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Abstract

The continuous increase in compute speed and main-memory capacity of modern
servers triggered the development of a new generation of in-memory database sys-
tems. These systems completely rewrote the traditional database architecture to
use main memory as primary storage. Discarding several now obsolete abstrac-
tions of disk-based database systems enabled unprecedented query performance on
a single server. However, network communication slows down queries as soon as
multiple servers are involved. The result is a significant performance gap between
local and distributed query processing. Still, a scale out to a cluster becomes
inevitable when the workload exceeds the capacity of a single server.

This thesis seeks to further the state-of-the-art of distributed query processing
in parallel main-memory database systems by addressing the performance bar-
rier introduced by network communication. Thus, instead of concentrating on an
isolated problem, we design a novel distributed query engine that adapts to the
available network bandwidth as well as unexpected workload characteristics that
hinder scalability. It exploits locality to speed up query processing over commod-
ity networks and implements a novel parallelism model to fully leverage modern
high-speed interconnects. We prove the feasibility of our design with a prototypical
implementation for the high-performance in-memory database system HyPer. Us-
ing redo log multicasting and global transaction-consistent snapshots, the engine
further enables query processing on fresh transactional data. An extensive evalu-
ation with the renowned TPC-H analytical benchmark demonstrates that HyPer
with our novel distributed query engine not only outperforms competing parallel
database systems but also scales its query performance with the cluster size.
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Kurzfassung

Die kontinuierliche Steigerung der Rechengeschwindigkeit und Hauptspeicherka-
pazität von modernen Servern hat zur Entwicklung einer neuen Generation von
Hauptspeicher-Datenbanksystemen geführt. Bei diesen Systemen löst der deutlich
schnellere Hauptspeicher die Festplatte als Primärspeicher ab. Dabei wurde die
traditionelle Datenbankarchitektur tiefgreifend verändert, um eine erhebliche Leis-
tungssteigerungen bei analytischen Anfragen zu erreichen. Allerdings beschränkt
nun teure Netzwerkkommunikation den Durchsatz von analytischen Anfragen, so-
bald bei der Bearbeitung mehrere Rechner involviert sind. Dadurch ergibt sich ein
signifikanter Leistungsunterschied zwischen lokalen und verteilten Anfragen. Der
Einsatz eines Rechnerverbunds bleibt jedoch unvermeidlich, wenn die verarbeite-
ten Daten die Kapazität eines einzelnen Rechners überschreiten.

Diese Dissertation zielt auf die Verbesserung des aktuellen Stands der Tech-
nik bezüglich der verteilten Anfrageverarbeitung in parallelen Hauptspeicher-
Datenbanksystemen ab. Sie adressiert dabei primär die negativen Auswirkungen
von Netzwerkkommunikation auf die Anfrageleistung dieser Systeme. Anstatt ein
isoliertes Problem zu betrachten, beschreiben wir den Entwurf einer neuen verteil-
ten Anfrageeinheit, die sich an die verfügbare Netzwerkbandbreite und an unerwar-
tete Eigenschaften der verarbeiteten Daten anpassen kann. Sie nutzt Lokalität in
der Datenplatzierung um die Anfrageverarbeitung über herkömmliche Netzwerke
zu beschleunigen. Weiterhin setzt sie ein neuartiges Modell zur Parallelisierung ein,
so dass das Potenzial moderner Hochgeschwindigkeits-Netzwerke voll ausgenutzt
werden kann. Wir belegen die Machbarkeit unseres Entwurfs anhand eines Proto-
typs für das hochperformante Hauptspeicher-Datenbanksystem HyPer. Durch die
Verwendung von Redo-Log-Multicasting und globalen transaktionskonsistenten
Schnappschüssen ermöglicht unsere Anfrageeinheit weiterhin analytische Anfrage-
verarbeitung auf aktuellen transaktionalen Daten. Eine ausführliche Evaluation
unter Verwendung des renommierten TPC-H Benchmarks zeigt, dass HyPer mit
unserer neuen verteilten Anfrageeinheit vergleichbare Systeme schlägt und seine
Anfrageleistung mit der Größe des Rechnerverbunds steigern kann.
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Chapter 1

Introduction

An in-memory database system needs to scale to a cluster of servers to process
workloads that exceed the main-memory capacity of a single server. However, a
scale-out introduces network communication as distributed queries have to read
data from different servers. For today’s systems network bandwidth is the clear
bottleneck for distributed query processing. Distributed joins and aggregations
are slowed down by expensive all-to-all data shuffling. This thesis focusses on
four important problems that a distributed query engine for a modern parallel
main-memory database system has to address when it aims at scalable distributed
query processing: the reduced network bandwidth of commodity networks, the
new bottlenecks revealed when modern high-speed networks replace commodity
networks, the load imbalance caused by skew, and the performance penalty of
distributed transactions when queries are processed on fresh transactional data.

1.1 Problem Statement
Modern in-memory database systems completely rewrite the traditional database
architecture to accommodate for switching primary storage from disk to main
memory. They are able to offer unprecedented single-node query performance
by removing several now obsolete abstractions of traditional disk-based database
systems and utilizing the high compute power and parallelism level of today’s
many-core servers. However, the main-memory capacity of a single server is lim-
ited to a few terabytes. A scale out to a cluster of machines is necessary to process
workloads that do not fit into the main memory of a single machine. Perfect
partitioning of the workload is unrealistic, which makes distributed processing in-
evitable. Commodity networks such as Gigabit Ethernet slow down query process-
ing due to the large performance gap between CPU speed and network bandwidth.
However, even special high-speed networking hardware such as InfiniBand alone

1



2 1.1. Problem Statement

cannot achieve scalable query processing. Instead, new bottlenecks surface such as
the inflexibility of the classic exchange operator model and CPU-intensive TCP/IP
stack processing. A parallel database system thus has to adapt query processing
differently depending on whether commodity or high-speed interconnects are used.
Query processing performance is further impaired by attribute value skew and the
resulting load imbalances. Traditional skew handling approaches add significant
processing overheads for non-skewed workloads. These become immediately visible
when high-speed networks are used that are too fast to hide any extra computa-
tional work. Modern businesses require query processing on fresh transactional
data. However, moving from a single server to a cluster of machines will in gen-
eral severely degrade transaction throughput due to the overheads incurred by
distributed commit handling, global lock management, and deadlock detection.

A distributed query engine for a parallel hybrid in-memory database system
that aims at scaling the query processing performance with the cluster size there-
fore has to address the following issues:

1. Insufficient bandwidth of commodity networks.
In the past, the query performance of a parallel database system was bound
by processing costs and disk I/O, while network I/O played only a minor
role [15, 20]. Modern main-memory database systems offer unprecedented
single-node query processing performance by rewriting the database archi-
tecture to fully utilize the large main-memory capacities and many cores
of today’s servers. Consequently, the network bandwidth has become the
dominant bottleneck for distributed query processing. In fact, a single ma-
chine easily outperforms a cluster of servers connected via Gigabit Ethernet
as soon as data has to be shuffled across the network for distributed joins
and aggregations. Uncoordinated network communication further reduces
the throughput and thereby query performance due to switch contention.

2. New bottlenecks revealed by high-speed networks.
While special high-speed networking hardware is not yet commonly available
in data centers such as Amazon EC2 and the Google Compute Engine, it has
become economically viable for custom-built database clusters. However, us-
ing faster networking hardware alone does not solve the scalability problem of
distributed query processing where a single server easily outperforms a clus-
ter of machines. When high-speed networks replace commodity networks as
the cluster interconnect but the distributed query engine remains unchanged,
new bottlenecks surface that limit query performance. This includes the in-
flexibility of the classic exchange operator model and the high overhead of
TCP/IP stack processing [13, 27]. Both prevent a main-memory database
system from leveraging the full potential of modern high-speed networks.
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3. Load imbalances caused by skew.
Skew threatens the scalability of distributed query processing. Attribute
value skew manifests itself in a large numbers of duplicate values, so called
heavy hitters. These create load imbalances during distributed joins so that
one server has to process a much larger part of the input than its fair share.
Other servers have to wait for this one straggler, increasing the query re-
sponse time. Traditional approaches either require a separate analysis phase
to detect skew or extensive statistics that might not be available or might be
overly inaccurate, in particular for intermediate results. High-speed networks
are simply too fast to hide any substantial amount of extra computational
work. Hence, a novel lightweight skew detection and handling approach is
required that adds only minimal overhead for non-skewed workloads.

4. Performance penalty of distributed transactions.
Modern businesses require real-time analytics on the most recent state of
the transactional data. Traditional approaches that extract data from the
transactional system to a dedicated data warehouse in regular intervals, e.g.,
every night, inevitably suffer from the problem of data staleness. HyPer
[45] is a hybrid in-memory database system that processes transactions and
queries on the same data at the same time, hence providing the desired real-
time business analytics. However, HyPer is limited by the query throughput
and main-memory capacity of a single server. A new approach is required to
scale a hybrid main-memory database system such as HyPer to a cluster and
still sustain its excellent transaction throughput of more than 100 000 TPC-C
transactions per second without sacrificing the high consistency guarantees.

1.2 Research Questions
This thesis focusses on the following research questions that result directly from
the preceding problem statement:

1. Is it possible to reduce the expensive all-to-all data shuffles incurred by dis-
tributed query processing over slow commodity networks?

2. Which changes to the distributed query engine are required to address the
new bottlenecks that modern interconnects reveal?

3. Is it possible to achieve scalable query processing in the presence of skew
without sacrificing the performance for non-skewed workloads?

4. Can a parallel database system achieve scalable query processing on fresh
transactional data without sacrificing transaction throughput?



4 1.3. Contributions

1.3 Contributions
We make the following contributions to the area of distributed query processing
in main-memory database systems:
1. Locality-aware data shuffling for commodity networks.

The disparity between the large processing capacities and limited network
bandwidth of commodity servers is so pronounced that compute-intensive
optimizations that minimize the network duration become worthwhile. We
developed the distributed join algorithm Neo-Join that exploits locality in
the data distribution to speed up distributed query processing. It optimizes
the assignment of join partitions to servers via linear programming to achieve
minimal query response times. Neo-Join further avoids the detrimental ef-
fects of cross traffic via intelligent network scheduling.

2. High-speed query processing over high-speed networks.
We developed a novel distributed query engine that addresses the new bottle-
necks that surface when a high-speed interconnect replaces a slow commodity
network. The engine implements a new hybrid parallelism model. It lever-
ages morsel-driven parallelism [52] for NUMA-aware processing and Infini-
Band’s highly-efficient remote direct memory access (RDMA) in combination
with low-latency network scheduling for fast network communication. Our
engine scales the excellent query performance of the HyPer main-memory
database system not only with the number of cores per server but also with
the number of servers in the cluster—something that was not possible before.

3. Low-overhead skew handling.
We propose a novel skew handling scheme for distributed joins called Flow-
Join. It detects heavy hitter skew using small approximate histograms that
add only a minimal processing overhead. Join key values that exceed a
skew threshold are kept local to avoid a load imbalance. Skew detection and
skew handling happen at runtime and do not require additional statistics
or materialization of the join inputs. Most importantly, Flow-Join enables
the database system to perform always-on skew detection without paying a
noticeable performance penalty for non-skewed inputs.

4. Query processing on fresh transactional data.
We present ScyPer, a new architecture for hybrid distributed query and
transaction processing. It consists of a primary node that processes trans-
actions and secondary nodes that replay its redo log to keep their transac-
tional state up-to-date. Queries are processed by secondaries using a round-
robin load balancing scheme to linearly scale the query throughput with
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the number of servers. At the same time, it sustains the excellent transac-
tion throughput of the hybrid in-memory database system HyPer. Global
transaction-consistent snapshots separate query and transaction processing,
avoiding consistency problems. Secondaries act as fast fail-over nodes that
can replace the primary in case of unexpected failures. We also give an out-
look beyond full replication by drafting a distributed architecture designed
to leverage the combined main-memory capacity of the cluster, scale query
performance, and still sustain HyPer’s excellent transaction throughput.

1.4 Outline
The remainder of this thesis is structured as follows:

• Chapter 2 introduces Neo-Join, a join algorithm for slow commodity net-
works that utilizes locality-aware data shuffling to exploit locality in the data
distribution and thereby speeds up query processing over commodity inter-
connects such as Gigabit Ethernet. It achieves the minimal query execution
time by optimizing the assignment of join partitions to nodes. Neo-Join fur-
ther utilizes an intelligent network scheduling approach to avoid cross traffic
that would otherwise significantly reduce network throughput.

• In Chapter 3 we describe our novel distributed query engine that is specif-
ically tailored for high-speed networks. Our new hybrid approach to paral-
lelism employs the existing NUMA-aware morsel-driven parallelism for local
processing while utilizing an efficient RDMA-enabled communication mul-
tiplexer for fast network communication. In combination, our holistic ap-
proach enables query performance that scales on both levels: the number of
cores inside a single server and the number of servers in the cluster.

• Chapter 4 describes Flow-Join, our new lightweight skew handling approach
for distributed joins. It uses small approximate histograms to detect skew at
runtime while adding only a minimal overhead to the query response time,
even when high-speed networks are used. A dedicated data redistribution
scheme for the detected heavy hitters avoids the load imbalances usually
caused by skew and even improves performance by reducing communication.

• Chapter 5 presents ScyPer, a distributed architecture for HyPer that enables
query processing on fresh transaction data. ScyPer uses redo log multicasting
to keep secondaries up-to-date and global transaction-consistent snapshots
to separate query and transaction processing. A round-robin load-balancing
scheme scales query performance linearly with the cluster size. At the same
time, HyPer’s excellent transaction throughput is sustained.





Chapter 2

Commodity Networks

Parts of this chapter were previously published in [71].

The growth in compute speed has outpaced the growth in network bandwidth
over the last decades for commodity networking hardware such as Gigabit Ether-
net, which is predominant in today’s data centers. This has led to an increasing
performance gap between local and distributed query processing. A parallel data-
base system thus has to maximize the locality of query processing. Relations are
commonly co-partitioned to avoid expensive data shuffling across the network.
However, this is limited to one attribute per relation and is expensive to maintain
in the face of updates. Other attributes often exhibit a fuzzy co-location due to
correlations with the distribution key or time-of-creation clustering, but current
approaches do not leverage this.

In this chapter, we introduce locality-sensitive data shuffling, which can dra-
matically reduce the amount of network communication for distributed operators
such as joins and aggregations. We present four novel techniques: (i) optimal par-
tition assignment exploits locality to reduce the network phase duration; (ii) com-
munication scheduling avoids bandwidth underutilization caused by cross traffic;
(iii) adaptive radix partitioning retains locality during data repartitioning and han-
dles value skew gracefully; and (iv) selective broadcast reduces network communi-
cation in the presence of extreme value skew or large numbers of duplicates. We
present comprehensive experimental results, which show that our techniques can
improve performance by up to factor of 5 if the data distribution exhibits locality
and a factor of 3 for inputs with value skew.

2.1 Motivation
Parallel databases are a well-studied field of research, which attracted considerable
attention in the 1980s with the Grace [31], Gamma [20], and Bubba [10] systems.

7
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Figure 2.1: Evolution of CPU speed and network bandwidth1

At the time, the network bandwidth was sufficient for the query performance of
these disk-based database systems. For example, DeWitt et al. [20] showed that
Gamma took only 12 % additional execution time when data was redistributed
over the network—compared to an entirely local join of co-located data. Copeland
et al. [15] similarly stated in the context of the Bubba system in 1986:

“[...] on-the-wire interconnect bandwidth will not be a bottleneck.”

The situation has changed dramatically since the 1980s. For today’s commodity
network hardware, this formerly small overhead of 12 % to compute a distributed
instead of a local join has turned into a significant performance penalty of 500 %
(cf., Section 2.5.1 for the detailed experimental results). This performance gap is
caused by the development depicted in Figure 2.1: Over the last decades, CPU
performance has grown much faster than the network bandwidth, at least for
commodity hardware that is used in data centers such as Amazon EC2 or the
Google Compute Engine. High-speed networks such as InfiniBand are not yet
commonly available and still several times more expensive than the predominant
Gigabit Ethernet [42]. This chapter therefore focusses on optimizing distributed
operators for commodity network hardware. We address InfiniBand in Chapter 3
of this thesis, building a high-speed query engine that takes advantage of these
special high-speed networks.

1CPU MIPS from Hennessy and Patterson [40]. Dominant network speed of new servers
according to the IEEE NG BASE-T study group [42].
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Modern main-memory database systems such as HyPer [45], MonetDB [55],
or Vectorwise [88] achieve an unprecedented single-node query processing per-
formance that widens the gap to distributed processing further. Slow network
transfers cannot be hidden behind other bottlenecks anymore (e.g., disk access) so
that any significant data transfer becomes immediately visible as an overhead to
the query execution time.

The current situation is highly unsatisfactory for parallel in-memory database
systems: Important distributed operators such as join, aggregation, and dupli-
cate elimination are slowed down by overly expensive data shuffling. A common
technique to reduce network communication is to explicitly co-partition frequently
joined tables by their join key [86]. However, co-partitioning of relations is limited
to one attribute per relation (unless the data is also being replicated), requires
prior knowledge of the workload, and is expensive to maintain in the face of up-
dates. Other attributes often exhibit a fuzzy co-location due to strong correlations
with the distribution key or time-of-creation clustering but current approaches do
not leverage this.

In this chapter, we introduce locality-sensitive data shuffling, four novel tech-
niques that exploit workload characteristics to reduce the amount of network com-
munication incurred by distributed operators. Its cornerstone is the optimal par-
tition assignment, which allows operators to benefit from data locality. Most im-
portantly, the optimization overhead is small even when data exhibits no locality.
We employ communication scheduling to use all the available network bandwidth
of the cluster. Uncoordinated communication would otherwise lead to cross traffic
and thereby reduce bandwidth utilization. We propose an adaptive radix partition-
ing for the repartitioning to retain locality in the data and to handle value skewed
inputs gracefully. Selective broadcast is an extension to the partition assignment
that decides dynamically for every partition between shuffle and broadcast. With
selective broadcast, our approach can benefit from extreme value skew and reduce
communication further.

We primarily target clusters of high-end commodity machines, which consist
of few but fat nodes with large amounts of main memory. This typically rep-
resents the most economic choice for parallel main-memory database systems.
MapReduce-style systems are, in contrast, designed for larger clusters of low-end
machines. Recent work [86] has extended the MapReduce processing model with
the ability to co-partition data. However, this does not cover fuzzy co-location,
in which case MapReduce-style systems still have to perform a network-intensive
data redistribution between map and reduce tasks. They would thus also benefit
from locality-sensitive data shuffling.

The immense savings that locality-sensitive data shuffling can achieve com-
pared to a standard hash join (shown in Figure 2.2a) easily compensate the asso-
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Figure 2.2: Benefit and cost of the location-aware join

ciated optimization costs (shown in Figure 2.2b). Even when the data distribution
exhibits no locality and a large cluster of 128 nodes is used, partition assignment
and network scheduling still increase query execution time only by a mere 1.3 %.

In summary, this chapter makes the following contributions:

• Optimal partition assignment: We devise a method that allows operators to
benefit from data locality. It applies to all operators that reduce to item
matching, e.g., join, aggregation, and duplicate elimination.

• Communication scheduling: Our communication scheduler prevents cross
traffic, which would otherwise reduce network throughput dramatically.

• Adaptive radix partitioning: An efficient repartitioning scheme that retains
existing locality in the data redistribution and handles value skewed inputs
gracefully.

• Selective broadcast: We extend the partition assignment to selectively broad-
cast small partitions. This significantly improves performance for inputs with
high attribute value skew.
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We describe our techniques based on Neo-Join, a network-optimized join oper-
ator. They can be similarly applied to other distributed relational operators that
reduce to item matching, e.g., aggregation and duplicate elimination.

2.2 Related Work
As outlined in the introduction, distributed joins have first been considered in the
context of database machines. Fushimi et al. introduced the Grace hash join [50]
of which a parallel version was evaluated by DeWitt et al. [20]. These algorithms
are optimized for the disk as bottleneck. However, parallel join processing in main-
memory database systems avoids the disk and is instead limited by the network
bandwidth of today’s commodity network hardware.

Wolf et al. proposed heuristics for distributed sort-merge [84] and hash join
[85] algorithms to achieve load balancing in the presence of skew. However, their
approach targets CPU-bound systems and does not apply when the network is
the bottleneck. Wilschut et al. [83] devised a distributed hash join algorithm
with fewer synchronization requirements. Again, CPU costs were identified as
the limiting factor. Stamos and Young [74] improved the fragment-replicate (FR)
join [24] by reducing its communication cost. However, partition-based joins still
outperform FR in the case of equi-joins. Afrati and Ullman [1] optimized FR for
MapReduce, while Blanas et al. [8] compared joins for MapReduce. MapReduce
focuses especially on scalability and fault-tolerance, whereas we target per-node
efficiency. Frey et al. [29] designed a join algorithm for non-commodity high-speed
InfiniBand networks with a ring topology. They state that the network was not
the bottleneck. We will address high-speed InfiniBand networking hardware in
Chapter 3.

Systems with non-uniform memory access (NUMA) distinguish expensive re-
mote from cheaper local reads similar to distributed systems. Teubner et al. [78]
designed a stream-based join for NUMA systems. However, it does not fully uti-
lize the bandwidth of all memory interconnect links. Albutiu et al. [3] presented
MPSM, a NUMA-aware sort-merge-based join algorithm. Li et al. [53] applied
data shuffling to NUMA systems and in particular to MPSM. They showed that
a coordinated round-robin access pattern increases the bandwidth utilization by
up to 3× but reduces the join execution time by only 8 % as sorting dominates
the runtime. We show that data shuffling applied to distributed systems achieves
much higher benefits. In contrast to Li et al. we also consider skew in the data
placement.

Bloom filters [9] are commonly used to reduce the network traffic. They are
orthogonal to our approach and can be used as a preliminary step. However, they
should not be applied in all cases due to their incurred computation and commu-
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nication costs. Dynamic bloom filters [6] lower the computation costs as they can
be maintained continuously for common join attributes. Still, the exchange of the
filters itself causes network traffic that increases quadratically in the number of
nodes. They should therefore only be used for joins that are highly selective while
our approach is independent of join selectivity.

CloudRAMSort [48] introduced the idea to split tuples into key and payload.
This is compatible with our approach and could be applied to reduce communica-
tion costs further. A second data shuffling phase would then merge result tuples
with their payloads.

2.3 Neo-Join
Neo-Join is a distributed join algorithm based on locality-sensitive data shuffling.
It computes the equi-join of two relations R and S, which are horizontally frag-
mented across the nodes of a distributed system. Neo-Join exploits locality and
handles value skew gracefully using optimal partition assignment. Communication
scheduling allows it to avoid cross-traffic. The algorithm proceeds in four phases:
(1) repartition the data, (2) assign the resulting partitions to nodes for a minimal
network phase duration, (3) schedule the communication to avoid cross traffic,
and (4) shuffle the partitions according to the schedule while joining incoming
partition chunks in parallel. In the following we describe each of these phases in
detail.

2.3.1 Data Repartitioning (Phase 1)
The idea to split join relations into disjoint partitions was introduced by the Grace
[31] and Gamma [20] database machines. Partitioning ensures that all tuples with
the same join key end up in the same partition. Consequently, partitions can be
joined independently on different nodes. We first define locality and skew before
covering different choices to repartition the inputs.

Locality. We use the term locality to describe the degree of local clustering for
a specific partitioning of the data. Figure 2.3a shows an example with high locality.
We specify locality in percent, where x% denotes that on average for each partition
the node with its largest part has x% of its tuples with an additional 1/n-th of
the remaining tuples (for n nodes). 0 % thus corresponds to a uniform distribution
where all nodes own equal parts of all partitions and 100 % to the other extreme
where nodes own partitions exclusively. Locality in the data distribution can have
many reasons, e.g., a (fuzzy) co-partitioning of the two relations, a distribution
key used as join key, a correlation between distribution and join key, or time-
of-creation clustering. Locality can be created on purpose during load time to
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Figure 2.3: Data locality vs. attribute value skew

benefit from the significant savings possible with locality-sensitive operators. One
may also let tuples wander with queries to create fuzzy co-location for frequently
joined attributes.

Skew. The term skew is commonly used to denote the deviation from a uni-
form distribution. Skewed inputs can significantly affect the join performance and
therefore should be considered during the design of parallel and distributed join
algorithms (e.g., [84, 3, 47]). We use the term value skew to denote inputs with
skewed value distributions. Skewed inputs can lead to skewed partitions as shown
in Figure 2.3b. We will first focus on locality and afterwards address skew in
Section 2.4.

In the following, we assume the general case that distribution and join key
differ. Otherwise, one or both relations would already be distributed by the join
attribute and repartitioning becomes straightforward: The existing partitioning of
one relation can be used to repartition the other relation accordingly. Our optimal
partition assignment will automatically exploit the locality in this way.

There are several options to repartition the inputs. Optimal partition assign-
ment (cf., Section 2.3.2) and communication scheduling (cf., Section 2.3.3) apply
to any of them. However, repartitioning schemes such as the proposed radix parti-
tioning that retain locality in the data placement can improve the join performance
significantly, as we describe in the following.
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Hash Partitioning

Hashing is commonly used for partitioning as it generally achieves balanced par-
titions. However, it can be sub-optimal. An example is an input that is almost
range-partitioned across nodes (e.g., caused by time-of-creation clustering as is the
case for the orders and orderline relations in TPC-H). With range-partitioning, the
input could be assigned to nodes in a way that only the few tuples that violate the
range partitioning are shipped over the network. Hash partitioning destroys this
fuzzy range partitioning and instead generates n balanced partitions. Nodes keep
only 1/n-th of their input data, leading to unnecessary network communication.

Radix Partitioning

We propose radix partitioning [54] of the join key based on the most significant
bits2 (MSB) to retain locality in the data placement. MSB radix partitioning
is a special, “weak” case of hash partitioning, which uses the b most significant
bits as the hash value. Of course, using the key directly does not produce such
balanced partitions as proper hash partitioning. But more importantly, MSB radix
partitioning is order-preserving and thereby a restricted case of range partitioning,
which allows the algorithm to assign the partitions to nodes in a way that reduces
the communication costs significantly. By partitioning the input into many more
partitions than there are nodes, one can still handle value skew, e.g., when there
is a bias towards small keys. Section 2.4 covers techniques that handle moderate
and extreme cases of value skew while keeping the number of partitions low.

Figure 2.4 depicts a simple example with 5 bit join keys (0 ≤ key < 32). First,
the nodes compute histograms for their local input by radix-clustering the tuples
into eight partitions P0, . . . , P7 according to their 3 most significant bits b4b3b2b1b0
as shown in Figure 2.4a. Next, the algorithm assigns these eight partitions to the
three nodes so that the duration of the network phase is minimal. As we show in
Section 2.3.3, the network phase duration is determined by the maximum straggler,
i.e., the node that needs the most time to receive or send its data. An optimal
assignment, which minimizes the communication time of the maximum straggler, is
shown in Figure 2.4b. Figure 2.4c depicts the send and receive cost for every node
to transfer the tuples according to the optimal assignment. With this assignment
both node 0 and node 2 are maximum stragglers with a cost of 12 (node 0 receives
5 tuples from node 1 and 7 from node 2, node 2 sends 7 tuples to node 0 and
5 to node 1). In the best case for hash partitioning, every node sends 1/n-th of
its tuples to every other node (≈ 21) and receives 1/n-th of the tuples from every
other node (also ≈ 21). In this simplified example, radix partitioning thus reduced
the duration of the network phase by almost a factor of two.

2More precisely, the most significant used bits to avoid leading zeros.
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(a) Histograms according to the three most significant bits
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(b) Optimal partition assignment
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(c) Network phase duration for the assignment

Figure 2.4: Optimal partition assignment
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The next two sections explain how the histograms resulting from the chosen
partitioning scheme can be used to first compute an optimal assignment of parti-
tions to nodes and afterwards the corresponding communication schedule.

2.3.2 Optimal Partition Assignment (Phase 2)
The previous section described how to repartition the input relations so that tuples
with the same join key fall into the same partition. In general, the new partitions
are fragmented across nodes. Therefore, all fragments of one specific partition have
to be transferred to the same node for joining. We now describe how to determine
an assignment of partitions to nodes that minimizes the network phase duration.

We define the receive cost ri of a node i as the number of tuples it receives
from other nodes for the partitions that were assigned to it. Similarly, its send
cost si is defined as the number of tuples node i has to send to other nodes.
Section 2.3.3 shows that the minimum network phase duration is determined by
the node with the maximum send or receive cost. The assignment is therefore
optimized to minimize this maximum cost.

A naïve approach would assign a partition to the node that owns its largest
fragment. However, this is not optimal in general. Consider the assignment for
the running example in Figure 2.4b. Partition 7 is assigned to node 1 even though
node 0 owns its largest fragment. While the assignment of partition 7 to node 0
reduces the send cost of node 0 by 4 tuples, it also increases its receive cost to a
total of 13 tuples. As a result, the network phase duration would increase from 12
to 13 (see Figure 2.4c). As we will show in Section 2.3.2, the problem of computing
an optimal assignment of partitions to nodes is in fact NP-hard.

Mixed-Integer Linear Programming

We phrase the partition assignment problem as a mixed-integer linear program.
As a result, we can use an integer programming solver to solve it. The linear
program computes a configuration of the decision variables xij ∈ {0, 1}. These
decision variables define the assignment of the p partitions to the n nodes: xij = 1
determines that partition j is assigned to node i, while xij = 0 specifies that
partition j is not assigned to node i.

Each partition has to be assigned to exactly one node. We model this in our
linear program by adding the constraint that the sum of all decision variables xij

for a partition j has to be 1:

n−1∑
i=0

xij = 1 for 0 ≤ j < p (2.1)
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We want to compute the optimal partition assignment using our linear program.
Therefore, we need to specify an objective function that minimizes the duration
of the network phase. This duration is equal to the maximum send or receive
cost over all nodes as mentioned before and explained in detail in Section 2.3.3.
We denote the send cost of node i as si and its receive cost as ri. Using these
placeholders, the objective function becomes the following:

min max
0≤i<n

{si, ri} (2.2)

Using the decision variables xij and the size of partition j at node i—denoted
with hij—we can now express the amount of data each node has to send (si) and
receive (ri), defining the placeholders in the objective function:

si =
p−1∑
j=0

hij · (1− xij) for 0 ≤ i < n (2.3)

ri =
p−1∑
j=0

xij

n−1∑
k=0,i 6=k

hkj

 for 0 ≤ i < n (2.4)

Equation 2.3 computes the send cost of node i as the size of all local fragments
of partitions that are not assigned to it. These fragments need to be sent to a
remote node and thus constitute the send cost. Equation 2.4 sums up the size
of remote fragments of partitions that were assigned to node i. These remote
fragments have to be sent to node i and thus make up its receive cost.

Mixed-integer linear programs require a linear objective, which unfortunately
minimizing a maximum is not. However, we can rephrase the objective and instead
minimize a new variable w. Additional constraints take care that w assumes the
maximum over all send and receive costs:

(OPT-ASSIGN)

minimize w, subject to

w ≥
p−1∑
j=0

hij(1− xij) 0 ≤ i < n

w ≥
p−1∑
j=0

xij

n−1∑
k=0,i 6=k

hkj

 0 ≤ i < n

1 =
n−1∑
i=0

xij 0 ≤ j < p

One can obtain an optimal solution for a specific partition assignment problem
(OPT-ASSIGN) by passing the mixed-integer linear program to an optimizer such
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as Microsoft Gurobi3 or IBM CPLEX4. These solvers can be linked as a library to
create and solve linear programs with minimal overhead.

Argument Size Balancing

In general, one would like to avoid that large fractions of the argument relations
are assigned to a single node. This could lead to exhaustion of the resources on
this node (e.g., main memory) during join computation or when a (potentially
very large) result set is generated. The following constraint restricts the input size
for all nodes i to a multiple of the ideal input size:

p−1∑
j=0

xij(hR
j + hS

j ) ≤ (1 + o) · |R|+ |S|
n

for 0 ≤ i < n (2.5)

where o ∈ [0, n − 1] is the overload factor, which is allowed in addition to the
ideal input size, |R| and |S| denote the size of the argument relations, and hR

j and
hS

j are the total size of partition Pj for relation R and S, respectively. Argument
size balancing is not used in the experiments.

NP-hardness

We provide a proof sketch to show that OPT-ASSIGN is NP-hard. We show that
its decision variant (ASSIGN) is NP-complete by reducing the known NP-complete
partition problem (PARTITION) to it. We recall from [32] that as a consequence
OPT-ASSIGN is NP-hard. ASSIGN decides whether the objective function of
OPT-ASSIGN is smaller or equal to a given constant k. PARTITION determines
whether a given bag B of positive integers can be partitioned into bags S1 and S2
with equal sum.

The polynomial-time reduction is achieved as follows: Every integer ci of the
bag B corresponds to a partition Pi of size 2 · ci where two nodes n1 and n2
both own a fragment of size ci. The send and receive cost for partition Pi is by
construction equal to ci for both nodes. ASSIGN can be used to decide whether
an assignment exists in which both nodes have the same send and receive cost
(r1 = r2 = s1 = s2 = sum(B)/2) by choosing k = sum(B)/2. If this is possible,
the partitions assigned to node n1 represent the subset S1 and those for node n2
the subset S2. Thus, a solution to the assignment problem is also a solution to the
partition problem. Figure 2.5 shows an example.

3http://www.gurobi.com
4http://ibm.com/software/integration/optimization/cplex

http://www.gurobi.com
http://ibm.com/software/integration/optimization/cplex
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B = {20, 4, 10, 11, 5}, k = 25PARTITION

ASSIGN PARTITION

Figure 2.5: Reduction of PARTITION to ASSIGN

ASSIGN is in NP, with the partition assignment as a certificate. PARTITION
is NP-complete [32] and we have constructed a reduction to ASSIGN. Therefore,
ASSIGN is NP-complete and OPT-ASSIGN NP-hard.

Optimization Time

Despite the NP-hardness of the partition assignment problem it is possible to
solve real-world instances in reasonable time, i.e., much faster than the potential
savings in communication time. Figure 2.6 depicts the solve time using the linear
programming solver CPLEX for variations of the problem with increasing locality.

In general, the solve time for a linear program increases with the number of
variables. For the partition assignment, every combination between nodes and
partitions is represented by a variable. Consequently, there is a direct correlation
between the number of nodes/partitions and the solve time as shown in Figure 2.6a
and 2.6b. These figures further show that the degree of locality does not influence
optimization time. The number of tuples per node has also no impact on the solve
time as expected and shown in Figure 2.6c.

Figure 2.6 indicates that the optimal assignment becomes expensive for clusters
with hundreds or even thousands of nodes. As outlined in the introduction, our
target are mainly clusters with fewer but fatter nodes as this is typically the most
economic choice for parallel main-memory database systems. Consequently, we
only focus on the optimal solution. Efficient approximations should be possible
to support larger clusters. For example, a heuristic could first assign a partition
to the node which owns its largest part, then randomly try to swap partitions
from the maximum straggler to the node whose cost increases minimally. This
could be implemented using a meta-heuristics such as simulated annealing. We
further expect an even slower network performance for very large clusters due to a
shared network infrastructure, which would also increase the savings possible with
locality-sensitive operators.
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Figure 2.6: Runtime analysis for the optimal partition assignment
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There are several options to minimize the optimization time: One can re-
duce the number of partitions by adaptively combining small partitions (cf., Sec-
tion 2.4.1). The assignment can be precomputed eagerly or cached for recurring
queries to avoid the runtime optimization overhead completely. Lastly, the locality
can be estimated to invest the optimization time only when the expected savings
are big enough.

Giving up Optimality

Integer linear programming (ILP) solvers first construct a feasible solution. This
solution is then improved iteratively until it is proven optimal. A priori, the
objective value of the optimal solution is unknown. Solvers approximate it by
solving the linear program (LP) relaxation of the problem which is significantly
faster to solve as it allows fractional values for all variables. The objective value for
the relaxation is an upper bound for the integer program and allows the solver to
estimate the distance to the optimal integer solution (called the optimality gap).
A solution is considered optimal when the distance is lower than a given threshold
(e.g., 0.01 %) or when it is otherwise proven to be optimal.

In the case of partition assignment, it is not essential that we find an optimal
solution. Instead, we are interested in the best solution that can be found in a
certain period of time. Solvers support this use case with a configurable time
limit after which the currently best solution is returned. This takes care of the
occasional outlier which takes longer to optimize (cf., Figure 2.6a and 2.6b) and
allows us to compute approximate solutions for even larger problem instances.

Another option for solving larger problems are heuristics. Randomized rounding
[66] constructs a solution for the integer linear program from the linear program
relaxation by repeatedly rounding the fractional variables to integer values. The
obtained rounded values for the variables may violate constraints. Randomized
rounding therefore has to check whether the modified solutions are still feasible.
In our experiments, an integer programming solver with a time limit performed
consistently better in both runtime and solution quality than randomized rounding.

2.3.3 Communication Scheduling (Phase 3)
The previous section described how to compute an optimal assignment of partitions
to nodes. The next step is to distribute the partitions according to this assignment.
However, when the nodes use the network without coordination, the available
bandwidth is utilized poorly. The scheduling of communication tasks can improve
the bandwidth utilization significantly. We assume a star topology with uniform
bandwidth that is common for small clusters. Our approach can be extended to
non-uniform bandwidths by adjusting the partition assignment problem.
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(a) A naïve schedule which uses only 67 % of the available bandwidth
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(b) The naïve schedule leads to network congestion as
node 1 and 2 send to node 0 at the same time

Figure 2.7: Naïve schedule

Network Congestion

A naïve data shuffling scheme would let all the nodes send their tuples to the first
node, then to the second node, and so on. Figure 2.7a depicts a naïve schedule for
the running example. This simple scheme leads to significant network congestion
since the nodes compete for the bandwidth of a single link while other links are
not fully utilized. Figure 2.7b visualizes the reason for the network congestion:
Both, node 1 and node 2 send data to node 0 at the same time and therefore
share the bandwidth of the link that connects node 0 to the switch. Node 0 can
send with only 1 Gbit/s to either node 1 or node 2 although both could receive
simultaneously. Ultimately, 1 Gbit/s of network bandwidth remains unused.

Network congestion can be avoided entirely by dividing the communication
into distinct phases. In each phase a node has a single target to which it sends,
and likewise a single source from which it receives. However, it is not obvious
how to determine the phases so that a schedule with minimum finish time is
realized. In practice, the nodes send different amounts of data to different nodes,
which renders a simple round-robin scheme impractical. The problem to devise a
communication schedule with minimum finish time corresponds to the open-shop
scheduling problem [36]. It can be solved in polynomial time when preemption is
allowed, which in our case corresponds to splitting network transfers.
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Open Shop Auto Shop Network Transfer

job car sender
task check engine data transfer
processor engine test bench receiver
execution time time for the check message size
preemption suspend the check split message

Table 2.1: Terminology mapping

The Open Shop Scheduling Problem

The open shop scheduling problem is defined for abstract jobs, tasks, and proces-
sors. We introduce it by using the example of an auto repair shop. Afterwards,
we will translate our original problem of computing an optimal network com-
munication schedule into an open shop problem. This will allow us to use the
polynomial-time algorithm that solves open shop problems to compute communi-
cation schedules.

An auto repair shop consists of m processors each dedicated to perform a
specific repair task, e.g., the engine test bench, the wheel alignment system, and
the exhaust test facility. There are multiple jobs, i.e., cars that need maintenance,
consisting of m tasks, which need to be performed, e.g., check the engines, align
wheels, and test the exhaust system. Each task of a job is performed by the
corresponding processor. Every task has a specific processing time. The tasks may
be performed in any order as it is irrelevant if the engine or the wheel alignment
is checked first. However, two repair tasks cannot be performed for the same
car simultaneously, as processors are located in different buildings. Similarly, a
processor can check only one car at a time. Suspension of tasks is allowed. The
goal is to find an optimal schedule with minimal total processing time.

The network scheduling problem can be translated to an open shop scheduling
problem with preemption as summarized in Table 2.1: A task is the data transfer
from one node to another node and it has an execution time corresponding to the
size of the data transfer. The job to which the task belongs is the sending node
and the processor is the receiving node. A node should not send to several other
nodes simultaneously, similarly to the tasks of a job, which cannot be processed
at different processors at the same time. A node should receive from at most
one other node, just as a processor can execute only one task. The data transfer
between two nodes can be split into multiple smaller transfers, just as tasks can
be preempted.
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Figure 2.8: Bipartite graph with initial matching

Solving Open Shops

Gonzales and Sahni [36] describe a polynomial time algorithm that computes a
minimum finish time schedule for open shops. The algorithm is based on finding
perfect matchings in bipartite graphs. We explain it on the basis of our running
example with three nodes.

The algorithm starts by generating the two vertex sets of the bipartite graph.
The first set of vertices consists of a vertex for each sender and an equal number
of additional vertices to represent virtual senders. Similarly, the second set has
vertices for normal and virtual receivers. In the example, there are N = 3 nodes
and therefore a total of 12 vertices in the bipartite graph as shown in Figure 2.8.
Each network transfer is represented as an edge connecting a sender with a receiver.
Every edge is weighted with the transfer size, e.g., node 2 has to send 7 tuples to
node 0. For optimality, it is important that all nodes have a weight equal to α,
the maximum send or receive cost across nodes (12 for the running example as
shown by Figure 2.4c). More specifically, α is defined as max0≤i<n{si, ri} where si

is the send cost of node i, i.e., the sum over the message sizes of all of its outgoing
traffic, and rj is the receive cost of node j, i.e., the sum over the message sizes
of all incoming traffic. Gonzales and Sahni describe in [36] how to insert edges
between nodes and their virtual partners to ensure this.

The second step of the algorithm repeatedly finds perfect matchings. Every
matching corresponds to a network phase and the edges of the matching define
which nodes communicate in this phase. The minimal edge weight in the match-
ing determines its duration. All matching edges are decreased by this amount,
removing edges with weight zero. Senders that are matched to virtual receivers
do not send in this phase and receivers matched to virtual senders do not receive.
This process is repeated until no edges remain.
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(a) An optimal schedule which uses 94 % of the available bandwidth
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Figure 2.9: Optimal schedule

The matching highlighted in Figure 2.8 corresponds to the first phase of the
schedule. Every transfer in this phase sends 6 tuples, as this is the minimum
edge weight. The edges of the matching specify that node 0 sends to node 1,
node 1 to node 2, and node 2 to node 0. The resulting optimal schedule is shown
in Figure 2.9a. It consists of three phases and achieves a network bandwidth
utilization of 94 %, in contrast to the 67 % for the naïve schedule.

Optimality

A schedule with a duration of less than α is not possible since α is the maximum
send or receive cost across all nodes. At least one node has this send or receive
cost and cannot finish earlier. Surprisingly, the algorithm always finds an optimal
schedule with duration equal to α.

We give an outline of the proof given by Gonzales and Sahni [36]: They first
show that it is possible to find perfect matchings in every step of the algorithm,
which we take as given in the following. Furthermore, the weights of the nodes are
by construction initially all equal to α. Each phase has a duration which corre-
sponds to the minimal edge weight of the matching found in this iteration of the
algorithm. The weights of the matching edges are reduced by this quantity and—
since the matchings are always perfect—the weights of all nodes are decreased
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by the same amount. The algorithm stops when all edges are removed and the
nodes have a weight of 0. The total duration of all phases is therefore α and the
algorithm computes an optimal schedule.

Time Complexity

The runtime of the algorithm is in O(r2) where r is the number of non-zero tasks
[36]. Every transfer of the communication schedule translates to a non-zero task.
A system with n nodes has no more than n(n− 1) transfers because each of the n
nodes sends to at most all other nodes. The runtime is therefore in O(n4).

Figure 2.10a compares the time needed to schedule the communication for a
varying number of nodes. It is apparent that the problem size increases with the
number of nodes. Figure 2.10b and 2.10c show that the number of partitions or
tuples do not affect the schedule time. The error bars show the standard deviation.

While the network scheduling is quite fast for up to 64 nodes where it takes
about 50 ms, this increases to 623 ms for 128 nodes and even further for more
nodes. Still, this is not a problem as the communication schedule can be computed
incrementally and in parallel to the actual data shuffling. The nodes can start
communicating as soon as the first phase is computed—which takes less than a
millisecond. The remaining phases are then computed during the data shuffling.

Simultaneous Communication

We have until now assumed that no other communication happens over the network
during the data shuffling. In the general case where simultaneous communication
takes place, all network traffic needs to be scheduled to utilize all the available
bandwidth of the database cluster. In this case the communication scheduling
should be extended to guarantee fairness, so that no operator can “starve”, e.g.,
by using a simple round-robin scheme between operators.

2.3.4 Partition Shuffling and Local Join (Phase 4)
At this point, we have a partition assignment and a schedule, which together
describe how to redistribute the partitions. The only task that remains is to
actually transfer the partitions over the network and join incoming partition chunks
in parallel.

Partition Shuffling

In theory, there is no need to synchronize between the phases of the communication
schedule. All nodes that participate in a phase send the exact same amount of data
and should therefore also finish together. In reality, some nodes stop sending a
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Figure 2.10: Runtime analysis for network scheduling
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Figure 2.11: Availability of the join result over time

little bit earlier than others due to variations in the TCP throughput, e.g., caused
by packet loss. These nodes then send to their next target, which still receives
from another node. As a result, both nodes share the bandwidth of the same link
and are slowed down. The problem intensifies when other nodes start to use the
links still occupied by the slower nodes. The situation is similar to a traffic jam.

To mitigate this problem, we let nodes synchronize before they begin the next
phase. While this avoids cross traffic, it introduces a synchronization barrier at
which nodes could be forced to wait for a node with temporarily less bandwidth.
Waiting for synchronization did not noticeably impact the performance in our
experiments. Nevertheless, we propose the following solution for it: The nodes
stop sending when they exceed the time limit for the current phase and report
their remaining tuples. The communication scheduler updates the bipartite graph,
which represents the network transfers, accordingly. It then computes a perfect
matching to determine the next phase.

Local Join

CPU performance and network bandwidth have grown at different speeds over the
last decades. In today’s systems with commodity network hardware the runtime
of a distributed join is dominated by the network transfers, whereas the local join
computation on the nodes is less critical. Arriving tuples can be joined in parallel
to the network transfer. Figure 2.11 shows the result generation for three hash
join variants over time using 4 nodes and 200 M tuples per node. It shows that
the join finishes immediately after the last tuple has arrived independent of the
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choice for the local join. Consequently, we have so far focused on optimizing the
data shuffling. Still, there are several choices for the local join.

The standard hash join [21] first builds a hash table for the smaller input, which
is then probed with the larger input. This two-phase approach effectively blocks
for the probe input. In a distributed join, the probe input needs to be cached
until after the entire build input has been received and processed. Only then can
probing of the hash table start to produce result tuples. This is visible as a steep
incline in the result size about 20 s into the join computation.

The symmetric hash join [83], a variant thereof known as XJoin [81], consists of
only one phase: An incoming tuple is first probed into the hash table of the other
input and then added to the hash table of its own input as shown in Figure 2.12.
The symmetric hash join processes each tuple immediately, thereby avoids to post-
pone work, and still computes the correct result. It finishes at the same time as
the standard hash join even though it processes every tuple twice, once for each
hash table. The network transfer dominates the runtime to such a large extent
that this additional work has no impact. The continuous processing of incoming
tuples is reflected in the steady incline in the number of result tuples as shown in
Figure 2.11.

The partitioned hash join is a third hash join variant that performs no more
work than the standard hash join and can produce results earlier. It maintains
a hash table for every partition and can probe those hash tables that are fully
built, while build tuples for other partitions are still missing. This is evident in
Figure 2.11 as result tuples are generated already 16 s into the join.

Neo-Join supports all three hash joins. It uses the partitioned hash join by
default since it is able to perform its work earlier than the standard hash join.
Further, the partitioned hash join processes every tuple only once in contrast to the
symmetric hash join, which maintains two hash tables. This becomes important
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for inputs with high locality since Neo-Join reduces the network transfer time
considerably—potentially even to zero. Partitioned and standard hash join are in
this case up to twice as fast as the symmetric hash join. All subsequent experiments
use the partitioned hash join.

2.3.5 Shuffling the Join Result
So far, we have not considered the cost for reshuffling a large join result in prepara-
tion for the next join or aggregation operator in the query plan. There is no need
to redistribute the join result when the subsequent operator references the same
attribute as the current join. In fact, locality-sensitive data shuffling identifies and
exploits the resulting co-location automatically. In all other cases, reshuffling is
necessary and can have a significant impact on the total query execution time. All
techniques described in this chapter should be applied for the optimization of this
additional data shuffling phase. A combined optimization of successive operators
could result in further improvements. The assignment of partitions to nodes influ-
ences the result sizes on the nodes, which in turn determine the cost for shuffling
the result.

Instead of a separate phase, the result could already be redistributed during
the join computation. However, it is hard to estimate at which point in time result
tuples are available at specific nodes. Moreover, the bandwidth of the nodes should
already be fully utilized during the data shuffling for the join. The redistribution
of the result could instead start after the data shuffling for the join has finished,
yet possibly before the end of the join computation. This further increases the
overlapping of communication and computation. However, in a network-bound
system this situation will only arise when the data shuffling phase of the join has
a short duration due to data co-location.

2.4 Handling Skew
We extend our locality-sensitive data shuffling approach to handle value skew
and high numbers of duplicates while keeping the complexity of the partition
assignment and thus the solve time low. Using the newly extended model for the
partition assignment, Neo-Join can benefit from extreme value skew and reduce
network communication further.

2.4.1 Adaptive Radix Partitioning
The optimal partition assignment as presented so far handles skewed inputs by
balancing larger partitions with many smaller ones. This handles those cases quite
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Zipf factor z

0.00 0.25 0.5 0.75 1.00

16 partitions 27 s 24 s 23 s 29 s 44 s
512 partitions 23 s 23 s 23 s 23 s 33 s
16 partitions (ARP) 23 s 24 s 24 s 24 s 24 s
16 partitions (selective broadcast) 24 s 24 s 23 s 20 s 10 s
16 partitions (selective broadcast + ARP) 23 s 23 s 24 s 20 s 10 s

Table 2.2: Join performance for skewed inputs

well where for example 80 % of the data lies in the first 20 % of the value range.
However, for extreme cases of value skew a considerable number of partitions is
needed for a balanced partition assignment. This is highly undesirable as the
runtime of the partition assignment increases with the number of partitions.

We extend radix partitioning to handle inputs with extreme value skew by
adaptively combining small partitions, hence called adaptive radix partitioning
(ARP). With ARP the nodes create histograms with many buckets. The partition
assigner aggregates these into a global histogram and combines buckets that are
smaller than a certain threshold. The resulting partitions are better balanced than
with standard radix partitioning. Most importantly, the number of partitions used
in the optimal partition assignment is kept small.

We evaluate ARP with the Zipf distribution, which is commonly used to model
extreme cases of value skew and high numbers of duplicates. The Zipf factor z ≥ 0
controls the extent of skew, where z = 0 corresponds to a uniform distribution.
Given n elements ranked by their frequency, a Zipf distribution with skew factor
z denotes that the most frequent item (rank 1) accounts for x = 1/H(n,z) of all
values, where H(n,z) = ∑n

i=0 1/iz is the nth generalized harmonic number. The
element with rank r occurs x/rz times. Zipf is known to model real world data
accurately, including the size of cities and word frequencies [38].

Our micro-benchmark consists of two relations, city and person, where person
has a foreign key hometown referencing the city relation. Both relations contain
400 M tuples. The hometown attribute of the person table is skewed to model the
fact that most persons live in few cities. We varied the Zipf factor z from 0 to
1. z = 0 corresponds to a uniform distribution as mentioned before, while z = 1
implies that 77 % of the values are in the first 1 % of the value range. Note that
for z = 1 the number of duplicates is also quite high: the value 0 occurs in 21 M
tuples (5 %), the value 1 in 10 M (2.4 %), the value 2 in 7 M (1.6 %), etc. n denotes
the number of elements, in this case n = 400 M.
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Figure 2.13: Selective broadcast outperforms broadcast and shuffle

Table 2.2 shows the join duration using 4 nodes for an increasingly skewed
person table. With simple radix partitioning, even 512 partitions do not suffice to
maintain the join duration for z = 1. On the other hand, adaptive radix parti-
tioning needs only 16 partitions to sustain the duration of the uniform case. Since
ARP produces better results for the same number of partitions, it should be used
as a replacement for the standard radix partitioning we described in Section 2.3.1.

2.4.2 Selective Broadcast
Selective broadcast (SB) extends the optimal partition assignment model so that
it can additionally decide for every partition whether to assign it to a node or
broadcast one of its relation fragments instead. This achieves two things: First,
it covers the case where one relation is significantly smaller than the other so
that broadcasting it as a whole is more efficient than shuffling individual parti-
tions. Second, the ability to decide between broadcast and shuffle for every single
partition is highly beneficial for skewed inputs, as we will show in the following.

Shuffle or Broadcast

There are two fundamental options for distributed joins: (i) shuffle both relations
so that tuples with the same key end up on the same node, or (ii) let one relation
remain fragmented across the system and broadcast the other—also known as the
fragment-replicate join [24]. Shuffling relations R and S incurs communication
costs of n−1

n
· (|R|+ |S|)/n as each of the n nodes sends 1/n-th of its fragments of
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R and S to the other n − 1 nodes. Broadcasting R costs (n − 1) · |R|/n as every
node sends its fragment of R to every other node. Broadcast thus performs better
than shuffling when the ratio between relations is higher than 1 : (n− 1).

The locality-sensitive data shuffling as presented so far only considers shuffling.
Selective broadcast extends our approach so that it decides for every partition
whether use shuffling or broadcast. In particular, this covers the case where one
relation is much smaller than the other and should be broadcast as a whole. As
a consequence, selective broadcast performs always at least as good as shuffling
both relations or broadcasting the smaller as illustrated in Figure 2.13 for 4 nodes.
Selective broadcast outperforms broadcast and shuffle for inputs with value skew
as we explain in the next section.

Skew

Selective broadcast can lead to significant speed-ups in the case of highly skewed
inputs. It broadcasts those partition fragments of one relation that are significantly
smaller than their counterpart of the other relation. The remaining partitions are
either broadcast by the other relation or assigned to nodes as before. Figure 2.14
illustrates this for two relations R and S where S is skewed towards small values.
The first five partitions of R are broadcast as the corresponding partitions of S
are much larger. The remaining partitions are assigned to nodes and shuffled as
before. This has the additional benefit that partitions are kept local that are large
due to a high number of duplicates, which is common for Zipf distributions. This
avoids that all the duplicate values are assigned to a single node, which then has
to process a much larger part of the input than the other nodes.
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To show the potential savings with selective broadcast, we revisit the example
of the city and person relations. For Zipf factor z = 1 and 16 partitions, the
join performance improves by a factor of 2.8 due to the use of selective broadcast
compared to the non-skewed case z = 0. In particular, the first three partitions
are broadcast by city, the next four partitions are shuffled, while the remaining
nine partitions are broadcast by person.

Model Extension

In the following, we describe how to extend the mixed-integer linear program of
the partition assignment to support selective broadcast.

As before, we use hR
j and hS

j to denote all tuples of relation R and S that
belong to partition j. Consider the simple case where all nodes i have equal-
sized fragments hij of partition j for relations R and S (we assume hR

j < hS
j ): We

should broadcast the fragment of partition j for relation R instead of assigning the
complete partition j to a node, whenever shuffling the fragments is more expensive
than a broadcast:

hR
j + hS

j > n · hR
j

We have to model the choice between assigning a partition to a node or
broadcasting it by either relation S or relation R. The existing binary variables
xij ∈ {0, 1} specify whether partition j is assigned to node i. We add two new
variables yj, zj ∈ {0, 1} per partition j that denote if its fragment for relation R
respectively S is broadcast instead.

The constraints have to be updated using the new variables. Previously, the
model included the restriction that every partition has to be assigned to exactly
one node (cf., Equation 2.1). In the new model, each partition j is either assigned
to a node or broadcast for one of the two relations. All variables that refer to the
same partition therefore have to be mutually exclusive:

(
n−1∑
i=0

xij

)
+ yj + zj = 1, for 0 ≤ j < p− 1 (2.6)

The constraints for the send and receive costs have to be updated as well.
The send cost ri of node i was previously defined as the sum of all partitions it
has to send because they were assigned to other nodes (cf., Equation 2.3). For
selective broadcast, one has to account for the additional cost for partitions that
are broadcast instead: If a partition is broadcast, all nodes that own a relation
fragment of this partition have to send it to all n− 1 other nodes. The additional
send cost of node i for broadcasts sB

i is therefore:
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sB
i =

p−1∑
j=0

(
yj(n− 1)hR

ij + zj(n− 1)hS
ij

)
for 0 ≤ i < n (2.7)

where hR
ij and hS

ij denote the size of the relation fragments of partition j at node
i for R and S, respectively. In addition to the receive cost ri for partitions that
were assigned to node i (cf., Equation 2.4), it also receives all relation fragments
from the other nodes for partitions that are broadcast. The additional receive
costs of node i for broadcasts rB

i are:

rB
i =

p−1∑
j=0

yj

n−1∑
k=0,i 6=k

hR
kj + zj

n−1∑
k=0,i 6=k

hS
kj

 for 0 ≤ i < n (2.8)

The objective (cf., Equation 2.2) remains unchanged, the program still min-
imize the maximum send or receive cost across all nodes. One can now update
the linear program for the partition assignment with equations 2.6-2.8 to support
selective broadcasts, including an additional small adjustment to the send cost:

(SEL-BCAST)

minimize w, subject to

w ≥ si + sB
i −

p−1∑
j=0

(yjhij + zjhij) 0 ≤ i < n

w ≥ ri + rB
i 0 ≤ i < n

1 =
(

n−1∑
i=0

xij

)
+ yj + zj 0 ≤ j < p

The runtime of the partition assignment increases by an average of 39 % with
selective broadcast enabled (comparing the geometric mean of 720 experiments
that cover combinations of 8 to 64 nodes, 4 to 16 partitions, and 20 levels of
locality using 3 repetitions).

2.5 Evaluation
All experiments of this chapter were conducted on a shared-nothing [75] cluster of
four identical machines except for the scale up experiment, which uses 16 nodes
with older hardware. The cluster is connected via Gigabit Ethernet. Each of
the four nodes has 32 GiB of RAM, an Intel Core i7-3770 processor with four
cores at 3.4 GHz each. The machines run Linux 3.8 as operating system. The
implementation links to the IBM CPLEX library for solving linear programs.
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Figure 2.15: Join performance of several distributed SQL systems

2.5.1 Locality

Figure 2.15 compares Neo-Join to MySQL Cluster 7.2.10, Hive 0.10 on a Hadoop
1.1.1 cluster, and the commercial system DBMS-X for five different levels of local-
ity. MySQL Cluster is a distributed variant of the MySQL database, which uses
main memory as storage. Hive is a data warehouse system based on Hadoop, the
open source implementation of MapReduce. For better comparability, we use the
in-memory file system ramfs instead of a disk and tuned the number of map/reduce
tasks. DBMS-X is a disk-based column store, which is configured likewise to use
main memory as storage. However, whether disk or main memory were used did
not result in noticeable differences in performance, which indicates that indeed the
network bandwidth is the limiting factor. All systems were configured to use three
data nodes and one coordinator.

The experiments use a total of 600 M tuples (100 M tuples per relation per
node). Each tuple consists of a key and a payload, both defined as DECIMAL(18,
0), which fits into a 64 bit integer. Neo-Join is in general independent of the data
layout, but we implemented it for a row-store. The join key is constrained to
[0, 232) so that the join result is not nearly empty as is the case for 64 bit uniform
join keys. We varied the locality, where x% denotes that for each partition the
node with its largest part owns x% of its tuples with an additional 1/n-th of
the remaining tuples for this partition (for n nodes). 0 % thus corresponds to a

5Exasol, current record holder in the TPC-H cluster benchmark, was measured with the
same input on a different cluster with slightly lower CPU performance but the same network
bandwidth—which is the bottleneck for distributed joins.
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Figure 2.16: Throughput of data shuffling algorithms

uniform distribution where all nodes own equal parts of all partitions and 100 %
to the other extreme where nodes own partitions exclusively.

MySQL takes an hour to compute the join on uniform data while Hive finishes
in 4 min, DBMS-X in 30 s, and Neo-Join in 20 s. MySQL and Hive perform similar
independent of locality while DBMS-X’s performance deteriorates by 41 %. Neo-
Join benefits significantly from increasing locality improving join performance by
a factor of 5 from 30 M to more than 150 M tuples/s. These results emphasize
the importance of locality-sensitive data shuffling. No contender was able to take
advantage from locality.

2.5.2 Data Shuffling Alternatives
Figure 2.16 compares the bandwidth utilization of four different data shuffling
schemes for uniform and skewed inputs on 4 nodes. For the naïve scheme all nodes
first send to node 0, followed by node 1, and so on. The random data shuffling
scheme selects targets at random. Both the naïve and the random scheme are not
synchronized as this decreases their performance. The round-robin scheme orders
the nodes in a cycle. Each node sends first to its clock-wise neighbor, then to
the one after that, etc. The phases are synchronized to avoid cross traffic. Open
shop is our data shuffling scheme, which is based on an open shop schedule and is
synchronized similar to the round-robin scheme.

The naïve and random distribution scheme perform similar for both the uniform
and the skewed input. The bandwidth utilization of round-robin deteriorates for
the skewed input. The node that sends the most data determines the duration of
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Figure 2.17: Scale up results for Neo-Join

a phase which is disadvantageous when the nodes send different amounts of data.
Open Shop handles the skewed input better due to its optimal communication
schedule.

2.5.3 Scale Up
The scale up experiment was conducted on a cluster of 16 nodes. Each node
has an Intel Core 2 Quad Q6700 CPU with four cores at 2.66 GHz and 8 GiB
of main memory. They are connected over Gigabit Ethernet—still the dominant
connection speed for new servers [42]. The nodes are somewhat aged as visible
in the rather inferior single-node join performance. Note that faster CPUs would
also improve the join performance for joins with high locality.

A linear scale up is defined as a linear increase in join performance when the
number of nodes and the size of the input is increased proportionally. In this
case, the input is increased by 100 M tuples for every additional node. Figure 2.17
demonstrates that Neo-Join scales almost linearly with the number of nodes. More-
over, it shows that locality-aware data-shuffling still scales when there is no locality
in the data, despite of the increasing overhead for partition assignment and net-
work scheduling.

2.5.4 TPC-H
We chose the TPC-H benchmark to test our approach with a more realistic data
set. We generated the relations for a scale factor of 100 and split them into four
parts, one per node. The resulting data set has about 100 GiB. We compare our
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approach to a hash-based shuffle of both relations and a broadcast of the smaller
relation. These are the two state-of-the-art choices for the data shuffling phase of
a distributed query. The results for the selected single-join queries are shown in
Figure 2.18.

The selection predicate of Q12 is so restrictive that one of the join inputs is 45×
larger than the other. Consequently, a broadcast of the smaller relation is much
faster than shuffling both relations. Neo-Join still improves over this by exploiting
the near-perfect co-location of the orders and lineitem tables caused by time-of-
creation clustering. Note that Neo-Join does not assign the few partitions that
violate the co-partitioning but instead selectively broadcasts them by the smaller
relation, which is even faster. It achieves a speedup of 7.6× over shuffling and
1.5× over broadcasting. For Q14, Neo-Join is able to exploit the time-of-creation
clustering of the part relation and repartitions the lineitem table, which exhibits
no locality on the join attribute. This improves the execution time by a factor of
3.4 over shuffling respectively 1.2 for broadcast. The size of the input relations for
Q19 differ only by 55 %, thus shuffling becomes faster than broadcast. Neo-Join
again exploits the locality in the data placement of the part relation and is 1.7×
faster than a shuffle and 2.3× faster than a broadcast.

2.6 Concluding Remarks
Over the last decades, compute speed has grown much faster than network speed,
at least for commodity hardware commonly used in data centers such as Amazon
EC2 and the Google Compute Engine. In such a setting, parallel main-memory
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database systems need to utilize locality in the data placement to speed up query
processing. A common technique is to co-partition relations during schema de-
sign to reduce expensive data shuffling. However, co-partitioning is restricted to
one attribute per relation (unless it is also being replicated) and expensive to
maintain under updates. Other attributes often exhibit a fuzzy co-location or
time-of-creation clustering but current approaches do not leverage this.

In this chapter, we have introduced locality-sensitive data shuffling, a set of four
techniques that can automatically exploit these characteristics of the workload to
dramatically reduce the amount of network communication of distributed opera-
tors. We have presented four novel techniques: (i) optimal partition assignment
computes an assignment with minimum network phase duration given any reparti-
tioning of the input while considering locality, skew, and the case that some nodes
own larger parts of a relation than others; (ii) communication scheduling leverages
all the available network bandwidth in a cluster; (iii) adaptive radix partitioning
retains locality in the data and handles value skew gracefully; and (iv) selective
broadcast allows to reduce network communication for cases with extreme value
skew by dynamically deciding whether to shuffle or broadcast a partition. We have
presented comprehensive experimental results, which show that our approach can
improve performance by up to a factor of 5 for fuzzy co-location and a factor of 3
for inputs with value skew.



Chapter 3

High-Speed Networks

Parts of this chapter were previously published in [70].

Modern clusters entail two levels of networks: connecting CPUs and NUMA
regions inside servers in the small and multiple servers in the large. The huge
performance gap between these two types of networks slowed down distributed
query processing to such an extent that a cluster performed in fact worse than a
single server. The increased main-memory capacity of the cluster remained the
sole benefit of such a scale-out.

The economic viability of high-speed interconnects such as InfiniBand has nar-
rowed this performance gap considerably. However, InfiniBand’s higher bandwidth
alone does not improve query performance as expected when the distributed query
processing engine is left unchanged. The scalability of distributed query processing
is impaired by TCP overheads, switch contention due to uncoordinated network
communication, and load imbalances resulting from the inflexibility of the classic
exchange operator model.

This chapter presents the blueprint for a distributed query engine that ad-
dresses these problems by considering both levels of networks holistically. It con-
sists of two parts: First, hybrid parallelism, which distinguishes between local and
distributed parallelism to scale query performance both with the number of cores
per server as well as the number of servers in the cluster. Second, a novel com-
munication multiplexer tailored for analytical database workloads using remote
direct memory access (RDMA) and low-latency network scheduling for high-speed
communication with almost no CPU overhead. An extensive evaluation within
the HyPer in-memory database system system using the renowned TPC-H ad-hoc
analytical benchmark shows that our holistic approach enables high-speed query
processing over high-speed networks.

41
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Figure 3.1: Compute cluster with two levels of networks

3.1 Motivation

In-memory database systems have gained increasing interest in academia and in-
dustry over the last years. The success of academic projects, including MonetDB
[55] and HyPer [45], has led to the development of commercial main-memory data-
base systems such as Vectorwise [88], SAP HANA [25], Oracle Exalytics [33], IBM
DB2 BLU [67], and Microsoft Apollo.

This development is driven by a significant change in the hardware landscape:
Today’s many-core servers often have main-memory capacities of several terabytes.
The advent of these brawny servers enables unprecedented single-server query per-
formance. Moreover, a small cluster of such servers is often already sufficient for
companies to analyze their business. For example, Walmart—the world’s largest
company by revenue—uses a cluster of only 16 servers with 64 TiB of main memory
to analyze their business data [63].

Such a cluster entails two levels of networks as highlighted in Figure 3.1: The
network in the small connects several many-core CPUs and their local main mem-
ory inside a single server via a high-speed QPI interconnect, while the network
in the large connects separate servers. Main-memory database systems have to
efficiently parallelize query execution across these many cores and adapt to the
non-uniform memory architecture (NUMA) inside servers to avoid the high cost
of remote memory accesses [53, 52]. Traditionally, exchange operators are used to
introduce parallelism both locally inside a single server as well as globally between
servers. However, the inflexibility of the classic exchange operator model intro-
duces several scalability problems. We propose a new hybrid approach instead, that



Chapter 3. High-Speed Networks 43

6 (1) 30 (5) 60 (10) 90 (15) 120 (20)

1×

3×

6×

9×

12×

number of cores (per server)

sp
ee
d-
up

of
qu

er
y
re
sp
on

se
tim

es
HyPer (hybrid parallelism)
HyPer (classic exchange)
Vectorwise (classic exchange)

Figure 3.2: TPC-H results for different parallelism paradigms

combines special decoupled exchange operators for distributed processing with the
existing intra-server morsel-driven parallelism [52] for local processing. Choosing
the parallelism paradigm for each level that fits best, hybrid parallelism scales
better with the number of cores per server than classic exchange operators as
demonstrated by Figure 3.2. The experiment executes TPC-H with a scale factor
300 data set on a 6-server cluster for the database systems HyPer and Vectorwise
Vortex while increasing the number of cores per server.

In the past, limited network bandwidth between servers actually reduced query
performance when scaling out to a cluster. Consequently, previous research fo-
cused on techniques that avoid communication as much as possible [71, 65]. In
the meantime, high-speed networks such as InfiniBand have become economically
viable, offering link speeds of several gigabytes per second. However, faster net-
working hardware alone is not enough to scale query performance with the cluster
size. Similar to the transition from disk to main memory, new bottlenecks surface
when InfiniBand replaces Gigabit Ethernet. TCP/IP processing overheads and
switch contention threaten the scalability of distributed query processing. Fig-
ure 3.3 demonstrates this by comparing two distributed query engines using the
TPC-H benchmark. Both engines are implemented in our in-memory database
system HyPer. The first uses traditional TCP/IP, while the second is built with
remote direct memory access (RDMA). The experiment adds servers to the cluster
while keeping the data set size fixed at scale factor 100. Using Gigabit Ethernet
actually decreases performance by 6× compared to using just a single server of the
cluster. The insufficient network bandwidth slows down query processing. Still, a
scale out is inevitable once the data exceeds the main-memory capacity of a single
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server. InfiniBand 4×QDR offers 32× the bandwidth of Gigabit Ethernet. How-
ever, Figure 3.3 also shows that simply using faster networking hardware is not
enough. The distributed query engine has to be adapted to avoid TCP/IP stack
processing overheads and switch contention. By combining RDMA and network
scheduling in our novel distributed query engine we can scale query performance
with the cluster size, achieving a speedup of 3.5× for 6 servers.

RDMA enables true zero-copy transfers at almost no CPU cost. Recent re-
search has shown the benefits of RDMA for specific operators (e.g., joins [5]) and
key-value stores [43]. However, we are the first to present the design and imple-
mentation of a complete distributed query engine based on RDMA that is able to
process complex analytical workloads such as the TPC-H benchmark. In particu-
lar, this chapter makes the following contributions:

1. Hybrid parallelism: A NUMA-aware distributed query execution engine that
integrates seamlessly with intra-server morsel-driven parallelism, scaling con-
siderably better both with the number of cores as well as servers compared
to standard exchange operators.

2. A novel RDMA-based communication multiplexer tailored for analytical
database workloads that utilizes all the available bandwidth of high-speed
interconnects with minimal CPU overhead; it avoids switch contention via
low-latency network scheduling, improving all-to-all communication through-
put by up to 40 % for an 8-server cluster.

3. A prototypical implementation of our approach in our full-fledged in-memory
DBMS HyPer that scales both in the number of cores as well as servers.
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GbE
InfiniBand (4×)

SDR DDR QDR FDR EDR

throughput [GB/s] 0.125 1 2 4 6.8 12.1
latency [µs] 340 5 2.5 1.3 0.7 0.5
introduction 1998 2003 2005 2007 2011 2014

Table 3.1: Network data link standards

Section 3.2 evaluates high-speed cluster interconnects for typical analytical
database workloads. Specifically, we study how to optimally configure the TCP
and RDMA transport protocols for expensive all-to-all data shuffles that are com-
mon for distributed joins and aggregations. Building upon these findings, Sec-
tion 3.3 presents a blueprint for our novel distributed query engine that is carefully
tailored for both the network in the small and in the large. It consists of hybrid
parallelism for improved scalability in both the number of cores and servers as
well as our optimized communication multiplexer that combines RDMA and low-
latency network scheduling for high-speed communication. Finally, Section 3.5
provides a comprehensive performance evaluation using the ad-hoc OLAP bench-
mark TPC-H, comparing a prototypical implementation of our approach within
our full-fledged main-memory database system HyPer to several SQL-on-Hadoop
as well as parallel main-memory database systems: HyPer improves TPC-H per-
formance by 1421× compared to Apache Hive, 256× compared to Spark SQL,
168× to Cloudera Impala, 38× to MemSQL, and 5.4× to Vectorwise Vortex.

3.2 High-Speed Networks
InfiniBand is a high-bandwidth and low-latency cluster interconnect. Table 3.1
compares several InfiniBand data rates to Gigabit Ethernet (GbE). The following
performance study uses InfiniBand 4×QDR hardware that offers 32× the band-
width of GbE and latencies as low as 1.3 µs. We expect the findings to be valid
for the faster data rates as well.

InfiniBand offers the choice between two transport protocols: TCP via IP over
InfiniBand (IPoIB) and the native ibverbs interface for remote direct memory
access (RDMA). In the following, we analyze and tune both protocols for analytical
database workloads that require massive data shuffling for distributed joins and
aggregations. In contrast, transactional database workloads typically involve much
smaller messages and would thus shift the tuning target from high throughput to
low latencies.
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Figure 3.4: TCP memory bus traffic for classic and data direct I/O

3.2.1 TCP
Existing applications that use TCP or UDP for communication can utilize Infini-
Band via IPoIB. It is a convenient option to increase the network bandwidth for
applications without changing their implementation.

Data Direct I/O and Non-Uniform I/O Access

Since the standardization of TCP in 1981 as RFC 793 the bandwidth provided by
the networking hardware increased by several orders of magnitude. Yet, the socket
interface still relies on the fact that message data is copied between application
buffer and socket buffer [27]. The resulting multiple trips over the memory bus
were identified as one of the main reasons hindering TCP scalability [13, 27, 28].
However, we noticed during our experiments that this is no longer the case for
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modern systems. Indeed, the number of memory trips required by TCP and similar
protocols was reduced significantly when Intel introduced data direct I/O (DDIO)
in 2012 with its Sandy Bridge processors. DDIO allows the I/O subsystem to
directly access the last level cache of the CPU for network transfers. DDIO has
no hardware dependencies and is invisible to drivers and software.

Figure 3.4a and 3.4b show the memory trips performed by the classic I/O
model and data direct I/O, respectively. At the sender, classic I/O (1) reads the
data from application buffer into the last level cache (LLC), (2) copies it into the
socket buffer, and (3) sends it over the network forwarded from the LLC, which
causes (4) cache eviction and (5) a speculative read. At the receiver, the data is
(6) DMAed to the socket buffer in RAM, (7) copied into LLC, (8) copied into the
application buffer, and (9) written to RAM.

DDIO instead targets the last level cache (LLC) of the CPU directly. At the
sender, DDIO (1) reads the application data, (2) copies it into the socket buffer,
and (3) sends it directly from LLC. At the receiver, the data is (4) allocated or
overwritten in the LLC via Write Allocate/Update (restricted to 10 % of the LLC
capacity to reduce cache pollution), (5) copied into the application buffer, and
(6) written to main memory. DDIO reduces the number of memory bus transfers
from 3 to 1 compared to the classic I/O model.

NUMA systems add a complication: A network adapter is directly connected
to one of the CPUs. Consequently, there is a difference between local and remote
I/O consumption. This is called Non-Uniform I/O Access (NUIOA). NUIOA is
a direct consequence of the multi-CPU architecture of modern many-core servers.
NUIOA systems restrict DDIO to threads running on the CPU local to the network
card. We validated this by measuring the memory bus traffic in a micro-benchmark
using Intel Performance Counter Monitor (PCM)1: Running the network thread on
the local NUMA node caused every byte to be read 1.03× on the sender side and
written 1.02× on the receiver side. Running the network thread on the remote
NUMA node read every byte 2.11× for the sender while on the receiver side it
was read 1.5× and written 2.33× (overheads might be due to TCP control traffic,
retransmissions, cache invalidations, and prefetching [27]). This demonstrates that
DDIO was only active for the NUMA-local thread running on the NUIOA-local
CPU. Accordingly, our distributed query engine pins the network thread to the
NUIOA-local CPU to avoid extra trips over the memory bus. This enables the
I/O system to directly target the cache, reducing the number of memory trips for
TCP from 3 to 1 and also further reduces the already lower memory bus traffic of
RDMA.

1Intel Performance Counter Monitor (PCM) enables access to core and uncore performance
monitoring units: http://www.intel.com/software/pcm

http://www.intel.com/software/pcm
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Tuning TCP for Analytical Workloads

We designed a micro-benchmark that compares TCP with RDMA for database
workloads. The performance of TCP is limited by different bottlenecks depend-
ing on the size of a message. For small messages, processing time is dominated
by kernel overheads, sockets and protocol processing. For bulk transfers, data
touching (i.e., checksums and copy) and interrupt processing account for most of
the processing time [27]. Analytical query processing transfers large chunks of tu-
ples during distributed joins and aggregations, we will thus focus on tuning TCP
throughput for large packets, reducing the per-byte cost.

Our micro-benchmark sends 100k distinct messages of size 512 KiB between
two machines using a single thread. From a variety of TCP options that should
improve performance only SACK gave a measurable improvement. SACK enables
fast recovery from packet loss, which is especially relevant for high-speed links.
In a first experiment we transfer data only from sender to receiver, while in the
second we use fully duplex communication. The results are shown in Figure 3.5.

The original specification of IPoIB in RFC 4391 and 4392 was limited to the
datagram mode. This mode supports a 2044 byte MTU, TCP offloading to the
network card, and IP multicast. The connected mode was later added in RFC 4755.
While it allows a MTU of up to 65 520 bytes, it does not support TCP offloading
or IP multicasting. Disabling TCP offloading in datagram mode decreases the
throughput for bidirectional transfer by 60 % from 0.93 GB/s to 0.37 GB/s. The
connected mode with the same MTU of 2044 bytes and without support for TCP
offloading performs similar at 0.38 GB/s, as one might expect. However, the larger
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MTU of 65 520 bytes available in connected mode more than offsets the missing
TCP offloading features. The large MTU increases the throughput to 1.51 GB/s,
an improvement of 62 % over datagram mode with offloading.

An important bottleneck for TCP is interrupt handling. The network card
issues interrupt requests (IRQ) to which the kernel responds by executing an in-
terrupt handler on a configured core. The kernel automatically schedules the
network thread to this same core to reduce cache misses. However, TCP through-
put increases by a further 44 % to 2.17 GB/s when the network thread is explicitly
pinned to a different core. While this improves performance it also adds to the
CPU overhead as now two cores are used. We further investigated the impact
of NUIOA on TCP throughput. In our micro-benchmark, pinning the network
thread to the local socket improves throughput by 15 % in datagram and 6 % in
connected mode for bidirectional transfers. The interrupt handler should always
run on the socket of the network thread as otherwise throughput drops by 50 %.

The bottleneck of TCP remains the CPU at the receiver. Receive and send
thread as well as the interrupt handler add a significant CPU overhead. The
receiver experiences 100 %–190 % CPU utilization for the unidirectional transfers.
The peak of 190 % (i.e., two occupied cores) is reached in datagram mode when
network thread and interrupt handler are pinned to different cores.

3.2.2 RDMA
RDMA is InfiniBand’s asynchronous, zero-copy transport protocol that bypasses
the CPU and thus frees resources for application processing.

Asynchronous Operation

InfiniBand’s ibverbs interface is inherently asynchronous. Work requests are posted
to send and receive work queues of the InfiniBand host channel adapter (HCA).
The HCA processes work requests asynchronously and adds a work completion to
a completion queue once it has finished. The application can process completion
notifications when it sees fit to do so. This asynchronous interface makes overlap-
ping of communication and computation easier than for TCP, which would require
two threads or the use of non-blocking sockets.

Kernel Bypassing

The InfiniBand HCA reads and writes main memory directly without interact-
ing with the operating system or application during transfers. This avoids the
overhead of system calls and the copying between application and system buffers.
Consequently, the application has to manage buffers explicitly. For this purpose,
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RDMA introduces the concept of a memory region. A memory region provides
the mapping between virtual and physical addresses so that the HCA can access
main memory at any time without involving the kernel. Memory regions have to
be registered beforehand to pin the memory and avoid swapping to disk. Regis-
tering memory regions is a time-consuming operation [28] and regions should thus
be reused whenever possible. Our distributed query engine implements this via a
message pool.

Memory vs. Channel Semantics

RDMA allows to remotely read and write the main memory of a remote server
without involving its CPU. These so-called memory semantics requires that the
initiator of the remote read or write has the memory key for the target memory
region. A separate channel is required to exchange memory keys before commu-
nication can start. The alternative are channel semantics via two-sided send and
receive operations. The receiver posts receive work requests that specify the target
memory region for the next incoming message. This eliminates the requirement to
exchange memory keys before the transfer can start. There is no performance dif-
ference between one- and two-sided operations [28]. An application should choose
the semantics that fit best.

For our distributed query engine, it makes sense to use two-sided operations
(channel semantics). First, two-sided operations do not require a separate com-
munication channel to exchange memory keys. Second, the receiver is notified
when new messages arrive and can process incoming tuples right away. One-sided
operations (memory semantics) do not involve the receiver in the transfer at all.
Making the receiver aware about incoming messages would thus require a separate
communication channel or busy polling.

Polling vs. Events for Completion Notifications

RDMA with channel semantics provides two mechanisms to check for the avail-
ability of new messages. The first uses busy polling to check for new completion
notifications. While this guarantees lowest latency it also occupies one core to
100 %. The second mechanism uses events to signal new completion notifications.
The HCA raises an interrupt when a new message arrives and wakes threads that
are waiting for this event. The event-based handling of completion notifications
reduces the CPU overhead to a mere 4 % for a full-speed bidirectional transfer with
512 KiB messages at the cost of a potentially higher latency compared to polling.
Fortunately, the latency increase is insignificant for analytical database workloads
with large messages.
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3.2.3 Discussion
In the previous sections we discussed how to tune the TCP and RDMA transport
protocols for analytical database workloads that shuffle large amounts of data
between the servers of a cluster. This stands in contrast to transactional database
workloads that typically involve much smaller messages and thus shift the focus
from achieving maximal throughput to minimizing the latency.

While it is possible to bring TCP’s throughput closer to that of RDMA via
careful parameter tuning, this comes at the cost of significantly increased CPU load
already for a single communication stream (100 % to 190 % for TCP compared to
4 % for RDMA) and would further require multiple TCP streams to use all the
available network bandwidth. RDMA is thus the better option as it enables truly
asynchronous communication, requires less tuning, and frees the CPU for actual
query processing. Our main findings for transmitting large messages over high-
speed networks are the following:

1. Reduce memory traffic by pinning the network thread to the NUIOA-local
CPU, allowing the network card to target the cache directly and take advan-
tage of data direct I/O.

2. For TCP: Use the IPoIB connected mode with the maximum MTU of
65 520 bytes, pin the network thread to a different core than the interrupt
handler.

3. For RDMA: Operate directly on message buffers for zero-copy communica-
tion, reuse buffers to avoid memory region registration costs, use channel
semantics to simplify communication, use event-based completion notifica-
tions to minimize the CPU overhead.

3.3 High-Speed Query Processing
The exchange operator is traditionally used to introduce parallelism both locally
inside a single server as well as globally between the machines of a cluster. How-
ever, it introduces unnecessary materialization overheads for local processing, is
inflexible when it comes to dealing with load imbalances, making it vulnerable to
attribute value skew, and faces serious scalability issues due to the sheer number
of parallel units, especially for modern many-core servers.

We propose a new hybrid approach instead, choosing the paradigm for each
level that fits best. Locally, we use our existing morsel-driven parallelism [52] to
parallelize queries across cores ensuring NUMA-local processing. Globally, we de-
signed a new data redistribution scheme between servers that combines decoupled
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exchange operators and a RDMA-based communication multiplexer that uses low-
latency network scheduling. Both levels of parallelism are seamlessly integrated
into a new hybrid approach that avoids unnecessary materialization, reacts to load
imbalances at runtime, and scales better with the number of cores inside a single
machine as well as the number of servers in the cluster.

3.3.1 Classic Exchange Operators
The exchange operator was introduced by Graefe for the Volcano database system
[37]. It is a landmark idea as it allows systems to encapsulate parallelism inside an
operator. All other relational operators are kept oblivious to parallel execution,
making it straightforward to parallelize an existing non-parallel system. An ex-
ample is shown in Figure 3.6: The single-server query plan shown in Figure 3.6a,
which was unnested by the query optimizer, is transformed into the distributed
plan of Figure 3.6b by adding exchange operators where required. Two common
optimizations for exchange operators are then introduced in Figure 3.6c: First,
instead of hash partitioning both inputs, the smaller input is broadcast when the
inputs of a join have largely different sizes. Second, pre-aggregations are added as
they significantly reduce the number of tuples that have to be shuffled—especially
for aggregations with a small number of groups.

The exchange operator is commonly used to introduce parallelism both inside
a single machine and between servers (e.g., Vectorwise Vortex [17] and Teradata
[87]). Threads execute copies of the query plan and are seen as separate paral-
lel units that operate independently of each other. Parallel units communicate
only via exchange operators. There is no difference between two parallel units
that operate on the same server or on different machines. While this simplifies
parallelization, it also introduces a number of problems.

The exchange operator fixes the degree of parallelism in the query plan, which
makes it hard to deal with load imbalances and increases the impact of attribute
value skew. Each exchange operator splits its input into one partition per parallel
unit, e.g., 240 for our relatively small 6-server cluster with 20 hyper-threaded
cores and thus 40 threads per machine. If one of the resulting 240 partitions
contains more than 1/240th of the input, all other parallel units have to wait for
the straggler. A moderately skewed data set with Zipf factor z = 0.84 already
more than doubles the input for the overloaded parallel unit. Hybrid parallelism
instead distinguishes between local and remote parallel units and performs intra-
server work stealing, reducing the number of parallel units to the number of servers.
The same data set thus increases the input for the overloaded parallel unit by a
mere 2.8 % for hybrid parallelism. The fewer parallel units, the lesser the impact
of skew. This is orthogonal to the use of specific techniques that detect and deal
with skew, e.g., the skew handling approach that we describe in Chapter 4.
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The large number of exchange operators in the classic approach also reduces
the applicability of the broadcast optimization for distributed joins. A broadcast
join is faster than hash partitioning when one input is much smaller than the other.
This limit is n×t−1 for n servers and t local exchange operators per server as each
exchange operator has to send its tuples to every other exchange operator. Hybrid
parallelism distinguishes between local and distributed parallelism and can reduce
this limit to n − 1 as the tuples need only be sent once to every remote server
in the cluster. For our 6-server cluster, hybrid parallelism can thus use broadcast
instead of hash joins already when the input sizes differ by 5× compared to 239×
for the classic exchange operator model.

The huge number of connections and buffers required by the classic exchange
operator model leads to further scalability issues and increases memory consump-
tion significantly. An exchange operator requires a connection for each of the
n × t − 1 other exchange operators as well as a message buffer to partition its
tuples. This results in n2 × t2 − t connections in the cluster and n× t− 1 buffers
per operator. For our relatively small 6-server cluster, this requires already a
total of 57 560 connections in the cluster and 239 buffers per exchange opera-
tor. Hybrid parallelism instead integrates the exchange operators with intra-server
morsel-driven parallelism and uses a dedicated communication multiplexer on each
machine. It thereby eliminates the unnecessary materialization of intermediate re-
sults, significantly reduces the impact of skew, and requires only n× (n− 1) = 30
connections in the cluster and n− 1 = 5 buffers per exchange operator.

3.3.2 Hybrid Parallelism
Our novel approach splits distributed query processing into two parts. Decou-
pled exchange operators perform serialization and deserialization of tuples in a
fully parallelized way leveraging query compilation for highest performance. They
interact with a single communication multiplexer per server that manages net-
work transfers and uses RDMA to achieve highest network throughput at minimal
CPU overhead. All communication multiplexers of the cluster coordinate with one
another to avoid switch contention.

Locally inside a server, query execution is parallelized according to the existing
morsel-driven parallelism approach [52] using one worker thread per hardware
context (two per core for hyper-threading). The input data—coming from either a
pipeline breaker or a base relation—is split into work units of constant size, called
morsels. Each worker pushes the tuples of its morsel all the way through the
compiled query pipeline [62] until a pipeline breaker is reached. This keeps tuples
in registers and low-level caches for as long as possible. All database operators—
including our new decoupled exchange operators—are designed such that workers
can process the same pipeline job in parallel.
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Figure 3.7: Hybrid parallelism

Figure 3.7 illustrates our novel approach: A decoupled exchange operator
(1) consumes the tuples that are pushed to it by the preceding operator of its
pipeline. It (2) partitions these tuples according to the CRC32 hash value of
the join attributes into n messages, one for each of the n servers in the cluster.
Broadcast exchange operators differ in that they instead serialize the tuples into
a single message, using a retain counter to avoid the higher memory consumption
of multiple copies. A message consists of two parts: The first part includes its
RDMA memory key, the NUMA node where the message resides, and said retain
counter. Only the second part of a message is sent over the network: It consists of
an identifier for the corresponding logical exchange operator, an indicator whether
this is the last message for this operator, the number of bytes used, and the actual
serialized tuples. Once a message is full or the exchange operator has processed
all of its input, the message is (3) passed to the communication multiplexer and
queued for sending. The exchange operator needs a new empty message that it
(4) reuses from a memory pool, ensuring that it is NUMA-local to the CPU core
on which the worker thread executes. The RDMA multiplexer sends and receives
messages according to a round-robin network schedule to avoid link sharing and
the resulting reduced network throughput. Only the used part of a partially-filled
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Figure 3.8: Serialization format for the partsupp relation

message is sent over the network. Once a message was successfully sent, it is
put into the correct message pool for reuse. The multiplexer receives messages
for every NUMA region in turn and notifies waiting exchange operators. These
(5a) process NUMA-local messages. Only when there are none available, do they
(5b) steal work from other NUMA regions. After (6) deserialization, the tuples
are at last (7) pushed to the next operator in the pipeline.

Decoupled Exchange Operators

In contrast to the classic model, our decoupled exchange operator is unaware of
all other exchange operators whether local or remote and only interacts with its
local communication multiplexer. This has several advantages: Our multiplexer
sends broadcast messages only once to every remote server. In contrast, classic
exchange operators have to send it to every other exchange operator, reducing
the applicability of broadcasts. The classic exchange operator is also inflexible
in dealing with load imbalances as each operator is considered a separate parallel
unit. Thus, skew has a much higher impact. Our hybrid approach instead treats
servers as parallel units and uses work stealing inside the servers to handle local
load imbalances. Further, in the classic model each exchange operator needs a
buffer for every other exchange operator compared to only one buffer per server
for hybrid parallelism, which reduces memory usage significantly.

Our decoupled exchange operator uses LLVM code generation to efficiently
serialize and deserialize tuples, minimizing the overhead of materialization. The
code is expressly generated for the specific schema of the input tuples and thus does
not need to dynamically interpret a schema. This reduces branching, improving
code and data locality. Columns that are not required by subsequent operators are
pruned as early as possible to reduce network transfer size. An example for our
densely-packed, binary serialization format is shown in Figure 3.8 for the partsupp
relation of the TPC-H benchmark. The format has three parts: The first part
contains the values for all fixed-size attributes (e.g., decimal, integer, date) that
are defined as not null, ordered first by the data type and second according to the
schema. The second part consists of null indicators followed by the attribute values
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in case the attribute is not null for the current tuple. The third part contains the
values for attributes of dynamic length (e.g., varchar, blob, text), which are stored
as size and data content.

RDMA-based, NUMA-aware Multiplexer

Our novel communication multiplexer connects the decoupled exchange operators
for distributed query processing. It uses RDMA and low-latency network schedul-
ing for high-speed communication and ensures NUMA-local processing.

The multiplexer is a dedicated network thread per server that performs the
data transfer between local and remote exchange operators by continuously send-
ing messages according to a global round-robin schedule. Local workers are not
connected to all remote workers as this would lead to an excessive number of
connections. Instead, only the multiplexers are connected with each other. Any
available worker can process any incoming message. This enables work stealing
and greatly alleviates the effect of skew. The multiplexer manages the send and
receive queues as well as the reuse of messages via reference counting. Instead
of deallocating messages when they are no longer needed, they are placed in a
message pool. This avoids repeated memory allocation and deallocation during
query processing as well as the expensive pinning of new messages to memory and
registering them with the InfiniBand HCA to enable RDMA [28].

Modern servers with large main-memory capacities feature a non-uniform mem-
ory architecture (NUMA). Every CPU has its own local memory controller and
accesses remote memory via QPI links that connect CPUs. As QPI speed is lower
than local memory bandwidth and has a higher latency, a remote access is more
expensive than a local access. The query execution engine has to take this into
account and restrict itself to local memory accesses as much as possible. Our com-
munication multiplexer exposes NUMA characteristics to the database system to
avoid incurring this performance penalty. The multiplexer has one receive queue
for every NUMA socket as shown in Figure 3.7 and alternatively receives mes-
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sages for each of them. This also means that NUMA is hidden inside the server
so that servers in the cluster could have heterogenous architectures. The multi-
plexer supports work-stealing: workers take messages from remote queues when
their NUMA-local queue is empty.

For our 6-server cluster, allocating messages on a single socket reduces TPC-H
performance for the hash join plans by a mere 8 % for a scale factor 100 data set.
However, these servers have only two sockets that are further well-connected via
two QPI links. This explains the minimal NUMA effects. Figure 3.9 shows the
measurement for a 4-socket Sandy Bridge EP server with 15 cores per socket and
1 TiB of main memory. Sockets are fully-connected with one QPI link for each com-
bination of sockets. Interleaved allocation of the network buffers reduces TPC-H
performance by 17 % compared to NUMA-aware allocation, allocating messages
on a single socket even by 52 %. This demonstrates NUMA-aware allocation of
message buffers can have a huge impact on performance. Our novel communica-
tion multiplexer therefore provides NUMA-local message buffers to the decoupled
exchange operators.

Application-Level Network Scheduling

Uncoordinated all-to-all network traffic can cause switch contention and reduce
throughput significantly—even for non-blocking switches that have enough capac-
ity to support all ports simultaneously at maximum throughput. In the case of
Ethernet switches, input queuing in the switch can cause head-of-line (HOL) block-
ing as illustrated by Figure 3.10: Input port 2 sends to output port 2 and thereby
blocks input ports 3 and 4. Input port 3 could send to output port 4 and port 3
to port 4, but they are both blocked by packets they need to send to port 2.
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InfiniBand implements flow control differently than TCP. While TCP drops
packets during congestion, InfiniBand specifies a lossless fabric to achieve minimal
latency. It uses a credit-based link-level flow control to guarantee lossless transport.
Credit passes via management packets and is issued per virtual lane to enable
prioritization. Each credit granted by the receiver to the sender guarantees that
64 bytes can be received. No data is transmitted unless the available credits
indicate sufficient buffer space. While this prevents head-of-line blocking, switch
contention is still possible: When several input ports transmit data to the same
output port, the credits from the corresponding receiver run out faster than they
are granted. Other packets from the same input ports could still be processed,
however, the buffer space for input ports is limited. Thus, it is possible that all
outstanding packets of a port run out of credits. This creates back pressure and
the switch cannot receive more packets for this input port until it obtains new
credits from the receiver.

Network scheduling with global knowledge of all active flows has been proposed
before to solve the problem of switch contention. Hedera [2] uses a central coor-
dinator that regularly collects flow statistics and moves data flows from congested
to underutilized links. However, flow estimation and scheduling is performed only
every 5 s—much too infrequent for high-speed networks where transfers take only
a few milliseconds and a complete TPC-H run finishes in less than 5 s at scale
factor 100. In Chapter 2 we introduced a network scheduling approach that solves
the Open Shop problem to minimize join execution time. While this scheduling
algorithm can yield huge benefits for commodity networks, its overhead of several
hundred milliseconds is simply too high for high-speed networks.

High-speed networks require a new approach to network scheduling that reacts
fast and incurs latencies of at most a few microseconds similar to NUMA shuffling
inside a single server [53]. For this reason we decided to implement a simple
but very efficient round-robin network scheduling algorithm that makes use of
special low-latency RDMA operations. It avoids HOL blocking for Ethernet and
credit starvation for InfiniBand by dividing communication into distinct phases
that prevent link sharing. In each phase a server has one target to which it sends,
and a single source from which it receives as shown in Figure 3.11a for four servers
and three phases. Round-robin scheduling improves throughput by up to 40 % for
an 8-server InfiniBand 4×QDR cluster as demonstrated by the micro-benchmark
in Figure 3.11b. In this experiment, we added two smaller servers to our cluster
to fully utilize our 8-port InfiniBand switch. Each server transmits 1680 messages
of size 512 KiB. After sending 8 messages to a fixed target, all servers synchronize
via low-latency (≈ 1 µs) inline synchronization messages before they send to the
next target. The data transfer between synchronizations has to be large enough
to amortize the time needed for synchronization as illustrated in Figure 3.11c. For
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Q2 Q3 Q4 Q5 Q7 Q8 Q9 Q10

hash join [s] 0.24 0.53 0.18 1.00 0.52 1.07 1.61 0.71
broadcast [s] 0.04 0.34 0.17 0.22 0.32 0.17 0.59 0.47
improvement 6.3× 1.5× 1.1× 4.5× 1.6× 6.4× 2.7× 1.5×

Q11 Q12 Q17 Q18 Q20 Q21 Q1–22

hash join [s] 0.22 0.21 1.03 1.39 0.18 1.01 10.99
broadcast [s] 0.06 0.12 0.09 0.70 0.13 0.47 4.97
improvement 3.7× 1.7× 11.0× 2.0× 1.4× 2.2× 2.2×

Table 3.2: TPC-H results for hash join and broadcast plans

our distributed query processing engine we thus use a message size of 512 KiB.
It is important to reduce the CPU overhead of handling completion notifications
for synchronization messages by processing only every nth notification. We use
the maximum of 16k active work requests supported by our hardware to keep the
synchronization latency at a few microseconds.

3.4 Distributed Operator Details
Query plans with exchange operators leave room for optimizations. Figure 3.6 illus-
trates this for TPC-H query 17: The single-server query plan shown in Figure 3.6a,
which was unnested by the query optimizer, is transformed into the distributed
plan of Figure 3.6b by adding exchange operators where required. Figure 3.6c ap-
plies broadcasts and pre-aggregations as optimizations to reduce network traffic.

3.4.1 Join
A distributed equi-join requires that either both of its inputs are hash partitioned
by one of the join keys or that one input is broadcast to all servers. The former is
known as Grace hash join [50] or hybrid hash join [19] and the latter as fragment-
replicate join [24] or broadcast join. The broadcast join is cheaper than the hash
join when one input is at least (n − 1)× larger than the other, where n is the
number of servers in the cluster. Switching to the broadcast join when inputs have
largely different sizes yields significant performance benefits as shown in Table 3.2.
The experiment executes TPC-H on a scale factor 100 data set with HyPer on
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our 6-server cluster comparing broadcast with hash join query execution plans.
The overall runtime for all TPC-H queries improves by 2.2× when hash joins are
replaced by broadcast joins where beneficial. The overall amount of data that
needs to be materialized and reshuffled decreases by a factor of 6 from 154 GiB to
25 GiB when broadcast joins are used.

Using the broadcast redistribution method requires an additional redistribu-
tion of the join result to guarantee the correct result for some types of non-equi
joins. While a hash join computes semi, anti, and outer joins correctly without
modification, a broadcast join might produce duplicates and false results for left
semi, left anti, and left outer join. The left semi join may produce duplicate result
tuples at different join sites. The result therefore has to be redistributed to elim-
inate these duplicates. The anti join will produce valid results n times, once for
each join site. A replicated tuple may join only at a subset of the join sites and
thus cause spurious results at remaining sites, where it does not find a join partner.
Again, the result needs to be redistributed and a tuple is to be included in the
result only if it occurs exactly n times (i.e., if it found no join partner at any join
site). The left outer join may produce duplicates and false results similar to the
anti join. Dangling tuples have to be redistributed and counted. Only dangling
tuples that found no partner across sites are kept in the final result.

The broadcast join can further compute theta joins with arbitrary join condi-
tions as every combination of tuples from the two relations is compared at some
join-site. This is not the case for the hash join that only compares tuples that fall
into the same partition.

3.4.2 Grouping/Aggregation
Distributed aggregations require that either their input is partitioned by one of
the grouping keys or that all input tuples are sent to a single server. However,
both options are overly expensive for large inputs. It is instead often beneficial to
introduce a pre-aggregation prior to the exchange operator. The actual aggrega-
tion operator following the exchange operator then combines the resulting partial
aggregates (cf., Figure 3.6c). This can significantly reduce the number of tuples
redistributed across the cluster—especially if the number of groups is small. It is
straightforward to implement the pre-aggregation for sum and count. The average
of an expression can be computed based on sum and count using a subsequent
map operator. A pre-aggregation cannot be used when the aggregation computes
a distinct count.

HyPer’s distributed query plans use a standard aggregation operator for most
pre-aggregations. A dedicated in-cache pre-aggregation operator improves perfor-
mance further (e.g., for TPC-H query 18). It spills partially aggregated results to
the exchange operator whenever its buffer exceeds the size of the cache—similar
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to the IBM DB2 BLU [67] implementation of the aggregation operator for a single
machine. A spilling pre-aggregation may produce multiple output tuples for the
same aggregation key. However, the final aggregation after the exchange operator
takes care of these duplicates.

Query 1 is an excellent example that demonstrates the benefits of using pre-
aggregation operators. It finishes in 6.4 s when the aggregation is computed with-
out pre-aggregation on the server that is also responsible for producing the result.
A distributed aggregation that uses hashing to repartition the input according to
the grouping key reduces the execution time to 3.3 s. The introduction of a pre-
aggregation operator prior to the exchange operator reduces the runtime consid-
erably to a mere 0.08 s. This is an improvement of 80× compared to aggregating
on the final server and 40× compared to a distributed hash-based aggregation
without pre-aggregation.

3.4.3 Sorting/Top-k

A sort operator can be distributed across servers by sorting the input locally
on every server and merging the resulting sorted runs on one server. HyPer’s
distributed query plans currently do not apply this optimization due to the lack
of a merge operator in HyPer. However, the plans use local sorts to reduce the
number of tuples redistributed for top-k queries. Every server computes a local
top-k and transfers its k result tuples to a single server that then finalizes the
distributed top-k computation with a final top-k operator.

This optimization applies to query 2, query 3, and query 18 of the TPC-H
benchmark. However, it does not result in measurable improvements as the num-
ber of input tuples for the top-k operators are too small in these cases. Query 2
computes a top-100 on 47 107 tuples, query 3 a top-10 on 131 041 tuples, and
query 18 a top-100 on 6398 tuples (SF 100). However, this optimization should re-
duce the number of redistributed tuples significantly when the input is larger. Dis-
tributed sorting can be further optimized using specialized techniques. One option
is to split sort key and payload prior to actual sorting similar to CloudRAMSort
[48] in order to overlap computation and communication further.

3.5 Evaluation
We integrated our distributed query engine in HyPer, a full-fledged main-memory
database system that supports the SQL-92 standard. HyPer’s excellent single-
server performance makes it hard to increase performance when scaling out to a
cluster as communication overheads become easily visible as an increase in execu-



64 3.5. Evaluation

tion time. The experiments focus on ad-hoc analytical distributed query processing
performance.

3.5.1 Experimental Setup
We conducted all experiments on a cluster of six identical servers connected via
ConnectX-3 host channel adapters (HCAs) to an 8-port QSFP InfiniScale IV In-
finiBand IS5022 switch operating at 4× quad data rate (QDR) resulting in a
theoretical network bandwidth of 4 GB/s per link. Each Linux server (Ubuntu
14.10, kernel 3.16.0-41) is equipped with two Intel Xeon E5-2660 v2 CPUs clocked
at 2.2 GHz with 10 physical cores (20 hardware contexts due to hyper-threading)
and 256 GiB of main memory—resulting in a total of 120 cores (240 hardware
contexts) and 1.5 TiB of main memory in the cluster. The RDMA host channel
adapter runs firmware version 2.32.5100 and driver version 2.2-1. It is connected
via 16× PCIe 3.0. The hardware setup is illustrated in Figure 3.1. The thickness
of a line in the diagram corresponds to the respective bandwidth of the connection.

HyPer offers both row and column-wise data storage; all experiments were con-
ducted using the columnar format and only primary key indexes were created. On
each server, HyPer transparently distributes the input relations over all available
NUMA sockets (two in our case). Execution times include memory allocation (from
the OS), page faulting, and deallocation for intermediate results, hash tables, etc.

TPC-H joins relations mostly along key/foreign-key relationships and thus ben-
efits considerably when relations are partitioned accordingly. This enables partially
or even completely local joins that avoid network traffic and thus improve query
response times. Still, we decided against partitioning relations for HyPer as this is
a manual process that requires prior knowledge of the workload. Instead, we assign
relation chunks to servers as generated by dbgen without initial redistribution for
all experiments in this chapter except where otherwise noted.

3.5.2 Hybrid Parallelism
This section evaluates the performance of our new approach by analyzing the
scalability of the individual TPC-H queries for different distributed query execution
engines. We further analyze the impact of the available network bandwidth and
our low-latency network scheduling approach.

Scalability

Figure 3.12 shows how the individual TPC-H queries scale in HyPer when servers
are added to the cluster. The experiment uses a scale factor 100 data set. It is
apparent that the queries do not scale for Gigabit Ethernet. The only exceptions
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Figure 3.13: Impact of the interconnect on HyPer’s TPC-H performance

are query 1 and query 6, which transfer almost no data over the network. The
scalability graph of query 17 illustrates the impact of switch contention: For more
than 4 servers the effective bandwidth drops significantly and thus also the query
performance. TCP/IP over InfiniBand (4×QDR) performs better than TCP over
Gigabit Ethernet but still does not scale well, mostly staying close to single-server
performance or even performing worse (e.g, for queries 10, 11, and 20). Only our
RDMA-based communication multiplexer with network scheduling can improve
the performance for all queries, with an overall speed-up of 3.5× for 6 servers (cf.,
Figure 3.3).

Impact of Network Bandwidth

Figure 3.13 shows the impact of the network bandwidth and different transport
protocols on HyPer’s TPC-H performance. We compare the TPC-H performance
(measured in queries per hour) of a 6-server cluster with that of a single server using
a scale factor 100 data set. When the cluster is connected via Gigabit Ethernet,
it actually performs 8× worse than a single sever due to the large overhead of
network transfers. Our InfiniBand hardware allows to configure the data rate,
enabling us to measure the TCP and RDMA variants of our network multiplexer for
1 GB/s (single data rate), 2 GB/s (double data rate), and 4 GB/s (quad data rate).
HyPer’s TPC-H performance stagnates at 1.1× of the single-server performance for
both DDR and QDR rate when TCP is used with default settings (IPoIB datagram
mode with 2 KiB MTU). Tuning TCP (IPoIB connected mode with 64 KiB MTU
and a separate core for interrupt handling) improves performance by 24 % to 1.4×
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the performance of a single server when QDR is used. However, only our novel
RDMA-based communication multiplexer with network scheduling is able to scale
HyPer’s TPC-H performance with the available network bandwidth, processing
3.6× more queries per hour than a single server for InfiniBand 4× QDR.

Impact of Network Scheduling

We analyzed the impact of network scheduling on HyPer’s TPC-H performance
for our 6-server cluster. Scheduling improves HyPer’s TPC-H performance by
230 % when Gigabit Ethernet is used to connect the servers. Due to the high
CPU overhead of TCP stack processing for TCP/IP over InfiniBand, network
scheduling does not improve performance in this setting. For RDMA, network
scheduling improves HyPer’s TPC-H performance by 12 %. We expect the impact
of network scheduling on TPC-H performance to increase further with the cluster
size.

3.5.3 Distributed SQL Systems
We compare HyPer with five state-of-the-art distributed SQL systems: Apache
Hive 1.1, Spark SQL 1.3, Cloudera Impala 2.2 [51], MemSQL 4.0, and Vectorwise
Vortex [17]. HyPer, MemSQL, and Vectorwise use custom data storage. We con-
figured Hive to use main memory as scratch space. We ensure that Spark SQL
caches the HDFS input as deserialized Java objects in main memory before query
execution (cache level MEMORY_ONLY) to avoid deserialization overheads. Impala
processes HDFS-resident Parquet files during query execution. We ensured a hot
Linux buffer cache to avoid expensive disk accesses. Still, Impala has to perform
deserialization during query execution. We conducted a micro-benchmark ana-
lyzing multiple TPC-H queries and found that deserialization makes up less than
30 % of the query execution time.

Apache Hive, Spark SQL, and Impala are installed as part of the Cloudera
Hadoop distribution (CDH 5.4). We set the HDFS replication factor to 3 (so that
every block is replicated to three data nodes) and enabled short-circuit reads. The
cluster is configured so that all systems use the high-speed InfiniBand interconnect
instead of Gigabit Ethernet. We use unmodified TPC-H queries except for Hive
and Spark SQL—which required rewritten TPC-H queries that avoid correlated
subqueries [26]—and a modified query 11 for Impala, which does not support
subqueries in the having clause.

Figure 3.14 compares the six systems for the TPC-H benchmark on a scale
factor 100 data set using our 6-server cluster (≈ 110 GiB data on disk). A full
TPC-H run takes 1 h 30 min 29 s for Hive, 16 min 19 s for Spark SQL (without
query 11), 10 min 42 s for Impala, 2 min 26 s for MemSQL, 20.5 s for Vectorwise,
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Figure 3.14: TPC-H results for several distributed SQL systems

4.9 s for HyPer with chunked data placement and 3.8 s when relations are parti-
tioned by the first attribute of the primary key. Queries are run 10 times, keeping
the median. The Linux file system cache is not flushed between runs to keep data
hot in main memory and avoid disk accesses.

Tables 3.3 and 3.4 show the detailed query execution times with the fastest
highlighted in bold. They also show network and disk I/O metrics for each system.
Hive, Spark SQL, and Impala do not support partitioning relations by a specific
attribute. Thus, Table 3.3 compares these systems with HyPer for a chunked data
placement. In this setting, distributed joins and aggregations are always required
and shuffle large amounts of data across the network. MemSQL and Vectorwise
support partitioning, therefore Table 3.4 compares these two systems to HyPer for
a partitioned data placement. We partitioned the relations by the first attribute
of the primary key. Distributed joins can often exploit partitioned relations to
reduce the amount of data shuffled between servers. Note that HyPer with chunked
data placement still outperforms MemSQL and Vectorwise with partitioned data
placement even though it has to shuffle much more data for distributed joins and
aggregations. This is at least partly owed to its efficient RDMA-based query
engine.

Configuration Details

We tuned all compared systems according to their documentation, previous pub-
lications, and direct advice from their developers to ensure their best possible
performance.
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Hive Spark SQL Impala HyPer

Q1 1 min 19 s 7.09 s 7.04 s 0.08 s
Q2 3 min 14 s 16.92 s 8.91 s 0.04 s
Q3 3 min 59 s 26.04 s 23.79 s 0.34 s
Q4 2 min 44 s 10.21 s 25.53 s 0.16 s
Q5 5 min 14 s 1 min 13 s 23.57 s 0.22 s
Q6 53.24 s 1.97 s 3.39 s 0.03 s
Q7 7 min 56 s 59.67 s 43.57 s 0.33 s
Q8 6 min 4 s 1 min 20 s 21.04 s 0.17 s
Q9 13 min 30 s 2 min 52 s 1 min 11 s 0.60 s
Q10 4 min 28 s 18.63 s 8.86 s 0.51 s
Q11 2 min 40 s – 4.20 s 0.06 s
Q12 2 min 41 s 18.30 s 8.97 s 0.12 s
Q13 2 min 26 s 12.36 s 25.97 s 0.36 s
Q14 1 min 40 s 7.13 s 6.00 s 0.06 s
Q15 2 min 24 s 12.92 s 4.83 s 0.08 s
Q16 2 min 41 s 11.37 s 7.35 s 0.20 s
Q17 3 min 25 s 2 min 20 s 1 min 28 s 0.09 s
Q18 4 min 25 s 1 min 40 s 1 min 7 s 0.58 s
Q19 2 min 54 s 8.73 s 1 min 43 s 0.20 s
Q20 3 min 55 s 24.97 s 16.27 s 0.14 s
Q21 8 min 56 s 2 min 50 s 1 min 8 s 0.49 s
Q22 3 min 4 s 15.69 s 6.35 s 0.07 s

packets sent 151 million 107 million 176 million 7.3 million
data shuffled 401 GiB 211.3 GiB 140.52 GiB 27.95 GiB
disk I/O 833 GiB 0.23 GiB 0.04 GiB 0.00 GiB

total time 1 h 30 min 16 min 19 s 10 min 42 s 4.92 s
geometric mean 204.84 24.32 17.21 0.16
queries per hour 15 77 123 16 090

Table 3.3: Detailed TPC-H results for chunked data placement
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MemSQL Vectorwise HyPer

Q1 8.38 s 0.80 s 0.10 s
Q2 1.65 s 0.37 s 0.05 s
Q3 13.90 s 0.24 s 0.18 s
Q4 0.81 s 0.06 s 0.18 s
Q5 8.83 s 0.84 s 0.13 s
Q6 2.50 s 0.05 s 0.05 s
Q7 2.76 s 0.36 s 0.16 s
Q8 2.48 s 2.01 s 0.10 s
Q9 11.92 s 1.44 s 0.56 s
Q10 1.50 s 1.56 s 0.26 s
Q11 0.53 s 0.22 s 0.12 s
Q12 1.76 s 0.10 s 0.09 s
Q13 4.48 s 3.61 s 0.41 s
Q14 2.29 s 0.69 s 0.05 s
Q15 13.00 s 0.95 s 0.08 s
Q16 3.44 s 0.69 s 0.16 s
Q17 0.75 s 0.53 s 0.11 s
Q18 51.30 s 1.63 s 0.37 s
Q19 0.60 s 0.81 s 0.23 s
Q20 8.53 s 0.51 s 0.13 s
Q21 2.08 s 1.91 s 0.24 s
Q22 2.19 s 1.18 s 0.06 s

packets sent 7.02 million 7.06 million 2.4 million
data shuffled 13.96 GiB 19.36 GiB 8.88 GiB
disk I/O 0.03 GiB 0.01 GiB 0.00 GiB

total time 2 min 26 s 20.54 s 3.82 s
geometric mean 3.23 0.59 0.14
queries per hour 544 3856 20 739

Table 3.4: Detailed TPC-H results for partitioned data placement
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Hive. Hive is measured with generated statistics processing ORC files using a
tuned Hadoop YARN (optimized main-memory limits, JVM reuse enabled, output
compression via Snappy, increased I/O buffers). We used the rewritten TPC-H
queries from a recent study [26] that avoid correlated subqueries and enable Hive’s
correlation optimization, predicate push down, and map-side join/aggregation.
Early measurements revealed that Hive writes 2 TiB of data to disk for a TPC-H
SF 100 run. We configured it to use main memory as scratch space but it still
writes over 800 GiB of intermediate results to HDFS owing to the MapReduce
processing model.

Spark SQL. Apache Spark SQL, the follow-up to Shark, is still early in devel-
opment. We ensure in-memory processing by specifying the tables as temporary
and explicitly caching them. We further configured Spark to use main memory
for its scratch space and disabled spilling to disk. We increased the per-executor
memory to 250 GiB per server and the parallelism level to twice the number of
cores in the cluster as recommended. For queries 2, 15, and 22 we had to use
rewritten queries from [26] that avoid correlated subqueries. Spark SQL takes
more than an hour for query 11, we thus measured all metrics for the remaining
21 queries.

Impala. Impala is run with generated statistics on Parquet files with disabled
pretty printing. Short-circuit reads and runtime code generation are enabled, op-
erator spilling disabled. Using the HDFS cache did not improve query performance
compared to the Linux file system cache.

MemSQL. We configured MemSQL to replicate nation and region by spec-
ifying them as reference tables. All other relations are partitioned by the first
column of their primary key. We used one partition per CPU core in the cluster
as recommended in the MemSQL documentation for maximum parallelism. We
further created foreign key indexes to enable index-nested-loop joins that improve
performance significantly.

Vectorwise. We measure Vectorwise Vortex with statistics, primary keys, and
foreign keys. We set the maximum parallelism level to 120 and the number of cores
to 20 as recommended by an Actian engineer for our cluster. Similar to MemSQL,
all relations except nation and region are partitioned by the first column of their
primary key. Replicating customer and supplier as recommended by Actian for
an optimal TPC-H performance reduces the runtime by 19 % to 16.56 s and the
geometric mean to 0.5.

HyPer. For HyPer we measured both chunked data placement to compare
against Apache Hive, Spark SQL, and Impala as well as partitioned data placement
to compare against MemSQL and Vectorwise. For chunked relations, HyPer has to
use distributed joins and aggregations more often and thus shuffles considerably
more data across the network—28 GB instead of the 9 GB for partitioned data
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Figure 3.15: Impact of network bandwidth on TPC-H performance

placement. Note that HyPer with chunked relations (shuffling 28 GB of data) still
outperforms Vectorwise and MemSQL when they use partitioned data placement
and shuffle only 14 GB respectively 19 GB of data between servers. This is mainly
due to our fast RDMA-based query engine.

Network Bandwidth

Our InfiniBand hardware supports data rates of 1 GB/s (single data rate), 2 GB/s
(double data rate), and 4 GB/s (quad data rate). Figure 3.15 shows the impact of
the network bandwidth on the TPC-H performance of the parallel main-memory
database systems HyPer, Vectorwise Vortex, and MemSQL. For each system, we
show the speed up compared to its own performance when Gigabit Ethernet is
used instead. MemSQL only improves by 23 % when using the 32× faster Infini-
Band 4×QDR interconnect. Vectorwise Vortex and a variant of HyPer using TCP
achieve a speed up of 4× for InfiniBand but cannot scale performance substantially
when increasing the data rate. Our RDMA-enabled communication multiplexer
enables HyPer to scale its TPC-H performance with the network bandwidth, pro-
cessing 12× more queries per hour for InfiniBand 4×QDR compared to Gigabit
Ethernet.

Larger Scale Factor

We further ran TPC-H at scale factor 300 for the three fastest systems to see how
they scale to larger inputs: HyPer takes 12 s (geometric mean 0.42) to process
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the ≈ 320 GiB of data. This is 3.1× (3×) more than the 3.8 s (geometric mean
0.14) for SF 100. Vectorwise Vortex takes 44.2 s (geometric mean 1.15) for SF 300,
an increase of 2.2× (2×) compared to 20.5 s (geometric mean 0.59) for SF 100.
MemSQL processes a SF 300 data set in 8 min 46 s (geometric mean 10.41), this
is 3.4× (3.2×) more than the 2 min 26 s (geometric mean 3.23) for SF 100.

3.6 Related Work
Parallel databases are a well-studied field of research that attracted considerable
attention in the 1980s/90s with Grace [31], Gamma [20], Bubba [10], Volcano [37],
and Prisma [4]. Several parallel database systems of the time, commercial and
academic, are discussed in an influential survey [18]. Today’s commercial parallel
database systems include Teradata, Exasol Exasolution, IBM DB2, Oracle Data-
base In-Memory [61], Greenplum, SAP HANA [34], HP Vertica (which evolved
from C-Store [76]), MemSQL, Cloudera Impala [51], and Vectorwise Vortex [17].

The comparatively low bandwidth of standard network interconnects such as
Gigabit Ethernet creates a bottleneck for distributed query processing. Conse-
quently, recent research focused on minimizing network traffic: Neo-Join [71] and
Track Join [65] decide during query processing how to redistribute tuples to ex-
ploit locality in the data placement. High-speed networks such as InfiniBand and
RDMA remove this bottleneck and have been applied to database systems before.
Frey et al. [28] designed the Cyclo Join for join processing within a ring topology.
Goncalves and Kersten [35] extended MonetDB with a novel distributed query pro-
cessing scheme based on continuously rotating data in a modern RDMA network
with a ring topology. Mühleisen et al. [60] pursued a different approach, using
RDMA to utilize remote main memory for temporary database files in MonetDB.
Kalia et al. [43] used RDMA to build a fast key-value store. Barthels et al. [5]
provide a detailed analysis of a distributed radix join using RDMA for rack-scale
InfiniBand clusters. Costea and Ionescu [17] extended Vectorwise, which origi-
nated from the MonetDB/X100 project [88], to a distributed system using MPI
over InfiniBand. The project is called Vectorwise Vortex and is included in our
evaluation.

The problem of switch contention has been addressed in the literature before.
Hedera [2] applies heuristics to move data flows from overloaded links to free links
using a central coordinator with global knowledge. However, flow estimation and
scheduling is performed only every 5 s—much too infrequent for high-speed net-
works where transfers take a few milliseconds and a complete TPC-H run finishes
in less than 5 s at scale factor 100. Neo-Join [71] uses application-level network
scheduling solving the Open Shop problem to minimize join execution time. How-
ever, its scheduling algorithm requires prior knowledge of data transfer sizes and
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does not scale well as its runtime is in O(n4) for n servers. High-speed networks
require a different approach to network scheduling with much less overhead. The
network scheduling approach described in this chapter reduces synchronization
time to just a few microseconds by utilizing low-latency InfiniBand operations.

Several papers discuss the implications of NUMA for database systems. Albutiu
et al. [3] devised MPSM, a NUMA-aware sort-merge join algorithm. Li et al.
[53] applied data shuffling to NUMA systems and particularly to MPSM. Our
application-level network scheduling is similar to NUMA shuffling in that we also
use a simple round-robin schedule to keep synchronization overheads at a few
microseconds.

There has been various research analyzing TCP performance [13, 27, 28]. We
refer the reader to [28] for a detailed discussion. Previous studies have found that
TCP performance does not scale well to higher network bandwidths, as the re-
ceiver becomes CPU-bound. For large messages, data touching operations such
as checksums and copying cause a high CPU load and the network interface card
raises interrupts leading to many context switches [27, 28]. TCP offloading, al-
ready proposed in the 1980s to alleviate the CPU bottleneck [13], has since been
implemented in hardware. A second problem identified in the literature is TCP’s
high memory bus load [13]: Every byte sent and received over the network causes 2
to 4 bytes traversing the memory bus [27]. However, our experiments have shown
that the introduction of data direct I/O reduced memory bus traffic considerably
for NUMA-aware applications (cf., Section 3.2.1).

IBM DB2 differentiates between local and global parallelism similar to hybrid
parallelism to overcome some of the problems of the classic exchange operator.
However, instead of decoupled exchange operators that enable work stealing, DB2
uses a special exchange operator that merges the results of threads to reduce the
number of parallel units.

3.7 Concluding Remarks

Remote direct memory access (RDMA) currently receives increasing interest in the
database research community. Binnig et al. [7] have shown that database systems
need to adopt RDMA to fully leverage the high bandwidth of InfiniBand. It is not
enough to just use faster networking hardware, the software has to change as well
to address the new bottlenecks that emerge. Recent work has shown the benefits
of RDMA for specific relational operators (e.g., joins [5]) and key-value stores [43].
However, we are the first to present the design and implementation of a complete
distributed query engine based on RDMA that is capable of processing complex
analytical workloads such as the TPC-H benchmark.
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Our engine uses RDMA to avoid the overheads of TCP processing, low-latency
network scheduling to address switch contention, and a flexible approach to paral-
lelism that overcomes the inflexibility of the classic exchange operator model. In
combination, this allows us to scale the high single-server performance of a state-
of-the-art in-memory database system with the number of servers in the cluster.





Chapter 4

Skew Handling

Parts of this chapter were previously published in [69].

Modern high-speed interconnects such as InfiniBand are crucial to achieve scal-
able distributed query processing where adding a server to the cluster increases
performance. However, the scalability of distributed joins is threatened by unex-
pected data characteristics: Skew can cause severe load imbalances such that a
single server has to process a much larger part of the input than its fair share and
by this slows down the entire distributed query.

We introduce Flow-Join, a novel distributed join algorithm that handles at-
tribute value skew with minimal overhead. Flow-Join detects heavy hitters at
runtime using small approximate histograms and adapts the redistribution scheme
to resolve load imbalances before they impact the join performance. Previous
approaches often involve expensive analysis phases that slow down distributed
join processing for non-skewed workloads. This is especially the case for modern
high-speed interconnects that are too fast to hide the extra computation. Other
skew handling approaches require detailed statistics that are often not available
or overly inaccurate for intermediate results. In contrast, Flow-Join with its novel
lightweight skew handling scheme executes at the full network speed of more than
6 GB/s for InfiniBand 4×FDR, joining a skewed input at 11.5 billion tuples/s with
32 servers. This is 6.8× faster than a standard distributed hash join using the same
hardware. At the same time, Flow-Join does not compromise the join performance
for non-skewed workloads.

4.1 Motivation
Today’s many-core servers offer unprecedented single-server query performance
and main-memory capacities in the terabytes. Yet, a scale-out to a cluster is
still necessary to increase the main-memory capacity beyond a few terabytes. For
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Figure 4.1: Join execution time for skewed and non-skewed inputs

example, Walmart—the world’s largest company by revenue—uses a 16 server
cluster with a total of 64 TiB of main memory to perform analytical queries on
their business data [63].

Data is commonly partitioned across servers so that users can utilize the com-
bined main-memory capacity of the cluster. Consequently, query processing re-
quires network communication between servers. Network bandwidth used to be
a bottleneck for distributed query processing so that a cluster actually performed
worse than a single server. Previous work thus focussed on avoiding communication
as much as possible [71, 65]. However, the economic viability of high-bandwidth
networks has changed the game: Modern high-speed interconnects with link speeds
of several gigabytes per second enable scalable query processing where adding
servers to the cluster in fact improves query performance [7, 70].

However, skew can cause load imbalances during data shuffling and thus again
threatens the scalability of distributed query processing as highlighted by Fig-
ure 4.1. The experiment shows the join execution time for each of the 6 servers in
a cluster comparing skewed and non-skewed inputs. The cluster is connected via
InfiniBand 4×QDR, which offers a theoretical throughput of 4 GB/s. The skewed
input (Zipf factor z = 1.25) causes server c to process many more tuples than the
others and by this increases the join execution time by 54 %.

Heavy hitter skew is particularly harmful for partitioning-based operators (e.g.,
distributed joins and aggregations), as all tuples with the same partitioning key
are assigned to the same server. A distributed operator is only as fast as its
slowest instance, overloading a single server will thus cause the whole operator
to significantly underperform. With more servers the situation gets even worse:
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Figure 4.2: CPU-bound vs. network-bound distributed join processing

The larger the cluster, the larger the negative impact of skew. For a constant join
input, the input size per server decreases when servers are added to the cluster
while the number of heavy hitter tuples stays the same. The heavy hitter tuples
assigned to a single server will thus increase its input by a larger factor.

While distributed aggregations can generally handle heavy hitter skew effec-
tively using a fast in-cache pre-aggregation, there is no simple remedy for dis-
tributed joins. A distributed join partitions both inputs into as many partitions
as there are servers. Only tuples from corresponding partitions will join and these
partition pairs are thus assigned to servers. As tuples with the same key are
assigned to the same server, heavy hitters will cause serious load imbalances as
shown in Figure 4.1. In the example, the third server is assigned many more tu-
ples than the other servers. This impacts performance in two ways: First, network
communication becomes irregular, congesting the link to this server. Second, the
third server must process many more tuples than the other servers. Ultimately,
the overloaded server takes much longer to process its part of the input and thus
slows down the entire join.

Heavy hitter skew causes load imbalances during distributed query processing
whether the network is slow or fast. However, for slow networks the actual join
computation accounts for such a small fraction of the total execution time that
even expensive skew handling approaches are a viable choice. For example, a
distributed join over Gigabit Ethernet using 6 servers with 5040 build and 105 M
probe tuples per server has a runtime of 13.2 s. The actual join computation takes
less than 250 ms while the remaining time is spent waiting for network transfers.
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Figure 4.3: Breakdown of join execution time

In this case, a preceding skew detection phase would increase runtime only by 2 %
even if it performs as much computational work as the actual join.

Modern high-speed interconnects have closed the gap between network band-
width and compute speed: A distributed join is not necessarily network-bound
anymore. Figure 4.2 shows that using additional cores for join processing keeps
improving the join performance of a 6-server cluster that is connected via In-
finiBand 4×FDR. This stands in contrast to the slower 4×QDR where six cores
already suffice to saturate the available network bandwidth. In this experiment
the size of the build input is intentionally chosen to fit into cache for fastest join
processing (5040 build and 105 M probe tuples per server). InfiniBand 4×FDR
is still fast enough to not be the bottleneck. The experiment shows that skew
detection cannot be hidden behind slow network transfers anymore. Instead, any
additional work will directly translate into a visible increase in execution time.
Modern high-speed networks thus require fast skew detection. This applies even
more for the upcoming InfiniBand EDR hardware that will offer almost twice the
bandwidth of FDR.

Previous approaches to handle skew depend either on detailed statistics [22, 87]
that are often not available or overly inaccurate for intermediate results, or on
analysis phases [49, 41, 85, 71] that are too expensive for high-speed intercon-
nects. Flow-Join instead performs a lightweight heavy hitter detection alongside
partitioning. It avoids load imbalances by broadcasting tuples that join with heavy
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hitters. Flow-Join’s skew detection and handling adds almost no overhead—even
for high-speed networks such as InfiniBand 4×FDR, which is more than 50× faster
than Gigabit Ethernet. Figure 4.3 compares Flow-Join to a standard hash join.
The experiment runs on a 6-server cluster connected via 4×FDR at 6.8 GB/s us-
ing 5040 build and 105 M probe tuples per server. Both join algorithms perform
similar for the non-skewed input with Flow-Join’s skew detection adding only a
minimal overhead of 1.6 %. For skewed inputs, the hash join takes 79 % longer,
while Flow-Join actually performs 5 % faster compared to the non-skewed input
as it keeps heavy hitter tuples local, thereby reducing network communication.
Flow-Join does not have a separate skew detection phase. It detects skew while it
partitions the first 1 % of the probe input, after which a global consensus on skew
values is formed. Both implementations overlap computation (partitioning, build,
and probe) with network communication so that the join finishes shortly after the
last network transfer. Our adaptive skew handling approach enables pipelined
execution of joins and thus avoids the materialization of the probe side, reduc-
ing main-memory consumption significantly. In particular, this chapter makes the
following contributions:

1. A novel mechanism to detect heavy hitters alongside partitioning of the in-
puts that incurs only minimal overhead, comparing several implementations
of the employed approximate histograms.

2. A method to adapt the redistribution scheme at runtime for a subset of the
keys identified as heavy hitters. Broadcasting corresponding build tuples
avoids that all probe tuples for a specific heavy hitter value are assigned to
a single server.

3. Based on these two techniques, a highly-scalable implementation of Flow-
Join that utilizes remote direct memory access (RDMA) to shuffle the data at
full network speed. The implementation further distinguishes between local
and distributed parallelism to avoid the inflexibility of the classic exchange
operator model.

4. A generalization of Flow-Join beyond key/foreign-key equi joins that employs
the Symmetric Fragment Replicate redistribution scheme to optimally handle
correlated skew in both inputs.

5. Finally, an extensive evaluation including a scalability experiment on a clus-
ter of 32 servers using Zipf-generated data as well as a real workload from a
large commercial vendor.
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4.2 Flow-Join
It is hard to detect skew at runtime without causing a significant overhead for non-
skewed workloads. Materializing all tuples and computing histograms to decide on
an optimal assignment takes time and will provide no benefit when the input is not
skewed. While the additional computation might not add a noticeable overhead to
the overall query execution time for slow interconnects such as Gigabit Ethernet,
this is no longer the case for InfiniBand 4×FDR that is more than 50× faster. Any
substantial computation in addition to core join processing is likely to increase
query execution time when such high-speed networks are used.

Flow-Join is a skew-resilient distributed join algorithm with negligible overhead
even for high-speed interconnects. It computes small, approximate histograms
alongside partitioning to detect skew early. When a small percentage of the in-
put has been processed, the frequencies in the histograms are checked. Servers
exchange the approximate counts for join key values when they exceed a skew
threshold—i.e., the expected frequency—by a large factor. Afterwards, all servers
in the cluster know the heavy hitters. The tuples that join with heavy hitters are
broadcast to avoid load imbalances before they arise. This can be further refined
as more of the input is processed, which becomes important when the heavy hitters
in the input vary over time.

To simplify the presentation we restrict the discussion in this section to the
common case of key/foreign-key equi joins. Section 4.4 generalizes Flow-Join to
arbitrary joins without a key/foreign-key relationship as well as non-equi joins. For
key/foreign-key joins, heavy hitter skew is by definition limited to the foreign-key
side as the attribute values of the other side are necessarily unique as a conse-
quence of the primary key property. Therefore, correlated skew—i.e., both inputs
are skewed on the same join key value—is also not covered here but as part of
Section 4.4.

4.2.1 Selective Broadcast
A standard hash join redistributes tuples between servers according to the hash
value of the join key. Tuples with the same join key value will thus all end up at
the same target server. An example is shown in Figure 4.4a: Server 0 is assigned
all tuples with the skewed join key 1 and as a result receives 4× more tuples than
server 1. This impacts the performance in two ways: First, network communi-
cation becomes irregular as most data is sent over the link to server 0. Second,
server 0 must process many more tuples than its fair share. The execution time
of distributed operators is determined by the slowest server. Consequently, the
increased load at server 0 will slow down the entire query. This also affects the
scalability of the system: Adding more servers to the cluster will not improve the
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Figure 4.4: Selective Broadcast

performance as expected. The heavy hitter is still assigned to a single server and
the query execution time thus remains largely unchanged.

An effective way to handle heavy hitter skew is the Selective Broadcast [87,
71, 65] redistribution method for distributed hash joins that is known as Subset-
Replicate [22] in the case of range partitioning. The key idea of Selective Broadcast
is to keep tuples with skewed join keys local to avoid overloading a single server.
Instead, the corresponding tuples of the other input are broadcast to all servers so
that the heavy hitter tuples can be processed locally. This is shown in Figure 4.4b
where the R tuples with join key 1 are broadcast, while S tuples with join key 1
are kept local. An equi join algorithm that uses Selective Broadcast still computes
the correct join result and at the same time avoids the load imbalance caused
by a standard hash join (for the required changes to support non-equi joins see
Section 4.4.3). Selective Broadcast yields performance results for skewed work-
loads that are on par with those for non-skewed inputs. For current systems, a
distributed join using Selective Broadcast will in fact achieve higher performance
for skewed than for non-skewed workloads as the heavy hitter tuples can be kept
local and do not need to be materialized and sent over the network.

4.2.2 Heavy Hitter Detection
Even though Selective Broadcast seems to solve the problem of heavy hitter skew,
there is one important caveat: The heavy hitter values have to be known be-
forehand. Previous approaches either assumed that heavy hitter elements can be



84 4.2. Flow-Join

fast access 
by key

fixed size 
(k = 8)

remove 
minimum 
when full

approximate 
histogram

probebuild

⨝

key count
42 188
55 123
8 97
17 77
33 54
4 14
39 3
22 1

Figure 4.5: Heavy hitter detection

deduced from existing statistics [22, 87]—which is often difficult and expensive
for intermediate results—or are computed during a separate analysis phase that
requires a complete materialization of both join inputs and additional processing
[49, 41, 85, 71].

Flow-Join identifies heavy hitters alongside partitioning and thus does not
need detailed statistics or a separate analysis phase to detect skew. This en-
ables pipelined join processing and thus avoids materialization of the probe side.
The high-level idea of Flow-Join’s algorithm to detect heavy hitters is shown in
Figure 4.5. The join maintains approximate—and therefore extremely efficient—
histograms for the probe input. Histograms are updated during join processing by
incrementing the count for each probe tuple as it is processed. The tuple is only
forwarded to the target server when its count is below the skew threshold. Other-
wise, the probe tuple is kept local and the corresponding build tuple is broadcasted
to ensure the correct result.

Frequent Items Problem

Detecting heavy hitters during distributed join processing corresponds to finding
frequent items in a data stream. This is known as the frequent items problem. The
subsequent definitions are adapted from a recent survey [16] on algorithms that
compute frequent items:

Definition 1. Exact Frequent Items Problem:
Given a stream S of n items t1, ..., tn, the frequency of item i is fi = |{j | tj = i}|,
i.e., the number of indices j where the jth item is i. The exact φ-frequent items for
a frequency threshold of φn are then defined as the set {i | fi > φn} that contains
all items that occur more than φn times.
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However, solving the frequent items problem exactly has been shown to require
space linear in the size of the input [16]. Basically, a counter per join value would
be required to detect the k most frequent items. Apart from the large amount
of main memory needed, this would also be very compute-intensive to maintain
due to cache misses and related issues. Thus, we instead focus on the approximate
version of the frequent items problem with error tolerance ε:

Definition 2. Approximate Freq. Items Problem:
Given a stream S of n items, compute the set F of approximate frequent items
so that each reported item i ∈ F has frequency fi > (φ − ε)n. This allows a
reported item to occur εn times less often in the stream than the specified threshold
of φn. Further, there should be no i 6∈ F such that fi > φn, i.e., all items i with
a frequency larger than φn have to be reported.

Flow-Join’s heavy hitter detection is based on the SpaceSaving algorithm [56],
which solves the frequency estimation problem with error ε = 1/k, where k is the
histogram size. The frequency of a reported item is off by at most a factor of 1/k.
Solving the frequent items problem approximately with the SpaceSaving algorithm
reduces the space requirements significantly compared to the exact version. For
example, a histogram with 100 entries is sufficient to compute all items with fre-
quency 1 % or higher. This already suffices to detect all heavy hitters that could
potentially impact the performance of a cluster with dozens of machines.

SpaceSaving reports all frequent items. However, there is no guarantee that
a reported item is indeed frequent. This is tolerable for our use case, as broad-
casting a few additional tuples will not impact performance noticeably. The afore-
mentioned survey on algorithms for the frequent items problem has shown that
SpaceSaving is faster, more accurate, and requires less space than other counter-,
quantile-, and sketch-based alternatives [16], which we will thus not consider. Fig-
ure 4.6 shows an exemplary execution of the SpaceSaving algorithm for a histogram
with space for k = 8 elements. In the example there are already 7 elements in
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Figure 4.7: Implementation alternatives for the approximate histogram

the histogram from the beginning. The insertion of the existing key 17 simply
increments its count. The subsequent insertion of the new value 22 fills the last
remaining free slot. Consequently, there is no free slot for key 71, which instead
replaces the element with the smallest count. The count of the previous element
22 is kept and incremented by one, yielding a total count of 2 for the new element
71. Keeping the count of the previous element when a new element is inserted
into a full histogram is necessary to ensure an item is never underestimated. This
approach bounds the error for the frequency estimation problem to 1/k [56].

Data Structures

The main challenge introduced by the SpaceSaving algorithm is that elements
are accessed in two different ways: via their key for updates and their count to
remove the minimum. The approximate histogram has to support both operations
in a very efficient manner. To this end, we compared three successively-refined
data structures characterized in Figure 4.7. The first data structure, depicted in
Figure 4.7a, is a hash table that enables key access in O(1). However, removing
the minimum is expensive as it incurs a full scan of the hash table with O(k)
operations. Figure 4.7b combines the hash table with a heap to reduce the cost for
accessing the minimum. However, the heap requires log k moves for every update
and removal. Thus, insert, update, and remove minimum are now all in O(log k).
Figure 4.7c replaces the heap with a sorted array. This enables a remove minimum
that is in O(1). While “increment key” is now worst case O(k), this only occurs
for the rightmost element when all elements have the same count. In practice,
however, an element rarely moves more than one position to the left.
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The experiment shown in Figure 4.8 inserts 10 million random keys for a uni-
form distribution without skew into histograms that have capacity for k = 128
elements. The number of distinct values increases along the x-axis. Note that the
x-axis is logarithmic so that the hash table outperforms the alternatives only as
long as there are very few distinct values. The update rate of the hash table drops
severely as soon as the number of distinct values exceeds the capacity k = 128.
At this point the remove minimum operation becomes necessary, which incurs an
expensive scan of the hash table. Combining the hash table with a heap to support
a fast remove minimum operation improves performance by up to 7× once there
are more than k = 128 distinct values. The sorted array implementation further
improves over this and outperforms the hash table by at least 28× and up to 37×
when there are more than k = 128 distinct values. Increasing k shifts this limit
but does not change the qualitative result. A reasonably small k is necessary to
avoid expensive cache misses.

The sorted-array implementation is very fast, processing about 60 million
keys/s per thread. The implementation of Flow-Join uses one thread per core
to leverage the available parallelism of modern many-core servers. Worker threads
do not share a single approximate histogram but instead each use their own pri-
vate histogram. This avoids the cost of locking or atomic operations required when
sharing a data structure. Flow-Join uses the sorted-array implementation with a
capacity of k = 128 elements and 256 hash-table entries. This results in a hash
table load factor of at most 1/2 and a memory footprint of only 2.5 KiB, ensuring
fast in-cache processing. This allows to process skewed and non-skewed inputs
with minimal overhead.
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4.2.3 Early and Iterative Detection

Early detection of heavy hitter values is important to adapt the redistribution
scheme as soon as possible such that imbalances in network communication and
CPU utilization can be resolved before they impact the join performance. Flow-
Join combines histograms on a per-server level after processing approximately 1 %
of the probe input. Afterwards, the servers combine the resulting skew lists on the
cluster level to reach a global consensus on the heavy hitter values. This is quite
cheap: Each server sums up the counts for the join key values of its local per-
thread approximate histograms. It then forwards those join key values together
with their counts that still exceed the skew threshold to one of the servers. This
one server again adds up the counts and thus determines the global list of heavy
hitter skew values as those join key values that still exceed the threshold. It notifies
the servers responsible for the corresponding build tuples (identified via the join’s
hash function). These servers then broadcast the build tuples across the cluster.

Sampling the first 1 % of the input ensures the early detection of the heavy
hitter values. Once the build tuples are broadcasted, the materialized skewed
probe tuples can be joined. This process can be repeated periodically during join
processing to iteratively refine the heavy hitter detection in case the heavy hitters
in the probe input vary over time.

4.2.4 Fetch on Demand

Combining histograms in the cluster to detect heavy hitters did not introduce a no-
ticeable overhead in our experiments even for 32 servers. Still, the global consensus
requires synchronization between servers. It is possible to avoid synchronization
and reduce the materialization of heavy hitters to a minimum: Instead of creating a
shared global list of skewed join values, servers (or even individual worker threads)
can decide on the heavy hitter values on their own. Once a join key value exceeds
the skew threshold, they fetch the corresponding build tuple asynchronously from
the responsible server (identified via the join’s hash function) similar to the PRPQ
scheme by Cheng et al. [12]. A requesting server does not even need to wait for the
response but can continue processing its input and simply materialize the probe
tuples for the outstanding heavy hitter. Once the remote server has responded
with the build tuple, the requesting server can join the probe tuples for this heavy
hitter value. We call this refined approach fetch on demand.

Fetch on demand has a second benefit apart from avoiding the synchronization
of the global consensus approach. Different servers (or even worker threads) could
encounter different heavy hitters in their part of the input. Fetch on demand
allows them to request only the build tuples for heavy hitters relevant to them
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while global consensus always broadcasts the build tuples for all heavy hitters
across the whole cluster.

4.2.5 Hash Join Algorithm
There are different ways to implement a distributed hash join including the classic
Grace-style hash join [50] and distributed radix joins [5]. Both suffer from load
imbalances caused by heavy hitter skew as they have to assign each heavy hitter
join key value to a single server. Barthels et al. [5] have shown that a distributed
radix join experiences a 3.3× slow down for a skewed workload with Zipf factor
z = 1.2 on an 8-server cluster. We observed similar results for the standard
partitioned hash join, which suffers from a 2.1× slow down for Zipf factor 1.25.
The effect of skew further intensifies with the cluster size—a standard hash join
slows down by 5.2× on a 32-server cluster for a skewed workload with Zipf factor
z = 1.25. This highlights the need for low-overhead skew handling techniques
whether the underlying join algorithm is a standard Grace-style hash join or a
distributed radix join.

Flow-Join is independent of the actual hash join algorithm used. During par-
titioning of the tuples Flow-Join uses approximate histograms to detect skew and
Selective Broadcast to handle the detected heavy hitters. This applies to Grace-
style hash joins [50] as well as radix joins [5]. We decided to implement the former
to evaluate Flow-Join. In the experiments we focus on the worst case for Flow-
Join where the build relation is small enough to fit into cache. In this setting, the
overhead of skew detection and skew handling has the largest visible impact as the
join performs fastest. A larger build side would cause cache misses, slowing down
the join and making the overhead of Flow-Join less visible.

4.3 Implementation Details
Our implementation of Flow-Join uses remote direct memory access (RDMA) for
network communication to utilize all the available network bandwidth offered by
modern high-speed interconnects such as InfiniBand 4×FDR. Flow-Join combines
exchange operators for distributed processing with work stealing across cores and
NUMA regions for local processing to be able to scale to large clusters of many-core
machines.

4.3.1 High-Speed Networks
InfiniBand is a high-bandwidth, low-latency cluster interconnect, which offers sev-
eral different data rates that have been standardized over the years since its in-



90 4.3. Implementation Details

GbE
InfiniBand (4×)

SDR DDR QDR FDR EDR

bandwidth [GB/s] 0.125 1 2 4 6.8 12.1
compared to GbE 1× 8× 16× 32× 54× 97×
latency [µs] 340 5 2.5 1.3 0.7 0.5
introduction 1998 2003 2005 2007 2011 2014

Table 4.1: Network data link standards

troduction in 2001 as shown in Table 4.1. Most experiments in this chapter were
performed on a 32-server cluster that is connected via InfiniBand 4×FDR hardware
that provides more than 50× the bandwidth of Gigabit Ethernet and latencies as
low as 0.7 µs.

InfiniBand offers the choice between two transport protocols: standard TCP
via IP over InfiniBand (IPoIB) and an InfiniBand-native ibverbs interface that en-
ables remote direct memory access (RDMA). Figure 4.9 compares the throughput
achieved via TCP/IP over Gigabit Ethernet and InfiniBand with that of RDMA
for a single full-duplex stream of 512 KiB messages. The experiment shows that
RDMA is necessary to achieve a network throughput near the theoretical maxi-
mum of 6.8 GB/s for InfiniBand 4×FDR. This stands in contrast to TCP/IP, which
causes significant CPU load—fully occupying one core—and would further require
complex tuning as well as the use of multiple data streams processed on several
cores to come close to the throughput of RDMA [70]. For the 32-server cluster used
in the evaluation of this chapter with 8 cores per CPU and a fast 4×FDR inter-
connect, using all the available bandwidth with TCP/IP would likely occupy most
of the cores of one of the two CPUs—compared to virtually no CPU overhead for
RDMA. Flow-Join therefore facilitates native InfiniBand network communication
via RDMA instead of standard TCP/IP.

InfiniBand’s ibverbs interface is inherently asynchronous and thus requires a
distinctly different application design. The InfiniBand network card processes the
work requests that the application posts to its work queues asynchronously and
inserts a completion notification to a completion queue once it is done. As its name
suggests, RDMA reads and writes memory without involving the operating system
or application during transfers. The performance-critical data transfer path thus
involves no CPU overhead at all. The application has to manage network buffers
explicitly to enable these zero-copy network transfers. Registering the network
buffers with the network card before communication is necessary as the kernel
has to pin them to main memory to avoid swapping to disk. Network buffers
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should be reused as much as possible as registration with the network card is a
costly operation [28]. Our implementation uses a message pool to reuse network
buffers and avoid the cost of repeated memory allocation and registration with the
InfiniBand card.

RDMA further offers two different application semantics: Memory semantics
allow the sender to read and write the receiver’s memory without its involvement,
requiring that both exchange information beforehand to identify the target mem-
ory region. With channel semantics both sender and receiver post work requests
that specify the memory regions, rendering the preceding information exchange
unnecessary. Channel semantics offer the additional benefit that not only the
sender but also the receiver is notified when the data transfer has finished. For
these reasons, we used channel semantics to implement Flow-Join’s communication
multiplexer.

4.3.2 Local and Distributed Parallelism
The exchange operator [37] is a landmark idea as it allows systems to encapsulate
parallelism inside an operator. All other relational operators are kept oblivious
to parallel execution, making it straightforward to parallelize existing non-parallel
systems. The exchange operator is commonly used to introduce parallelism both
inside a single machine and between servers (e.g., Vectorwise Vortex [17] and
Teradata [87]). However, the classic exchange operator has several disadvantages
as it introduces unnecessary materialization overhead during local processing, is
inflexible in dealing with load balances and thus especially vulnerable to attribute
value skew, and further faces scalability problems due to the large number of
connections required for large clusters of many-core servers [70].

Flow-Join instead implements local and distributed parallelism differently. On
the local level, instead of using traditional exchange operators, we parallelize Flow-
Join similar to the morsel-driven approach by Leis et al. [52]. Workers process small
NUMA-local chunks of tuples to avoid expensive remote memory accesses across
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CPU sockets. Work stealing allows faster workers to steal work units from workers
that lag behind and by this effectively resolves local load imbalances. The impact
of work stealing grows with the number of cores. Threads are pinned to cores
to avoid expensive thread migrations. On the global level, exchange operators
are connected via RDMA-based communication multiplexers instead of directly
to each other. The multiplexer ensures that there is always at least one packet
in flight for every target server to use all the available bandwidth in the network.
Both levels of parallelism are seamlessly integrated into a new approach that avoids
unnecessary materialization, is flexible in dealing with load imbalances, and offers
near-linear scalability in the number of servers in the cluster.

4.4 Generalized Flow-Join
This section generalizes Flow-Join beyond key/foreign-key equi joins. The high-
level idea is shown in Figure 4.10: Tuples with a join value that is neither skewed in
R nor in S are partitioned, R tuples that join with heavy hitters in S are broadcast
and S tuples that join with heavy hitters in R are handled similarly. Tuples with
a join value that is both a heavy hitter in R and in S are redistributed according
to the Symmetric Fragment Replicate (SFR) [74] data shuffling scheme.

4.4.1 Algorithm
In the following we will describe the generalized Flow-Join in more detail. We
denote the build input as R and the probe input as S. Typically, the smaller input
is used as build side to keep the hash table for the local join small, we therefore
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follow this convention. However, Flow-Join’s skew detection and handling does
not require this. The build input R is distributed before the probe input S to
enable pipelined probing. Flow-Join avoids materialization as much as possible to
minimize memory consumption. In detail, the generalized Flow-Join proceeds as
follows:

1. Exchange R: For each tuple in R:

• Update approximate histogram
• Compare heavy hitter count to threshold:

(a) skewed: insert tuple into local hash table
(b) otherwise: send tuple to target server

• Create global list of heavy hitters in R

2. Exchange S: For each tuple in S:

• Update approximate histogram
• Compare heavy hitter count to threshold:

(a) skewed in S: materialize S tuple as the corresponding R tuple is
not broadcast at this point in time

(b) skewed in R (but not S): broadcast S tuple to all servers
(c) otherwise: send S tuple to target server

• Create global list of heavy hitters in S

3. Handle skew: (necessary if skew is detected in S)

(a) Broadcast R tuples that join with heavy hitters in S that are not also
heavy hitters in R, join the corresponding materialized S tuples

(b) Redistribute tuples whose join key is a heavy hitter in both R and S
via the Symmetric Fragment Replicate redistribution scheme

The generalized Flow-Join computes the correct join result as explained in the
following paragraphs:

• The algorithm partitions tuples with join key values that are not skewed in
R nor in S in step 1(b) and 2(c). These tuples are joined correctly at their
target server.

• R tuples for heavy hitters skewed only in R are kept local after the skew
threshold is met in step 1(a) while before that they were sent to the target
server in step 1(b). In both cases the tuples are joined correctly as the
corresponding S tuple for the heavy hitter is broadcast in step 2(b).
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• S tuples for heavy hitters skewed only in S are materialized after the skew
threshold is met in step 2(a) while before that they were sent to the target
server in step 2(c). The S tuples sent to the target server are joined correctly
as the corresponding R tuple was previously sent there in step 1(b). The
materialized S tuples are probed locally after the corresponding R partition
has been broadcast in step 3(a).

• R tuples for heavy hitters skewed in both R and S are kept local after
the skew threshold is met in step 1(a) while before that they were sent to the
target server in step 1(b). In both cases the tuples are redistributed using
SFR in step 3(b). Note that these tuples were not replicated in step 3(a)
and exist only on a single server, avoiding spurious results.

• S tuples for heavy hitters skewed in both R and S are materialized after
the skew threshold is met in step 2(a). Note that S tuples broadcast in
step 2(b) before the skew threshold was met were probed correctly and are
not considered in this step. The materialized S tuples and corresponding R
tuples are redistributed and joined via SFR in step 3(b).

The following section describes step 3(b) and the handling of correlated skew
with SFR in detail.

4.4.2 Correlated Skew
A join key value that is a heavy hitter for both inputs is even more problematic
than tuples skewed for only one input. The join for such a heavy hitter is basically
a cross product and thus causes not only a severe load imbalance during data
redistribution but also generates a quadratic number of result tuples on a single
server. While broadcasting the tuples from one of the two inputs—as proposed by
previous approaches [22, 87]—balances data redistribution and result generation
across servers, it still incurs a significant cost for broadcasting a large number of
heavy hitters.

The Symmetric Fragment Replicate (SFR) [74] data shuffling scheme handles
correlated skew at least as good as a broadcast. In many cases SFR is able to
reduce query execution time significantly. Instead of assigning all heavy hitter
tuples to a single server or broadcasting them, the servers are logically arranged
in a grid. Servers replicate heavy hitters for one input across rows, while those
of the other input are replicated across columns. An example with n = 9 servers
is shown in Figure 4.11. This scheme ensures that every heavy hitter tuple from
one input is joined exactly once with every heavy hitter tuple of the other side.
The join site for two heavy hitter tuples from relation R and S, respectively, is
the server at the intersection of the corresponding row and column. SFR reduces



Chapter 4. Skew Handling 95

server 0 server 3 server 6

server 1 server 4 server 7

server 2 server 5 server 8

S4
R4

S1 S7

R5

R3

R7

R8

R6

R1

R2

R0

S5S2 S8

S3S0 S6
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query execution time and network traffic by up to a factor of (
√
n+1)/2 compared

to broadcasting.
Assuming a cluster of n servers and a heavy hitter that occurs x times in R and

y times in S per server: Assigning the heavy hitter to a server costs (n− 1)(x+ y)
time units as every server has to send the x + y heavy hitter tuples to the target
server (except the target server itself), causing a congestion on the receive link of
the target server. Broadcasting R costs (n− 1)x time units as every server sends
its x heavy hitters of the smaller side R to every other server using all network
links in parallel. SFR reduces this to (n1−1)x+(n2−1)y time units, where n1 and
n2 are the number of rows and columns of the SFR rectangle (with n1 × n2 = n):
The heavy hitter tuples of R are replicated across n1 rows and those of S across
n2 columns. Again, all links of the network are used in parallel.

The optimal grid shape depends only on the relative frequency of the heavy
hitter in both inputs, e.g., a quadratic shape is best when the heavy hitter occurs
in both inputs with roughly the same frequency. The other extreme is a rectangle
with only one row (or column) for a heavy hitter that occurs mostly in one of
the two inputs. In this case SFR degenerates to a broadcast. Figure 4.12 shows
the optimal rectangles for n = 36 servers for different heavy hitter frequency
ratios and the corresponding speedup of SFR over a broadcast. For example,
when frequencies differ only by up to a factor of 1.5, the quadratic 6× 6 shape is
the best choice and improves performance by up to 3.5× (general case:

√
n−1
2 ×)

compared to broadcasting. On the other hand, when the frequency for one input
is more than 18× (general case: n

2×) larger than for the other, SFR degenerates to
a broadcast with a 1×36 shape (general case: 1×n). The potential rectangles are
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Figure 4.12: Optimal SFR rectangles

limited to the integer divisors of the number of servers n. For example, a quadratic
shape is only possible when the number of servers is a square number.

SFR reduces the load imbalance, i.e., query execution time, but not necessarily
the amount of network traffic. While SFR never sends more tuples than broadcast-
ing, the assignment of the heavy hitter to a single server can reduce the network
traffic at the cost of a significantly increased execution time. The assignment of
the heavy hitter to a single server transfers (n − 1)(x + y) tuples as every server
sends their heavy hitter tuples to the target server (except the target server itself).
A broadcast transfers n(n− 1)x tuples as every server sends the heavy hitter tu-
ples for the smaller input to every other server. SFR reduces network traffic to
n((n1−1)x+ (n2−1)y) tuples as every server sends its heavy hitter tuples for one
input across the n1 rows and for the other input across n2 columns.

4.4.3 Non-Equi Joins
Similar to a broadcast join [24] that replicates the smaller input across all servers
while it keeps the larger one fragmented, Flow-Join has to be adapted to compute
the correct result for semi, anti, and outer joins. This is owed to the Selective
Broadcast and SFR redistribution schemes, which replicate tuples and can thus
create spurious and duplicate results.

The semi join may produce duplicate result tuples at different join sites. The
result therefore has to be redistributed to eliminate these duplicates. The anti join
will produce valid results m times, once for each of the m join sites the tuple was
replicated to. A tuple may find a join partner at only a subset of its join sites and
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R S R S R S R S R S R S

hash join X X X X X X

Flow-Join X1 X1 X1 X1 X2 X2

Table 4.2: Non-equi joins

thus cause spurious results at the remaining sites, where it does not find a join
partner. The result needs to be redistributed and a tuple is to be included in the
result only if it occurs exactly m times, i.e., if it found no join partner at any of its
join sites. The outer join may produce duplicates and false results similar to the
anti join. Dangling tuples have to be redistributed and counted. Only dangling
tuples that found no partner across all of their join sites have to be kept in the
final result. Table 4.2 summarizes the changes required for Flow-Join to support
non-equi joins.

4.5 Evaluation
This section evaluates our approach with two scenarios: In the first scenario, we
generate skewed data that follows a Zipf distribution, which allows us to scale the
input size easily with the number of servers for a scalability experiment. The sec-
ond scenario uses a real workload from a large commercial vendor, demonstrating
that Flow-Join can improve query processing performance in practice. At last, we
will evaluate several parameters, including the build input size, the Zipf factor z,
the skew threshold, and the maximum number of heavy hitters each node reports.

4.5.1 Experimental Setup
The experimental setup is illustrated in Figure 4.13 where the line width of each
connection corresponds to its available bandwidth. We conducted most exper-
iments in this chapter on a cluster of 32 servers connected via Connect-IB In-
finiBand cards at a 4× fast data rate (FDR) resulting in a theoretical network
bandwidth of 6.8 GB/s per incoming and outgoing link. The aggregate bandwidth
of the cluster for all-to-all data shuffles is thus 218 GB/s. Each Linux server is
equipped with two Intel Xeon E5-2660 CPUs clocked at 2.2 GHz with 8 physical
cores each (16 hardware contexts per CPU due to hyper-threading) and 64 GiB of

1Requires redistribution of the result.
2Requires redistribution of dangling tuples.
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Figure 4.13: Experimental setup

main memory per CPU—resulting in a total of 512 cores (1024 hardware contexts)
and 4 TiB of main memory in the cluster.

4.5.2 Scalability
The first scenario depicted in Figures 4.14a, 4.14b and 4.14c compares Flow-Join
to a standard hash join and Skew-List. Skew-List is an omniscient variant of Flow-
Join that knows all heavy hitter values beforehand. It takes a predefined list of
heavy hitter values as part of its input instead of performing skew detection at
runtime. Tuples consist of 64 bit key and 64 bit payload. The keys of the probe
tuples follow a Zipf distribution with Zipf factor z = 1.25. The Zipf distribution
is known to model real world data accurately, including the size of cities and word
frequencies [38]. Given n elements ranked by their frequency, a Zipf distribution
with skew factor z denotes that the most frequent item with rank 1 accounts for
x = 1/H(n,z) of all values, where H(n,z) = ∑i=0

n 1/iz is the nth generalized harmonic
number. The element with rank r occurs x/rz times. Figure 4.14a illustrates the
impact of the Zipf factor z on the share of the five most frequent elements for
64 bit integers. For z = 1, these five values occur in 5 % of all tuples, increasing to
43 % for z = 1.25, 67 % for z = 1.5 and 89 % for the extreme case of z = 2. Our
experiments use Zipf factor z = 1.25. The input consists of 5040 build and 105 M
probe tuples per server. A build input that fits into cache represents the worst
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Figure 4.14: Performance results for Flow-Join on synthetic inputs
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case for Flow-Join: It ensures fastest processing, exposing any overhead incurred
by skew detection.

Figure 4.14b compares the three distributed join algorithms using all 32 servers
of the cluster. The experiment reveals two important findings: First, Flow-Join
imposes only an insignificant overhead of 1.5 % for non-skewed workloads, joining
8.6 billion tuples/s (408 ms) compared to 8.8 billion tuples/s (402 ms) for the hash
join and the Skew-List algorithm. Second, Flow-Join performs 6.8× better than
the standard hash join for a skewed input with Zipf factor z = 1.25, joining 11.5 bil-
lion tuples/s (305 ms) compared to the 1.7 billion tuples/s of the standard hash join
(2.1 s). There is no measurable performance overhead compared to the omniscient
Skew-List algorithm that knows the heavy hitter values beforehand. Flow-Join’s
performance will further improve with the degree of skew as an increasing number
of heavy hitters can be kept local and thus are neither materialized nor sent over
the network.

Figure 4.14c evaluates the scalability of the three join algorithms for the skewed
workload by increasing the number of servers in the cluster. The standard hash
join does not scale well as it assigns all tuples of a heavy hitter join key to a single
server and thus causes a severe load imbalance during data redistribution. Adding
more servers improves performance only minimally. In contrast, Flow-Join scales
near-linearly up to 28 servers. At this point, the switch becomes the bottleneck and
throughput drops. Uncoordinated all-to-all communication reduces the aggregate
bandwidth due to negative effects such as credit starvation for InfiniBand. Network
scheduling [70] is required to scale beyond 32 servers.

4.5.3 Real Workload
The second scenario evaluates Flow-Join for a real workload from a large commer-
cial vendor. The query plan of the use case is shown in Figure 4.15. The query
plan follows the convention that the left input is used as build input for the local
hash join while the right input is used to probe the hash table. The highlighted
join operator is subject to skew on the probe side. It is difficult to anticipate the
skew from table statistics alone in this and similar cases as the probe input is not
a base relation but another join. The input consists of 53 000 build and 3.7 billion
probe tuples, with a combined size of 55 GiB.

Figure 4.16a depicts the join key distribution for the probe input. The five
most frequent join values occur in 9.4 % of all tuples. This moderately skewed
input already leads to a huge imbalance during hash repartitioning as illustrated
in Figure 4.16b for 32 servers: The largest partition has 2.6× more tuples than
the expected 1/32 of the input. This limits the scalability of a standard hash
join as this one large partition has to be assigned to a single server, which conse-
quently slows down the entire join. Flow-Join instead scales much better due to
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Figure 4.15: Query plan for the case study

its low-overhead skew handling scheme as shown in Figure 4.16c. It processes the
55 GiB input in only 350 ms using 32 servers. However, in this experiment network
congestion already kicks in at 28 servers due to the lower degree of skew, which
causes a larger amount of data to be shuffled across the network. Again, network
scheduling would be necessary to keep up near-linear scalability. The outlier for
the hash join at 28 servers is due to the hash function that in this case assigns
heavy hitters more evenly across partitions.

4.5.4 Impact of Workload Characteristics and Parameters
The experiments in this chapter use a build input that fits into cache as this
represents the worst case for Flow-Join, revealing any overheads caused by skew
detection and handling. We also conducted experiments that vary the size of the
build and probe input. Our experiments revealed that the join duration increases
proportionally with the size of the probe input as expected, when the size of the
build input is fixed. Using a larger build input of 64 MiB, which exceeds the
L3 cache, increases the cost for probing the hash table, which increases the join
runtime by 2.5×—independent of whether skew detection is performed or not.
However, as a consequence the relative overhead for skew detection and handling
in fact decreases: The actual join processing becomes slower, but the cost for Flow-
Join’s heavy hitter detection stays the same. When the build input exceeds the
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cache, a partitioning join such as [54, 77] could be used. Flow-Join’s techniques
to detect and handle skew still apply.

The skewness of the data is another important workload characteristic. We
varied the Zip factor z between 0 and 2. The runtime of the standard hash join
increases proportionally with the size of the largest probe partition, which is de-
termined by the most frequent heavy hitter. The effect is even higher when several
heavy hitters are assigned to a single partition.

Flow-Join has two important tuning parameters: The maximum number of
heavy hitters h reported per node during global consensus (by default h is un-
limited) and the skew threshold (defaults to 0.01 %). Together they determine
how many heavy hitters are reported during skew detection. A node reports up
to h heavy hitters that exceed the skew threshold. Lowering the skew threshold
respectively increasing h will report more heavy hitters and thus broadcast more
build tuples across the cluster. We conducted an experiment with 8 servers, Zipf
factor 1.25, and unlimited h that varies the skew threshold from 0.01 % to 100 %
in steps of 10×. For 0.01 % 121 heavy hitters are reported and the join executes in
252 ms. Using a threshold of 0.1 % detects 49 heavy hitters, increasing the runtime
by 1.2 % to 255 ms. A threshold of 1 % reveals 12 heavy hitters, resulting in a 12 %
higher execution time of 282 ms. A threshold of 10 % discovers only one heavy
hitter, increasing the runtime by 38 % to 349 ms. A threshold of 100 % does not
detect any heavy hitters, giving a 134 % longer runtime of 592 ms. We observed
similar results when the skew threshold is fixed to 0.01 % and we instead vary the
maximum number of heavy hitters h reported per node: Choosing h = 128 results
in a runtime of 252 ms, h = 64 increases this by 2 % to 257 ms, h = 16 leads to a
15 % higher execution time of 289 ms, h = 1 gives a 40 % longer runtime of 353 ms,
and h = 0 results in a 135 % increased runtime of 593 ms.

4.6 Related Work
Making distributed joins resilient to attribute value skew is a popular topic in the
database literature [49, 41, 22, 85, 73, 87, 71, 68]. Yet, most approaches add signif-
icant overheads for non-skewed workloads—especially for high-speed interconnects
that do not allow to hide the extra computation and additional phases. Often the
inputs are materialized and scanned completely [49, 41, 85, 71]. Other approaches
require detailed statistics [22, 87] that might be overly inaccurate or unavailable for
intermediate results. Flow-Join instead detects heavy hitters during partitioning
and does not rely on statistics.

DeWitt et al. [22] first introduced the idea to replicate tuples that join with
heavy hitters for range partitioning called Subset-Replicate. Xu et al. [87] applied
the idea to hash partitioning and called it Partial Redistribution & Partial Du-



104 4.6. Related Work

plication (PRPD). PRPD requires a predefined list of skewed values in contrast
to Flow-Join, which detects heavy hitters at runtime. PRPD uses every hardware
context as a separate parallel unit, i.e., there is no work stealing inside a single
server. Skew effects are thus much higher as heavy hitter values are sent to a
single parallel unit. PRPD joins at only 20 000 tuples/s on a 10 server cluster with
8 hardware contexts per server using an unspecified “high-speed interconnect” [87].

Eddy [80] and Flux [73] are dedicated operators for adaptive stream processing.
The distributed Eddy routes tuples between operators—which are considered to
reside on a server of their own—to address imbalances between operators. Flux is
a modified exchange operator that creates many more partitions than servers to
shift partitions from overloaded to underutilized servers. However, it cannot split
a large partition that consists only of a single heavy hitter value and thus does not
solve the scalability problem caused by skew.

The comparatively low bandwidth of standard network interconnects such as
Gigabit Ethernet creates a bottleneck for distributed query processing. Conse-
quently, recent research focused on the network cost: Neo-Join [71] computes an
optimal assignment of partitions to servers that minimizes the network duration.
It handles skew using Selective Broadcast on a partition level. However, it mate-
rializes and scans both inputs to generate histograms and has to solve a compute-
intensive linear program. Track-Join [65] redistributes join keys in a dedicated
track phase to decide on the join location for each join key value separately and
by this achieves minimal network traffic—excluding the track phase. However,
the track phase itself is a separate distributed join that is sensitive to skew and
materializes both inputs.

Modern interconnects increase network bandwidth significantly, which is nec-
essary for a cluster to outperform a single server and scale the query performance
when servers are added to the cluster [7, 70]. Frey et al. [29] designed the Cy-
clo Join using RDMA over 10 Gigabit Ethernet for join processing within a ring
topology. Goncalves and Kersten [35] extended MonetDB with a novel distributed
query processing scheme based on continuously rotating data over a modern high-
speed network with a ring topology. However, ring topologies, by design, use only
a fraction of the available network bandwidth in a fully-connected network. Mühl-
eisen et al. [60] use RDMA to utilize remote memory for temporary database files
in MonetDB. Costea and Ionescu [17] extended Vectorwise, which originated from
the MonetDB/X100 project [88], to a distributed system using MPI over Infini-
Band. Barthels et al. [5] implemented a distributed radix join using RDMA over
InfiniBand, providing a detailed analysis that includes experiments with skewed
workloads. They measured a 3.3× slow down for Zipf factor 1.2 on an 8-server
cluster, which is in line with our results and shows the need for low-overhead skew
handling.
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Flow-Join detects heavy hitters using the SpaceSaving algorithm [56] that
solves the approximate frequent items problem and was shown to outperform al-
ternatives [16]. Roy et al. [72] designed a pre-filtering stage that speeds up Space-
Saving by a factor of 10 for skewed inputs. Teubner et al. [79] employed FPGAs
to solve the frequent items problem in hardware, processing 110 million items per
second. Both pre-filter and hardware acceleration can be applied to Flow-Join to
reduce the overhead of skew detection even further.

Elseidy et al. [23] propose a mechanism to dynamically change the grid of the
Symmetric Fragment Replicate redistribution scheme [74] according to running
cardinality estimates. However, an additional random redistribution of the input
tuples doubles the network traffic and the symmetric join algorithm [83] materi-
alizes both inputs in memory and also processes every tuple twice (once for build
and once for probe).

4.7 Concluding Remarks
The scalability of distributed joins is threatened by unexpected data character-
istics: Skew can cause a severe load imbalance so that one server in the cluster
has to process a much larger part of the input than its fair share—slowing down
the entire query. Previous approaches often require expensive analysis phases
that slow down join processing for non-skewed workloads—especially when using
high-speed interconnects such as InfiniBand that are too fast to hide extra compu-
tation. Other approaches depend on detailed statistics that are often not available
or overly inaccurate for intermediate results.

Flow-Join is a novel join algorithm that detects and adapts to heavy hitter
skew alongside partitioning with minimal overhead and without relying on ex-
isting statistics. It uses approximate histograms to detect skew and adapts the
redistribution scheme at runtime for the subset of the keys that were identified
as heavy hitters. The combination of decoupled exchange operators connected
via an RDMA-based communication multiplexer for distributed processing and a
work-stealing-based approach for local processing enables Flow-Join to scale near-
linearly with number of servers in the cluster. Our evaluation with Zipf-generated
data sets as well as a real workload from a large commercial vendor has further
shown that Flow-Join performs as good as an optimal omniscient approach for
skewed workloads and at the same time does not compromise join performance
when skew is absent from the workload. The overhead of Flow-Join’s adaptive
skew handling mechanism is indeed small enough to process skewed and non-
skewed inputs at the full network speed of InfiniBand 4×FDR at more than 6 GB/s
per link, joining a skewed workload at 11.5 billion tuples/s with 32 servers—6.8×
faster than a standard hash join. Flow-Join overlaps computation completely
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with the network communication, so that the join finishes shortly after the last
network transfer. Detecting and handling skew at runtime enables the pipelined
execution of joins and thus avoids the materialization of the probe side, reducing
main-memory consumption significantly.

Finally, we generalized Flow-Join beyond key/foreign-key equi joins. The
generalized Flow-Join applies the Symmetric Fragment Replicate redistribution
scheme for heavy hitters that occur in both inputs, reducing the query execution
time by up to a factor of (

√
n+1)/2 for correlated skew in a cluster with n servers.



Chapter 5

Transactional Data

Parts of this chapter were previously published in [58] and [59].

Harizopoulos et al. [39] investigated transaction processing in traditional disk-
based database systems. In particular, they classified and counted the instructions
that the Shore database system [11] issued during transaction processing. They
found that buffer management, concurrency control, and logging are responsible
for a large fraction of the instructions—even when the disk-based database system
operated fully in memory. These “management” instructions by far outweighed
those that actually performed transaction logic. The Shore database system was
found to spend 35 % of its instructions on buffer management, 31 % on latching and
locking, and 12 % on logging [39]. In fact, only 7 % of the instructions were catego-
rized as useful [39]. Modern in-memory database systems completely rewrite the
traditional database system architecture to remove now unnecessary abstractions
and by this achieve a much higher transaction throughput.

An example is the HyPer [45] database system that processes more than 100,000
TPC-C transactions per second in a single thread. A single core already suffices for
transaction processing of most human-generated workloads. The better part of the
server’s compute resources are therefore available for on-line analytical processing
(OLAP). HyPer is a hybrid database system that uses hardware-assisted virtual
memory snapshots to isolate OLAP and OLTP processing. This allows analytical
queries to operate on the latest transactional state without interfering with the
mission-critical transaction processing—enabling real-time business analytics.

While HyPer’s single-server performance is sufficient for most transactional
workloads, a scale out is still necessary to meet the growing need for analytical
query processing. The challenge is therefore to sustain HyPer’s superior OLTP
throughput while elastically scaling the main-memory capacity and OLAP perfor-
mance with the cluster size.

107
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Figure 5.1: Traditional data warehouse architecture1

5.1 Motivation
Database systems face two distinctly different types of workloads: On-line ana-
lytical processing (OLAP) and on-line transaction processing (OLTP). The tradi-
tional approach employs two separate specialized systems, each processing one of
the workloads in isolation. A production database system is employed to execute
the mission-critical transactions, while a dedicated data warehouse is used for an-
alytical queries. The data warehouse is then periodically (e.g., once every night)
updated to the current state of the transactional database system. This separa-
tion prevents the long-running OLAP queries from stalling the business-critical,
short-running OLTP transactions or otherwise interfering with their performance.
However, the data warehouse inevitably suffers from data staleness due to the
necessary extract/transform/load (ETL) process depicted in Figure 5.1 that only
periodically refreshes the data. SAP’s Hasso Plattner [64] argues that this does
not meet the requirements of today’s businesses and instead calls for real-time
business analytics that enables the analysis of fresh transactional data.

New hybrid main-memory databases such as SAP’s HANA [25] or HyPer [45]
address this issue on a single machine. OLTP and OLAP are separated using
a delta-mechanism in the case of HANA respectively very efficient hardware-
supported virtual memory snapshots in HyPer. HyPer achieves best-of-breed
OLTP throughput and OLAP query response times in one system in parallel on the
same database state. While the single-core on-line transaction processing (OLTP)
performance of a single server is sufficient for almost all settings, a scale-out is still
necessary to meet the growing need for analytical query processing.

This chapter thus presents ScyPer, a distributed architecture for the hybrid in-
memory database system HyPer based on full replication. ScyPer scales HyPer to
a cluster of machines to achieve elastic analytical query processing on fresh trans-
actional data. Our approach scales HyPer’s analytical query throughput linearly
with the number of servers in the cluster and still sustains its excellent single-node
transaction throughput of more than 100 000 TPC-C transactions/s. We employ

1Adaptation of Figure 1 in [46].
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efficient redo log multicasting to keep secondary servers up-to-date with the most
recent transactional state of the primary HyPer server. ScyPer further uses global
transaction-consistent snapshots to guarantee the correctness of the query results.
Secondaries act as fast fail-over servers for the primary to provide high availability
in the case that it does not respond due to hardware malfunction or other failures.

While ScyPer with full replication allows to add servers on demand to dynam-
ically increase the query throughput, it is limited by the main-memory capacity
of the smallest server in the cluster. Data partitioning is required to process data
sets that exceed the capacity of a single server. However, fragmenting relations
across servers introduces the need for distributed transactions. Distributed trans-
actions are expensive due to the distributed commit protocol, global locking, as
well as deadlock detection that are necessary for consistency and liveness. These
overheads would likely reduce HyPer’s transaction throughput by several orders
of magnitude. We therefore sketch a more refined ScyPer architecture based on
fragmented relations that replicates the transactional working set across servers.
This avoids the huge performance penalty of distributed transactions and still par-
titions most data across servers to take advantage of the combined main-memory
capacity of the cluster. Apart from sustaining HyPer’s high single-node transaction
throughput, the refined ScyPer architecture also scales the main-memory capacity
and analytical query performance with the number of servers in the cluster.

In particular, this chapter makes the following contributions:

• We show how the primary server can efficiently propagate the redo log to keep
the transactional state of secondary servers up-to-date. We use a reliable
multicasting protocol so that servers can be added to the parallel database
system without increasing the network traffic for transferring the redo log.
We compare logical and physical logging and show the feasibility of our
approach for fast InfiniBand interconnects as well as Gigabit Ethernet.

• We describe how to create global transaction-consistent snapshots in the par-
allel database system. These snapshots are necessary for certain consistency
guarantees in the full replication approach and crucial for the correctness of
distributed query processing in the fragmented relations approach.

• We discuss how secondary servers can be used as high-availability fail-overs
for the primary server in the full replication approach. We introduce a repli-
cation factor x in the fragmented relations approach to allow x − 1 server
failures before the parallel database system becomes unavailable.

• We use the TPC-CH [14] benchmark that combines the transactional TPC-C
and analytical TPC-H workloads to evaluate the performance of a parallel
hybrid database system prototype based on HyPer.
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5.2 Full Replication

This chapter is based on joint work with Tobias Mühlbauer that was previously
published in [58] and [59]. Sections 5.2.3, 5.2.4, and 5.2.5 are mainly due to Tobias
Mühlbauer, while the author of this thesis is primarily responsible for Sections 5.2.1
and 5.2.2. Section 5.3 gives an outlook on potential future work and has not been
published before.

In the following, we describe an architecture for a hybrid parallel database sys-
tem that sustains the excellent OLTP performance of a single server while scaling
the OLAP throughput linearly with the cluster size. It differentiates between two
types of servers as shown in Figure 5.2: The primary server processes all incom-
ing transactions and multicasts its redo log to an arbitrary number of secondary
servers. Redo log propagation uses multicasting so that a log entry needs only be
sent once over the network instead of once per secondary server and can still be
received by every interested subscriber. This keeps the network traffic incurred
by redo log propagation independent of the number of secondary servers, improv-
ing the scalability of our approach. The secondary servers replay the redo log
and use their additional resources to execute OLAP queries according to a round-
robin load balancing scheme. This allows us to easily scale the OLAP throughput
of the parallel database system by provisioning secondary servers on-demand as
shown in Figure 5.3. When a secondary instance is started, it first fetches the
latest full database backup from durable storage and then replays the redo log
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until it catches up with the primary. Secondaries can always catch up as redo
log replaying is about 2× faster than processing the original OLTP workload (see
Section 5.2.1). Further, it is unlikely that the system experiences full load at all
times. Afterwards, the new secondary subscribes to the redo log multicast and
starts processing queries.

The primary server usually uses a row-store data layout, which is better suited
for OLTP processing, and it maintains indexes that support efficient transaction
processing. When processing the OLTP workload, the primary node multicasts the
redo log of committed transactions to a specific multicast address. The address
encodes the database partition such that secondaries can subscribe to specific
partitions. This allows the provisioning of secondaries for specific partitions and
enables a more flexible multi-tenancy model as described in Section 5.2.5. Besides
being multicast, the log is further sent to a durable log. Each redo log entry for
a transaction comes with a log sequence number (LSN). The parallel database
system uses these LSNs to define a logical time in the distributed setting. A
secondary that last replayed the entry with LSN x has logical time x. It next
replays the entry with LSN x+ 1 and advances its logical time to x+ 1.

As a large portion of a usual OLTP workload is read-only (i.e., no redo is nec-
essary), replaying the redo log on secondary nodes is usually cheaper than process-
ing the original workload on the primary node. Further, read operations of writer
transactions do not need to be evaluated when physical logging is employed. The
available resources on the secondaries are used to process incoming OLAP queries



112 5.2. Full Replication

LSN 100

LSN 105

LSN 112

OLTP

backup

persistent 
storage

OLAP

Figure 5.4: Long-running snapshots for OLAP and backups

on transaction-consistent snapshots. HyPer’s efficient snapshotting mechanism al-
lows to process several OLAP queries in parallel on multiple snapshots as shown
in Figure 5.4. A snapshot can also be written to persistent storage so that it can
be used as a transaction-consistent starting point for recovery. Furthermore, the
faster OLTP processing allows to create additional indexes for efficient analytical
query processing. Secondary nodes can either store data in a row-, column-, or a
hybrid row- and column-store data format. Additionally, these nodes can include
non-transactional data in OLAP analyses, which need not necessarily be kept in
the main memory but could instead reside on disk or a distributed file system such
as the Hadoop Distributed File System (HDFS).

In the following we describe our redo log propagation and distributed snapshot-
ting approaches. We further show how our architecture provides scalable OLAP
throughput while sustaining the OLTP throughput of a single server and how
secondary nodes can act as high availability fail-overs.

5.2.1 Redo Log Propagation
When processing a transaction, HyPer creates a memory-resident undo log which
is used to roll back aborted transactions. Additionally, a redo log is created. For
committed transactions, this redo log has to be persisted and written to durable
storage so that it can be replayed. The undo log however can be discarded when
a transaction commits.

We use multicasting to propagate the redo log of committed transaction from
the primary to secondary nodes to keep them up-to-date with the most recent
transactional state. Multicasting allows to add secondaries on-demand without
increasing the network bandwidth usage. A log entry is sent over the network only
once and can still be received by any number of interested subscriber.

UDP vs. PGM multicast. Standard UDP multicasting is not a feasible
solution for redo log multicasting as it may drop messages, deliver them multiple
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times, or transfer them out of order. Instead, we use OpenPGM for multicasting,
an open source implementation of the Pragmatic General Multicast (PGM) pro-
tocol2, which is designed for reliable and ordered transmission of messages from a
single source to multiple receivers. Receivers detect message loss and recover by
requesting a retransmission from the sender.

Logical vs. physical logging. Our design in principal supports both, the use
of logical and physical redo logs for redo log propagation. These two alternatives
differ in the size of the resulting log and the time needed to replay it. While
in a logical redo log only the transaction identifier and invocation parameters
are logged, the physical redo log logs the individual insert, update, and delete
statements, which modified the database during the transaction. Physical redo
logging results in a larger log but replaying it is often much faster compared to
logical logging, especially when the logged transaction executed costly logic or
many read operations. In any case, transactions that use operations where the
outcome can not be determined solely by the transactional state, e.g., random
operations or current time information, have to be logged using physical redo
logging. It is of note that logical redo logging is restricted to pre-canned stored
procedures. However, stored procedures can be added at any time by a low-
overhead system-internal transaction.

As mentioned before, secondaries do not need to replay all transactions. Only
committed transactions that modified data are logged. Figure 5.5 shows that
replaying the logical log of 100 000 TPC-C transactions saves 17 % in execution

2PGM is specified in RFC 3208: https://tools.ietf.org/html/rfc3208

https://tools.ietf.org/html/rfc3208
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Gigabit Ethernet InfiniBand 4×QDR

UDP PGM UDP PGM

Bandwidth [Mbit/s] 906 675 14 060 1832
Throughput [1000/s] 81 43 1252 112
Latency [µs] —– 100.4—– —— 13.5——

Table 5.1: Comparison of UDP and PGM

time compared to the original processing of the transactions by not having to re-
execute reader and aborted transactions and an additional 6 % for not having to
log again (undo and redo log)—together this adds up to savings of 23 %. Physical
logging is even able to save 56 % of execution time as it further does not re-execute
read operations of writers and only replays basic inserts, updates, and deletes.

The physical log for 100 000 TPC-C transactions has a size of 85 MiB and
is therefore about 5× larger than the logical log, which needs only 14 MiB. An
individual physical log entry has an average size of ≈ 1500 B, whereas a logical log
entry has ≈ 250 B. Group commits allow to bundle and compress log entries for
improved network usage. Compression is not feasible on a per-transaction basis
as the individual log entries are simply too small. Compressing the log for 100 000
TPC-C transactions using LZ4 compression reduces the size by 48 % in the case
of physical and by 54 % for logical logging.

Ethernet vs. InfiniBand. Table 5.1 compares the single-threaded per-
formance of UDP and PGM multicast in a 1 Gigabit Ethernet (1GbE) and a
4×QDR IPoIB InfiniBand infrastructure. Our setup consists of four machines
each equipped with an on-board Intel 82579V 1GbE adapter and a Mellanox
ConnectX-3 InfiniBand adapter (PCIe 3.0 ×8). We used a standard 1GbE switch
and a Mellanox 8-port 40 Gbit/s QSFP switch. UDP was measured with 1.5 KiB
datagrams; PGM messages had a size of 2 KiB. The UDP bandwidth and through-
put increases by a factor of 15 from 1GbE to InfiniBand; PGM still profits by a
factor of 2.7. The latency is, in both cases, reduced by a factor of 7.

With a processing speed of around 110 000 TPC-C transactions per second,
HyPer creates ≈ 60 000 redo log entries per second per OLTP thread. 1GbE
allows the multicasting of the 60 000 logical log entries but offers not enough per-
formance for physical logging due to its low PGM multicast performance. Only
when group commits with log compression are used, physical redo log entries can
be multicast over 1GbE. Our InfiniBand setup can handle physical redo logging
without compression and even has free capacities to support multiple outgoing
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multicast streams. These could be used for the simultaneous propagation of the
redo logs of all transaction-processing threads in a partitioned execution setting.

5.2.2 Distributed Snapshots
We adapt HyPer’s efficient virtual memory snapshotting mechanism [45] to the
distributed setting. In the following, we describe how we designed the global
transaction-consistent snapshotting mechanism to solve two potential problems
that affect query processing on transactional data: local order violations and di-
verging distributed reads.

Local order violations. Figure 5.6a shows a schedule which exhibits a local
order violation: First, the snapshot is created. Then a transaction modifies a data
item that is afterwards read by an OLAP query. In this example, the query reads
the data item’s old value a because the snapshot was created before the transaction
changed it to a*. A single client who issued both, the transaction and the query,
would get an unexpected result—even though the schedule satisfies serializability.
Order-preserving serializability (OPS) avoids such order violations as it “requires
that transactions that do not overlap in time appear in the same order in a conflict-
equivalent schedule” [82]. In the example the transaction finished before the query,
i.e., both did not overlap, therefore OPS requires that the query reads the new
state a* of data item a.

To achieve OPS, a query has to be executed on a snapshot that is created after
its arrival. While one might argue that if OPS is desired, the query has to be exe-
cuted as a transaction, we propose a solution that does not require this. A simple
solution is to create a snapshot for every single query. However, while snapshot
creation is cheap, it does not come for free. Therefore, we associate queries with a
logical arrival time and delay their execution until a snapshot with a greater logical
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creation time is available. The primary node then acts as a load balancer for OLAP
queries and tags every incoming query with a new LSN as its logical arrival time.
The primary also triggers the periodic creation of global transaction-consistent
snapshots (e.g., every second). Together, this guarantees order-preserving serial-
izability as transactions are executed sequentially and queries always execute on a
state of the data set that is newer than their arrival time.

Diverging distributed reads. The system as described until now is further
subject to a problem that we call diverging reads: Executing the same OLAP query
twice can lead to two different results in which the second result is based on an
older transactional state—i.e., a database state with a smaller LSN than that of the
first query. Figure 5.6b shows an example for this. The diverging reads problem is
caused by the load balancing mechanism, which may assign a successive query to
a different node whose snapshot represents the state of the data set for an earlier
point in time. This problem is not covered by order-preserving serializability but
is solved by the synchronized creation of snapshots.

To create such a global snapshot, the primary node sends a system-internal
transaction to the secondary nodes, which then create local snapshots using the
fork() system call at the logical time point defined by the transaction’s LSN. We
use a logical time based on LSNs to avoid problems with clock skew across nodes.
The creation of the global transaction-consistent snapshot is fully asynchronous
on the primary node, which avoids any interference with transaction processing.
Therefore, the time needed to create a global transaction-consistent snapshot only
affects the OLAP response time on the secondaries. The time to create a global
transaction-consistent snapshot on n secondary nodes is defined by

max
0≤i<n

(RTTi + Treplayi
+ Tforki

)

where RTTi is the round trip time from the primary to secondary i, Treplayi

is the time required to replay the outstanding log at i, and Tforki
is the time to

fork at i. In our high-speed InfiniBand setup, RTTs are as low as a few µs. To
avoid inconsistencies, the snapshot transaction has to be processed in order, i.e.,
the outstanding log at the secondary has to be processed first. However, it is
expected that at most one transaction has to be replayed before the snapshot
can be created—as the secondaries process transactions faster than they arrive.
On average a transaction takes only 10 µs. The time of the fork depends on the
memory page size and the database size but is in general very fast, e.g., with a
database size of 8 GiB a fork takes 1.5 ms with huge and 50 ms with small pages.
All in all, the time needed to create a global transaction-consistent snapshot adds
up to only a few milliseconds, which has no significant impact on the OLAP
response time.
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Distributed processing. As global transaction-consistent snapshots avoid
inconsistencies between local snapshots, they also enable the distributed processing
of a single query on multiple secondaries. The distributed processing has the
potential to further reduce query response times.

5.2.3 High Availability
Besides providing scalable OLAP throughput on transactional data, secondary
HyPer nodes can further be used as high availability fail-over nodes. This is illus-
trated in Figure 5.7. Secondaries detect the failure of the primary when no redo
log message—or heartbeat message—is received from the primary within a given
timeframe. In case of failure, the secondaries then elect a new primary using a
distributed consensus protocol. The new primary and the remaining secondaries
replay all transactions in the durable redo log for which they have not yet received
the multicast log. Once the primary replayed these transactions, it is active and
can process new transactions. It is thus recommendable to choose the new primary
depending on the number of transactions it has to replay, i.e., to choose the sec-
ondary with smallest difference between its LSN and the LSN of the durable redo
log. Further, if a secondary using a row-store layout exists, this node should be
preferred over nodes using a column-store layout. However, for our main-memory
database system HyPer, TPC-C transaction processing performance only decreases
by about 10 % using a column- compared to a row-store layout. In conclusion, the
design can resolve a failure of its primary node within a very short period of time.
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5.2.4 Evaluation
The evaluation was conducted on four commodity workstations, each equipped
with an Intel Core i7-3770 CPU and 32 GiB dual-channel DDR3-1600 DRAM.
The CPU is based on the Ivy Bridge microarchitecture, has 4 cores, 8 hardware
threads, a 3.4 GHz clock rate, and 8 MiB of last-level shared L3 cache. As operating
system we used Linux 3.5 in 64 bit mode. Sources were compiled using GCC 4.7
with -O3 -march=native optimizations.

Figure 5.8 shows the isolated and combined TPC-CH benchmark [14] OLAP
and OLTP throughput that can be achieved with our system. We prioritized the
OLTP process so that replaying the log is preferred over OLAP query processing
to avoid that secondaries cannot keep up with redo log replaying. Figure 5.8a
demonstrates that the OLAP throughput scales linearly when no transactions are
processed at the same time. Multiple query streams allow the nodes to process
queries in parallel using their 4 cores and therefore increase the OLAP throughput.
Figure 5.8b shows the transaction throughput that was achieved on the primary
node while the redo log is simultaneously broadcasted to and replayed by the sec-
ondaries. The figure shows the transaction rate for different redo log types and
commit variants. While the transaction rates for the four options differ by at most
15 %, group commits clearly provide a better performance than per-transaction
log propagation. The reason for this is the reduced PGM processing overhead
since group commits lead to fewer and larger messages. Finally, Figure 5.8c shows
the combined execution of OLTP and OLAP with logical redo log propagation
and uncompressed group commits. All four nodes, including the primary, process
OLAP queries. The nodes are able to handle up to two query streams each, while
sustaining a OLTP throughput of over 100 000 transaction/s (normal execution on
primary, replaying on secondaries). Three streams degrade the OLTP throughput
noticeably and with four streams, secondaries can no longer keep up with trans-
action log replaying. This is reasonable, as the nodes only have 4 cores, of which
in this case all are busy processing queries.

5.2.5 Cloud
“In-memory computing will play an ever-increasing role in Cloud Computing” [64]:
HyPer with its elastic scale-out is particularly suitable for the deployment on Cloud
infrastructures. In an infrastructure-as-a-service scenario, HyPer runs on multi-
ple physical machines in the Cloud. Nodes for secondaries are rented on-demand,
which makes this model highly cost-effective. Figure 5.9 shows a flexible database-
as-a-service scenario for HyPer. The service provider aims at an optimal resource
usage. Following the partitioned execution model of H-Store [44] and VoltDB,
HyPer—and thus primary ScyPer instances—provides high single-server OLTP
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throughput on multiple partitions in parallel, which allows running multiple ten-
ants on one physical machine [57]. Redo logs for the partitions are multicast on
a per-tenant basis so that OLAP secondaries can be created for specific tenants.
OLAP processing of multiple tenants can again be consolidated on a single server.
In case a primary node that processes the OLTP of multiple tenants faces an in-
creased load, partitions of a tenant can migrate from one primary to another or
a secondary can take over as a primary very quickly (see Section 5.2.3). In sum-
mary, HyPer in the Cloud allows great flexibility, very good resource utilization,
and high cost-effectiveness. However, let us add a word of caution: many Cloud
infrastructure offerings are virtualized. Our previous experiments, which are out
of scope for this work, suggest that running applications tuned for modern hard-
ware like HyPer on such instances can lead to severe performance degradations;
unvirtualized instances should thus be preferred.

5.2.6 Summary
The ScyPer architecture utilizes redo log propagation and distributed transaction-
consistent snapshots to scale the query throughput with the cluster size while
sustaining HyPer’s excellent single-server transaction throughput at the same time.
By fully replicating the database, any server can take over in case the primary fails.
ScyPer further allows to add new servers at runtime to scale the query throughput.
A new server simply loads the latest full backup from persistent storage, replays
the outstanding redo log, and finally registers for query processing. The flexibility
of this architecture lends itself naturally to cloud settings.
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5.3 Fragmented Relations
The ScyPer architecture utilizes full replication to scale the query throughput lin-
early with the cluster size and sustain HyPer’s excellent transaction throughput.
However, it is inherently limited to workloads that fit into the main memory of
a single server. For larger workloads, it becomes necessary to fragment relations
across servers to use the combined capacity of the cluster as illustrated in Fig-
ure 5.10. Tuples are typically assigned to servers according to the hash value of
the primary key or a foreign key that is commonly used in distributed joins. This
achieves a balanced load distribution across servers and reduces the amount of
data shuffled for key/foreign-key joins, speeding up distributed query processing.

In the following, we sketch a design that extends the ScyPer architecture to
fragmented relations. Fragmenting relations between servers allows to take ad-
vantage of the combined main-memory capacity of the cluster. However, it also
introduces the need for both distributed query and transaction processing.

5.3.1 Hot/Cold Separation
We have addressed distributed query processing in Chapter 3 with a novel dis-
tributed query engine that can fully leverage the high bandwidth of modern inter-
connects and thereby scale query performance with the cluster size. This query
engine can be used as is to process distributed queries on the global transaction-
consistent snapshots that were described in Section 5.2.2. However, sustaining the
high transaction throughput of a single server when transactions span multiple
machines is an entirely different problem and might even be impossible to achieve
with current hardware. Distributed transactions suffer from the high latency of the
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Figure 5.11: Hot/cold approach avoids distributed transactions

network hardware (compared to local memory) as they require multiple round-trips
for distributed commit handling, global locking and latching, as well as distributed
deadlock detection. These are necessary to guarantee correctness and the liveness
of the system. As a consequence, distributed transaction performance traditionally
lags far behind what is possible on a single server.

H-Store [44] avoids expensive distributed transactions by tuning the schema so
that partitioned execution of transactions becomes the common case. This works
well for the TPC-C workload where most transactions address a single warehouse
and thus only a single server. However, this is not possible for all workloads and
further requires prior knowledge of the workload to tune the schema accordingly.

Our proposed architecture (shown in Figure 5.11) is designed to avoid dis-
tributed transactions as well but does not restrain itself to partitioned execution.
At the same time, it still fragments data to take advantage of the combined main-
memory capacity of all servers in the cluster. Our design relies on the working set
hypothesis to avoid distributed transactions. The hypothesis states that transac-
tions often target only a limited working set while most of the data is read-only
[30]. We thus separate the database into two parts: The first part comprises the
small amount of hot data that is accessed by transactions and can therefore be
replicated across servers via redo log propagation (see Section 5.2.1) to avoid dis-
tributed transactions. The remaining and much larger part of the data is cold and
fragmented between servers as it is only accessed by analytical queries. We use the
distributed query engine of Chapter 3 to process distributed queries on the global
transaction-consistent snapshots introduced in Secion 5.2.2.
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Figure 5.12: High availability via HDFS-style replication

5.3.2 High Availability

In the original ScyPer architecture any secondary server could take over for the
primary to process transactions while query processing continues. The failure of
a single server did not impact the availability of data items as every server had
a complete copy of the database available. This is not the case when relations
are fragmented across servers. Thus, we introduce a replication factor x similar
to the Hadoop distributed file system (HDFS). The cold data is organized in
blocks. Blocks are replicated x-times between secondaries to allow x − 1 servers
to fail before the parallel database system becomes unavailable. An example with
replication factor 3 is shown in Figure 5.12. In this scenario, two servers can fail
before the parallel database system becomes unavailable.

5.3.3 Elasticity

Adding new servers to and removing servers from the cluster was straightforward
for the original ScyPer architecture. The new server simply loads the most recent
full-database snapshot from persistent storage and applies the outstanding redo
log. Afterwards, it can start processing queries. When a server leaves the cluster
there is no need for action. When relations are fragmented across servers, we
need to reassign data to the new server—respectively assign its data to the other
servers in case it is leaving the cluster. However, we want to avoid a complete
reshuffle, which is prohibitively expensive. At the same time, we aim at a balanced
assignment of data blocks that still allows to efficiently compute the server that is
responsible for a specific key without scanning all servers.
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Mukherjee et al. [61] proposed Highest Random Weight (HRW) hashing (also
known as Rendezvous Hashing) to provide elasticity when relations are fragmented
across nodes. Figure 5.13 illustrates how HRW hashing can be used for this pur-
pose. HRW hashing assigns one hash value per server to every data block. A data
block is then assigned to the server with the highest hash value for this block.
E.g., consider the data block “Orders 5”, it has the hash values a3db5, 24e7a, and
f6f9e for servers 1, 2, and 3, respectively. As long as there are only two servers,
this block is assigned to server 1 as a3db5 is larger than 24e7a. However, when
the third server is added to the cluster, this data block has to be moved to the
new server as its hash value f6f9e for this block is larger than a3db5. Using HRW
hashing achieves the minimal amount of data movement when servers are added
or removed. At the same time it also leads to fair load balancing so that servers
store roughly the same amount of data.

5.4 Concluding Remarks
In this chapter we have shown that a distributed version of the HyPer in-memory
database system is indeed able to sustain the superior OLTP throughput of a single
HyPer server while providing elastic OLAP throughput by provisioning additional
servers on-demand. OLAP queries are executed on global transaction-consistent
snapshots of the transactional state to guarantee correct results. We have demon-
strated that our novel global transaction-consistent snapshotting mechanism guar-
antees order-preserving serializability and further prevents the problem of diverg-
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ing reads in a distributed setting. Secondary nodes are efficiently kept up-to-date
using a redo log propagation mechanism based on reliable multicasting. In case of
a primary node failure, these secondaries act as high availability fail-overs.

We have further sketched an extension of the ScyPer architecture that frag-
ments relations across nodes to leverage the combined main-memory capacity of
the cluster while sustaining the high transaction throughput. In particular, we
have described techniques that avoid expensive distributed transactions, achieve
elasticity, and provide high availability in this scenario.





Chapter 6

Summary

Ongoing advances in the computing power and main-memory capacity of modern
servers have fueled the development of a new generation of in-memory database
systems. These achieve unprecedented single-node query processing performance
by completely rewriting the traditional database architecture to use main memory
as primary storage and exploit new features of modern hardware. At the same
time, network communication slows down queries when more than one server is
involved. The result is a significant performance gap between local and distributed
query processing. Still, the main-memory capacity of a single server is limited and
scaling out to a cluster of machines becomes inevitable once the workload exceeds
the capacity of a single server.

This thesis seeks to further the state-of-the-art of distributed query processing
in parallel in-memory database systems by addressing the performance barrier in-
troduced by network communication. Thus, instead of concentrating on an isolated
problem, we presented the design of a novel distributed query engine that adapts
not only to the available network bandwidth but also to unexpected workload char-
acteristics that hinder the scalability of distributed query processing. We proved
the feasibility of our design with a prototypical implementation of our distributed
query engine for the high-performance in-memory database system HyPer.

The limited network bandwidth of commodity interconnects in today’s data
centers has a detrimental effect on the throughput and response time of analytic
queries as soon as data is shuffled between servers. In fact, a single server easily
outperforms a cluster of machines connected via Gigabit Ethernet. However, a
single server can only process data sets that fit into its limited main memory. Our
novel distributed query engine allows to scale the capacity of a parallel database
system with the size of the data set while avoiding expensive all-to-all data shuffling
as much as possible. It adapts to slow commodity networks by exploiting locality in
the data distribution via linear programming and avoids cross traffic by scheduling
the network communication.
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Recently, high-speed interconnects such as InfiniBand have become economi-
cally viable. InfiniBand offers a one to two orders of magnitude higher network
bandwidth than Gigabit Ethernet. At the same time, however, it also reveals new
bottlenecks in traditional distributed query engines that use the classic exchange
operator model and TCP/IP for communication. Our new query engine instead
implements a novel hybrid approach to parallelism that overcomes the inflexibility
of the exchange operator model and uses remote direct memory access to avoid the
high cost of TCP/IP stack processing. It uses low-latency network scheduling to
avoid switch contention. In combination, this allows our engine to scale HyPer’s
excellent query performance with the number of servers in the cluster—something
that was not possible before.

At this point skew hinders the scalability of distributed query processing.
Heavy hitter skew can cause a load imbalance in the cluster so that one server
has to process a much larger part of the input than its fair share. Consequently,
all the other servers have to wait for this one straggler, drastically increasing the
query response time. Traditional skew handling schemes add a significant overhead
for non-skewed workloads, especially when high-speed networks such as InfiniBand
are used that are too fast to hide any extra computational work. We therefore
designed a novel lightweight skew handling approach that allows our distributed
query engine to detect heavy hitter values at runtime with minimal overhead.
The new always-on skew detection approach avoids the load imbalance caused by
heavy hitter skew and at the same time incurs only minimal additional work for
non-skewed workloads.

HyPer enables real-time business analytics by processing analytical queries and
business-critical transactions at the same time on the same data. This distin-
guishes it from most other systems that are instead specialized for just one of the
two workloads. Our goal was to bring HyPer’s hybrid processing capabilities over
to the distributed setting in a way that neither compromises query nor transaction
performance. We presented a novel approach that propagates the current trans-
actional state via low-overhead redo log multicasting and separates query from
transaction processing using global transaction-consistent snapshots. It replicates
relations to scale the query throughput linearly with the cluster size. While full
replication offers excellent fault-tolerance, it inherently limits the usable main-
memory capacity of the parallel database system to that of a single server in the
cluster. We therefore gave an outlook on how to fragment relations instead to
utilize the combined main-memory capacity of the cluster. The proposed hybrid
architecture is based on a novel hot/cold approach that replicates the transactional
working set to avoid the high cost of distributed transactions. The cold data is
fragmented across secondaries and available for query processing using our scalable
distributed query engine on global transaction-consistent snapshots.
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Our new distributed query processing engine for the HyPer in-memory database
system adapts to commodity and high-speed networks as well as unexpected work-
load characteristics to close the performance gap between local and distributed
query processing. An extensive evaluation with the renowned TPC-H ad-hoc an-
alytical benchmark demonstrated that HyPer with our novel distributed query
engine not only outperforms competing parallel database systems but also scales
its query performance with the number of servers in the cluster.





Bibliography

[1] F. N. Afrati and J. D. Ullman. Optimizing multiway joins in a map-reduce
environment. TKDE, 23(9):1282–1298, 2011.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat.
Hedera: Dynamic flow scheduling for data center networks. In NSDI, pages
281–296, 2010.

[3] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively parallel sort-merge
joins in main memory multi-core database systems. PVLDB, 5(10):1064–1075,
2012.

[4] P. M. G. Apers, C. A. van den Berg, J. Flokstra, P. W. P. J. Grefen, M. L.
Kersten, and A. N. Wilschut. PRISMA/DB: A parallel main memory rela-
tional DBMS. TKDE, 4(6):541–554, 1992.

[5] C. Barthels, S. Loesing, D. Kossmann, and G. Alonso. Rack-scale in-memory
join processing using RDMA. In SIGMOD, pages 1463–1475, 2015.

[6] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kuszmaul,
D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok. Don’t
thrash: How to cache your hash on flash. PVLDB, 5(11):1627–1637, 2012.

[7] C. Binnig, U. Çetintemel, A. Crotty, A. Galakatos, T. Kraska, E. Zamanian,
and S. B. Zdonik. The end of slow networks: It’s time for a redesign. CoRR,
abs/1504.01048, 2015.

[8] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian. A
comparison of join algorithms for log processing in MapReduce. In SIGMOD,
pages 975–986, 2010.

[9] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
CACM, 13(7):422–426, 1970.

131



132 Bibliography

[10] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin,
B. Hart, M. Smith, and P. Valduriez. Prototyping Bubba, a highly parallel
database system. TKDE, 2(1):4–24, 1990.

[11] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe, J. F.
Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J.
White, and M. J. Zwilling. Shoring up persistent applications. In SIGMOD,
pages 383–394, 1994.

[12] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos. Robust and skew-
resistant parallel joins in shared-nothing systems. In CIKM, pages 1399–1408,
2014.

[13] D. D. Clark, J. Romkey, and H. C. Salwe. An analysis of TCP processing
overhead. In LCN, pages 284–291, 1988.

[14] R. Cole, F. Funke, L. Giakoumakis, W. Guy, A. Kemper, S. Krompass, H. A.
Kuno, R. O. Nambiar, T. Neumann, M. Poess, K. Sattler, M. Seibold, E. Si-
mon, and F. Waas. The mixed workload CH-benCHmark. In DBTest, 2011.

[15] G. Copelande, W. Alexander, E. Boughter, and T. Keller. Data placement in
Bubba. SIGMOD Record, 17(3):99–108, 1988.

[16] G. Cormode and M. Hadjieleftheriou. Methods for finding frequent items in
data streams. VLDB J., 19(1):3–20, 2010.

[17] A. Costea and A. Ionescu. Query optimization and execution in Vectorwise
MPP. Master’s thesis, Vrije Universiteit, Amsterdam, Netherlands, 2012.

[18] D. DeWitt and J. Gray. Parallel database systems: The future of high per-
formance database systems. CACM, 35(6):85–98, 1992.

[19] D. J. DeWitt and R. H. Gerber. Multiprocessor hash-based join algorithms.
In VLDB, pages 151–164, 1985.

[20] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I. Hsiao,
and R. Rasmussen. The Gamma database machine project. TKDE, 2(1):44–
62, 1990.

[21] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and
D. A. Wood. Implementation techniques for main memory database systems.
In SIGMOD, pages 1–8, 1984.

[22] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Practical
skew handling in parallel joins. In VLDB, pages 27–40, 1992.



Bibliography 133

[23] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch. Scalable and adaptive
online joins. PVLDB, 7(6):441–452, 2014.

[24] R. Epstein, M. Stonebraker, and E. Wong. Distributed query processing in a
relational data base system. In SIGMOD, pages 169–180, 1978.

[25] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner.
SAP HANA database: data management for modern business applications.
SIGMOD Record, 40(4):45–51, 2011.

[26] A. Floratou, U. F. Minhas, and F. Özcan. SQL-on- Hadoop: Full circle back
to shared-nothing database architectures. PVLDB, 7(12):1295–1306, 2014.

[27] A. P. Foong, T. R. Huff, H. H. Hum, J. R. Patwardhan, and G. J. Regnier.
TCP performance re-visited. In ISPAS, pages 70–79, 2003.

[28] P. W. Frey. Zero-copy network communication. PhD thesis, ETH Zürich,
Zurich, Switzerland, 2010.

[29] P. W. Frey, R. Goncalves, M. Kersten, and J. Teubner. Spinning relations:
high-speed networks for distributed join processing. In DaMoN, pages 27–33,
2009.

[30] F. Funke, A. Kemper, and T. Neumann. Compacting transactional data in
hybrid OLTP&OLAP databases. PVLDB, 5(11):1424–1435, 2012.

[31] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An overview of the system
software of a parallel relational database machine GRACE. In VLDB, pages
209–219, 1986.

[32] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[33] G. Gligor and S. Teodoru. Oracle Exalytics: Engineered for speed-of-thought
analytics. Database Systems Journal, 2(4):3–8, 2011.

[34] A. K. Goel, J. Pound, N. Auch, P. Bumbulis, S. MacLean, F. Färber,
F. Gropengießer, C. Mathis, T. Bodner, andW. Lehner. Towards scalable real-
time analytics: An architecture for scale-out of OLxP workloads. PVLDB,
8(12):1716–1727, 2015.

[35] R. Goncalves and M. Kersten. The Data Cyclotron query processing scheme.
TODS, 36(4), 2011.



134 Bibliography

[36] T. Gonzalez and S. Sahni. Open shop scheduling to minimize finish time.
Journal of the ACM, 23(4):665–679, October 1976.

[37] G. Graefe. Encapsulation of parallelism in the Volcano query processing
system. In SIGMOD, pages 102–111, 1990.

[38] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger.
Quickly generating billion-record synthetic databases. SIGMOD Record,
23(2):243–252, 1994.

[39] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP through
the looking glass, and what we found there. In SIGMOD, pages 981–992, 2008.

[40] J. L. Hennessy and D. A. Patterson. Computer Architecture. Morgan Kauf-
mann, 5th edition, September 2011.

[41] K. A. Hua and C. Lee. Handling data skew in multiprocessor database com-
puters using partition tuning. In VLDB, pages 525–535, 1991.

[42] IEEE study group on Next Generation 802.3 BASE-T. Next generation
BASE-T call for interest. http://www.ieee802.org/3/NGBASET, July 2012.

[43] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA efficiently for
key-value services. SIGCOMM, 44(4):295–306, 2014.

[44] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C.
Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-
Store: a high-performance, distributed main memory transaction processing
system. PVLDB, 1(2):1496–1499, 2008.

[45] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. In ICDE, pages 195–
206, 2011.

[46] A. Kemper and T. Neumann. HyPer: Hybrid OLTP&OLAP high performance
database system. Technical Report TUM-I1010, Insititut für Informatik der
Technischen Universität München, 2011.

[47] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey. Sort vs. hash revisited: Fast join
implementation on modern multi-core cpus. PVLDB, 2(2):1378–1389, 2009.

[48] C. Kim, J. Park, N. Satish, H. Lee, P. Dubey, and J. Chhugani. CloudRAM-
Sort: fast and efficient large-scale distributed RAM sort on shared-nothing
cluster. In SIGMOD, pages 841–850, 2012.

http://www.ieee802.org/3/NGBASET


Bibliography 135

[49] M. Kitsuregawa and Y. Ogawa. Bucket spreading parallel hash: A new, ro-
bust, parallel hash join method for data skew in the Super Database Computer
(SDC). In VLDB, pages 210–221, 1990.

[50] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Application of hash to data
base machine and its architecture. NGC, 1(1):63–74, 1983.

[51] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi,
J. Erickson, M. Grund, and D. Hecht. Impala: A modern, open-source SQL
engine for Hadoop. In CIDR, 2015.

[52] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven parallelism:
A NUMA-aware query evaluation framework for the many-core age. In SIG-
MOD, pages 743–754, 2014.

[53] Y. Li, I. Pandis, R. Mueller, V. Raman, and G. Lohman. NUMA-aware
algorithms: The case of data shuffling. In CIDR, 2013.

[54] S. Manegold, P. Boncz, and M. Kersten. Optimizing main-memory join on
modern hardware. TKDE, 14(4):709–730, 2002.

[55] S. Manegold, M. L. Kersten, and P. Boncz. Database architecture evolu-
tion: Mammals flourished long before dinosaurs became extinct. PVLDB,
2(2):1648–1653, 2009.

[56] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient computation of frequent
and top-k elements in data streams. In ICDT, pages 398–412, 2005.

[57] H. Mühe, A. Kemper, and T. Neumann. The mainframe strikes back: Elastic
multi-tenancy using main memory database systems on a many-core server.
In EDBT, pages 578–581, 2012.

[58] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and T. Neumann. ScyPer:
A hybrid OLTP&OLAP distributed main memory database system for scal-
able real-time analytics. In BTW, pages 499–502, 2013.

[59] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and T. Neumann. ScyPer:
Elastic OLAP throughput on transactional data. In DanaC, 2013.

[60] H. Mühleisen, R. Gonçalves, and M. Kersten. Peak performance: Remote
memory revisited. In DaMoN, 2013.

[61] N. Mukherjee, S. Chavan, M. Colgan, D. Das, M. Gleeson, S. Hase, A. Hol-
loway, H. Jin, J. Kamp, K. Kulkarni, T. Lahiri, J. Loaiza, N. MacNaughton,
V. Marwah, A. Mullick, A. Witkowski, J. Yan, and M. Zaït. Distributed
architecture of Oracle Database In-memory. PVLDB, 8(12):1630–1641, 2015.



136 Bibliography

[62] T. Neumann. Efficiently compiling efficient query plans for modern hardware.
PVLDB, 4(9):539–550, 2011.

[63] H. Plattner. The impact of in-memory databases on applications. Talk, July
7, 2014.

[64] H. Plattner and A. Zeier. In-Memory Data Management: An Inflection Point
for Enterprise Applications. Springer, 2011.

[65] O. Polychroniou, R. Sen, and K. A. Ross. Track join: Distributed joins with
minimal network traffic. In SIGMOD, pages 1483–1494, 2014.

[66] P. Raghavan and C. D. Tompson. Randomized rounding: a technique for
provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–
374, December 1987.

[67] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. Ku-
landaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, T. Malke-
mus, R. Mueller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle, A. Storm, and
L. Zhang. DB2 with BLU acceleration: So much more than just a column
store. PVLDB, 6(11):1080–1091, 2013.

[68] S. Ray, B. Simion, A. D. Brown, and R. Johnson. Skew-resistant parallel
in-memory spatial join. In SSDBM, 2014.

[69] W. Rödiger, S. Idicula, A. Kemper, and T. Neumann. Flow-Join: Adaptive
skew handling for distributed joins over high-speed networks. In ICDE, 2016.

[70] W. Rödiger, T. Mühlbauer, A. Kemper, and T. Neumann. High-speed query
processing over high-speed networks. PVLDB, 9(4):228–239, 2015.

[71] W. Rödiger, T. Mühlbauer, P. Unterbrunner, A. Reiser, A. Kemper, and
T. Neumann. Locality-sensitive operators for parallel main-memory database
clusters. In ICDE, pages 592–603, 2014.

[72] P. Roy, J. Teubner, and G. Alonso. Efficient frequent item counting in multi-
core hardware. In KDD, pages 1451–1459, 2012.

[73] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin. Flux:
An adaptive partitioning operator for continuous query systems. In ICDE,
pages 25–36, 2003.

[74] J. W. Stamos and H. C. Young. A symmetric fragment and replicate algorithm
for distributed joins. TPDS, 4(12):1345–1354, 1993.



Bibliography 137

[75] M. Stonebraker. The case for shared nothing. DEBU, 9(1):4–9, 1986.

[76] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-store: A column-oriented DBMS. In VLDB, pages 553–564,
2005.

[77] J. Teubner, G. Alonso, C. Balkesen, and M. T. Ozsu. Main-memory hash
joins on multi-core CPUs: Tuning to the underlying hardware. In ICDE,
pages 362–373, 2013.

[78] J. Teubner and R. Mueller. How soccer players would do stream joins. In
SIGMOD, pages 625–636, 2011.

[79] J. Teubner, R. Müller, and G. Alonso. Frequent item computation on a chip.
TKDE, 23(8):1169–1181, 2011.

[80] F. Tian and D. J. DeWitt. Tuple routing strategies for distributed eddies. In
VLDB, pages 333–344, 2003.

[81] T. Urhan and M. J. Franklin. XJoin: A reactively-scheduled pipelined join
operator. DEBU, 23(2):27–33, 2000.

[82] G. Weikum and G. Vossen. Transactional Information Systems. Morgan
Kaufmann, 2002.

[83] A. N. Wilschut and P. M. G. Apers. Dataflow query execution in a parallel
main-memory environment. In PDIS, pages 68–77, 1991.

[84] J. L. Wolf, D. M. Dias, and P. S. Yu. A parallel sort merge join algorithm for
managing data skew. TPDS, 4(1):70–86, 1993.

[85] J. L. Wolf, P. S. Yu, J. Turek, and D. M. Dias. A parallel hash join algorithm
for managing data skew. TPDS, 4(12):1355–1371, 1993.

[86] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica.
Shark: SQL and rich analytics at scale. In SIGMOD, pages 13–24, 2013.

[87] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen. Handling data skew in parallel
joins in shared-nothing systems. In SIGMOD, pages 1043–1052, 2008.

[88] M. Zukowski, M. van de Wiel, and P. Boncz. Vectorwise: A vectorized ana-
lytical DBMS. In ICDE, pages 1349–1350, 2012.


	Abstract
	Kurzfassung
	Contents
	Introduction
	Problem Statement
	Research Questions
	Contributions
	Outline

	Commodity Networks
	Motivation
	Related Work
	Neo-Join
	Data Repartitioning (Phase 1)
	Optimal Partition Assignment (Phase 2)
	Communication Scheduling (Phase 3)
	Partition Shuffling and Local Join (Phase 4)
	Shuffling the Join Result

	Handling Skew
	Adaptive Radix Partitioning
	Selective Broadcast

	Evaluation
	Locality
	Data Shuffling Alternatives
	Scale Up
	TPC-H

	Concluding Remarks

	High-Speed Networks
	Motivation
	High-Speed Networks
	TCP
	RDMA
	Discussion

	High-Speed Query Processing
	Classic Exchange Operators
	Hybrid Parallelism

	Distributed Operator Details
	Join
	Grouping/Aggregation
	Sorting/Top-k

	Evaluation
	Experimental Setup
	Hybrid Parallelism
	Distributed SQL Systems

	Related Work
	Concluding Remarks

	Skew Handling
	Motivation
	Flow-Join
	Selective Broadcast
	Heavy Hitter Detection
	Early and Iterative Detection
	Fetch on Demand
	Hash Join Algorithm

	Implementation Details
	High-Speed Networks
	Local and Distributed Parallelism

	Generalized Flow-Join
	Algorithm
	Correlated Skew
	Non-Equi Joins

	Evaluation
	Experimental Setup
	Scalability
	Real Workload
	Impact of Workload Characteristics and Parameters

	Related Work
	Concluding Remarks

	Transactional Data
	Motivation
	Full Replication
	Redo Log Propagation
	Distributed Snapshots
	High Availability
	Evaluation
	Cloud
	Summary

	Fragmented Relations
	Hot/Cold Separation
	High Availability
	Elasticity

	Concluding Remarks

	Summary

