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Abstract

We present in this paper a GPU-accelerated par-
ticle filter based on pixel-level segmentation and
matching, for real-time object tracking. The pro-
posed method achieves real-time perfomance, while
computing for each particle the corresponding filled
model silhouette through the rendering engine of
the graphics card, and comparing it with the un-
derlying binary map of the segmentation prepro-
cess. With the proposed approach, a better precision
and generality is obtained with respect to related
feature-level likelihoods such as color histograms,
while keeping low computational requirements.

1 Introduction

Many examples of particle filters for single and
multiple object tracking are well-known in the liter-
ature. Most of these systems use feature-level like-
lihoods, where model features (color statistics [16],
contour points [12], etc.) are selected and matched
with the current image under a given state hypothe-
sis, with more or less robust likelihood models.

In particular, these filters achieve different de-
grees of precision and robustness, as well as track-
ing speed, according to the specifity of the feature
being measured.

For real-time applications, simple statistics in-
cluding color histograms are usually preferred [4,
14, 16], and provide good results for 2D problems
where a precise shape localization is not required:
usually a rough estimation of translation and scale
parameters is obtained by using a rectangular or el-
liptical model, and planar rotations are not always
estimated.

One reason for this limitation is that local statis-
tics (such as histograms, GMMs, etc.) provide

rather artificial information, obtained by accumu-
lating individual contributions from all pixels inside
the area.

Instead, more specific likelihoods can be defined
when the information is compared at pixel-level:
for example, after performing a binary image seg-
mentation, the object shape can be projected and
matched pixel-wise with the underlying map, by
defining a distance function (SSD, or more robust
indices) between images. Such an approach can
provide a better localization, and more degrees of
freedom (including planar rotations) can be esti-
mated. Related work that has been done in the re-
search field of motion and pose estimation using sil-
houettes on feature-level can be found in [18, 10, 3].

In the context of this work, image pre-processing
can be performed with any modality (color, back-
ground, motion segmentation) with the output like-
lihood defined as above. Moreover, multiple modal-
ities can be combined at pixel-level, by using a suit-
able decision methodology such as voting, fuzzy or
Bayesian rules [11].

However, in a particle filter, such an approach in-
volves computing and matching the filled model sil-
houette for each pose hypothesis, which can be ex-
tremely time-consuming for generic object shapes
if performed on the CPU.

In this work, we have implemented the above
computation on graphics hardware, where the ex-
ecution time is much faster and almost object-
independent. A well-known bottleneck of current
GPUs is given by the back-transfer of the data on
the main bus; therefore, we also compute on-board
the image likelihood and transfer back the result to
the CPU memory, in order to update the particle
weights.

The proposed system achieves real-time perfor-
mances regardless of the shape complexity (2D or
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3D mesh), due to the rendering capabilities of cur-
rent graphics hardware.

The present paper is organized as follows: Sec. 2
describes the particle filter (2.1), the pre-processing
step (2.2), the object state parameters (2.3), the
pixel-level likelihood (2.4), and the full software
implementation (2.5); Sec. 3 provides experimen-
tal results and comparisons with an equivalent CPU
implementation, and Sec. 4 concludes the work and
proposes future system developments.;

2 The object tracking system

2.1 Particle filters for Bayesian tracking

The aim of our system is to follow skin-colored ob-
jects in time, by integrating past information with
the current measurement in order to update the
posterior state estimate. In the Bayesian track-
ing framework, knowledge about the object state
is represented and propagated in a probabilistic
way[2, 20], by means of two main steps:

1. Prediction (Kolmogorov-Chapman equation):

P
`
st|Zt−1´ = (1)Z

st−1

P (st| st−1)P
`
st−1|Zt−1´

2. Correction (Bayes’ rule):

P
`
st|Zt

´
= kP (zt| st)P

`
st|Zt−1´ (2)

where the current state statistics st are updated by
integrating the associated measurement zt together
with the set Zt = z1...t of all measurements up to
time t, together with the last posterior distribution
st−1.

In this scheme, the dynamical model
P (st| st−1) and the measurement likelihood
P (zt| st) need to be specified, according to the
chosen estimation filter. For nonlinear, pixel-level
measurement models like the one that we present
in this work, where Jacobian matrices are not
available or too costly to compute, we consider in
particular particle filters [1], where state statistics
st are represented by a set of N weighted particles

{snt , πnt } ; n = 1 . . . N (3)

where
P
n π

n
t = 1.

Figure 1: An input video frame and the correspond-
ing segmented image using GMM.

For our purposes, we chooose the standard
sampling-importance-resampling (SIR) scheme
[12]:
• Sample from previous posterior with the dy-

namical model: snt ∼ P (st| snt−1)
• Weight the particle according to the likelihood
πnt ∝ P (zt| snt ) and normalize the weightsP
n π

n
t = 1

• Resample particles: sn
′
t ← snt , with n′ ran-

domly selected according to {πnt }; afterwards,
reset the weights πnt = 1/N

2.2 Image pre-processing

As stated in the Introduction, the binary pixel map
for likelihood computation can be obtained from
any modality and segmentation procedure; without
loss of generality, we consider in this paper a color
segmentation.

For this purpose, the input image is first con-
verted from RGB to HSV color space, which is
well-suited for color object segmentation and track-
ing, because it seperates pixel luminance from
the pure color channels (hue-saturation), providing
more robustness against illumination changes.

After the conversion, each pixel is classified us-
ing a 2D Gaussian Mixture Model (GMM) on the
two color channels (H,S). GMMs have been widely
used for foreground segmentation [7, 8, 9, 21, 22],
because of their efficient training and evaluation
procedures.

In the example of Fig. 1, a GMM is used in order
to model skin-colored pixels. A GMM is composed
of K Gaussian probability density functions (pdfs),
described by the following equation:

p(cj |Cskin) =
KX
k=1

wkpk(cj |Cskin) (4)

where pk is the kth mixture component, with



weights wk normalized so that
PK
k=1 wk = 1,

and each component pk is described by a bi-variate
Gaussian

pk(cy|Cskin) =
1

2π
p
|Σk|

e−
1
2 (cy−µk)T

Σ−1
k (cy−µk)

(5)
with cy the 2-dimensional (H,S) color of screen
pixel y.

Mean and covariance matrix (µk,Σk) for each
component, as well as the mixture weights wk,
are learned from a given training set, via the
Expectation-Maximization algorithm [6].

In order to classify a color pixel y, its GMM like-
lihood is thresholded against a suitable value pmin

z(y) =


1 if p(cj |Cskin) > pmin
0 if p(cj |Cskin) ≤ pmin

(6)

which results in a binary image (Figure 1), which
constitutes our pixel-level measurement zt for
tracking.

Although the pre-processing step is performed
only once per frame, it could result in pixel-wise
expensive computations that leave less time for the
subsequent tracking steps. Therefore, as it will be
described in Sec. 2.5, both computations (4),(6)
have been implemented on the GPU by using the
OpenGL shader language [19], together with the
pixel-level likelihood.

2.3 Object state parameters and dynamics

The sampling step for particle filters requires that a
prior modle of object dynamics be specified, with
its degrees of freedom modeled via a set of pose
parameters which constiute the state vector st.

First, the geometric mapping between object
space and screen coordinates is generically defined
as

y = W (x, p) (7)

where x is a point in object coordinates (2D or 3D),
and y is the corresponding screen projection under
pose parameters p.

Depending on the model complexity, as well as
the kind of transformation in Eq. (7) (planar, 3D,
articulated, etc.), this can be a very expensive com-
putation on the CPU, but can be performed effi-
ciently on general-purpose graphics hardware even
for complex 3D meshes.

In our experiments, we use a planar warp, given
by a similarity transform

y =

„
sxcosθ sysinθ
−sxsinθ sycosθ

«
x+ t (8)

with θ a rotation angle, t a 2D translation vector,
and the scaling factors sx and sy . This corresponds
to 5 pose parameters p ≡ (sx, sy, θ, tx, ty).

For particle filtering, the explicit form of state dy-
namics

st = Ast−1 + wt (9)

is required, in order to drift the particles and gener-
ate new pose hypotheses, by randomly sampling the
process noise w from its known distribution.

In the present work, a simple unconstrained
Brownian model is employed, where A = I and w
is zero-mean, normally distributed with covariance
Λw(∆t), increasing with the time interval ∆t

P (st|st−1) = N (st−1,Λw(∆t)) (10)

so that predicted particle positions are obtained by

snt = snt−1 + w(∆t) (11)

More specific dynamics can be obtained by in-
cluding in st the first or second time derivatives of
the pose (velocity, acceleration) and providing suit-
able values for A and Λw, which can eventually be
learned from ground truth sequences [17]. How-
ever, in our experiments the simple Brownian model
(11) already gave satisfactory results.

2.4 Measurement likelihood

In the update step of Bayesian tracking, the weight
πn of each particle n = 1 . . . N is computed by
comparing its state hypothesis snt with the current
measurement zt, obtained by the pre-processing
step (Section 2.2).

For pixel-level matching, the projected filled ob-
ject silhouette hnt at each pose hypothesis has to be
computed (Fig. 2, middle). For this purpose, the
warp function (7) is used, providing a binary map
which represents the expected measurement for an
ideal, noise-free segmentation under the given pose
snt .

Afterwards, the residual with the current mea-
surement zt is computed by a simple SSD cost func-
tion

ent =
X
y

[hnt (y)− zt (y)]2 (12)



 

Figure 2: Left: Segmented image. Middle: gener-
ated filled silhouette hypothesis. Right: pixel-level
residual.

For binary images hnt , zt, this is equivalent to a
pixel-wise XOR (right of Fig. 2) followed by a sum
of the non-zero pixels.

The computation of hn can be very expensive
if performed on the CPU, and moreover no pixel
parallelization can be exploited while comparing it
with zt. Therefore, we implement these operations
on the GPU, using at the same time the power of the
rendering engine and the parallel pixel-pipelines.

The residual value (12) is normalized in the range
[0, 1] by dividing it by the number of pixels, and the
likelihood is evaluated with a Gaussian model:

πn = P (zt|snt ) = exp(− ent
2r2

) (13)

with a suitable measurement variance r, providing
the new particle weights πn, afterwards normalized
so that

P
n πn = 1. Deterministic resampling of

the particle set [12] is applied after each update, in
order to keep a well-distributed particle set.

In order to estimate the output pose ŝt, the
weighted average of the particle set is computed

ŝt =

NX
n=1

πhs
n
t (14)

and returned to the user.

2.5 Computation on the GPU

Modern graphics card are becoming very popu-
lar today, because of their computational power,
the low costs, and the emerging of high-level lan-
guages such as CUDA [5], Cg [13], or the OpenGl
Shader Language [19] that allow a customized use
the graphics hardware. [15] presents a good sur-
vey of the posibilities and limitations of the graph-
ics processing units (GPU). The main limitiation in
porting algorithms to GPU is the fact that one needs
to rethink the structure of the algorithm to fit into a
parallel graphics pipeline. In this context it is not

Figure 3: Graphics hardware pipeline. Image taken
from [15]

trivial, for example, to sum up pixels of a certain
region, because each pixel is calculated separately.

When using graphics hardware for on-line im-
age processing and related computations, another
well-known bottleneck is given by the slow memory
transfer from the GPU memory to the main mem-
ory. This is due to the fact that graphics hardware
has originally been optimized for display purposes,
which do not require any data transfer to the CPU
memory.

In order to avoid this bottleneck, after uploading
the color image to the GPU we develop all pixel-
level computations on board, directly providing the
image residual (12) to the CPU, in order to compute
the likelihood. The algorithms are executed on the
fragment processor of the GPU. The italic terms in
the following descriptions relate to the parts of the
graphics pipeline shown in Figure 3.

2.5.1 Segmentation of the input image using
the GMM

The image that is to be segmented is loaded into a
texture of the graphics card. Because we want to
process every pixel of the image, every pixel need
to become a fragment. To achieve this, we define
in the vertex processor four vertices for the four
corners of the texture. In the rasterizer every input
pixel of the texture is rastered in one fragment. The
fragment processor is the instance that executes on
every fragment the same program, i.e., the imple-
mentation of a GMM as described in Section 2.2.
The resulting segmented image is again stored in a
texture.

2.5.2 Generating the filled model silhouette im-
age

To be able to deal with all kinds of models, we
use 3D mesh models as representation. The model



is loaded and the OpenGL display lists are gener-
ated. To generate the filled model silhouette image
(ideal measurement), the current transformation-
matrix (Eq. (7), (8)) of the hypothesis is set in the
OpenGL rendering pipeline. The faces of the model
are set to white and are then rendered to a texture.

2.5.3 Computing the residual

To evaluate the quality of the hypothesis, we cal-
culate the difference of the segmented and the hy-
pothesis texture (Eq. (12)). The procedure is the
same as in the segmentation step, but the program
in the fragment processor is exchanged to compute
the binary XOR.

2.5.4 Task Division between CPU and GPU

Fig. 4 summarizes the task division between the
two processors, where on the graphics card the
GLSL shader language is employed, and data are
exchanged through texture images.

With this implementation, only the main steps of
the particle filter (prediction, resampling and output
computation) are left to the CPU, together with the
exponentiation in Eq. (13) and the weight normal-
ization.
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CPU GPU
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Figure 4: Scheme of the proposed tracking sys-
tem, illustrating the subdivision of tasks between
the CPU and the GPU.

3 Experimental Results

As already emphasized in the previous descriptions,
our methodology can be applied to different visual

processor hand tracking face tracking

CPU 1.8 fps 1.9 fps

GPU 5.4 fps 13.3 fps

Table 1: Performance comparison for the tracking
the face tracking and the hand tracking task on the
CPU and the GPU

modalities, with different object shapes and degrees
of freedom.

In this section, we present results concerning in
particular hand and face tracking tasks with skin
color segmentation, using 3D mesh models and 2D
similarity transformations as explained in Sec. 2.3,
in order to demonstrate the speed-up of our ap-
proach with respect to the equivalent CPU-based
implementation.

Concerning shape models, a simple ellipsoid was
used for face tracking, approximating the shape
of the head, while hand tracking was done with a
complex 3D triangle mesh model. For both ex-
periments, an Intel dual-core machine with pro-
grammable graphics card (NVidia GeForce 8800)
was used, with input images of resolution (640 x
480) from a standard FireWire camera.

The GMM model was built from a training data
set of labeled skin-pixels, and consists of K = 2
mixture components, as in [21]. The processing
speed for image segmentation, including the con-
version from RGB to HSV, is 20 times faster on the
GPU, already providing a big advantage for track-
ing.

Table 1 show a comparison of the overall pro-
cessing times in frames-per-second (fps) for the
tracking of the ellipsoid model (head tracking) and
the hand model (hand tracking), including particle
filter prediction and likelihood computations, with
around 100 particle hypotheses. It can be seen that
the GPU outperforms the equivalent CPU imple-
mentation, reaching a framerate up to 13 frames per
second for face tracking, and around 5 frames per
second for the complex hand model.

Output results of the tracking can be seen in Fig-
ure 5 illustrating how the algorithm deals with all
pose parameters. In both cases, after a simple ini-
tialization with a uniformly distributed particle set
around the image center (left of Figure 6), the fil-
ter converges in a few frames to the target which is



Figure 5: Hand and face tracking sequences with different mesh-models

then successfully tracked throughout the rest of the
sequence.

4 Conclusions and future develop-
ments

We have presented an algorithm for GPU-
accelerated particle filtering, based on fast pixel-
level segmentation and matching, for real-time ob-
ject tracking tasks. The proposed formulation is
general with respect to the segmentation modal-
ity, object shape and degrees of freedom, and ob-
tains a better precision of localization with respect
to feature-level methods such as color histogram
matching.

Our implementation achieves a higher frame rate
than the equivalent CPU-based version; this result is
obtained by performing many of the expensive steps
(pre-processing, hypothesis computation and likeli-
hood evaluation) on graphics hardware, through the
rendering engine and the OpenGL shader language,
while minimizing the back-transfer of data to the
main memory.

In the experiments of this work only rigid models
were used, but the algorithm could cope with artic-
ulated models as well. In future developements we
want to investigate the performance of the algorithm
using articulated models. Other potiential develope-
ments lie in the integration of the GMM segmen-
tation with background subtraction on the graphics
card in order to get more robust results, and multiple
calibrated cameras employed for tracking 3D ob-
jects within the same framework. Finally, tracking

multiple, simultaneous targets at pixel-level with
multi-class segmentation is another subject of inter-
est for this methodology.
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