
Short Term Memory and Pattern Matching with Simple
Echo State Networks

Georg Fette (fette@in.tum.de), Julian Eggert (julian.eggert@honda-ri.de)

Technische Universität München; Boltzmannstr. 3, 85748 Garching/München, Germany
HONDA Research I. Europe GmbH; Carl-Legien-Str.30, 63073 Offenbach/Main, Germany

Abstract. Two recently proposed approaches to recognize temporal patterns have
been proposed by Jäger with the so called Echo State Network (ESN) and by
Maass with the so called Liquid State Machine (LSM). The ESN approach as-
sumes a sort of “black-box” operability of the networks and claims a broad appli-
cability to several different problems using the same principle. Here we propose
a simplified version of ESNs which we call Simple Echo State Network (SESN)
which exhibits good results in memory capacity and pattern matching tasks and
which allows a better understanding of the capabilities and restrictions of ESNs.

1 Introduction

Both, ESN and LSM, are three-layered networks consisting of input/hidden/output lay-
ers, which are used in matching tasks using input-output sequences. To solve the task
the input signal is fed into a highly recurrent hidden layer. During the presentation of
the signals the state-vector of the network’s hidden layer is logged. After the complete
input vector was fed into the system the logged activity is used to adjust the output
weights in a way that the networks output matches the desired output pattern. Whereas
the ESN proposed by Jaeger (see e.g. [1]) is a discrete time, nonlinear, recurrent net-
work, the LSM proposed by Maass (see e.g. [2]) is a biologically inspired model with
integrate-and-fire neurons and dynamically adapting synapses. Both approaches were
used to detect temporal patterns with different time lags [1]-[4] between input and out-
put. For reasons of brevity, in the following we just want to describe the main properties
of the two models and refer to the specific publications for the details.

1) They both use a network with an input layer which is connected with a hidden
layer. Maass connects about 30% of the hidden layer with the input layer, J äger fully
connects the input towards the hidden layer. 2) The hidden layer is heavily recurrent.
J äger uses a fully recurrent hidden layer, whereas Maass uses a spatial connection topol-
ogy in which the neurons are more densely connected to their local neighbours than to
remote neurons and about 10% of the connections are inhibitory. 3) The connectivity in
both approaches is stochastic. 4) The weights to the output layer are set with a one-step
learning rule, adjusting them in a way that the difference between the actual output and
the desired output over the whole training period is minimized. To achieve this goal,
both approaches use linear regression on the logged states of the hidden layer and the
desired outputs.

2 SESN

The coarse structure of a SESN is similar to that of an ESN, also consisting of three
layers. Input layer I contains just a single neuron u. We define u(t) as the input to
the network and u = [u(0), .., u(tmax)]T as the vector of inputs in the time interval
t ∈ [0, tmax]. u is connected to every neuron xv in the hidden layer H(|H | = n) with
weight iv = 1 (v ∈ [1, n]). Each unit xv in H is just connected to itself with weight
dv ∈]0, 1[randomly taken from a uniform distribution (di 6= dj , ∀i, j ∈ [1, n], i 6= j).
All hidden units are fully connected to the output layer O. The output layer just contains
a single neuron. The output weights w ∈ Rn from H to O are set in a single learning
step by linear regression as explained later. There are no connections from O to H or to
I , so further readout neurons can be added and analyzed in parallel without affecting the
rest of the system. All neurons have a linear transfer function. The state of the system is
described by the vector x(t) = [x1(t), .., xv(t)]T of the hidden layer. Every unit xv is
updated according to xv(t) = dvxv(t − 1) + u(t). The output unit calculates its value
by o(t) = xw

T . The desired output at every time step is defined as ô(t). The vector
ô = [ô(0), .., ô(tmax)]T describes the desired outputs for the time interval t ∈ [0, tmax].
When the proper output weights have to be calculated, the input signal u(t) is fed into
the system and the state vectors x(t) are logged forming the matrix X ∈ Rn×tmax

Xv,t = xv(t) (1)

The pseudoinverse X† of this matrix is then used to calculate the weights by

w = X†
ô (2)

3 SESNs for Memory Reconstruction

We now want to find the output weights ws that allow to recover the past input u(t −
s) (shifted by s) at o(t) for arbitrary inputs, so that the overall network acts as a
sort of delay line. This task can be differently expressed by: The system shall map
the input impulse u = [1, 0, .., 0]T ∈ Rtmax to the desired output sequence ôs =
[0, .., 0, 1, 0, .., 0]T , (os,s = 1) ∈ Rtmax . This is a feasible approach because a continu-
ous linear system can be completely described by its pulse response and the signals of
an arbitrary input are processed by the system by superposition of the signal’s individual
composing pulses. For the time-discrete SESNs from 2 this still holds approximately as
long as s is of the same order of magnitude as n. With the above assumptions on u and
ôs the matrix X simplifies to Xv,t = dv

t. The output weights ws are then calculated
using (2). We call the discrete response ps(t) of the system on a discrete impulse δ(t)
(δ(0) = 1; δ(x) = 0, x 6= 0) its kernel, with

ps(t) = d
t
ws (3)

and d
t the elementwise exponentiation of d. When we now feed the system with an ar-

bitrary input signal u(t) the output unit’s response can be directly calculated by folding
the input with the kernel so that os(t) = (ps ∗ u)(t) and training time can be reduced

by several orders of magnitude as compared to standard ESNs. Furthermore, we can
easily calculate the partial (mc(s)) and total (MC) memory capacities for our network
configuration. J äger defined the total memory capacity [3] as the ability of the network
to extract the variation of former input from the system when it is fed with white noise
input u(t) 1:

mc(s) =
(covt(ôs(t), os(t)))

2

σ2
t (ôs(t)) σ2

t (os(t))
MC =

∞∑

s=0

mc(s) (4)

For SESNs it holds that MC = n and

mc(s) = ps(s) (5)

(for the proof see appendix of [4]) which means that the kernel ps at time step s indicates
how much of the signal u(t − s) can still be retrieved by o(t). We observe that the
maximum peak ps(s) of the kernel response gets smaller with increasing s, meaning
the memory capacity decreases when the time lag grows. This relationship can be seen
in the top left plot of the figure at the end of the paper, were we show 3 kernels ps(t) that
resulted from the system. When we equip the hidden neurons with a nonlinear transfer
function like f(x) = tanh(x) the proper kernel ps cannot be computed in the easy
way explained above, but must be calculated extensively by propagating a white noise
signal u(t) through the network and using formulas (1), (2) and (3), since (5) does not
hold any more. The nonlinearities lower the memory capacity of SESNs, because larger
inputs are squashed and cannot be retrieved by the linear output weights in the same
way smaller input values are retrieved. As a sigmoid behaves almost linearly for inputs
around 0, memory capacity in this case gets dependent on the scaling of the input signal,
being maximal for small scale inputs (linear limit) and decreasing for larger inputs. The
reduction in memory capacity by non-linearities was already described by J äger [3]
and can be observed in the bottom left plot of the figure, where we show the memory
capacity as a function of the input scaling for linear and nonlinear SESNs. In the top
right quadrant of our figure we also show a typical partial memory capacity plot which
exhibits a characteristic drop at t ≈ n/4, so that if a network with almost complete
memory reconstruction capability of the last, say, ŝ time steps is desired, one would
have to use a network of size n ≈ 4 ŝ.

4 SESNs for Pattern Matching

With the presented mechanism we now want the network to detect an arbitrary binary
temporal pattern g(t) ∈ {0, 1} (t ∈ [0, tg]). We feed the network with the pattern of
length tg. At time tg , after the pattern presentation ends, we want ô(tg) = 1 at the

1

µx(f(x)) = 〈f(i)〉i σ
2

x(f(x)) = 〈(f(i) − µx(f(x)))2〉i covx(f(x), h(x)) = 〈f(i) h(i)〉i

output if the learned pattern was presented and otherwise ô(tg) = 0. To accomplish
this task we take a network of proper size (considering the arguments gained from the
empirical results for memory reconstruction from the previous section we use n = 4 tg),
so that the ability to recover the pattern signals at the entire length of the presented
patterns is almost 1. We now superpose the output weights ws, for every time shift
s ∈ [0, tg] for which we want to map the input vector u = [1, 0, .., 0]T to the output

vector ôs = [0, .., 0, ks, 0, .., 0]T , with ks = 2g(s)−1
tg

. By performing this superposition
also the different kernels ps are summed to a pattern-detecting kernel p̂. The summed
weight vector w =

∑tg

s=0 ws now reacts on g with the output o(tg) = 1 and on every
other pattern with a lower excitation. In addition, the systems output is continuous so
that small changes from the original pattern only lead to small reductions in the output
excitation.

Nevertheless in this mode of operation the system performs approximately as a
linear filter after learning. To overcome this penalty without adding non-linearities into
the system itself, we can add another pool of hidden units of the same size as the first
one, which is connected to a further input neuron, which supplies the square (u(t))2 of
the input signal. We also need a further bias unit ub supplying a permanent bias signal
ub(t) = 1 which is connected to the output unit with the weight wb. If we set the kernel
of the first hidden pool to the negative inverse pattern, i.e., p1(t) = −2 g(t − tg), the
second pool to p2(t) = 1 and the bias weight to the summed squared pattern values
(wb =

∑tg

i=0 g(i)2), we get the following output:

o(t) = (u ∗ p1)(t) + (u2 ∗ p2)(t) +

tg∑

i=0

g(i)2 =

tg∑

i=0

u(t − i) (−2) g(t− i) +

tg∑

i=0

u(t)2 1 +

tg∑

i=0

g(t − i)2 =

tg∑

i=0

(u(t − i) − g(t − i))2 =

tg∑

i=0

(u(i) − g(i))2 (6)

The resulting total kernel calculates the summed squared distance between the input
pattern and the learned pattern. Thus only the learned pattern produces a maximum
excitation at the output and every other pattern produces less activity.

Another possibility to make SESN capable to detect arbitrary patterns is to add non-
linearities into the system itself by introducing non-linear activation functions. To train
the network with n = 100 the system is fed by white noise in which every 50 time steps
a pattern g(t) = −(−2+ 4 t

tg

)2 with tg = 20 is inserted. Again only at the end of a pattern
presentation the output shall be 1 and otherwise 0. The size of the training set was 2000
time steps. The calculation of ws has to be done by formulas (1) and (2). As can be
observed in the figure bottom right where as non-linearity was introduces by a transfer
function which depolarizes the neurons after the treshold 2 is surpassed performance
rises significantly. This suggests that the enhanced capabilities of the nonlinear network
originate from exploiting the nonlinearities in a way that the network computes higher
orders of the input signal internaly and computes a similar distance measure as in (6).

5 Comparing SESN to ESN

When we want to compare ESNs with SESNs it is better to describe the differences
between the two models, because they are very similar: 1) In standard ESNs the hidden
units have a non-linear, sigmoid transfer function. As we have seen, by introducing non-
linearities in SESNs, the memory capacity is reduced with respect to the input scaling,
but on the other hand the ability to match patterns is enhanced. In our experiments
we have seen that pattern matching performance again decreases, when the input is
drastically scaled down [4]. 2) In ESNs the input weights are drawn randomly from
a normal distribution. In linear SESNs the input weights to each hidden neuron can
be multiplied into the output weight and the input weight itself can be set to 1. 3) In
ESNs the hidden units are highly interconnected with each other. A linearized version
of the ESN can straightforwardly be transformed into a SESN by diagonalizing the
ESNs hidden unit connectivity matrix and multiplying the resulting matrices D and
D−1 which occur during this process into the input-output-signals. In SESNs, there is
no interconnectivity between the units. 4) In ESNs all recurrent connections are drawn
randomly from a normal distribution, whereas SESNs get their recurrent connections as
specified in section 2.

We have seen that linear SESNs have the same (maximal) memory capacity as the
(also linear) ESNs, as shown in the figure bottom left and proved in [3] and [4]. We have
also seen that nonlinear SESNs and nonlinear ESNs behave very similarly in pattern
matching tasks, suggesting that the ESN learning procedure may select the weights
in a way that the ESNs are effectively reduced to the simplified network structures as
suggested in this paper.

6 Comparing SESN to LSM

LSMs are based on a continuous model with biologically inspired integrate-and-fire
neurons. Therefore they are influenced by heavy non-linearities from different sources
(e.g. depolarization after firing or saturation of membrane potentials). As the non-linear
transformations of incoming signals can only be examined with great difficulties, our
conclusions about LSM are based mostly on empirical results.

For comparison, we have implemented SESNs using a continuous time model in
which the hidden layer is replaced by a layer of neurons which are just connected with
their input and their output and no other (also no recurrent) connections. Each neuron
was equipped with a membrane constant that matched that of typical integrate-and-
fire neurons from the LSMs (since the recurrent connection weights d define a kind of
membrane constant τ in the discrete, linear SESN model). Non-linear effects lead to
a memory capacity reduction. Therefore connections between the neurons with their
non-linear signal exchanging mechanism would result in a loss of memory capacity.
On the other hand, as non-linearities help in pattern matching tasks, a small number
of non-linearities proved to be very useful. In figure bottom right we can see that the
introduction of a non-linearity by depolarizing the neurons membrane potential when a
threshold is surpassed is useful to improve the capability to recognize patterns. Again,
a SESN implementation with a hidden layer of integrate-and-fire neurons which aren’t

connected at all with each other performed quite well in memorization as well as in
pattern matching tasks in our experiments [4], compared to simulations with LSMs.

7 Conclusions

To better understand the working principles of networks of the ESN and LSM type, we
have introduced a recurrent network model called Simple Echo State Network which in
comparison has a very reduced complexity and learning costs. In particular the empha-
sized role of the recurrent connectivity and the nonlinearities can be nicely studied with
SESNs. Since SESNs perform comparably well to both ESNs and LSMs on memoriza-
tion tasks in the linear operation mode and on pattern matching tasks in the nonlinear
operation mode, we suggest that they provide an insight into understanding the prop-
erties of the two other, much more complex models, and that they give some hints on
detecting the main mechanisms leading to their performance.

5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

o(
t)

s = 5
s = 7
s = 13

5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t

m
c(

t)

n = 19, randomly recurrent, d
v
 ∈ [0, 1[

7.45 2.44 0.8 0.26 0.085 0.028 0.0092 0.003
0

2

4

6

8

10

12

14

16

18

20

inputScale

M
C

linear, n = 19
non−linear (sigmoid), n = 19

20 40 60 80 100 120 140 160 180
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

o(
t)

non−linear transfer function (firing depolarisation)
linear transfer function, additional squared input
linear transfer function

References

1. H. Jäger, The echo state approach to analysing and training recurrent neural networks. GMD
Report 148, GMD - German National Research Institute for Computer Science, 2001.

2. W. Maass, T. Natschläger, H. Markram. Real-time computing without stable states: A new
framework for neural computation based on perturbations. Neural Computation 14, 2002.

3. H. Jäger, Short term memory in echo state networks. GMD Report 152, GMD - German
National Research Institute for Computer Science, 2002.

4. G. Fette, Signalverarbeitung in Neuronalen Netzen vom Typ Echo State Networks, diploma
thesis (german), 2004 (http://atknoll1.informatik.tu-muenchen.de:8080/tum6/people/fette).

