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Zusammenfassung

Die verarbeitende Industrie stößt aufgrund der stetig ansteigenden Pro-
duktvarianten bei stark verkürzten Produktzyklen derzeit mit konventio-
nellen Optimierungsstrategien an ihre Grenzen. Die zukünftige Wettbe-
werbsfähigkeit der Hersteller hängt von deren Fähigkeit ab, sich flexibel
und zeitnah an die Gegebenheiten sich schnell verändernder Märkte anzu-
passen. Die Zusammenarbeit von Mensch und Roboter wird hierbei als
eine vielversprechende Möglichkeit angesehen, konventionelle Strategien
zu ergänzen. Wenn Mensch und Roboter als Team zusammenarbeiten,
ergänzen sich die Stärke, Ausdauer und Effizienz des Roboters und die
Fingerfertigkeit und kognitive Fähigkeit des Menschen zu einem flexiblen
und leistungsstarken Gesamtsystem.

Diese Arbeit beschäftigt sich mit der Identifizierung benötigter Funktio-
nalitäten und Mechanismen, um die Zusammenarbeit von Mensch und
Roboter effizient und für den Menschen natürlich zu gestalten. Um dem
Menschen einen leistungsfähigen Kooperationspartner zur Verfügung zu
stellen, orientiert sich die Arbeit an den Ergebnissen psychologischer For-
schung. Diese legen den Schluss nahe, dass die Fähigkeit, Aktionen des
Kooperationspartners vorherzusagen und eigene Aktionen diesen Vorher-
sagen anzupassen, der Schlüssel zu einer erfolgreichen Zusammenarbeit
ist. Dies setzt voraus, dass der Roboter in der Lage ist, seine dynamische
Umwelt wahrzunehmen und den damit einhergehenden Kontext zusam-
menzutragen und zu repräsentieren. Desweiteren müssen die Aktionen des
Menschen erkannt werden, um dadurch in geeigneter Weise dynamische
und adaptive Aktionen des Roboters auszuführen. Diese Fähigkeiten wur-
den in einem verteilten Software Framework unter Verwendung von mo-
dell-basiertem Tracking und aufgaben-basierter Robotersteuerung umge-
setzt.

Auf der Roboterplattform JAHIR, die im Laufe der Arbeit in Zusammen-
arbeit mit Projektpartnern entwickelt und aufgebaut wurde, wurden Kol-
laborationsexperimente zwischen Mensch und Roboter durchgeführt. Die
Ergebnisse untermauern, dass die Umsetzung der genannten Mechanis-
men zu einer Verbesserung der Zusammenarbeit in Bezug auf Effizienz,
Adaptivität und Flexibilität des Systems beiträgt.





Abstract

Today, manufacturing industry is faced with increasing product variants
while product cycles decrease. Since conventional optimization strate-
gies are saturating, future competitiveness of manufacturers will be highly
related to their ability and flexibility to adapt to these essential market
requirements. The collaboration between human and robot has been an-
nounced as a promising approach to solve these challenges, because it
teams the strength and the efficiency of robots with the high degree of
dexterity and the cognitive capabilities of humans into a flexible overall
system.

This thesis identifies required functionality and mechanisms for both ef-
ficient and natural human-robot collaboration. To give the human an ap-
propriate and efficient collaboration partner, the work of this thesis bases
on recent psychological research about cognitive processes of joint-action
among humans. These psychological studies interpret, that the success
of efficient collaboration depends on the team-partners’ abilities to pre-
dict actions and to affect own actions using the prediction. This implies,
that the robotic system is capable of perceiving, gathering and represent-
ing contextual information such as the environment, recognizing current
actions of the human, and by this producing context-aware dynamic and
adaptive actions. These demanded capabilities are realized in a distributed
software framework using model-based visual tracking and task-based ro-
bot control.

Human robot collaboration experiments were performed using the inte-
grated demonstration platform JAHIR, that was co-developed along with
this work. The results validate the benefits regarding efficiency, adaptabil-
ity, and flexibility.
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Chapter 1
Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis aims and contributions . . . . . . . . . . . . . . . . . . . 3

1.2.1 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Structural design of the thesis . . . . . . . . . . . . . . . . . . . 6

As industrial robots lack a lot of capabilities such as high flexibility or adaptability to-
wards the human, robotic systems need to be advanced in that direction to create new
flexible ways in the production. Additionally, it is important to keep and/or integrate
the human in the loop to also profit from the human’s capabilities. For future pro-
duction processes it is of high importance to enable a real “human–(industrial) robot
collaboration” to open new ways of (industrial) processes in factories of the future
(Section 1.1). After stating the main aims, an overview of the contributions that come
with this thesis (Section 1.2) and the structure is presented (Section 1.3).

1.1 Motivation

Robots have proven their success since their introduction in the industry in the late
60ties. Mainly because robots are reconfigurable and therefore applicable for a variety
of tasks. At the end of 2008, more than one million robots have been in operation
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1. INTRODUCTION

world-wide [1] with most of the robots following static action programs to handle
repetitive production tasks and working isolated or surrounded by fences.

Since manufacturing industry is faced with increasing product variants while pro-
duction cycles decrease, conventional strategies to optimize production steps are satu-
rating. Future competitiveness of manufacturers will be highly related to their ability
and flexibility to adapt to these essential market requirements [2]. This flexibility is
hardly reachable with fully automated production processes. Especially, if small lot
sizes of units or prototypes with a high variety and high task complexity are needed,
current automation strategies are not cost efficient [3].

Although robots are flexible and multi-purpose machines, this flexibility heavily
reduces due to their static task programming. If the task, the product or the environ-
ment changes, their movements often need to be re-programmed from scratch. The
costs of task-adequate robots and the effort to set-up, program, and integrate them into
existing production lines amortize only with a large number of manufactured products,
because the costs of the integration of a robot are approximately ten times the price of
the robot itself [4].

The collaboration between human and robot has been announced as a promising
approach to solve these challenges, because it teams the strength and the efficiency of
robots with the high degree of dexterity and the cognitive capabilities of humans into a
flexible overall system. As consequence of current flexible automation techniques in-
cluding flexible manufacturing systems (FMS) and reconfigurable manufacturing sys-
tems (RMS) [5], a recent trend in robotics focuses on new generations of robots with
the capability to directly assist humans. This bridges the gap between fully automated
systems and fully manual workstations [6]. Highly related is that a significant amount
of research has been done in the area of physical human-robot interaction (pHRI) [7, 8]
that can also be applied to collaborative tasks between human and robot. Additionally,
the introduction of cognitive capabilities [9] for assistive robotic systems, new robot
control schemes, and advances in artificial perception, to name only a few, are enabling
factors to bring human and robot further together in a shared workspace. Especially,
technical systems need to improve their performance with respect to unforeseen events,
flexibility in their use, and field of application through cognitive capabilities [2]. This
creates more flexible and (partly) autonomous machines that are able to directly co-
operate and support the human co-worker [10, 11]. Further, keeping the human in the
loop of production processes for highly flexible assembly advances the skills of the
overall system due to cognitive and senso-motoric advantages of the human. Hence,
the human is part of production processes when he is needed and can concentrate on
other tasks to improve the overall system performance [12].
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1.2 Thesis aims and contributions

The support of humans by robotic systems can then lead on the one hand to more
ergonomic work places and on the other hand to more time-efficient production pro-
cesses. Additionally, the amount of fixed production costs in relation to variable costs
can be reduced [13]. The advantage of the potentials for humans and robots to work
together as a team is only in early stages and needs a safe, robust and efficient realiza-
tion [14]. Once this is reached, the subsequent flexibility and adaptability of human
and robot collaborating as a team allows production scenarios in permanently changing
environments as well as the manufacturing of highly customized products in factories
of the future.

1.2 Thesis aims and contributions

1.2.1 Aims

The use of industrial robots is usually characterized by a strict workspace separation
in space or time to guarantee the safety of the human. But the combination of hu-
man flexibility and machine efficiency offers several advantages including ergonomic
and efficiency improvements. As many algorithmic and technical challenges are still
unsolved, the usage of collaborative systems is not standard in the industry, but ap-
proaching fast. Up to now, systems that combine humans with robots are referred to as
hybrid assembly systems. These systems divide the task in simple tasks suited for the
robot as well as complex and changing tasks for the human [13].

This thesis aims to advance the collaboration of humans and robots in produc-
tion environments for assembly tasks by stating and implementing required factors.
Considering that collaboration on a shared assembly task consists of a sequence of co-
ordinated actions in space and time, the success depends on the collaboration partners’
abilities to adapt to and to predict actions of the partner [15, 16]. These abilities are
achieved by the human by combining of several mechanisms [16] including joint at-
tention to steer the concentration and to share representations about events and objects,
task sharing to be able to predict the next steps based on the expected behavior of the
partner before an action can be observed, action observation to predict the next goal
based on the current behavior of the partner, and action coordination to adjust own
actions in space and time according to the behavior of the partner.

The overall aim of this thesis is to implement and transfer the described mecha-
nisms to a robotic system to form a basis of covered functionality to enable manlike
collaboration with a human. In this thesis, it is assumed that the assembly plan is
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1. INTRODUCTION

known to both human and robot a-priori and that the attention of the human lays on
the joint assembly task. Under these assumptions, the mechanisms task sharing and
joint attention are disregarded. Hence, this thesis targets especially on the mechanisms
action observation and action coordination as presented in Chapters 3 and 4.

1.2.2 Contributions

To realize the mechanisms action observation and action coordination, the robotic sys-
tem needs to be endowed with capabilities to perceive the environment, to gather and
represent contextual information, to recognize human actions, and to produce appro-
priate dynamic and adaptive actions using the gathered context. Therefore, this thesis
contributes in particular to these aspects:

Perceiving the environment: OpenTL1 was co-developed and used as software back-
end to perform the computer vision and tracking tasks. OpenTL is a general
purpose tracking library with a lot of well-known and new computer vision
and tracking algorithms including many inter-exchangeable Bayesian filters (see
Section 3.2). In this way, the software modules and algorithms created here
can be adapted and parameterized to fulfill or to be integrated in other algo-
rithms or modules. Further, perceiving the environment also inherently depends
on the integration of multiple sensor information. Therefore, sensors including
depth cameras, color cameras, the Microsoft Kinect, and infrared cameras (see
Section 5.1.2 for details) are used to gain data and corresponding processing
modules perceive the surrounding, update the geometric representation (see Sec-
tion 5.2), and deliver information about e.g. the hand positions (see Section 3.3).

Representing contextual information: Since contextual information mainly includes
in this work geometric surrounding and information such as the position of the
hands, a dynamic way to manage this information is needed. The resulting
geometric representation is based on the Robotics Library2 developed at the
Robotics and Embedded Systems Lab with the extension, that every sensing
module can add, update, and remove geometrical shapes via a standardized com-
munication channel (see Section 5.2). An example that visualizes the geometric
representation of an overall cognitive factory scenario is depicted in Figure 1.1
with the human worker being tracked by the Microsoft Kinect sensor.

1http://www.opentl.org
2http://roblib.sourceforge.net
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1.2 Thesis aims and contributions

Figure 1.1: Geometric representation - The whole scenario can be represented geomet-
rically including the pose of human workers gained from diverse sensors

Recognizing human actions: The observation of human actions by an assistive robo-
tic system can, for example, be used in an assembly task to act pro-actively with
the preparation of future steps based on the current action of the human. There-
fore, an assembly experiment with humans that were not influenced by a robot
or any other technical device was used as a basis to train models that can recog-
nize the current action of the human (see Section 3.1). The experiments showed,
that with the right abstraction level regarding sensor information, the actions can
be recognized by means of hand velocity, acceleration, and jerk. These enables
the transfer of the recognition models to the human robot collaboration scenario
JAHIR . Due to the gained flexibility, the models performed well, although the
sensors and the arrangement of the set-up changed (see Section 5.3).

Producing appropriate dynamic actions using available information: In this the-
sis, the concept of task-based hierarchical control has been accomplished with
position controlled, closed architecture industrial robots. With the seamless in-
tegration of the geometric context representation, a collision avoidance module
for the robot was created, that preserves movements of the robot that are not in
conflict with a given avoidance strategy (see Sections 4.1 and 5.4.1). Further, it
has been experimentally validated in the JAHIR scenario, that the choice of the
motion velocity profile influences the unconscious adaption of the human. In a

5



1. INTRODUCTION

hand over experiment, humans showed varying reaction times depending on the
velocity profile, although they could not see a difference in the motion as ques-
tioned after the experiment (see Sections 4.2 and 5.4.2). Additionally, it has been
verified with experiments using the JAHIR set-up, that the right timing of actions
in e.g. hand-over tasks enables a seamless interaction without waiting times for
human and robot (see Section 4.3) with an improved overall task efficiency.

Demonstration platform: In order to show the mechanisms and the inter-working
of required functionality, the demonstration platform JAHIR [17] was created
together with project partners from the electrical and mechanical engineering
department1. This includes—beside the used hardware (see Section 5.1)—the
creation of several processing modules and a generic software architecture to
inter-connect these single processing modules among multiple computers (see
Section 5.2).

1.3 Structural design of the thesis

Based on the aims of the thesis to present, implement, and proof required basic mech-
anisms and concepts to enable an advanced collaboration between human and (indus-
trial) robot (see Section 1.2), the thesis is organized as follows:

Chapter 2 gives an overview and shows the large desire to make progress in the
area of human-(industrial) robot collaboration by reviewing related systems and
projects in this sector (Section 2.1). As background information important fac-
tors of human-industrial robot collaboration are presented. This includes a sum-
mary of international industrial norms and strategies to enhance the safety for
the human (Section 2.2). Important functional aspects based on psychological
findings are given (Section 2.3), that could improve the collaboration between
human and robot. Further, the demand to bring all these points together in a
generic software framework under certain design principles is presented (Sec-
tion 2.4).

Chapter 3 sets the basis of transferring the psychological mechanism action obser-
vation of joint action to a robotic system. This mechanism enables an assistive
robotic system to predict the next goal based on the current behavior of the oppo-
nent to assist with pro-active behavior. Hence, the system needs to recognize the

1namely: Wolfgang Rösel, Jürgen Blume, Alexander Bannat, Frank Wallhoff
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current action of the human using captured information form sensory data. An
exemplary assembly situation was designed and afterwards executed by multiple
subjects (Section 3.1). The recorded data was used to train models that analyze
the workflow of the assembly. The experiments revealed that it is sufficient to
use only information derived from the hand position. Therefore, a hand track-
ing method was developed (Section 3.3) using model-based visual tracking (see
Section 3.2).

Chapter 4 sets the basis in order to transfer the mechanism action coordination as
fundamental principle adjusting own actions in space and time according to the
behavior of the collaboration partner or the perceived context. The coordination
of robotic movement based on a hierarchy of atomic tasks including the geomet-
ric awareness of the robot, that integrates static and dynamic geometric repre-
sentations of the surrounding, is presented (Section 4.1). The coordination of
actions also incorporates many conscious and unconscious aspects, which need
to be considered. Therefore, Section 4.2 presents a handing over experiment
that shows that the reaction times of humans can unconsciously be influenced in
a positive manner by choosing appropriate robotic motion profiles. Parameters
that have to be negotiated by the subjects during a hand over also include the
right timing of actions. Hence, Section 4.3 shows how the robot can use the ob-
servations of human actions to efficiently coordinate actions in time to increase
the collaboration fluency.

Chapter 5 presents the integrated demonstration platform JAHIR that evolved through-
out this thesis. This includes the hardware set-up (Section 5.1) and the software
architecture behind it (Section 5.2) to glue the developed software modules to-
gether. Both form a powerful demonstration platform that was also used be-
yond the scope of this work for experiments and demonstrations. The effects
of transferring the psychological motivated mechanisms action observation and
action coordination to the JAHIR platform are presented and evaluated (Sec-
tions 5.3, 5.4.2 and 5.4.3) along with sample applications of the task-based con-
troller (Section 5.4.1).

Chapter 6 concludes the thesis. A review of the presented work and the correspond-
ing contributions is given. Additionally, possible improvements and a glance
towards future work are presented.
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Chapter 2
Background

Contents
2.1 State of the art and related work . . . . . . . . . . . . . . . . . . 10

2.1.1 Collaborative (industrial) robotic systems . . . . . . . . . . 10

2.1.2 Related large scale research projects . . . . . . . . . . . . . 12

2.2 Safety issues in human–industrial robot collaboration . . . . . . 14

2.2.1 Norms and industrial standards for human robot collaboration 14

2.2.2 Safety strategies . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Psychological aspects . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Software design aspects . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Design principles . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Robotic middlewares . . . . . . . . . . . . . . . . . . . . . 25

This chapter gives an overview and shows the large desire to make progress in the area
of human-(industrial) robot collaboration by reviewing related systems and projects
in this sector (Section 2.1). As background information important factors of human-
industrial robot collaboration are presented. This includes a summary of international
industrial norms and strategies to enhance the safety for the human (Section 2.2).
Important functional aspects based on psychological findings are given (Section 2.3),
that could improve the collaboration between human and robot. Further, the demand
to bring all these points together in a generic software framework under certain design
principles is presented (Section 2.4).
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2. BACKGROUND

2.1 State of the art and related work

2.1.1 Collaborative (industrial) robotic systems

Robotic systems that assist human workers in production processes as well as in pro-
duction environments are an active research field with a variety of applications. The
following overview gives an impression about systems that have been introduced in
the past to tackle human-robot collaboration in the production.

A robotic system consisting of multiple impedance-controlled robots is introduced
by Kosuge in [18]. With this system, a joint object manipulation of human(s) and
(multiple) robot(s) in a dynamic way is possible. The control scheme assumed that
the interaction takes always place through an object. A force sensor attached to the
wrist of each robot measured the external forces on the robots through the object. The
human commanded the movement of the robots by applying forces to the object. This
approach was later extended to the mobile robotic assistant MR Helper as presented
in [19].

Khatib presented in [20] several strategies to support workers in physical tasks for
compliant motion and cooperative manipulation. In addition to the controlling of mul-
tiple arms corresponding to the applied forces, multiple holonomic mobile platforms
were coordinated to have a fully flexible mobile assistant.

For situations that involve large interaction forces as it is for example present in
the automobile production, Cobots have been introduced by Colgate in [21]. These
specialized mechanical devices provide guidance to human operator’s motion. The
cobots act passively with virtual fixtures and virtual walls to support and guide the
human collaborator without the intention to act autonomously.

PowerMate—introduced by Schraft in [12]—is another example of a system de-
signed to give the human worker a robotic assistant for handling and assembly tasks.
The system follows current safety norms and works with normal velocity, if no human
is present. In presence of a human, the velocity is limited and with the confirmation
of the human, the robot can be guided to place heavy good using force/torque sensing.
With this mode, it is possible to pull the robot on its gripper to a desired position.

A rather application oriented approach to ease and speed up the programming of in-
dustrial robots is presented by Pires in [22]. The approach is object-oriented and based
on a client-server architecture. It is claimed that the underlying concept is general
enough to be applied to organize and program overall flexible manufacturing cells.

Flexible, adaptive, and cognitive robots are especially needed, if small lot sizes of
units or prototypes with a high variety and high task complexity are required. That
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2.1 State of the art and related work

means, that future industrial robotic assistants should be flexible and safe on the one
side and clever helpers in manufacturing environments on the other side. Hägele de-
scribes this in [14] as the evolution from robots to robot assistants. To show the concept
presented in [14], the mobile robot assistant rob@work has been developed by Helms
and Hägele [23, 24] as direct interacting and flexible device for assistance. The col-
lection of functionality includes automatic path planning, obstacle avoidance, precise
positioning, and several safety concepts of the robotic arm motions. Further, the ease
of use to instruct tasks was demonstrated.

A cooperative assembly cell system using a four-axis scara robot was presented by
Thiemermann in [25, 26]. The system enhanced standard tasks of the assembly robot
with new functionality to help the human worker with the work-piece positioning or
with other parts and tools. A camera-based system is used to adapt the working velocity
of the robot according to the distance between human and robot.

A mobile assistive robot for flexible and interactive manufacturing is presented by
Stopp in [27]. Due to safety aspects, the human instructor teaches interactively the
robot an order-picking from outside its workspace using a laser pointer and a handheld
computer. This has been extended to a safety concept using dynamic sensor-based
surveillance of the robot workspace and multiple safety regions with (possibly) differ-
ent safety levels [28].

Iossifidis presents in [29] the stationary 7 dof robotic assistant CoRA, that is able to
cooperatively solve an assembly task using diverse inter-connected components includ-
ing speech, object, and gesture recognition. Additionally, the robot has been prepared
with an artificial skin to allow a touching and positioning of the robot by the human.

Gecks presents in [30] SIMERO, a stationary industrial robot system. Several sta-
tionary cameras that detect obstacles to dynamically adapt motions accordingly super-
vise the workspace of the robot. This approach has later been enhanced by the use
of multiple depth cameras [31] to perform a three-dimensional collision avoidance for
unknown objects. One master computer evaluates the synchronously acquired data of
slave computers and employs a geometrical model to revise the data points and to ad-
just the robot velocity according to distance of human and robot. In this way collisions
with obstacles or the human can be damped or even prevented.

A pro-active collaboration between human and robot based on the recognition of
the intentions of the human is described by Schrempf in [32]. As the recognition of
intentions is quite uncertain, the robot resolves this uncertainty by pro-active execution
to minimize the overall costs. For the system, Dynamic Bayesian Networks (DBNs)
were used.

11



2. BACKGROUND

The approach by Rickert presented in [33] describes a scenario in which a hu-
man and the JAST robot—a robot with two arms in a human-like arrangement—build
together a wooden model of an aircraft using a distributed architecture divided into
the high-level components input, interpretation, representation, reasoning, and output
with several functional modules.

Another example is the DLR lightweight arm presented in [34, 35] that was trans-
ferred to KUKA1 and is now commercially available. This lightweight robot is espe-
cially designed for interaction with unknown environments and with humans [36]. The
integrated compliance, virtual fixtures, high interpolation rate, and many more make
the robot very promising to work alongside with humans. Haddadin uses this arm to
build a sensor-based robotic co-worker for a safe and close cooperation and presents
strategies for safe interaction with the human [37].

Chuang presents in [10] a study on human robot collaboration design for robot
assisted cellular manufacturing and identifies that collaboration planning, collaboration
safety, mental workload management, and a good man-machine interface as four main
concepts that need to be met to enable human robot collaboration. Further the authors
present in [38] experiment evaluations of different supportive information formats and
show, that it is important to display information near relevant object and in the visual
attention field of the human. Additionally, the combination of information sources
such as text and images is important.

2.1.2 Related large scale research projects

Since the development potential and the demand of the industry is high, research con-
centrates with large-scale projects on that topic with special interest. The following
(incomplete) list gives an overview of currently running or recently finished projects:

Morpha: The project Morpha2 (1999 to 2002) worked towards enabling a robot as-
sistant to cooperate with and assist the human user in a variety of tasks using
intuitive and natural ways to communicate.

SMERobot: The project SMERobot3 (2005 to 2009) was funded within the 6th Frame-
work Program of the European Union with the scope to create a new family of
robots suitable for small and medium sized manufacturing enterprises.

1http://www.kuka.com
2http://www.morpha.de
3http://www.smerobot.org
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PHRIENDS: The project PHRIENDS – Physical Human-Robot Interaction: DepEND-
ability and Safety1 (2006 to 2009) worked towards a new physically interactive
and safe generation of robots and robotic components.

rosetta: rosetta – RObot control for Skilled ExecuTion of Tasks in natural interaction
with humans; based on Autonomy, cumulative knowledge and learning2 (2007
to 2013 funded by European Union under the FP7) investigates human-centric
technology for industrial robots to cooperate naturally with human workers.

Custom Packer: The EU funded project Custom Packer – Highly Customizable and
Flexible Packaging Station for mid- to upper sized Electronic Consumer Goods
using Industrial Robots3 (2010 to 2013) tries to develop a scalable and flexible
packaging assistant to support human workers in packaging mid to upper sized
and mostly heavy goods.

JAST: The EU FP6 project JAST – Joint-Action Science and Technologie4 (2004 to
2009) directed to develop autonomous systems that communicate and act jointly
with a human on mutual tasks in dynamic unstructured environments.

CoTeSys: The Cognitive Factory with a production line for individualized manufac-
turing including direct human robot collaboration and joint action is one of the
central demonstration scenarios within the Cluster of Excellence Cognition for
Technical Systems—CoTeSys5 (2006 to 2012).

But not only research tries to bring together human and robot in the same workspace,
also industry sees the potential and the great benefit for human robot teaming in indus-
trial production [39]. With new developments of robotic manufacturer in the direction
of safe robot, it seems to be clear, that human operators and robots will soon be work-
ing together in one workspace without the need for the robotic system to suspending
its work when humans come too close to the robot [40].

1http://www.phriends.eu
2http://www.fp7rosetta.org/
3http://www.custompacker.eu
4http://www6.in.tum.de/Main/ResearchJast
5http://www.cotesys.org
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2.2 Safety issues in human–industrial robot collabora-
tion

Industrial robots are possibly big, heavy, fast, and powerful. Hence, they can gen-
erate high forces and can heavily injure a human if they come into contact. But as
robotic applications aiming towards a direct physical human-robot interaction and a
close human-robot collaboration emerge more and more in multiple fields including
industrial production and automation, the safety for the human and the dependabil-
ity of collaborative robotic systems become crucial questions [41]. Sharing the same
workspace might lead to situations where human and robot collide with each other.
This can be very harmful to the human, especially, when standard industrial robots are
used [42, 43].

An objective classification of danger/safety is needed to indicate and identify the
risk of the collaboration for the human. To find such categories, possible dangerous sit-
uations, impacts, and injuries have been evaluated in the literature using different safety
measure schemes including the Wayne State University Tolerance Curve (WSTC), Ma-
nipulator Safety Index (MSI), or the Head Injury Criteria (HIC) to name only a few
[44, 45, 46, 47, 48]. In addition to find the right measures, the risk analysis has to
include aspects regarding the placement and surrounding of the robot, the mounting
(e.g. is the work performed below a robot), the robot type (e.g. force, speed, energy),
the end effector demands (e.g. sharp edges), process dependent hazards (e.g. tem-
perature), personal safety devices (e.g. protective clothing), and the construction and
installation of control elements (e.g. reachability, ergonomic aspects) [49].

To ensure the safety of the human, industrial norms dealing with the usage of in-
dustrial robots along with humans are highly constraining. In Section 2.2.1, a short
overview about current industrial norms is given. The introduction of such norms
shows, that the industry has also identified a huge potential for the collaboration be-
tween human and robot and tries to find rules, how this can be applied in the future.

2.2.1 Norms and industrial standards for human robot collabora-
tion

In order to prevent dangerous situations, impacts, and the corresponding physical dam-
ages of humans, international safety standards and norms regulate the use of physically
cooperating robots. The ISO committee TC184/SC21 is concerned with the devel-

1http://www.iso.org/iso/iso_technical_committee.html?commid=54138
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opment and revision of such standards. Existing ISO robot standards (e.g. the ISO
10218-1 [50]) have been developed with a limiting focus on industrial use, because
robots have formerly only been considered as valuable tools for manufacturing in in-
dustrial environments [51]. Therefore, these norms are mostly only applicable to static
industrial tasks such as lifting heavy parts, machining various metal and non-metal
components, and joining large panels. Such applications demand the use of robots with
large and powerful machines, which result in highly hazardous collaboration partners.
Such risks for the human are avoided by separating the workspace of robots with real
or virtual cages or in time. With respect to human-robot collaboration, ISO 10218-1
[50] covers the topics:

Stopping functions: (5.10.2) specifies that the robot has to perform protective or emer-
gency stops when humans are in the robot’s workspace.

Guiding the robot by hand: (5.10.3) allows the guidance of a robot with equipment
closely mounted to the end effector including an emergency and a confirmation
button with a speed limitation of 0.25ms−1 max.

Speed and position control: (5.10.4) fixes the maximum allowable speeds of robot
arms and end effectors when humans are in the robot’s workspace to 0.25ms−1

max.

Power and force control: (5.10.5) limits the maximum allowable power and forces
applied by robot arms and end effectors to 150N when humans are in the robot’s
workspace.

While such arrangements keep the human at distance, new emerging applications need
the human as collaboration partner close to the robot. Therefore, the international
standards are advanced [52] and extended to handle safety requirements for robots that
allow autonomous work or collaboration with humans. ISO 10218-2 [49] currently
covers the following issues from which at least one needs to be fulfilled:

Design of collaborative operation workspaces: (5.11.3) sets the requirements for the
layout design of the workspace around the robot, including safeguarded spaces
(where humans are separated from the robot and protected by safeguards) and
collaborative spaces where humans are not separated from the robot and hence
the robot shall apply the control limits mentioned above. The switching between
autonomous and collaboration mode needs to be performed in a way, that no
person is endangered (5.11.4).
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Collaborative operation modes: (5.11.5) specifies the operating modes that must be
designed into the robot’s control function when collaborating with a human in
the collaborative workspace. Possible modes are: the robot is stopping, if a
human is in the collaboration space; the robot is guided by a human; the robot
acts autonomously with no human in danger; the robot moves with limited speed
0.25ms−1 if a human is in the collaboration space; the robot acts autonomously
and keeps a security distance to humans in the collaboration space and adjusts
the velocity accordingly to prevent possibly collisions.

2.2.2 Safety strategies

There are several ways to deal with the safety problem in human robot collaboration.
The regulation of industrial norms tries to increase safety by separating the workspace
of humans and robots in space or time or by limiting the robot velocities to minimize
possible impacts. This is needed, because industrial robots do not comply in case of
a collision due to their stiffness. [53] divides safety related approaches into active
and passive safety. Passive safety—realized as warning lights, signs, boundary chains,
painted boundaries, fences, barriers or robot cages—is static and simple to design;
therefore it is very reliable but also very limited. Active safety devices include laser
curtains, pressure mats, infrared barriers and capacitive devices to sense and react to
changes in the cell’s environment. Certified sensor systems give only sparse data and
can hardly cope with complex dynamic scenarios. This may allow the human to be the
avoiding or careful part, but do not make the robot safe. The differentiation here will
be done by physical and/or logical means to improve the collaboration safety with the
introduction of physical safe structures, algorithms, sensors, or control strategies.

Physical safety

[54] claims that making a stiff and possibly heavy robot to behave gently and safely
seems to be an unrealistic task and presents several principles of compliant actuators.
Compliant actuator design is also seen as key to increase safety and flexibility in hu-
man robot collaboration [55]. [56] presents with the DM2 arm an actuator principle
with a drastically reduced effective impedance that enables essential characteristics for
intrinsic safety. The biologically inspired, lightweight and elastic robot arm BioRob
[57] is able to estimate the weight of payload, to detect collision and touch in a similar
way as the human arm. Further, a direct teach-in or a hand guided robot movement
becomes possible.
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To reduce the impact, the masses of the robot can also be reduced. A first lightweight
arm for service applications was proposed in [58] with the whole-arm manipulator.
Another example is the DLR lightweight arm [34, 35] that is used among many other
things for Justin, a lightweight robot especially designed for interaction with unknown
environments and with humans [36].

Such approaches mainly have the disadvantage, that the there is a trade-off between
safe (hardware) design and absolute accuracy of the robot, which makes it often unin-
teresting for industrial use. Additionally, the development and industrial investments in
regular industrial robots would be to some extend lost if they had to replace all robots
for human-robot interaction (HRI). Further, intrinsically compliant robots are hardly
available outside of scientific labs.

Logical safety

Logical safety can introduce ways to use also for example standard robots along with
humans. The safety is here ensured using algorithms, external sensors, and correspond-
ing software modules. A discussion about safety issues in human robot interaction
along with an overview of currently safety devices can be found in [59]. Which and
how sensors are used in the industry is given in [53]. As an advanced sensor system,
that is eminently applicable in safe human-robot interaction, proximity skins should be
named here. An early example is given in [60].

More on the software side [61, 62] presents a very promising integrated human-
robot interaction strategy that ensures the safety of the human by a coordinated suite
of safety components. The components anticipate and respond to varying time hori-
zons for potential hazards and varying expected levels of interaction. The three main
components are:

1. a safe path planning that includes a measure of danger based on the robots inertia
and the distance between human and robot to find safe trajectories;

2. a safe controller, that evaluates the safety of the planned trajectories at each
control step and deviates from the planned trajectory in case of danger using the
robot configuration based on a danger index;

3. human monitoring based on visual to estimate the focus-of-attention of the hu-
man and physiological data to measure stress-levels.

The co-worker scenario would greatly benefit from the use of both physical and log-
ical strategies since a compliant robot as with its use the problem of physically safe
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collaboration may be reduced. In this work the focus does not lay on the use or the de-
velopment of this kind of robots, but in the creation of an overall framework to enable
such a collaboration. This includes more generic components that give information
about the current state of the human or his position. With a robot, that is inherently
safe, such sensor-based components can then be used to support the system to solve
the overall goal re-using e.g. some logical components.

2.3 Psychological aspects

To successfully integrate collaborative assembly systems such as JAHIR in today’s pro-
cesses, high demands regarding safety, efficiency, ergonomics, flexibility, programma-
bility, and adaptability need to be met. As humans being experts in physical interaction
and collaboration, the investigation of high-level joint-action strategies between hu-
mans is important to find strategies for robotic systems [63]. Further, the research on
especially humanoid robotics can on the reverse side also contribute to understand how
humans behave [64]. Psychological research on cognitive processes of joint-action
among humans [16] lists task sharing, joint attention, action observation and action
coordination as important mechanisms that influence the efficiency:

• joint attention to steer ones concentration and to share representations about
events and objects

• task sharing to be able to predict the next steps based on the expected behavior
of the opponent before an action can be observed

• action observation to predict the next goal based on the current behavior of the
opponent

• and action coordination to adjust own actions in space and time to the behavior
of the opponent

That means, that in collaborating human-human teams, an efficient coordination re-
quires participants that plan and execute their actions in relation to what they ex-
pect from the opponents based on observations [15]. Action of the team members
are observed and evaluated to coordinate own actions appropriately in space and time.
Hence, humans negotiate unconsciously various parameters to optimize the co-operation
during the collaboration [65]. During repetitions of the same action, the coordination
becomes smoother and more accurate and leads to a maximum in comfort and effi-
ciency.
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Additionally, enabling factors are the abilities of the system to act autonomously in
the environment according to sensor and context information. The communication and
the explanations from the assistive system should also follow psychological aspects to
decrease the distraction and the cognitive load of the human [66, 67].

Further, technical systems should make use of information provided by multiple
sensors, (multiple) actuators, that are embedded in and aware of the real world to
perceive, reason, learn and plan in a cognitive way. Along with reflectiveness about
their own capabilities and limitations, cognitive technical systems know what they
are doing, how things can be done, and about the human collaboration partner. This
leverages higher flexibility, adaptivity, interaction and collaboration capabilities of the
systems [68].

Another important issue constitutes, that collaboration of partners can be defined as
being based on achieving a common goal together with commitments of every partic-
ipating partner. This differs significantly from short-term interaction, where partners
have no shared (long-term) goal [69]. Although, it is hard to distinguish these two
terms in many cases at first glance, the difference becomes clear if errors occur: part-
ners that act jointly and collaborative with the same global goal in mind can support
each other and assist, because both know what needs to be done [70].

Therefore, to manage a predefined goal—e.g. the joint assembly of a product—
the robot-system needs to know about the task in the production process as well as
the human worker (task sharing). If the representation of the subtasks is as generic
as possible, the role allocation can dynamically change even during the execution. A
common representation of human and robot capabilities is an important issue in order
to assign tasks according to specific skills [71]. With the knowledge about a shared
plan, the system is able to predict possible next action steps and prepare these steps
pro-actively.

For cooperation between robot and human, it is important that both partners co-
incide on the same objects and topics and create a perceptual common ground with
a shared representation [16]. Considering joint attention, the system needs to have
the ability to control the focus-of-attention of the human to direct to relevant objects or
has to be able to estimate the human’s focus-of-attention directly. This can also include
pointing gestures as integrated in [33] or the head orientation of the human worker.

The transfer of these basic mechanisms of joint-action to a robotic assistive system
can improve the collaboration of human and robot. This also includes the unconscious
adaption of own actions using anticipatory knowledge about the actions of the team
member (see Sections 4.2 and 4.3) and the recognition of what the team partner is
currently doing (see Section 3.1). The benefit of transferring anticipatory action to a
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human-robot context is also shown in [72], where a significant improvement of task
efficiency compared to reactive behavior was possible. The effects of transferring the
deeper investigated aspects action observation and coordination to the robotic system
JAHIR are evaluated in Sections 5.3 and 5.4.

2.4 Software design aspects

2.4.1 Design principles

The previous sections presented important factors and aspects that need to be consid-
ered for and that influence the design of flexible, dynamic, and adaptive collaborative
system. The safety issues and the theoretical cognitive psychological aspects need to
go hand in hand. In addition with the demand to have a directed behavior of the robot
to reach a goal, robots need to connect perception, action, inference, and management
components. Hence, relevant principles for the software design are presented to cover
these demands.

• Concurrent modular processing,

• structured management of knowledge,

• and dynamic contextual processing

have been found to be important aspects to design software for robotic systems [73].
To especially allow safer and more efficient collaboration between human and robot
considering the psychological and safety aspects, these principles have been supple-
mented in [74] with guidelines regarding

• robustness,

• fast reaction time,

• and context awareness.

All of these design principles are important for robotics in general, but especially cru-
cial for collaborative robotic systems. For a detailed discussion how these principles
are realized in the JAST system please refer to [74]. Deeper insights on the realization
in the JAHIR set-up are given in Section 5.2.
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Concurrent modular processing

Robot architectures incorporate many single processing modules that run in parallel
and are often distributed among multiple computers. In this way, complicated tasks
can be solved by combining higher-level information as a result of solving sub-tasks
by specialized parts of the system, which can be executed in parallel. To give an
example, the vision system may track a human with a specialized tracking module
while the actuator control makes sure that the robot does not collide with the human
based on the position data coming from the tracking results.

This design principle also implies that the system can consist of several hierar-
chical or parallel specialized sub-architectures to structure complex processing. Us-
ing the same interfaces or representation of data for similar information, modules can
be renewed or extended easily and flexibly due to the modular architecture design.
This includes also the intrinsic possibility to distribute modules over several computers
employing modern middlewares (see Section 2.4.2) to cope with high computational
needs of the modules.

Structured management of knowledge and dynamic contextual processing

Multiple processing modules produce data that might be needed by other modules to
perform their processing. The flow of information between the single parts of the sys-
tem and the form of representation of information needs to be organized, steered, and
controlled. Information inside the architecture is defined by sub-architecture ontolo-
gies and general ontologies. The term ontology is considered as a general expression
for any kind of representation format [73]. This means, each sub-component of the sys-
tem has its own representation for knowledge in the most appropriate way to perform
and solve given tasks. A perception module might represent known objects in terms
of features such as key-points or histograms along with information about the shape.
Other modules are possibly only interested in the positional information and the shape
of the object. Therefore, externally the perception module might communicate only
positional and body structure data to other sub-architectures.

Although the internal module representation is specialized, the inter-module com-
munication needs to follow standardized interfaces. Hence, functional blocks share
the same communication channel to distribute their knowledge system-wide to inter-
ested modules. This way, a seamless integration of new input and processing modules
becomes possible without the need to adapt existing modules. In order to realize a
goal-oriented behavior, certain control mechanisms need to steer the information flow
of the concurrently working system components. [73] proposes that sub-components
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have to announce their intent to process information while a controlling system com-
ponent grants a permit if they are allowed to do that or not.

Robustness

Robustness is associated with robust behavior of the system at all times. That means
a robot must be aware of possible unclear, ambiguous, or unexpected situations, and
react in a reasonable way. In the context of robot controlling (see Section 4.1), robust
robot behavior includes

• that the trajectories are computed on-line to be able to react quickly on new
perceived events,

• that the complex behavior of the robot is decomposed into atomic tasks that can
be arbitrarily hierarchically arranged and that can suspend the motion in the case
of errors or critical situations,

• and that motions are suspended before actual collisions can occur—e.g. by em-
ploying an appropriately chosen internal world representation.

This can also be supplemented with a coordinated suite of safety components as pro-
posed in [61, 62].

Since there are a lot of errors potential sources in such a complex robotic system,
the system must be able to compensate for erroneous or missing input. When errors
occur, the system has to be able to identify these errors and to develop strategies to
solve them. As presented in [75], a robot that shows signs of incompetence, looses
significantly the human’s trust in the system which leads to a decrease in the efficiency
of the overall collaboration performance.

Robustness also includes the use of natural cues as robust input modalities. Natural
does not always mean, that control via speech is the best choice. Natural means that
the human should be allowed to use the communication strategies that are known and
trained for a specific case. Alternative modalities include drawing a sketch and using
simple gestures if they fit [66]. This way, the input to the system becomes more natural
and more robust.

Although it seems, that robustness is mostly a matter for input processing modules
that have to interpret the robot’s environment in a stable way, the robot architecture
itself can also contribute to increase the overall robustness of the system. For this, the
architecture has to guarantee the transmission of information in the data flow as well
as to provide mechanisms that help sub-components of the architecture to recover in
case of breakdowns [74].
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Fast reaction time

Fast reaction time of a robotic system relates in this work to the time needed to react
in different situations [74]. This also includes the fast reaction on input signal as e.g.
speech commands or changes in the environment. Consequently, interaction capabil-
ities of a system are highly related with the ability react and to transmit information.
The interaction will suffer, if this transmission is designed inappropriately or disturbed
by delays, jitter, noise, and so on [76]. This also includes non-verbal aspects, which
trigger unconscious adaption as shown in Section 4.2, where the choice of the mo-
tion profile of the robot has influence on the reaction time of the human. That means,
that also the way robots move communicates important information to the user and
can be used—if the correct information is transmitted—to increase the collaboration
efficiency.

For a goal-oriented task, timing is a crucial point that can confuse the interac-
tion [76]. Section 4.3 shows the positive effects if the timing is adapted towards the
human. With an evaluation of timing the fluency and therefore the performance of the
collaboration between human and robot can be improved.

Robots have to process and react fast to input from their environment. This has
mainly two reasons: on the one hand, humans will only accept robots if they are re-
acting fast to what they say or do. Most confusion regarding the interaction between
human and robot arises when the robot is needs too much time to react to the human’s
utterances or does not react at all. On the other hand, the robot needs to quickly detect
dangerous situations for the human. Hence, the robot architecture is important for fast
reaction times in two ways:

1. Without a suitable infrastructure even fast system sub-components cannot con-
tribute to a fast reaction due to e.g. latency in the communication. The ar-
chitecture has to take care that information between components flows fast and
reliably.

2. The architecture has to provide dedicated fast processing channels for security-
related parts of the system. For example, the architecture needs a specially
designed connection for robot control. Over this connection the robot can be
stopped at all times. This can be done for example from outside the system by
pressing an emergency button or by dedicated input processing modules. For
instance a specialized module that measures the loudness of the human utter-
ances could stop the robot in case the loudness reaches a certain threshold, which
would indicate an emergency situation.
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Context awareness

In order to increase the safety for the human, the robot has to react to unknown situa-
tions fast and also with a reaction that takes into account the partially available context
of this situation as fast as possible. This means that the robot has to understand the
current situation rather than to just react on signal input. Also, only with a reasonable
fast reaction time of the robot the human can judge the robot’s actions, which also
inherently increases the safety for the human.

Therefore, robotic software architectures need to be designed with these principles
in mind and to combine reaction-based methods (for short-term goals) with high-level
methods for reasoning (to reach long-term goals). Reaction-based or low-level meth-
ods can be seen as part of the embodiment movement as described in [77], whereas
high-level methods are part of more traditional artificial intelligence (AI). This mix-
ture of new and old approaches is also in agreement with [78], that argues that an
architecture for a truly cognitive technical system has to combine methods from em-
bodiment and traditional AI, which also shows similarities to how human perceive and
reason about their environment [74].

When robots process input of sensor modules, there will be inevitably situations
in which the input is ambiguous or where not enough input information is available to
compute a complete hypothesis of which action to execute next. In these situations,
robots have to make use of context information. Therefore, robots need suitable rep-
resentation formats for the knowledge about the world and defined interfaces to the
software modules that provide the information about the surrounding.

Context awareness has to be a built-in feature of a robot architecture in order for the
robot to interact with its environment in a reasonable and safe way. Therefore, context
awareness should be included in two ways:

1. The architecture provides the infrastructure for the input modules so that they
can publish their recognition results system-wide—and thus in a sense generate
the context for the robot.

2. Since the safety of the human co-worker of the robot is also part of the context, in
which the robot is working in, the architecture should have built-in mechanisms
to increase the safety for the human.
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2.4.2 Robotic middlewares

Since the application field of robots evolve towards the usage in the real world with
many uncertainties, dynamics, and unstructured environments, computational needs,
inter-module, inter-computer, and even inter-programming language and inter-opera-
ting system become relevant constraints that need to be fulfilled to solve the high task
complexity and therefore the computational demands. This is also followed by the
need to integrate a high number of hard- and software modules that form the complex
robotic system.

Therefore, high granularity of modules that communicate with each other via the
same interfaces and data structures enable fast implementation of new applications, im-
prove flexibility, maintainability, and exchange of modules [79]. In the area of robotics,
many approaches exist to create this kind of glue between modules and hardware com-
ponents with so called robotic middlewares. One of the major problems of most of
the currently available robotic middlewares is the not adequately solved issue about
security mechanism within the communication [80].

Many robotic middlewares were created in the past. Well-known middlewares are
among others [80, 79, 81]:

• Orca1 is an open-source framework for developing component-based robotic
systems based on ICE the Internet Communications Engine2 as middleware
backbone. The component act stand-alone and communicate via defined inter-
faces.

• Player3 provides a distributed access to a variety of robots and sensor hardware.
The information sharing takes place via client-server connections.

• OpenRTM4 is a robotic technology middleware developed and distributed by
Japan’s National Institute of Advanced Industrial Science and Technology to
build robots and their functional parts in a modular structure.

• YARP5 is middleware that clearly decouples modules and devices in a distributed
manner.

• At the moment, the recently introduced Robot Operating System (ROS)6 by Wil-
1http://orca-robotics.sourceforge.net/
2http://www.zeroc.com
3http://playerstage.sourceforge.net/
4http://www.openrtm.org/
5http://eris.liralab.it/yarp/
6http://www.ros.org
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low Garage1 is very popular in the robotic community with an increasing number
of modules available. As ROS provides a software management and design tool
chain, the integration of new and/or own modules eases up.

1http://www.willowgarage.com
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Chapter 3
Action observation
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This chapter sets the basis of transferring the psychological mechanism action obser-
vation of joint action to a robotic system. This mechanism enables an assistive robotic
system to predict the next goal based on the current behavior of the opponent to assist
with pro-active behavior. Hence, the system needs to recognize the current action of
the human using captured information form sensory data. An exemplary assembly sit-
uation was designed and afterwards executed by multiple subjects (Section 3.1). The
recorded data was used to train models that analyze the workflow of the assembly.
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The experiments revealed that it is sufficient to use only information derived from the
hand position. Therefore, a hand tracking method was developed (Section 3.3) using
model-based visual tracking (see Section 3.2).

3.1 Workflow analysis of assembly tasks

Dynamic workflows with pro-active support of the robotic assistive system can only
be achieved, if the system is able to recognize the actions of the human counterpart.
In an assembly task, the sequence of actions—i.e. the assembly workflow—underlies
certain constraints. Although, there are multiple ways to assemble a specific product,
the number of ways is limited and the goal is unique. Therefore, if an assistive system
knows, in which state of assembly the human is acting, future steps can be pro-actively
prepared in advance.

In the domain of modeling and monitoring actions in surgeries, workflow analy-
sis has been successfully employed [82, 83, 84]. Context-aware operating rooms are
able to assist the surgeon with context-sensitive user interfaces [83]. In the area of
robotics, the work of [85], for example, focuses on learning by demonstration and to
replay demonstrated actions. Since, related work proofs that Hidden Markov Mod-
els (HMMs) can be successfully employed, the method to analyze the collaborative
assembly tasks between human and robot also bases upon HMMs.

3.1.1 Experimental design

In an experiment originally designed to investigate the timing of actions [87, 86], 25
subjects were instructed to assemble a tower by combining six cubes with several bolts.
Each cube features one to five holes on two opposing sides as shown in Fig. 3.1(b).
With the number of bolts needed to stack two cubes, the complexity of the assembly
step varies. As depicted in Fig. 3.1(a), subjects were sitting on a desk and had to
build towers upon a board. In total, every subject mounted 6 towers in a row. A box
containing the bolts was positioned to the left. Cubes were available to the human from
a slide placed in a way that the foremost cube laid at roughly the handover-position of
an imaginary cooperation partner [87]. The sequence of the cubes on the slide with
respect to the number of holes was varied among the persons. The number of holes of
two subsequent cubes always matched each other. Furthermore, the board in front of
the subjects initially contained the correct number of bolts for the first cube. That way,
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3.1 Workflow analysis of assembly tasks

(a) (b)

Figure 3.1: Baja experimental set-up - Subjects assemble a tower by combining six
cubes (b) provided by a cube vendor in front of them with several bolts taken from a box
on their left (a). During the experiment the position and orientation of thumbs, forefingers,
back of both hands, head, torso, and gaze was recorded [86]

the assembly task incorporated the taking of six cubes and the connecting with bolts
for five times.

The movements of the subjects were recorded by a Polhemus Liberty tracking de-
vice1 which measures the position and orientation of eight sensors at a sample rate of
240Hz. The sensors were attached to the thumbs, the forefingers, the back of both
hands, the head, and the torso. Moreover, the intersection of the person’s gaze with the
table was recorded with the eye-tracking device “EyeSeeCam” [88].

The input data was smoothed and the numeric approximations of velocity, acceler-
ation, and jerk were computed. Since the usage of pure positional data did not satisfy
the demand to generalize the model for the task, because small changes in the set-up
let pure positional trained models easily fail, the positional data is only used to acti-
vate different table zones. The table zones were defined around the cube slide, around
the box of bolts and around the assembly place. With the application on the JAHIR
set-up in mind this enables high flexibility regarding the arrangement of the setting
while being able to use the same trained models. Additionally, flexibility is gained in
the sensory input. With an adaption of the update rates and measuring units, the same
models can be used to analyze the same task in slightly changed set-ups.

1http://www.polhemus.com/?page=Motion_Liberty
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reaching 
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(cube)

assembly

reaching 
out (bolt)

grasping 
(cube)

grasping 
(bolt)

retraction 
(cube)

retraction 
(bolt)

Figure 3.2: Composite HMM - Individual continuous HMMs are trained and connected
in a composite HMM for each hand. Grey action HMMs are only available for the right
hand model [90]

3.1.2 Structure of the workflow models

The tower assembly task of the experiment can be divided to seven different actions
that need to be recognized by the system:

1. reaching out for a cube,

2. grasping a cube,

3. retraction of the cube for the assembly,

4. reaching out for a bolt,

5. grasping a bolt,

6. retraction of the bolt,

7. and performing the assembly itself

For each of the seven actions a left-to-right continuous HMM using the Baum-Welch
algorithm [89] has been trained. Experimental results revealed that six states with skip-
ping transitions per model and two normal distributions for each state are appropriate
for all individual action HMMs. The skipping transitions allow that unnecessary states
fall out during the training phase. Hence, the number of states for each action ranges
between three and six states.

These action HMMs are then connected by means of a grammar and form the
workflow analysis composite HMM as depicted in Figure 3.2. Since the left and the
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3.1 Workflow analysis of assembly tasks

right hand act mostly in parallel and lead to a large number of movement combinations,
a composite HMM per hand was used instead of a single composite HMM covering
both hands. The grammar allows taking cubes for the right hand, taking bolts and
assembling for both hands to follow in an arbitrary manner. It restricts the three minor
movements of taking a cube to succeed in the correct order. The same holds with
respect to taking a bolt.

3.1.3 Applying the workflow models

The experiment has been accomplished with 22 subjects using a 11-fold cross-valida-
tion. That means, the HMMs were trained on 20 persons and tested on the remaining
two ones. Three out of the total number of 25 subjects performed the assembly task
incorrectly and were excluded from the dataset. Although each person assembled six
towers, a closer look into the data sets revealed that some subjects dropped bolts near
the cube slide, wrongly decided to take a cube, or stopped the execution of movements
in the middle. These wrong trials were also excluded as training sequence to have only
correct motions for training the single action HMMs. But at least three towers were
always assembled per subject. The testing was done in a single run on the data set.

Different permutations of the available sensor data were individually investigated
in nine experimental data sets as shown in Table 5.1. The data of the torso sensor
was never taken, because the subjects hardly moved due to the stationary sitting po-
sition in front of the table. In the experiments the accuracy of the workflow recogni-
tion was evaluated. The accuracy was defined as the percentage of correct recognized
action labels. Further, if the recognized label is in the same compound action (see
Section 3.1.2), it is also judged as being correct.

The usage of all available input data (table zones, gaze data and velocity, ac-
celeration and jerk of head, thumbs, forefingers and back of hands) results in a 70
dimensional feature vector. With all information available, an average accuracy of
(95.67±5.07)% was achieved for the right hand and (87.68±5.32)% for the left
hand. Although the table zones seem to describe the task workflow sufficiently, the
recognition results using only the table zones are very low with (56.27±12.64)% for
the left and (74.18±14.23)% for the right hand. By reducing the data in the feature
vector to the table zones and the velocity, acceleration and jerk of the back of both
hands, the average accuracy scores high with (95.11±5.20)% for the right hand and
(83.48±7.39)% for the left hand. Compared to the results with full dimensionality,
these values are not remarkably lower. Comparable results can also be reached by using
all data except the table zones ((87.66±4.67)% for the left hand and (90.61±3.46)%
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Table 3.1: Recognition results for different data sets - The table shows the accuracy of
the workflow recognition for the left and the right hand along with the used data sources
and the corresponding dimensionality of the feature vector. The standard deviation results
from the 11-fold cross-validation [90]

data set dimensions accuracy (%)
left hand right hand

all data 70 87.68±5.32 95.67±5.07

gaze+hands+fingers+head 65 87.66±4.67 90.61±3.46

table zones 5 56.27±12.64 74.18±14.23

table zones+gaze 7 56.15±11.12 78.26±13.48
table zones+head 14 46.36±10.78 75.17±19.60
table zones+gaze+head 16 52.50±9.02 75.56±11.03

table zones+hands 23 83.48±7.39 95.11±5.20
table zones+fingers 41 85.38±6.47 95.86±4.79
table zones+hands+fingers 59 87.08±5.18 95.94±5.22

for the right hand). This indicates, that the different data sources incorporate redundant
information.

Further, the results show that it is sufficient to focus on the hands to be able to
reconstruct the actions of the human. Although robustness might get lost due to the
lack of redundant information, a more important aspect is gained: flexibility. The
task is abstracted from high input dimensionality and the experimental installation.
Additionally, this finding enables the transfer of the trained models to the JAHIR set
up as shown in Section 5.3. All tested data set permutations can be found in Table 3.1
along with the recognition accuracy for both hands.

Additionally, an experiment was performed to show the adaption capabilities of
the model. 12 subjects with complete data sets—i.e. six towers were assembled—
were chosen for the experiment using the table zones plus hand data as input. Each
subject was trained independently using one to five complete tower buildings and tested
on the remaining five to one sequences. Figure 3.3 shows the resulting accuracy and
corresponding variance for the experiments. The 12 single recognition results show in
average that the accuracy increases with the number of training sequences while the
variance in the resulting accuracy reduces. The results show, that the system is able

32



3.2 Model-based visual tracking

 80

 85

 90

 95

 100

 0  1  2  3  4  5  6

m
ea

n 
ac

cu
ra

cy
 in

 [%
]

number of training sequences

left hand

(a)

 80

 85

 90

 95

 100

 0  1  2  3  4  5  6

m
ea

n 
ac

cu
ra

cy
 in

 [%
]

number of training sequences

right hand

(b)

Figure 3.3: Adaption of HMM - This diagram shows the mean accuracy for 12 subjects
(red) and the corresponding standard deviation (green bars). Each subject was trained
independently using one to five complete tower buildings and tested on the remaining five
to one sequences

to estimate the workflow for the applied assembly task with 83.5% for the left and
93.28% for the right hand after the first run and reaches an average accuracy of 91.1%
for the left and 96.35% for the right hand after 5 assembly sequences. Hence, with
a well-defined structure of possible basic actions of the human, the system is able to
recognize the succession of actions after only few training sequences.

3.2 Model-based visual tracking

To observe actions of humans, the robotic system needs have certain perception capa-
bilities at best without augmenting the human. An efficient way to do that is to use
models that describe and encapsulate a-priori knowledge that is “useful” to solve the
perception task. The results of the workflow analysis experiments in Section 3.1.3
show, that it is sufficient to focus on information derived from the hand position for the
presented assembly task. Hence, a model-based visual tracking approach was chosen
to robustly estimate the hand position.

Model-based visual tracking deals with the problem of localizing one or more ob-
jects in a sequence of images employing computer vision techniques along with a-
priori knowledge about the object and knowledge from past estimations. Models are
used to form this a-priori knowledge and describe the acquisition of the visual data
(Section 3.2.1), the degrees of freedom (Section 3.2.2) and the expected motion of the
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Figure 3.4: The pinhole camera model - The scheme depicts the projection of a point
XW described in the world coordinate frame onto the image plane of a pinhole camera (yC)

target object (Section 3.2.3). Further, prior information may consist of shape, appear-
ance, deformation parameters, kinematic structure, as well as any useful information
about sensors and context that may be specified in advance or refined during the task
itself. The sequential estimation is then done by applying Bayesian tracking schemes
(Section 3.2.4).

The background knowledge of model-based visual tracking presented in this Sec-
tion follows the book [91] about this topic and the OpenTL1 software framework,
which was co-developed and supported by the work performed throughout this thesis.
OpenTL is a hierarchical, object-oriented general-purpose software library written in
C++ for visual tracking tasks. With this generic software framework as backbone, the
approaches are applicable to many other scenarios by e.g. re-parameterizing or the
exchange of a specific model (e.g. the object to be tracked).

3.2.1 From world to camera space: the projection model

Visual tracking is mostly done using cameras as input sensors. Cameras map the three-
dimensional world to two-dimensional views through their optics on a chip area. To
track three-dimensional objects or objects that move in the three-dimensional space,
the mapping between world and camera needs to be applied to know how these objects
look in specific camera views.

1http://www.opentl.org
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3.2 Model-based visual tracking

To describe the mapping of points (XW ) given in a three-dimensional metric world
space to the two-dimensional pixel based screen space of a given camera (yC) [92] as
depicted in Figure 3.4, we need the acquisition model of the camera (intrinsic param-
eters) and the translation tC,W and orientation RC,W of the camera to the world origin
(extrinsic parameters) denoted by

TC,W =

[
RC,W tC,W

0 1

]
, (3.1)

resulting in a 4 × 4 transformation matrix.
If cameras have negligible lens distortions or undistorted images, the projection

into screen coordinates can be described by the intrinsic projection matrix of the cam-
era

K =

 fx σ cx 0
0 fy cy 0
0 0 1 0

 , (3.2)

where fx and fy are the focal lengths in x- and y-direction. The metric focal length f m

given in meter is normalized with the size of the pixels (pm
x and pm

y ) also given in meter
to define the unitless focal length in horizontal and vertical direction

fx =
f m

pm
x

(3.3)

fy =
f m

pm
y
. (3.4)

cx and cy are the pixel location of the principle point of the camera, which is the inter-
section of the optical axis with the camera plane (retinal plane). The principle point
can be expressed in pixels by normalizing the actual chip size (cm

x and cm
y ) with the size

of the pixels:

Pp = (cx,cy) =

(
cm

x
pm

x
,

cm
y

pm
y

)
. (3.5)

The screw factor σ is related to the axis displacement α of the single pixels:

σ = tan(α) · fy. (3.6)

If the vertical and horizontal axis of the pixels are perpendicular, the screw factor σ = 0
corresponding to the pinhole camera model. This model is often appropriate enough
and therefore used in later described applications to describe the intrinsic projection of
cameras.

35



3. ACTION OBSERVATION

Now, that the intrinsic projection characteristics of the camera is described, the pro-
jection of point XW described in the world coordinate frame to the point yC in camera
space is given by

yh
C = K ·TC,W ·Xh

W (3.7)

yh
C = PC,W ·Xh

W (3.8)

with PC,W being the cumulative projection that includes the extrinsic and intrinsic map-
ping. Please note, that the two points yh

C and Xh
W are given in homogeneous coordinates,

where a dimension is added to allow a direct multiplication with the projection matrix.
To transform the homogeneous coordinates back to non-homogeneous ones, the non-
linear operation

π
2(x,y,h) =

[ x
h

y
h

]T (3.9)

π
3(x,y,z,h) =

[ x
h

y
h

z
h

]T (3.10)

is applied for two-dimensional and three-dimensional points respectively:

y = π
2(yh) (3.11)

X = π
3(Xh). (3.12)

In model-based visual tracking, complex three-dimensional models are often used
to describe the target object as for example an airplane in [93]. These models consist
of multiple points described in a local coordinate system of an object (XO). Hence,
to project these points, also the local transformation to the object coordinate system
needs to be considered:

yh
C = K ·TC,W ·TW,O(pO) ·Xh

O (3.13)

yh
C = PC,O(pO) ·Xh

O. (3.14)

As described in the next section, the transformation of an object in the world can
efficiently be expressed by means of pose parameters pO .

3.2.2 Modeling degrees of freedom of objects using pose parame-
ters

Pose parameters p are a vectorial representation of the degrees of freedom of an object.
These parameters control a homogeneous transformation matrix T (p), that may be a
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sub-group of the general linear group GL(n) of invertible (n×n) matrices, closed under
matrix multiplication [91]:

T (p) =
[

A(p) t(p)
v(p)T 1

]
(3.15)

with v(b) being a three-dimensional vector, describing the homographic mapping1,
t = [tx, ty, tz]

T being the translations along the coordinate axis, and A(p) being a generic
3×3-matrix representation for linear transformation:

A(p) = R(p) ·Rs(p)−1 ·S(p) ·Rs(p). (3.16)

S(p) = diag(sx(p),sy(p),sz(p)) defines the scaling transformation, Rs(p) defines the
rotation into the coordinate frame where the scaling shall take place, and R(p) de-
scribes the rotation (R(p)T R(p) = I).

Opposite to a full matrix representation, pose parameters model only the actual
degrees of freedom. As an example, consider the Euclidean group SE(3). The motion
of a rigid body is representable in this case with the homogeneous transform given by

T (p) =
[

R(p) t(p)
0 1

]
. (3.17)

Since this specification offers 3 rotational and 3 translatory degrees of freedom, the
resulting pose parameters are:

p = (α,β ,γ,x,y,z). (3.18)

If the motion of the object is restricted to have only translations, then the pose reduces
to

p = (x,y,z), (3.19)

corresponding to the transformational representation

T (p) =
[

I t(p)
0 1

]
. (3.20)

The optimization and/or estimation of only active parameters of the transformation
matrix results in more efficient computation and the ability to describe easily the dy-
namical updates in a compositional way.

1for non-homographic transformations v(p) = [0,0,0]T
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Since rigid rotations using Euler angles R(α,β ,γ) have multiple values for p that
lead to the same rotation, a local parameterization solves the problem to find the cor-
responding transformation matrix

Tt = Tt−1 ·δT (δ pt). (3.21)

This compositional update1 [94] is singularity-free around δT (δ p = 0) = I due to its
incremental characteristic. In this way, the tangent space can be expressed in a Lie
algebra [95]. The Euclidian group SE(3) (see (3.17)) leads to the parameterization

M (δ p) =
6

∑
d=1

Gdδ pd (3.22)

where Gd are (4× 4) Lie generators for the active translational and rotational motion
parameters in local coordinates.

G1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 G2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 G3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0



G4 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 G5 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 G6 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


Any matrix in SE(3) can be obtained through the exponential mapping

δT = exp(M (δ p)) (3.23)

which is singularity-free around δ p = 0 [91].

3.2.3 Modeling object dynamics by auto-regressive processes

If an object should be followed in a sequence of images, useful information is the
knowledge about the dynamical behavior of the target object. The better this behavior
can be defined in advance, the more accurate is the generation of possible locations
of the object for future measurements and the more misleading measurements can be
excluded from evaluation.

1in comparison to an additive update pt = pt−1 +δ pt performed in absolute parameter space
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Figure 3.5: Different motion models - The diagrams show the three-dimensional mo-
tion trajectory of an object that moves with (a) Brownian motion, and (b) with a constant
velocity white noise acceleration model (CWNA)

Since the precise object dynamic is often unknown, it can be approximated by
auto-regressive (AR) processes (pk = F1 pk−1 +F2 pk−2 + . . .+W 0wk ) [91]. The past
is propagated using time dependent matrices for the transition of the past (At), time
dependent noise gain (Bt), and the unit covariance wt

st = Atst−1 +Btwt (3.24)

with st = [pt , ṗt , . . .], in terms of the pose parameters pt and the corresponding time
derivatives. The process noise of the motion Q is given by

Q = BtWtBT
t (3.25)

where Wt is the noise covariance matrix corresponding to wt .
A first-order example of such a process where the state only incorporates the pose

(st = [pt ]) is the Brownian motion. Figure 3.5(a) depicts the generated brownian tra-
jectory of an object with three degrees of freedom (see (3.19)). The transition matrix
and the noise gain matrix for this motion is given by

F = [I] (3.26)

At = [I] (3.27)

B0 = [I] (3.28)

Bt =
[
W 0

τ
]
, (3.29)

39



3. ACTION OBSERVATION

with τ = t − (t − 1) being the time lag between the current state and the past state
estimation. This leads to the state prediction

st = [pt ] = pt−1 +wt . (3.30)

A second-order example is given with a constant velocity motion model with white
noise acceleration (CWNA). This model uses the first time derivative st = [pt , ṗt ]. The
process matrices for this kind of motion that is depicted in Figure 3.5(b) are given by

F0 = [2.0I] (3.31)

F1 = [−1.0I] (3.32)

B0 = [I] (3.33)

and result in the time dependent matrices

At =

[
I Iτ

0 I

]
(3.34)

Bt =

[
0.5 · Iτ2

Iτ

]
. (3.35)

This leads to the current state prediction

st =

[
pt

ṗt

]
=

[
pt−1 + ṗt−1τ + 1

2 Iwtτ
2

ṗt−1 + Iwtτ

]
. (3.36)

Further, with the representation of motions in this way, motion models can also be
learned from ground-truth sequences [96].

Since the singularity free compositional update should be used for the state dy-
namics (see (3.21)), the dynamical model needs to be formulated in terms of δ p and
its temporal derivatives [97]. Therefore, the state is expressed in an incremental man-
ner δ s = (δ p,δ ṗ,δ p̈, . . .):

δ st = f (Tt−1,δ st−1)+Btwt (3.37)

where the previous incremental state δ st−1, is referred to Tt−1, while the noise wt is
additive in δ st . Although incremental parameters refer to local coordinates, the same
dynamical properties of the original model are kept [91]. The AR model formulates in
terms of incremental states in the following way

δ st = Atδ st−1 +Btwt (3.38)
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with a compositional update after each state update on the transformation matrix

Tt = Tt−1δT (δ pt) (3.39)

δ pt = 0. (3.40)

3.2.4 Sequential estimation with Bayesian tracking schemes

The main advance of tracking systems compared to frame-by-frame detection methods
is the integration of past information with current knowledge to perform the state es-
timation. That means, that the dynamical model with corresponding state hypotheses
gets combined with the current measurement zt . zt can be instantiated as

• raw sensory data such as an image (pixel-level measurement),

• extracted features associated with the target object (feature-level measurement),

• or a direct estimation of the object’s state (object-level measurement).

All past measurements Zt−1 are also incorporated in two probabilistic filter stages [98,
99]

1. Prediction (Kolmogorov-Chapman equation):

P
(

st |Zt−1)= ∫
st−1

P(st |st−1)P
(

st−1|Zt−1) (3.41)

2. Correction (Bayes’ rule):

P
(

st |Zt)= kP(zt |st)P
(

st |Zt−1) . (3.42)

In the following, concepts and application conditions of several tracking filter follow-
ing this scheme are described. A general review of Bayesian filters can be found for
example in [100] or the OpenTL book [91]. For more detailed descriptions please refer
to these references.
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Kalman filters

If the object dynamics and the measurement model are linear and Gaussian processes
with zero-mean, white Gaussian noise variables

st = Atst−1 +Btwt (3.43)

zt = Htst +Ctvt , (3.44)

the Kalman Filter [101, 91] is the optimal solution and instantiates the prediction/cor-
rection scheme as follows

1. Prediction:

s−t = Atst−1 (3.45)

Σ
−
t = AtΣt−1AT

t +Qt (3.46)

2. Correction:

st = s−t +Kt
(
zt−Hts−t

)
(3.47)

Σt = (I−KtHt)Σ
−
t (3.48)

where the Kalman gain matrix is given by Kt = Σ
−
t HT

t
(
HtΣ

−
t HT

t +Rt
)−1, Σ− and

Σ are the prior and posterior covariance matrix, and Qt and Rt are the overall noise
covariance matrices for the motion and the measurement process.

Since the object dynamics and the measurement model are possibly non-linear, but
with additive Gaussian noises

st = ft (st−1)+wt (3.49)

zt = ht (st)+ vt , (3.50)

the assumptions of the standard Kalman filter are no longer valid. An approximated
sub-optimal solution can be found, if the dynamic and the measurement process func-
tions f ,h can be linearized around the current mean state. Using the corresponding
Jacobian matrices Ft and Ht for the dynamic and measurement process, the resulting
prediction-correction scheme forms the Extended Kalman Filter (EKF) [102, 91]

1. Prediction:

s−t = ft (st−1) (3.51)

Σ
−
t = FtΣt−1FT

t +Qt (3.52)
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2. Correction:

st = s−t +Kt (zt−ht (st)) (3.53)

Σt = (I−KtHt)Σ
−
t . (3.54)

Another solution that can handle non-linear state estimations is the Unscented
Kalman Filter (UKF) [103, 104, 91]. The UKF statistically approximates the state
distribution by weighted state hypothesis around the principal axes of the covariance
matrix using an unscented transform with so called sigma points. In the non-weighted
case, sigma points can be expressed by

si = s̆+
(√

nΣs
)

i
(3.55)

si+n = s̆−
(√

nΣs
)

i
(3.56)

π
i
m,π

i
c = 1/2n; i = 1, . . . ,2n (3.57)

leading to

s̆ =
1
2n

2n

∑
i=1

si (3.58)

Σ
s =

1
2n

2n

∑
i=1

(
si− s̆

)(
si− s̆

)T
(3.59)

and

z̆ =
2n

∑
i=0

π
i
mzi (3.60)

Σ
z =

2n

∑
i=0

π
i
c
(
zi− z̆

)(
zi− z̆

)T

for the mean and covariance of the estimated state and corresponding measurement [91].
The derivative for the measurement process needs not to be computed. This makes this
kind of filter more robust to noise. The unscented transform formulation leads to a
linear increase of the number of needed hypotheses (2n+ 1) with increasing state di-
mension.

Unfortunately, the standard formulation of the Kalman filters uses a gain to update
the posterior distribution. This includes the need to invert the innovation covariance
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matrix, that is possibly very high dimensional for a large set of features in the measure-
ment process as present in the pixel-level case. This makes them better applicable for
a low dimensional measurement space [105, 106, 91]. For higher dimensions, a dual
formulation of information filters

Yt = (Σt)
−1 (3.61)

yt = Ytst (3.62)

avoids the matrix inversion in the update step. An inversion needs to be only computed
in the prediction step where the dimension—e.g. the degrees of freedom—are small
and with constant size. Additionally, the dual formulation allows with an additive
update a sequential data fusion [107, 108] and distributed multi-sensor schemes. The
dual formulation can be used with the EKF leading to the Extended Information Filter
(EIF) [109, 110, 91]

1. Prediction:

s−t = ft (st−1) (3.63)

Y−t =
(
FtY−1

t−1FT
t +Qt

)−1
(3.64)

y−t = Y−t s−t (3.65)

2. Correction:

Yt = Y−t +HT
t R−1

t Ht (3.66)

yt = y−t +HT
t R−1

t
(
zt−h

(
s−t
)
+Hts−t

)
(3.67)

st = Y−1
t yt . (3.68)

The dual formulation can also be applied to the UKF to instantiate the Unscented
Information Filter (UIF) [111, 91] leading to the prediction/correction scheme

1. Prediction:

si,−
t = ft

(
si
t−1
)

; i = 1, ...,2n (3.69)

s̆−t = ∑
i

π
i
msi,−

t (3.70)

Σ
s,−
t = ∑

i
π

i
c

(
si,−
t − s̆−t

)(
si,−
t − s̆−t

)T
+Qt (3.71)

Y−t =
(

Σ
s,−
t

)−1
(3.72)

y̆−t = Y−t − s̆−t (3.73)
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Figure 3.6: Lagrangian approach to template tracking - a sparse set of points, sampled
on a rendered image and back-projected in 3D at the average state, and possibly at different
resolutions, are re-projected at different hypotheses (sigma points) [112]

2. Correction:

ei
t = zt−h

(
si,−
t

)
; i = 0, ...,2n (3.74)

ĕt = ∑
i

π
i
mei

t (3.75)

Σ
sz
t = ∑

i
π

i
c

(
si,−
t − s̆−t

)(
ĕt− ei

t
)T

(3.76)

Σ
z
t = ∑

i
π

i
c
(
ei

t− ĕt
)(

ei
t− ĕt

)T
+Rt (3.77)

HT
t ≡ Y−t Σ

sz
t (3.78)

Rt ≡ Σ
z
t −HtΣ

s,−
t HT

t (3.79)

Yt = Y−t +HT
t R
−1
t Ht (3.80)

y̆t = y̆−t +HT
t R
−1
t
[
ĕt +Ht s̆−t

]
(3.81)

A face-tracking example shortly presents and validates three presented Bayesian
filter instantiations. The face-tracking example was chosen due to the motivation given
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Figure 3.7: Face-tracking set-up - Synchronized ground-truth data were recorded from
a magnetic sensor (Polhemus) [112]

in Section 2.3 about the psychological aspect joint attention. Joint attention of an
assistive system and the human cooperation partner is important for an efficient joint-
action [16] to share representations about events and objects, to steer the attention, and
to estimate the focus-of-attention. Behavioral studies show that the head orientation is
directly connected to the related focus-of-attention [113].

The three different Bayesian tracking approaches were tested and evaluated on real
video sequences. As basis, texture templates as shown in Figure 3.6 are used along
with

1. a least-square optimization of feature residuals in state-space integrated in a stan-
dard Kalman filter,

2. a feature-level Extended Information Filter using Lie algebras,

3. and the feature-level and incremental state based Unscented Information Filter

to track the face. A more detailed description with more experiments can be found
in [112].

One of the crucial issues in order to evaluate and benchmark the tracking results
is the generation of ground truth data. Therefore, a set-up was built up as depicted
in Figure 3.7, using a commercial magnetic field tracker as ground-truth estimator
(Polhemus Liberty1). A 6-dof sensor was taped to the subjects’ forehead. With an
update rate of 240Hz, the system delivers position and orientation of the sensor, with
respect to the base, that is denoted by TB,P.

1http://www.polhemus.com/?page=Motion_Liberty
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Figure 3.8: Face-tracking in 3D with CWNA motion model and two-resolution - Po-
sition errors (absolute parameters) are given by a comparison of estimated poses with
ground-truth data [112]

Simultaneously, a calibrated USB camera recorded video data at 30 fps that are
subsequently synchronized to the magnetic tracker data. Moreover, the position and
orientation of the Polhemus base was calibrated with respect to the camera, TC,B by
acquiring a small set of images, where the position of the Polhemus sensor was an-
notated by hand, while its 3D position with respect to the base was given by the last
column of the TB,P matrix. By assuming a perfect estimation of TB,P and noisy image
measurements, a standard pose estimation procedure can be applied [114] to compute
TC,B.

The next step in order to obtain the face-to-camera ground-truth was to compute the
face-to-sensor transformation, TF,P. This has been be done by manually aligning the
first, frontal pose of the subject in camera space, TC,F ; that is also the pose at which the
texture is acquired, and therefore corresponds to a perfect matching, with zero image
residuals. Together with the knowledge about the sensor pose at this frame, the wanted
transformation can be computed by

TF,P = T−1
C,F ·TC,B ·TB,P. (3.82)

More accurate calibration procedures could also be applied to this problem, such as
the method presented [115] for computing TF,P, followed by averages on the Euclidean
space [116] to compute TC,B. However, this requires an accurate labeling of multiple
3D camera poses, which is difficult for a monocular system especially in the depth
direction.
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3. ACTION OBSERVATION

Table 3.2: Tracking results for face-tracking - Position RMS errors for the face-tracking
sequence shown in Figure 3.8) [112]

LK+KF EIF UIF-L

X rotation 2.46470 2.19878 3.41815
Y rotation 3.89136 3.65396 4.56358
Z rotation 0.75107 0.70378 1.07299
X translation 9.05872 8.31842 8.46676
Y translation 4.01319 3.64263 4.03052
Z translation 12.90897 14.93438 19.54911

Afterwards, each ground-truth transform k can be computed by

T true
C,F = TC,B ·TB,P(k) ·T−1

F,P . (3.83)

Figure 3.8 shows the resulting position errors for the three filter used to track face
on three sequences along with exemplary screenshots from the EIF filter. For these
sequences, a CWNA model as described in Section 3.2.3 has been used in order to cope
with variable motion of the head. Moreover, the sample set of visible control points
has been re-collected at each frame, due to the fact that the head is a highly non-planar
model. Table 3.2 resumes the average position errors. All filters have performed well
on the tested sequences with robust results regarding fast motion and blurred images,
as well as partial occlusions.

Monte Carlo filters

For non-linear, non-Gaussian processes and multi-modal distributions including pixel-
level measurements, where Jacobian matrices are not available or too costly to com-
pute, Monte Carlo or particle filters [117, 118] can be applied, where the state statistics
are represented by a set of N weighted particles

P
(

st |Zt)= {sn
t ,π

n
t } ; n = 1 . . .N (3.84)

where ∑n πn
t = 1. One well-known specification is the Sampling-Importance-Resampling

(SIR) scheme [119]:
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3.2 Model-based visual tracking

1. Sample from previous posterior: sn
t ∼ P

(
st |sn

t−1
)
. This means, that the dynamic

model as described in Section 3.2.3 is applied to all N state hypotheses to gener-
ate the prior.

2. Weight the particle according to the likelihood of the measurement πn
t ∝ P(zt |sn

t )

and normalize the weights, so that ∑n πn
t = 1.

3. Re-sample the particles sn′
t ← sn

t with n′ randomly selected according to {πn
t }

and reset the weights to πn
t = 1/N.

To track multiple objects at the same time with only one filter the SIR scheme can
be extended to particles with multiple object hypothesis (MOSIR) [120]. Therefore,
one particle contains a set of i = 1 . . . I targets and forms a complete hypothesis scene
st .

P
(

st |Zt) =
{
{sn

t,i}I
i=1,π

n
t
}N

n=1 (3.85)

= {sn
t ,π

n
t }

N
n=1 . (3.86)

The weight πn of each particle n = 1 . . .N is computed by comparing its hypotheses
scenes sn

t = {sn
t,i}I

i=1 with the current measurement zt of the scene. Here, target inter-
actions can be modeled with an appropriate likelihood model.

Unfortunately, the computational costs increase exponentially if many objects and
many object dimensions are involved. Therefore, a particle filter approach based on
the Monte Carlo Markov Chain (MCMC) principle can be used to efficiently handle
multiple targets, target interactions, and uncertain data association for non-Gaussian
processes [121]. At each frame iteration the MCMC particle filter generates a new
particle set forming a Markov chain for estimating the posterior state. For generating
the chain from an initial seed particle state the Metropolis-Hastings rejection-sampling
algorithm can be used.

The MCMC approach uses only equally weighted particles during the sampling
step to approximate the posterior distribution. In order to approximate the posterior
distribution from a more stationary distribution, the MCMC filter uses additional burn
in iterations (burn in samples) that are sampled in each iteration but they are not in-
volved for estimating the posterior distribution. Since the prior distribution models
all targets simultaneously, the computational costs are dependent on the number of
particles and the number of concurrent targets tracked [122].
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The MCMC was used for example used in [123] to track multiple persons on an
experimental area of approximately 100 square meters arranged and furnished with a
kitchen and a living room [124] with 40 GigE cameras. Given this large amount of
cameras, distribution of the computational processing among multiple computers is
required, which is addressed using 14 disk-less client processing nodes operating up to
three cameras each. Therefore, a management of target detection, target tracking and
target transfer between processing nodes was developed accordingly.

3.3 Hand tracking using pixel-level likelihoods

The communication among humans incorporates many non-verbal aspects such as the
usage of dynamic and static hand gestures [125, 126, 127, 128, 129, 130]. Thus, the
determination of the hand position(s) and further the continuous estimation of the hand
motion is a very crucial step. It is essential not only in the gesture recognition domain,
but also to coordinate appropriate actions for the robot (see Chapter 4) and to recognize
the current actions of the human as presented in Section 3.1. Therefore, this section
presents two approaches to determine the hand position of a human (3.3.1 and 3.3.2).

In principle, the tracking of hands can be divided in approaches that work in the 2D
image space or in the 3D space. [131] gives a good overview of approaches for both
“worlds” and names contours [132, 119, 133], silhouettes [134, 135], fingertips [136],
colors [137, 138, 139], or a combination of multiple cues [140, 141, 142] as the main
features used for 2D hand tracking. The tracking of hands in 3 dimensional space has
the advantage to directly provide position information in global coordinates. Complex
approaches even estimate the articulation of the fingers (e.g. [105]). Such approaches
lead to high computational complexity and are not applicable to be used on-line today.

3.3.1 GPU supported particle filtering

Many examples of particle filters for single and multiple object tracking are well-
known in the literature. Most of these systems use feature-level likelihoods, where
model features including color statistics [143] or contour points [119] are selected and
matched with the current image under a given state hypothesis, applying diverse like-
lihood models. In particular, these filters achieve different degrees of precision and
robustness, as well as tracking speed, according to the specificity of the feature being
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3.3 Hand tracking using pixel-level likelihoods

(a) (b) (c) (d)

Figure 3.9: Hand tracking using a 3D mesh model - The screenshots from a video
sequence show the tracking results using a particle filter framework. By applying a pixel-
level likelihood the rotations of the hand can also be extracted (a-c). The estimation of the
hand is approximated by a weighted average of the distributed particle set (d) [135]

measured. For real-time applications, simple statistics including color histograms are
usually preferred [144, 145, 143], and provide good results for 2D problems where a
precise shape localization is not required: usually a rough estimation of translation and
scale parameters is obtained by using rectangular or elliptical models.

[135] presents a generic particle filter approach to do the tracking directly on pixel-
level supported by the graphics hardware with generic object shapes including the
possibility to estimate planar rotations. The basis of the particle filters used is given
in Section 3.2.4. This approach is well suited to be used for hand tracking tasks with
both an elliptic shape approximation or complex mesh models of the hand.

As the evaluation on pixel-level involves computing and matching the filled model
silhouette for each pose hypothesis, it can be extremely time-consuming for generic
object shapes if performed on the CPU. The time consuming computational steps are
shifted to the graphics hardware, where the execution time is much faster due to in-
dependent parallel rendering pipelines. A well-known bottleneck of current GPUs is
given by the back-transfer of the data on the main bus. Hence, the pixel-level likeli-
hood are also computed “on-board” and only the matching results are transferred back
to the CPU memory, in order to update the particle weights.

Without loss of generality, a skin-color segmentation in the HS color space is
considered as input source to compute the pixel-level likelihood, as skin-color is a
robust and distinct feature to determine hand and face regions of humans. Gaus-
sian Mixture Models (GMMs) have been widely used to do foreground segmentation
[146, 147, 148, 149, 150], because of their efficient training and evaluation procedures.
The separation of pixel luminance from the pure color channels (hue-saturation) pro-
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(a) (b)

Figure 3.10: Skin-color segmentation - An input video frame (a) and the corresponding
segmented image using a GMM (b).

vides more robustness against illumination changes. Fig. 3.10 gives an example of an
input video frame and the corresponding possible skin-color regions.

A GMM is composed of K Gaussian probability density functions (pdfs), described
by the following equation:

p(c j|Cskin) =
K

∑
k=1

wk pk(c j|Cskin) (3.87)

where pk is the kth mixture component, with weights wk normalized so that ∑
K
k=1 wk =

1, and each component pk is described by a bi-variate Gaussian

pk(c j|Cskin) =
1

2π
√
|Σk|

e−
1
2(c j−µk)

T
Σ
−1
k (c j−µk) (3.88)

with c j the 2-dimensional (H,S) color of screen pixel j. Mean and covariance matrix
(µk,Σk) for each component, as well as the mixture weights wk, are learned from a
given training set, via the Expectation-Maximization algorithm [151]. The number of
components necessary for skin detection has been widely discussed in the literature,
and ranges according to [152] from K = 2 [149] to K = 16 [153]. The GMM model
used here was built from a training data set of labeled skin-pixels, and consists of K = 2
mixture components following [149].

To classify a color pixel j, its GMM likelihood can e.g. compared to a suitable
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3.3 Hand tracking using pixel-level likelihoods

Figure 3.11: Comparison of segmentation times - The GPU outperforms the segmenta-
tion speed of the CPU dramatically (left) with constant segmentation times (right).

value pmin

z( j) =

{
1 if p(c j|Cskin)> pmin

0 if p(c j|Cskin)≤ pmin
(3.89)

which results in a binary image (Figure 3.10), which constitutes our pixel-level mea-
surement zt for tracking.

Although this segmentation step is performed only once per frame, it results in
pixel-wise expensive computations that leaves less time for the subsequent tracking
steps. As modern graphics card are becoming very popular today, because of their
computational power, the low costs, and the emerging of high-level languages such
as CUDA [154], Cg [155], or the OpenGl Shader Language [156] that allow a gen-
eral purpose use of the graphics hardware, these operations were implemented on the
graphics processing unit (GPU), using at the same time the power of the rendering
engine and the parallel pixel-pipelines. [157] presents a good survey of the possibil-
ities and limitations of the GPU. To make use of the possibilities, both computations
(3.87),(3.89) have been implemented on the GPU (NVidia GeForce 8800) by using the
OpenGL shader language [156]. The speed improvements gained by the usage of the
GPU are dramatic and increase with the image size as shown in Fig. 3.11.

In the update step of the Bayesian tracking scheme (see Section 3.2.4), the weight
πn of each particle n= 1 . . .N is computed by comparing its state hypothesis sn

t with the
current segmentation image zt . The projected filled object silhouette hn

t at each pose
hypothesis has to be computed (Fig. 3.12 (middle)) providing a binary map which
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(a) (b) (c)

Figure 3.12: Residual computation - The segmented binary image (a) and the hypothesis
silhouette image (b) are compared with each other (c). The resulting white pixels are
related to the error of the hypothesis [135]

represents the expected measurement for an ideal, noise-free segmentation under the
given pose hypothesis sn

t .
Afterwards, the residual with the current measurement zt is computed by the cost

function
en

t = ∑
y
[hn

t (y)− zt (y)]
2 (3.90)

that is equivalent to a pixel-wise XOR (see Fig. 3.12 (right)) followed by a sum of the
non-zero pixels for the binary images hn

t ,zt .
For this step, also the GPU was used, because the computation of hn can be very

expensive if performed on the CPU where no pixel parallelization can be exploited
while comparing it with zt .

The residual value (3.90) is normalized to the range [0,1] by dividing it by the
number of pixels, and the likelihood is evaluated with the likelihood model

πn = P(zt |sn
t ) = exp(− en

t
2r2 ) (3.91)

where the measurement variance r, providing the new particle weights πn, afterwards
normalized so that ∑n πn = 1. Deterministic re-sampling of the particle set [119] is
applied after each update, in order to keep a well-distributed particle set. Figure 3.9(d)
shows the weighted average of the particle set

ŝt =
N

∑
n=1

πhsn
t (3.92)

that approximates the hand position along with the distributed particle set. The result
of the hand tracking employing a 3D mesh model is depicted in Fig. 3.9(a) - 3.9(c). The

54



3.3 Hand tracking using pixel-level likelihoods

(a) (b) (c)

Figure 3.13: Multi-target tracking - The simultaneous tracking of multiple skin-colored
targets with an elliptic shape that approximates both hand and head [120]

related publication on the GPU-accelerated particle filter work was also recognized by
multiple authors that further improved and extended this approach [158, 159].

Nevertheless, if multiple skin-colored objects have to be tracked simultaneously
such as two hands or hands and head as depicted in Fig. 3.13, the same approach
can be used by applying the multiple object particle filter scheme (MOSIR) described
in Section 3.2.4. The computation of the residual and therefore the weighting of the
particles follows Eq. (3.90) with the difference, that multiple object hypotheses are
projected. The tracking of multiple targets increases the dimensionality of the over-
all system, which leads to the need of more particles to be used to approximate this
increase in dimensionality.

In scenarios where human and robot share the same workspace the robot can oc-
clude the hand(s) in a single camera view. Additionally, in interaction scenarios, the
hand positions need to be often evaluated in the 3 dimensional world space. Both
aspects can be solved by the usage of multiple cameras and/or exponentially more par-
ticles to approximate the increasing dimensions. Unfortunately, the generic particle
filter approach does not scale properly with multiple cameras and objects as the di-
mensionality increases and each hypothesis scene needs to be compared to multiple
camera views.

Since the results in Section 3.1 show, that the workflow for the tower assembly
task can be analyzed using the three-dimensional position and derived information, the
basic principles of the presented GPU particle filter approach are used while optimizing
the estimation and tracking process by the usage of a three-dimensional grid-based
approach as presented in Section 3.3.2.
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Figure 3.14: Occupancy grid tracking set up - Two cameras were mounted on the sensor
scaffold to have multiple views of the human hands. The right images show example views
of the two cameras [90]

3.3.2 Three-dimensional occupancy grid tracking

Occupancy grids are a well-known technique used in mobile robotics to solve path
planning and localization problems [160, 161, 162, 163, 164]. Recently, the application
of such grid maps was found to be well suitable to be employed in tracking tasks. [165]
uses discretized areas on the ground plane and fits GMMs to estimate the likelihood
of persons standing on a specific location. The motion of humans is modeled by a
Kalman filter. A combination of a probabilistic occupancy maps with models of color
and motions is presented in [166]. To follow and distinguish multiple persons in the
synchronized camera streams, the Viterbi algorithm and a greedy approach is used.
[167] uses hierarchical likelihood grids based on intensity edges followed by a global
nearest neighbor data association approach to perform the tracking of multiple persons
in a multiple camera set-up. All these approaches also use generative and generic
models to compare “ideal” measurements with the real—and probably noisy—sensory
data on discretized locations on one layer.

The discretization of the problem space allows a pre-computation of expected mea-
surements for all possible (discrete) locations. This reduces the computational com-
plexity during run-time and makes this approach linear scalable to multiple cameras.
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With the extension of the occupancy grid to three dimensions [90], a reliable, fast, and
robust hand tracking in world coordinates becomes possible. For the following eval-
uation, two intrinsically and extrinsically calibrated cameras mounted on the JAHIR
set-up were used. One camera is facing the human from the front and the other is
facing towards the workspace from the side as depicted in Fig. 3.14.

The volume in which the hands of the human are likely positioned and are to be
tracked can be defined. This volume is set in the world coordinate frame that is located
at the left corner of the desk. The volume of interest starts at x = 0.3m, y = −0.1m,
z = 0.0m and has the width w = 1.1m, the depth d = 0.5m, and the height h = 0.3m.
This results with a discretization step of 0.05m in 1694 locations (22 in x; 11 in y; 7 in
z direction) as shown in Fig. 3.15(a).

A cube with the length of 0.05m approximates the hand of a human. That is
roughly the dimension of the palm. This model is projected using the intrinsic and
extrinsic camera parameters as described in Section 3.2.1 to all 1694 locations in each
camera resulting in screen rectangles. If a projected model is not visible in one cam-
era, the corresponding screen rectangle is marked as invisible and will not be evaluated
in this camera. Partly visible screen rectangles are truncated to fit the camera screen.
The screen rectangles can be interpreted as expected measurement of a hand being at
a specific location. The projection to the two camera views used here is depicted in
Fig. 3.15(b). The chosen camera arrangement offers also the advantage, that the views
are approximately aligned with two world axes, which leads to axis aligned screen
rectangles. All of these steps are computed off-line.

During the on-line tracking, every incoming image is first transformed into a scale
space and then segmented by skin-color (see e.g. Fig. 3.10). Every screen rectangle
S1...C

1...R is tested on the binary image zc of camera c and the likelihood of a hand being
positioned in the rectangle r in camera view c is evaluated by

P(Sc
r |zc) =

F(Sc
r ,z

c)

A(Sc
r)

(3.93)

where F(Sc
r ,z

c) estimates the number of white pixels in the screen rectangle with an
integral image approach [168] and A(Sc

r) is the area covered by the screen rectangle.
The overall likelihood for a hand in a specific rectangle is then given by

P(Sr|z) =
C

∏
c=1

P(Sc
r |zc). (3.94)
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(a)

(b)

(c)

Figure 3.15: Overview occupancy grid tracker - (a): The discretized volume of interest
starting results with a discretization step of 0.05m in 1694 locations (22 in x; 11 in y; 7 in z
direction); (b): The approximated hand shape is projected to the 1694 locations and forms
the expected appearances; The screenshots in (c) show the projection of parts of the hand
trajectory to the 2 camera views [90]
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Given this three-dimensional likelihood distribution, all rectangle candidates that are
above a chosen global prior value are used to compute the weighted average. This
average is used to divide the data set to left hand and right hand candidates. This
assumption is valid because it is assumed to have exact two hands in the volume of
interest. For the hand candidates again a weighted average is applied leading to the
three-dimensional position of both hands.

These positions are then used as input values for two standard Kalman filters
as described in Section 3.2.4. Since all operations are performed directly in three-
dimensional space (object level), it complies with the linearity and Gaussian require-
ments of a Kalman filter [101]. The motion of the hands is modeled by a constant
velocity motion model with white noise acceleration (CWNA) (see Section 3.2.3).

The resulting position errors of the tracking are depicted in Fig. 3.16 and show
that the presented tracking approach delivers a good estimation of the hand position
compared to ground truth data. To gain the ground truth, the hand positions were
labeled in every frame of every camera and then the 3D position was reconstructed
using the Direct Linear Transformation (DLT) algorithm [92]. The standard deviation
of the position error is given with 0.0207m in x, 0.0179m in y, and 0.026m in z
direction which is a really good result considering the discretization of the space to
base points with a distance of 0.05m. The errors at the end of the sequence result,
because the subject is leaving the volume of interest and then the view of one camera,
which makes the estimation in three-dimensions hard. This can be e.g. solved, if hand
targets are added and removed automatically by the tracker. The approach works in
real-time with over 20 fps on a standard machine.
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Figure 3.16: Hand tracking results - The graph (a) show the absolute position error for x,
y, and z-direction for the tracking of the right hand compared to ground truth data. Graph
(b) shows the three-dimensional trajectory for the right hand (red) along with the ground
truth trajectory (green) [90]
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Chapter 4
Action coordination
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This chapter sets the basis in order to transfer the mechanism action coordination as
fundamental principle adjusting own actions in space and time according to the behav-
ior of the collaboration partner or the perceived context. The coordination of robotic
movement based on a hierarchy of atomic tasks including the geometric awareness
of the robot, that integrates static and dynamic geometric representations of the sur-
rounding, is presented (Section 4.1). The coordination of actions also incorporates
many conscious and unconscious aspects that need to be considered. Therefore, Sec-
tion 4.2 presents a handing over experiment that shows that the reaction times of hu-
mans can unconsciously be influenced in a positive manner by choosing appropriate
robotic motion profiles. Parameters that have to be negotiated by the subjects during
a hand over also include the right timing of actions. Hence, Section 4.3 shows how
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4. ACTION COORDINATION

the robot can use the observations of human actions to efficiently coordinate actions
in time to increase the collaboration fluency.

4.1 Task-based robot controller using orthogonal pro-
jection

For a dynamic collaboration, the actions that should be accomplished by the robot
need to be intuitively specifiable. According to [169], actions consist of several atomic
tasks that are arranged in a task-oriented way. Hence, the stacking of hierarchical tasks
together forms the hierarchical control structure for the robot [120].

Tasks can be seen as basic modules that are made to solve a specific problem in-
cluding moving to a certain position and emit control signals like velocity commands
for the robot. Since tasks can competitively interfere with each other and lead to un-
controllable or unwanted behavior of the robot, nullspaces and constraint least-square
optimization are employed to project task velocities in safe (orthogonal) subspaces of
higher priority tasks. Based on the syntax of [170], an action A can be formulated as a
compound of tasks Tk with a projection rule /k that ensures the behavior of the higher
priority task:

A = 〈T 〉n0 = Tn /n Tn−1 /n−1 . . . /1 T0. (4.1)

As most industrial robots—including the one used in the JAHIR set up—are only con-
trollable on the position- or velocity-level, the task descriptions are expressed in terms
of joint velocities (q̇):

q̇Action = q̇Tn
/n q̇Tn−1

/n−1 . . . /1 q̇T0
. (4.2)

According to the defined control structure, mainly three points need to be consid-
ered for each task:

• How can the velocity to solve the single task be computed?

• What kind of (static or dynamically changing) constraints should limit lower
priority task velocities?

• How can the lower priority task velocity be safely projected into a subspace of
the current task velocity respecting the constraints?
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Figure 4.1: Actions are defined through task compositions - The associated constraints
are respected through projections into corresponding subspaces, with execution priorities
ranging from lowest (left) to highest (right)

For the latter nullspaces with orthogonal projectors are used as described e.g. in
[169, 171] in the posture and the operational position task and a constraint least-
square optimization for the collision avoidance task as e.g. done for accelerations
in [172, 173]. With these projectors tasks get decoupled from each other (see Figure
4.1) and only the single goals and constraints need to be defined, while the rest is in-
ternally computed. Application examples of the task-based controller applied in the
JAHIR set-up are given in Section 5.4.1.

4.1.1 Joint position task

The goal of the joint position task is to drive the robot to a certain joint configuration
qgoal . It can also be used to give the robot a specific posture. The velocity for this task
can be calculated, for example, by

q̇po =C

(
qgoal−q(t)

∆t

)
(4.3)

with
C(q̇) = s(q, q̇, q̈) · q̇. (4.4)

being a function, that limits the joint velocities depending on the current state of the
robot and corresponding limits (such as joint limits, velocity limits, and acceleration
limits) without changing the trajectory of the motion.

To constrain certain degrees of freedom in joint space, that cannot be influenced by
lower priority tasks, a n×n matrix Spo is used to select them, with n being the number
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4. ACTION COORDINATION

of joints. This means the guaranteed velocity can be expressed as

q̇∗po = S · q̇po. (4.5)

Using the projector NPo of the selected constrained joints, the projection of an input
velocity q̇in is done according to:

q̇∗ = q̇∗po +Npo · q̇in (4.6)

with
Npo = I−Spo. (4.7)

4.1.2 Cartesian position task

The Cartesian position task drives the tool center point of the robot to a defined goal
position and/or orientation xgoal in Cartesian coordinates. The Cartesian velocity can
for example be computed according to:

ẋ =
xgoal− x(t)

∆t
. (4.8)

After the velocity in Cartesian space is calculated, constraints can be set using a diago-
nal selection 6×6 matrix SOp to select the degrees of freedom (in Cartesian space) that
should not be influenced by lower priority tasks. Transformed into limited joint veloc-
ities using a singularity robust pseudo-inverse J†

e of the Jacobian Je of the end-effector,
resulting in

q̇∗op =C(J†
e ·Sop · ẋop). (4.9)

Using the nullspace Nop of the selected constraints, the orthogonal projection of an
input velocity q̇in leads to:

q̇∗ = q̇∗op +Nop · q̇in (4.10)

with
Nop = I− J†

e SopJe. (4.11)

4.1.3 Collision avoidance task

Collisions need to be avoided for static (i.e., the workbench) and dynamic environment
(i.e., the human and moving obstacles). In this task, the avoidance is done in a reactive
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4.1 Task-based robot controller using orthogonal projection

Figure 4.2: Computing distances between obstacles and robot - The red lines illustrate
the minimum distances of an obstacle to the body parts of the robot in a given joint con-
figuration. If a distance is below a chosen threshold (transparent bubble), the distance is
used to compute virtual forces on the robot using potential fields [174]

way with dynamically updated collision scenes that can be interfaced with a variety of
sensors as presented in Section 5.2.2. The main challenge that arises here, is that the
planned motion and the avoidance motion must be handled in a way where they do not
interfere with each other. Therefore, the potential field methodology to repel the robot
from the obstacle is combined with a constraint least-square optimization that restricts
the motion of the robot to safe orthogonal subspaces of the collision avoidance motion.

Virtual forces

To compute the velocity that repels the robot from surrounding obstacles, the minimum
distances of all objects in the environment model (including self-collision) to all body
parts of the robot need to be measured. Figure 4.2 depicts the body parts of the used
robot in different colors along with an example of the minimum distances di (red lines)
from an obstacle to a given joint configuration.

Opposite to simplified and only approximated models of manipulators (e.g., used
in the skeleton algorithm presented in [175]), the distances of arbitrary shapes to a
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4. ACTION COORDINATION

convex version of the real CAD-model of the robot can be measured in order to reach
a high precision of virtual forces. With an efficient implementation of the GJK algo-
rithm [176], these distances can be computed faster than the update rate of the robot
controller. After calculating the minimum distance vectors vx,i in Cartesian space (i.e.
the direction of the applied virtual force), the corresponding velocities in joint space
are computed to find the overall motion of the robot that avoids the collision. This is
done according to

q̇ =
I

∑
i

q̇i =
I

∑
i

JT
Pr(i) ·Frep,i(q) · vx,i(q), (4.12)

with I being the number of bodies of the robot, the current joint configuration of the
robot q, the Jacobian of the minimum distance point on the robot JPr(i) and Frep,i be-
ing the virtual force on the robot body according to the repelling potential function
Urep,i [177] :

Urep,i(q) =

 1
2ηi

(
1

di(q)
− 1

Q∗

)2
if di(q)≤ Q∗

0 if di(q)> Q∗
(4.13)

Frep,i(q) =

{
ηi

(
1

di(q)
− 1

Q∗

)
1

di(q)2 ∇di(q) if di(q)≤ Q∗

0 if di(q)> Q∗
(4.14)

with Q∗ being the distance at which the potential field function is applied (see trans-
parent bubble in Figure 4.2).

Constraint least-square minimization

To ensure that the lower priority task is projected in an orthogonal subspace of the
collision avoidance task, the mathematical framework of quadratic programming [178,
172, 173] is used to minimize the quadratic error between optimal velocity of the lower
priority task subject and the constraints of the higher priority task. The low-priority
task execution (q̇in) is optimized regarding must have constraints of the higher priority
task. The projection is described according to:

min
q̇in

‖Je · q̇in− ẋt‖2, (4.15)

where ẋt is the ideal linear and angular velocity to solve the lower priority task subject
to the linear constraints of the form

CT q̇t ≥ 0 (4.16)
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4.2 Unconscious adaption of action parameters by the human

with the constraint matrix

CT =


q̇T

1...
q̇T

I

 (4.17)

and q̇i calculated according to (4.12). This means only those velocities are valid, that
are orthogonal to the direction of the collision avoidance velocities or point in a direc-
tion that leaves the defined safety region. The output of the minimization process is
then equal to the constrained joint velocity q̇∗.

4.2 Unconscious adaption of action parameters by the
human

Since the handing over of objects needed for assembly steps is a central action in the
collaboration between human and robot, investigations on how to improve the col-
laboration by means of robotic motions has been accomplished. To examine effects
regarding the adaptation of human reaction, a repetitive hand-over task was designed
in [179]:

Subjects were instructed to take six cubes from their opponent and to put each
cube on marked positions in front of them as depicted in Figure 4.3(c). The motion of
the subjects was recorded and subsequently analyzed to determine the time needed to
perform the task (task effectiveness) during the repetitions. The hand-over action was
especially analyzed regarding the reaction time of the subjects.

The experiment was conducted and evaluated in:

• a human-humanoid set-up, where the JAST platform [33] was used as depicted
in Figure 4.3(a) [179],

• the human-industrial robot JAHIR set-up as depicted in Figure 4.3(b) [180].

• and a human-human set-up as depicted in Figure 4.3(c) [179, 180],

In the robotic set-ups, a force/torque sensor mounted on the tool center point of
the robot was used to determine whether the human has grasped the cube. After the
hand-over, the robot moved to a resting position and waited between zero and four
seconds before starting the next hand-over, so that the subject was not able to adapt to
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(a) (b) (c)

Figure 4.3: Hand-over experiments - A repetitive handing over task between human and
robot was designed and evaluated on the human-humanoid set-up JAST [33] (a) and on the
JAHIR set-up [180] (b) and compared to human-human experiments [179] (c)

a periodical behavior. In contrast to the human-human experiment presented in [179],
the giving subject was triggered by a headphone to start the handing over, leading to
shorter reaction times in average than in the previous experiment. With this change in
the experiment, a direct comparison of the reaction times becomes possible, because
the robot was triggered with the same time values. The hand-over position of the robot
stayed fixed throughout the experimental runs in a position related to the hand-over
position measured in the human-human experiment.

In both robotic set-ups, two different methods were used to generate the robotic
motions: a trapezoidal velocity profile in joint coordinates and a minimum jerk veloc-
ity profile in Cartesian coordinates. In the trapezoidal profile, trajectories are calcu-
lated with a constant acceleration q̈a and deceleration q̈d phase of the joints in a given
acceleration and deceleration time (ta, td):

q̇(t) =


q̈at + q̇0, 0≤ t < ta

q̈ata + q̇0, ta ≤ t < td

q̈ata + q̈d(t− td)+ q̇0, td ≤ t < te

(4.18)

Opposite to the interpolation in joint space, the minimum jerk velocity profile interpo-
lates in the Cartesian space with straight lines in the motion of the robot’s tool center
point. The minimization of corresponding the objective function

c(x) =
1
2

∫ te

0

∣∣∣∣d3x
dt3

∣∣∣∣2 dt (4.19)

leads to a fifth-order polynomial. With given initial and end position, velocity and ac-
celeration for the trajectory, the polynomial coefficients can be specified. The deriva-
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Figure 4.4: Reaction time for all six trials - The diagram shows the reaction time for the
human-human handover (red), for the JAHIR robot using the trapezoid profile (blue), and
for the JAHIR robot using the minimum jerk profile. Error bars indicate standard deviation,
the straight lines indicates the mean over all trials [180]

tion of this equation results in the velocity profile [180],

ẋ(t) = (x0− xe)

(
60

t3

t4
e
−30

t4

t5
e
−30

t2

t3
e

)
(4.20)

with x0 and xe being the initial and end position of the tool center point of the robot
and te being the desired time to reach the end position.

By using the different velocity profiles, the influence of motion trajectories on the
effectiveness of the task performance was determined. The experiments pointed out,
that the minimum jerk profile [181] leads to shorter reaction times (0.69s vs. 0.86s).
Hence, the task effectiveness can be positively influenced by how the robot actually
moves. Current developments in generating human-like movements [182, 183] might
even improve this effect. Table 4.1 lists the evaluated times needed for the specific
parts of the hand-over task and the overall time needed for a single hand-over. As
expected, the reaction times are minimal for human-human hand-overs with 0.22s and
the overall time for the hand-overs is one second faster compared to the JAHIR set
up. A detailed view on the reaction times for the single cube hand-overs is given in
Figure 4.4.
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Table 4.1: Average duration of the reaction times of the human during a handover for the
minimum jerk and the trapezoid velocity profile in seconds [180]

set-up velocity profile reaction time

human–human — (0.22±0.02)s

human–humanoid trapezoidal (0.50±0.06)s
minimum jerk (0.39±0.04)s

human–JAHIR trapezoid (0.86±0.03)s
minimum jerk (0.69±0.03)s

Additionally, the experiments turned out significant differences in the reaction
times between the two robotic systems: the reaction times (0.50s for trapezoid and
0.39s for the minimum jerk profile) were faster in the humanoid set-up than in the
industrial JAHIR set-up (0.86s/0.69s). An explanation for this effective is that humans
are able to predict the motions of other humans and the attributed goals by covertly
simulating observed behavior using their own mind in a simulation mode in order to
understand what intentions are coupled to the observed actions [184]. Therefore, a
human like arrangement (i.e. the JAST platform) showed better performance, because
the subjects could unknowingly predict the motion of the robot better during the pro-
cedure [179, 180]. Further evaluations of the experiments related to the JAHIR set-up
are given in Section 5.4.2.

4.3 Active adaption of action parameters by the robotic
system

Section 3.1 has focused on the observation and the subsequent recognition of the hu-
man’s actions. Additionally, actions of the robotic system can on the reverse side be
efficiently coordinated based on the observation of the human’s actions, if a robotic
system is able to adapt its own parameters to the human counterpart.

Therefore, [186] employed a bank of Kalman Filters to determine the complexity of
an assembly step and the related time needed to perform the step. With an estimation of
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(a) (b)

Figure 4.5: Waiting times - Either the robot needs to wait in the hand-over position if the
predicted time was too short (a) or the human needs to wait for the object—i.e., triggers
the robot to perform the hand-over—if the predicted time was too long (b). This error
estimation is one input value for the prediction module [185]

the time needed for an assembly step, the robot can coordinate its actions to reduce or
even avoid waiting times for the human in hand-overs. This enables a fluent collabora-
tion and—as shown in this section—the possibility to generate dynamic workflows for
the robot, because the robot can use the time prediction to perform preliminary tasks.
The timing of actions has been further investigated in previous work [86] by evaluating
the assembly task experiment, that was also used and described in Section 3.1. For the
sake of completeness, the experiment is shortly repeated here: subjects were instructed
to build towers using cubes that differ in the number of bolts needed to combine them
(Figure 3.1(b)). The cubes were delivered by a slide and are available for the subjects
at any time.

The analysis of data gained in the assembly experiment leads to the assumption,
that the right time to hand-over a cube, is the point in time when the subjects reached
out for the omnipresent cubes. Based on this assumption and the data gained in the
assembly experiment, in [86] a method was developed to predict the assembly dura-
tions using a probabilistic Bayesian framework. The predictor was realized as a bank
of Kalman filters with continuously updating parameters that describe the workers as-
sembly behavior using an underlying relationship between duration and complexity of
the assembly step. Additionally, the complexity of known component types can be
estimated using the inverse relationship of such a duration-prediction framework. A
recursive interlacing allows the framework to be applied to any kind of assembly task,
without exact a-priori knowledge of the component’s complexities. These findings are
then transferred and applied to the JAHIR set up as presented in Section 5.4.3.
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Figure 4.6: Schematic overview for single task - The timing error ∆t and the needed
object type o (from an assembly plan) are the input values to the predictor, resulting in a
time estimation to the next hand-over tp. This is compared with the time to needed to fetch
and hand-over object o, resulting in the expected waiting time for the robot tw

4.3.1 Reducing the waiting times of the human

The predicted duration of an assembly step can be used to perform the hand-overs from
robot to human just-in-time. A schematic cycle of the collaboration using predicted
hand-over times is depicted in Figure 4.6. The time error ∆t of the previous hand-over
and the object type are the input values to the predictor, resulting in a time estimation tp

for the next hand-over.

A time database delivers the time needed to perform a hand-over of a specific
object to (object time), including the time required to move the robot to the storage
position of the object, the grasping, and then the motion to the hand-over position.
The relationship between objects and their time consumption to can be previously es-
timated or roughly approximated and updated during run-time. These two times are
compared in (tp− to) > 0, resulting in the decision whether to fetch the object if the
predicted time is smaller than the needed object time, or if the robot needs to wait to
be able to perform the hand-over just-in-time. A successful hand-over initiates a step
forward in the assembly plan and the cycle proceeds. The actual hand-over time point
is measured by a force-torque sensor attached to the gripper and defines the timing
error ∆t. As depicted in Figure 4.5, either the robot needs to wait in the hand-over po-
sition or the human needs to wait—i.e. triggers the robot to perform the hand-over. The
triggering of the robot and the estimation of the waiting time can be measured using
the estimated hand position. This information is communicated via the corresponding
communication channel (see Section 5.2).
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Figure 4.7: Schematic overview for multiple tasks - A preliminary task fills the waiting
times of the robot—if tw > 0 is true—to use this time efficiently. The steps of this task are
transformed to their time consumption ts and evaluated if a step fits in the waiting time of
the robot, including the time that has passed since the start of the current task t ′. If enough
waiting time is available, the secondary cycle can be executed multiple times

4.3.2 Using the waiting times of the robot for preliminary tasks

The waiting time tw = (tp− to) of the robot, if tw > 0, can also be interpreted as a
downtime of the robot. If the performance of the overall system should be increased,
this downtime of the robot needs to be decreased. With the resulting estimation of the
waiting time or free time of the robot, the robot can be used to perform preliminary
tasks during this time, including the presorting of parts that are needed in the future.

The preliminary task can be performed, whenever the assembly duration predic-
tion calculates a time interval, which is big enough to perform the task. It has to be
mentioned, that the effective time for planning preliminary tasks is the predicted dura-
tion minus the time the robot needs to do the assistance. To give an example, the time
needed by the robot to do the assistance is the time it takes the robot to move to the next
component, grasp it, and present it at the handing-over position. The schematic cycle
of Figure 4.6 can be extended by substituting the waiting block with the preliminary
task performance (Figure 4.7). If tw > 0 is true, the cycle for the preliminary task can be
initiated. The steps of this task are transformed to their time consumption ts and eval-
uated if one step fits into the waiting time of the robot. If enough time is available, the
preliminary task can be executed multiple times. Therefore, the elapsed time t ′ from
starting one action up to now in included in the comparison. Hence, if (tw−t ′−ts)> 0,
the robot can execute step s of the preliminary task; if not, the fetching of object o and
therefore the hand-over is initiated.
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Bringing things together – the JAHIR
platform
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This chapter presents the integrated demonstration platform JAHIR that evolved through-
out this thesis. This includes the hardware set-up (Section 5.1) and the software ar-
chitecture behind (Section 5.2) to glue the developed software modules together. Both
form a powerful demonstration platform that was also used beyond the scope of this
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Figure 5.1: Hardware platform JAHIR - ¬ industrial robot,  shared work-
bench, ® slide for tower parts, ¯ slides for car parts, ° CCD and depth camera de-
vices, ± depth camera and ARTrack system to estimate e.g. the human worker’s hand, ²

output devices (2 monitors, 1 projector) to present the human information about the next
steps and the internal representation of the robot

work for experiments and demonstrations. The effects of transferring of the psycholog-
ical motivated mechanisms action observation and action coordination to the JAHIR
platform are presented and evaluated (Sections 5.3, 5.4.2 and 5.4.3) along with sample
applications of the task-based controller (Section 5.4.1).

5.1 Hardware design

The demonstration platform JAHIR —Joint-Action for Humans and Industrial Robots—
has been created and embedded in the Cognitive Factory scenario of CoTeSys1 in close
cooperation with project partners from the Institute for Machine Tools and Industrial

1http://www.cotesys.org
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Management–iwb1 and the Institute for Human-Machine Communication–MMK2. The
Cognitive Factory is one of the central demonstration scenarios of CoTeSys and fo-
cuses on advancing today’s production processes with cognitive capabilities. To cover
all aspects of production, a fully automated production, a manual working desk, and
the JAHIR set-up as central in-between station, that combines both worlds have been
created.

The JAHIR set-up was publicly presented at several events including the Automat-
ica 20083 and the Schunk Expert Days 20094.

5.1.1 The robotic platform

The JAHIR system has been designed as a generic robotic system to analyze and show
a variety of concepts regarding collaboration aspects between human and robot. As
depicted in Figure 5.1, a standard position controlled industrial robot (Mitsubishi RV-
6SL) is placed on a working table. The robot has six degrees of freedom and has
a maximum payload of six kilograms. Since the robot has a manipulation sphere of
0.902m, the robot can reach almost the whole desk, which is 1.4×0.7m. The tool
center point of the robot is extended with a force-torque-sensor from JR35 and a tool-
change unit from Schunk6. Two tool change stations with three tool ports each are
placed in the workspace. With this, the robot is able to change, store and use different
kinds of end effectors according to the task. Currently the following tools are available
to be changed autonomously by the robot:

• to imitate gluing operations with the robot, a pen can be mounted as tool

• to perform a close-up inspection, a gripper holds a camera

• to jointly screw, an electrical drill gripper can be attached to the robot. The
drilling speed is controlled by the applied force

1http://www.iwb.tum.de
2http://www.mmk.ei.tum.de
3http://www.cotesys.de/news/articles/cotesys-at-automatica-2008.

html
4http://www.cotesys.de/news/articles/schunk-expert-days.html
5http://www.jr3.com/
6http://www.schunk.de
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Figure 5.2: Different workspaces of human and robot - left: ¬ workspace of robot; 

workspace of human; ® shared workspace; ¯ storage for robot; right: The world coordi-
nate frame is on the left corner of the shared working desk

• with a pallet gripper, the robot can fetch parts and tools from the assembly line
in the back of the set-up

• with a big parallel gripper, the robot can grasp boxes on the working table

Depending on the requested robot operation, a gripper management module initiates
the changing towards the appropriate gripper autonomously.

Human and robot can jointly use a workbench and partly share the same workspace.
In this way, both human and robot have areas where they can work for their own and
on the other side where both partners can work together. Figure 5.2(a) depicts an
exemplary split-up with ¬ being the workspace of robot;  being the workspace of
human; ® being the intersected shared workspace; ¯ being storage for robot that is
not reachable for the human. Hence, human and robot are brought closely together for
a diversity of collaborative assembly applications.

5.1.2 Input and output devices

To perceive the environment, several types of sensors were evaluated and integrated.
This includes CCD cameras, depth cameras, Microsoft Kinect cameras, and an in-
frared based marker-tracking system. Further, microphones capture utterances of the
human to allow a natural way of interaction with the system. Beside the robotic arm,
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(a) (b) (c)

Figure 5.3: Building obstacles from depth data - Three-dimensional data points deliv-
ered here by a extrinsically calibrated PMD camera (a) are tested against the static and
dynamic environment to include unknown obstacles into the environment model. In this
example, a worker is grasping inside the shared workspace (b). The green points represent
either points that come from already known objects or are irrelevant, because they are out-
side the working range of the robot. The red points are unknown obstacles combined to a
new obstacle (c).

two monitors, a speech synthesis unit, and a projection unit are mounted on a scaf-
folding around the shared workspace (see Figure 5.1) to inform the human worker. As
it has been described and explained throughout the thesis, techniques are employed
to observe and understand relevant actions in the surrounding of the robotic system
including tracking parts of the human (see Section 3.3). This information is then com-
bined with a task-based control of the industrial robot (see Section 4.1) to produce
dynamic motions respecting e.g. geometric constraints and to be used to adaptively
coordinate the actions performed by the robot (see Sections 4.2 and 4.3).

CCD cameras

Several color CCD cameras are mounted on different locations around the set-up and
are used for a variety of tasks. This includes the position estimation of colored boxes on
the table as explained in [187] or the triggering of so-called soft buttons as described
in [188]. Further the tracking of the worker’s hands are performed using multiple
camera views as described in Section 3.3.2.
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(a) (b) (c)

Figure 5.4: Arm tracking with the ARTrack - The human arm was tracked with the
ARTrack marker-based tracking device using markers for hand, lower, and upper arm.
The results were taken by a specific module that interfaced the three-dimensional scene
representation.

PMD cameras

This kind of camera is bases on the time-of-flight principle [189, 190]. It is employing
a solid state imaging unit comparable to a CMOS device and a modulated light illu-
mination rather than a single laser beam as laser scanners use. Each pixel measures
the round-trip-time of the modulated light and computes the three-dimensional data
point. While the resolution is limited and different colored areas (black/white) lead
to an increase in the measurement noise, the PMD technology seems to be the most
appropriate technology to survey shared workspaces [191]. Therefore, an industrial
PMD camera1 is integrated in our scenario.

The very limited resolution of the used PMD camera (64 x 50 pixel) obviates a
direct extrinsic calibration that is needed to associate the 3D data points with the static
and dynamic environment model. Therefore, a webcam was attached to the PMD
camera to perform the extrinsic calibration (Figure 5.3(a) left). The transformation
between PMD camera and webcam can be better estimated, because the distance is
very small and the calibration pattern can be seen in both cameras in an appropriate
size. An additional depth calibration step can be performed following [192].

As shown in Figure 5.3(b), the three-dimensional points from the depth camera
are tested against the environment model using efficient bounding box tests to classify

1ifm efector pmd O3D200 (http://www.ifm.com/ifmde/web/dsfs!O3D200.html)
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(a) (b) (c)

Figure 5.5: Skeleton Tracking with Microsoft’s Kinect - The human worker is tracked
using Microsoft Kinect and the OpenNI1 framework. The results are taken and update the
corresponding objects in the scene representation.

whether the measurement point originates from an known or irrelevant object (green
points) or from an unknown (red). The unknown points form new obstacles using the
quickhull algorithm [193].

ARTracking device

A high-end commercial marker-based tracking system from ARTrack2 can be used
as reliable data source with a high update rate (60Hz) for experiments. The passive
markers can be attached to the human to enable e.g. the tracking of his hands or the
body center. An example, where the markers were integrated in a smock to estimate
the position of the full arm is depicted in Figure 5.4. As can be seen in the figure,
the arm is tracked and the tracking module updates the geometric representation of the
robot, that is projected on the table.

Microsoft Kinect

Recently, Microsoft released the Kinect camera originally designed for their Xbox.
The Kinect camera has become a popular sensor in the robotics community, because
it incorporates a high-resolution depth camera and a color CCD camera. Additionally,
with the software from the OpenNI2 a full body skeleton tracking for multiple persons
is performed directly by the camera. For the JAHIR set-up, one Kinect was added to

2http://www.ar-tracking.de/
2http://www.openni.org
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estimate the pose of the human worker. An exemplary result is given in Figure 5.5,
where the upper body is tracked and corresponding body part approximations (cylin-
ders, spheres) are added to the scene representation and updated. In combination with
the task-based controller (see Section 4.1), collisions can be avoided with all estimated
body parts. A demonstration video can be accessed online1.

Output devices

The JAHIR system can communicate visually and auditory with the human. Two mon-
itors mounted on the height of the human head, give the system the ability to display
for example important information or assembly instructions. Further, a projector facing
down from the sensor scaffolding can project directly onto the workbench and can be
used for the same informative purpose. Additionally, virtual buttons can be adaptively
arranged and displayed directly on the workbench. A button manager uses the infor-
mation of the hand tracking modules to estimate if a button is triggered and broadcasts
this information.

5.2 Software architecture

5.2.1 Applied middleware

The software architecture of JAHIR is oriented on the design principles presented in
Section 2.4. This includes among the other principles, multiple processing modules
that are inter-connected via dedicated communication channels are used. The inte-
gration of the different software components and processing modules was done using
not a specialized robotic middleware as the ones presented in Section 2.4.2, but the
generic middleware Internet Communications Engine (ICE)2 that allows a seamless
distribution of modules among multiple computers.

Although, the number of already available modules makes other middlewares such
as ROS3 very interesting, the Internet Communications Engine–ICE was directly used
as middleware, because it supports almost all operating systems and most object ori-
ented programming languages. This is not supported by other middlewares including

1http://www.youtube.com/watch?v=MsNbEBSC4UU
2http://www.zeroc.com
3http://www.ros.org
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(a) (b)

Figure 5.6: Reality and Simulation - Impression of the overall Cognitive Factory sce-
nario in reality (left) and represented in the three-dimensional simulation on the right

ROS up to now. Additionally, the fundamental basic of the software architecture that is
used in the JAHIR set-up was started with the JAST system [33]. Therefore, this work
based on the JAST architecture and refined and improved it accordingly. But, since the
middleware is “just” the glue between the modules, the ideas and concepts presented
here can also be mapped to other middlewares.

5.2.2 Modules and inter-module connections

As mentioned in Section 2.4, the information flow needs to be steered and controlled
in the system. This idea was not directly applied here, because processing modules
broadcast their results system-wide via communication channels. Modules that are in-
terested in specific information listen to the needed information. In this way, we get
implicit connections between modules without the need of a central instance to explic-
itly control the information flow. This so-called publish/subscribe principle is used
to communicate results and information to an unknown number of interested mod-
ules. Since this is a one-way communication pattern, the broadcasting module does
not come to know if information is actually used. To encapsulate different kinds of
information, the meta-channels scene, input, and output are established.

Scene modification

In collaborative tasks, robots are acting in highly dynamic environments with objects
that appear and disappear or humans that move inside the robots workspace. Especially
the area of the workspace that can be accessed by both, the human and the robot (see
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Figure 5.2), needs to be reliably perceived by multiple sensor devices. But besides the
actual capturing of this information (see Section 5.1 and Chapter 3), the robot needs to
know the static and dynamic surrounding. An appropriate representation for this infor-
mation is to directly transfer the three-dimensional position and physical dimensions
of objects. This representation can then be used to avoid collisions with both static and
dynamic objects including the human and other moving obstacles.

The used scene representation is based on the scenegraph of the Robotics Library
(RL)1 [194]. The scenegraph is built up from the nodes Model, Body and Shape. The
unique base node scene can have multiple models. Models join multiple bodies to-
gether and bodies encapsulate a compound of possibly multiple shapes. Shapes can be
instantiated as one of several basic blocks including boxes, spheres, and cylinders or
be advanced like polygons or convex hulls. The implementation in RL abstracts several
possible backends while using the same file format (VRML) and and opens therefore
the possibility to use the same models for visualization (using OpenInventor), distance
computation (using Solid) as needed in the robot controller, or for physic simulation

1available under http://roblib.sourceforge.net

addModel(model-id)
addBody(model-id, body-id)
addGeometry(body-id)
update(id)
remove(id)

scene 
modification 

channel

visualization robot

scene manager

getModels()
getBodies(model-id)
getGeometries(body-id)

id generator

generateUuid()

kinect tracker ARTrackoccupancy grid 
tracker

occupancy grid 
tracker

... ...

scene 
modification 

channel

Figure 5.7: Publishers of the scene modification channel - Every sensor module that
gathers information about the geometric environment (e.g. the ARTracker or the Kinect
skeleton tracker) can add, update, and remove objects. The objects are added with a unique
id that is generated by a centralized instance: the id generator
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addModel(model-id)
addBody(model-id, body-id)
addGeometry(body-id)
update(id)
remove(id)

scene 
modification 

channel

visualization robot

scene manager

getModels()
getBodies(model-id)
getGeometries(body-id)

Figure 5.8: Subscribers of the scene modification channel - Modules that are interested
in changes of the geometric environment (scene) subscribe to the scene modification chan-
nel. The scene manager contains the current context and can provide this information to
modules that been e.g. crashed to provide the missing context to their representation

(using Bullet or ODE).

In the JAHIR set up with its dynamic environment characteristic, the scene repre-
sentation needs to be influenceable at all times to add, update, or delete objects. There-
fore, the scene can be interfaced from all modules that provide relevant information
about the surrounding. Each module can modify its objects through a scene modifica-
tion channel as shown in Figure 5.7. New objects are added to the scene with generated
ids and are therefore uniquely identified within the scene. The update on objects takes
place on the basis of these unique ids. Since the used publish/subscribe methodol-
ogy is event-driven, modules that have stopped due to unforeseen events might loose
information about the current context. Therefore, a scene manager was integrated to
preserve the current context. During the start up of a module, it asks the scene manager
for all known objects and adds them to the own representation. This is related to the
design principle robustness as presented in Section 2.4.

The robot has an optimized geometric representation of the scene that allows the
computation of distances between the parts of the robot and the objects in the surround-
ing as shown in Figure 4.2 to compute virtual forces that repel the robot from obstacles
as described in Section 4.1. The robot is connected to the scene modification channel
and listens therefore to all modifications on objects. An example is given in Figure 5.4,
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kinect tracker ARTrackoccupancy grid 
tracker

occupancy grid 
tracker

... ...

hand 
update 
channel

human 
update 
channel

... ...

currentHandPosition(...)

currentHumanPosition(...)

Figure 5.9: The human and hand update channels - Every sensor module that estimates
the position of the human body or the human hands, communicates these results over the
human update and the hand update channel. Modules that deliver such information include
the Kinect skeleton tracker, the ARTracker, and the occupancy grid tracker. Further, safety
mats or a laser range finder under the table can also deliver estimation about the human’s
position

where the arm of the human worker is perceived employing a marker-based approach.
The module that handles the estimation of the marker positions adds cylinders for up-
per and lower arm and a sphere for the hand to the scene. Further, the processed arm
estimation is directly projected onto the tabletop of the workbench.

Input

The input-channels incorporate all communication channels that deliver input informa-
tion to the system. This includes for example the position of the human and his hands.
Due to the chosen architecture, different modules that do hand tracking are exchange-
able as long as they communicate their results over the same communication channel
as depicted in Figure 5.9. The information that is communicated includes the current
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currentForce(force)
currentTorque(torque)

force 
update 
channel

screw driver robot

...

Figure 5.10: The force update channel - The force/torque sensor mounted on the hand
of the robot broadcasts current measurements for force and torque via the force update
channel. The screwdriver module listens for example to it and controls the turning speed
according to the current force

position and orientation of the hands, the distinction between left and right hand, and
a confidence value to enable the possibility to fuse the data of multiple modules that
offer information about the same hand. The confidence value is given by the modules
itself and can be computed e.g. from the covariance of the Bayesian filter or the distri-
bution of weights in case of a particle filter. Information about the sensor module —
e.g. the sensor id or the friendly name of the module— that delivers the information
can be added. The same holds for the broadcasting of the position and orientation of
the human body center.

Further, the force/torque sensor that is attached to the robot delivers the current
forces and torques to interested modules as shown in Figure 5.10. When the robot has
the screwdriver mounted on its hand and is in the drilling position, the screwdriver
module takes the current forces to adaptively control the turning speed and direction
according to the applied force.

The information about the current robot configuration is for multiple modules of
interest. Beside the illustration purpose of the visualization module, the configuration
is used to filter data points in the surveillance module. This information can also be
used along with the estimations about human body position to compute the current
distance between human and robot. The estimated distance can then be used to adap-
tively control the robot’s velocity according to e.g. the current norms presented in
Section 2.2.1.
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Output

Opposite to the event-driven publish/subscribe principle that is used in the other com-
munication channels to broadcast e.g. sensory data, the connection to the robot is
client/server based. With this connection, the calling module can get return values to
know, if errors occurred in the accomplishment of the task. Further, a direct connection
can be established to stop the motion of the robot at all times.

The robot offers several basic functionality through its interface. This includes
abilities to pick up an object at given position on the table, or the hand over of an
object that is in the hand of the robot. For a hand over, the robot moves to a hand
over position and waits for the human to grasp the object. If the force/torque sensor
measures the grasping, the robot opens the gripper and moves away. By concatenating
multiple basic operations, a complete building plan can be teached-in. This can also
e.g. be done using a speech recognition module as shown in [187].

Additionally, the output channel includes the triggering of so called soft buttons as
firstly presented in [188] and improved and integrated in this work. A soft button server
is connected to the projection unit. External components can add and remove wanted
buttons on the projection area. Using the information about the current hand positions,
the buttons can be triggered. Further, the triggered buttons are communicated via an
own channel to initiate connected behaviors.

updateJoints(joints)
updatePose(pose)
changeTool(tool)

robot 
update 
channel

visualization robot

...

surveillance

Figure 5.11: The robot update channel - The robot controller broadcasts the current
joint positions via the robot update channel. Modules that listen to this information are
e.g. the visualization that shows the current situation, or the surveillance module
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robot

useTool(tool)
open/closeGripper()
closeGripper()
setOutput(output, status)
getInput(input)
give/take()
pointAt(x,y)
show()
deposit/fetch(object)
pick/place(x,y)
dispose/get(obj)

Figure 5.12: Connection to the robot - The connection to the robot is based on a clien-
t/server pattern. Modules can call basic skills of the robot via the presented interfaces

First order logic system control

In JAHIR a first order logic system1 as knowledge-based event controller based on facts
and rules. Facts represent all kinds of information. This includes knowledge about the
environment (e.g. the position of objects) and about skills of the connected modules.
E.g. the robot registers its basic actions including move to position, open gripper, and
its higher-level actions including the picking up of an object from a given position on
the table. Hence, the system controller can access these abilities without any knowl-
edge about the real hardware. Further, facts include events that can be triggered by
external signals. All kinds of alterations in the working memory of the rule engine
including updating, deleting, and creating facts or triggering events, initiate the check
of associated rules.

The available abilities of the system can be combined and build a complex work-
flow description. A worker can teach in such descriptions via speech using a speech
recognition program with a grammar that is automatically adapted to the abilities of
the system. This plan can then be executed respecting environmental information and
events. To get an impression videos about the teach in step2 and the execution step3

1The Java based rule engine Jess (http://www.jessrules.com/) was used here.
2http://www.youtube.com/watch?v=6Jnuqxa6PGc
3http://www.youtube.com/watch?v=hN92vOxzKu4
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Figure 5.13: Recognized Workflow - Ground truth label sequence (upper diagram) and
recognized one (lower diagram) of the right hand using the camera tracking dataset [90]

are available online. For a detailed description on the knowledge-based system com-
ponents please refer to [187].

5.3 Transferring action observation

The observation of human actions by an assistive robotic system enables pro-active
behavior based on the current action of the human. The realization of this concept
advances the collaboration between human and robot in the context of production pro-
cesses by being able to prepare future steps, to analyze the action sequence if errors
occurred, or to warn the user if a step was possibly not performed [195].

In an industrial setting such as the JAHIR scenario, it is desirable to extract the
information needed to analyze and recognize the workflow by means of non-invasive
methods. Opposite to [195], where body worn accelerometers and microphones were
used as input to classify actions and to estimate the progress of an assembly task, no
attached sensors or artificial markers are used to analyze the workflow of the human
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Table 5.1: Workflow recognition results for the JAHIR set-up - The accuracy is the
percentage of labels, which correspond to the true ones. Correspondence also includes
being in the same general movement. The results of the recognition rates for the right
hand show that a transfer of the trained models to another set-up is possible [90]

set-up data set accuracy (%)

BAJA all data 95.67±5.07
BAJA hands 95.11±5.20

JAHIR camera tracking data 92.26

here. As described in Section 3.1.3 the workflow of the tower building task can be suffi-
ciently recognized by employing only the three-dimensional velocity, acceleration, and
jerk of the hands and the activation level of table zones. Having the three-dimensional
position of both hands, all necessary data for the feature vector can be approximately
derived knowing the update rate: velocity, acceleration and jerk. The location of the
active table zones needs to be adjusted to the geometry of the recorded workspace.
Thereupon, the activation can be determined from the position of the hands. An al-
ternative to find the activation level of a table zone would be for example to use extra
cameras or sensors that recognize hand in the area of the associated camera. Due to its
accurate and fast results, the three-dimensional occupancy grid approach presented in
Section 3.3.2 is used to estimate the position of the hands. Additionally, every sensor
that provides information about the current hand position could be used for an online
version of the analysis module, if it is connected to the hand update channel.

To analyze the workflow of the collaborative assembly task between human and
the JAHIR robot, the experiment presented in Section 3.1 with subjects that were not
influenced by a robot or any other technical device were used as basis. Since the
workflow analysis is now used in the JAHIR environment, HMMs were trained on all
22 persons of the basic experiment 3.1.1 and tested on camera tracking data. This
corresponds to using a pre-trained model for the real setting.

An accuracy of 92.26% was reached for the right hand. Compared to the previous
results presented in Table 3.1), the estimation for the right hand is just marginally
lower. In fact, a direct comparison between the true and the recognized label sequence
shows that all grasps of cubes and bolts are correctly identified. The left hand was
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(a)

(b)

(c)

Figure 5.14: Recognized workflow actions - The figures show snapshots of the workflow
action recognition. The human is grasping the cube in (a), a bolt in (b), and puts the bolts
in the tower cubes (assembly) in (c)
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not analyzed, because in the recorded test sequence, the subject was only using his
right hand. As shown in Figure 5.13, only the boundaries of the movements were not
exactly recognized. Figure 5.14 illustrates the recognition results. The experiments
show that the approach of combining three-dimensional occupancy grid hand tracking
with pre-learned HMMs worked well in the experiments. The results also show that the
recognition of assembly actions can be abstracted from the sensory input data and the
set-up. This allows a transfer of pre-learned models to be applied on real environments
[90].

5.4 Transferring action coordination

5.4.1 Applications of the task-based robot controller

As stated in Section 4.1 with the presented task-based hierarchical control structure of
the industrial robot, a magnitude of tasks that can be used in production scenarios can
be intuitively solved. In this Section, two sample applications are presented using the
JAHIR platform.

Mobile Storage Box

In manual production, the efficiency of the current production step depends highly
on the availability of parts. If different parts needed for a certain step are always
within reach, the human can take them efficiently. On the other side, parts that are
pre-assembled and not needed at the moment, need to be placed somewhere where
they can be accessed easily when required. In the first application scenario, we use
the industrial robot as a mobile storage box. Parts can be placed in the box and the
robot needs to guarantee they are not falling off. To be always within reach, the box
follows the human hand, but avoids collision with it and the surrounding environment.
Regarding these requirements, the controllers are arranged to compose action A1 as
follows:

A1 = Torientation /Tavoidance /Tposition /Tposture. (5.1)

Torientation is the task with the highest priority, which takes care of keeping the box
always in a horizontal orientation. The operational position controller is used here
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Figure 5.15: Mobile storage box (real) - The robot has a storage box as tool which
follows the human hand in safe distance and avoids collision with the hand and the sur-
rounding, so that the human can pick up parts or place assembled products in there [174]

with the selection matrix

Sorientation = diag(0,0,0,1,1,1) (5.2)

to fix the orientation of the box. Task Tavoidance avoids collisions with the surrounding
environment and the human hand. The position task Tposition follows the human hand
through updates of the hand tracking system to the goal position xgoal that should be
0.1m below and in front of the hand. To keep the position fixed, the selection matrix

Sposition = diag(1,1,1,0,0,0) (5.3)

is used. In the posture task, we defined that the robot should have an upright joint
configuration. Because the posture task has the lowest priority, we can include all
joints in the velocity calculation. The result of this experiment is depicted in Figure
5.15. The robot is carrying a red box with parts in its gripper, so that the human can
grasp out of the box. To be able to grasp something, the motion of the robot is stopped
through the avoidance task that measures the distances. This is done in the controller
with a defined distance, to stop the current motion, if the distance of robot and obstacle
(i.e. hand) is touching or is below.
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(a) (b) (c)

Figure 5.16: Mobile storage box (internal representation) - (a), (b) and (c) show the
three-dimensional internal representation of the surrounding and the robot behavior at
some instances in time [174]

As the human starts to move his hand from left to right in the workspace, the box
starts to follow the hand. On the way back, the robot avoids the collision with the
hand (Figure 5.16(a) and Figure 5.16(b)) and converges in Figure 5.16(c) to the resting
position of the hand 0.1m below and in front the hand.

The human hand is added to the geometric representation as sphere with a diameter
of 0.1m. The distance computation between the hand of the human and the robot starts
at the surface of the sphere. Additionally, the choice of a safety distance influences
the respond of the potential field. As shown in Figure 5.17, where a recorded hand
trajectory was used to enable a comparison, the robot follows the hand and avoids
collision with it with different strength depending on the safety distance. It can also be
seen that even with no given safety distance, the robot converges in its position 0.1m
below and in front of the hand due to diameter of the hand. Hence, the safety of the
human is secured in two ways:

1. The size of the shape is bigger than the real hand and if collision shapes touch,
the velocity of the robot is suspended until the collision is cleared.

2. The area in which the virtual forces are applied to the robot can be adapted and
even updated during run-time.

Direct Line-of-Sight

In the second demonstration scenario, a top-mounted camera directed towards the
working table is used to recognize, inspect and track objects lying on the table as de-
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Figure 5.17: Influence of safety distance on the robot’s trajectory - The diagrams show
the influence of the safety distance on the robot’s trajectory in x, y, and z direction. The
hand trajectory was recorded and tested with the mobile storage box task. The safety dis-
tance in which the potential field generates virtual forces was varied. The diagrams show
that the robot follows the trajectory of the hand with some latency, avoids collisions with
the hand, and converges at different positions below and in front of the hand depending
on the chosen safety distance. The hand is approximated with a sphere with a diameter of
0.1m. This distance is always secured, because, if the robot would touch the sphere, the
motion would be suspended
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Figure 5.18: Direct line-of-sight (real) - The robot picks up an object at a position and
needs to place it on another specified position. A top-down camera is inspecting another
object on the table and needs to have always direct line-of-sight for this task. Therefore,
the robot needs to find a way around the line from camera to object, respecting also the
human working in the same workspace [174]

picted in Figure 5.18. To recognize objects reliably or to inspect objects according to
defects, the camera needs direct line-of-sight for a certain amount of time. The robot
should not be stopped, because it can fulfill other tasks in the meantime—including
picking up an object at a position and placing it somewhere else or handing over tools
needed for the next assembly steps to the human.

What needs to be considered here is the issue that the collision avoidance with the
environment has to have a higher priority than to avoid the crossing of the line-of-
sight of the camera with the robot. Therefore, two collision avoidance controllers with
different collision scenes need to be specified.

If the action of the robot is again described according to the controller scheme, the
action A2 can be defined as:

A2 = Tenvironment /Torient. /Tline-of-sight /Tposition /Tposture. (5.4)

Tenvironment is the collision avoidance controller without the line-of-sight as depicted in
Figure 5.19(c).
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(a) (b) (c)

Figure 5.19: Direct line-of-sight (internal representation) - (a) shows the overall three-
dimensional internal representation. To avoid collisions with the environment (b) and the
line-of-sight of the camera (c) different three-dimensional scenes are used in two instances
of the collision avoidance controller [174]

Torientation is the controller taking care of the orientation of the gripper with the same
selection matrix as in the previous experiment. In the collision controller Tline of sight,
a cylinder approximates the line-of-sight from the camera to the object on the table as
depicted in Figure 5.19(c). The task Tposition drives the robot to the goal position. The
posture task Tposture is the same as in the previous experiment.

The images in Figure 5.18 and 5.19 show the behavior of the robot moving from
position (0.1m,0.2m,0.3m) to the goal position (0.8m,0.3m,0.1m). As depicted in
Figure 5.19(b) and 5.19(c), the potential field generated by different collision scenes
repels the robot.

5.4.2 Subjective feeling of safety

The hand over experiments presented in Section 4.2 were carried out on a human-
human, a human-humanoid, and the JAHIR set-up to measure, evaluate and compared
timing characteristics such as the reaction times of the human using a trapezoidal and
a minimum jerk velocity profile. It was shown that the motion trajectories have an
influence on the effectiveness of the task performance with a minimum jerk profile in
Cartesian space leading to shorter reaction times (0.86s) than a trapezoidal velocity
profile in joint space (0.69s) to shortly repeat the results presented in Section 4.2.

In the experiments, the gripper moved at very high velocities with up to 1.74ms−1

for a trapezoid velocity profile and 1.67ms−1 for a minimum jerk profile. These veloc-
ities were used to reproduce the same duration of the movements as it was determined
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Figure 5.20: Body position of the subjects - The body position in the direction towards
the robot in relation to the handing over position is shown on the left. The subjects show
only insignificant little body-movements during the experiment towards the robot (right)
[180]

for human movements. Observations e.g. in [196] show that the peak velocity of hu-
mans arm movements increases as an function of the movement distance to keep the
duration of the movement constant around 1.2s.

The speed limitations of the robot to 0.25ms−1 as defined in current industrial
norms (see Section 2.2.1) limit the impact in case of a collision with the human. But
if the efficiency is considered, the speed limitation retards an efficient collaboration
between human and robot especially in the case of hand-overs. Even the high motion
velocities used in the experiments to mimic the time of needed for a human to perform
the hand-over could not reach the same task performance as in the compared human-
human experiment. This can be partly explained with the high technical disadvantages
like the usage of a parallel gripper of the robotic systems compared to humans.

During the experiment on the JAHIR robot the middle of the subject’s chest was
measured to estimate the most comfortable relative position of the subject and the fixed
hand-over position. The estimated mean body position of all subjects reveals only
insignificant small body-movements during the experiment towards the robot (0.01m
for both velocity profiles as shown in Figure 5.20. This indicates that the hand-over
position that was transferred from the human-human experiments is also comfortable
and valid in the human-robot collaboration scenario.
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Figure 5.21: Interview of the subjects after the hand over experiments - The subjects
had to answer (from 1 to 5) how human-like they thought the robot movement was and
how safe they felt during the experiment [180]

The subjects kept the same distance to the table during the experiment for both
tested profiles of the robot. The mean distance to the handing over point was 0.39m for
both profiles. The standard deviation of the mean body-position for the subjects hereby
is 0.05m for the trapezoid profile, respectively 0.04m for the minimum jerk profile (see
left of Figure 5.20). The results reveal that there was no discomfort even for the first
movement of the robot towards the subjects. Hence, it leads to the interpretation that
as soon as the hand-over position is in a region of comfort, humans do not need to
further optimize their body position. Further, the results show that the subjects were
not surprised during the first hand-overs despite the high absolute velocities (max.
1.74ms−1 for the trapezoid profile, max. 1.67ms−1 for the minimum jerk profile)
of the robot gripper moving directly towards the subject. If the robot movement has
created any discomfort or fear to the subjects, a significant adjustment or change in the
body position would be expected.

In addition to this, the subjects were interrogated on how they interpret different
velocity profiles in JAHIR set-up regarding human-like movements of the robot and the
subjective safety. The evaluation of the answers in the industrial setting show that there
are neither preferences in terms of how human-like the robot movements were nor in a
subjective feeling of safety (see Figure 5.21. Despite of the high maximum velocities
of the robot system the questionnaire indicated a relatively high feeling of subjective
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Figure 5.22: Secondary assembly task - A Baufix toy has to be assembled as secondary,
more complex object

safety in both profiles (averaged 4.1 scores out of 5 for the trapezoid profile, 4.3 scored
out of 5 for the minimum jerk profile).

The post-experiment questionnaire filled out by subjects in the human-humanoid
experiment [179] on the JAST system also revealed that no difference was recognized
by the subjects between the two profiles in terms of a human-like motion. But, in
this case, the subjective safety was significantly higher for the minimum jerk profile
(Wilcoxon matched pairs test, p = 0.013). The different configuration types of the
human-like JAST and the industrial-like JAHIR set-up might lead to the discriminative
results of the experiment. In the human-like arrangement of the robot as present in the
JAST set-up, the motor resonance of the human might be better activated [184].

An explanation for the overall high subjective feeling of safety could be that the
subjects were instructed about the task. In this way, the subjects were prepared and
could previously adapt based their expectation and were therefore not surprised at all
as also shown in the invariance of the body center position. Further that means that if
a robotic system can communicate its next steps and move in a predictable way, the
safety can be increased, because the robotic motions gets integrated in the prediction
and expectation of the human.

5.4.3 Applying predictive timing to JAHIR

In [86], the assembly duration prediction has been developed based on the assembly
experiment performed by humans without assistance as described in Section 3.1.1. To
examine the benefits of transferring timing prediction and corresponding time manage-
ment to the JAHIR set-up, the same tower building assembly task was repeated with
the JAHIR robot as assistant. In order to evaluate and compare the task efficiency [197]
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Figure 5.23: Performance evaluation - Duration of the average tower assembly time,
with robot assistance (left) and without robot assistance (right). The results show that the
efficiency for the tower building task could be increased compared to the case without
assistance, but with omnipresent components [185]

of the assistive system with the “human” system, the time-to-completion of four towers
was used in an experiment with 37 subjects (15 female, 22 male). A video of the tower
building task can be accessed online1.

As shown in Figure 5.23, it took the subjects on average (45.37±6.33)s in order
to assemble a tower with robotic assistance. The average assembly time measured with
the robot assistance is significantly shorter (t − test; p < 0.001) than the average as-
sembly time (53.39±9.47)s in the experiment presented in [86], where a human had
to perform the task alone2. This is astonishing, because in the robot-human experi-
ment, additional waiting times for both robot and human—due to small errors in the
predictions of the assembly durations—were present as opposed to omnipresent parts
in the “human” experiment.

The result indicates that the working speed of the human does not only depend on
factors like stress, skill level, and fatigue, but also differs if the task is performed alone
or with assistance. Similar to these, an increase of movement speed is also reported
in [198] if a pick and place task is performed with a partner.

Further, the adaptability of the predictor was tested. To do so, the first tower was

1http://www.youtube.com/watch?v=J3u-v39vBbA
2http://www.youtube.com/watch?v=tfW4L7Idpqk
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Figure 5.24: Adaptive time prediction - Empirical (black) and predicted duration (gray)
over all working steps. The first tower was built very slowly using only one hand while
the second tower was built as fast as possible using both hand

built by a subject using only one hand, mimicking a very slow worker. Since the initial
parameters of the predictor model a slow performance of the worker, the assembly
durations can be precisely predicted at the beginning. The second tower was built
using both hands and as fast as possible. The sudden change of the worker’s behavior
challenges the adaption of the assembly duration predictor. The predictor assumes
a slow performance at the beginning of the second tower assembly. This results in
an error ∆t for the first two cubes of the changed performance. After two imprecise
assistive actions, the algorithm predicts the timings correctly again for the fast worker.
Figure 5.24 depicts the predicted durations (black) for the slow and fast tower building
task along with the measured durations (gray) over the trials. The error bars indicate
the standard deviation of the predicted duration. The numbers above the durations
indicate the number of bolts the subject had to use in the assembly steps.

In an additional, more realistic experiment, a second product assembly task needs
to be assembled: a Baufix toy car as depicted in Figure 5.22. The complexity of
the assembly steps of the second task consists of multiple sub-steps and cannot be
intuitively specified as for the tower building task. However the generic concept of the
predictor allows to continuously update the complexities, even for uncertain assembly
steps or a set of assembly-steps. The overall scenario, including both tasks and the
time management, is depicted in Figure 5.25. A video of this application scenario is
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(a) (b) (c)

Figure 5.25: Application scenario - While the human is performing his assembly task,
the robot starts the presorting of objects for future assembly steps (a). If the next cube is
needed, the robot reaches the hand-over point just-in-time (b). For the second assembly
task, the robot hands over the boxes with presorted parts and can again prepare future steps
during the complex assembly steps

also available online1.
In the second task, the assembly of a Baufix car, the robot hands over boxes with

presorted parts needed for the current assembly step. The complexities of the presorted
components are far more uncertain than in the previous tower building scenario. Al-
though, the predictor is able to update imprecise initial complexity parameters. The
method can therefore be applied to a broader range of applications, as e.g. for the
assembly of a Baufix car. For this task, the experiments were repeated with a hu-
man acting as a slow worker for the first car. For the second car the human suddenly
changes his behavior and to assembles the car as fast as possible. The same ability of
the robot to adapt to changes in the human worker’s behavior can be observed. During
both tasks, the robot uses the predicted hand-over times in order to estimate the time
available for presorting the parts into boxes for the Baufix car assembly, according to
the description in Section 4.3.2.

The results of the experiments show that working with a robot assistant partner
increases the overall task performance. This indicates that the robot partner is not
only perceived as artificial assistant, but also as competitive partner. Finishing a task
faster than someone expects it might be motivation for the subjects. However, it seems
unlikely to find such a motivational effect in long term interactions with an assistive
robot system. Further, the experiment showed that the method to predict the assembly
duration could be implemented in a human-robot assembly scenario. Furthermore, the
efficiency for the tower building task was better than in the case without assistance, but

1http://www.youtube.com/watch?v=Lf2n6HKrNNU
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with omnipresent components. Additionally, the duration prediction method enables
the robot system to perform preliminary tasks while it is not needed for assistance.
Based on the predictions, a sense-full time management can be developed, thus further
increasing the efficiency.
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Chapter 6
Conclusion

To conclude the thesis, a review of the presented work and the corresponding contribu-
tions are given. Additionally, possible improvements and a glance towards future work
are presented.

6.1 Summary

The collaboration between human and robot constitutes a promising approach to sup-
plement current automation and optimization strategies in industrial production. The
strength and the efficiency of robots together with the high degree of dexterity and
the cognitive capabilities of humans complement one another and can lead to a high-
producing team. To investigate the potentials, the demonstration platform JAHIR was
created together with project partners from the electrical and mechanical engineering
department along with this thesis. It is embedded into an overall cognitive factory sce-
nario equipped with one fully automated and one fully manual assembly station for
investigating further optimization strategies that exploit cognitive capabilities.

Starting from the assumption that collaboration in a shared assembly task con-
stitutes in the ideal case a well-coordinated sequence of actions in space and time, the
thesis follows previous psychological findings, that describe how humans perform joint
actions. It was observed, that the success of human-human collaboration depends on
certain abilities including the ability to prediction and the ability to affect own actions
based on these predictions. Several mechanisms are responsible for these abilities.
To realize these mechanisms, the robotic system requires several capabilities including
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perceiving, gathering and representing contextual information such as the environment,
recognizing current actions of the human, and from this deducing context-aware dy-
namic and adaptive actions. These demanded capabilities are conceptually realized in
a distributed, modular software framework.

The work of this thesis co-developed and contributed to the general purpose track-
ing library OpenTL1 which includes well-known as well as novel computer vision al-
gorithms and many Bayesian filter concepts. In particular, real-time approaches for
a robust tracking of hands have been developed to be applied in this work for action
observation. Further, multiple sensors have been integrated and used to perceive the
geometric context.

With the realization of proposed architectural and software design principles, a
modular and generic framework based on a publish/subscribe principle was created.
The flow of information for inter-module communication is encapsulated into commu-
nication channels such as e.g. the scene modification or the hand update channel. This
allows a seamless integration of additional processing and sensor models including the
newly released Microsoft Kinect with an integrated full body skeleton tracking into the
overall system.

Based on reference experiments with humans, models were trained to recognize
the current assembly action of the human. It was experimentally evaluated, that with
a small decrease in the robustness, it is sufficient to focus on the hand position and
especially on derived data such as the velocity, acceleration, and jerk. With this level
of abstraction from the task itself, from sensory input, and the set-up configuration,
it was possible, to transfer the pre-learned models to the JAHIR set-up using only a
three-dimensional occupancy grid tracking approach as exchanged input source.

Further, the concept of a task-based hierarchical robot control based on joint veloc-
ities was accomplished with a closed architecture industrial robot. With the seamless
integration of the geometric context representation, a collision avoidance module for
the robot was created, that preserves movements of the robot that are not in conflict
with the avoidance strategy. The avoidance strategy is based on the information of
multiple sensors and the computation of virtual forces based on the minimal distance
of objects to each part of the robot. With this flexible controller, it is possible to easily
define actions of the robot based on the priority of the task execution.

Previous findings that state that the choice of the motion velocity profile influences

1http://www.opentl.org
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the unconscious adaption of the human motion, have been experimentally validated in
the JAHIR scenario. The reaction times of humans to start a hand over motion were
lower with a minimum jerk velocity profile compared to a trapezoidal velocity profile.
Further, preceding evaluations regarding the right timing of actions in e.g. hand-over
tasks were also verified by experiments on the JAHIR set-up. In this way, a seamless
collaboration without waiting times for human and robot has been achieved. It has
been shown that with the correctly timed robot assistance an assembly task can be
more efficiently solved compared to if humans assemble on their own.

6.2 Future work

This work has conceptually exhibited how a subset of psychologically known mecha-
nisms in human-human collaboration for assistive robotic systems can be successfully
adopted. Although in this work the topic “human-robot collaboration” was not cov-
ered in an all-encompassing way, the results should seriously be considered for future
collaborative systems in order to create a more natural collaboration with robots. Ad-
ditional psychological mechanisms should be considered, realized and evaluated in the
future, so that robotic systems are recognized and considered as adequate human col-
laboration partners. This should include the dynamic allocation of tasks based on the
specific skills of human and robot.

Since in this work the context information was mainly restricted to geometric in-
formation of the surrounding and e.g. the hand positions, future work should take
advantage of additional verbal and non-verbal aspects to gather a more detailed and
encompassing context. On the output side, more capabilities to communicate with the
human should be added. Current context-based and -suitable output modalities should
be used adaptively—e.g. if suddenly noise occurs, the speech output could switch to a
text-based notification. With a robust and fast six-dimensional face-tracking module,
for example, it would be possible to directly estimate the focus-of-attention of the hu-
man. This information could then be used to adaptively show important information
according to the attention of the human or to measure the human’s awareness regard-
ing the robot. The exploitation of more and faster sensors along with advanced data
fusion and machine learning approaches would also enlarge the system’s capabilities.
This could also include an expansive recognition of complex actions of the human.
Additionally, this work is based on the assumption, that the assembly plan is known
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a-priori. A probabilistic learning of plans and new action primitives of the robot would
enrich the flexibility of the system even further.

Since the safety for the human has been conceptually considered to be an inte-
grated part of the presented hierarchical robot controller, a focus of future work should
be to find ways that guarantee the safety for the human. Beside the alleviation of for
example the teach-in of new actions, the usage of compliant robots would greatly in-
crease the safety for the human. Further, a promising technology to robustly survey
the shared workspace is given with high-resolution depth sensing cameras. With the
use of multiple of these cameras, all obstacles for the collision avoidance strategy of
the robot controller could be estimated.
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