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ABSTRACT
We present a scalable and formal technique to verify lock-
ing time and stability for charge-pump phase-locked loops
(PLLs). In contrast to the traditional simulation approach
that only validates the PLL at a given operation condition,
our proposed technique formally verified the PLL at all pos-
sible operation conditions. The dynamics of the PLL is de-
scribed by a hybrid automaton, which incorporates the dif-
ferential equations of the analog circuit elements as well as
the switching logic of the digital circuit elements. Existing
methods for computing reachable sets for hybrid automata
cannot be used to verify the PLL model due to the large
number of cycles required for locking. We develop a new
method for computing effective overapproximations of the
sets of states reached on each cycle by using uncertain pa-
rameters in a discrete-time model to represent the range of
possible switching times, a technique we call continuization.
Using this new method for reachability analysis, it is possi-
ble to verify locking specifications for a charge-pump PLL
design for all possible initial states and parameter values in
time comparable to the time required for a few simulation
runs of the same behavioral model.

1. INTRODUCTION
In the standard design flow for analog mixed signal (AMS)

circuits, the complete circuit is decomposed into its principal
elements or blocks, which are first analyzed and designed us-
ing idealized low-order behavioral models. Detailed circuit-
level designs are implemented only after the performance
specifications have been verified at the block level over the
required range of parameter variations and operating condi-
tions. The goal is to create robust designs to avoid costly
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redesign cycles in the downstream process.
Because of the complexity of the mixed continuous and

discrete (i.e., hybrid) AMS dynamics, there are no analyt-
ical techniques to verify a given design satisfies the circuit
specifications, even for the simplified block-level behavioral
models. Thus, numerical simulation has been the standard
tool for evaluating the performance of behavioral models.
Simulation is not completely satisfactory, however, because
each simulation run represents the behavior for only one set
of values for the initial states and parameters, so many sim-
ulations are required to assess the robustness of the design.
Moreover, some specifications can be verified only after sim-
ulations have run for very long durations, and some specifi-
cations such as stability cannot be confirmed with absolute
certainty because simulations cannot be run indefinitely.

This paper demonstrates an alternative to simulation based
on formal methods. Formal methods offer an attractive al-
ternative to simulation because they can verify that specifi-
cations for a circuit are satisfied for all possible behaviors
over entire ranges of initial states and parameter values.
This corresponds to an infinite number of simulation runs of
unbounded duration. In their survey of the literature on for-
mal verification for AMS designs, Zaki et al. categorize the
methods into equivalence checking, automated state-space
exploration, run-time verification, and proof-based meth-
ods [12]. Reachability analysis, the technique developed in
this paper, is a form of automated state-space exploration.

The basic idea of reachability analysis is to use the dy-
namic equations for the circuit to propagate the trajectories
of entire sets of states over time, rather than just a sin-
gle state trajectory. The key issues are how to represent
sets of states numerically and how to propagate these sets
efficiently. Good techniques have been developed to rep-
resent and compute reachable sets for continuous dynamic
systems (see e.g. [1,8]). All of these techniques are based on
overapproximations, since the actual sets of reachable states
are not convex in general. These overapproximations be-
come less accurate as time progresses, however, and for hy-
brid dynamic systems the overapproximations become even
less accurate and more time consuming to compute due to
the need to compute overapproximations of intersections of
reachable sets with the surfaces representing switching con-



ditions [2, 6]. Therefore, current reachability analysis tech-
niques for hybrid systems are effective when there are only
a few discrete transitions in the time interval of interest.

To demonstrate the applicability of formal methods and
reachability analysis to AMS circuits, we consider the verifi-
cation of block-level behavioral models for a class of phased-
locked loops (PLLs). PLLs are integrated circuits that pro-
duce high-frequency output signals that are synchronized to
and in phase with low-frequency reference signals. Origi-
nally developed in the 1930’s as a circuit for radio receivers,
millions of PLLs are now used in virtually all digital commu-
nication systems, from satellites to mobile phones, as well as
in many other applications such as clock generation for mi-
croprocessors. The charge-pump PLL is one of the popular
PLL architectures [7]. It is an AMS circuit: the error signal
driving the analog feedback is generated by digital logic [7].

The primary requirements to be verified for a PLL are the
circuit’s locking time and stability. These specifications are
illustrated in Fig. 1. Locking time is a transient specifica-
tion: the PLL state must reach the invariant region within
a specified number of cycles. Stability is an invariant spec-
ification: from some set of initial states, the magnitude of
the phase difference must remain within a given bound in-
definitely. Both of these specifications must be achieved
robustly, that is, from an arbitrary initial state and over
a range of parameter values that reflect the target operat-
ing conditions (e.g., a given temperature range) as well as
the inherent uncertainties that will arise from the detailed
design and manufacturing processes. Verifying the behav-
ioral model of a PLL using simulation is time consuming
and ultimately inconclusive because: (i) locking can take a
few thousand cycles, so very long simulation runs are re-
quired; (ii) each simulation run represents the behavior for
only one set of values for the initial states and parameters,
so many simulations are required to assess the robustness of
the design; and (iii) invariance can only be inferred, but not
guaranteed, because simulations cannot be run indefinitely.
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Figure 1: Transient (locking time) and invari-
ant(stability) specifications for a PLL.

We present a method for verifying both the transient and
invariant specifications for a PLL over entire ranges of ini-
tial states and parameter values using reachable set compu-
tations that can be performed in the same amount of time
currently required to simulate the circuit models for just a
few selected points in the design space. Our approach re-
lies on some new techniques tailored to the PLL problem
because locking can require thousands of cycles, which im-
plies there will be thousands of discrete transitions in the
switching logic. Experiments with existing methods imple-
mented in tools such as PHAVer [5] or SpaceEx [6] show that

the overapproximations using existing methods become in-
accurate so quickly that it is impossible to demonstrate that
locking occurs, even for simple cases where locking can be
demonstrated analytically.

The main technical contribution of this paper is a new
method for computing accurate overapproximations of reach-
able sets for hybrid systems when there are a large number
of discrete state transitions. This approach leverages previ-
ous results on computing reachable sets for linear systems
with bounded uncertain parameters. Using the equations
that govern the continuous dynamics of the PLL, we create a
discrete-time model that generates tight overapproximations
of the reachable sets at the beginning of each continuous-
time cycle. Since the actual times at which the discrete
transitions occur can vary, we introduce bounded uncertain
parameters in the linear discrete-time model that account
for the variations in the actual transition times. We call
this process of mapping variations in time into parameter
uncertainties continuizaton [3]. Finally, we show that satis-
faction of the PLL specifications for the discrete-time model
guarantees the specifications are satisfied at all points in
time. The reachable sets for the discrete time model can be
computed very fast, and the time reduced further by taking
advantage of certain symmetries in the PLL dynamics. Our
approach illustrates how the successful use of formal meth-
ods to solve real problems often requires extensions and in-
sights that exploit the particular structure and features of
the target application. It is an enabling technique that facil-
itates us to efficiently verify a PLL at all possible operation
conditions.

We begin in the next section by showing how a class of
charge-pump PLLs can be modeled at the behavioral level
using hybrid automata with uncertain parameters. Sec. 3
presents a conversion of the continuous-time behavioral model
to a discrete-time model, which provides the solution of the
original model after each cycle. Variations in switching times
of the PLL are abstracted away in Sec. 4 using the new con-
cept of continuization. This makes it possible to abstract
the hybrid dynamics of the PLL by a linear system with
uncertain parameters. Using the model resulting from con-
tinuization, Sec. 5 presents the application of reachability
analysis for formal verification of the PLL specifications, and
Sec. 6 presents a comparison of the verification results using
reachability to the classical simulation approach. The con-
cluding section summarizes the contributions of this paper.

2. PLL BEHAVIORAL MODEL
We consider the dual path, type II, third-order charge-

pump PLL shown in Fig. 2, consisting of a reference sig-
nal generator (Ref), a voltage-controlled oscillator (VCO),
a phase frequency detector (PFD), and charge pumps (CPs),
along with RC circuits to implement a PI controller for the
feedback loop. The reference frequency generator produces
a sinusoidal signal at a fixed low frequency (MHz), and the
VCO generates a high-frequency signal (GHz). The desired
output frequency of the VCO is determined by the reference
frequency and the frequency divider ratio (i.e., N). The
purpose of the PLL is to ‘lock’ the controlled frequency of
the VCO so that its output has the same frequency (when
divided by N) and phase as the reference signal.

Locking of the PLL is achieved by the PFD by comparing
the phases of the reference signal and the VCO signal and
setting the signals UP = 1 if the reference signal leads, and
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Figure 2: Dual-path charge-pump PLL.

DN = 1 if it lags. These signals pump charge into or out of
the capacitors, changing voltages vp and vi, which serve as
proportional and integral (PI) control inputs to the VCO.
For instance, if the reference signal leads, it means that the
reference signal is faster than the VCO signal (when divided
by N). In this case, UP is set to 1 and the ”up” current will
charge the capacitors so that the voltage values vi and vp
increase. As a result, the VCO frequency increases in order
to catch the reference signal. We do not consider adaptation
of PLL parameters such as the frequency divider, resistor,
or capacitor values.

As one can see from Fig. 2, different components of the
PLL system operate at different frequencies. For instance,
the reference signal is at low frequency, while the VCO sig-
nal may be at extremely high frequency if the frequency
divider ratio N is large. The large difference in frequency
makes PLL simulation extremely challenging, since a tradi-
tional simulation tool must adopt a very small time step to
numerically solve the PLL response in time domain. It, in
turn, results in a very long simulation time.

The behavioral model of the charge-pump PLL is a hy-
brid automaton [4, 9] with linear continuous dynamics and
uncertain parameters. Appropriate bounds on the uncer-
tain parameters can be determined by equivalence checking
with detailed circuit models [10, 11]. These bounds should
be chosen to assure that the behavioral model represents
all possible behaviors of a detailed circuit model. If the
more detailed model is at the transistor level, the approach
is also able to catch issues at the transistor level. How-
ever, current equivalence checking techniques are typically
semi-formal such that a complete enclosure cannot yet be
guaranteed.

The continuous state vector in the behavioral model is
x = [vi vp1 vp Φv Φref ]

T with input vector u = [ii ip]
T (see

Fig. 2). The dynamics are

ẋ = Ax+Bu+ c, (1)
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where the resistor and capacitor values are given in Fig. 2
and the values Ki, Kp, and f0 determine the frequency of
the VCO: fV CO = 1

2π
(Kivi + Kpvp) + f0. Input values u

vary depending on the signals leaving the PFD according to

u =







[IUP
i IUP

p ]T , if UP = 1, DN = 0

[IDN
i IDN

p ]T , if UP = 0, DN = 1

[IUP
i + IDN

i IUP
p + IDN

p ]T , if UP = 1, DN = 1

[0 0]T , if UP = 0, DN = 0

The output signals of the PFD are determined by thresh-
old crossings of phase signals. The switching logic is de-
scribed by the automaton shown in Fig. 3, where the states
are labeled as up active, dn active, both active, and both off.

Starting in both off, the next discrete state of the hy-
brid automaton is up active if the reference signal leads by
first reaching Φref = 2π, and dn active when Φv = 2π is
reached first. As shown in Fig. 4, in order to use the same
phase crossings for the next cycle, the phase values are re-
set to Φref := Φref − 2π, Φv := Φv − 2π upon continuing
in up active and dn active. Once the lagging signal has a
zero-crossing, the discrete state both active is entered which
models a time delay td for switching off both charge pumps.
After the delay, the system is in both off again, which com-
pletes one cycle. Locking is achieved when the phase differ-
ence reaches and remains within the locked condition given
by the interval [−0.1◦, 0.1◦].

both off

UP = 0,

DN = 0

up active

UP = 1,

DN = 0

dn active
UP = 0,

DN = 1

both active
UP = 1,

DN = 1

guard: Φref == 2π

reset: Φv := Φv − 2π

Φref := 0

guard: Φv == 2π

reset: Φref := Φref − 2π

Φv := 0

guard: Φv == 0

reset: t := 0

guard: Φref == 0

reset: t := 0

guard: t == td

Figure 3: Hybrid automaton.
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Figure 4: Typical charge pump activity.

3. TIME DISCRETIZATION
Given the hybrid automaton behavioral model of the PLL,

we first derive a discrete-time linear model with bounded



uncertain parameters based on the phase of the reference
signal, assuming the reference signal leads the VCO signal,
i.e., for the discrete state sequence up active → both active
→ both off. The time for a cycle of the reference signal is
given by tcycle = 1/fref . Since the continuous dynamics of
the PLL is linear, we can take advantage of the superposition
principle and obtain the initial state solution and the input
solution separately. The initial state solution for one cycle
is given by xh(t+ tcycle) = eAtcyclex(t). The input solution
for constant input u over the time interval [0, r], where r is
the time the charge pump is active, can be written using the
Taylor series of eAt as

xp(r) =

∫ r

0

eA(r−t) dt u

∈
( η∑

i=0

1

(i+ 1)!
Airi+1 ⊕ Ep(r)

)

︸ ︷︷ ︸

=:Γ(r)

⊗u, (2)

where A⊕B = {a+b|a ∈ A, b ∈ B} is a Minkowski addition
and A ⊗ B = {ab|a ∈ A, b ∈ B} a set-based multiplication.
Note that sets can be sets of scalars, vectors, or matrices,
and sets may also contain just a single (certain) element.
The set multiplication sign is sometimes dropped when the
context makes it clear that uncertain matrices are involved.
The standard operator precedence rules apply. The set of
remainders Ep(r) is overapproximated by an interval matrix,
i.e., a matrix with lower and upper bounds on each element,
as presented in [3]. Since there is no input for the rest of
the cycle, the input solution after one cycle is xp(tcycle) ∈

eA(tcycle−r)Γ(r)u. Let ton denote the time the system is
in location up active and recall that td is the time it is in
both active. Also, let u denote the input in up active and
ud denote the input in both active. Finally, defining xk =
x(k tcycle), the combination of the initial state solution and
all input solutions can be written as

xk+1 ∈ eAtcyclexk
︸ ︷︷ ︸

=xh

⊕Γ(tcycle)c
︸ ︷︷ ︸

=:x
p
const

⊕ eA(tcycle−ton)Γ(ton)u
︸ ︷︷ ︸

=:x
p
up

⊕ eA(tcycle−ton−td)Γ(td)ud
︸ ︷︷ ︸

=:x
p
both

.
(3)

The above formula is a discrete-time overapproximation of
the continuous-time evolution after one cycle.

4. CONTINUIZATION
The model derived above computes the state of the system

after one cycle when the switching time of the charge pumps
is known. In this section, we develop a model that computes
the range of state values that can occur at each cycle, for
the entire range of possible switching times ton (while td is
a given constant). A closed form solution does not exist for
ton, which depends on the state of the system. Simulation
techniques obtain ton by detecting a zero-crossing which cor-
responds to crossing the guard condition Φv == 0. Here we
propose a more efficient method based on overapproximat-
ing the interval of possible values for ton. Since ton depends
only on Φv = x4, it is sufficient to consider (see (1))

ẋ4 =
1

N
(Kix1 +Kpx3 + 2πf0). (4)

We assume user-defined bounds x1 ∈ [ω1, ω1], x3 ∈ [ω3, ω3],
which are monitored during the verification process. Viola-
tion of these bounds would require to restart the verifica-
tion with larger intervals. Applying interval arithmetic to
(4) results in the bound ẋ4 ∈ [υ, υ]. We further extract the
bound [δ, δ] on x4 from the reachable set at the beginning
of each cycle. We obtain ton ∈ [ton, ton] = {x4/ẋ4|x4 ∈

[δ, δ], ẋ4 ∈ [υ, υ]} using the fact that the reference signal is
leading (δ, δ < 0), resulting in

ton = |δ|/υ, ton = |δ|/υ. (5)

Using bounds on the switching times derived above, we use
the concept of continuization to compute the set of reach-
able states resulting from uncertain switching times. To
compute the reachable set under uncertain switching times
(see Fig. 5), we modify (3) and compute the solution succes-
sively, first of x̃k at times tk+ton, then of x̃k+1 at times tk+1.
This makes it possible to reset the uncertain switching time
to values in the interval [0,∆ton], ∆ton = ton−ton compared
to [ton, ton], which has computational benefits when evalu-
ating Taylor series since higher order terms can be tightly
bounded. The new equations are:

x̃k ∈eAtonxk ⊕ Γ(ton)c⊕ Γ(ton)u

xk+1 ∈eA(tcycle−ton)x̃k ⊕ Γ(tcycle − ton)c

⊕ eA(tcycle−ton)
{

eA(∆ton−t̃)Γ(t̃)
∣
∣
∣t̃ ∈ [0,∆ton]

}

︸ ︷︷ ︸

=:G(∆ton)

u

⊕ eA(tcycle−ton−td)
{

eAt̃
∣
∣
∣t̃ ∈ [0,∆ton]

}

︸ ︷︷ ︸

=:M̃(∆ton)

Γ(td)ud.

(6)

u
ton

ton ton tcycle t

Figure 5: Range of times [ton, ton] when the charge
pump is switched off. The mode both active is not
considered in this figure.

We drop the cycle index k for the following deviations for
simplicity. It is possible to extract the time t̃ from the set
G(∆ton), to obtain the relatively tight inclusion

G(∆ton) ⊆
{

t̃C(∆ton)
∣
∣
∣t̃ ∈ [0,∆ton]

}

,

where C(∆ton) is an interval matrix derived in [3]. Combin-

ing this result with t̃ ∈ |x̃4|
[υ,υ]

using the idea in (5) yields

G(∆ton) ⊆ C(∆ton)
|x̃4|

[υ, υ]
.

Now, the expression eA(tcycle−ton)G(∆ton)u in (6) is written
in terms of x̃, independent of the current mode. Thereto,
we use the fact that u only changes sign between modes
based on the phase difference, which is taken care of by
redefining the input u := sgn(x4(tk))(−u). We also consider



that u ∈ U , where U is an interval vector, such that

eA(tcycle−ton)G(∆ton)u

⊆ −eA(tcycle−ton)C(∆ton)
|x̃4|

[υ, υ]
sgn(x̃4)U

=
[

0 0 0 − 1
[υ,υ]

eA(tcycle−ton)C(∆ton)U
]

︸ ︷︷ ︸

:=Θ(∆ton)

⊗x̃,

(7)

where 0 represents zero vectors of proper dimension and
Θ(∆ton) is an interval matrix.

The result of (7) holds no matter if the phase difference
is positive or negative as long as the time interval [ton, ton]
is correctly overapproximated. The time intervals computed
in (5) are based on the cycle including up active. If the cycle
containing dn active is also considered, the bounds are

ton = 0, ton = max(|δ|/υ, |δ|/υ, |δ|/υ, |δ|/υ). (8)

When computing the state bounds for a constant cycle
time tcycle, the input is applied in the interval tk+[0, ton] for
the cycle containing up active and in the interval tk− [0, ton]
for the cycle containing dn active. As shown in Algorithm
1 below, the different times are taken care of by adding the
reachable set due to the input before and after tk when both
cycles are possible. The addition of the input solution for
tk + [0, ton] and tk − [0, ton] results in an overapproximation
since the input solution contains the origin, so that the previ-
ous sets are contained in the set after the addition. Further,
it is sufficient to only keep the input applied at tk + [0, ton]
for subsequent computations, which is illustrated in Fig. 6.
Thus, the error for adding the input solution for tk + [0, ton]
and tk − [0, ton] does not accumulate. The procedure of
only keeping the input applied at tk + [0, ton] is realized by

the auxiliary reachable set R̃k in Algorithm 1. We skip the
proof that this procedure is overapproximative due to space
limitations.

(a) signal of charge pump activity

(b) signal used for reachability analysis up to time tk

charge
pump
on

charge
pump
on

neg. phase difference pos. phase difference

original signal
(not applied)

region of
charge pump

activity

tcycle tcycle tcycle tcycletcycle

tcycle tcycle tcycle tcycletcycle

tk

tk

t

t

1

1

0

0

Figure 6: Consideration of inputs when the phase
difference changes from negative to positive.

5. REACHABILITY ANALYSIS
We now present how to compute the reachable set for a

set of initial states and a sequence of cycles. The reachable
sets are represented using zonotopes which have a maximum
complexity of O(n3) with respect to the system dimension

n for the required operations. A zonotope is defined as

Z =
{

x ∈ R
n
∣
∣x = c+

p
∑

i=1

βi g
(i), −1 ≤ βi ≤ 1

}

,

where c ∈ R
n is the zonotope center (to which a zonotope is

centrally symmetric) and the g(i) ∈ R
n are called generators.

The order of a zonotope is defined as o = p

n
. Fig. 7 illustrates

a zonotope being constructed step-by-step as the Minkowski
sum of a finite set of line segments l̂i = [−1, 1] g(i). Opera-
tions on zonotopes and operations between sets of matrices
and zonotopes are presented in [1].
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Figure 7: Construction of a zonotope by Minkowski
addition of line segments.

5.1 Transient Analysis
The algorithm for the reachable set computation when

the reference signal is initially leading is presented in Al-
gorithm 1. An interesting property of the PLL is that the
number of cycles required for locking is identical when the
absolute value of the initial phase difference is equal and the
corresponding initial voltages are symmetric with respect to
the voltages in the completely locked state. We refer to this
property as symmetric locking time which makes it sufficient
to compute the reachable set only for the case when the ref-
erence signal is initially leading. For the symmetric locking,
we additionally require that IUP

i = −IDN
i and IUP

p = −IDN
p ,

which can be relaxed for reachability analysis by choosing
the intervals for IUP

i + IDN
i and IUP

p + IDN
p large enough

such that their center is 0. The proof for symmetric locking
is omitted due to space limitations.

For simulation purposes, the values of the phases Φref and
Φv are needed to determine the time for turning the charge
pumps on and off. In contrast, the discrete-time model for
reachability analysis does not require the exact timing for
switching the charge pump values; it is sufficient to keep
only the phase difference x4 := Φv −Φref as a state variable
and remove x5 for the reachability computations.

5.2 Invariant Computation
Once the reachable set fulfills the locking condition |PRk| ≤

∆Φlock (see Algorithm 1), it remains to check if this con-
dition is fulfilled indefinitely. A straightforward procedure
would be to check after each cycle if Rk+1 ⊆ Rk, meaning
that Rk is an invariant. Checking Rk+1 ⊆ Rk is compu-
tationally expensive. This is because zonotopes have to be
represented by polytopes and the enclosure check for poly-
topes is computationally expensive [1].

For this reason, we use the following alternative procedure
illustrated in Fig. 8. First, the reachable set computations
are continued for ̺ extra cycles after a reachable set ful-
fills the locking condition in cycle klock, see Fig. 8. Next,



Algorithm 1 Reachable set computation when reference
signal is leading at t = 0

Input: Initial set R0, system matrix A, input set U , input
set Ũ for both active
parameters: tcycle, ∆Φlock, υ, υ

Output: Rklock

k = 0; P =
[
0 0 0 1

]
; R̃0 = R0

while |PRk| > ∆Φlock do
ton = min(|PRk|)/υ, ton = max(|PRk|)/υ
Compute Γ(t) for t ∈ {ton, td, (tcycle − ton)}; see (2)
Compute Θ for ∆ton = ton − ton; see (7)

Compute M̃(∆ton); see (6)
˜̃Rk+1 = eAtonR̃k ⊕ Γ(ton)c⊕ Γ(ton)U

R̃k+1 =
(
eA (tcycle−ton) ⊕Θ(∆ton)

) ˜̃Rk+1

⊕Γ(tcycle − ton)c⊕ eA(tcycle−ton−td)M̃(∆ton)Γ(td)Ũ

Rk+1 = R̃k+1 ⊕Θ(∆ton)R̃k+1 (due to lagging)
k := k + 1

end while
klock = k − 1

the reachable set Rklock+̺ is overapproximated by an axis-
aligned box denoted by I. This leads to an overapproxima-
tion for the subsequent reachable sets, so ̺ should be cho-
sen large enough such that all the subsequent sets fulfill the
locking condition. Once a reachable set Rkfinal

represented
by a zonotope is enclosed by I (which is computationally
cheap to detect), one can conclude that the PLL is locked
indefinitely.
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Figure 8: Reachable sets of different stages of the
invariant computation.

6. NUMERICAL RESULTS
We apply Algorithm 1 and the invariant computation to

verify a 27GHz PLL designed in 32nm CMOS SOI tech-
nology. Note that the PLL was designed in a commercial
process at an advanced technology node. Hence, it pro-
vides a practical example to demonstrate the efficacy of
our proposed verification method. The parameters of the
PLL and the reachable set computation are listed in Table
1. The PLL considered here employs a simple initializa-
tion circuitry that sets the integral and proportional path
voltages to common-mode levels at power up and when-
ever the division ratio is changed. This reduces locking time

and aids the formal verification by reducing the uncertainty
on the initial node voltages. With the initialization, the
initial range of node voltages are vi(0) ∈ [0.34, 0.36], and
vp1(0), vp(0) ∈ [−0.01, 0.01]. We normalize the phases to
[0, 1], and we normalize the time to microseconds. The phase
range of Φv is split into 5 subintervals Φi

v(0) ∈ −0.1·[i, i−1],
where i = 1 . . . 5, and without loss of generality we assume
Φref (0) = 0. Because of symmetry, all possible initial phase
differences are considered. The number of Taylor terms cho-
sen depends on the time horizon. For Γ(tcycle−ton), 30 Tay-
lor terms are used and 10 Taylor terms are used for all other
computations. The aforementioned experiment setup allows
us to formally verify the PLL with consideration of initial
voltage and phase uncertainties. Note that these uncertain-
ties cannot be efficiently incorporated into the traditional
simulation approach, as a traditional simulation can only
validate the PLL with a specific initial condition.

The reachable set starting with the initial phase difference
Φ1

v(0) is shown for the first 200 cycles in Fig. 9 for projec-
tions onto four different pairs of state variables. The sets
computed to prove locking are shown in Fig. 8. In this ex-
ample, the proposed verification algorithm is able to prove
that independent of the initial condition, the PLL reliably
locks to the reference signal. Note that the voltages in Fig. 9
are as high as 10 [V] since charge pump saturation is not yet
considered. It is possible to further extend our verification
method to consider charge pump saturation by applying a
nonlinear behavior model.

Table 2 shows the clock cycles it takes for the PLL to
achieve locking for varying initial phase errors. The 1st and
the 2nd columns show the results from reachability analy-
sis. The 3rd column shows the maximum lock time obtained
from 30 behavioral simulations with randomly varying ini-
tial phase errors and charge pump currents. We use the
maximum lock time since the verification task is to check
if the PLL always locks before a specified locking time, i.e.,
we are investigating the worst-case behavior. Note that we
are not providing any stochastic evaluation since this is not
the focus of this work. Table 2 demonstrates that our reach-
ability analysis efficiently provides an upper bound on the
worst-case lock time in the presence of random phase error
and charge pump current variations. On the other hand, it
is important to note that the traditional approach based on
Monte Carlo simulation cannot guarantee to find the ”true”
maximum lock time. Unless an infinite number of Monte
Carlo runs are performed, the maximum lock time may not
be captured by one of the Monte Carlo runs.

The computation times for the reachability analysis start-
ing at different initial sets of phase differences are listed in
Table 3. It can be seen that the results are obtained in less
than a minute. The average computation time of the reach-
ability analysis for a single cycle is around 27 [ms], which is
only slightly longer than 24 [ms] required for a simulation of
one cycle of the behavior model in MATLAB. All computa-
tions mentioned so far have been performed on an Intel i7
processor with 1.6 GHz and 6 GB memory. Simulating the
behavioral model in VerilogA for a particular initial condi-
tion requires only 2 [ms] per cycle on an Intel Xeon CPU
with 2.53GHz, which is an order of magnitude faster than
reachability analysis. However, reachability analysis is still
competitive if we consider that the VerilogA model needs
to be simulated for thousands of Monte Carlo samples to
capture random initial conditions and parameter variations.



Table 1: Parameters
PLL model Reachable set comp.

name value unit name value
fref 27 MHz max zonotope
f0 26.93e3 MHz order o 100
N 1000 — ω1 0
Ki 200 MHz/V ω1 0.7
Kp 25 MHz/V ω3 -4
Ii [9.9,10.1]e-6 A ω3 12
Ip [495,505]e-6 A ̺ 100
Ci 25e-12 F
Cp1 6.3e-12 F
Cp3 2e-12 F
Rp2 50e3 Ohm
Rp3 8e3 Ohm
td 50e-12 s
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Figure 9: The blue regions show the reachable set of
each cycle for the first 200 cycles. Simulation results
of each cycle are plotted by red dots.

7. CONCLUSIONS
This paper presents a method for verifying PLL locking

using efficient reachability analysis. Efficient reachability
computations are achieved using a discrete-time linear model
with uncertain parameters and continuization to eliminate
the complexity of switching. In contrast to applying a classi-
cal reachability approach, the intersection of guard sets can
be dropped. As a consequence, the only operations on sets
that remain can be performed using zonotopes, which have
a maximum complexity of O(n3) with respect to the system
dimension n. The verification of locking does not require any
Lyapunov function to show convergence. For future work,
we plan to consider saturations of charge pumps and varac-
tor nonlinearities. We are also looking at other applications
of continuization for hybrid systems where the transition
time can be accurately overapproximated by a linear func-
tion of the state plus uncertainty. In addition to PLL, the
proposed reachability analysis may be further extended to
verify the circuit functionality and performance specifica-

Table 2: Required cycles for locking
reachability analysis simulation

cycles to gua- cycles (max.) cycles
Φv(0) rantee locking to reach I to reach I
[−0.5,−0.4] 2039 1845 1271
[−0.4,−0.3] 1981 1787 1225
[−0.3,−0.2] 1908 1714 1173
[−0.2,−0.1] 1811 1616 1086
[−0.1, 0] 1652 1457 994

Table 3: Computation times of the PLL. Computed
number of cycles equals the left column of Table 2.

Φv(0) ∈ −0.1· [5, 4] [4, 3] [3, 2] [2, 1] [1, 0]
Comp. times in [s] 55.0 54.4 53.5 47.8 42.9

tions of other AMS systems in time domain.

Acknowledgments
The authors acknowledge the support of the NSF Award
CCF0926181 and the C2S2 Focus Center, one of six research
centers funded under the Focus Center Research Program
(FCRP), a Semiconductor Research Corporation entity.

8. REFERENCES
[1] M. Althoff. Reachability Analysis and its Application

to the Safety Assessment of Autonomous Cars.
Dissertation, Technische Universität München, 2010.
http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-
20100715-963752-1-4.

[2] M. Althoff and B. H. Krogh. Avoiding geometric
intersection operations in reachability analysis of
hybrid systems. In Hybrid Systems: Computation and
Control, pages 45–54, 2012.

[3] M. Althoff, A. Rajhans, B. H. Krogh, S. Yaldiz, X. Li,
and L. Pileggi. Formal verification of phase-locked
loops using reachability analysis and continuization. In
Proc. of the Int. Conference on Computer Aided
Design, pages 659–666, 2011.

[4] R. Alur, C. Courcoubetis, N. Halbwachs,
T. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science,
138:3–34, 1995.

[5] G. Frehse. PHAVer: Algorithmic verification of hybrid
systems past HyTech. International Journal on
Software Tools for Technology Transfer, 10:263–279,
2008.

[6] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton,
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