
Technische Universität München
Department of Computer Science

Chair of Robotics and Embedded Systems

Potential field based position control

for Mitsubishi RV-6S industrial robots

Bachelor’s Thesis

by Matthias Hellerer

Technische Universität München
Department of Computer Science

Chair of Robotics and Embedded Systems

Potential field based position control

for Mitsubishi RV-6S industrial robots

Author: . Hellerer, Matthias

Supervisor: .Prof. Knoll, Alois

Advisors: .Dipl.-Inf. Müller, Thomas

Prof. Knoll, Alois

Title: . Potential field based position control

for Mitsubishi RV-6S industrial robots

Title (german): .Positionskontrolle auf Basis von Potentialfeldern

für Mitsubishi RV-6S Industrieroboter

University: . Technische Universität München

Department: . Department of Computer Science

Chair: .Chair of Robotics and Embedded Systems

Copyright: . all rights reserved

Submission Date: .2009-07-15

Abstract

Abstract

Manipulator control based on the artificial potential fields method has been shown

to be a good solution for real-time obstacle avoidance and navigation in complex,

dynamic environments. This paper presents an implementation of this approach for a

Mitsubishi RV-6S industrial robot with an emphasis on the use for obstacle avoidance.

The robot is able to perform simple navigation tasks while avoiding to crash itself,

its static environment or dynamic objects like a person entering its operating space.

i

Affirmation in lieu of an oath

Affirmation in lieu of an oath

I hereby declare that I have written this Bachelor’s Thesis on my own and have used

no other than the stated sources and aids.

Munich, 15.05.2009

. .

Author (Matthias Hellerer)

ii

Contents

Contents

Abstract i

Affirmation in lieu of an oath ii

Contents iii

List of Figures v

1 Introduction 1

2 Related Work 3

2.1 Potential Fields for Manipulator Control 3

2.2 Comparison with conventional Trajectory Planning 4

3 Potential Fields 5

3.1 Mathematical Definition . 5

3.2 Two Dimensional Potential Fields . 6

3.3 The Potential Fields Design . 10

3.4 Critical Points . 12

3.5 The Three Dimensional Case . 14

3.6 Numerical Consideration . 15

4 The Environment 16

4.1 The Mitsubishi RV-S6 Industrial Robot 16

4.2 The Vision System . 20

5 The Control System 21

iii

Contents

5.1 Exertion of Forces . 21

5.2 Movement . 22

5.3 Joint Speed, Acceleration and Limit Control 23

5.4 Orientation . 25

5.5 Connection to Vision . 26

6 Experiments 27

6.1 Parameter Determination . 27

6.2 Obstacle Avoidance Trial . 29

7 Conclusion 35

7.1 Discussion . 35

7.2 Further Advances . 36

7.3 Results . 37

Bibliography 39

Appendix 42

A.1 advancedRobot Manual . 42

A.2 advancedRobot API . 44

A.3 Network Protocol Definition . 61

iv

List of Figures

List of Figures

3.1 Two dimensional scalar field . 6

3.2 The resulting potential field . 7

3.3 2D plane in 3D space . 7

3.4 Potentials as deformation . 8

3.5 A probe is placed in the potential field 8

3.6 A probe moving in the potential field 9

3.7 A probe trapped in a local minimum 13

4.1 The Mitsubishi RV-6S . 17

4.2 The custom made gripper construction 19

5.1 Joint speed limitation by proximity to absolut joint limit 24

5.2 Torque causing reorientation . 25

6.1 Setup for first advanced movement experiment 32

6.2 Setup for second advanced movement experiment 33

v

vi

Introduction

A robot may not injure a human being,

or, through inaction, allow a human

being to come to harm.

The First Law of Robotics

by Isaac Asimov

1 Introduction

The classic approach to robot movement is based on a trajectory for the robot

to follow. The trajectory calculation is a computational complex task, requiring

significant time. To avoid previously unknown and non-predefined moving obstacles

the trajectory has to be recalculated constantly. During the time the recalculation

requires the robot moves along the previous calculated trajectory based on an

outdated image of the environment.

To overcome this limitation Ossuma Khatib, in his 1985 paper ’Real-time obstacle

avoidance for manipulators and mobile robots’[6], introduced a new approach for

real-time obstacle avoidance utilizing artificial potential fields. Since then this new

approach has been greatly improved and successfully been implemented either as

fast low level obstacle avoidance system in combination with a slow, complex high

level trajectory planning algorithm or as a complex motion planning algorithm of its

own.[5][6]

The following implementation is a hybrid of those two. It may either be used

for simple navigation tasks as well as as part of a more complex system. It is

designed as a general purpose library for further use at the chair of robotics and

the Sonderforschungsbereich1 453. Besides this, it has also been used for a concrete

implementation in a test setup.

This thesis has been developed as part of the SFB 453 ’High-Fidelity Telepresence

and Teleaction’, more precisely subproject T4. The objective of this project is the

development of a telepresence and teleaction system. A system like this allows for a

an operator to feel present in a distance location and be able to actively intervene at

it. The project is especially focused on minimally invasive, robotic surgery.

1special research field

1

Introduction

Subproject T4 ’Project Area T: Transfer Range - Automated, Robot-Assisted han-

dling of Limp and Deformable Objects’ is focused on transferring research results

obtained by subproject I4 ’Project Area I: Integrated Applications of the HVA-work

space - Shared Control for Cooperative Tele-Manipulation in Robotic Surgery: Meth-

ods, Implementation and Evaluation’ to industrial applications. Its primary field of

interest is the handling of highly deformable, limp objects, such as cables, tubes or

threads[1].

The subsystem developed for this thesis is built to support the automated handling

of limp objects as well as manipulator control by a teleoperator. As proofed by

Cahyadi et al. [3] for mobile robots, potential fields are very well suited for the usage

in telepresence systems.

This subproject has been conducted in cooperation with Mitsubishi Electric as

industry partner. Therefore Mitsubishi Electric loaned the industrial robot RV-6S to

the Technische Universität München, which was used for development and in the

test setup.

For the purpose of this thesis a test setup has been deployed at the Technische

Universität München. It has been used during the development phase and for

experiments to prove the practical functionality.

The paper is organized as follows: In chapter 2 related work is introduced and roughly

compared to approache shown here. In chapter 3 potential fields are defined and

explained. In chapter 4 the environment used for development and experiments is

shown. In chapter 5 the control system is explained and finally in chapter 6 different

experiments are performed to demonstrate the functionality.

2

Related Work

There’s a good reason why nobody

studies history, it just teaches you too

much.

by Noam Chomsky

2 Related Work

2.1 Potential Fields for Manipulator Control

The potential field based approach to motion planning has been around for about

25 years now. As mentioned in the introduction, this research field was founded in

1985 when Ossuma Khatib published his paper ”Real-time Obstacle Avoidance for

Manipulators and Mobile Robots”. Ever since a lot of contributions have been made,

greatly improving its capabilities. Yet, the vast majority of these improvements have

been made in the field of mobile robots path planning. Even so the paper by Ossuma

Khatib focuses on manipulators and only mentions a possible applicability for mobile

robots, advances in the field of articulated arm control are very rare. Most findings

made with mobile robots have not been back ported to manipulator control.

While developed mainly independently, the techniques introduced here show a lot

of similarities to the work by Ossuma Khatib, yet two important differences are

worth mentioning: Khatib uses Lagrangians for converting forces, calculated using

the artificial potential field, into a movement of the manipulator, while the approach

demonstrated in 5.1 is based on mechanics and the exertion of mechanical forces. The

second difference would be the lack of orientation control in the paper by Ossuma

Khatib. As demonstrated in 5.4, orientation control does not come naturally with

potential fields, but has to be modeled as an additional, artificial torque at the tool

tip center point.

3

2.2 Comparison with conventional Trajectory Planning Related Work

2.2 Comparison with conventional Trajectory

Planning

Artificial potential fields were introduced to allow for real time obstacle avoidance.

Even so Ossuma Khatib used a PDP 11/45 for his experiments, the problem of

conventional trajectory planning being to slow for real time applications still holds

true today. Here is the potential field based approach clearly better suited, due to

its simple core and its good scaling.

But potential fields also have some major drawbacks. The most notably being its

limited abilities in terms of global path planning. The robot may easily get stuck in

a configuration from witch it is unable to escape on its own or follow a non-optimal

trajectory when moving from one point to another. Therefore the implementation

presented here has been designed to be a subsystem, to be used in combination with

a higher level intelligence for global path planning.

4

Potential Fields

A robot must obey the orders given it by

human beings except where such orders

would conflict with the First Law.

The Second Law of Robotics

by Isaac Asimov

3 Potential Fields

3.1 Mathematical Definition

In general, a potential field is a vector field which is the result of applying a gradient

operator on a scalar field.

A scalar field is a space in which every point is assigned a scalar value. This can be

denoted as a funtion f :

f : Rn → R :
(
x1, x2, . . . xn

)T

→ y (3.1)

where n is the spaces dimension.

The gradient operator is defined as:

∇f =
(

∂f
∂x1
, ∂f

∂x2
, . . . ∂f

∂xn

)
(3.2)

Thus the operator assignes every point a vector, pointing in the direction, that

maximally increases f as seen from this point.[4]

5

3.2 Two Dimensional Potential Fields Potential Fields

3.2 Two Dimensional Potential Fields

For ease of understanding, two dimensional potential fields will be discussed first and

will then be generalized for the three dimensional case.

The two dimensional scalar field can best be visualized by representing the scalar

values as brightness values. This can be seen in figure 3.1. Of course the gradient

Figure 3.1: Two dimensional scalar field

operator can be applied here and results in the potential field in figure 3.2 For a

more intuitive understanding the two dimensional scalar field can be represented

as a plane in the three dimensional space. In figure 3.3 the XY -plane. Further the

scalar values can be represented as deformations of the plane along the, until now

unused, Z-axis instead of brightness values. See figure 3.4 (the overlaying wire frame

has been added for better visibility only). For the intuitive understanding, in figure

3.5 is now added a gravitational field along the negative Z-axis and added a ’ball’ as

probe. As the ball rolls from higher to lower points, it follows the vector field. This

can be illustrated by looking at the plane from ’straight above’, thus transforming it

back into a two dimensional field. For better contrasts in figure 3.6 the potential

field is again shown as brightness values. The dashed line represents the path the

ball follows.

During the steps explained above, the two dimensional scalar field has been used

to generate an also two dimensional path from a start point to a goal point while

avoiding certain areas.

6

3.2 Two Dimensional Potential Fields Potential Fields

Figure 3.2: The resulting potential field

Figure 3.3: 2D plane in 3D space

7

3.2 Two Dimensional Potential Fields Potential Fields

Figure 3.4: Potentials as deformation

Figure 3.5: A probe is placed in the potential field

8

3.2 Two Dimensional Potential Fields Potential Fields

Figure 3.6: A probe moving in the potential field

9

3.3 The Potential Fields Design Potential Fields

3.3 The Potential Fields Design

The potential field is designed by applying two simple rules: Low values attract the

probe and higher repel it. While multiple designs are possible only the one used later

on will be described here in detail.

The potential field is composed of multiple independent functions, assigning a value

to every point of the plane and merged by adding those values up. For the probe to

move to a given point or to one of multiple given points these have to be the lowest

values. Further the destination shall be reachable from every point, thus the gradient

induced by the goal points has to spread the whole plane. For simplicity a linear

gradient raising concentric from the goal point has been chosen.

v = d (3.3)

Where v is the scalar value assigned to a given point and d is the distance of this

point to the goal point.

In contrast, multiple obstacles may be added for the probe to avoid. For this

explanation the obstacles are only single points, but it may easily be generalized to

other shapes as well. The obstacle are composed of three parts, alligned as concentric

circles. The inner part is a safety margin, never to be reached by the probe, therefore

the value here is ∞1. The second part is the most important, where the probe is

actually repelled. The last part of the obstacle is simply the area further away, where

the obstacle does not have any more influence. The shown form was chosen for the

following three reasons:

� Smooth transition from the outer to the repelling part

� The probe should be able to come close to the inner inner part

� But not to close. This means especially that it should never enter the inner

part.

1For ∞ can not be represented it is shown as a flat plateau.

10

3.3 The Potential Fields Design Potential Fields

Dennoted as function:

v =

∞ for i > d

1
d−i
− 1

o−i
for i > d > o

0 for d > o

(3.4)

Where i is the distance from the center to the inner boundary and o to the outer.

11

3.4 Critical Points Potential Fields

3.4 Critical Points

The major problem with potential fields is the possible disappearance of the gradient.

As long as the gradients derivative, the Hessian matrix is non singular this may

only happen at single, isolated points. The Hessian for the potential field illustrated

here is not free of singularities. But since they may only appear in the inner part of

obstacles, where they are unreachable for the probe, they can be safely ignored. For

the remaining field three situations are possible in which the derivative may become

zero:

The first two are the tips of maxima and saddle points. These two are extremely

unstable, for the gradient is only zero in one singular point. Even the slightest

movement will lead the probe to a point where the gradient is non zero and directed

away from the trapping point. Experiments turned out, that errors, caused by sensor

noise and numerical computation, are enough to ”free” the probe from such situations.

Local minima, in which the probe can get stuck before reaching the global minimum

respectively the destination, behave differently. Unlike the two situation described

before, local minima are stable. A slight movement will not free the probe, but

direct it back to the trapping point. This is displayed in figure 3.7. Here the probe

comes to a stop inside the U-shaped obstacle and is unable to reach the destination

point from there. Different solutions to overcome this limitation exist, for example

circulatory fields as proposed by Leena Singh et al. [11]. Circulatory fields not only

repel the probe but also rotate it around the obstacle. Other popular solutions

are evolutionary artificial potential fields as proposed by Prahlad Vadakkepat et al

[12], or the Connectivity T 2 algorithm by Javier Antich et al. [2]. For evolutionary

potential fields their parameters are variable and multiple configurations are simulated

simultaneously, before they are compared by a special cost function, determining the

best configuration, which is then used for navigation and as starting configuration

for the modifed configurations during the next iterative step [12]. Connectivity T 2

algorithm is divided into two steps. The first one searches for all directions in which a

movement is possible, the second one determines which of those is the most promising

in order to reach the destination. For its decision a artificial potential field is used

[2].

Since the system introduced here is designed only for simple navigation tasks or to

be a subsystem for obstacle avoidance, guided by a higher level program, no such

optimization has been included but would be possible, as referred to above, if more

12

3.4 Critical Points Potential Fields

Figure 3.7: A probe trapped in a local minimum

sophisticated path planning is desired. When used in combination with a higher level

system, the potential field allows for this to be slower than real time, only giving way

points to the subsystem, between which the simple navigation abilities are sufficant.

13

3.5 The Three Dimensional Case Potential Fields

3.5 The Three Dimensional Case

Until now only two dimensional potential fields have been discussed. The three

dimensional case follows analogous, even though it is not as intuitive. Therefore the

two dimensional case was discussed before.

The mathematical definitions given in the equations at the beginning of this chapter

apply for all dimensions - in this case n = 3. Just as mentioned before every point

can be assigned a scalar value and the gradient operator can be applied. This results

in a three dimensional space in which every point is assigned a three dimensional

vector, pointing in the direction locally maximizing the scalar value.

Everything else discussed here applies to the three dimensional case as well.

14

3.6 Numerical Consideration Potential Fields

3.6 Numerical Consideration

Even so the generation of a potential field seems to be numerically expensive it may

easily be drastically improved. The only interesting value is the effective vector at

the probes position. Therefore only the effects of all obstacles and targets on the

probe are of interest. All other points of the potential field can be ignored. Every

one of those objects has a function for the effect they have on the probe based on

there distance to the probe, as described before. The sum of all difference vectors

corrected by the objects function equal the total force acting on the probe. This

corresponds to the following equation:

x =
m∑

j=1

(gj(|tj − v|) · (ti − v))︸ ︷︷ ︸
targets

−
n∑

i=1

(fi(|oi − v|) · (oi − v))︸ ︷︷ ︸
obstacles

(3.5)

Where x is the resulting vector, v is the position of the probe, n the number of

obstacles, oi is the position of an obstacle i, fi is its function, returning a scalar

scaling factor based on the distance between probe and obstacle, m is the number of

targets, tj is the position of target j and gj is its function.

Therefore the complexity class is o(n + m). Since the effect of every obstacle and

target on the probe has to be considered this is optimal. A harmless complexity

class is required, for the environment is potentially very complex, may change at any

instance and the equation 3.5 has to be reevaluated at every incremental time step2

to take this into account.

2This discussed in more detail in 4.1. For the setup given here one time step is 7.1ms.

15

The Environment

A robot must protect its own existence

as long as such protection does not

conflict with the First or Second Laws.

The Third Law of Robotics

by Isaac Asimov

4 The Environment

4.1 The Mitsubishi RV-S6 Industrial Robot

4.1

The Manipulator

The RV-6S is one of the latest generation of six degrees of freedom articulated-arm

industrial robots from Mitsubishi Electronic. All six joints are rotatory, stretching to

maximum reach of 696mm. The basic composite speed of the hand wrist adds up to

about 9300mm/s with a repeatability of ±0.02mm. The robot itself weights 58kg

and is able to lift a payload of about 6kg. It is illustrated in figure 4.1. The hand

wrist is equipped with a standardized gripper flange (ISO 9409-1-31,5). Inside the

robot are six spare wires and two pneumatic pipes installed by the manufacturer.

The pneumatic pipes have been replaced by a 15 wire cable and a heavily shielded1

IEEE 1394 firewire cable. [10]

1Inside the robot the cables run very close to the heavy servo motors, which are supplied by a pulse
width modulator, generating a strong interference.

16

4.1 The Mitsubishi RV-S6 Industrial Robot The Environment

Figure 4.1: The Mitsubishi RV-6S

The Controller

The robot is controlled by a Mitsubishi CR2B-574 control unit. Besides controlling

the robot it is also constructed control different additional systems with a set of

specialized and general purpose IO connections. The controllers primary interface is

a R45TB teaching panel with a 6.5′′ touch screen for programming and monitoring

the robot even during operation. For the purpose of this installation the controller

has been equipped with an optional CRn-500 10Base-T RJ-45 ethernet interface.

Therefore the controller provides a telnet server, that allows to access the full range of

available commands over a standard TCP/IP network. For this setup the connection

17

4.1 The Mitsubishi RV-S6 Industrial Robot The Environment

is only used to set the controller up for a special realtime mode. In this mode the

controller expects a new set of configuration variables every 7.1ms, otherwise an

automatic emergency stop is performed. Configuration variables are a complex,

optimized bitfield which is sent as one UDP packet. One data packet is composed of:

� Command

� Type of data to be send

� Type of data to be received

� Position data

� Type of IO data to be send

� Type of IO data to be received

� IO data bitmask

� IO data

� Command counter

� Communication counter

This allows a maximum of control over the robots behavior but also makes the high

level programming capabilities unaccessible. Besides emergency stops caused by

critical errors, real time input is not subject to any further control or modification.

For example giving a joint configuration that is not reachable within one time step

will cause the servo amplifier to overload, and the controller to perform an emergency

stop to prevent the hardware from being damaged. But directing the robot to a

crash with its base plate will not be prevented by the control system [8; 9].

The Gripper

The gripper is a custom made construction, displayed in figure 4.2. From right to left

it shows first the robots hand flange. Attached to this is an adapter for the following

force torque sensor. This again is connected to an L-shaped base plate for camera

and the gripper itself2.

2The force torque sensor and the camera are not used for this setup.

18

4.1 The Mitsubishi RV-S6 Industrial Robot The Environment

Figure 4.2: The custom made gripper construction

19

4.2 The Vision System The Environment

4.2 The Vision System

The Vision system is not part of this Thesis. For the purpose of the test setup a basic

vision system has been installed. It is based on the OpenTL general purpose tracking

library, developed at the Chair for Robotics and Embedded Systems. Further details

about OpenTL are available at http://www.opentl.org/. It is connected to the

library described here with via an telnet-based protocol as described in 5.5.

For the vision system the robot has been equipped with three cameras. One is

installed on the gripper, as can be seen on Figure 4.2. The other two are installed on

a cage surrounding the robot. One vertically, one horizontally.

20

The Control System

A robot may not injure humanity, or,

through inaction, allow humanity to

come to harm.

The Zeroth Law of Robotics

by Isaac Asimov

5 The Control System

5.1 Exertion of Forces

The chainlike construction of the manipulator requires the consideration of how

forces propagate from joint to joint. A force acting on one joint causes a force in all

lower joints that has to be acted against when pushing or pulling in the joints free

direction to support a static equilibrium. For each joint, from highest down to zero,

the force and torque exerted on by the previous link is calculated using the following

equations:
ifi = i

i+1R · i+1fi+1 (5.1)

ini = i
i+1R · i+1ni+1 + iPi+1 × ifi (5.2)

Where i is the current joint, afb is the force acting in b written in terms of joint a,

analog for torques n, c
dR is is the rotation matrix from joint c to joint d and ePf is

the transformation matrix from e to f in terms of joint e. With these equations it is

possible to introduce an additional force and/or torque at every step.

Finally the force required by the joint to balance this torque and force can be

calculated. For a rotary joint the calculation is:

τi = inT
i · iẐi (5.3)

Where iẐi is the normalized Z-axis of joint i in terms of joint i. Analog the actuator

force for prismatic joints is1:

τi = ifT
i · iẐi (5.4)

[5]

1Only mentioned here for completeness. The Mitsubishi RV-6S does not actually have any prismatic
joints.

21

5.2 Movement The Control System

5.2 Movement

The virtual force induced upon the tool tip center point by the artificial potential

field are calculated as described in chapter 3, more precisely in equation 3.5. The

forces acting on the other joints are calculated analogous except for the targets do

not have any effect on them, for the target position is where the tool tip should

be. The rest of the construction only has to avoid crashing into obstacles. Using

these forces in combination with the exertion of forces described above gives a set

of virtual forces acting in each joint. Like the ball in in chapter 3 rolls down the

hill, the robot moves by giving in to these forces. This means the joint configuration

for the next time step is the result of adding a value based on the acting force to

the current joint configuration. The calculation of this increment is discussed in 5.3.

During the next time step the joint forces are recalculated based on the robots new

configuration and the potentially changed envoirement.

This results in the robot moving along a trajectory in the direction of the destination

point while avoiding obstacles.

22

5.3 Joint Speed, Acceleration and Limit Control The Control System

5.3 Joint Speed, Acceleration and Limit Control

Based on the force acting on a joint a rotation increment has to be calculated. This

is subject to the following four factors:

� Acting force

The force acting in the joint gives the direction and the base speed of the

movement. Ideally the robot would directly follow this value. This would result

in a fast movement when far away from goal point and from obstacles, in a

slower movement around obstacles and finally phases out smoothly towards

the goal. Yet the robots mechanical construction requires further limitations.

� Maximum acceleration

As described in more detail in 6.1, this had to be determined by experiment

for each joint and is not known exactly. Therefore a rather simple, constant

acceleration function has been chosen.

� Maximum speed

The maximum speed limitation has also been determined by experiment as

described in 6.1.

� Joint limits

For a smooth transition and to avoid the use of brakes or the mechanical end

stops2, the maximum speed has been limited by the distance to the joint limit

as can be seen in figure 5.1. The closer the joint is to one of its limits the

slower it can move in this direction until no more movement in this direction is

possible, thereby coming to a slow stop. Joint limits have not only been used

to adjust for the joints mechanical construction but also to prevent the robot

from being damaged by self collision. All but collisions of the tool tip with

robots base can simply be avoided by choosing appropriate joint limits without

significantly impairing its mobility.

2Both are not designed to be used during normal operation but for emergency situations only. A
regular usage might damage the robot.

23

5.3 Joint Speed, Acceleration and Limit Control The Control System

speed

position

joint limit joint limit

maximum negative joint speed
maximum positive joint speed

Figure 5.1: Joint speed limitation by proximity to absolut joint limit

24

5.4 Orientation The Control System

5.4 Orientation

The tool tip orientation has not been discussed so far. In the classic potential

field based approach this is not provided, yet it is required for most applications.

To integrate the ability of choosing a desired orientation in the artificial potential

field based system, forces acting on the robot, that direct the robot towards this

orientation, are required. This is realized by adding an artificial torque acting on the

tool tip.

The desired orientation as well as the tool tips current orientation can be described

as a rotated standard coordinate system, defined by three three dimensional vectors.

This is illustrated for the X-axis in figure 5.2. To translate the difference of those

two coordinate systems in a torque the following equation is used:

n =
∑

a={X,Y,Z}

(ad − ac)× (ac) (5.5)

ad is the corresponding standard axis of the coordinate system of the desired orienta-

tion and ac of the current.

tool-tip

current X-axis

desired X-axis

resulting force

Figure 5.2: Torque causing reorientation

The use of a standardized coordinate systems results in a torque causing forces that

clearly dominate over the values calculated by the potential field. Therefore a scalar

factor adjusting the torque is introduced. This describes importance of reaching the

correct position relative to reaching the correct position. An appropriate value was

determined by experiment as described in 6.1.

25

5.5 Connection to Vision The Control System

5.5 Connection to Vision

For the test setup a connection to the vision system is required to receive information

about the environments current configuration. This has been realized as a simple

telnet like server and a custom protocol. The protocol definition can be found in

appendix A.3.

26

Experiments

Theory and practice sometimes clash.

And when that happens, theory loses.

Every single time.

Message to Linux kernel mailing list

by Linus Torvalds

6 Experiments

6.1 Parameter Determination

Maximum Joint Speed

The first parameter to determine by experiment was the maximum joint speed. Just

by reading the absolute maximum speed for the robot given in the manual - like

400deg/s for the waist joint - it is obvious, that these values are way to large to be

practical for the given task [10]. Including the gripper, the maximum tool tip center

point speed sums up to more than 1m/s. Besides increasing the risk of destroying

the robot during the development phase, it is also to risky during operation with a

human operator near by. The robots mass of about 58kg and its powerful motors

allow it to injour a human being seriously. Additionally the direction of a mass

moving at this speed may not be altered fast enough as a result of the caused inertia

and the position updates by the obstacle detection system might not be quick enough

to avoid fast moving obstacles.

For the robots ability to change the grippers orientation or to avoid an obstacle with

one joint, while maintaining a fix tool tip position, limiting the joint speed has been

chosen over limiting the end effectors maximum speed.

Videos of all experiments are on the enclosed CD-ROM.

Maximum Joint Acceleration

While maximum joint speeds can be found in the robots official ’Standard Specifica-

tion Manual’. The maximum acceleration is not specified, for the robots designed

27

6.1 Parameter Determination Experiments

way of programming using the MELFA programming language, the acceleration is

automatically handled by the controller [9; 10].

The acceleration had not only to be limited for the robots capability but also for

safety reasons as explained above. But yet another aspect had to be taken into

consideration: fast speed changes might not be foreseeable for a human, decreasing

his capability of avoiding a collision with the robot and impairing the experience of

a natural movement.

Balance between Orientation and Position

The robot tries to achieve two goals, a position1 and an orientation, which potentially

exclude each other. The importance of the orientation relative to the position can be

controlled by a scalar value. A value for the use in the test setup has been determined

by experiment. Here avoiding obstacles is the center of attention, so the importance

of the orientation could be set to a very low value.

1Moving towards the goal point and avoiding obstacles both control the position only.

28

6.2 Obstacle Avoidance Trial Experiments

6.2 Obstacle Avoidance Trial

The Test Environment

In the following, a few experiments conducted with the robot are presented to show

both this techniques strengths and its weaknesses under realistic circumstances in a

real application. For each experiment the setup is introduced, the observations made

are noted and finally a conclusion is drawn from these observations.

For the experiments conducted here the robot has been mounted on a table. Around

the robot a cage has been installed on which two cameras were mounted to observe

the robots operating space. The robot is placed in one corner of the table and the

robots shoulder joint movement is limited to a 90◦ angle in a way that the robot

may only reach over the table, where an area of approximately 1× 1m is observed

by the cameras. The vision server is connected to control system, providing it with

information about targets and obstacles.

Simple Movement

Setup:

The robots tool tip is initially positioned on one end of the observed area. An object,

tagged as target by the vision system, is placed at the opposite site2. The tool tip

orientation is neglected.

Observation:

The robots movement starts slowly but accelerates quickly. The tool tip moves

towards the given destination. The trajectory does not follow a straight line but

meander like line. The movement shows a very characteristic behavior: At first the

joints close to the tool tip move considerably faster than those closer to the base,

before those follow their movement. Finally the robot comes to a slow stop as the

robot reaches the given target coordinates.

2For the robot would otherwise try to move ’into’ the object an additional offset of 10cm is defined.

29

6.2 Obstacle Avoidance Trial Experiments

Conclusion:

Simple navigational task can be performed by the robot. The trajectory and the

joint movement during the operation are suboptimal.

Simple Obstacle Avoidance

Setup:

The setup for this experiment is comparable to the one for the previous one, except

this time an additional object is placed in the middle of the straight connection

between start and destination point. This additional object is tagged as spherical

obstacle by the vision system. The obstacle is positioned so no link will come close

to it during movement.

Observation:

The robot moves towards the destination and the obstacle the same way it did during

the previous experiment. As the tool tip closes in to the obstacle, it slows down

considerably before performing a quarter circle movement around the obstacle. From

this point it moves again as described before.

Conclusion:

Obstacle avoidance works well, yet the lack of global path planning is also observable.

A movement along a slightly curved line around the obstacle would be preferable.

Advanced Obstacle Avoidance

Setup:

The robot is initially positioned in the middle of the previously defined area. The

current position is given as destination point for the robot to maintain its position.

An object, tagged as obstacle, then moved near the tool tip and the wrist joint.

30

6.2 Obstacle Avoidance Trial Experiments

Observation:

As the obstacle comes close to the tool tip, the robot leaves its position. When

the obstacle is removed again, the robot returns to the destination point. As the

obstacle moves towards the wrist joint, it evades the obstacle. The tool tip leaves

the destination point but eventually returns, while the wrist joint still keeps distance

to the obstacle.

Conclusion:

Obstacle avoidance has a higher priority than reaching the destination. Still the

robot keeps trying to do so while evading the obstacle. Special attention should be

paid to the robots ability to not only avoid a crash of the tool tip and the obstacle

but all joints are able to avoid obstacles.

Movement in Combination with Orientation

Setup:

A pencil is placed on the table in the middle of the observed area. The robot starts

from a distant location. For the robot to pick up the pencil not only the position

is relevant but also the orientation. Position and orientation are delivered by the

vision system. The following orientation as Roll-Pitch-Yaw Euler angles is aspired:(
0, 7

8
π, φ

)T

where φ is the orientation of the pencil lying flat on the table.

Observation:

The robot moves to the pencil as described above. In the beginning the given

orientation is not maintained but again the tool tip moves faster in the direction of

the destination than the base, resulting in an orientation completely different from

the given one. As the tool tip closes in to the pencil, the orientation is progressively

corrected. Finally the robot is able to grab the pencil.

Conclusion:

Orientation control works as desired. The scalar value to manage importance of

the orientation relative to the importance of the position as described in 5.4 and

31

6.2 Obstacle Avoidance Trial Experiments

determined in 6.1 shows to be sufficient for this task, yet small enough to allow for a

flexible movement. Other applications might have different requisitions and therefore

require for this value to adapted accordingly.

Advanced Movement

Setup:

The robot shall again move from one end of the relevant area to the other. For

this experiment an additional, vertical bar is added between the straight connection

between start and end point and the robot. This experiment is conducted twice with

two different start points, as illustrated in figure 6.1 and 6.1.

Figure 6.1: Setup for first advanced movement experiment

Here the operating space is shown from above. Start and end point are marked

with small circles, the bar is marked as bigger circle. The shown robot is purely

schematic.

Observation:

During the first experiment, the tool tip moves in the direction of the destination

point. As the arm comes close to the bar, it stops before reaching the destination. It

gets stuck in a position from which it is unable to proceed on its own. Only the tool

tip stretches in the direction of the destination point, even when it is moved.

32

6.2 Obstacle Avoidance Trial Experiments

Figure 6.2: Setup for second advanced movement experiment

For the second experiment, the starting point is slightly moved. Some time is required

for the robot to move around the bar in its way but eventually it is able to reach its

destination.

Conclusion:

Global path planning is not possible without problems. While the robot may move

around obstacles in a non-trivial way, reaching the destination can not be guaranteed,

even when a path from start to end point exists.

On the other hand obstacle avoidance works well. The robot does not crash into the

bar. Not only the tool tip but the whole robot stays close to the obstacle without

hitting it.

Repeatability

Setup:

The robot is given two coordinates - (0.3,−0.4, 0.5)T and (0.7,−0.2, 0.3)T - to alter-

nate between 20 times.

33

6.2 Obstacle Avoidance Trial Experiments

Observation:

∅t ∅∆x max ∆x

∆φ = 0.000704rad/s 9.8s 1.826mm 2.972mm

c = 0.001

∆φ = 0.000141rad/s 15.6s 0.372mm 0.549mm

c = 0.001

∆φ = 0.000141rad/s 9.1s 0.235mm 0.377mm

c = 0.002

∆φ = 0.000141rad/s 5.2s 0.233mm 0.373mm

c = 0.005

∆φ = 0.000014rad/s 7.1s 0.028mm 0.050mm

c = 0.005

The robot is considered stall and the mechanical breaks are activated, when no joint

moves faster than ∆φ. c is a slow down factor to scale down from maximum joint

speed3. See 6.1. ∅t is the average time required to move from one coordinate to the

other. ∅∆x is the average and max ∆x the maximum Cartesian position error when

reaching the destination. As mentioned in 4.1, the robot guarantees a repeatability

precision of ±0.2mm during normal operation. Therefore an at least equivalent

precision can be assumed for the values measured here.

The robot moves as described above. The path it follows is independent of speed

and accuracy.

Conclusion:

Considering the robot has stopped moving, once all joint speed are below a certain

threshold, could be shown to be an adequate approach. The resulting position is well

within the limitations by physical construction. The robot moves very slow, when

closing in to the destination. Especially for when a precision is required it takes a

long time before the robot is considered stall.

3The maximum joint speed used here therefore equals the maximum possible joint speed times c

34

Conclusion

Science is what we understand well

enough to explain to a computer. Art

is everything else we do.

Foreword to ’A=B’

by Donald E. Knuth

7 Conclusion

7.1 Discussion

For this thesis, artificial potential fields and a control system based on them were

introduced. This was not only done in theory but also implemented and on a real

manipulator - a Mitsubishi RV-6S. It could be shown to be well suited for very fast

responses to an environment that is completely or in parts unknown beforehand

and may have a highly dynamic characteristic. The robots internal model of its

surrounding is reevaluated constantly and very quick. Therefore the robot is able to

react on changes in real time1. This does not only apply to the robots tool tip but

stretches to all of it’s joints allowing them to perform an obstacle avoidance of their

own.

Of course this approach also has its draw backs. Most notably its inability to perform

a global path planning. A good example for this problem is the experiment ’advanced

movement’ in 6.2. This constrain massively limits the possible operations without

an additional higher level path planning algorithm. Such an algorithm may also be

necessary to overcome an other limitation. Local minima2 may cause the robot to

get ’trapped’ in a position, that is not the destination, from witch it is unable to

move on on its own. An other draw back is its suboptimal joint movement. This also

causes frequent changes in the speed mechanical components, especially for joints

further away from the base. When used at higher speed this could cause problems

due to the increased inertia.

1see 3.6
2see 3.4

35

7.2 Further Advances Conclusion

7.2 Further Advances

Hardly any research has been done so far on artificial potential fields in combination

with manipulator control. The most obvious first approach would be to back port

advances, that have been made with potential fields in mobile robot navigation, to

manipulators. A lot of which could be ported rather easily, some might require major

changes, either for changing from the two dimensional case, typically used with mobile

robots, to the three dimensional, required for manipulators, or for optimizations to

take the fact into account, that manipulators are composed of multiple links, not just

one as typical for mobile robots. But also further advances are possible requiring

original research. For example, a smoother movement while avoiding obstacles with

every link or detection of the final position. Currently the detection of the arrival at

the final position is done by a minimal movement threshold for all joints.

This lack of prior research in the field of artificial potential fields for manipulator

control can be seen as a rare opportunity for promising original, basic research.

36

7.3 Results Conclusion

7.3 Results

Since robot-human interaction is becoming more and more important for scientific

research as well as for industrial applications, a reliable and fast system for obstacle

avoidance becomes more and more important to allow for humans and robots to

work in a joint operating space. In this thesis the approach for real time obstacle

avoidance based on artificial potential fields for manipulator control was introduced

and used to implement a control system. Further experiments could demonstrate its

functionality in practice.

Even so research is still required in this field, artificial potential fields could be shown

to be a viable approach to real time obstacle avoidance.

37

38

BIBLIOGRAPHY

Bibliography

[1] http://sfb453.de/. Website.

[2] Antich, J., and Ortiz, A. Extending the potential fields approach to avoid

trapping situations. In Proc. IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2005) (Aug. 2–6, 2005), pp. 1386–1391.

[3] Cahyadi, A. I., Ya-Chun, C., and Yamamoto, Y. Stable mobile robots

teleoperation via potential field method. In Proc. IEEE/ASME International

Conference on Advanced Intelligent Mechatronics AIM 2008 (2–5 July 2008),

pp. 347–352.

[4] Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard,

W., Kavraki, L. E., and Thrun, S. Principles of Robot Motion: Theory,

Algorithms and Implementations, 1 ed. The MIT Press, The MIT Press; 55

Hayward Street, Cambridge, Massachusetts MA 02142, USA, June 2005.

[5] Craig, J. J. Introduction to Robotics Mechanics and Control, 3 ed. Pearson

Prentice Hall, Pearson Education, Inc.; Upper Saddle River, New Jersey NJ

07458, USA, 2005.

[6] Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots.

In Proc. IEEE International Conference on Robotics and Automation (Mar

1985), vol. 2, pp. 500–505.

[7] Mitsubishi Electric Coporation. RV-6S Instruction Manual, 1 ed., 2003.

[8] Mitsubishi Electric Coporation. Bedienungsanleitung für CRn-500

Ethernet-Schnittstelle, 1 ed., 2005.

[9] Mitsubishi Electric Coporation. Bedienungs- und Programmieranleitung

für Steuergeräte CR1/CR2/CR2A/CR2B/CR3, 6 ed., 2006.

[10] Mitsubishi Electric Coporation. RV-6S Standard Specifications Manual,

5 ed., 2007.

[11] Singh, L., Stephanou, H., and Wen, J. Real-time robot motion control

with circulatory fields. In Proc. IEEE International Conference on Robotics and

Automation (Apr. 22–28, 1996), vol. 3, pp. 2737–2742.

39

BIBLIOGRAPHY

[12] Vadakkepat, P., Tan, K. C., and Ming-Liang, W. Evolutionary artificial

potential fields and their application in real time robot path planning. In Proc.

Congress on Evolutionary Computation (July 16–19, 2000), vol. 1, pp. 256–263.

40

41

A.1 advancedRobot Manual Appendix

An algorithm must be seen to be

believed.

The Art of Computer Programming

by Donald E. Knuth

Appendix

A.1 advancedRobot Manual

The full source code can be found on the enclosed CD-ROM along with CMake configu-

ration files.

Requirements

� libRobot

The libRobot library, developed at Chair of Robotics and embedded systems.

An abstraction layer for connecting to different robot controllers.

� IPP

Intel’s Integrated Performance Primitives library.

Available at http://software.intel.com/en-us/intel-ipp/

� Boost

Extended C++ standard library.

Available at http://www.boost.org/

� Boost Numeric Bindings

Bindings for Boosts uBlas library.

Available at http://mathema.tician.de/software/boost-bindings

Usage

The library provides four important classes. The central class, around which all

other classes are designed, is the advancedRobot, representing the robot it self. It

42

A.1 advancedRobot Manual Appendix

only has to be provided with a robotConfiguration. A robotConfiguration is a

simple structure, containing all of the robots characteristic data. For example joint

limits. Such a one is provided for the Mitsubishi RV-6S.

To control the robot, it has to be connected to an externalTargetHandler and an

externalForceHanlder using the functions setExternalForceHandler respectively

setExternalTargetHandler. This two functions expect an point to a class derived

from the corresponding handler.

The externalTargetHandler class has to be derived for usage. The only function,

that has to be implemented is getPositionsAndOrientation. This function is not

provided with any arguments and has to return a list of matrices. One 4× 3 matrix

per target, each representing a position in the first column and a coordinate system

vector in each of the following columns.

The externalForceHandler class also has to be derived for usage and also only one

function is mandatory: get. It is provided with a matrix 3×DOF (robots degrees

of freedom). Each column representing the position of one of the robots joints. It has

to return a matrix 4×DOF this time each column represents a force vector acting

on the according joint as caused by some virtual entity like an artificial potential

field.

For both, the externalTargetHandler and the externalForceHandler, a basic

implementation is also given as simpleTargetHandler and potentialField. While

the simpleTargetHandler only manages targets, the externalForceHandler can

handle all kinds of obstacles derived from object. A few such objects are included.

More precisely: point, bar and plane.

These implementation are again used by the visionServer. The visionServer

provides a simple telnet-like sever over a standart TCP/IP network. Using the

protocol defined in A.3 this server manges targets and obstacles. The functions

getExternalForceHandler and getExternalTargetHandler return a pointer to

the according handler to be connected to the robot.

43

A.2 advancedRobot API Appendix

A.2 advancedRobot API

In the following you find a very brief overview over the implemented library. It has

been automatically generated using doxygen. A complete documentation along with

the full source code can be found on the enclosed CD-ROM.

ar::advancedRobot Class Reference

A convenient abstraction of a real robot.
#include <advancedRobot.hpp>
Collaboration diagram for ar::advancedRobot:

ar::advancedRobot

boost::shared_ptr< boost::thread >
m_thread

status status

matrix< Ipp64f > externalForces

robcom::MitsubishiH7 * controller

ar::simpleGripper sg

struct termios oldtios options

int

fd

ar::robotConfiguration

dof

boost::mutex

externalForcesMutex
targetOrientationMutex

positionMutex
statusMutex

targetXYZMutex

bool

internJCAvailable
errorOutput

shutdownRequest

ar::externalForceHandler
efh

cfg

std::string

name
host_addr
robot_addrstd::basic_string<char>

vector< Ipp64f >

x
y
z

internJC
zs
ys
xs

joint_d
joint_vmax
joint_beta
joint_alpha
joint_pmin
joint_pmax

joint_a

ar::externalTargetHandler
eth

Public Types

� enum status {
STEADY, MOVING, INITIALIZING, SHUTTINGDOWN,

READY, ERROR }

Public Member Functions

? advancedRobot (robotConfiguration config)
? ∼advancedRobot ()
? rvector currentPositionJC ()

currentPositionJC

44

A.2 advancedRobot API Appendix

? rvector currentTooltipPositionXYZ ()
? rvector currentJointPositionXYZ (int joint)
? status getStatus ()
? void setExternalForceHandler (externalForceHandler ∗x)
? void setExternalTargetHandler (externalTargetHandler ∗x)

Public Attributes

? simpleGripper ∗ sg

Detailed Description

This class allows the easy usage of a robot by utilizing a potential field based
control system.

Member Enumeration Documentation

enum ar::advancedRobot::status

Enumerator:

STEADY

MOVING

INITIALIZING

SHUTTINGDOWN

READY

ERROR

Constructor & Destructor Documentation

advancedRobot::advancedRobot (robotConfiguration config)

Parameters:

config configuration to use to setup robot

advancedRobot::∼advancedRobot ()

Member Function Documentation

rvector ar::advancedRobot::currentJointPositionXYZ (int joint)
[inline]

rvector advancedRobot::currentPositionJC ()

Returns:

current position as joint configuration

45

A.2 advancedRobot API Appendix

rvector ar::advancedRobot::currentTooltipPositionXYZ () [inline]

status ar::advancedRobot::getStatus () [inline]

void ar::advancedRobot::setExternalForceHandler (externalForce-
Handler ∗ x) [inline]

void ar::advancedRobot::setExternalTargetHandler (externalTar-
getHandler ∗ x) [inline]

Member Data Documentation

simpleGripper∗ ar::advancedRobot::sg

ar pot::bar Class Reference

charged bar (p. 46) represents a repulsive bar-like charge in a potential field to
represent bars as obstacles
#include <advancedRobotPotentialField.hpp>
Inheritance diagram for ar pot::bar:

ar_pot::bar

ar_pot::object

Collaboration diagram for ar pot::bar:

ar_pot::bar

ar_pot::object vector< Ipp64f >

position1
position2

Ipp64f

far
near

46

A.2 advancedRobot API Appendix

Public Member Functions

� bar (rvector pos1, rvector pos2, Ipp64f near=0.1, Ipp64f far=0.2)

� ∼bar ()

� rvector getPosition1 ()

� rvector getPosition2 ()

� Ipp64f inductedForce (Ipp64f distance)

Constructor & Destructor Documentation

bar::bar (rvector pos1, rvector pos2, Ipp64f near = 0.1, Ipp64f far =
0.2)

Parameters:

pos1 position of one end of the bar (p. 46)

pos2 position of the other end

near radius for critical inner section

far radius for transisition zone

ar pot::bar::∼bar ()

Member Function Documentation

rvector bar::getPosition1 ()

Returns:

position of one end point (p. 51)

rvector bar::getPosition2 ()

Returns:

position of one end point (p. 51)

Ipp64f bar::inductedForce (Ipp64f distance) [virtual]

Returns:

scalar

Implements ar pot::object (p. 49).

47

A.2 advancedRobot API Appendix

ar::externalForceHandler Class Reference

base class for an external force handler
#include <advancedRobot.hpp>
Inheritance diagram for ar::externalForceHandler:

ar::externalForceHandler

ar_pot::potentialField

Public Member Functions

� virtual matrix< Ipp64f > get (matrix< Ipp64f > positions)=0

Detailed Description

Derive this class to build your own external force handler and set it by calling
advancedRobot::setExternalForceHandler() (p. 46). During each calculation
cycle the function get() (p. 48) will be called.

Member Function Documentation

virtual matrix<Ipp64f> ar::externalForceHandler::get (matrix< Ipp64f >
positions) [pure virtual]

Parameters:

positions a matrix 3x(dof) with Cartesian positions of the robots joints in
columns Override this function to return the forces acting on each joint in
columns

Implemented in ar pot::potentialField (p. 54).

ar::externalTargetHandler Class Reference

base class for an external target handler Derive this class to build
your own external target handler and set it by calling advance-
dRobot::setExternalTargetHandler() (p. 46). During each calculation
cycle the function getPositionsAndOrientations() (p. 49) is called.
#include <advancedRobot.hpp>

48

A.2 advancedRobot API Appendix

Inheritance diagram for ar::externalTargetHandler:

ar::externalTargetHandler

ar_pot::simpleTargetHandler

Public Member Functions

� virtual std::list< matrix< Ipp64f > > getPositionsAndOrientations ()=0

Detailed Description
Returns:

Member Function Documentation

virtual std::list< matrix<Ipp64f> > ar::externalTargetHandler::getPositionsAndOrientations
() [pure virtual]

Implemented in ar pot::simpleTargetHandler (p. 58).

ar pot::object Class Reference

base class for obstacles
#include <advancedRobotPotentialField.hpp>
Inheritance diagram for ar pot::object:

ar_pot::object

ar_pot::bar ar_pot::plane ar_pot::point

Public Member Functions

� virtual Ipp64f inductedForce (Ipp64f distance)=0

Member Function Documentation

virtual Ipp64f ar pot::object::inductedForce (Ipp64f distance) [pure vir-

tual]

Implemented in ar pot::point (p. 53), ar pot::bar (p. 47), and ar pot::plane
(p. 51).

49

A.2 advancedRobot API Appendix

ar pot::plane Class Reference

charged plane (p. 50) represents a repulsive plane (p. 50) charge in a potential field
to represent planes as obstacles
#include <advancedRobotPotentialField.hpp>
Inheritance diagram for ar pot::plane:

ar_pot::plane

ar_pot::object

Collaboration diagram for ar pot::plane:

ar_pot::plane

ar_pot::object vector< Ipp64f >

width
height

position

Ipp64f

far
near

Public Member Functions

� plane (rvector pos, rvector width, rvector height, Ipp64f near=0.1, Ipp64f
far=0.2)

� ∼plane ()

� rvector getPosition ()

� rvector getWidth ()

� rvector getHeight ()

� Ipp64f inductedForce (Ipp64f distance)

Constructor & Destructor Documentation

plane::plane (rvector pos, rvector width, rvector height, Ipp64f near =
0.1, Ipp64f far = 0.2)

Parameters:

pos position of base (one corner)

50

A.2 advancedRobot API Appendix

width vector from pos to one corner

height vector from pos to one corner

near radius of critical inner section

far radius of transition zone

plane::∼plane ()

Member Function Documentation

rvector plane::getHeight ()

Returns:

height vector

rvector plane::getPosition ()

Returns:

position of base

rvector plane::getWidth ()

Returns:

width vector

Ipp64f plane::inductedForce (Ipp64f distance) [virtual]

Returns:

scalar

Implements ar pot::object (p. 49).

ar pot::point Class Reference

point (p. 51) charge represents a repulsive point (p. 51) charge in a potential field
for obstacle modeling
#include <advancedRobotPotentialField.hpp>
Inheritance diagram for ar pot::point:

ar_pot::point

ar_pot::object

51

A.2 advancedRobot API Appendix

Collaboration diagram for ar pot::point:

ar_pot::point

ar_pot::object vector< Ipp64f >

position

Ipp64f

far
near

Public Member Functions

� point (Ipp64f x, Ipp64f y, Ipp64f z, Ipp64f near=0.1, Ipp64f far=0.2)

� point (rvector pos, Ipp64f near=0.1, Ipp64f far=0.2)

� ∼point ()

� rvector getPosition ()

get position

� Ipp64f inductedForce (Ipp64f distance)

� void setPosition (rvector p)

Constructor & Destructor Documentation

point::point (Ipp64f x, Ipp64f y, Ipp64f z, Ipp64f near = 0.1, Ipp64f
far = 0.2)

Parameters:

x position X

y position Y

z position Z

near radius of critical inner section

far radius of transition zone

point::point (rvector pos, Ipp64f near = 0.1, Ipp64f far = 0.2)

Parameters:

pos position as vector (X, Y, Z)

near radius of critical inner section

far radius of transition zone

point::∼point ()

52

A.2 advancedRobot API Appendix

Member Function Documentation

rvector point::getPosition ()

Returns:

position of point (p. 51) center

Ipp64f point::inductedForce (Ipp64f distance) [virtual]

Returns:

scalar

Implements ar pot::object (p. 49).

void ar pot::point::setPosition (rvector p) [inline]

ar pot::potentialField Class Reference

a potential field A potential field as an external force handler for ussage with
advancedRobot::setExternalForceHandler().
#include <advancedRobotPotentialField.hpp>
Inheritance diagram for ar pot::potentialField:

ar_pot::potentialField

ar::externalForceHandler

Collaboration diagram for ar pot::potentialField:

ar_pot::potentialField

ar::externalForceHandler std::list< object * >

objectList

ar_pot::object

elements

boost::mutex

mutex

int

dof

53

A.2 advancedRobot API Appendix

Public Member Functions

� potentialField (int dof)

� ∼potentialField ()

� matrix< Ipp64f > get (matrix< Ipp64f > positions)

get forces acting in a given set of points

� void add (object ∗obj)

add object (p. 49) to field

� void remove (object ∗obj)

remove object (p. 49) from field

Public Attributes

� boost::mutex mutex

Constructor & Destructor Documentation

potentialField::potentialField (int dof)

potentialField::∼potentialField ()

Member Function Documentation

void potentialField::add (object ∗ obj)

matrix< Ipp64f > potentialField::get (matrix< Ipp64f > positions) [vir-

tual]

Parameters:

positions matrix 3xDOF with positions of each robot joint in columns

Returns:

matrix 3xDOF with forces acting on each joint in columns

Implements ar::externalForceHandler (p. 48).

void potentialField::remove (object ∗ obj)

Member Data Documentation
boost::mutex ar pot::potentialField::mutex

54

A.2 advancedRobot API Appendix

ar::robotConfiguration Class Reference

base class for robot configuration safes all kinds of values typicall for one specific
robot
#include <advancedRobot.hpp>
Collaboration diagram for ar::robotConfiguration:

ar::robotConfiguration

int

dof

std::string

name
host_addr
robot_addr

std::basic_string<char>

vector< Ipp64f >

joint_d
joint_vmax
joint_beta
joint_alpha
joint_pmin
joint_pmax

joint_a

Public Attributes

� string name

� int dof

� string robot addr

� string host addr

� rvector joint a

� rvector joint d

� rvector joint alpha

� rvector joint beta

� rvector joint pmin

� rvector joint pmax

� rvector joint vmax

Member Data Documentation

int ar::robotConfiguration::dof

string ar::robotConfiguration::host addr

55

A.2 advancedRobot API Appendix

rvector ar::robotConfiguration::joint a

rvector ar::robotConfiguration::joint alpha

rvector ar::robotConfiguration::joint beta

rvector ar::robotConfiguration::joint d

rvector ar::robotConfiguration::joint pmax

rvector ar::robotConfiguration::joint pmin

rvector ar::robotConfiguration::joint vmax

string ar::robotConfiguration::name

string ar::robotConfiguration::robot addr

ar::simpleGripper Class Reference

represents a very simple gripper Controls a gripper connected to serial port using
the SV203 protocol
#include <sv203.hpp>
Collaboration diagram for ar::simpleGripper:

ar::simpleGripper

struct termios oldtios

options

int

fd

Public Member Functions

� simpleGripper (std::string dev)

� ∼simpleGripper ()

� void send (std::string cmd)

send command to device

� void open ()

open the gripper

56

A.2 advancedRobot API Appendix

� void close ()

close the gripper

Constructor & Destructor Documentation

simpleGripper::simpleGripper (std::string dev)

Parameters:

dev device identifier

simpleGripper::∼simpleGripper ()

Member Function Documentation

void simpleGripper::close ()

void simpleGripper::open ()

void simpleGripper::send (std::string cmd)

Parameters:

cmd command string to send

ar pot::simpleTargetHandler Class Reference

potential field for targets represents a potential field for modeling multiple targets
#include <advancedRobotPotentialField.hpp>
Inheritance diagram for ar pot::simpleTargetHandler:

ar_pot::simpleTargetHandler

ar::externalTargetHandler

57

A.2 advancedRobot API Appendix

Collaboration diagram for ar pot::simpleTargetHandler:

ar_pot::simpleTargetHandler

ar::externalTargetHandler std::list< target * >

list

ar_pot::target

elements

matrix< Ipp64f >

orientation

vector< Ipp64f >

position

boost::mutex

mutex

Public Member Functions

� void add (target ∗t)
� void remove (target ∗t)
� std::list< matrix< Ipp64f > > getPositionsAndOrientations ()

get targets

Public Attributes

� boost::mutex mutex

Member Function Documentation

void ar pot::simpleTargetHandler::add (target ∗ t) [inline]

std::list< matrix< Ipp64f > > simpleTargetH-
andler::getPositionsAndOrientations () [virtual]

Returns:

a list of 4x3 matrixes each representing a position in first column and three
orientation vectors in the following columns

Implements ar::externalTargetHandler (p. 49).

void ar pot::simpleTargetHandler::remove (target ∗ t) [inline]

58

A.2 advancedRobot API Appendix

Member Data Documentation

boost::mutex ar pot::simpleTargetHandler::mutex

ar pot::target Class Reference

target (p. 59) represents a target (p. 59) point (p. 51) and orientation
#include <advancedRobotPotentialField.hpp>
Collaboration diagram for ar pot::target:

ar_pot::target

matrix< Ipp64f >

orientation

vector< Ipp64f >

position

Public Member Functions

� target (rvector pos, matrix< Ipp64f > orient=zero matrix< Ipp64f >(3, 3))

� rvector getPosition ()

� matrix< Ipp64f > getOrientation ()

� void setPosition (rvector pos)

� void setOrientation (matrix< Ipp64f > o)

Constructor & Destructor Documentation

ar pot::target::target (rvector pos, matrix< Ipp64f > orient = zero_-

matrix<Ipp64f>(3,3)) [inline]

Member Function Documentation

matrix<Ipp64f> ar pot::target::getOrientation () [inline]

rvector ar pot::target::getPosition () [inline]

void ar pot::target::setOrientation (matrix< Ipp64f > o) [inline]

void ar pot::target::setPosition (rvector pos) [inline]

ar vc::visionServer Class Reference

#include <advancedRobotVisionConnector.hpp>

59

A.2 advancedRobot API Appendix

Collaboration diagram for ar vc::visionServer:

ar_vc::visionServer

std::map< int, target * >
targetMap

target * elements

int
dof

keys

std::map< int, point * >

keys

boost::shared_ptr< boost::thread >
serverThread

ar_pot::target
t

matrix< Ipp64f > orientation

vector< Ipp64f >

position

ar_pot::point
position

o

ar_pot::object

Ipp64f

far
near

bool

shutdownRequest

obstacleMappoint *
elements

ar::externalForceHandler

efh

ar::externalTargetHandler

eth

Public Member Functions

� visionServer (int dof)

� void addStasticObject (object ∗o)

� void removeStasticObject (object ∗o)

� externalForceHandler ∗ getExternalForceHandler ()

� externalTargetHandler ∗ getExternalTargetHandler ()

Constructor & Destructor Documentation

visionServer::visionServer (int dof)

Member Function Documentation

void visionServer::addStasticObject (object ∗ o)

externalForceHandler∗ ar vc::visionServer::getExternalForceHandler ()
[inline]

externalTargetHandler∗ ar vc::visionServer::getExternalTargetHandler ()
[inline]

void visionServer::removeStasticObject (object ∗ o)

60

A.3 Network Protocol Definition Appendix

A.3 Network Protocol Definition

The network protocol uses a simple telnet connection. Each commend is composed

of six or seven elements. The elements are delimited by spaces, the lines are delimited

by a new line character (’\n’ in C/C++);

OPERATION TYPE ID X Y Z [PHI]

� OPERATION (char)

requested operation

? ’A’: Add

? ’U’: Update

? ’D’: Delete

� TYPE (char)

element type

? ’T’: Target

? ’O’: Obstacle

� ID (int)

unique identifier

� X, Y, Z (float)

position (measured from robot base)

� PHI (float - optional)

orientation (only for targets that lie flat on the base plate and shall be picked

up)

61

