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Abstract— This paper presents the design of the Cognitive
Automobile in Munich. The focus of the capabilities shown here
is the navigation on highways and rural roads. The emphasis
on higher speed requires early detection of far field objects, so
a multi focal active vision with gaze control is essential. For
increased robustness lidar range sensors are combined with
vision using an object fusion approach. An elaborate safety
concept and a verification stage ensure a safe behavior of the
vehicle in all situations. A communication system enables the
vehicle to perform cooperative perception and action together
with similar intelligent vehicles.

I. INTRODUCTION

After a few weeks of driving lessons, an adult human
being is able to drive a car on its own. Most of the
time, humans drive remarkably prudent, closely watching
the environment and continuously tracking the behavior of
other traffic participants around. However their enduranceis
limited: As they get tired, they get inattentive, sometimes
with serious consequences.

Technical systems can compensate for this disadvantage
as they expose no persistence problems. Despite several
decades of research, the common vehicle is still far from
being able to drive on its own. A modern driver assistance
system enhances comfort and supports the driver particularly
in emergency situations: For example, the electronic stability
program helps the driver to maintain control when skidding.
Those achievements are greatly appreciated, as they reduce
accidents significantly.

Cognitive Automobiles [1] are vehicles that cannot only
react in certain situations but that have enough environment
knowledge to be able to act on their own. Yet, this requires a
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Fig. 1. Hardware architecture

major leap in system complexity and algorithmic robustness:
In order to generate a safe behavior, the vehicle depends on
a correct situation assessment, that in turn needs a robust
perception of the vehicle’s environment. Moving traffic re-
quires all involved perception and control to be executed in
real-time.

The Transregional Collaborative Research Center
(TCRC 28) “Cognitive Automobiles” [2] aims to contribute
significantly to the evolution of machine cognition for
automotive environments. An interdisciplinary team of
researchers in Munich and Karlsruhe works closely together
to combine different methods, sensors and algorithms. For
evaluation and tests we have vehicles in several locations.
To ensure a successful cooperation we created unified
interfaces, so that software modules can be exchanged
between the vehicles and combined using fusion techniques
for a even more powerful situation evaluation.

In January 2007, only one year after establishment, all
newly acquired TCRC vehicles were able to perform visual
lane keeping. In October 2007, a group of TCRC researches,
among them also authors of this paper, demonstrated suc-
cessful safe navigation in urban environments as “Team
AnnieWAY” at the DARPA Urban Challenge [3]. This paper
presents the design of the cognitive Audi Q7 in Munich,
called “MUnich’s Cognitive Car Innovation” (MUCCI).

II. ARCHITECTURE

A. Hardware Architecture

Fig. 1 shows the hardware architecture of the Munich
cognitive automobile. On the left side it consists of a set
of sensors for environment perception: An active camera
platform is used for visual recognition and tracking of lanes,
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vehicles and obstacles in the near range. Its two wide angle
cameras, shown in [4], are also used for stereo-based depth
estimation. The tele camera, shown in [5], is used for early
recognition of obstacles. Two lidar sensors provide range
data for obstacles and improve object detection in a data
fusion stage as shown in Sec. IV. The combination of a GPS
receiver with an inertial measurement unit (IMU) delivers
precise position data for navigation.

All raw sensor data is fed directly into a powerful multi-
core multiprocessor computer system as described in [6].
Within an Opteron system all processor cores are linked
together by HyperTransport at a bandwidth of 3.2 GByte/s.
Compared to an Ethernet-linked computer cluster this solu-
tion simplifies management and saves power, because com-
puter infrastructure components (hard disks, console, power)
are required only once. As every cognitive software module
is executed on this platform, communication is performed
with low latencies. Even large blocks of raw data can be
passed between modules with very low effort, stimulating
a tight cooperation between cognitive modules and their
developers. Communication with other intelligent vehicles
is achieved using a radio unit.

The actors and standard sensors of the vehicle itself are
controlled by a dSpace AutoBox. The AutoBox serves also as
a security element as shown in Sec. V. The camera platform
is controlled by a dedicated platform controller. Its main task
is the inertial stabilization of the tele camera for a stable
fixation of far objects as outlined in Sec. III.

B. Software Architecture

Fig. 2 gives a rough overview of the software modules
used in our cognitive automobile and the data flows between
them. It is apparent that the data produced by one module
is often used by several other ones. This includes raw data
like video images that are needed for road tracking as well
as object detection, and comprises also the current camera
gaze direction from the gaze control interface.

For fast interprocess communication we use the real-
time database for cognitive automobiles (KogMo-RTDB) [7].
It is capable of distributing raw sensor data streams to
several processes and at the same time relay vehicle control
commands at a rate of 1 kHz between the vehicle guidance
module and the vehicle controller via CAN bus.

Every software module (light gray) shown in Fig. 2
is connected to the KogMo-RTDB. Hardware components
(dark gray) are connected with dedicated interface modules
that stores all raw data in the RTDB. Every piece of data is
organized within the RTDB in objects that can be created,
updated and destroyed. Other modules can search for certain
objects within the RTDB and retrieve their data. For process
synchronization a module can wait for an object to change.
The efficient implementation of the RTDB manages1.2 ·105

update and2.1 · 105 retrieve operations per second (see [8]),
depending on the object size and access method being used.

III. VISUAL ENVIRONMENT PERCEPTION

The automatic generation of suitable behavior for automo-
biles in traffic is mostly based on a comprehensive internal
description of the actual traffic-related environment. Machine
vision is used to gather information about the most relevant
parts of the environment such as the road itself as well as
static and dynamic objects on the road.

The image processing methods used in our vehicle em-
phasize on robustness and real-time capability. The scene
interpretation is based on recursive estimation techniques
according to the 4D approach [9], [10].

Predicted 2D feature positions based on temporarily and
spatially modeled and recursively estimated objects allow
for an efficient image processing. Thus, processing time is
reduced and detection is more robust.

An additional feedback loop, applied directly to the first
link of the image processing chain, is used to adapt the
cameras exposure control algorithm depending on the ex-
pected object positions. Shifting the limited dynamic range
of a camera in a high dynamic traffic scene also contributes
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to increased detection robustness [11]. Fig. 3 illustratesthe
principle structure of the feedback loop using the KogMo-
RTDB and our application for road detection and tracking.

An inertially stabilized multifocal camera platform for
active vision extends the limit of traditional vision based
approaches for further far-field detection of traffic related ob-
jects. Miniaturized rotation rate sensors detect low frequency
changes of the car’s pitch angle and mostly compensate
image blur induced by vertical motion by active movement of
the tele-optic camera. Precise mechanics and early feedback
control loops as well as lightweight cameras are necessary
to reduce latency on the one hand and to increase position
accuracy on the other hand.

Two independently steerable wide-angle cameras enlarge
the field of view by camera movement, extending the per-
ception capabilities e.g. in sharp and hairpin curves. Assisted
by the capability of very fast camera movements the 4D
approach has proven robustness even over camera saccades
neglecting the image frames during camera movement.

Within the visual perception, an important task is the
modeling of an abstract description of the environment,
on which an intelligent vehicle is able to act rationally.
Currently this description contains three main classes:lanes,
static objectsand dynamic objects. Lanes are described by
width, curvature, derivation of the curvature, yaw angleand
lateral offset(last two with respect to the own vehicle). All
lane parameters are directly estimated by predicted 2D edge
features [12] with an UD-factorized, sequential, extended
Kalman filter [13][14], as shown in Fig. 4. Static objects are
described by 3D bounding boxes and a pose vector relative
to the own position. Dynamic objects are represented in the
same way but extended by a dynamic model. We currently
just handle dynamic objects which conform to abicycle
model.

To increase robustness of the estimation of static (obstacles
on the lane) and dynamic objects (other cars) we enhance
the 4D approach by afeature model: More descriptive
features than edge features are registered in an object fixed
coordinate system. Tracking those registered features allows
us to estimate the bounding box and pose of the object.
Therefore we use a CUDA1 implementation of U-SURF

1CUDA is an API provided by NVidia for GPU programming
http://www.nvidia.com/cuda

features [15] to achieve real-time capabilities. Within the
feature model we test the use of other scale space [16] and
illumination invariant features, like [17], [18], [19], [20],
[21]. We don’t use the rotational invariance.

IV. FUSION-BASED OBJECT DETECTION WITH
LIDAR

A. Motivation and Sensor Principle

Since image processing suffers from ambient light con-
ditions, the use of additional sensors can yield a drastic
improvement of system robustness. Using active sensors like
lidar scanners overcomes the limitation of the surrounding
light condition using an active sensing principle. The sensor
itself sends out a laser impulse at a specified angle and
measures the time the light takes to come back to the
sensor. Besides the very high independence on the light
condition, the sensor delivers only a distance measurement
if the light hits an object. Consequently, every given distance
measurement is a potential part of an object. Furthermore,
with the help of the distance values one can eliminate the
ambiguity within camera pictures resulting fromt the 3D to
2D projection model.

For the given task of combining object hypothesis com-
ing from the processing of both camera pictures and lidar
processing, firstly we have to describe the chosen sensor
setup. The camera rig is located at the front window of the
car. Consequently, it can only perceive objects which are
located ahead of the ego-car. To complement this restricted
perception view, we added a lidar scanner at the rear of
the car. Additionally, we also place one scanner at the front
bumper. Both lidar scanners are set up parallel to the ground
plane. The sensors can observe 180◦ at an angular resolution
of 0.25◦.

According to the setup of the heterogeneous sensors, ob-
ject hypotheses in the rear of the car can only be established
by the lidar scanner. In contrast, objects located ahead of the
car can be detected – assumed that the object is located in the
perception field of the camera and the lidar – simultaneously
by the camera and the front lidar scanner.

B. Data Preprocessing and Object Detection

Finding objects in lidar scanner data is mainly based on
segmenting regions belonging together. For instance, if the
laser rays hit a car, according to the distance between the
scanner and the object one will get back the contour of
the car represented by a certain number of lidar scan-points.
Since it is very unlikely that objects are – in the sense of
the lidar scanner – that close to each other, one object will
be separated the next object by a distance step in the lidar
points. So, the key of finding objects in the lidar data is the
search for subsequent scan-points whose distance to each
other is smaller than a certain well-defined threshold [22].

For calculating the threshold just mentioned, another fact
is very important: as the scanner sends out the laser rays
at equally spaced angles, the local distance between two
consecutive rays grows with the distance between the sensor
and the object. According to that relation, the point to point
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Fig. 4. Road tracking using the 4D approach

threshold is a distance dependent value, which grows with
increasing distance.

After determining the objects, their dimensions and key
parameters have to be extracted: the estimated object dimen-
sions and the supposed center of gravity.

C. Kalman Filtering of Detected Objects

After segmenting the objects, an association and tracking
stage has been implemented. Association means that one
newly detected object has to be associated to an object from
the last scan cycle. As the central association measurement,
we take the center of gravity as the most important feature
and determine the distance to every predicted object. If this
distance is less than a certain threshold value, we have a
positive object association: we have found the old object in
the new scan. Otherwise, a new object hypothesis must be
established.

In our contribution, the tracking is realized by a linear
Kalman filter based on an uniform movement model [23].
The change of speed is modelled by a Gaussian noise source.
Therefore, the filter is capable of predicting the object speed
in addition to the object position. For the case of a positive
object association, the corresponding Kalman filter has to be
updated. For objects without any possible association, a new
Kalman filter has to be set up.

D. Fusion of Object Hypothesis

As already mentioned, the object hypotheses coming from
the lidar sensors have to be combined with the object
hypotheses from the image processing stage. To this end, we
use a maximum likelihood estimator for the object positions.
The image processing stage delivers the specific variance
for their object positions. The variance related to the lidar
hypotheses can be inferred out of the Kalman filter. As
we know all the key parameters of the assumed Gaussian
likelihood functions, it is possible to multiply them and
search for its maximum as the optimization criterion for the
estimated position.

V. VEHICLE CONTROL IN COMBINATION WITH
SAFETY CONCEPT

A. Motivation

Autonomous driving including accelerating, braking, steer-
ing and other advanced maneuvers, such as lane change

or platooning, should be exactly executed in the cognitive
vehicle. To realize these objectives, besides re-fitting the
adequate actors in the vehicle, path planning based on the
object recognition and maneuver generation with respect to
the vehicle’s capabilities is necessary.

Because this control process completely takes the vehicle’s
motion in hand and can cause fatal damage to the vehicle
and people in case of an erroneous implementation, it should
be accomplished precisely, in bounded delays and without
errors by means of variable control algorithms. Furthermore
it is also required to implement a safety concept to detect the
emergency situation and in this case bring the vehicle back
to a safe status.

B. Experimental Vehicle

An Audi Q7 (Diesel 3.0l; YOC: 2006) with automatic
transmission was employed as experimental vehicle. The
e-gas module is integrated between the gas pedal and its
control unit. The steering function is realized by a brushless
Megaflux motor, which is directly mounted on the steering
rod. To apply the brakes, two solutions are implemented
because of the safety demand on the redundancy. The first
uses the normal brake booster, which allows directly building
the braking pressure in the master cylinder. The second is a
pneumatic actor to push the brake pedal, which is powered by
the off-the-shelf air suspension. A powerful dSpace AutoBox
takes the overall motion control of the vehicle. In the parallel
mode the PXI Box from National Instruments works as the
watching and safety machine. In addition, the vehicle is
equipped with the monitoring and emergency stop as Fig. 5
shows.

C. Vehicle Motion Control

The knowledge about one’s own performance is a prereq-
uisite for independent decision making and action selection.
To execute an action that is represented by a corresponding
capability, you need to know which conditions for its exe-
cution must apply and whether they are satisfied. Complex
maneuvers are composed from different time-coordinated
driving action capabilities, which depend on lower-skill driv-
ing basics; the associated performance can only be provided
if all the necessary conditions are met. The representation
of vehicle capabilities can be found in so-called capability-
networks [24]. The concept represents an approach to ab-
stract essential skills to a general extent. An ability node



consists of an organizational, operational and monitoring
component to perform the encapsulated functionality. The
modeling of this behavior is carried out in state machines;
within the operational component execution models of the
required function are deposited. The controller topology is
not fixed; control parameters can be adapted to the respective
conditions on runtime, complete sets of parameters can be
changed or different controller structures can be used. Apart
from the purely static representation of the availability of
skills, there is a dynamic component. Each capability node
takes the current availability of the required components into
account. The dynamic availability depends on the status of
necessary components, which will be given from part of the
safety concept. Due to the fact that accumulated knowledge
is available on the encapsulated functionality in capabilities
in form of execution models, availability modes, progress
dimensions, etc. across the system via the capability network,
this knowledge can also be used to predict the ability of an
expected performance. Prediction is particularly useful for
decision making and planning of autonomous systems.

D. Decision Making and Path Planning

The object recognition modules like image processing or
the communication between cooperative vehicles are generat-
ing the scene tree in the KogMo-RTDB. Based on the object
characteristics, their positions, and their predicted trajectories
an ideal path can be calculated.

A set of rudimentary and adjustable commands is pre-
calculated and updated continuously by the vehicle control
interface as shown in Fig. 2. This assures that the planned
path is drivable within the vehicle’s capabilities as described
in paragraph V-C. The stopping of the vehicle at a defined
braking distance and the adjustment of the current acceler-
ation are the skills in longitudinal direction. The abilityto
follow a path and to change the lateral offset of the vehicle
to the lane according to a clothoid model are the skills in
lateral direction. Currently the lateral maneuvers and the
longitudinal maneuvers are successively executed.

This set of maneuvers, the estimated objects and their
corresponding trajectories are the input variables of a finite
state machine. We are using fuzzy logic as proposed in [25]
to reduce the amount of possible states. The maneuver
progress is continuously observed and compared to the
desired trajectory. So the emerge of new obstacles, time
lags or deviations can lead to a reconfiguration or even to a
termination of the current maneuver.

E. Safety Concept

The safety concept as shown in Fig. 5 focuses on the
online safety warranty of the cognition units. Cognition units
include all the hardware and some software programs which
are related to the vehicle motion control. The basic principle
is that the driver is capable of taking back the control of
the vehicle at any time in case an error situation is detected.
Firstly the PXI BOX acts as the watching machine, integrat-
ing all the information from sensors, actors, motion controller
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Module

Emergency
Stop Monitoring

Vehicle
Motion Control

Fig. 5. Safety concept

and vehicle via CAN bus. There the collected signals will be
analyzed in the watchdog program, which makes the check
of the actor status and signal plausibility. Subsequently the
status of the components will be sent back to the motion
controller for the dynamic availability determination. Ifan
error is detected in the actor or software program from the
mode-based diagnose, it would call the warning or emending
method depending on the error classification. Meanwhile it
should indicate its location and deliver the necessary advice
to the driver. If the error exists in a certain time threshold, an
emergency program will automatically bring the vehicle into
the fail-safe mode with the redundant hardware/software. The
redundant system is already implemented in the cognitive
vehicle design and the knowledge base of the diagnose
system will be established via the SIL, HIL simulation
method.

VI. SAFETY ASSESSMENT BY VERIFICATION

The verification module decides if planned trajectories
are safe using methods of hybrid verification. Safety as-
sessment is performed based on the regions of positions,
that traffic participants surrounding the autonomous car can
reach within future time intervals. These possible positions
are also referred to as the reachable sets of the traffic
participants. Reachable sets are computed based on the initial
state (position, velocity) and an uncertain dynamic model
of the traffic participants. Uncertain models are regarded as
dynamic models, where inputs and parameters are uncertain
within certain sets. This allows to compute reachable sets for
classes of traffic participants, such as cars, trucks or bicycles.

Given the reachable sets of traffic participants, one can
state the following: if the reachable sets of the autonomous
car following its planned trajectory, do not intersect with
any reachable set of other traffic participant (for all time
intervals within a certain prediction horizon), the trajectory
of the autonomous car is guaranteed to be safe. In addition,
the probability distributions of possible positions of traffic
participants are computed within their reachable sets, in order
to compute a probability of safety for the planned trajectory.
An exemplary situation that is verified using probabilistic
reachable sets is presented in Fig. 6(a). This situation is
not safe, as the probabilistic reachable sets for the second
time interval of both vehicles intersect. The computation



of probabilistic reachable sets of traffic participants is per-
formed online in the autonomous car. As mentioned above,
the prediction is limited to a time horizontf . After a certain
time increment∆t = ti+1− ti, the computation of reachable
sets is reset regarding the updated measurements of the traffic
situation. The procedure is illustrated in Fig. 6(b).
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Fig. 6. Illustration of reachable sets and the resulting prediction horizon

A. Computing Probabilistic Reachable Sets of Traffic Partic-
ipants

The motion of traffic participants is modeled in two stages.
First, the paths that a vehicle can follow are generated. They
do naturally arise from the possible routes that the vehicle
can take in the examined road network segment. Besides
the possible paths of a vehicle, the deviation from these
paths is modeled by a static piecewise constant probability
distribution that varies between road user types. In a second
step, the longitudinal dynamics of the vehicles along the
paths is considered. The dynamics is modeled by a hybrid
automaton [26] which combines discrete and continuous
dynamics. Within each discrete mode, a continuous dynamics
model is defined, capturing all possible behaviors within
the discrete mode, e.g in modeacceleration, all behaviors
ranging from no to full acceleration are considered. A more
detailed description on the modeling of traffic participants
concerning path generation and path following is given
in [27].

In order to be able to efficiently compute probabilistic
reachable sets of the hybrid dynamics of traffic participants,
their mixed discrete/continuous dynamics is abstracted to
Markov chains. A detailed description of the abstraction to
Markov chains and the computation of probabilistic reach-
able sets using Markov chains is given in [28], [27]. Be-
sides computing probabilistic reachable sets for each traffic
participant individually, a more sophisticated computation of
reachable sets encountering the interaction of traffic partici-
pants has been proposed [29].

B. Numerical Example

The numerical example considering interaction between
traffic participants shows an intersection scenario as depicted
in Fig. 7(a) illustrating the initial setting. CarsA and B

approach the crossing from a street that has no right of
way and carsC andD have right of way. In Fig. 7(b)-7(d),
one can see the probabilistic reachable sets for selected time
intervals (the darkness of the color indicates the probability).
It is clearly recognizable that carsA andB decrease their
velocity when they approach the crossing and that they wait

until the crossing cars have passed. Note that the reachable
sets of cars overlap to a certain degree, such that individual
cars cannot be distinguished after a certain prediction time.
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Fig. 7. Reachable sets of the intersection scenario

VII. COMMUNICATION FOR INTER-VEHICLE
COOPERATION

A. Motivation

For the realization of cognitive capabilities, the vehicles
need not only to be able to perceive and understand their
environment and act appropriately, they also have to be
able to communicate with each other to support functions
such as cooperative perception, distributed object fusionand
coordinated behavior decision. The key requirements in this
context are bandwidth and real-time capability. Furthermore,
the communication design has to be decentralized, self-
organizing and fault-tolerant.

B. Implementation

On the network layer, the data streams from and to the data
object communication module are multiplexed with main-
tenance messages that handle network topology detection,
uni- and multicast routing as well as security signaling [30].
A loopback interface allows the connection of external
security modules, such as a secure socket wrapper. All of
these functions are implemented transparently so that no
modification for controlling these modules are necessary to
any application.

The data object communication module itself integrates
seamlessly with other applications, the central interfacebe-
ing the real-time database. Through a simple API, other
applications notify the communication module about data
objects that should be sent(“exported”) to other vehicles.
Received(“imported”) data objects are automatically stored
in the real-time database, organized hierarchically underan
informational object that contains data about the sending
vehicle. Also, information about the networks radio topology
is available to other applications, aiding, for instance, setting
up cooperative groups based on the connectivity of vehicles.

Applications that depend on data objects from other vehi-
cles can simply search the database for the presence of an
object of the specific data type and will in return get a list of



relevant objects. From the hierarchical organization in parent
and child objects, the application can deduce the origin of a
data object, if necessary. Whenever a data object is updated
in the senders database, it is exported to other vehicles,
imported by those vehicles that receive it and updated in
the receiving vehicles’ databases. Applications waiting for
an update of that data object can then retrieve the object
from the database and resume processing.

VIII. CONCLUSIONS AND OUTLOOK

In this work the design of the Cognitive Automobile in
Munich is presented. It features all characteristic components
with emphasis on robust situation assessment and safe behav-
ior. The communication link between two vehicles is tested,
cooperative behavior has been shown in simulation [31]. One
of our next steps is to demonstrate cooperative perception
and maneuvers in real-world.

To increase the speed and robustness of the visual per-
ception we focus first on a scene-dependent best parameter
estimation on the physical sensor level and second, on im-
proving the prediction step in [9] by a visual enhanced ego-
motion estimation and by focusing on keypoint descriptors
solving the correspondence problem more reliable.
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