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 1 

ABSTRACT 2 
In this paper, a control algorithm is presented that integrates connected vehicles in the feedback 3 

loop of traffic signal control, which results in highly flexible, signal-group based signalization 4 

and speed adaptation of vehicles. The method is based on Model Predictive Control and 5 

incorporates a mutual optimization of both traffic signal timings and vehicle trajectories. In light 6 

of emerging communication technology, connected vehicles are expected to deliver more 7 

detailed data about the current traffic flow compared to stationary detection. This data can be 8 

used to influence the signal timing. By capitalizing on the possibility of providing information to 9 

connected vehicles, a second means of influence is enabled: Information about future signal 10 

timings can be provided to the drivers and hence, further reductions in the number of stops and 11 

an increase of traffic flow at the beginning of the green time can be achieved. The complexity 12 

increases when both ways of influence are combined, which is often omitted in previous 13 

research. This combination is addressed in this paper by introducing an optimized signal control 14 

with an integrated speed advisory system. The presented algorithm features an innovative 15 

functionality to adjust the predictability of signal timings to account for the reliability of speed 16 

advisory messages. A simulation study is carried out as a proof of concept and to evaluate the 17 

trade-off between optimality and predictability of the traffic signal control algorithm. 18 

 19 

 20 

 21 
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INTRODUCTION 1 
In the US 63% of on-road CO2 emissions are caused by urban traffic (1), which makes it 2 

worthwhile to investigate and exploit potentials to raise the efficiency of urban traffic. Among 3 

the possibilities are Intelligent Transportation Systems, which often focus on the operation of 4 

intersections as they have a prevailing effect on the urban traffic flow. Control of traffic flow by 5 

electric traffic signals was introduced in 1914 (2) to raise efficiency and safety at urban 6 

intersections. Further improvements have been reached by adapting to varying traffic demands. 7 

Detection of vehicular traffic has been used extensively for decades to enable this adaptation. 8 

Relying on data from stationary detection as a feedback from the road system, algorithms 9 

ranging from rule-based traffic actuation to model-based traffic adaptive control have been 10 

developed.  11 

In light of emerging communication technologies, cooperative systems are expected to 12 

mitigate the negative effects of vehicular traffic. The potentials to increase traffic efficiency at 13 

urban intersections can be exploited mainly in two ways. First, the signal timing can be 14 

optimized based on data from connected vehicles, which is more detailed than data obtained 15 

from stationary detection. Second, vehicle speeds can be actively adapted by providing 16 

information about future signal timings – the Green Light Optimized Speed Advisory (GLOSA). 17 

The goal of GLOSA systems is a reduction in the number of stops by recommending a speed, 18 

whenever it is reasonable, that avoids the arrival at the stop line or the tail of a possible queue 19 

during red. Additionally, an increase in traffic flow due to minimizing the need for accelerations 20 

from a stop at the beginning of the green phase can be achieved. Due to the reduction in the 21 

number of stops, a reduction in emissions and fuel consumption is expected. Although the usage 22 

of infrastructural countdown displays is often limited to pedestrian signals (as described in the 23 

MUTCD (3) for the US), an in-vehicle indication of the remaining red time can help to reduce 24 

red light violations and decrease losses of efficiency in the beginning of green due to driver 25 

distraction. It can also be used to improve the functionality of start-stop systems. 26 

A large number of research activities have been undertaken, focusing either on 27 

influencing connected vehicles with a given signal control or on making use of data from 28 

connected vehicles to improve the signal control. A selection of these activities is reviewed in the 29 

next chapter. However, to exploit the entire potential of optimizing the operation of signalized 30 

intersections with connected vehicles, both ways of communication and influence have to be 31 

used simultaneously. Only limited research in this area exists and a new method to integrate both 32 

ways of influence is presented in this paper. The interdependency between the signal timing and 33 

the influence on vehicle speeds becomes apparent by extending a standard control loop of traffic 34 

signal control by functionalities of connected vehicles as shown in Figure 1. Advanced driver 35 

assistance systems (ADAS) are used as an actuator to influence vehicle trajectories based on 36 

information about the traffic signal control, leading to an influence on the traffic flow at the 37 

intersection. The traffic flow is estimated by taking into account data from stationary detectors 38 

and floating vehicles and this estimation is used to calculate signal timings. If the traffic signal 39 

control does not take the influence on vehicles’ behavior into account, the performance of the 40 

overall system deteriorates, especially if both traffic signal control and influence on vehicles’ 41 

trajectories are highly dynamic. A tangible, simplified example can be given as follows: At an 42 

intersection with local actuated control by means of a passage timer, a connected vehicle 43 

approaches a red signal that will turn green within a few seconds. Assuming a correct prediction 44 

of the beginning of green and the queue length, the connected vehicle receives a 45 

recommendation to reduce the speed in order to avoid hitting the end of the queue and thus 46 
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avoiding a stop. The speed recommendation leads to an extension of the time gap between the 1 

connected vehicle and the leading vehicle. If this time gap exceeds the set passage time, the 2 

green time will not be extended and the connected vehicle will have to stop and wait for the next 3 

cycle. In this case, a green time extension, either by raising the passage time or by accepting the 4 

stop of the connected vehicle, might have been beneficial. This example shows that not only 5 

correct prediction of signal timings and queue lengths is necessary for the performance of the 6 

overall system, but that influencing the measurement parameter of the signal control, here the 7 

time gap, by influencing vehicles can lead to deterioration of the system performance as well. 8 

 9 

 10 
FIGURE 1 Control loop of traffic signal control extended by connected vehicle 11 
functionalities (striped pattern), adapted from Kaths et al. (4).  12 

 13 

Based on these considerations, an algorithm is presented in this paper that leads to a full 14 

integration of the vehicles in the feedback loop and as such, delivers optimized signal timings 15 

and speed advisory information at the same time. The algorithm relies on the theory of Model 16 

Predictive Control (MPC) and therefore includes an intrinsic prediction of the future signal 17 

timing. The obtained signal control is highly flexible since it is based on signal groups and a 18 

minimal set of constraints. A trade-off between flexibility and predictability of signal timings can 19 

be identified: For example, fixed-time control is a highly predictable, but inflexible signal 20 

control, whereas a fully actuated control can be highly flexible, but is inherently harder to 21 

predict. The algorithm presented in this paper aims at the combination of high flexibility and 22 

predictability. It allows for the adjustment of the predictability of signal timings to account for 23 

the reliability of speed recommendations. A simulation study is used to prove the concept and to 24 

evaluate the trade-off between flexibility and predictability for the presented control algorithm.  25 

 26 

REVIEW OF PREVIOUS RESEARCH 27 
Connected vehicles can deliver detailed information about the current traffic state, which can 28 

enable improvements in signal timing optimization. Furthermore, the drivers, or in case of an 29 

automated vehicle the vehicle itself, can be influenced by providing information about future 30 

signal timings. The following overview of previous research is categorized by the type of 31 
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influence used. As a large number of research acitivities focus on using one type of influence, 1 

only a selection of the activities in the first two categories is reviewed here. 2 

 3 

Using data from cooperative vehicles to improve signal timing  4 
Goodall et al. (5) present a control algorithm that makes use of data from connected vehicles in 5 

order to optimize signal timings in a rolling horizon fashion according to a cost functional that 6 

can include a combination of delay, stops and decelerations. After a rule-based priority 7 

assignment of signal phases, the phases with highest priorities are selected for simulation with 8 

VISSIM and the phase with the lowest cost is selected for the operation. The control algorithm 9 

does not make use of stationary detection or further state estimation and improvements compared 10 

to a reference control on a coordinated road stretch are achieved with equipment rates from 25% 11 

on. Priemer and Friedrich (6) introduce another decentralized control method that is based on the 12 

rolling horizon principle. The optimization aims at minimizing the total queue length at 13 

intersections. Both of the aforementioned methods do not directly consider the possibility of 14 

influencing the speed of connected vehicles. One way to integrate data from connected vehicles 15 

is the usage for the estimation of queue lengths. Queue lengths can be an important input factor 16 

in traffic responsive control, but cannot be explicitly measured. Priemer and Friedrich (7) 17 

propose a queue length estimator for the associated control algorithm (6) that is related to the one 18 

from (8), but allows for the consideration of connected vehicles as “virtual detectors”. 19 

 20 

Influencing cooperative vehicles by providing information about signal timing 21 
Kamalanathsharma and Rakha (9) propose an optimization of vehicle trajectories based on 22 

dynamic programming. The method aims at a minimizing fuel consumption and considers 23 

information from surrounding equipped vehicles and connected traffic signals. The future signal 24 

timings are regarded as a given input and are not subject to optimization in the presented 25 

procedure. Stevanovic et al. (10) investigate the effect of influencing vehicles’ speeds based on 26 

the future signal timing with fixed-time control and actuated control. The authors show in 27 

simulation studies that the waiting time can be greatly reduced by introducing GLOSA 28 

functionalities. Furthermore, they observe erratic behavior and a reduction in system 29 

performance when combining actuated control and speed advisory information. This is due to a 30 

lack of knowledge concerning the future signal timing. 31 

Since most of the existing urban traffic control systems were developed before 32 

cooperative systems arose, predictability of signal timings was not a system requirement. At the 33 

same time, this prediction is the main requirement to enable reliable speed advisory systems. 34 

Under these considerations, several algorithms have been developed to predict signal timings for 35 

traffic dependent signal control. They can be divided into those using system knowledge of the 36 

control algorithm and those that omit such knowledge. For example, system knowledge of 37 

hierarchical traffic control systems such as MOTION (11) and BALANCE (12) offers 38 

possibilities for the prediction of traffic signal timings. In urban traffic control systems of this 39 

type, network-wide frame signal plans are generated and adapted by local control on the 40 

intersection level. A field study on a coordinated road stretch with local adaptation where the 41 

information from a frame signal plan is used to enable a GLOSA system can be found in (13). 42 

Other urban traffic control systems, such as the one introduced in this paper, rely on the rolling 43 

horizon principle. Due to this principle, such systems (for example UTOPIA (14), RHODES 44 

(15), OPAC (16)) possess an intrinsic prediction of the signal timing. Accordingly the authors in 45 

(17) present a field study and mention that information about future signal timings is obtained 46 
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from the intrinsic prediction of UTOPIA. Bauer et al. (18) present an online prediction system 1 

for local actuated control, which relies on supply data from the considered intersection.  2 

Other methods purposely do not include system knowledge for the prediction of signal 3 

timings, which is done in favor of general applicability. These methods either rely solely on 4 

historical switching data or integrate online detector values. Weisheit and Hoyer (19) use support 5 

vector machines as a statistical instrument, allowing for learning based on historical data and the 6 

usage of online data from detectors. In contrast, Protschky et al. (20) present a method that relies 7 

solely on historical data and is therefore widely applicable with minimal effort. Frequency 8 

distributions of green times with regard to the cycle times are obtained from historical data and a 9 

Kalman Filter is implemented to predict future signal timing. 10 

To enable reliable speed advisory information, queue lengths should be considered in 11 

addition to the information about future signal timings. Queue lengths can be estimated using the 12 

procedures mentioned earlier. 13 

 14 

Integrated use of data from connected vehicles and speed advisory systems 15 
The aforementioned procedures focus on the usage of connected vehicles to influence either the 16 

traffic signal control or the vehicles’ speeds. Using data from connected vehicles and influencing 17 

their speeds at the same time was already conducted in some of the research projects reviewed by 18 

Kaths et al. (4). This however, does not lead to a full integration of the speed advisory system as 19 

it is working independently from the traffic responsive control. Different to these methods, 20 

Menig (21) and Erdmann (22) propose algorithms that mutually optimize vehicle trajectories and 21 

signal timings. In both approaches, simulation studies are presented where only two conflicting 22 

streams are present and the control is realized in a phase-based manner where the respective 23 

signal groups are combined. The method proposed by Menig (21) allows to set up intergreen 24 

times and is investigated including scenarios with equipment rates lower than 100%, whereas 25 

Erdmann’s approach (22) additionally allows to constrain minimum phase durations, but does 26 

not seem to easily allow for an integration of non-equipped vehicles.  27 

 28 

MUTUAL OPTIMIZATION OF SIGNAL TIMINGS AND VEHICLE TRAJECTORIES 29 
In this paper, a new control method based on MPC is introduced that mutually optimizes signal 30 

timings and vehicle trajectories, leading to an integrated use of data from connected vehicles and 31 

speed advisory systems. In contrast to the reviewed approaches from (21) and (22), more than 32 

two conflicting streams are considered and the resulting optimized signalization is based on 33 

signal groups and is therefore highly flexible. The formulation of constraints allows for the 34 

adjustment of minimum green times, intergreen times and maximum red times. Furthermore, the 35 

presented algorithm incorporates a choice of predictability of signal timings in order to facilitate 36 

smooth and reliable speed advisory messages. 37 

The chosen control method is MPC of which principles are used likewise in some of the 38 

procedures mentioned earlier. The method arose in the 1970s and is treated comprehensively in 39 

literature for example by Camacho and Bordons (23). Therefore, only the main ideas and 40 

advantages for the application in traffic signal control are adapted here from (23): 41 

 MPC makes explicit use of a model to predict the system behavior over a number of 42 

time instants (prediction horizon Np) 43 

 a control sequence is calculated for a number of time instants (control horizon Nc ≤ Np) 44 

by minimizing an objective function 45 

 only the first control signal of the calculated sequence is applied at each time step  46 
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using a receding strategy 1 

• constraints such as intergreen times and minimum green times are explicitly taken into 2 
account within the minimization 3 

• multi-variable control can be easily implemented 4 
However, drawbacks of MPC include a large computational effort to solve the 5 

minimization problem and the necessity for an appropriate model for the controlled system. 6 
The model that is implemented here to reflect the movement of connected vehicles is a 7 

microscopic model that is continuous in space and discrete in time. It describes a vehicle’s 8 
distance from the stop line ��+��|� at the instant k+nc calculated at time step k for the computed 9 
steps nc ∈ [1,Nc] of the control sequence with the following equation: 10 

��+��|� = ��+��−1|� − (
��� − ��+��|������ − ��+��|����� )∆� (1) 11 

where 
��� equals the speed limit and ��+��|������ and ��+��|�����  are speed reductions originating from 12 

speed recommendations and further speed reductions due to impeding vehicles downstream 13 
respectively. The separation of the two speed reductions allows for the explicit consideration of 14 
speed advisory information by setting different constraints and optimization weights.  15 

Equation 1 is only meaningful if a number of boundary conditions is included such as 16 
restrictions on the speed reductions at each step nc. Equation 2 assures that vehicles only have 17 
positive speeds and do not drive backwards. Equation 3 is used to limit the speed reduction due 18 
to recommendations with the preset parameter rGLOSA as a percentage of the speed limit. To avoid 19 
speeds greater than the speed limit, equations 4 and 5 are introduced. 20 

 ��+��|������ + ��+��|����� ≤  
��� (2) 21 

��+��|������ ≤ (1 − ������) ∙ 
���,    0 ≤ ������ ≤ 1  (3) 22 

��+��|������ ≥  0 (4) 23 

��+��|����� ≥  0 (5) 24 

In microscopic simulation or real environments, speeds above the speed limit can be 25 
observed. However, the model does not consider such speeds since otherwise speeding would be 26 
rewarded with earlier green times and recommendations above the speed limit are not acceptable 27 
for reasons of safety. Further restrictions on the speed reductions are introduced to include 28 
minimum and maximum accelerations by comparing speeds between consecutive steps nc. 29 
Equation 6 leads to a constrained positive acceleration with the boundary aaccel,max while equation 30 
7 is used to limit the maximum deceleration that can be used for speed recommendations. This is 31 
done, since high decelerations are not accepted by drivers when considering speed 32 
recommendations (21). 33 

(��+��−1|������ + ��+��−1|����� ) − (��+��|������ + ��+��|����� ) ≤ ����#$,��� ∙ ∆�,   ����#$,��� ≥ 0 (6) 34 

��+��|������ − ��+��−1|������ ≤ �%#�#$,��� ∙ ∆�,    �%#�#$,��� ≤ 0 (7) 35 

Note that equations 1, 6 and 7 include references to the previous step in the control 36 
horizon. In the first step of the optimization, the available measurements are used instead. 37 

Equations 1 to 7 describe the behavior of a single vehicle in one lane and are used 38 
repeatedly N times for a lane with a maximum number of vehicles N. To keep a minimum 39 
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distance dmin between subsequent vehicles, equation 8 is used. This constraint also implies that 1 
overtaking within one lane is impossible: 2 

��+��|�� ≥ ��+��|��+1 + %�&�, � ' [0, )]  (8) 3 

Additionally, a constraint on the deceleration depending on the distance to the next 4 
vehicle downstream is used in order to guarantee that ��+��|�����  is only activated to slow down 5 

vehicles when necessary. The distance between subsequent vehicles has to be lower than the 6 
threshold dSTOP for the activation of ��+��|����� : 7 

��+��|����� ,� − ��+��−1|����� ,� ≤ {�%#�#$,��� ∙ ∆�  &,  ��+��|�� − ��+��|��+1 ≤ %����
0 -�ℎ#�/&0#  , � ' [0, )] (9) 8 

Traffic signals are modelled as a vehicle at the position N+1 standing at the stop line if 9 
the signal is red (uTL=1) or far downstream of the stop line if the signal is green (uTL=0). The 10 
condition in equation 10 is necessary, because otherwise switching from green to red within the 11 
control horizon would not be possible if a vehicle passed the stop line within the control horizon:  12 

��+��|�)+1 = {
0  &,  ��+��|��� = 1

−∞ &,  ��+��|��� = 0   (10) 13 

In the same way that equation 8 limits the distance between subsequent vehicles, the 14 
distance dTL between each vehicle and the traffic signal has to be maintained: 15 

��+��|�� ≥ ��+��|�)+1 + %��, � ' [0, )]  (11) 16 

Equations 1 to 11 describe the behavior of vehicles and traffic signals under the influence 17 
of the control inputs ��+��|������, ��+��|�����  and ��+��|��� .  18 

These constraints influence solely the model behavior, but do not take restrictions of the 19 
signalization into account. Applying the MPC control would lead to constant green for all 20 
streams at the same time, as this would be optimal. Under this consideration, further constraints 21 
are incorporated on the signalization. For the sake of compactness, detailed mathematical 22 
expressions of these constraints are omitted in this paper. The implemented constraints include: 23 

• minimum green times per signal group 24 
• maximum green times per signal group 25 
• intergreen times between signal groups and  26 
• exclusion of simultaneous signalization of conflicting streams. 27 

These constraints are adjustable and can be seen as a minimal set of constraints for the 28 
signalization where no definition of phases or sequences is necessary. The decision variables do 29 
not directly include green splits, offset or cycle time. Instead, a second-by-second decision is 30 
made to determine which signal-groups receive green. Therefore, the resulting online 31 
optimization leads to a highly flexible, signal-group based signalization including the speed 32 
adaptation of connected vehicles. 33 

The MPC strategy is used to find an optimal set of these control inputs over the control 34 
horizon Nc under consideration of the given constraints. Most implementations of optimal control 35 
strategies use a quadratic cost function to represent quadratic energy consumption of control 36 
inputs. However, in traffic applications, linear costs are generally more reasonable, since criteria 37 
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like stops or the total time spent can be penalized linearily and control actions of traffic signals 1 
do not result in quadratic costs. Therefore, and to achieve faster solving times, a linear cost 2 
function is used. The cost function is given in equation 12, where J is the cost, η the decision 3 
variable and f the linear weighting vector. Inequality and equality constraints in form of the 4 
equations 13 and 14 are incorporated by creating matrices M, E and the corresponding vectors g, 5 
d. Additionally, selected variables can be restricted to integer variables leading to a leading to a 6 
Mixed-Integer Linear Program (MILP).  7 

3 = 4� ,   (12) 8 

54 ≤ 6  (13) 9 

74 = %  (14) 10 

The decision variable η contains the state-variable xn and the control inputs uGLOSA and 11 
uSTOP for each step nc of the control horizon Nc and for each considered vehicle. Additionally, the 12 
state variable xN+1 and the control input uTL are included for each signal group, where uTL is an 13 
integer variable restricted to the values 0 and 1. Furthermore, two auxiliary variables are 14 
introduced. One indicates for each vehicle if it has a positive (aux,sl=1) or negative (aux,sl=0) 15 
distance to the stop line, meaning if it is upstream or downstream of the stop line. The second 16 
auxiliary variable indicates if the distance to the next downstream vehicle is smaller (aux,ds=1) 17 
or greater (aux,ds=0) than the threshold value dSTOP. The auxiliary variables are necessary to 18 
make use of the conditional constraints given in equations 9 and 10. For the methods to create 19 
the auxiliary variables and conditional constraints the reader is referred to (24). The vector with 20 
the decision variables for one signalized lane are expressed as follows: 21 

4 = [4�1 ⋯ 4�) 4���,)+1]�
 (15) 22 

with: 23 

4�� = [��+1|�� ⋯ ��+)�|�� ��+1|��,����� ⋯ ��+)�|��,����� ��+1|��,���� ⋯ ��+)�|��,����   24 

                       ⋯ ���, 0$�+1|�� ⋯ ���, 0$�+1|�� ���, %0�+1|�� ⋯ ���, %0�+)�|�� ]�
 (16) 25 

4���,)+1 = [��+1|�)+1 ⋯ ��+)�|�)+1 ��+1|��� ⋯ ��+)�|��� ]�
 (17) 26 

In order to obtain a mutual optimization of signal timings and vehicle speeds, equations 1 27 
to 11 and the constraints regarding the signalization are transformed into the form of equations 28 
13 and 14. Using an MILP solver, the cost function from equation 12 can be minimized under 29 
consideration of the given constraints. The decision variables in vector η from equation 15 and 30 
the cost value J are retrieved as a result.  31 

The choice of weights for vector f from equation 12 can be adjusted for each component 32 
of the decision vector separately. This is the main reason for separating the speed reductions in 33 
equation 1 into speed recommendations on one hand and other factors such as impeding 34 
downstream vehicles or red signals on the other hand. Due to different penalties and the different 35 
constraints on these control inputs, the optimization will yield different results for ��+��|������ and 36 

��+��|����� . A first natural choice for the weights of vector f  is a high penalty on all ��+��|�����  and a low 37 

penalty on all ��+��|������. Vehicles will then be slowed down with speed recommendations, but 38 

stops and speeds below the recommendation limit (see equation 3 with the factor rGLOSA) will be 39 
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avoided due to higher penalization. Furthermore, the weights can be differentiated to account for 1 

different priority levels for different modes such as private vehicles, public transport vehicles or 2 

emergency vehicles.  3 

By choosing appropriate weighting factors, another functionality that addresses the 4 

predictability of the signal timing can be enabled. Because speed recommendations are obtained 5 

directly from the decision variables, an explicit prediction of queue lengths and signal timing is 6 

unnecessary for the chosen approach. However, currently messages are stipulated that include 7 

signal phases and timing (SPaT) instead of direct speed recommendations. For this reason and 8 

for a general stabilization of the signal timing, a penalty is introduced that punishes deviations of 9 

the current prediction compared to the previous prediction shifted by one time step. The penalty 10 

decreases quadratically over the prediction horizon to punish deviations in the near future harder 11 

than those that might occur later. Deviations in the last steps of the control horizon are not 12 

penalized to avoid strong limitations on the flexibility of the optimization. The deviations in the 13 

prediction occur due to the limited lengths of the control horizon and due to differences between 14 

the model described in this paper and the one that is provided by the microsimulation. By 15 

introducing these weights, the algorithm incorporates the innovative possibility of a choice of 16 

predictability compromising optimality of the overall system.  17 

 18 

SIMULATION STUDY 19 
To prove the concept of a mutual optimization of signal timings and vehicle speeds a simulation 20 

study is carried out. The optimization algorithm is coupled with the microscopic traffic simulator 21 

SUMO (25). SUMO’s TraCI interface is used to retrieve data from floating vehicles (FVD) and 22 

detectors and to influence vehicle speeds and traffic signals. At each time step, the updated 23 

objective function and constraints are given to the CPLEX solver using a dedicated Python API. 24 

Figure 2 shows how the algorithm is embedded into the microsimulation. 25 

 26 

FIGURE 2 Embedment of the optimization algorithm into the microsimulation.  27 
 28 

The simulation study is carried out on a hypothetical intersection shown in Figure 3 with four 29 

symmetric approaches and long separate left turning lanes. The left turning movements are 30 
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signalized separately without permissive movements. Intergreen times of 4s are found to be 1 

sufficient and are chosen between signal groups of all conflicting movements starting with a 2 

yellow signal. A low traffic flow of 180veh/h per lane is set as an input to allow for high 3 

flexibility in the optimization. SUMO standard parameters are used and a standard deviation of 4 

10% of the speed limit is applied to introduce a uniform distribution of vehicle speeds around the 5 

speed limit. 6 

Four different scenarios are carried out in order to investigate the performance of the 7 

presented control algorithm. Per scenario 20000s of simulation are considered for the evaluation. 8 

The scenarios 2 to 4 make use of the presented control algorithm and comprise weights on 9 

stopped or stopping vehicles ( ) with a chosen control horizon Nc of 15s with steps of 1s. In 10 

scenario 4 penalties on the deviation of predictions are included.  11 

 12 

FIGURE 3 Details of the simulation network showing the whole intersection and the 13 

different signal groups. 14 

 15 

Scenario 1 – actuated control 16 
A simple traffic actuated control that is commonly used in Germany is considered as a baseline 17 

scenario to allow for a general evaluation of the presented algorithm. The passage timer is set to 18 

2.5s and the detectors are, in contrast to what is shown in Figure 3, positioned 34.7m upstream of 19 

the stop line considering the speed limit of 13.89m/s according to German guidelines (26). The 20 

phase sequence is set such that first straight movements and then the respective left turning 21 

movements are given right of way. For the actuated control, 5s of minimum green time were 22 

found to be too short to resolve queues that build up downstream of the detector during the red 23 

phase. Therefore, a minimum green time of 7s is chosen, which leads to best results for the 24 

baseline scenario. 25 

 26 

Scenario 2 – MPC without connected vehicles 27 
The MPC algorithm is evaluated with different settings. First, a scenario is considered where no 28 

connected vehicles are present. Detectors at the start of each lane, as shown in Figure 3, are used 29 

10m

detector
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to insert detected vehicles into the distance vector of equation 1. Afterwards the distance to the 1 
stop line is estimated based on the formulations given in the previous chapter. To account for 2 
slower vehicles, the maximum speed of the control model is reduced to 10.0m/s and the 3 
maximum acceleration is set to 1.2m/s². No speed advisory information is given to vehicles. 4 
Furthermore, a delay at the start of green is introduced to avoid unreasonably short green times. 5 
This scenario aims at an evaluation of the performance of the presented proactive control with 6 
flexible signal group based signalization compared to the simple reactive traffic actuated control 7 
with a fixed phase sequence. For reasons of comparability with the first scenario, a minimum 8 
green time of 7s is chosen. 9 
  10 
Scenario 3 – MPC with connected vehicles and no penalties on prediction deviations 11 
The third scenario intends to show the full potential of a cooperative system where 100% of the 12 
vehicles are equipped. The maximum speed of the model is set to 13.89m/s and the maximum 13 
acceleration is considered as 2.5m/s². Constraints are implied to limit GLOSA speed reductions 14 
to 50% of the maximum speed with a maximum deceleration of -2m/s². The minimum green time 15 
in case of this scenarios is set to 5s, which is the minimum given by German regulations (26). 16 
 17 
Scenario 4 – MPC with connected vehicles and penalties on prediction deviations 18 
The last scenario addresses the trade-off between optimality of the control and its predictability. 19 
As described in the last chapter, a penalty on deviations between the current and the last 20 
prediction is introduced that is decreasing over the prediction horizon. The last five steps of the 21 
prediction horizon are not penalized in order to limit the restrictions on the optimization. Other 22 
parameters are kept constant compared to the last mentioned scenario. As in scenario 3, a 23 
penetration rate of 100% is assumed and the minimum green time is set to 5s. 24 

The evaluated indicators in all scenarios include: 25 
• the average number of stops per vehicle (stops (n/veh)), vstop<1m/s 26 
• the average waiting time per vehicle (wt (s/veh)) 27 
• the average total time spent in the network per vehicle (tts (s/veh)) 28 

Because a weighting factor is only chosen for ��+��|����� , the main focus lies on the reduction of the 29 

number of stops. However, not only the process of stopping, but also the state of being stopped 30 
leads to an increase of the cost function. Thus, an effect on the waiting times and total time spent 31 
can be expected at the same time. To increase the priority of the total time spent, the presence of 32 
vehicles upstream of the stop line could be penalized by introducing weighting factors in the cost 33 
functional of equation 12 on the distance to the stop line ��+��|�� .  34 

In addition to the above-mentioned indicators in the three scenarios with MPC usage, a 35 
measurement for the reliability of the prediction is introduced. The root mean square error 36 
(RMSE) of the predicted green time 10s before the actual green time is calculated according to 37 
the following equation using n=10: 38 

=5�7>�#% = √∑ (��6�−�)2��=1 �  (18) 39 

with ttgt being the predicted time to green t seconds prior to the actual beginning of green. Only 40 
the first 10s of the control horizon are considered since the penalty on deviations of the 41 
prediction is only imposed on these time instants. 42 

The results of the simulation study are shown in Figure 4. The mean values of the 43 
indicators are shown as columns including the number of the mean value, while the standard 44 
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deviation is displayed with an error bar. An arrow is displayed between the columns whenever 1 

the difference between an indicator of two scenarios is significant (p<0.05). 2 

The results show that all three variants of the MPC algorithm perform better than the 3 

actuated control. If solely stationary detection is used, the waiting time (-12.2%, p=0.002), 4 

number of stops (-4.10%, p=0.004) and total time spent (-10.6%, p=0.000) can be reduced 5 

significantly compared to actuated control. The increase in performance can be expected since 6 

the MPC algorithm allows for a more flexible signalization and acts in a proactive fashion 7 

compared to the reactive actuated control. By including speed advisory information and position 8 

data from each vehicle in each time step, the performance increases significantly in scenario 3. 9 

The number of stops (-36.3%, p=0.000) and the waiting time (-56.2%, p=0.000) can be reduced 10 

FIGURE 4 Results of the simulation study including average waiting time per vehicle a), 

average stops per vehicle b), average total time spent per vehicle c) and prediction error d). 
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greatly compared to MPC without connected vehicles, since this is the major effect of speed 1 

advisory systems. Furthermore, the total time spent (-30.2%, p=0.000) is reduced significantly, 2 

which is based on a more efficient signalization due to accurate position data and a reduced need 3 

for accelerations from a stop at the beginning of the green time. Figure 4 also shows that the 4 

usage of a penalty of prediction deviations reduces the prediction error introduced in equation 18 5 

significantly when comparing scenarios 3 and 4 (-56.8%, p=0.000). However, only minimal, 6 

non-significant differences can be observed regarding the performance indicators waiting time, 7 

number of stops and total time spent, which proves the possibility to reduce the prediction errors 8 

without overly affecting the efficiency of the control. The prediction error in scenario 2 is 9 

relatively low without using a dedicated penalty. This is due to the fact that no connected 10 

vehicles are present and therefore deviations between the control model and the simulation 11 

model remain unrecognized by the control.  12 

 13 

CONCLUSION AND OUTLOOK 14 
The signal control method that is introduced in this paper allows for the direct inclusion of 15 

connected vehicles considering both precise data from such vehicles as well as the possibility to 16 

influence vehicle speeds. Both, the signal timing and the vehicle speeds are optimized mutually. 17 

The control algorithm limits the flexibility of the signal control as little as possible by using a 18 

minimal set of constraints, which leads to a signal group based signalization. The achieved 19 

results show significant improvements of the performance indicators in comparison to actuated 20 

control. This increase in performance is based on the full integration of connected vehicles in the 21 

control loop and a highly flexible proactive control scheme. To raise the predictability of future 22 

signal timings, the developed algorithm includes the possibility to compromise predictability and 23 

optimality of the control by setting a weight factor. The results show an increase of predictability 24 

with a minimal deterioration of the performance indicators. Since the assignments of weights for 25 

single vehicles is possible, the proposed control algorithm also allows for a straightforward 26 

implementation of priority for public transport or emergency vehicles leading to flexible green 27 

time allocations for such modes. 28 

Further research can be undertaken to build up on these findings. First, steps toward the 29 

application in reality can be made. Currently the computational effort is too high to consider this 30 

method for the use with state-of-the-art traffic controllers. Second, the approach has proven its 31 

functionality for undersaturated conditions on an isolated intersection. A similar control method 32 

that does not include the optimization of vehicle speeds was presented by this author (27) and 33 

proved performance in more saturated conditions. By connecting multiple intersections with the 34 

presented type of control, a coordination evolves automatically. However, to guarantee efficiency 35 

in a larger network with saturated or over-saturated conditions, extensions have to be made such 36 

as the integration of information from downstream links or terminal costs as it is done for 37 

example in (28).  38 
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