracking problem is the definition of the feedback
action to add to the feed-forward torque reference, in order to steer the system states on
the desired trajectory. One possible implementation is:

τmd = τmf f + k4
...
e Θm
+ k3 ëΘm

+ k2 ėΘm
+ k1eΘm

+ k0

∫

eΘm
d t, (5.24)

where the factors ki, i = 0,1, . . . ,4 are suitable control gains.
Adding the feedback correction to (5.23), the error equation can be rewritten as:

e[4]Θ =−
� bv

Jm
+ k4

K

JlmJm

�...
e Θ

−
�

K
Jlm+ Jm

JlmJm
+ k3

K

JlmJm

�

ëΘ

−
�

K
bv

JlmJm
+ k2

K

JlmJm

�

ėΘm

− k1

K

JlmJm
eΘm

− k0

K

JlmJm

∫

eΘ d t

− K
τ f 0

JlmJm
∆ f .

(5.25)

Under the assumption of correct model parameters, consistent initial conditions of
the system and for smooth enough reference trajectories1, equation (5.24) feed-forward
linearize the system and leads the error dynamic (5.25) to zero.

5.4.2 Implementation of the Feed-Forward Compensation Control
Law

Some considerations must be done on the proposed controller with feed-forward com-
pensation. The feed-forward compensation signal (5.21) is a reference torque which, for
the assumption made in Section 4.4.1, can be seen as a reference motor current. This
implies that the controller (5.24) directly delivers a desired current signal to the current
controller (4.12). In this way the velocity controller (4.17) would not be needed anymore.
This implementation would have two disadvantages. In its current implementation, the
SERCOS-III update rate cannot be lower than 1.5 ms, while the current controller is executed
every 70µs. That results in a delay (21 times slower) in the desired trajectory delivery
that is unacceptable for the stability of the real robot, except for very slow movements.
Moreover, the velocity controller adds a velocity dependent damping to the joint control
loop that increases the stability of the system. For these reasons the use of the velocity

1 At least four time differentiable.
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controller is highly desirable. Equation (5.21) can be rewritten on the motor velocity level.
Using (4.17) and (4.12) the motor torque can be expressed as follows:

τm = kτId = β(ϕ̇d − ϕ̇), (5.26)

β = kτKpvs fis fϕ̇. (5.27)

Where s fi and s fϕ̇ are the scaling factors of the motor current and motor velocity controllers
respectively. Equation (5.27) can be substituted in the system (5.12)-(5.13). A new feed-
forward reference signal and tracking error equation can be computed in terms of the
desired velocity for the controller (4.17):

ϕ̇ f f =
JlmJm

Kβ

h

Θ[4]m +
bv + β

Jm

...
Θm+ K

Jlm+ Jm

JlmJm
Θ̈m

+K
bv + β
JlmJm

Θ̇m+ K
τ f 0

JlmJm
sgn(Θ̇m)

i

.
(5.28)

e[4]Θm
=−

� bv + β
Jm

+ k4

Kβ

JlmJm

�...
e Θ

−
�

K
Jlm+ Jm

JlmJm
+ k3

Kβ

JlmJm

�

ëΘ

−
�

K
bv

JlmJm
+ k2

Kβ

JlmJm

�

ėΘm

− k1

Kβ

JlmJm
eΘm

− k0

Kβ

JlmJm

∫

eΘm
d t

− K
τ f 0

JlmJm
∆ f .

(5.29)

Being β � 1 due to the current and velocity conversion factors, this implementation of the
tracking error equation enables stabilization with lower values of the feedback gains ki.

The available measurement of the joint state are motor position, motor velocity and link
position. While the second, third and fourth derivative of the desired trajectories can be
computed, they cannot be physically measured. Their value can be estimated using (5.12),
(5.17) and (5.18). In this way the link position measurement must be differentiated only
one time to compute Θ̇m.

Another possibility is to use the same equation and rewrite (5.28) and (5.29) in the more
suitable set of state variables x m = [ϕ,Θm, ϕ̇, Θ̇m]T . The tracking error can be written in
terms of e = [eϕ, eΘm

, ėϕ, ėΘm
,
∫

eΘm
d t]T considering the following expressions:

...
e Θm
=

K

Jlm
(ėϕ − ėΘm

), (5.30)
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ëΘm
=

K

Jlm
(eϕ − eΘm

), (5.31)

eϕ = (ϕd −ϕ), (5.32)

ėϕ = (ϕ̇d − ϕ̇). (5.33)

Equation (5.29) can then be rewritten as:

e[4]Θ =−
K

Jlm

� bv + β
Jm

+ k4

Kβ

JlmJm

�

ėϕ

−
K

Jlm

�

K
Jlm+ Jm

JlmJm
+ k3

Kβ

JlmJm

�

eϕ

−
K

Jlm

�

k2

β

Jm
− k4

Kβ

JlmJm

�

ėΘm

−
K

Jlm

�

k1

β

Jm
− k3

Kβ

JlmJm
−

Jlm+ Jm

Jm

�

eΘm

− k0

Kβ

JlmJm

∫

eΘ d t

− K
τ f 0

JlmJm
∆ f .

(5.34)

The eigenvalues of (5.34), neglecting the ∆ f term, can be computed to be stable using
pole placement and guaranteeing that the equation fulfill the Hurwitz stability criterion.

The final form of the proposed control law can be written as follows:

ϕ̇d = ϕ̇ f f + k4

K

Jlm
ėϕ + k3

K

Jlm
eϕ+(k2− k4

K

Jlm
)ėΘm

+(k1− k3

K

Jlm
)eΘm

+ k0

∫

eΘm
d t.

(5.35)

The first term ϕ̇ f f is the feed-forward action defined in (5.28). The remaining terms are
the components of the feedback action in the system state space x m. The feedback gains
ki are the same as for (5.24). Advantage of (5.35) is that it can be implemented without
changing the inner motor velocity control loop and motor current control loop.

Another aspect that must be taken into account is the generation of the desired trajecto-
ries. In the current implementation the available reference trajectories are the desired link
position Θd and velocity Θ̇d . They are computed in real-time while the robot is walking.
To generate the feed-forward reference (5.28) the desired velocity should be derived at
least four times to obtain the reference signal for the joint acceleration Θ̈d , jerk

...
Θd and

Θ
[4]
d . The values of the weighting factors of (5.28) for the knee and hip joint of the robot

are reported in Table 5.32. The relative weight of the jerk factor (IV) is three orders of
magnitude smaller than the acceleration (III) and the static friction (I) factors. It is also

2 The factors have been computed using the model parameters from Chapter 4
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Table 5.3: feed-forward reference motor velocity factors.

Factor Hip Flexion Knee

I) K
τ f 0

JlmJm
1.628× 10−3 6.180e−4

II) K bv+β
JlmJm

1 1

III) K Jlm+Jm

JlmJm
24.677× 10−3 4.402× 10−3

IV) bv+β
Jm

47.014× 10−6 7.909× 10−6

six orders of magnitude smaller in comparison with the velocity factor (II) and can be,
therefore, neglected. A further simplification is to avoid also the computation of Θ[4]d . Only
one differentiation must then be carried out to compute the reference acceleration Θ̈d

and the feed-forward compensation signal (5.28). With these considerations the reference
trajectory generator of LOLA can further be used. The reference trajectories for the motor
position and velocity can be computed from the desired link position and velocity using
the following expressions:

ϕd =
K

Jlm
Θ̈md +Θmd , (5.36)

ϕ̇d =
K

Jlm

...
Θmd + Θ̇md ≈ Θ̇md . (5.37)

5.4.3 Simulation Results
In order to verify the validity and performance of the control law and the simplifications
presented in the previous section, the feed-forward compensation controller (5.24) has
been implemented in the multibody simulation of LOLA. The tracking controller has
been computed for the two hip flexion and two knee joints because those are the joints
which present the largest tracking error (see Chapter 4). Nevertheless, it can equally be
implemented for all other joints of the robot.

The feedback gains ki are computed using the pole placement algorithm for the reference
joint model (5.12)-(5.13). The stiffness and friction parameters used for the reference
model are the values estimated in Chapter 4. To verify the robustness of the control law
against parameter variations at least in static conditions, it has been verified that the
tracking error equation (5.34) is stable also for different values of the link inertia Jlm

computed from the multibody simulation and for different stiffness values calculated using
(4.31).

Figure 5.9 and Figure 5.10 show the link position error of the hip and knee joints, for
the robot walking at 3.6 km/h. Using the feed-forward controller (5.35) the tracking
error has been drastically reduced for both the considered joints. The controller is able to
compensate the static elastic error which globally improves the tracking performance.

Figure 5.11 and Figure 5.12 show a comparison between the feed-forward reference
computed with (5.28) and the desired link velocity Θ̇m used for the cascaded PD controller.
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Table 5.4: Knee and Hip joint tracking error statistics for the FFC and PD control methods
(Simulation).

Knee FFC PD Hip FFC PD
[mrad] [mrad] [mrad] [mrad]

Mean −0.007 −2.920 0.001 0.164

Peak 9.143 18.149 3.909 12.694

RMS 59.483 146.086 25.183 83.338

Table 5.5: Knee and Hip joint tracking error statistics for FFC and PD control methods
(Experiment).

Knee FFC PD Hip FFC PD
[mrad] [mrad] [mrad] [mrad]

Mean −0.096 1.548 0.001 0.407

Peak 7.006 8.923 4.516 5.111

RMS 61.394 92.058 29.802 37.931

Both signals are very similar. Nevertheless, the signal improvements in case of the feed-
forward reference due to the acceleration and static friction terms of (5.28), slightly modify
the signal.

In Table 5.4 the relevant statistics of the tracking error for the PD and FFC are reported.
As can be seen, the FFC control method compensates for the static deformation of both
joints, reduces the peak error and drastically improves the RMS value of the tracking error.

5.4.4 Experimental Results
The feed-forward controller (5.35) has been implemented in the CCU replacing the position
controller (4.19). The sampling frequency of the position loop remains 1.5 ms. The motor
velocity and current control loop have not changed and (4.17) and (4.12) are still valid.

As a first experimental test, a walk without ground contact has been conducted. The
robot hang in the air attached to a safety rope while performing the walking experiment.
The link side tracking error for this case is shown in Figure 5.13 for the right hip joint and
in Figure 5.14 for the right knee, in comparison with the cascaded PD performance. While
the error is globally smaller for the feed-forward controller, the performance improvement
is not as good as in the simulation. At any rate, the controller compensates for static errors
and also slightly reduces the peak value. In Table 5.5 the relevant statistics of the tracking
error for the PD and FFC are reported. As can be seen, the FFC method improves the
tracking error for both joints.

Experiments with ground contact has also been performed. Letting the robot stepping
the systems become unstable and the experiments must be interrupted. The analysis of
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Figure 5.9: Link tracking error comparison of FFC and cascaded PD controllers for the right hip
(Simulation).
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Figure 5.10: Link tracking error comparison of FFC and cascaded PD controllers for the right knee
(Simulation).
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Figure 5.11: Comparison between of FFC reference signal and desired velocity of the cascaded PD
for the right hip (Simulation).
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Figure 5.12: Comparison between of FFC reference signal and desired velocity of the cascaded PD
for the right knee (Simulation).
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the experiment data have shown that the joints controlled by the feed-forward controller
present strong oscillations in the feed-forward reference caused by the desired acceleration
signal. The reason for this effect must be related with activation of the force stabilization
control. In the previous experiment this component of the robot system was not necessary
and the acceleration signal computed from the reference velocity was sufficiently smooth.
The force stabilization controller is one of the most important components of the robotic
system and must be used to achieve stable walking. To successfully use the proposed
feed-forward controller the trajectory generation unit of the robot should be able to deliver
a sufficiently smooth reference joint acceleration.

5.5 Chapter summary
In this chapter a study of a suitable control law for joint trajectory tracking has been
presented. The state of the art in the field of robotic joint control has been discussed. In
the literature many different approaches to achieve reliable and robust control of robotic
joints can be found. Nevertheless, the main focus of the research is directed to robots for
industrial application. In the field of humanoid robotics, the control of the joints is (in
almost all cases) implemented as classic a PID controllers, relying on the use of gears with
high transmission ration to limit the effect of the non-linear coupling of the joints and the
disturbance torques.

The problem of controlling robotic joints with elastic gears has been addressed. Two
kinds of model based approaches has been presented and their performance are analyzed
with the use of simulation tools and experimental data. The PD+I control law has shown
improvement in terms of static deformation and RMS value of the tracking error (at least
for the knee joint) and higher peak in comparison with the PD controller. The FFC control
law has shown a drastic improvement for the tracking error of both joints. It compensates
for static deformation, reduces the peak and the RMS value of the error. Nevertheless,
these control law has proven to be difficult to implement because it relies on higher order
derivatives of the reference trajectory, which, for the walking controller, also depends on
the contact force measurement. The desired joint velocity has a component proportional to
the contact force, therefore, the reference acceleration contains a force derivative, resulting
in a very noisy signal.
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Figure 5.13: Link tracking error comparison of FFC and cascaded PD controllers for the right Hip
(Experiment).

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

0 5 10 15 20

e Θ
[r
a
d
]

t[s]

FFC
PD

Figure 5.14: Link tracking error comparison of FFC and cascaded PD controllers for the right
Knee (Experiment).



6 Conclusions

Humanoid robotics is a growing research field in the last forty years. The possible applica-
tions vary from service robotics and human machine collaboration in the industry to the
employment of bipedal machines in hazardous or calamity environments. Nevertheless,
they are also one of the most complete mechatronic systems and, therefore, very interesting
as research platforms. They are the perfect intersection of different engineering fields like
mechanics, electronics, information technology, sensor technology and control.

The following sections give a brief discussion and summary of the subjects introduced in
this work and some suggestion for future development are presented.

6.1 Chapters Discussion
This thesis covers different aspects of the concept development and realization of complex
distributed control structures. In the first part, the topology and implementation of the
communication framework of the humanoid robot LOLA is presented. The complexity of
the information generated by local sensors are managed by using a decentralized network
that is able to harvest the data and make them available to the main controller of the
system. The different communication protocols used by the sensors and the actuation
unit are described. The key point of the entire structure are the DSCB custom developed
boards. They locally interface the sensors and actuators of the system and make their data
transparently available for further elaboration. A “bare metal” software is developed to
take advantage of the system framework and to guarantee the safety of the system.

An extension of the position sensor system for FPGA implementation is discussed in the
third chapter. To overcome the bottleneck of the motor position data transmission in the
first implementation of the sensor network, a suitable IP-Core is developed. The motor
state information is extended with a motor velocity estimator. Different velocity estimation
algorithms are discussed and compared. Exploiting the hardware features of the available
FPGA resources on the DSCBs, an improved realization of a first order differentiator method
is successfully realized. Key points of the implementation are automatic scalability of the
working sampling frequency of the system and the simple parameterization. In comparison
with comparable algorithms, the Extended Constant Elapsed Time differentiation algorithm
shows improvements in terms of rms, mean and maximum error and better performance
for slow velocity detection.

The second part of the thesis deals with the extension to former works of the robot
simulation and the modeling, parameterization and control of the robotic joints.

A necessary and powerful tool for the design and behavior prediction of every mecha-
tronic system is its simulation program. The multibody simulation of LOLA is a complex
software which enables a detailed analysis of the robotic system. Different detail levels of
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the robot model can be used depending on the purpose of the simulation. In this work, the
extension of the full simulation is integrated with an accurate model of the actuation train.
The local controllers are implemented with their real sampling times for each control loop,
enabling the use of the control gains used on the real system also in the robot simulation.

To improve the accuracy of the multibody simulation software, the extension to joints
with elastic gears of the robot is discussed. The model developed in previous works is
based on catalog data of the gears delivered good results. Nevertheless, it has never been
experimentally verified. In the fourth chapter, a reduced generic model of an elastic joint
with friction is proposed. The model parameters are computed using a recursive least
square algorithm using experimental data of the robot. It is shown that the model can
describe the real gear deformation in the multibody simulation.

In the last chapter, different joint control methods are studied. The performance of the
implemented cascaded PD controller for rigid joints is analyzed. Based on the elastic joint
model developed in the Chapter 4, two model based control laws are also proposed. The
first one is an extension of the cascaded PD controller with integral elasticity compensation.
Taking advantage of the link side position measurement of the robot joints, the algorithm
can reduce the offset in the link side position trajectory tracking. However, it has also the
drawback of higher peak errors for high dynamic trajectories.

To overcome this problem, a combination of a model based feed-forward and feedback
controller is proposed. The feed-forward part delivers a steering trajectory reference to
the system while the feedback controller corrects the system response and adds robustness
to the control law. Both, the feed-forward and feedback part of the controller require a
high degree of smoothness of the system reference trajectory, until the fourth derivative of
the link position. The control law is rewritten in the joint system state space of motor and
link position and velocity, avoiding the estimation or computation of higher derivatives of
the reference trajectories and measured system states. Furthermore, the control scheme is
adapted to the already existing software structure of LOLA.

The results obtained in the multibody simulation of the robot are very good on terms of
joint position trajectory tracking. The control scheme shows, nevertheless, some limitations
in the direct implementation on the real system. The reference trajectory generator in
combination with the force stabilization controller, delivers a noisy acceleration signal
which is directly injected in the system via the feed-forward path. This fact limits the
improvement of the described control law.

6.2 Future Work
Based on the experience gained during this work, some suggestions can be made for future
research in humanoid robotics and for mechatronic systems in general.

One of the advantages of a decentralized topology as it is implemented in this project
is the limitation of the system cabling. This is an aspect that must not be underestimated
in particular for the system maintenance and in case of system failures. The distribution
of information in the local controllers add a desirable level of abstraction to the physical
system. Moreover, the latest developments in the micro-controller and FPGA industry could
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enable an improvement in terms of quantity of data that can be exchanged and also for the
control performance. On the other side, having a complete custom made solution for the
decentralized structure also adds more complexity to the overall system development and
to the software and hardware maintenance. Depending on the specific field of research,
industry standard products can be a more viable solution.

For the sensor extension algorithms and, in general, for the data processing system,
better performing algorithms can be implemented if the latest computing devices are used.
Nowadays micro-controller, FPGA or System on Chip feature floating point units that can
greatly improve the estimation algorithms or enable the use of more complex schemes like
Kalman filter.

The joint modeling and model verification should be carried out before the system is
completely built, giving the possibility of testing the robotic joints under different condi-
tions.

Regarding the control of the joints, the proposed control laws have improved the
performance of the whole robot. It must be said that the used model still contains many
simplifications and does not directly consider the joints coupling and non-linear terms like
variable inertia and gravity. To address these effects, the control can only be implemented
in the CCU and not in the local controllers because of the missing information on the states
of the other joints.

To reach high walking velocities with robust tracking performance, the feed-forward or
feedback linearization approaches are still the most suitable. A necessary condition is the
use of desired systems trajectories which are smooth enough to avoid noisy injection into
the system. The generation of suitable smooth trajectories in real-time is not a trivial task
in particular for systems with many DoFs.

Other possible solutions for local control algorithms with uncertain system parameters,
are the implementation of adaptive techniques or robust control methods like H∞ for
non-linear systems.





Appendix A

Sensor Parameters

List of the sensor characteristics of LOLA.

Table A.1: incremental encoder list of encoder counts per second and maximum velocity

Joint Resolution Max Velocity Max Frequency Max Counts Frequency
[ counts

revolution] [rpm] [Hz] [MHz]

Head

Convergence 800 10000 166.7 0.133
Pan 2000 25500 425 0.850
Tilt 2000 10000 166.7 0.333

Body

Toe 4000 8500 141.7 0.567
Hip Flexion 11520 4800 80 0.922
Knee 11520 5600 93.3 1.075
Shoulder Adduction 11520 8000 133.3 1.536
Shoulder Flexion 11520 8000 133.3 1.536
Elbow 11520 8000 133.3 1.536
Pelvis Adduction 11520 8000 133.3 1.536
Hip Rotation 11520 8000 133.3 1.536
Hip Adduction 11520 8000 133.3 1.536
Ankle Adduction 11520 8500 141.7 1.632
Ankle Flexion 11520 8500 141.7 1.632
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Table A.2: IMU iMAR iVRU-FC-C16 parameters

Characteristic Dimension Value
Update rate [Hz] 200
Weight [kg] 0.8

Angular rate
Sensor range [deg/s] ±200
Short-term bias [deg/s] ±0.003
Long-term bias [deg/h] ±36
Scale error [%] < 0.2
Linearity [%] < 0.2
Resolution [deg/s] < 0.001

Linear acceleration
Sensor range [g] ±2
Scale error [%] < 0.3
Linearity [%] < 0.3
Resolution [mg] < 0.1

Table A.3: EnDat parameters

Model Dimension ECI 1116 ECI 1317
Interface EnDat 2.1 EnDat 2.1
Signal period per revolution 65536(16Bit) 131072(17Bit)
Mechanical Permissible speed [RPM] 12000 12000
Position Computation Time [µs] 8 8
Supply Voltage [V ± 5%] 5 5
Rotor Inertia [kgm2] 0.7610−6 3.210−6

Weight [kg] 0.1 0.13

Table A.4: FTS parameters

Maximum Measurable Forces Dimension Value
Fx [N] 500
Fy [N] 100
Fz [N] 1200

Maximum Measurable Torquex
Mx [Nm] 100
My [Nm] 120
Mz [Nm] 50



Appendix B

Sercos Lola Custom Protocol Data

In the following tables the custom data structure for the SERCOS-III protocol used for LOLA

is listed.

Table B.1: Sercos-III Standard IDNs: Device Control and State.

Name IDN_dec Description

wManC1D 129 Shutdown Error
wManC2D 181 Warning
wPrimarOpMode 32 POM1 – IDLE
wSecOpMode1 33 SOM2 1 – Motor Free
wSecOpMode2 34 SOM 2 – Torque Mode
wSecOpMode3 35 SOM 3 – Velocity Mode
wSecOpMode4 284 SOM 4 – Position Inc Enc Mode
wSecOpMode5 285 SOM 5 – Position EnDat Mode
wSecOpMode6 286 SOM 6 – Position Double Loop Mode
wSecOpMode7 287 SOM 7 – Fault Mode
wResCtrl 134 Drive Control
wResStatus 135 Drive Status

Table B.2: Sercos-III custom IDN for Lola: Robot State Control.

Name IDN_dec Description

wDSPStateSVC 33268 DSC Current fsm3 state (Service Channel)
lDSPCommandSVC 33368 DSC Command over Service Channel
wDSPManC1DExtraData1 34058 Extra error information

1 POM: Primary operation mode
2 SOM: Secondary operation mode
3 fsm:Finite State Machine
4 J: Joint
5 InEn: Incremental Encoder
6 EdEn: EnDat Encoder
7 LPF:Low Pass Filter
8 ff:feed forward
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Table B.3: Sercos-III custom IDN for Lola: Joint Control Desired Values.

Name IDN_dec Description

lDbLolaPosJoint0_cmn 32869 Desired position J4 0 (Scaled)
lDbLolaPosJoint1_cmn 98405 Desired position J 1 (Scaled)
lDbLolaPosJoint2_cmn 163941 Desired position J 2 (Scaled)

lDbLolaPosMotort0_cmn 32870 Desired position Motor 0 (Scaled)
lDbLolaPosMotor1_cmn 98406 Desired position Motor 1 (Scaled)
lDbLolaPosMotor2_cmn 163942 Desired position Motor 2 (Scaled)

LolaPosEncMotElmo0_cmn 32868 InEn5 desired position J 0
LolaPosEncMotElmo1_cmn 98404 InEn desired position J 1
LolaPosEncMotElmo2_cmn 163940 InEn desired position J 2

LolaPosEnDatEncoder0_cmn 32888 EdEn6 desired position J 0
LolaPosEnDatEncoder1_cmn 98424 EdEn desired position J 1
LolaPosEnDatEncoder2_cmn 163960 EdEn desired position J 2

lDbLolaCurrentElmo0_cmn 32948 Desired Motor Current J 0
lDbLolaCurrentElmo1_cmn 98484 Desired Motor Current J 1
lDbLolaCurrentElmo2_cmn 164020 Desired Motor Current J 2
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Table B.4: Sercos-III custom IDN for Lola: Encoders Measured Values.

Name IDN_dec Description

lDbLolaPosJoint0_fb 32879 Feedback postion J 0 (Scaled)
lDbLolaPosJoint1_fb 98415 Feedback position J 1 (Scaled)
lDbLolaPosJoint2_fb 163951 Feedback position J 2 (Scaled)

lDbLolaPosMotor0_fb 32880 Feedback postion Motor 0 (Scaled)
lDbLolaPosMotor1_fb 98416 Feedback position Motor 1 (Scaled)
lDbLolaPosMotor2_fb 163952 Feedback position Motor 2 (Scaled)

LolaPosEncMotElmo0_fb 32878 InEn measured position J 0
LolaPosEncMotElmo1_fb 98414 InEn measured position J 1
LolaPosEncMotElmo2_fb 163950 InEn measured position J 2

LolaPosEnDatEncoder0_fb 32898 EdEn measured position J 0
LolaPosEnDatEncoder1_fb 98434 EdEn measured position J 1
LolaPosEnDatEncoder2_fb 163970 EdEn measured position J 2

lDbLolaCurrentElmo0_fb 32949 Measured Motor Current J 0
lDbLolaCurrentElmo1_fb 98485 Measured Motor Current J 1
lDbLolaCurrentElmo2_fb 164021 Measured Motor Current J 2
lDbLolaVelEncMot0 32883 InEn Velocity J0
lDbLolaVelEncMot1 98419 InEn Velocity J1
lDbLolaVelEncMot2 163955 InEn Velocity J2

lDbLolaVelEncMotElmo0 32884 InEn Velocity from ELMO J0
lDbLolaVelEncMotElmo1 98420 InEn Velocity from ELMO J1
lDbLolaVelEncMotElmo2 163956 InEn Velocity from ELMO J2

LolaPosEncMotElmo0_offset 229486 InEn Offset position J 0
LolaPosEncMotElmo1_offset 295022 InEn Offset position J 1
LolaPosEncMotElmo2_offset 360558 InEn Offset position J 2

LolaPosEnDatEncoder0_offset 229506 EdEn Offset position J 0
LolaPosEnDatEncoder1_offset 295042 EdEn Offset position J 1
LolaPosEnDatEncoder2_offset 360578 EdEn Offset position J 2

lDbLolaCurrentElmo0_RatCurr 32950 Rated Motor Current J 0
lDbLolaCurrentElmo2_RatCurr 98486 Rated Motor Current J 1
lDbLolaCurrentElmo2_RatCurr 164022 Rated Motor Current J 2
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Table B.5: Sercos-III custom IDN for Lola: IMU and FTS Measured Values.

Name IDN_dec Description

LolaFTS_fx 32908 Force torque Sensor: F_x
LolaFTS_fy 98444 Force torque Sensor: F_y
LolaFTS_fz 163980 Force torque Sensor: F_z
LolaFTS_Tx 229516 Force torque Sensor: T_x
LolaFTS_Ty 295052 Force torque Sensor: T_y
LolaFTS_Tz 360588 Force torque Sensor: T_z

LolaSpindelDef_adc_0 32913 Spindle Deformation Data: ADC_0
LolaSpindelDef_adc_1 229521 Spindle Deformation Data: ADC_1

LolaIMU_nrpy_x 32918 IMU angle x
LolaIMU_nrpy_y 98454 IMU angle y
LolaIMU_nrpy_z 163990 IMU angle z
LolaIMU_omgs_x 229526 IMU angle velocity x
LolaIMU_omgs_y 295062 IMU angle velocity y
LolaIMU_omgs_z 360598 IMU angle velocity z
LolaIMU_accs_x 426134 IMU angle acceleration x
LolaIMU_accs_y 491670 IMU angle acceleration y
LolaIMU_accs_z 557206 IMU angle acceleration z
LolaIMU_status 622742 IMU status word
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Table B.6: Sercos-III custom IDN for Lola: Controller Variables.

Name IDN_dec Description

LolaController_GG 32928 Controller Global Gain

LolaPosition_PID_KP_0 32929 Position Proportional gain J 0
LolaPosition_PID_KP_1 98465 Position Proportional gain J 1
LolaPosition_PID_KP_2 164001 Position Proportional gain J 2

LolaPosition_PID_KD_0 32930 Position Derivative gain J 0
LolaPosition_PID_KD_1 98466 Position Derivative gain J 1
LolaPosition_PID_KD_2 164002 Position Derivative gain J 2
LolaPosition_PID_KD_LPF_D_f_0 229538 Position Derivative LPF7 J 0
LolaPosition_PID_KD_LPF_D_f_1 295074 Position Derivative LPF J 1
LolaPosition_PID_KD_LPF_D_f_2 360610 Position Derivative LPF J 2

LolaPosition_FF_0 32931 Position ff8 current value J 0
LolaPosition_FF_1 98467 Position ff current value J 1
LolaPosition_FF_2 164003 Position ff current value J 2
LolaPosition_FF_gain_0 229539 Position ff gain J 0
LolaPosition_FF_gain_1 295075 Position ff gain J 1
LolaPosition_FF_gain_2 360611 Position ff gain J 2
LolaPosition_FF_mult 426147 Position ff multiplicator

LolaController_Position_err_IncEnc_0 32932 InEn current position error J 0
LolaController_Position_err_IncEnc_1 98468 InEn current position error J 1
LolaController_Position_err_IncEnc_2 164004 InEn current position error J 2

LolaController_Position_err_Endat_0 32933 EdEn current position error J 0
LolaController_Position_err_Endat_1 98469 EdEn current position error J 1
LolaController_Position_err_Endat_2 164005 EdEn current position error J 2

Table B.7: Sercos-III custom IDN for Lola: Utility Variables.

Name IDN_dec Description

wLolaCameraTrig 32938 Camera Trigger Information
wDSPCameratrigFreq 32939 Camera Trigger Frequency

DSP_Sercosiface_SW_Ver 36768 Current Sercos-III interface Version
bit 31...16 : SERCOS_VERSION
bit 15...0 : USER_DB_VERSION

lCycle_Timers 34818 DSC Timer Measures
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Table B.8: Sercos custom Commands: DSC State bit meaning.

wDSPStateSVC

Bit Name Meaning

31 reserved
30 reserved
29 reserved
28 reserved
27 reserved
26 reserved
25 reserved
24 reserved
23 reserved
22 reserved
21 reserved
20 DSPStateSVC_Elmo_vel_fb Elmo velocity Feedback set
19 DSPStateSVC_Current_fb Current Feedback set
18 DSPStateSVC_IncEnc_fb Incremental Encoder Feedback set
17 DSPStateSVC_Endat_fb EnDat Encoder Feedback set
16 DSP_Warning DSP warning
15...12 DSP_State

DSP_IDLE
DSP_BOOT
DSP_MFREE
DSP_TCONT
DSP_VCONT
DSP_PCONT
DSP_ELMO_PCONT
DSP_FAULT
DSP_MOTOR_ALIGNMENT
DSP_START_UP

11 Motor Aligned Motors have been aligned
10 New Desired Value New desired value available
9 Joint_Offset_2_Set Inc Enc 2 offset have been set
8 Joint_Offset_1_Set Inc Enc 1 offset have been set
7 Joint_Offset_0_Set Inc Enc 0 offset have been set
6 Error DSP error
5 Error Extra data Available Extra Erro data available
4 IMU OK IMU status OK
3 KMS OK KMS status OK
2 EnDats OK EnDat status OK
1 Inc Encs Ok Enc Encstatus OK
0 Elmos Ok ELMO status OK
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Table B.9: Sercos custom Commands: DSC Command Array.

lDSPCommandSVC[0]

Bit Name Command Values
31...16 SVC_Command

goto_idle_NRT 0x8000
goto_mON 0x8001
reset_fts 0x8002
reset_imu 0x8003
reboot 0x8004
elmo_bc 0x8005
set_position_offset 0x8006
head_homing 0x8007
set_elmo_ratedCurrent 0x8008
set_endat_fb 0x8101
reset_endat_fb 0x8102
set_current_fb 0x8103
reset_current_fb 0x8104

15...0 Elmo_index 0-2

lDSPCommandSVC[1]

31...24 BC_ch1 / OFFSET_ELMO_0
23...16 BC_ch2 / OFFSET_ELMO_0
15...8 BC_Idx / OFFSET_ELMO_0
7...0 BC_Int_flt / OFFSET_ELMO_0

lDSPCommandSVC[2]

31...0 BC_DataIDX / OFFSET_ELMO_1

lDSPCommandSVC[3]

31...0 OFFSET_ELMO_2

Table B.10: Sercos custom Commands: Camera Trigger.

wLolaCameraTrig

Bit Name

15...8 Camera Trigger Actual Level
7...0 Camera Trigger have been set the Last Cycle





Appendix C

DSCB Application Program Interface

List and definition of the software API developed for the DSCBs controllers:

Table C.1: DSC List of API files.

Function Group FIle Name Description

DSC Configuration dsp_config.c DSC register configuration
and System management

config.h DSCB configuration file

PE_Const.h Generic constant definitions
PE_Error.h Generic error definitions
PE_Types.h Generic data type definition
IO_Map.h DSC peripheral address definition
fsm.h FSM basic definitions
SM.h FSM state and state change definition
DSPHW_FSM.c DSCB fsm implementation
DSPHW_FSM.h

Communication FlexCAN.c CAN low level communication
FlexCAN.h
iface_External_RAM.c External RAM

low level communication
iface_External_RAM.h
iface_sercos_lola.h Sercos-III data/macro definition

Sensor Driver IMU.c IMU communication implementation
IMU.h
KMSAPI.c FTS communication implementation

and low level SPI communication
KMSAPI.h
inc_enc.c incremental encoder

communication implementation
and low level FPGA communication

inc_enc.h
endat.c EnDat communication implementation

and low level EMI communication
endat.h
sens_iface.c Sensor read, elaboration functions
sens_iface.h
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Function Group FIle Name Description

Actuator Driver ElmoAPI.c ELMO CANOpen
Communication implementation

ElmoAPI.h
Joint Control Controller.h Control functions

Controller.c
Spindle kinematics lola_ankle_joint_left_int32.c Left Ankle look-up table

lola_ankle_joint_left_int32.h
lola_ankle_joint_right_int32.c Right Ankle look-up table
lola_ankle_joint_right_int32.h
lola_joint_kinematics_tabular.c
lola_joint_kinematics_tabular.h
lola_knee_joint_left_int32.c Left Knee look-up table
lola_knee_joint_left_int32.h
lola_knee_joint_right_int32.c Right Knee look-up table
lola_knee_joint_right_int32.h
lola_vis_conv_joint.c Head Convergence look-up table
lola_vis_conv_joint.h
lola_dsp_kinematics.c Look-up table search functions
lola_dsp_kinematics.h

Utility and debug file_backup.c Save data remotely to file
file_backup.h
time_measure.c Timing measure functions
time_measure.h
timers.c DSC timers API
timers.h
IRQ_DSP.c DSC Interrupt Request functions
IRQ_DSP.h

Safety and Error management config.h Error management macros
ElmoAPI.c Safety functions
ElmoAPI.h
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Incremental Encoder IP-Core

The following table lists the communication interface between the DSC and the FPGA
Incremental Encoder IP-Core.

Table D.1: Incremental Encoder IP-Core: DSC Interface Signals Description.

Signal Name I/O Signal Description

ADD_Bus In Address Bus
DATA_Bus In/Out Data Bus
CK In System Clock
RST In Reset
CS In Chip Select
Rd In Read Signal
WR In Write Signal

Incremental Encoder
An1 In A Negative Signal Encoder 1
Bn1 In B Negative Signal Encoder 1
Ap1 In A Negative Signal Encoder 1
Bp1 In B Negative Signal Encoder 1
An2 In A Negative Signal Encoder 2
Bn2 In B Negative Signal Encoder 2
Ap2 In A Negative Signal Encoder 2
Bp2 In B Negative Signal Encoder 2
An3 In A Negative Signal Encoder 3
Bn3 In B Negative Signal Encoder 3
Ap3 In A Negative Signal Encoder 3
Bp3 In B Negative Signal Encoder 3

LED Outputs
LED_0 Out Bit 0 of Encoder 1
LED_1 Out Bit 0 of Encoder 2
LED_2 Out Bit 0 of Encoder 3
LED_Power Out FPGA Power LED

The following tables list the internal communication interfaces of the units of the FPGA
Incremental Encoder IP-Core.
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Table D.2: Incremental Encoder IP-Core: Debounce Module Signals Description.

Signal Name I/O Signal Description

clk In Unit Clock
reset In Reset
raw In Raw Encoder Signal Input
PreLoadPort In Low Pass Filter Value
Debounced Out Filtered Encoder Signal

Table D.3: Incremental Encoder IP-Core: Encoder Decoder Module Signals Description.

Signal Name I/O Signal Description

clk In Unit Clock
a_reg In A Filtered signal
b_reg In B Filtered signal
reset In Reset
counter_CK In New Count Available
direction Out Encoder Current Moving Direction

Table D.4: Incremental Encoder IP-Core: Encoder Position Counter Module Signals Description.

Signal Name I/O Signal Description

clk In Unit Clock
ce In Chip Select
reset In Reset
Inverted_Dir In Inverted or Not Counting Direction
PreLoad In Counter Offset Trigger
PreLoadPort In Counter Offset
direction In Encoder Movement Direction
count Out Encoder Current Count
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Table D.5: Incremental Encoder IP-Core: Encoder Status Register Bit.

Bit Bit Name Bit Description

32...4 Reserved
3 CD Counting Direction
2 OF Set Encoder Offset
1 LP Set Low Pass Filter
0 SR Software Reset

Table D.6: Incremental Encoder IP-Core: Velocity Module Signals Description.

Signal Name I/O Signal Description

clk In Unit Clock
reset Out Unit Reset
trig_comp In Trigger Velocity computation
vel_comp Out Velocity Computation running
position_0 In Position From Encoder 1
position_1 In Position From Encoder 2
position_2 In Position From Encoder 3
velocity Out Velocity
pos_rd_EN In Enable Position Read
comp_module In Module Number

Table D.7: Incremental Encoder Module FPGA: Internal Unit Memory Mapping.

Unit Memory Address Address Space

Incremental Encoder 1 0x000-0x00F 0x00F
Incremental Encoder 2 0x010-0x01F 0x00F
Incremental Encoder 3 0x020-0x02F 0x00F
CAN Module 1 0x080-0x0C0 0x040
CAN Module 2 0x100-0x140 0x040
CAN Module 3 0x180-0x1C0 0x040
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Table D.8: Incremental Encoder IP-Core: CAN Module Signals Description.

Signal Name I/O Signal Description

can_phy_tx Out CAN bus transmit signal to PHY
can_phy_rx In CAN bus receive signal from PHY
Bus2IP_DATA In Write Data bus
IP2Bus_DATA OUT Read Data bus
Bus2IP_RNW In Read or Write signaling
Bus2IP_ADD, In Address Bus

CAN Control Signals

CLK0_BUF, In Input interface clock
CK_CAN, In 24MHz oscillator clock input
Bus2IP_RST, In Active high reset
Bus2IP_CS In Active high CS
IP2Bus_ACK OUT R/W data acknowledgment
IP2Bus_IntrEvent OUT Active high interrupt line1
IP2Bus_Error OUT Active high R/W Error signal
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Joint Model Catalog Parameters

List of the gear model parameter for different Harmonic-Drive gears and Roller screws1.

Table E.1: Harmonic Drive Stiffness Model.

Type τe1 τe2 K0 K1 K2

[Nm] [Nm] [ Nm
rad
] [ Nm

rad
] [ Nm

rad
]

HFUC-11-100 0.8 2.0 2.7e3 3.4e3 4.4e3
HFUC-14-100 2 6.9 0.47e4 0.61e4 0.71e4
HFUC-17-100 3.9 12.0 1.0e4 1.4e4 1.6e4
HFUC-20-100 7.0 25.0 1.6e4 2.5e4 2.9e4
HFUC-25-100 14.0 48.0 3.1e4 5.0e4 5.7e4
HFUC-32-50 29.0 108.0 5.5e4 6.3e4 7e4

Table E.2: Harmonic Drive Friction Model.

Type bv τ f 0 µ γ Gear Ratio N
[Nms2

rad
] [Nm] [/] [ s2

rad
] [/]

HFUC-11-100 6.63 · 10−6 7.75 · 10−3 0.0 6.59 · 10−4 100
HFUC-14-100 1.04 · 10−5 1.21 · 10−2 0.0 6.59 · 10−4 100
HFUC-17-100 3.20 · 10−5 3.72 · 10−2 0.0 6.59 · 10−4 100
HFUC-20-100 5.33 · 10−5 6.20 · 10−2 0.0 6.58 · 10−4 100
HFUC-25-100 8.94 · 10−5 1.04 · 10−1 0.0 6.58 · 10−4 100
HFUC-32-50 1.52 · 10−4 2.46 · 10−1 5.49 · 10−3 6.21 · 10−4 50

1 Data from Buschmann [20]
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Table E.3: Roller screw Friction Model.

Part ηD ηI

Knee joint roller screw 0.860 0.858
Ankle joint roller screw 0.855 0.839
Ankle joint timing belt 0.98 0.98



List of Abbreviations

ADC Analogue to Digital Converter

API Application Programming Interface

AU Actuation Unit

CAD Computer Aided Design

CAN Control Area Network

CCL Communication Control Logic unit

CCU Central Control Unit

CPLD Complex Programmable Logic Device

DAC Digital to Analogue Converter

DoF Degrees of Freedom

DSB Distributed Sensor Control Board

DSC Digital Signal Controller

DSCB Distributed Sensor Control Board

DSP Digital Signal Processor

EEPROM Electric Erasable Programmable Read-Only Memory

FIR Finite Input Response

FPGA Field Programmable Gate Array

FPU Floating Point Unit

FTS Force Torque Sensor

HD Harmonic Drive (gear)

HLC High Level Control

I/O Input Output

IEF Incremental Encoder FPGA

IMU Inertial Measurement Unit
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IRR Infinite Input Response

LLC Low Level Control

LSE Least Square Estimation

MT Multichannel Connectors

PCI Peripheral Component Interconnect

PHY Physical Layer

PID Proportional Integral Derivative controller

rms Root Mean Square

SPI Serial Communication Interface

VPS Video Processing Server
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