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Abstract—In the downlink (DL) of a multi-user multiple-input
and multiple-output (MU-MIMO) system, the maximization of the
weighted sum rate with dirty paper precoding (DPC) is treated
under multiple linear and linear conic constraints. By network
duality, the problem is transformed to a minimax uplink (UL)
problem. In the UL, the minimization of the utility with respect
to the noise covariance and the maximization of the utility with
respect to the transmit covariances is solved either jointly or
alternately with the gradient-projection algorithm. The proposed
algorithms do not only allow to find the maximum weighted
sum rate with respect to conic constraints, they are also efficient
implementations with respect to multiple linear constraints.

I. INTRODUCTION

Maximizing the weighted sum rate in the DL of a MU-

MIMO system with a single transmit power constraint typi-

cally consists of two steps: a transformation of the DL problem

to the dual UL problem and solving the UL problem, which

can be rewritten as a convex optimization problem. The dual

transformation was introduced in [1] and [2] in parallel. Ad-

ditionally to generic methods for convex optimizations, there

are some methods specifically tailored to the UL problem. One

possible approach to solve the problem is the steepest ascend

algorithm. Hunger et al. showed that an orthogonal projection

of the gradient onto the constraint set is required to find the

steepest ascend direction [3]. With this projection, the deepest

ascend algorithm has a very fast convergence behavior. The

polite water-filling from Liu et al. is another possible approach

for both, the dual transformation and solving the UL problem

with very fast convergence behavior [4]. The references in [3]

and [4] give a broad overview of the existing algorithms for

solving the weighted sum rate maximization.

Multiple linear constraints for the weighted sum rate max-

imization in the UL were already addressed in [5], where

Yu et al. investigated individual transmit power constraints

for each user. However, multiple constraints in the DL could

not be handled by the existing dual transformations. In [6],

Yu introduced a minimax duality, where the UL problem is,

on the one hand, a maximization of the weighted sum rate

with respect to the transmit covariance matrices and, on the

other hand, a minimization of the weighted sum rate with

respect to the noise covariance matrix. With the minimax

duality, constraints on the sum transmit covariance matrix in

the DL are transformed to constraints on the noise covariance

matrix in the UL. Yu et al. used this duality in [7] to tackle

the weighted sum rate maximization with per antenna power

constraints in the DL. To solve the resulting minimax problem,

Yu et al. updated the transmit and noise covariance matrices

simultaneously with an adopted Newton’s method. Feasibility

of the covariance matrices was assured with the interior-point

method.

The weighted sum rate algorithm of Yu et al. was general-

ized by Huh et al. in [8] for general linear constraints. They

alternately solved the maximization of the transmit and noise

covariance matrices. The utility was minimized with respect to

the noise covariance matrix by a subgradient method, while the

maximization with respect to the transmit covariance matrices

was done with the adopted Newton’s method.

In [9], Zhang et al. relaxed the multiple linear constraints

to a single weighted sum constraint. The resulting problem

could than be transformed to an UL problem with the existing

duality [1], [2]. Zhang et al. claimed that the optimum could

be reached by alternately maximizing the UL problem with

respect to the transmit covariance matrices and minimizing the

DL problem with respect to the weights. The claim was proven

by showing that both, the original and the changed problem,

have the same Lagrangian function. The Lagragian multipliers

of the original problem are the weights in the transformed

problem.

Designed for more general interference networks, Liu et al.

proposed two algorithms based on their polite water-filling to

solve the weighted sum rate maximization with multiple linear

constraints [10]. The cost function has to be maximized with

respect to the transmit covariance matrices and minimized with

respect to the Lagrangian multipliers of the constraints. The

first algorithm alternates between polite water-filling for the

transmit covariance matrices and a subgradient or an heuristic

update algorithm for the Lagrangian multipliers. The polite

water-filling itself is an alternating algorithm, which rotates

between updating the transmit covariances in the UL and DL.

The second algorithm includes the update of the Lagrangian

multipliers into the alternating process of the polite water-

filling.

Dotzler et al. introduced in [11] a minimax duality with

linear conic constraints, where the UL noise covariance itself is

the Lagrangian multiplier for the constraints on the DL covari-

ance. In this paper, we extend the minimax duality for multiple

linear conic constraints. We show that the UL problem can be

solved with the rather simple but efficient gradient-projection

algorithm. We give details to the required projections and
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propose to update the transmit and noise covariances either

alternately or jointly. Additionally, we discuss the tangent

cone projection of the gradients to find the steepest ascend

or descend. The proposed algorithms are tailored for conic

constraints, which cannot be handled by the existing methods.

Nevertheless, the proposed algorithms are also very efficient

for optimizations with multiple linear constraints.

Next to per antenna power constraints, multiple linear

constraints can be used as interference temperatures, which

limit the received interference at selected receivers to a given

level [7], [12]. In a cellular network with local optimizations of

the transmission strategy, a conic constraint, which shapes the

sum transmit covariance of a transmitter to a scaled identity

matrix, can be useful to remove uncertainty in the interference

variance at disturbed users [13]. By combining the shaping

constraint with a linear sum power constraint, a controlled

uncertainty in the intercell interference variance at the users

can be introduced [14]. An example for combining a conic

and multiple linear constraints is the combination of the above

mentioned shaping and interference temperature constraints.

II. SYSTEM MODEL

In this paper, the base station (BS) is equipped with M

antennas and serves K users with N receive antennas each.

The matrix Hk ∈ C
N×M contains the channel coefficients

between the antennas of the BS and user k. Perfect channel

state information is assumed.

A. Downlink Rate

The achievable, normalized rate of user k, within the

capacity region of the MIMO broadcast channel with DPC,

can be expressed as

rDL
k = ln

∣

∣

∣I+
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k̂≥kHkQk̂
HH
k
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∣
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∣

∣

, (1)

where Qk ∈ C
M×M is the transmit covariance matrix for

user k.
∑

kQk = Q ∈ C
M×M will be used as the sum trans-

mit covariance matrix.
∑

k̂>k
HkQk̂

HH
k is the variance of the

intracell interference with DPC. Without loss of generality it

is assumed that the noise covariance matrix at each user is

fixed to an identity matrix.

B. Dual Uplink Rate

In the dual multiple access channel, the rate of user k with

successive interference cancellation can be found with flipped

channels as
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k = ln
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where Σk ∈ C
N×N is the transmit covariance matrix of

user k.
∑

k̂<k
HH
k Σk̂

Hk is the variance of the intracell

interference with successive interference cancellation and Ω ∈
C
M×M is the covariance matrix of the noise at the BS.

C. Linear and Linear Conic Constraints

Linear constraints are given as trace constraints on the

positive semidefinite transmit covariance matrix:

tr (QA) ≤ a. (3)

This restricts the radiated sum power in the directions of A

to a. The sum power constraint is A = I. Per antenna power

constraints or interference temperatures can be implemented

by selecting an appropriate A for each antenna or interference

direction [7], [12].

Conic constraints consist of a shaping matrix C and a linear

subspace Z:

∃Z ∈ Z : Q � C +Z. (4)

The selection Ceye = cI and Zeye = {0} shapes the transmit

covariance to a scaled identity matrix with sum transmit power

cM .

In the following, linear constraints are formulated as conic

constraints. The transformation can be done with any positive

definite matrix C lin that fulfills a = tr(C linA) and the

subspace Z lin =
{

Z lin : tr(AZ lin) = 0
}

[11].

D. Problem Formulation

The weighted sum rate problem with L linear and/or linear

conic constraints in the DL of an MU-MIMO system can be

formulated as

max
Qk�0, ∀k
Zl∈Zl, ∀l

∑

k

rDL
k wk, (5)

s.t. Q � Cl +Zl, ∀l,

where wk is the weight for user k.

III. UPLINK-DOWNLINK DUALITY

The minimax duality with a conic constraint from [11] is

extended for multiple conic constraints in this Section.1

Because of strong duality2 and the variables being selected

from closed sets, problem (5) can be replaced by its La-

grangian dual

min
Ωl�0, ∀l

max
Qk�0, ∀k
Zl∈Zl, ∀l

∑

k

rDL
k wk (6)

−
∑

l

tr (Ωl(Q−Cl −Zl)) ,

where Ωl is the Lagrangian multiplier of constraint l. The

inner problem of (6) is unbounded, unless Ωl ∈ Z
⊥
l , ∀l,

where

Z⊥
l = {Ωl : tr(ΩlZl) = 0, ∀Zl ∈ Zl} , (7)

1Note that the definition of Zl, Z
⊥

l
is different from the one used in [11]

2The strong duality for multiple constraints can be shown with the same
methods presented in [11] for a single constraint
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and can be rearranged as

min
Ωl�0, ∀l
Ωl∈Z⊥

l , ∀l

max
Qk�0, ∀k

∑

k

rDL
k wk (8)

− tr

(

∑

l

ΩlQ

)

+
∑

l

tr (ΩlCl)) .

Due to the complementary slackness condition of all con-

straints,
∑

l

tr (ΩlQ) =
∑

l

tr (ΩlCl) (9)

has to be fulfilled. A joint scaling of all dual variables does

not change the solution. Without loss of generality, both sides

of Equation (9) can be fixed to some value P :

min
Ωl�0, Ωl∈Z⊥

l , ∀l∑
l
tr(ΩlCl)=P

max
Qk�0, ∀k
tr(ΩQ)=P

∑

k

rDL
k wk, (10)

where Ω =
∑

lΩl is the sum of all Lagrangian multipliers.

The inner maximization of problem (10) is a weighted sum

rate optimization with a single linear constraint on the transmit

covariance matrix Q in the DL. As shown in [9] with the

duality from [6], the inner problem can be transformed to a

weighted sum rate optimization in the UL, where Ω becomes

the noise covariance matrix (see Equation (2)) and P the sum

transmit power:

min
Ωl�0, Ωl∈Z⊥

l , ∀l∑
l
tr(ΩlCl)=P

max
Σk≥0, ∀k∑
k
tr(Σk)=P

∑

k

rUL
k wk. (11)

In this paper, it is assumed that Ω is invertible. Handling

cases with singularities in the UL noise are discussed in [11].

Ω might be rank deficient, if directions exist, which cannot

be reached by any of the channel matrices.

IV. JOINT AND ALTERNATING GRADIENT-PROJECTION

It is assumed, without loss of generality, that the users are

handled in the optimal decoding order, i.e., the weights wk
are in a non ascending order. By selecting αk = wk − wk+1,

α0 = −w1, and αK = wK problem (11) can be written as

min
Ωl�0, Ωl∈Z⊥

l , ∀l∑
l
tr(ΩlCl))=P

max
Σk�0, ∀k∑
k
tr(Σk)=P

Ψ, (12)

Ψ =
∑

k

αk ln

∣

∣

∣

∣

∣

∣

Ω +
∑

k̂≤k

HH
k̂
Σ
k̂
H
k̂

∣

∣

∣

∣

∣

∣

+ α0 ln |Ω| . (13)

As shown in [3], the inner maximization of problem (12)

can be solved efficiently with the iterative scaled gradient

algorithm with an orthogonal projection onto the constraint

set. We propose to solve the complete minimax problem (12)

with the joint gradient algorithm listed as Algorithm 1. In each

iteration of the algorithm, the transmit and noise covariance

matrices are updated with a steepest ascend/descend step.

Lines 6 to 18 describe the update of the transmit covariance

matrices according to Section IV-A. The description of the

noise covariance matrix update in lines 19 to 32 can be found

in Section IV-B.

We also suggest an alternating gradient-projection algorithm

that puts the updates of the transmit and noise covariances in

additional inner loops, respectively. The algorithm alternates

between finding the optimal transmit covariances for a fixed

noise covariance and vice versa. It has the same alternating

structure as the algorithms for multiple linear constraints from

the literature, but the inner loops run methods known to be

efficient.

A. Transmit Covariance Gradient Update

Following [3], the gradient with respect to the individual

transmit covariance matrices is

∂Ψ

∂ΣT
k

=
∑

k̂≥k

α
k̂
Hk



Ω +
∑

ǩ≤k̂

HH
ǩ
ΣǩHǩ





−1

HH
k (14)

and the unconstrained updates of the covariance matrices are

calculated as

Σ̂
(i)
k = Σ

(i)
k + p

(i)
t s

(i)
t

∂Ψ

∂Σk

∣

∣

∣

∣

i

. (15)

The preconditioning scalar

p
(i)
t =

P
∑

k tr
(

∂Ψ
∂ΣT

k

∣

∣

∣

i

) (16)

normalizes the sum of the gradient traces to the chosen UL

transmit power P . This makes the gradient almost independent

of the selection of P . s
(i)
t is the joint stepsize for all transmit

covariance matrix updates in iteration (i). We use stepsize

control with diminishing stepsize to ensure convergence.

The steepest ascend update, which gives the transmit co-

variance matrices in the next iteration (i + 1), is found with

the joint projection of all unconstrained updates onto the

constraints set.
{

Σ
(i+1)
1 , . . . ,Σ

(i+1)
K

}

=
({

Σ̂
(i)
1 , . . . , Σ̂

(i)
K

})

⊥
(17)

The orthogonal projection (•)⊥ onto the constraint set is

done with the water-spilling algorithm from [3]. The required

water-spilling is exactly the same as the water-spilling for the

orthogonal projection of the noise covariance matrix onto the

constraint set with a single scaled identity shaping constraint

as explained in Section V-A.

B. Noise Covariance Gradient Update

The gradient update of the noise covariance matrix follows

the same steps as the update of the transmit covariance matri-

ces except that it is a minimization instead of a maximization.

The gradient of Ψ with respect to the noise covariance matrix,

or each of its summands, is

∂Ψ

∂ΩT
=
∑

k

αk



Ω +
∑

k̂≤k

HH
k̂
Σ
k̂
H
k̂





−1

+ α0Ω
−1. (18)
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Algorithm 1 Joint Gradient-Projection Algorithm

Require: Accuracy ε, constraints (Cl,Zl), ∀l
1: Σk ←

1
MK

I, ∀k ⊲ initialize transmit covariances

2: Ωl ←
1

tr(Cl)L
(I)⊥, ∀l ⊲ initialize noise covariances

3: dt ← 1, dn ← 1, i← 1 ⊲ initialize step size

4: cost n← Ψ(Σ1...K ,
∑

lΩl) ⊲ evaluate objective (13)

5: repeat

6: Gt,k ←
∂Ψ
∂ΣT

k

, ∀k ⊲ gradient computation (14)

7: pt ←
1∑

k
tr(Gt,k)

⊲ preconditioning (16)

8: repeat

9: st ←
1

dt
√
i

⊲ set step-size

10: Σ̂k ← Σk − ptstGt,k, ∀k ⊲ unconstr. update (15)

11: Σ̃1...K ←
(

Σ̂1...K

)

⊥
⊲ joint projection (17)

12: cost t← Ψ(Σ̃1...K ,
∑

lΩl) ⊲ evaluate objective

13: cost increase← cost t− cost n
14: if cost increase ≤ 0 then

15: dt ← dt + 1 ⊲ decrease step-size

16: end if

17: until cost increase > 0
18: Σk ← Σ̃k, ∀k ⊲ new covariances

19: Gn ←
∂Ψ
∂ΩT ⊲ gradient computation (18)

20: pn ←
1

tr(Gn

∑
l
Cl)

⊲ preconditioning (21)

21: Gn,1...L ← (Gn)⊥⌢
⊲ tangent cone projection (19)

22: repeat

23: sn ←
1

dn
√
i

⊲ set step-size

24: Ω̂l ← Ωl − pnsnGn,l, ∀l ⊲ unconstr. update (20)

25: Ω̃1...L ←
(

Ω̂1...L

)

⊥
⊲ joint projection (22)

26: cost n← Ψ(Σ̃1...K ,
∑

lΩl) ⊲ evaluate objective

27: cost decrease← cost n− cost t
28: if cost decrease ≥ 0 then

29: dn ← dn + 1 ⊲ decrease step-size

30: end if

31: until cost decrease < 0
32: Ωl ← Ω̃l, ∀l ⊲ new covariances

33: i← i+ 1 ⊲ iteration counter

34: until cost increase ≤ ε and cost decrease ≥ ε
35: Q1...K ← uplink2downlink(Σ1...K ,Ω) ⊲ [1], [2], [15]

It can be seen, that the gradient is the same for all summands

of the noise covariance matrix, which results in a slow

convergence behavior for multiple constraints. In general, the

steepest descend needs a projection of the gradient onto the

tangent cone (•)⊥⌢
:

{

G
(i)
n,1, . . . ,G

(i)
n,L

}

=

(

∂Ψ

∂Ω

∣

∣

∣

∣

i

)

⊥⌢

. (19)

For optimizing the transmit covariances, the effect of the tan-

gent cone projection is negligible [16] and, therefore, omitted

in equation (15). The tangent cone projection of the noise

covariance gradient with a single shaping constraint can also

be ignored. Due to page limitations the tangent cone projection

is only discussed for multiple linear constraints in Appendix A.

The unconstrained updates of the noise covariance matrix

summands are

Ω̂
(i)
l = Ω

(i)
l − p

(i)
n s(i)n G

(i)
n,l. (20)

The preconditioning scalar p
(i)
n can be found as

p(i)n = −
P

tr
(

∂Ψ
∂ΩT

∣

∣

i

∑

lCl

) (21)

and the joint stepsize for the noise covariance matrix updates

s
(i)
n follows the same rules as the stepsize for the transmit

covariance updates.

The steepest descend update of the noise covariance matrix

summands
{

Ω
(i+1)
1 , . . . ,Ω

(i+1)
K

}

=
({

Ω̂
(i)
1 , . . . , Ω̂

(i)
K

})

⊥
. (22)

is found with a joint orthogonal projection step, which is

done with a generalized water-spilling as presented in the next

Section.

V. ORTHOGONAL PROJECTION OF THE UPLINK NOISE

The orthogonal projection onto the constraint set has to min-

imizes the Euclidean distance between all the unconstrained

update steps and the constraint set simultaneously. It can be

found with the optimization

{

Ω
(i+1)
1 , . . . ,Ω

(i+1)
K

}

= argmin
Ωl�0, Ωl∈Z⊥

l , ∀l∑
l
tr(ΩlCl)=P

∑

l

∥

∥

∥
Ωl − Ω̂

(i)
l

∥

∥

∥

2

F
,

(23)

where ‖ • ‖F is the Frobenius norm.

The Lagrangian function can be constructed with the dual

variables Sl, ∀l, for the positive semidefiniteness constraints,

Tl, ∀l, for the subspace constraints, and µ for the joint trace

constraint:

L =
∑

l

tr

(

(

Ωl − Ω̂
(i)
l

)(

Ωl − Ω̂
(i)
l

)H
)

−
∑

l

tr (ΩlSl)

−
∑

l

tr (ΩlTl) + µ

(

∑

l

tr (ΩlCl)− P

)

. (24)

Setting the derivation of the Lagrangian function with

respect to ΩT
l to zero yields

Ωl = Ω̂
(i)
l + Sl + Tl − µCl (25)

For the subspace constraints, the complementary slackness

conditions tr(ΩlTl) = 0, ∀l, have to hold. As Ωl has to

be element of the set Z⊥
l , Tl has to be from the orthogonal

subspace Zl.

A. Single Scaled Identity Shaping Constraint

For a single shaping constraint, where Zshape contains only

the all zero matrix. The set Z⊥,shape
l contains any hermitian

matrix of appropriate size. Therefore, T shape is zero and

Equation (25) becomes

Ωshape =
(

Ω̂(i) − µCshape
)

+
, (26)
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where the influence of Sshape is replaced by the operation

(•)+, which sets all negative eigenvalues to zero. In Equation

(26), the water level µ and the eigenvectors of Ωshape depend

on each other and can only be found iteratively for arbitrary

Cshape.

If Cshape = Ceye = cI is a scaled identity matrix, Ωeye

and Ω̂(i) have to have the same eigenbasis U eye. Therefore,

Equation (26) can be diagonalized:

Λeye =
(

Λ̂(i) − µcI
)

+
, (27)

where Λeye and Λ̂(i) are diagonal matrices with the eigenval-

ues (λeye1 , . . . , λ
eye
M ) and (λ̂

(i)
1 , . . . , λ̂

(i)
M ) of Ωeye and Ω̂(i) as

their diagonal elements, respectively. The water level µeye is

found by plugging Equation (27) into the trace constraint

tr (ΩeyeCeye) = c
∑

m

(

λ̂(i)m − µ
eyec

)

+
= P. (28)

Without loss of generality, it can be assumed that the eigen-

values of Ω̂(i) are sorted in non-increasing order λ̂
(i)
1 ≥ · · · ≥

λ̂
(i)
M . The water level is

µeye =

∑M̂
m=1 λ̂

(i)
m c− P

∑M̂
m=1 c

2
, (29)

where the number of non negative eigenvalues M̂ of Ωeye has

to be found. M̂ is initialized with M and reduced by one until

the termination criterion λ̂
(i)

M̂
− µeyec > 0 holds. Finally, the

orthogonal projected noise covariance matrix reads as

Ω(i+1),eye = U eye
(

Λ̂(i) − µeyecI
)

+
U eye,H. (30)

These steps are exactly the water-spilling algorithm from

Hunger et al. presented in [3] for the transmit covariance

matrices.

B. Multiple Linear Constraints

For linear constraints, Z⊥
l is

Z⊥,lin
l =

{

Ωlin
l : Ωlin

l = ωlAl, ∀ωl ∈ R
+
0

}

. (31)

Ωlin
l = ωlAl has to be a scaled version of the constraint

matrix Al with the scaling variable ωl. The same is true for

Ω̂
(i)
l = ω̂

(i)
l Al as can be seen from Appendix A. T lin

l has to

fulfill tr(AlT
lin
l ) = 0. Equation (25) can be multiplied with

Al on both sides from the left. Taking the trace, solving the

result for ωl, and multiplying both sides with Al again gives

Ω
(i+1),lin
l = ωlAl =

(

ω̂
(i)
l − µ

linal

)

+
Al (32)

where al = tr(AlC
lin
l ). Without loss of generality, it can be

assumed that tr(A2
l ) = 1, ∀l. Both sides of Equation (3) can

be scaled arbitrarily without changing the constraint.

If all constraints are linear constraints, the water level µ is

found by plugging Ωlin
l into the sum trace constraint.

µlin =

∑L̂
l=1 ω̂

(i)
l al − P

∑L̂
l=1 a

2
l

, (33)

where all
ω̂

(i)
l

al
are sorted in non-increasing order. The number

of active constraints L̂ is initialized with L and decreased by

one until ω̂
(i)
l − µ

linal > 0 holds.

C. Scaled Identity and Multiple Linear Constraints

The scaled identity constraint and multiple linear constraints

combined need to fulfill

P = tr (ΩeyeCeye) +
∑

l

tr
(

Ωlin
l C lin

l

)

=
∑

m

(

λ̂(i)m c− µcombc2
)

+
+
∑

l

(

ω̂
(i)
l al − µ

comba2l

)

+
.

(34)

The Equations for Ω
(i+1),comb
l can directly be taken from (30)

and (32) for the shaping and linear constraints, respectively.

The combined water level is

µcomb =

∑Θ̂
θ=1 ξ̂

(i)
θ ψθ − P

∑Θ̂
θ=1 ψ

2
θ

. (35)

where ξ̂
(i)
θ is from the joint set of all eigenvalues λ̂

(i)
m and

scaling variables ω̂
(i)
l . ψθ is from the joint set of all corre-

sponding factors c and al. All
ξ̂
(i)
θ

ψθ
are sorted in non-increasing

order. Θ̂ is initialized with M +L and decreased by one until

ξ̂
(i)
θ − µ

combψθ > 0 holds.

VI. SIMULATIONS

Like the proposed alternating algorithm, most existing algo-

rithms for the weighted sum rate maximization with multiple

linear constraints are alternating optimizations. In their con-

text, an iteration step is a complete run of the outer loop of

our alternating optimization. Comparing the performance of

all the different algorithms would require a detailed analysis

of their complexity. It has been proven in [3], that the gradient-

projection method is very efficient for finding the optimal

transmit covariances with fixed noise. We expect it to be

also very efficient for finding the optimal noise covariance

with fixed transmit covariances. Therefore, we assume that

the performance of the existing algorithms cannot exceed the

performance of our alternating optimization.
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Figure 1. Relative frequency of the number of iterations required to find the
maximum weighted sum rate with two linear constraints (sum power and one
forbidden direction). The algorithms are stopped, if a sum-rate larger than
(1− ε) times the maximum sum-rate was achieved and each constraint was
hurt by less than ε (ε = 10−3).
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Figure 2. Relative frequency of the number of iterations required to find
the maximum weighted sum rate with the scaled identity constraint. The
algorithms are stopped, if a sum-rate larger than (1− ε) times the maximum
sum-rate was achieved and the squared Frobenius norm of the constraint error
matrix was less than ε (ε = 10−3).

As our joint gradient-projection algorithm does not have in-

ner loops, we count the required iterations of each optimization

as the number of times a transmit covariance update step is

done. Histograms of the iterations required with the alternating

and joint gradient-projection method are compared. Figures 1

and 2 depict two linear constraints and scaled identity shaping,

respectively.

In the setup, the BS has M = 4 antennas and serves K = 4
single antennas users (N = 1) with sum power P = 10 and

arbitrary weights w = [1, 2, 3, 4]T. The simulations are aver-

aged over 10000 i.i.d. channel realizations where each entry

of the channel vector Hk has a zero-mean complex Gaussian

distribution with variance one. The first linear constraint is the

sum power constraint. The second linear constraints forbids to

transmit anything in the direction of an additionally generated

channel. The maximum sum-rate was found by running the

joint algorithm with 1000 iterations, respectively.

VII. CONCLUSION

It could be shown that the weighted sum rate maximization

with multiple linear and/or linear conic constraints can be

solved efficiently with a joint gradient-projection algorithm.

The parallel update of the transmit and noise covariance

matrices has a superior convergence behavior compared to

an alternating optimization, which optimizes the transmit and

noise covariance matrices in turns.

APPENDIX

A. Tangent Cone Projection with Multiple Linear Constraints

The steps in [16] are followed to find the tangent cone

projection. For linear constraints, the summands of the noise

covariance matrix are of the form Ω
(i),lin
l = ω

(i)
l Al. To lie

on the tangent cone, the update Ω
(i),lin
l + ǫG

(i),lin
l with the

direction G
(i),lin
l has to fulfill all constraints on Ωlin

l for an

arbitrary ǫ. Therefore, the update direction has to be a scaled

versions of the constraint matrix Al: G
(i),lin
l = g

(i)
l Al. All

updates have to fulfill jointly the sum trace constraint
∑

l

tr
(

C lin
l (Ω

(i),lin
l + ǫG

(i),lin
l )

)

= P,

∑

l

g
(i)
l al = 0. (36)

The projection of the gradient onto the tangent cone is done

by minimizing the distance between the gradient for all

summands G(i),lin and the update for each summand g
(i)
l Al:

{

g
(i)
1 , . . . , g

(i)
L

}

= argmin
∑

l
glal=0

∑

l

∥

∥

∥glAl −G(i),lin
∥

∥

∥

2

F
. (37)

Solving (37) yields

gl = tr
(

AlG
(i),lin

)

− νal, ∀l, (38)

ν =

(

∑

l

al tr
(

AlG
(i),lin

)

)(

∑

l

a2l

)−1

, (39)

where tr(A2
l ) = 1, ∀l.
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