Sita: A Computational Model for Situated Acting

Thomas Weiser
Chair of Real-Time Systems and Robotics, Department of Computer Science
Technische Universitidt Miinchen
D-80290 Miinchen

email: weiser@in.tum.de

Abstract: Sita is a novel language for modeling intelligent behavior in dynamic
environments. The central modeling principle is the distinction of recognition and
action as the two complementary basic skills essential for situated behavior. The un-

derlying computational model combines an incremental bottom-up logic program-
ming mechanism with a concurrent process calculus. This principle allows for the
clear separation and natural description of declarative knowledge about situations

and procedural knowledge about acting.

Keywords: reactive logic programming,
agent architecture, computational model

[. INTRODUCTION

In this paper we propose a new computa-
tional model for intelligent agents.

According to Shoham [10] a hardware or
software system gets an agent as soon as we
use mental concepts (like beliefs, goals, in-
tentions, etc.) to analyze or to model the sys-
tem. Furthermore agents are self-contained
systems interacting with their environment
they live in.

These properties make the notion of agent
a popular and valuable model building con-
cept in robotics. Examples of applications
are: Distributed planning and scheduling in
flexible manufacturing plants, sensor data
fusion, and recently football playing. See for
example [11].

Much work has been done on the theoret-
ical basis of agenthood. Probably the best
known is the BDI (Belief, Desire, Intention)
approach [9], which builds on a temporal
modal logic. The conceptual level of these
theories is too abstract to directly derive con-
crete agents. Moreover, complete proof pro-
cedures are too complex to have a feasible
implementation.

On the other hand there is much work
on agent architectures, like InteRRaP [7] or
dMars [2]. They use functional models to
describe the agent’s behavior, partitioned in

several modules. The employed concepts
are crude and very abstract again. Therefore
these architectures are more helpful for the
abstract agent specification, but less for the
implementation.

According to these observations there are
needs for concrete computational models
supporting the agent design process from the
implementation language side. Such mod-
els should lift the expressiveness of the im-
plementation language to a level and a di-
rection more suitable for agent design, com-
pared to the presently most used languages
like C++, Java or Prolog. Those languages
suffer from either being very low-level or
having no support for reactivity. Narrowing
the gap between the architectural level and
the language level will substantially enrich
the methodology of agent design.

In this paper we present such a novel com-
putational model, which we call Sita (situ-
ated action). The aims behind the develop-
ment of Sita can be summarized as follows:

Support for reactive behavior: An agent
lives in a dynamic environment, which is un-
predictable in principle. Therefore the agent
must be able to trigger adequate, possibly
nested reactions.

Reasoning on complex situations: The
agent must classify its situations to know
how to respond to them. This can be a com-
plex reasoning task, which again needs to be
performed in a reactive manner.

Coordination of concurrent activities:
Agent’s behavior is composed of a varying
set of execution threads. As these concurrent
threads highly depend on each other, there
must be mechanisms to coordinate those pro-
cesses.

Precise semantics: A firm semantic basis
simplifies the understanding. Furthermore it
is a prerequisite for formal program verifica-
tion. (This could be a future development.)
Feasible implementation: The computational
model needs to have an effective and effi-
cient implementation.

quences of actions without any control struc-
tures. Complex procedural operations have
to be scattered to several rules, whereby the
user is forced to manage the execution con-
text by his own.

While preserving the advantages of pro-
duction systems (reactive, symbolic, event-
driven computation), Sita introduces new
concepts both for the recognition and the ac-
tion phase to overcome these drawbacks.

Two different formalisms are used for
modeling the two basic skills (see fig. 1). On
the one side there is a deductive knowledge

II. RECOGNIZE AND ACT

The central modeling principle of Sita is
the distinction of recognition and action as
the two basic skills essential for situated
behavior: Passively waiting for something
to happen, and actively making something
happen. Accordingly an agent is specified
through describing firstly the situations the
agent should recognize, and secondly the re-
actions the agent should respond with.

This distinction is rooted in the tradi-
tion of production systems like OPS5 and
CLIPS, where programs are given by a set
of condition-action-pairs [6]. An example
for the use of a production system is the
multi agent test-bed Magsy [3]. Each agent
is an OPSS interpreter extended by the ca-
pability of asynchronous message passing.
Magsy has been used for building a dis-
tributed planner for flexible manufacturing
plants [4] and for controlling forklifts in an
automated loading-dock [8].

However, production systems suffer from
two substantial drawbacks, which restrict
their usefulness for the mentioned applica-
tions:

1. The rule selection process utilizes a very
simple pattern matching concept with little
expressive power. The condition parts of
the rules are composed solely of fact pat-
terns as primitives. There is no concept to
abstract condition expressions under a new
name. So one cannot compose complex ex-
pressions out of other expressions. Further-
more, this makes it impossible to use recur-
sive formulae.

2. The action parts of the rules are simple se-

base, responsible for monitoring the (inter-
nal and external) state. This is a process
of analyzing the current situation, building
an abstract world model, activation of corre-
sponding goals and calling for adequate ac-
tions. To serve these complex tasks the Sita
knowledge base applies a logic program-
ming system based on Horn clause logic.

On the other side there is a concurrent
procedural language, responsible for the
description and coordination of the action
threads the agent is in. It aims at a general
but high-level model of coordinated comput-
ing. In contrast to production systems there
is a powerful set of imperative concepts: se-
quential and parallel composition, guarded
choice based on knowledge base queries, and
definition of task abstractions by means of
procedures.

These two components are linked through
a common interface. Firstly, there are prim-
itive actions to modify the knowledge base,
1. e. the insertion and deletion of facts. Sec-
ondly, there are queries that trigger procedu-
ral actions upon entailment of the query ex-
pression.

According to this architecture, the agent’s
state is split into two distinct components:
the facts present in the knowledge base
which can be queried and updated by pro-
cesses; and the task, representing the pro-
cesses to be executed by the agent.

To be linked with the outside world the
agent needs capabilities to perceive and to
act. Perceived information is stored as mes-
sages in the knowledge base. External ac-
tions are effected through special primitives
in the procedural part.

deduced | o
facts

waiting
tasks

knowledge base

SEnsors

trigger
Horn clause prog. deductive suspend / procedurale prog.
situation library closure resume plan library
asserted | _ insert/delete aktive
facts tasks

procedural control

actors

Fig. 1. Sita architecture

III. KNOWLEDGE BASE

two clauses define the transitive closure

The Sita knowledge base applies Horn
clause logic with negation as failure and
function symbols in order to handle knowl-
edge representation and abstraction, situa-
tion recognition and decision making. It con-
sists of a logic program, a fact base and a
forward-chaining inference machine.

The basic expressions of the logic lan-
guage are predicates, which come in three
flavors: Extensional predicates are contain-
ers for those facts that may be asserted or re-
tracted through actions or perception. Inten-
sional (or derived) predicates are defined by
the clauses of the logic program and are in-
terpreted by the deduced facts. Built-in pred-
icates provide for some basic functions, e.g.
arithmetic operations. Accordingly the fact
base contains two sets of facts, asserted and
deduced ones.

The inference engine continuously main-
tains the set of deduced facts in dependence
of the current set of asserted facts and in
correspondence to the logic program. This
maintenance is an incremental and active
reasoning process. All changes in the exten-
sional part of the fact base will cause cor-
responding changes in the intensional predi-
cates.

In the following example, it is assumed
that edge is an extensional predicate. The

path based on the edge relation. When-
ever the base relation changes, the derived
relation will change accordingly. In this ex-
ample, the edge relation may grow by and
by through certain perceptions, while the
path relation may continuously guide the
agent’s action to find a path between certain
nodes.

path(X Y) ¢« edge(X Y).

path(X Y) <« path(X Z) edge(Z Y).

The knowledge base is a pure declarative
formalism, which gets its meaning through
the well-founded semantics [12]. The ad-
vantages are e.g. that the ordering of the
clauses within a program is irrelevant. The
same goes for the ordering of the condition
elements within the body of a clause. This
is a big improvement compared to conven-
tional logic programming systems like Pro-
log.

The evaluation is done by an incremental
bottom-up algorithm, which is an essential
property for obtaining reactive, event-driven
situation recognition. To accomplish this, we
extended the well-known Rete-algorithm [5]
in several ways. Firstly, in the presence of re-
cursive defined relations care must be taken
about facts, that either support themselves
or negate themselves. Hereto we have de-
veloped appropriate reason maintenance al-

elementary tasks: insert fact
delete fact
send address msg
sequence: ty g
parallel: t || t2
guarded choice: g =1
e =t
priority assignm... prio n
procedure def.: proc name :
t
end

Fig. 2. task composition

gorithms. Secondly, we apply the magic
set transformation [1], known from deduc-
tive databases. With this technique, instead
of generating the whole set of consequences,
only those parts of the logic program are
evaluated that contribute to answering the
current queries. Thirdly, we found that the
efficiency of the algorithm is highly depen-
dent on the order in which changes a propa-
gated through the clauses. As this goes be-
yond the scope of this paper, we omit the de-
tails here.

IV. PROCEDURAL LANGUAGE

The agent’s knowledge base is comple-
mented by a concurrent procedural language.

The current state w.r.t. procedure exe-
cution is represented by the agent’s present
task. A task is either a elementary action, a
compound task, or the name of a procedure
(see fig. 2).

The elementary actions are the insertion
and deletion of facts. In addition cer-
tain builtins provide for special actions, like
sending a message to an other agent, com-
manding an effector, or accessing the operat-
ing system.

Tasks can be combined by sequential and
parallel composition. In addition a guarded
choice is available: given a set of query ex-
pressions, the task execution suspends un-
til at least one of the expressions is entailed
by the knowledge base. In that case the ex-
ecution is continued with the body of one
of the entailed branches. The query expres-
sions used as guards have the same syntax as

clause bodies.

A procedure definition takes a task expres-
sion and makes it available under a given
name. Procedures may have formal argu-
ments. Procedures are not only used to struc-
ture the program, they are essential to ex-
press recursive task structures.

Through the use of the parallel composi-
tion multiple threads of execution are intro-
duced, which allow for the required concur-
rency. A special statement is available to as-
sign relative priorities to threads. This is use-
ful to distinguish between, for example, an
urgent reactive behavior and a background
planning task.

V. DISCUSSION

The Sita architecture combines a deduc-
tive knowledge base with a concurrent pro-
cedural control component. This structure
reflects a basic model for intelligent agents.
On the one side an agent has to maintain
its current beliefs about the world and it-
self. This knowledge has to be represented
on different abstraction levels. Higher levels
model the agent’s view of its situation and
current goals. The Sita knowledge base is
a tool to describe such abstraction processes
by means of Horn clause logic in a purely
declarative manner. This enables the agent
to make reasoned choices. On the other side
an agent has to change the world as well as
its own beliefs and intentions. Procedures
are a natural way to describe these active as-
pects. The presented combination of declar-
ative and procedural concepts results in a
novel programming model for reactive, in-
telligent agents.

We have implemented most parts of the
presented architecture. In particular, we have
a fast and complete implementation of the
knowledge base, together with a subset of
the procedural language. This has given
us the ability to gather some first experi-
ences regarding our approach of declarative
bottom-up logic programming. First exam-
ple applications are the n-queens problem,
heuristic reactive search algorithms, and a
blocks world planning system.

We have found that most aspects of these
problems can be modeled declaratively (and

nevertheless efficient), i.e. solely through the
knowledge base. This confirms our assump-
tion that the expressiveness of the knowledge
base formalism is sufficient to perform com-
plex situation recognition tasks.

Future work will focus on applications in
more complex scenarios, where the need for
intelligent reactivity is more evident. As a
first step towards this direction we are cur-
rently working on the integration of the Sita
programming system into our robotics labo-
ratory.

REFERENCES

[1] C. Beeri and R. Ramakrishnan. On the power of
magic. In ACM, editor, PODS ’87. Proceedings
of the Sixth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, March 23—
25, 1987, San Diego, California, pages 269284, New
York, NY 10036, USA, Mar. 1987. ACM Press.

[2] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge.
A formal specification of AMARS. In M. P. Singh,
A. Rao, and M. J. Wooldridge, editors, Proceedings of
the 4th International Workshop on Agent Theories, Ar-
chitectures, and Languages (ATAL-97), volume 1365
of LNAI, pages 155-176, Berlin, July 24-26 1998.
Springer.

[3] K. Fischer. The rule-based multi-agent system
MAGSY. In Proceedings of the CKBS’92 Workshop.
DAKE Centre, University of Keele, UK, 1993.

[4] K. Fischer. Verteiltes und kooperatives Planen in
einer flexiblen Fertigungsumgebung, volume 26 of
DISKI, Dissertationen zur Kiinstlichen Intelligenz. In-
fix, St. Augustin, Germany, 1993.

[S] C. L. Forgy. On the Efficient Implementation of
Production Systems. PhD thesis, Computer Science
Department, Carnegie-Mellon University, Pittsburgh,
PA, 1979.

[6] T. Ishida. Parallel, distributed and multi-agent pro-
duction systems — A research foundation for dis-
tributed artificial intelligence. In V. Lesser, editor,
Proceedings of the First International Conference on
Multi-Agent Systems, pages 416-422, San Francisco,
CA, 1995. MIT Press.

[7] J.P Miiller. The design of intelligent agents: a layered
approach, volume 1177 of LNAI. Springer, New York,
1996.

[8] J. P. Miiller and M. Pischel. The agent archi-
tecture inteRRaP: Concept and application. Re-
search Report RR-93-26, Deutsches Forschungszen-
trum fiir Kiinstliche Intelligenz, Kaiserslautern, Ger-
many, 1993.

[9] A. S. Rao and M. P. Georgeff. Modeling Agents
Within a BDI-Architecture. In R. Fikes and E. Sande-
wall, editors, Proc. of the 2rd International Con-
Jference on Principles of Knowledge Representation
and Reasoning (KR’91), pages 473-484, Cambridge,
Mass., Apr. 1991. Morgan Kaufmann.

[10] Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60:51-92, Mar. 1993.

[11] H.-J. Siegert and S. Bocionek. Robotik: Program-
mierung intelligenter Roboter. Springer-Verlag Berlin
Heidelberg New York, 1996.

[12] A. van Gelder, K. Ross, and J. S. Schlipf. The well-
founded semantics for general logic programs. Jour-
nal of the ACM, 38(3):620-650, July 1991.

