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Abstract

In this paper we present an efficient and robust real-time
system for object contour tracking in image sequences. The
developed application partly relies on an optimized imple-
mentation of a state-of-the-art curve fitting algorithm, and
integrates important additional features in order to achieve
robustness while keeping the speed of the main estimation
algorithm. An application program has been developed,
which requires only a few standard libraries available on
most platforms, and runs at video frame rate on a common
PC with standard hardware equipment.

1 Motivation and Scope of the Present Work

The general problem of object contour tracking in im-
age sequences is an important and challenging topic in the
computer vision community; as many researchers already
pointed out, an advanced contour tracking technique can
provide crucial information for many image understanding
problems and, at the same time, allows the development of
efficient and useful working applications in many fields of
interest. We refer the reader to [1] for a survey of these
applications and the related references.

Among the currently available methodologies, a very ap-
pealing one is the Contracting Curve Density (CCD) algo-
rithm: this method has been recently developed and pre-
sented in [3] as a state-of-the-art improvement over other
advanced techniques such as the Condensation algorithm
[6], and it has been shown to overperform them in many dif-
ferent estimation tasks. Nevertheless, its higher complex-
ity has been initially considered as an obstacle to an effec-
tive real-time implementation, even in the simplified form
named Real-Time CCD from the same authors [4], and a
working online version still had to be investigated.

Moreover, in order to realize an autonomous and robust
tracking system, some important additional issues have to

be taken into account; one of them is the possibility of au-
tomatic initialization and reinitialization of the system, both
at the beginning of the tracking, and in case of tracking loss.
Nevertheless, one also expects that a “well behaving” track-
ing system does not need a global estimation procedure dur-
ing most of the tracking task, or, in the ideal case, only at
the beginning. The global initialization module is compu-
tationally more demanding than the online tracker, and a
frequent reinitialization would significantly slow down the
performance of the system.

Therefore, most of the efforts in realizing such a system
have to be focused on a robust real-time performance of the
contour tracker itself, in terms of speed, accuracy and con-
vergence area for the parameter search.

All of the above mentioned issues, and other relevant as-
pects, constitute the main motivation of the present work;
it will be shown how it contributes to the state-of-the-art in
contour tracking systems with the following achievements:

• The real-time CCD algorithm [4] has been reimple-
mented with a significant number of critical speedups
with respect to the originally proposed version.

• A global initialization and reinitialization module has
been developed and introduced into the system

• A trajectory coherence test module based on sim-
ple kinematic models gives the possibility of reliably
checking for a tracking loss condition at any time

As a result of these improvements, we were able to
build a working real-time application, that can easily run
on a common PC equipped with standard video hardware at
video frame rate, while preserving the robustness and pre-
cision of the base algorithm.

The paper is organized as follows: in Section 2, a gen-
eral overview of the tracking system will be given; Section 3
will then focus on the core CCD tracking algorithm, and the
most important implementation speedups will be described;



Figure 1. Overall system architecture

Section 4 describes the global initialization search module,
and the trajectory checking module; experimental results
and conclusions are finally given in Section 5.

2 System Overview

A general overview of the system is given here, particu-
larly focusing on the main purpose and interactions of the
different modules involved, and the information flow be-
tween them. Referring to Fig. 1, we can see that the system
consists of several interacting modules, exchanging online
and offline data. A description of the system behavior is
given by the following abstract procedure:

Setup: In the first step, the user needs to specify a basic
model description for the contour tracking task; this oper-
ation needs to be done only once for a given object to be
tracked. The base contour shape of the object is taken by
simply placing a few control points of the curve on the im-
age, in order to satisfactory match the visible object contour.
The result of this process is the base contour shape model

and the reference image, that are stored in files; both will be
used in the subsequent tracking steps.

Initial Search: When activating the contour tracking en-
gine, the system searches for the object in the incoming
image stream, by using a robust feature matching system
against the reference image, in order to initialize and reini-
tialize the tracking algorithm. The obtained pose parame-
ters and their uncertainty constitute the prior (or absolute)
knowledge of the system state, in absence of reliable pre-
dictions from the tracker.

Local Estimation: The CCD module holds the contour
model of the system, and receives the online RGB image
stream coming from the video camera. It refines the con-
tour estimation coming from the prior knowledge, and gives
as output the current estimate of the contour pose parame-
ters. The estimated pose parameters are used afterwards for
two main purposes: to make a pose prediction for the next
timestep, and to check the trajectory coherence in order to
reinitialize the system in case of object loss.

Prediction and Trajectory Check: The trajectory pre-
diction and check is accomplished by a simple but suitable



kinematic model, via a steady-state Kalman Filter. The filter
uses the current estimated pose from the CCD algorithm as
state measurement. If the normalized measurement residu-
als at the given timestep do not exceed a given treshold, the
predicted pose will be accepted as prior knowledge for the
next frame CCD estimation. Otherwise, the feature match-
ing module will be called in order to reinitialize the system.

3 The Improved Real-Time CCD Algorithm

This Section considers in some detail the main speed-
up improvements over the original CCD algorithm [3][4],
starting from a hypothetical initial estimate with a given un-
certainty.

In order to describe the algorithm improvements, we re-
call its main underlying principles here.

3.1 Contour Model Parametrization

As already mentioned in Section 2, the object contour
model is defined as a parametric model, that describes the
shape of the object in terms of a base shape and a lim-
ited number of degrees of freedom (dof ), chosen in order
to specify the allowed displacements and deformations of
the base curve.

In this implementation we first consider planar rigid ob-
jects with a single contour, moving in 3D space, and we
model the contour as a continuous, differentiable and open
quadratic B-Spline in <2. The contour representation is
given by a set of NC control points lying on the xy plane,
Q = {q0,q1, ...,qNC−1} and a piecewise quadratic Basis
Function B (s), and the curve equation is given by

c (s) =
NC−1∑
n=0

qnB (s− n) (1)

In the present work splines-models consisting of approx-
imately 20 control points were used. In order to search for
the best matching contour pose, the contour points are then
transformed in 3D space according to a 6-dof parametrized
mapping, that can be regarded as the state-space of the con-
tour.

The overall mapping consists therefore of a rigid roto-
translation, followed by perspective projection of the given
contour points on the image screen; for this purpose, it is
first necessary to specify in advance the internal camera ac-
quisition model, given by a set of intrinsic parameters C
that are obtained off-line via a common calibration proce-
dure. The space transformation for the object contour will
be hereafter denoted by a vector Φ, so that the overall trans-
formation from a space point x to a screen point q is given
by

q = T (x,Φ,C) (2)

In particular, we decided to represent the rigid rotations
by means of a common yaw-pitch-roll parametrization; in
order to avoid singularities, the current frame rotation pa-
rameters are referred to the previous estimated frame atti-
tude, instead of the fixed camera frame. After each suc-
cessful estimation, the current rotation matrix is updated by
multiplying it with the estimated one, and the result is re-
orthogonalized in order to avoid numerical drifts.

Therefore, our transformation vector will be

Φ ≡ [α, β, γ, tx, ty, tz] ; Φ ∈ <6 (3)

with three rotation angles about the respective axes of the
reference frame, and three translations tx, ty, tz .

3.2 Step 1 of CCD: Learn Local Statistics

Once the model parameter space has been specified, the
optimization algorithm is initialized by setting the global es-
timated parameter mean and covariance matrix (mΦ,ΣΦ)
to the prior knowledge (m∗

Φ,Σ∗
Φ), where the statistics are

modeled by multivariate Gaussian distributions; in order to
speed up the computations, all the covariance matrices have
been chosen to be diagonal, that is to neglect the statisti-
cal interaction between the parameter components. This
assumption has no significant influence on the optimiza-
tion behavior, while dramatically increasing the computa-
tion speed.

A precomputed set of K sample points
{
c(0)
1 , ..., c(0)

K

}
,

which are uniformly distributed w.r.t. the contour parame-
ter s, is then transformed according to the current hypoth-
esis Φ = mΦ, by applying the spline transformation; the
parameter K is also specified in advance. The result is a
set of local image positions {c1, ..., cK} and normal vec-
tors {n1, ...,nK}, from where to start collecting the local
statistics.

The next step consists of taking a set of points along the
normal directions on both sides of the curve for each sample
position. For this purpose, first the planar contour normals,
lying on the xy plane, are computed offline. We decided to
set a fixed distance h along the line segments on which the
set of points are collected and evaluated according to the
hypothetical uncertainty of the current evaluation step, by
following the heuristic rule

h2 = [det (ΣΦ)]1/N (4)

with N = 6 the parameter space dimension. This idea,
which differs from the original CCD formulation, allows a
significant computational saving by giving a constant shape
for the local statistics weighting function at each sample



point, thus avoiding many expensive nonlinear function
evaluations, as will be explained later. For a contour that
encloses a limited area, moreover, some attention has been
paid to limit the search distance on the internal side, in order
to avoid “crossing” the opposite boundary, thus sampling
pixels from the wrong area.

In order to get the actual sample points on the screen, the
normal segments are then uniformly sampled along their
length by subdividing them into an overall number of L
equally spaced sample points (L/2 for each contour side),
and the resulting (body-frame referred) points are stored
(Fig. 2).

Figure 2. Contour sample points

Then, we proceed by assigning two suitable weighting
functions w1, w2 to the pixels vkl along the normal for both
sides of the curve. Following the suggested rules in [3], we
decided to define these functions as

w1/2 (dl) := C

(
a1/2 (dl)− γ1

1− γ1

)6 [
e−d2

l /2σ̂2
− e−γ2

]+

(5)
where dl = d (vkl, ck) is the distance to the curve (with
sign) along the normal, C a normalization factor, and

a1 (d) :=
1
2

[
erf

(
d√
2σ

)
+ 1

]
; a2 := 1− a1 (6)

the smooth assignment functions to the two sides of the
curve, with γ1 = 0.5 (disjoint weight assignment) and
γ2 = 4 for the truncated Gaussian in (5). Moreover, the
standard deviation σ̂ has been chosen such as to cover the
specified distance h. That means

σ̂ = max
[

h√
2γ2

, γ4

]
; σ =

1
γ3

σ̂ (7)

with the two additional constants γ3 = 6 (linear dependence
between σ and σ̂) and γ4 = 4 (minimum weighting window

width). The KL assignment and weighting function values
are then computed in advance and stored in arrays.

During the current optimization step, each body sample
point is transformed according to the current pose param-
eters, and the 2K local unnormalized RGB statistics up to
the second order are collected as specified in the original
CCD algorithm (see [3] and [4])

m(0)
ks =

L∑
l=1

wkls

m(1)
ks =

L∑
l=1

wklsIkl (8)

m(2)
ks =

L∑
l=1

wklsIklIT
kl

with s = 1, 2 (for each curve side), k = 1, ...,K, and Ikl

the observed pixel colors at the sample point locations.
In order to perform the blurring step along the contour,

as recommended in [3] with exponential filtering, we man-
aged to simplify the operation by using a constant set of fil-
tering coefficients for the whole contour, independent from
the current shape Φ; every contour point k = 1, ...,K will
receive a contribution from each other point k1 given by a
coefficient

b (k − k1) = (λ/2) exp (−λ |k − k1|) (9)

with λ = 0.4 in our implementation.
The blurred statistics are then mixed with their time-

smoothed version, that has been filtered with a simple first-
order exponential decay rule, and the resulting quantities are
normalized, thus giving a set of expected color values and
covariance matrices for each sample position k and each
side of the contour.

The complete normalized local statistics set will be in-
dicated with S =

(
Ī(1)
k , Ī(2)

k ,Σ(1)
k ,Σ(2)

k

)
with 2K color

mean vectors Ī(1)
k , Ī(2)

k and (3× 3) positive definite covari-
ance matrices Σ(1)

k ,Σ(2)
k , for each side of the curve and

each sample position.

3.3 Step 2 of CCD: Compute the Cost
Function and its Derivatives

Here the collected local statistics are used in order to ob-
tain the matching function, its gradient and the Hessian ma-
trix, which will be used to update the pose parameters.

By following [3], we write the general cost function for-
mulation, with a slightly different notation:

E = E1 (Φ,m∗
Φ,Σ∗

Φ) + E2 (Φ, S) (10)



Figure 3. Results of the tracking on a simulated scenario

where

E1 :=
1
2

(Φ−m∗
Φ)T (Σ∗

Φ)−1 (Φ−m∗
Φ) + C (Σ∗

Φ)
(11)

is the prior log-likelihood according to a Gaussian distribu-
tion, and

E2 := − log
∏
k,l

p (Ikl|Φ, S) =

=
∑
k,l

[
1
2

(
Ikl − Îkl

)T

Σ̂−1
kl

(
Ikl − Îkl

)
+ C

(
Σ̂kl

)] (12)

with normalization factor C
(
Σ̂kl

)
, is the log-probability of

the observed colors Ikl w.r.t. the pixel statistics
(
Îkl, Σ̂kl

)
,

with Îkl given by

Îkl = a1 (dl) Ī
(1)
k + (1− a1 (dl)) Ī

(2)
k (13)

Regarding the local covariance matrices Σ̂kl in (12), we de-
cided not to follow the rule (13), as proposed in [3], because
this leads to a high computational cost for the derivatives of
E2. Instead, we decided to assign the covariance matrices

with the “hard” (not differentiable) rule

Σ̂kl =
1
2

[
(1 + sign (dl))Σ

(1)
k + (1− sign (dl))Σ

(2)
k

]
(14)

which becomes a good approximation of the smooth assign-
ment a1 when σ → 0.

The rule (14) is perhaps the most crucial speedup of this
implementation, since it allows to reformulate the cost func-
tion E2 in a standard weighted nonlinear least squares form

E2 =
1
2

∑
k,l

(
Ikl − Îkl (Φ)

)T

Σ̂−1
kl

(
Ikl − Îkl (Φ)

)
(15)

where the only dependence on Φ has been put into evi-
dence, and the first term of the sum has therefore been ne-
glected for the optimization.

For this problem, the Gauss-Newton approximation to
the Hessian matrix can be adopted. First, the gradient is
computed as

∇ΦE2 = −
∑
k,l

JT
a1

Σ̂−1
kl

(
Ikl − Îkl

)
(16)

with

Ja1 (Φ,vkl) :=
(
Ī(1)
k − Ī(2)

k

)
(∇Φa1 (dl))

T (17)
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Figure 4. Position and orientation errors

Afterwards, the Gauss-Newton approximation to the Hes-
sian matrix is given by

HΦE2 =
∑
k,l

JT
a1

Σ̂−1
kl Ja1 (18)

The overall gradient and Hessian matrices for the op-
timization are obtained by adding the prior cost function
derivatives, and the Newton optimization step can finally be
performed as

mΦ → mΦ − (HΦE)−1∇ΦE (19)
ΣΦ → αΣΦ; α < 1

where the covariance matrix is updated as well by an expo-
nential decay rule.

A confirmation check before every parameter update, as
recommended in [3], is also employed, with an improved
speed due to the use of diagonal covariance matrices. The
optimization then restarts from step 1 with the updated pa-
rameters, and repeats the whole procedure until conver-
gence; usually 10 optimization steps give satisfactory re-
sults.

4 Initialization and Motion Prediction

4.1 Global pose initialization

For the initialization phase a feature matching approach
is used to estimate the initial position of the object. In or-
der to detect the object in the current image a reference im-
age is required. Using the Harris corner detector[5] fea-
ture points are extracted from the reference image and sub-
sequently matched to features found in the current image.

This is accomplished by calculating the normalized cross-
correlation between the neighborhoods of all detected fea-
tures. However since normalized cross-correlation is not
rotation-invariant, multiple reference images are created
from the image provided by the user by incrementally ro-
tating it by 40 degrees. During the initialization phase the
current image is matched against all reference images using
the following matching strategy:

For a given point p in the reference image the point q in
the current image with the highest cross-correlation is se-
lected. If, conversely, the point which has the highest corre-
lation with q is p, the point pair (p, q) is considered a poten-
tial match. Afterwards, in order to robustly remove wrong
matches, the RANSAC [2] algorithm is used, together with
a 2D-homography model.

Once the RANSAC algorithm terminates, all the remain-
ing inlier features are used to estimate the best homography
using a least squares approximation. The transformation
obtained from the reference image with the highest number
of inliers is finally applied to the control points of the con-
tour spline model, in order to obtain an initial estimate of
the contour position.

4.2 Trajectory prediction and check

In order to detect a tracking failure without the need for
absolute pose information at every timestep, we employ a
standard steady-state Kalman Filter that incorporates a “rea-
sonable” noisy kinematic model of the trajectory, known as
Discrete White Noise Acceleration Model [7]. For this sys-
tem, the steady-state estimation filter (or alpha-beta filter)
is employed, with suitable covariance parameters for each
state variable. In order to check the trajectory, an upper



Figure 5. Results of two real-time tracking experiments

threshold on the measurement residuals between the pre-
dicted variables and the estimated values (according to the
CCD algorithm) is set, and if the error exceeds the thresh-
old, the measured trajectory is considered as unreliable and
reinitialized. The reader is referred to [7] for more details
on the topic.

5 Experimental Results and Conclusion

In order to evaluate the performance of the tracking sys-
tem, a simulated sequence was generated by superimpos-
ing a fictitious planar object onto a moving background se-
quence taken from an office scenario. The object moves
w.r.t. the camera by following a second-order random walk
motion model, obtained by adding Gaussian acceleration
noise to a linear AR state system, with independent dynam-

ics for each dof. In Fig. 3 some frames taken from the
simulation are shown, and both the estimated contour and
3D object frame positions are displayed.

The results of the tracking are shown in Fig. 4, where
the 6 trajectory estimation errors w.r.t. the real values are
shown; the translation errors are measured in [mm], and
the orientation errors are expressed by using the equivalent
axis-angle representation, where the three components of
the rotation error vector are given in [deg]. The rms esti-
mation error over the whole sequence is lower than 2mm
for the 2 planar translations, 7mm for the depth component,
and 1deg for the rotations.

Subsequently, we tested the tracking system on real-life
scenarios, and in Fig. 5 a few pictures from two real-
time experiments are shown. The frames show the online
tracking performance after the initialization under different



conditions, such as partial occlusion, cluttered background,
changing lighting, and widely different object positions; al-
most no tracking loss occurred during the sequence. For
all the experiments, a standard webcam with a resolution of
640x480 has been employed, without any preprocessing of
the input images. The tracking system runs in real-time on
a 3 GHz PC, and the processing speed of the system alone
permits a frame rate of more than 60 fps.

A new version of the system is currently under develop-
ment, which includes multiple (3D) contour models, high
dimensional shape spaces, and more general global search
techniques for the initialization module.
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