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ABSTRACT: 
 
Laserscanners are used more and more as surveying instruments for various applications in industry as well as in architectural 
heritage conservation. With the advance of high precision systems, capable of working in most real world environments under a 
variety of conditions, numerous applications have opened up. The developed IMAGER 5003 is a state-of-the-art, high precision, 
high speed laser scanner that provides accurate 3D measurements. So high accuracy in extracting features is most important. The 
IMAGER 5003 measures both, range and reflectance (=intensity) images at the same time. This paper deals with an algorithm for 
detecting corners and contours at a subpixel accuracy: The first part of the paper explains how features in the reflectance image can 
be extracted by local polynomial fitting. Based on this, the second part focuses on the precise detection of contours and corners. The 
paper concludes with results by applying the algorithm to scanned data in real environment which shows its robustness. 

 

 
1.  INTRODUCTION AND MOTIVATION 

Detecting contours, corners and edges are important and well 
known in 2D image Analysis. Corners and edges should be 
located precisely, true corners and not false corners should be 
detected and last but not least, the method must be stable, 
especially to noise or artefacts. 
Beside the 2D intensity information the laser scanner Imager 
5003 has in addition 3D range information (see [Frö02], 
[Ste02], [Hae01], [Hei01]). The system has different scanning 
modes, which differ in spatial point distance. It can be selected 
adapted to the requirements and application between Super 
High Resolution (20000 Pixel per 360o horizontally and 
vertically)  and Preview (1250 Pixel per 360o horizontally and 
vertically) mode. Both information – reflectance and 3D 
geometry – are corresponding by each pixel. So by extracting 
features in an accurate way, the combination of image 
processing methods and 3D geometric information is possible.  
In this paper we present an algorithm which detects corners and 
edges by reconstructing the reflectance image (=intensity data) 
of Imager 5003 by using polynomials. So first is shown, how 
the reflectance image of Imager 5003 can be reconstructed 
locally by polynomials of degree less or equal than two. The 
second part of the paper deals with the curvature (as a 
characteristic of the reconstructed polynomial) and how it can 
be used as a classification criteria for corners and edges. 
Examples are presented in the third part. Furthermore some 
aspects of a fast computation of the method are explained.   
 
Like in all measurement systems, the reflectance and the range 
data of the IMAGER 5003 is more or less noisy. But in 
addition, the developed method must be stable to artefacts: 
Depending on the mode, the spatial point distance decreases, 
which results in an increase of quantisation effects. So on the 
one hand, the reconstruction of the reflectance image is a basic 

motivation, but  on the other hand however, the developed 
method must be fast enough to be practical in industrial  
applications. 

 
 
Figure 1: The figure shows the Laser scanner IMAGER 5003. 
 
Based on this ideas, polynomials were chosen for solving this 
task, which is shown in the next section.   
 
 
 
2.  POLYNOMIAL RECONSTRUCTION AND FEATURE 
      EXTRACTION 

2.1   Local Image Reconstruction 
 
Denote { } { }mnD ..0..0: ×=  the image square. Let 
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be the reflectance image. Be (i, j)  optional but fixed a co-
ordinate in g . Denote  
 

{ }),(),..,,(:),(, ljkiljkijiN lk ++−−=  

 
the 1)12()12( −+⋅+ lk  neighbourhood around the pixel 

),( ji . Now a  polynomial  
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of degree less or equal than two is searched, which should 
minimise 
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This optimisation problem can be solved with a linear least 
squares approach: To show this, choose e.g. the monomials 
{ }xyyxyx ,,,,,1 22  as basis for p and set  

( )xyyxyxv yx ,,,,,1: 22
, =  and ),(:, jigg ji =  to simplify 

notification. Denote xxx t=:
2

 the euclidean distance and 

set  
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Then 0)det( ≠G  and the in (*) formulated minimisation 
problem can be rewritten as  
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This linear least squares problem is well known in literature and 
can now be solved with a standard method, for example the 
householder algorithm. 
 
 
 
Implementation 
 
From a computational point of view it is better to transform the 
image co-ordinate system  into a local co-ordinate system with 
the pixel (i,j) as origin:  The matrix G  and in particular its 
pseudo inverse  +G  will then be identical for each 
neighbourhood DN lk ⊂, . Thus the in (**) reformulated 

minimisation problem simplifies to 
 

.0 bGa ⋅= +  
 
 
 
 

 
2.2  Features for Contours and Corners 
 
If you focus  on the grayvalues in the neighbourhood around a 
pixel (i,j), then the change in the graylevels is the most 
significant criteria for classifying contours and corners: If you 
move along a contour, then the grayvalues will not change 
significantly. But if you move along the direction which is 
orthogonal to the `contour-line`, then the values will change a 
lot. Vice versa if the pixel (i,j) is element of a corner:  Now the 
change between the grayvalues along each direction is 
significant.   
 
To express this now in a more mathematical sense, each pixel is 
identified with its feature vector 6

0 IRa ∈  characterising the 
polynomial  p as described above. Now it is the curvature of p, 
which can be taken as a criteria of the change in the grayvalues: 
As is generally known, the curvature of a polynomial p can be 
calculated by differentiating p two times: The Hessian 

pH  of 

the second partial derivatives is then defined through  
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The maximal and minimal curvature of p correspond to the two 
eigenvalues maxλ  and minλ  of pH : They are real, as 

pH  is 

symmetric and can be calculated by solving the zeros of the 
characteristical polynomial γ  of 

pH  through 

 

0
0

0
det:

!
=















−=

λ
λ

γ pp H  

 
and hence 
 

( )
2

)(4)( 2

2,1
xyyyxxyyxxyyxx ddddddd −−+±+

=λ

 
and hence 
  

.},{min:

},{max:

21min

21max

λλ=λ

λλ=λ
 

 
 



 

 3

 
Figure 2: The figure shows a polynomial p of degree 2 which  
reconstructed the neighbourhood  around a line. Also marked are the 
eigenvectors of the Hessian of  p. The eigenvalue corresponding to the 
eigenvector emin will be small, the eigenvalue corresponding to the 
eigenvector emax  will be large. 
 
Similar to the in [Har88] from Harris and Stephens introduced 
criteria, a classification for contours and corners can now be 
described as follows: Set 
 

)(: 2121 λ+λ−λλα=ξ p    (***) 

for an adequate +∈α IR . Let T1 and T2 be thresholds known 
from experience; then the pixel (i,j) is element of a contour (see 
Figure 2) if 
 

(P.1)  .1 pTContourj)(i, ξ<⇔∈  

 

 
Figure 3: The figure shows a polynomial p of degree 2 which 
reconstructed the neighbourhood around a corner. Also marked are the 
eigenvectors of the Hessian of  p. Either both eigenvalues are positive or 
negative. 
 
 
The Pixel (i,j) is element of a corner (see Figure 3), if 
 
(P.2) .)( 2 pTCornerji, ξ<⇔∈  

 
And additional it can be given a classification for saddles (see 
Figure 4) through:  
 
(P.3) 2)( TSaddleji, p −<⇔∈ ξ  

 
 

 
 
Figure 4: The figure shows a polynomial  p of degree 2 which 
reconstructed the neighbourhood around the extremum of a saddle. Also 
marked are the eigenvectors of the Hessian of  p. One eigenvalue will be 
positive, one negative.  
 
2.3  Subpixel Extraction  
 
In the last section, a feature was described, which enables  the 
identification of a pixel (i,j) as being element of a contour, 
corner or saddle. In the next paragraph it will be shown, how 
contour points can be calculated with subpixel accuracy. 
 
Contour Points 
 
Let S∈D  be the subset of the image square D, which holds 
property (P.1) and let IRDF →:  be the feature image, 
which maps each pixel onto the in (***) described feature 
value: The closer the pixel (i,j) is to the skeleton, the bigger the 
function value F(i ,j) will be.  
Based on this observation, the idea is now, to reconstruct the 
feature image F in the subset S with the algorithm shown in 2.1 
once again, and to calculate the extremum with subpixel 
accuracy. Thus let (i, j) be a pixel in the subset S, and let q be 
the polynomial, which reconstructed F in the neighbourhood 
around (i ,j).  Let wmax  be the eigenvector of the hessian Hq of  
q,  which corresponds to the bigger eigenvalue maxη  and let 
wmin be the eigenvector corresponding to the smaller eigenvalue 

minη  respectively. Denote  
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the projection from q onto maxw .  Then IRIRh →:  is a 
polynomial of degree 2, and its extremum is given through the 
first derivation 
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Now the subpixel value on the skeleton can be calculated 
through 
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note: Moreover the direction of the contour is known, as you 
know the eigenvector of the smaller eigenvalue. This could be a 
very helpful information for further image processing 
algorithms.  
 
Corners and Saddles 

In this paragraph it will be shown, how a corner and the 
extremum of a saddle can be calculated: Let now DS ∈  be 
the subset of the image square D, which holds property (P.2)  
(or property (P.3) for a saddle respectively) and let F be the 
feature image, which maps each pixel onto its feature value  

pξ .  Again let Sji ∈),(  be a pixel in the subset S, and let q 

be the polynomial, which reconstructed F in the neighbourhood 
around (i,j) (similar to the algorithm shown in section 2.1). Let 

maxw  be the eigenvector of the hessian qH  of  q,  which 

corresponds to the bigger eigenvalue maxη  and let minw  be 

the eigenvector corresponding to the smaller eigenvalue minη .  
 

 
 
Figure 4: The Figure shows the reflectance image of a typical scan in 
an industrial environment. 
 
Denote  
 

)(:
maxmax qprh w=  

 
the projection from q onto maxw  and denote 
 

)(:
minmin qprh w=  

 
the projection from q onto minw . Then IRIRh →:min  

and IRIRh →:max   are polynomials of degree 2, and their 

extremums 1t  and 2t  are given through the first derivation 
(which can be calculated like demonstrated in the last 
paragraph). The subpixel value of a corner or saddle can now be 
calculated through 
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3. APPLICATIONS 

In this section applications for the described methods are 
demonstrated, based on real environmental data sets. Fig. 4 
shows a section of a reflectance image taken in typical 
industrial environments. Targets are used in this environment to 
reference multiple images with respect to each other. We 
present two different applications which are used in real 
environments, namely detecting the centre of a target as well as 
finding the extremum of a corner. 
 

 
 

Figure 5: The figure shows the reflectance image of a typical scan in 
real environment. 
 
 
3.1 Finding the Centre of a Target 
 
In real environments targets are used in order to register many 
individual scans together. Therefore a crucial element for a 
target finder is to locate targets in real environments with a very 
high accuracy. As already small deviations in localisation may 
cause very big errors in large and extended environments, the 
detection of  targets in subpixel accuracy is necessary 
In these environments targets can not be fixed always 
perpendicular to the scanning system (IMAGER 5003). 
Furthermore it is of great interest that the image processing 
steps are robust, first to spatial resolution and second to 
orientation of the target surface relative to the scanner itself. 
 

 
 
Figure 6: The figure shows the result of the algorithm as used as target 
finder: The marked point is the extremum of a saddle. Left image: The 
scan was taken with a spatial resolution of 10000 Pixel per 360 degree 
horizontally and vertically. The range is approx. 4 m. Right image: The 
scan was taken with a spatial resolution of 1250 Pixel per 360 degree 
horizontally and vertically. The range is approx. 4 m. 
 
The algorithm itself, is now straight forward by using the 
introduced methods: For this, let DS ⊂  be the subset of the 
image square, in which the center of the target should be 
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detected.  Denote again IRSF →: the feature image. Let  
(x,y) be the pixel in S for which F is minimal.  Then the 
subpixel extremum of the saddle is calculated as described in 
Section 2.3.  
 
In Fig. 6  we show the results for two different targets, varied in 
range, spatial resolution and orientation. The results show a 
robust and subpixel accuracy, even with extreme variations. 
These results underline that the motivation of using a 
polynomial approach is more suited than standard methods for 
target finding like convolution approaches etc. 
 
Fig. 5 shows the application of the developed target finder in 
real environments like a forest.  
 

 
3.2  Finding the Extremum of a Corner 
 
In most industrial applications targets are usually the best and 
fastest method to register many individual scans together. 
However, targets are undesired in some 3D reconstruction 
applications: In cultural heritage conservation for instance, a 
combination with RGB colour information is requested often. It 
would be incommode, if in the reconstructed model targets 
would appear.  

 
 

Figure 7: The figure shows the result of the algorithm used as 
corner detector: The subpixel extremum are calculated for the i 
biggest values of the feature image F in the selected area. The 
image was taken with a High Resolution scan (10000 Pixel per 
360 degree  horizontally and vertically). 
 
The algorithm for finding the centre of a corner is similar to the 
target finder shown above. But contrarily to targets, more than 
one corner might be wished to be detected: So let  DS ⊂  
again be the subset of the image square, in which corners 
should be detected. Denote again IRSF →: the feature 
image. Let   

{ } SyxyxM iii ⊂= ),(,..),,( 11  
 

be the set of pixels (i indicates the amount of corners you wish 
to detect in S) for which F is bigger than for each other 

iMSvu ∈),( . Then the subpixel extremum of the corners 
can be calculated like shown in Section 2.3.  
Figure 7 shows examples taken of a facade of a building, which 
shows again the robustness of the method. 

4.   DISCUSSION AND OUTVIEW 

In this paper we presented a method for Imager 5003, which 
reconstructs the local neighbourhood of a pixel by polynomials, 
and thereby enables the classification of contours, saddles and 
corners as well as its subpixel detection. The method works 
quite well for detecting corners and the extremum of saddles. In 
further studies, it will be worked out, if the algorithm is stable 
under different perspective variations. Furthermore this has to 
be tested to further experiments, especially to prove stability. 
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