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1 Introduction

The discovery of a light boson H with mass around 125 GeV in the first run of LHC [1, 2]

opened a new window to physics beyond the Standard Model (BSM). At present, the Stan-

dard Model (SM) Higgs quantum numbers, JP = 0+, are favoured by the data — all other

tested hypotheses have been excluded at confidence levels above 95% [3, 4]. Furthermore,

from the study of the signal strengths of the new state, all Higgs couplings to SM particles

are compatible with SM predictions (see e.g. ref. [5] and references therein). In particular,

those to the W and Z bosons are constrained to be within 10 % of their SM values [6]. In

the absence of evidence for any other new state, the SM seems to be a good effective field

theory (EFT) above the electroweak scale, at least up to the scales currently probed by

the LHC.
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In the spirit of an EFT — assuming the characteristic scale Λ of BSM physics to

be much larger than the electroweak scale — the SM should be supplemented with all

operators compatible with its symmetries. The SU(2)L ×U(1)Y symmetry can be linearly

or non-linearly realized. The non-linear realization gives rise to a theory in close analogy to

ChPT [7–12], with an additional light, SM-singlet scalar. In the linear realization, that we

adopt in this work, one must add to the SM all dimension-six operators constructed from

the SM fields [13, 14]. These operators are suppressed by the large scale Λ and generate

anomalous couplings of the Higgs boson.

The present status of the search for BSM physics in the Higgs sector is somewhat

similar to that of the flavour sector of the SM, in which evidence for BSM physics has

proven to be much more elusive than naively expected. In the search for new flavour-

changing neutral currents, dedicated observables constructed from the angular distribution

of B → K∗`+`− have been constructed to unveil BSM effects in weak interactions more

efficiently [15, 16]. The angular distribution of the analogous decay H → Z`+`− offers

similar possibilities.

The study of H → Z`+`−, with the on-shell Z also decaying into `+`−, has a long

history. Angular distributions were used in the determination of the Higgs quantum num-

bers [3, 4] as suggested years ago (see e.g. refs. [17–20]). More recently, the di-lepton-mass

distribution has been proposed as a way to reveal effects that would otherwise be hidden

in the total decay width [21–23]. The full angular distribution of the final state leptons

has been revisited recently [24] in the framework of the EFT parametrization of anomalous

couplings, and it was shown that angular asymmetries can be constructed in order to re-

veal effects of anomalous Higgs couplings that would remain hidden even in the di-lepton

invariant mass distribution.

In the present work we perform an extended study of the angular asymmetries of

H → Z(→ `+`−)`+`− and of the crossing-symmetric reaction e+e− → HZ(→ `+`−).

The latter process should be measured with high precision at a high-energy e+e− collider

(such as the ILC [25]) and provide a clean way to extract the Higgs couplings [26–28].

In the massless lepton limit, the two processes are described by the same set of six form

factors, albeit in different kinematic regimes, related by analyticity. The form factors can be

written in terms of the couplings of the general d = 6 Lagrangian. Ignoring loop corrections

and neglecting the lepton masses, the processes are described by six independent angular

functions of the three independent angles among the four leptons, which can be expressed

in terms of the six form factors. Our focus is on these asymmetries, their sensitivity to

anomalous Higgs couplings, and the interplay between the asymmetries and the di-lepton

mass distributions.

In H → Z`+`−, we show that the most promising anomalous coupling that could gener-

ate sizeable asymmetries is the d = 6 HZγ interaction. The contact interactions HZ`+`−,

whose effects were recently investigated in ref. [24], also have a more prominent impact in

the asymmetries than in the decay rate. However, the present constraints on these couplings

make the magnitude of the asymmetries rather small. Next, we perform a study of the

total cross section at intermediate energies for the reaction e+e− → HZ(→ `+`−) and of

angular asymmetries akin to those of H → Z`+`−. We fully exploit the crossing-symmetric
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nature of these processes to make the relation between them transparent. Although de-

scribed by the same form factors, the sensitivity to specific BSM couplings differs in the

asymmetries of these two reactions due to the different characteristic energy scale involved.

In H → Z`+`− the d = 6 corrections scale as m2
H/Λ

2 while in e+e− → HZ they scale as

q2/Λ2, where q2, the center-of-mass (CM) energy of the e+e− pair, must be larger than

(217 GeV)2 to produce the HZ final state on-shell.

At present, the experimental study of the di-lepton mass distribution and of the angular

asymmetries in H → Z(→ `+`−)`+`− is not feasible due to low statistics — ATLAS [29]

and CMS [4] observed only around 30 H → Z Z∗ → 4` events each. However, higher

luminosities will permit these studies in the future. With an integrated luminosity of

350 fb−1 at 14 TeV, which could be reached by 2021 [30, 31], the number of observed events

could attain 1000. With the high-luminosity up-grade (integrated luminosity 3000 fb−1),

this number was estimated by a recent study of the sensitivity to anomalous Higgs-gauge

boson interactions to be of the order of 6000 [32]. The number of reconstructed events of

e+e− → HZ(→ `+`−) at an e+e− collider would be approximately 2000 at
√
q2 = 250 GeV

with an integrated luminosity of 250 fb−1 [32].

The paper is organized as follows. In section 2 we discuss the relevant operators in

the linear realization of the d = 6 Lagrangian and the relevant Higgs anomalous couplings.

In section 3 we study the angular distribution of H → Z`+`− and we show some of the

promising angular asymmetries. In section 4 we perform a similar study of the reaction

e+e− → HZ(→ `+`−). Our calculations are done at tree level. However, in section 5 we

discuss briefly the generic effect of SM loops. We summarize in section 6. We relegate

to appendix A the kinematics and definitions of angular distributions, while the explicit

expressions of the angular coefficient functions are given in appendix B.

2 Effective Lagrangian and couplings

In order to parametrize BSM effects in a general way, we resort to the linear realization

of the SU(2)L ×U(1)Y SM electroweak symmetry. Assuming the new physics sector to be

characterized by a scale Λ, larger than the electroweak scale, the SM is supplemented with

59 independent d = 6 operators [13, 14]. This Lagrangian can be schematically cast as

Leff = L(4)
SM +

1

Λ2

59∑
k=1

αkOk, (2.1)

where the αk is the coupling of operatorOk. The effective Lagrangian implies a parametriza-

tion of anomalous Higgs interactions (contained in Ok) constrained by the SM gauge sym-

metry. In our expressions, we often employ the notation α̂k defined as

α̂k =
v2

Λ2
αk, (2.2)

where v is the classical Higgs vacuum expectation value. The dimensionless coefficients α̂k
should be smaller than O(1) for the EFT description to be applicable.
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Φ4D2 X2 Φ2 ψ2 Φ2D

OΦ� = (Φ†Φ)�(Φ†Φ) OΦW = (Φ†Φ)W I
µνW

Iµν O(1)
Φ ` = (Φ†i

↔
DµΦ)(¯̀γµ`)

OΦD = (Φ†DµΦ)∗(Φ†DµΦ) OΦB = (Φ†Φ)BµνB
µν O(3)

Φ ` = (Φ†i
↔
DI
µΦ)(¯̀γµτ I`)

OΦWB = (Φ†τ IΦ)W I
µνB

µν OΦe = (Φ†i
↔
DµΦ)(ēγµe)

O
ΦW̃

= (Φ†Φ)W̃ I
µνW

Iµν

O
ΦB̃

= (Φ†Φ)B̃µνB
µν

O
ΦW̃B

= (Φ†τ IΦ)W̃ I
µνB

µν

Table 1. The subset of d = 6 operators that contribute to H → Z`+`− and e+e− → HZ in the

basis defined in ref. [14]. The four-lepton operator given in eq. (2.8) gives an indirect contribution

solely through the redefinition of δGF
and is not listed in this table.

Different choices for the operator basis are possible and in use. Here we stick to the

basis defined in ref. [14]. In practice we only need to work with a subset of the 59 operators,

since not all of them contribute at tree level to the processes of interest. Furthermore,

assuming minimal-flavour violation to avoid tree-level flavour-changing neutral currents,

flavour matrices of operators that involve a left-handed doublet and a right-handed singlet

are fixed to be the same as in the SM Yukawa couplings. Within this approximation, these

operators are proportional to lepton masses and are henceforward neglected.1

The operators considered in this work are listed in table 1. The notation and conven-

tions follow those of ref. [33]. The Higgs doublet is denoted Φ. The field strength tensors

for the SU(2)L ×U(1)Y gauge group are

W I
µν = ∂µW

I
ν − ∂νW I

µ − gεIJKW J
µW

K
ν , I = 1, 2, 3,

Bµν = ∂µBν − ∂νBµ, (2.3)

with the gauge couplings g and g′, respectively. With a tilde we denote the dual field

strength tensors

X̃µν =
1

2
εµνρσX

ρσ (2.4)

where X = W I , B and ε0123 = +1. When acting on SU(2) doublets, the covariant derivative

is written

Dµ = ∂µ + ig
τ I

2
W I
µ + ig′Y Bµ, (2.5)

where Y is the hypercharge and τ I are the Pauli matrices. In table 1 the left-handed

lepton doublets and the right-handed charged leptons are written `ip and ep, where i = 1, 2

and p = 1, 2, 3 are weak-isospin and flavour indices, respectively. We make the simplifying

assumption, stronger than minimal flavour violation, that the coefficients α
(1)
Φ` , α

(3)
Φ` , and

αΦe are flavour independent, and define the fermion-bilinear operators with flavour indices

1In H → Z`+`− the lepton mass corrections are at most of the order of m2
τ/m

2
H ≈ 2×10−4. The typical

contribution from a d = 6 operator scales as m2
H/Λ

2 which is 5-10 times larger for Λ of a few TeV.
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contracted. Because of this the operators are hermitian and all couplings αk are real. A

few comments on the operators in table 1 are in order.

• The ψ2 Φ2D type operators yield contact HZ`` interactions as well as modifications

of the gauge-boson couplings to leptons.

• The X2Φ2 operators generate anomalous couplings of the Higgs to ZZ, γZ, and

WW . After performing field redefinitions of the gauge fields, the SM Higgs couplings

to gauge bosons are not modified due to cancellations against the redefinitions of

input parameters (see ref. [34] and eq. (2.6) below).

• Operators of the type Φ4D2 modify the Higgs-gauge couplings and entail a redefini-

tion of the Higgs field to preserve canonically normalized kinetic terms.

The d = 4 couplings of the electroweak sector of the SM Lagrangian are the gauge

couplings g, g′, the Higgs self-coupling λ, and the classical Higgs vacuum expectation

value v. We trade these couplings for the experimental observables GF (the Fermi constant

as measured in µ→ eνµν̄e decay), the Z mass mZ , the electromagnetic coupling αem, and

the Higgs mass mH . In the presence of d = 6 operators, the first three of these quantities

are given by

mZ = mZ◦ (1 + δZ) , GF = GF◦ (1 + δGF ) , αem = αem◦ (1 + δA) , (2.6)

where X◦ denotes the quantity X in the absence of d = 6 operators, expressed in terms of

the Lagrangian parameters g, g′, and v. The above relations are then inverted to express

the g, g′, and v in terms of mZ , GF and αem and the d = 6 couplings. The explicit

expressions for the d = 6 contributions to eq. (2.6) in our basis read [33, 35, 36]

δZ = α̂ZZ +
1

4
α̂ΦD, δGF = −α̂4L + 2α̂

(3)
Φ` , δA = 2α̂AA. (2.7)

The combinations of coupling coefficients αZZ and αAA are defined in eq. (2.11) below. In

δGF a four-lepton operator (not listed in the table 1) intervenes

Oprst4L = (¯̀
pγµ`r)(¯̀

sγ
µ`t), (2.8)

with p, r, s, and t denoting flavour indices. We assume that the coefficients of Oprst4L are

flavour independent. In the expressions below we will also use the Weinberg angle

sin2 θW ≡ s2
W =

1

2

1−

√
1− 2

√
2παem

m2
ZGF

 , cos2 θW ≡ c2
W = 1− s2

W . (2.9)

It should be understood as an abbreviation for the combination of input parameters as

given, which appears after eliminating the d = 4 Lagrangian couplings as described above.

Apart from the SM tree contributions we only consider effects of order 1/Λ2 on the de-

cay amplitude. In the broken-symmetry phase the effective Lagrangian eq. (2.1) generates

the terms

Leff⊃c
(1)
ZZ HZµZ

µ + c
(2)
ZZH ZµνZ

µν + c
ZZ̃
H ZµνZ̃

µν + cAZH ZµνA
µν + c

AZ̃
HZµνÃ

µν

+HZµ ¯̀γµ (cV + cAγ5) `+ Zµ ¯̀γµ(gV − gAγ5)`− gemQ`Aµ ¯̀γµ`, (2.10)

– 5 –
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which include the relevant tree-level SM terms. We omit the Hγγ vertex, since it does not

contribute to the processes studied here within our approximations. The effective couplings

of this Lagrangian are related to the coefficients αk of the fundamental d = 6 operators as

given explicitly in table 1. We define the following combinations of coupling coefficients:

α
(1)
ZZ = αΦ� −

1

2
δGF +

1

4
αΦD,

αZZ = c2
WαΦW + s2

WαΦB + sW cWαΦWB,

αAZ = 2sW cW (αΦW − αΦB) + (s2
W − c2

W )αΦWB,

αAA = s2
WαΦW + c2

WαΦB − sW cWαΦWB, (2.11)

with analogous expressions for α
ZZ̃

and α
AZ̃

, where the couplings on the r.h.s. are replaced

by their tilde counterparts. The Higgs-gauge couplings of eq. (2.10) are then given by

c
(1)
ZZ = m2

Z(
√

2GF )1/2
(

1 + α̂
(1)
ZZ

)
,

c
(2)
ZZ = (

√
2GF )1/2 α̂ZZ ,

c
ZZ̃

= (
√

2GF )1/2 α̂
ZZ̃
,

cAZ = (
√

2GF )1/2 α̂AZ ,

c
AZ̃

= (
√

2GF )1/2 α̂
AZ̃
. (2.12)

The contact HZ`` couplings can be written as

cV =
√

2GF mZ α̂
V
Φ`,

cA =
√

2GF mZ α̂
A
Φ`. (2.13)

with

α̂VΦ` = α̂Φe +
(
α̂

(1)
Φ` + α̂

(3)
Φ`

)
,

α̂AΦ` = α̂Φe −
(
α̂

(1)
Φ` + α̂

(3)
Φ`

)
. (2.14)

Note that in the operator basis employed here α̂VΦ` and α̂AΦ` are, in general, different.

Therefore, in the effective Lagrangian we have both left-handed and right-handed HZ``

couplings. This contrasts with the so-called SILH basis [37], where the absence of the

operators O(1,3)
Φ` implies α̂VΦ` = α̂AΦ` and hence only right-handed HZ`` couplings enter the

effective Lagrangian directly [38].

The same combinations α̂V,AΦ` also participate in the d = 6 corrections to the Z couplings

to fermions in eq. (2.10), that can be cast as

gV =
mZ

2
(
√

2GF )1/2
[(

1− 4 s2
W

)
− δgV

]
,

gA =
mZ

2
(
√

2GF )1/2 (1 + δgA) . (2.15)

The corrections δgV,A from the d = 6 operators are given by

δgV = −α̂VΦ` +
α̂ΦD

4
+
δGF

2
+

4s2
W

c2W

[
α̂ΦD

4
+
cW
sW

α̂ΦWB +
δGF

2

]
,

δgA = −α̂AΦ` −
α̂ΦD

4
− δGF

2
, (2.16)
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with c2W ≡ cos 2θW . The contributions from α̂ΦD, α̂ΦWB, and δGF arise from the redefini-

tion of SM fields and the rewriting of Lagrangian parameters in terms of input parameters

in the presence of d = 6 operators.

In this work, we are interested in the effects of Higgs anomalous couplings in certain

angular asymmetries of H → Z`+`− and e+e− → HZ. In order to estimate the maxi-

mal effect that is still possible, we have to incorporate the constraints on the anomalous

couplings from all existing data, not necessarily related to Higgs observables. However,

to the best of our knowledge, a full analysis along the lines of refs. [38, 39] is not avail-

able in the operator basis employed here. Although different bases are related by a linear

transformation, the results cannot be straightforwardly translated, since the correlations

are not known (to us). We are particularly interested in the coefficients α̂V,AΦ` of the contact

interactions. In the absence of a complete analysis, we perform here an order-of-magnitude

estimate of the present constraints on α̂V,AΦ` , which is sufficient for the discussion of the

angular asymmetries.

In order to use data for gV,A to constrain α̂V,AΦ` one needs to estimate the allowed range

for the other three combinations of Wilson coefficients that enter eq. (2.16), namely, α̂ΦD,

α̂ΦWB, and δGF . One therefore needs five observables. Apart from the Z coupling to

leptons, gV and gA, we employ the electroweak precision observables S and T , and the W

mass. The operators OΦWB and OΦD give tree-level contributions to S and T , respectively

(for the explicit expressions in our basis, see [36]). Experimental values for these two

parameters [40] constrain α̂ΦWB and α̂ΦD to be at the permille level. With these bounds

as input, mW can be utilized to constrain δGF , since

mW = mZ(1− s2
W )1/2

[
1− 1

2c2W

(
c2
W

2
α̂ΦD + s2

W δGF + s2W α̂ΦWB

)]
, (2.17)

with s2W ≡ sin 2θW . This constrains δGF to be at the level of a few 10−3. Finally, using

these results and the tight constraints on δgV,A [41, 42], we find that α̂AΦ` and α̂VΦ` cannot

exceed a few times 10−3.2 This agrees with the conclusion of ref. [38] that the bounds on

α̂V,AΦ` are at the permille level, though this refers to the SILH basis in which α̂AΦ` = α̂VΦ`.

Since we do not perform a full fit, we allow α̂AΦ` and α̂VΦ` to vary within slightly weaker

bounds than those arising from the five observables described above. We therefore employ

the conservative interval

α̂V,AΦ` ∈ [−5, 5]× 10−3. (2.18)

According to eq. (2.2), for αV,AΦ` = 1, this corresponds to the BSM physics scale of Λ ≈
3.5 TeV. Note that the maximally allowed value of α̂VΦ` is smaller by a factor of about 4

compared to the one used in ref. [24].

The d = 6 anomalous HZγ vertex also plays an important role in our analysis. This

coupling is constrained by Higgs measurements, especially the direct searches for H → Zγ

decays, which presently limit the branching fraction to about ten times the SM expecta-

tion [44, 45]. This leads to a weaker bound than those on α̂V,AΦ` and here we employ the

2The triple-gauge boson coupling ∆gZ1 [38, 43] could also be used to constrain δGF but leads to less

stringent bounds than the value of mW does. Data for the decay Z → ν̄ν help disentangling α̂
(1)
Φ` and α̂

(3)
Φ`

but this is immaterial to the present work.

– 7 –
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Figure 1. Feynman diagrams for the decay H → Z(→ `+`−)`+`−.

result of ref. [38], which with our definitions reads

α̂AZ ∈ [−1.3, 2.6]× 10−2. (2.19)

One-loop corrections to the SM amplitude give contributions to the H → Z`+`− and

e+e− → HZ processes studied in this paper that can be of the same order of d = 6

terms. They have been computed in the past [46–49] and should eventually be included in

a quantitative extraction of the anomalous couplings from data. Since this data is not yet

available, and our purpose is to determine the sensitivity of angular observables to d = 6

operators, we neglect loop corrections here. In section 5 we provide a rough estimate in

order to ascertain whether or not loop effects affect the main conclusions of this work.

Loop corrections to amplitudes with d = 6 operator insertions are evidently negligible.

In the following we discuss the effects of anomalous Higgs couplings of Eqs. (2.12)

and (2.13) in the differential decay width of H → Z(→ `+`−)`+`−, in the total cross

section of e+e− → HZ(→ `+`−), as well as on angular asymmetries of these two crossing-

symmetric processes. Two main scenarios will be investigated in detail. In the first we allow

for non-vanishing α̂V,AΦ` , which gives rise to the HZ`` contact interaction of eq. (2.13), and

in the second for non-vanishing α̂AZ . In each scenario we set the other couplings to zero.

In scenarios with non-vanishing α̂V,AΦ` their contribution to δgV,A is taken into account.

3 Angular asymmetries of H → Z(→ `+`−)`+`−

The decay of the on-shell Higgs boson to four leptons with an intermediate on-shell Z

boson can proceed with an off-shell Z through the H → ZZ interaction, as in the SM, but

with d = 6 operators added to the Lagrangian it can also proceed through a HZγ coupling

or the contact interaction HZ``. The three types of diagrams are depicted in figure 1.

3.1 Form factors and angular distribution

The amplitude for the decay H(pH) → Z(p)(→ `−(p1)`+(p2))`−(p3)`+(p4) can be writ-

ten as

M(H → Z(→ `+`−)`+`−) =Mµ
HZ``

1

p2 −m2
Z + imZ ΓZ

MZ``,µ, (3.1)

where Mµ
X denotes the matrix element of process X with the polarization vector of the

on-shell Z boson stripped off. As already mentioned, we neglect lepton mass effects. When

– 8 –
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squaring the amplitude we employ the narrow-width approximation for the intermediate Z

boson, but include spin correlations. Summing over spins of the final-state leptons, the four-

fold differential decay width for the process H → Z(→ `+`−)`+`− in the massless lepton

limit can be written as a function of the di-lepton invariant mass squared q2 = (p3 + p4)2

and of three angles (see appendix A.1 for their definitions). The expression reads

d4Γ

dq2d cos θ1d cos θ2dφ
=

1

210(2π)5

1

m3
H

1

mZΓZ
λ1/2(m2

H ,m
2
Z , q

2)
∑
spins

|Mµ
HZ``MZ``,µ|2

=
1

mH
N (q2)J (q2, θ1, θ2, φ). (3.2)

In the last equation we introduced the dimensionless function

J (q2, θ1, θ2, φ) =
1

m2
H

∑
spins

|Mµ
HZ``MZ``,µ|2, (3.3)

and the normalization

N (q2) =
1

210(2π)5

1√
r γZ

λ1/2(1, r, s), (3.4)

written in terms of the dimensionless variables

s =
q2

m2
H

, r =
m2
Z

m2
H

≈ 0.53, γZ =
ΓZ
mH

≈ 0.020, (3.5)

and the function λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc. The maximum value of q2 is

q2
max = (mH −mZ)2 ≈ (34.4 GeV)2 which gives

0 ≤ s ≤ (mH −mZ)2

m2
H

≈ 0.075. (3.6)

The decay of the on-shell Z boson is described by

Mµ
Z`` = ū(k1, s1) [γµ (gV − gAγ5)] v(k2, s2), (3.7)

with the couplings given in eq. (2.15). It is important to observe that gA largely dominates

the interaction Z → `+`− due to the partial cancellation in the factor (1 − 4 s2
W ) in gV .

This fact plays an important role in the interpretation of the numerical results for the

angular asymmetries.

Neglecting the lepton masses the general expression for the amplitude of H →
Z(p)`−(p3)`+(p4) at O

(
1/Λ2

)
in the d = 6 Lagrangian can be written in terms of six

form factors [17, 18, 21, 23, 24]. Denoting them by Hi,V/A (i = 1, 2, 3), we adopt the

parametrization

Mµ
HZ`` =

1

mH
ū(p3, s3)

[
γµ (H1,V +H1,A γ5) +

qµ/p

m2
H

(H2,V +H2,A γ5)

+
εµνσρpνqσ
m2
H

γρ (H3,V +H3,A γ5)

]
v(p4, s4), (3.8)
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where ε0123 = +1 and q = p3 + p4. The form factors H2,V/A and H3,V/A vanish in the SM

at tree level. The expressions for Hi,V/A at O(1/Λ2) are

H1,V = −2mH(
√

2GF )1/2 r

r − s
gV

(
1 + α̂eff

1 −
κ

r
α̂ZZ −

κ

2r

Q` gem (r − s)
s gV

α̂AZ

)
,

H1,A =
2mH(

√
2GF )1/2 r

r − s
gA

(
1 + α̂eff

2 −
κ

r
α̂ZZ

)
,

H2,V = −2mH(
√

2GF )1/2

r − s
gV

[
2 α̂ZZ +

Q` gem (r − s)
s gV

α̂AZ

]
,

H2,A =
4mH(

√
2GF )1/2

r − s
gA α̂ZZ ,

H3,V = −2mH(
√

2GF )1/2

r − s
gV

[
2 α̂

ZZ̃
+
Q` gem (r − s)

s gV
α̂
AZ̃

]
,

H3,A =
4mH(

√
2GF )1/2

r − s
gA α̂ZZ̃ , (3.9)

where Q` = −1. The couplings gA and gV are those of eq. (2.15) including the d = 6

corrections. (Of course, within our approximations, this matters only when gV,A multiply

the SM “1” in the bracket in H1,V/A.) We defined the combinations

α̂eff
1 ≡ α̂

(1)
ZZ −

mH(
√

2GF )1/2 (r − s)
2
√
r

α̂VΦl
gV

,

α̂eff
2 ≡ α̂

(1)
ZZ +

mH(
√

2GF )1/2 (r − s)
2
√
r

α̂AΦl
gA

, (3.10)

where the couplings α̂
(1)
ZZ and α̂

V/A
Φl are defined in eqs. (2.11) and (2.14), respectively. Last,

we introduced

κ = 1− r − s. (3.11)

At order 1/Λ2, ignoring loop-suppressed contributions and lepton masses, the form factors

of eq. (3.9) are real. Note that the absence of i in front of the epsilon-symbol in eq. (3.8)

implies that with this definition real H3,V/A are CP-odd form factors as can also be seen

from their expressions in eq. (3.9).

Computing J (q2, θ1, θ2, φ) explicitly, we find nine independent angular structures with

coefficient functions J1,. . . ,J9, which we write as3

3 To make contact with ref. [18], we remark that final-state interactions, which would generate (loop-

suppressed) imaginary parts in the form factors, lead to six new angular structures. Denoting these new

structures by δJ , the expression

δJ = (J10 sin 2θ1 sin θ2 + J11 sin θ1 sin 2θ2) sinφ+ (J12 sin 2θ1 sin θ2 + J13 sin θ1 sin 2θ2) cosφ

+ J14 cos θ2(1 + cos2 θ1) + J15 cos θ1(1 + cos2 θ2)

has to be added to eq. (3.12). The new angular functions depend on the imaginary parts of the form factors

Hi,V/A.
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J (q2, θ1, θ2, φ) = J1(1 + cos2 θ1 cos2 θ2+ cos2 θ1 + cos2 θ2)

+ J2 sin2 θ1 sin2 θ2 + J3 cos θ1 cos θ2

+ (J4 sin θ1 sin θ2 + J5 sin 2θ1 sin 2θ2) sinφ

+ (J6 sin θ1 sin θ2 + J7 sin 2θ1 sin 2θ2) cosφ

+ J8 sin2 θ1 sin2 θ2 sin 2φ+ J9 sin2 θ1 sin2 θ2 cos 2φ. (3.12)

The expressions for the non-vanishing J functions at O(1/Λ2) in the limit m` → 0 in terms

of the form factors of eq. (3.8) are4

J1 = 2 r s
(
g2
A + g2

V

) (
|H1,V |2 + |H1,A|2

)
,

J2 = κ
(
g2
A + g2

V

) [
κ
(
|H1,V |2 + |H1,A|2

)
+ λRe

(
H1,VH

∗
2,V +H1,AH

∗
2,A

)]
,

J3 = 32 r s gA gV Re
(
H1,V H

∗
1,A

)
,

J4 = 4κ
√
r s λ gA gV Re

(
H1,VH

∗
3,A +H1,AH

∗
3,V

)
,

J5 =
1

2
κ
√
r s λ

(
g2
A + g2

V

)
Re
(
H1,VH

∗
3,V +H1,AH

∗
3,A

)
,

J6 = 4
√
r s gA gV

[
4κRe

(
H1,VH

∗
1,A

)
+ λRe

(
H1,VH

∗
2,A +H1,AH

∗
2,V

)]
,

J7 =
1

2

√
r s
(
g2
A + g2

V

) [
2κ
(
|H1,V |2 + |H1,A|2

)
+ λRe

(
H1,VH

∗
2,V +H1,AH

∗
2,A

)]
,

J8 = 2 r s
√
λ
(
g2
A + g2

V

)
Re
(
H1,VH

∗
3,V +H1,AH

∗
3,A

)
,

J9 = 2 r s
(
g2
A + g2

V

) (
|H1,V |2 + |H1,A|2

)
. (3.13)

These expressions are valid beyond our approximations, where the Hi,V/A form factors are

all real. We used the notation λ ≡ λ(1, r, s) and recall that gV,A implicitly contain d = 6

corrections, see eq. (2.15). At order O(1/Λ2), H2,V/A and H3,V/A contribute only through

interference with the SM part of the form factors H1,V/A. We drop the O(1/Λ4) terms still

contained in eq. (3.13).

Only six of the functions Ji in eq. (3.13) are independent. The following relations hold:

J5 =
κ

4
√
rs
J8,

J7 =

√
rs

2κ

(
κ2

2rs
J1 + J2

)
,

J9 = J1. (3.14)

Three of the Ji functions, namely J4, J5, and J8, are CP-odd and vanish in the SM at

tree level. From the two independent functions among these three, one could determine

the CP-odd effective couplings α̂
AZ̃

and α̂
ZZ̃

. From the remaining four CP-even angular

functions, one obtains information on the anomalous couplings α̂eff
1,2, α̂AZ , and α̂ZZ . The

explicit expressions for the J functions in terms of the effective couplings are collected in

appendix B. We will use them to get analytic insight into the numerical analysis presented

below.
4Our expression agrees with ref. [24] with adjustments for the different definitions of angles and form

factors. In particular, we have θ1 → π − α and θ2 → β, H1,V → 2F1GV , H1,A → −2F1GA, H2,V → HV ,

H2,A → −HA, H3,V → −KV , and H3,A → KA. Note that the definitions of J1 and J2 are different.
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3.2 Observables

Integrating over the three angles in eq. (3.2), the differential decay rate as a function of

the di-lepton invariant mass is given by

dΓ

dq2
=

32π

9

1

mH
N (q2) (4J1 + J2). (3.15)

This observable has been explored recently in refs. [21, 23]. Here, instead, the main focus is

on the angular asymmetries from which individual J functions can be extracted. Some of

these asymmetries have already been discussed in ref. [24]. We define the following angular

asymmetries normalized to dΓ/dq2:

Aθ1 =
1

dΓ/dq2

∫ 1

−1
d cos θ1 sgn(cos(2θ1))

d2Γ

dq2d cos θ1

= 1− 5

2
√

2
+

3J1√
2(4J1 + J2)

,

A(1)
φ =

1

dΓ/dq2

∫ 2π

0
dφ sgn(sinφ)

d2Γ

dq2dφ
=

9π

32

J4

4J1 + J2
,

A(2)
φ =

1

dΓ/dq2

∫ 2π

0
dφ sgn(sin(2φ))

d2Γ

dq2dφ
=

2

π

J8

4J1 + J2
,

A(3)
φ =

1

dΓ/dq2

∫ 2π

0
dφ sgn(cosφ)

d2Γ

dq2dφ
=

9π

32

J6

4J1 + J2
,

A(4)
φ =

1

dΓ/dq2

∫ 2π

0
dφ sgn(cos(2φ))

d2Γ

dq2dφ
=

2

π

J9

4J1 + J2
. (3.16)

The sign function is sgn(±|x|) = ±1. We further define the double forward-backward

asymmetry

Acθ1,cθ2 =
1

dΓ/dq2

∫ 1

−1
d cos θ1 sgn(cos θ1)

∫ 1

−1
d cos θ2 sgn(cos θ2)

d3Γ

dq2d cos θ1d cos θ2

=
9

16

J3

4J1 + J2
. (3.17)

The single forward-backward asymmetry in the angle θ2 (see appendix A.1), i.e.,

1

dΓ/dq2

∫ 1

−1
d cos θ2 sgn(cos(θ2))

d2Γ

dq2d cos θ2
, (3.18)

vanishes for H → Z(→ `+`−)`+`− in the present approximation, as already noticed in

ref. [24]. This is different from the analogous forward-backward asymmetry in the elec-

troweak penguin decay B → K∗`+`−, despite a very similar form factor structure. To

understand this difference, we note the explicit expression for the B → K∗`+`− decay

amplitude in the factorization approximation (sufficient for the purpose of explanation),

M(B → K∗ `+`−) ∝ ū(q2)

[
γµ
(
Ceff

9 + C10 γ5

)]
v(q1) 〈K∗(p)|s̄γµ(1− γ5)b|B(p+ q)〉

∝ ū(q2)

[
γµ
(
Ceff

9 + C10 γ5

)]
v(q1)

{
2V (q2)

mB +mK∗
iεµνρσ ε

ν
K∗ pρ qσ

+(mB +mK∗)A1(q2)

[
εK∗µ −

εK∗ · q
q2

qµ

]
+ . . .

}
, (3.19)
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where V and A1 denote B → K∗ form factors. The forward-backward asymmetry is

determined by [50]

AFB(B → K∗ `+`−) ∝ Re
(
AL‖ A

L
⊥
∗)− (L→ R) , (3.20)

where the transversity amplitudes within the current approximation are given by

AL,R⊥ ∝ (Ceff
9 ∓ C10)

V (q2)

mB +mK∗
, AL,R‖ ∝ (Ceff

9 ∓ C10)
A1(q2)

mB −mK∗
. (3.21)

The single forward-backward asymmetry in the angle θ2 is generated by the CP-even part of

the interference of transversity amplitudes, and is proportional to Re (Ceff
9 C∗10). Comparing

eq. (3.19) and eq. (3.8), and noting the different factors of i in front of the epsilon symbols,

we see that the transversity amplitudes AL,R⊥ in H → Z`+`− decays are CP-odd at tree

level (when H3,V/A is real), hence the interference of AL,R⊥ and AL,R‖ cannot induce a CP-

even observable. This implies the vanishing of the single forward-backward asymmetry in

H → Z`+`− decay at tree level.5

Due to the vanishing of CP-odd Higgs couplings to gauge bosons in the SM, the angular

functions J4 and J8 and hence the asymmetries A(1)
φ and A(2)

φ are generated only by the

anomalous couplings from the d = 6 operators. In principle, the asymmetries defined in

eqs. (3.16) and (3.17) can determine the six anomalous couplings appearing in HZ`` form

factors unambiguously.

3.3 Higgs couplings in angular asymmetries of H → Z`+`−

In this section we discuss the impact of anomalous Higgs couplings on the angular asymme-

tries in eqs. (3.16) and (3.17) and, for comparison, the di-lepton invariant mass distribution

dΓ/dq2, eq. (3.15). Some of these asymmetries and their sensitivity to new physics have

already been explored in ref. [24]. We comment on their results in the remainder. The anal-

ysis can be split into the CP-conserving and CP non-conserving parts. At order O(1/Λ2),

the CP-odd couplings, α̂
AZ̃

and α̂
ZZ̃

, contribute only to J4, J5, and J8 and therefore do

not contribute to the decay rate dΓ/ds. The CP-even couplings α̂AZ , α̂ZZ , as well as the

combinations α̂eff
1 and α̂eff

2 , that contain the contact HZ`` interactions, enter the remaining

angular functions J1, J2, J3, J6, J7, J9.

Most of the distinctive phenomenology of the angular asymmetries stems from the

suppression of the vector Z`` coupling gV compared to the axial coupling gA. With the

conventions of eq. (2.15), gV ' 0.012 and gA ' 15gV . Inspecting the explicit expressions of

J1 and J2 in appendix B, one sees that α̂AZ and α̂eff
1 contributions come with suppression

factors of gV and g2
V , respectively, and therefore have little effect on dΓ/dq2 ∝ (4J1 + J2).

In contrast, in J3 and J6, the contributions from α̂AZ and αVΦ` are 1/gV enhanced in

comparison with the other d = 6 couplings. The asymmetries that probe these coefficient

functions, Acθ1,cθ2 and A(3)
φ , are therefore good candidates to reveal effects that would not

5Beyond the narrow-width approximation, complex form factors and a forward-backward asymmetry

can also be generated by the imaginary part of the Z boson propagator [51], at the cost of an additional

ΓZ/mZ suppression.
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be visible in the di-lepton mass spectrum. This pattern motivates our focus on two main

scenarios for the CP-even sector below. In the first we allow only for non-vanishing α̂V,AΦ`

and in the second we consider non-zero α̂AZ . In both cases we set all other anomalous

couplings to zero.

The contribution of α̂ZZ to J3 and J6 is gV suppressed compared to α̂AZ . We therefore

anticipate a small effect in the asymmetries from this coupling. Nevertheless, it can compete

with α̂AΦ` and α̂AZ in dΓ/dq2 and in the total cross section σ(s) of e+e− → HZ. Finally,

the coupling α̂
(1)
ZZ amounts to a global shift of the SM H → ZZ vertex. Its effect on

asymmetries is again small since it is not enhanced with respect to the SM contribution

by numerical factors or 1/gV terms. Since α̂ZZ and α̂
(1)
ZZ have essentially no impact on the

angular asymmetries we do not consider specific scenarios for them but we will comment

on their contributions to dΓ/dq2 and σ(s).

The d = 6 corrections to the couplings gA and gV are taken into account and are shown

explicitly in expressions in this section. To make a clear distinction we define

gA ≡ ḡA (1 + δgA) , gV ≡ ḡV
(

1− ḡA
ḡV
δgV

)
, (3.22)

where ḡV,A are the following combinations of input parameters (free of d = 6 corrections):

ḡA ≡
mZ

2
(
√

2GF )1/2, ḡV ≡ ḡA (1− 4s2
W ). (3.23)

Throughout this section the d = 6 corrections to the electromagnetic vertex can be ne-

glected because they always appear in combination with the d = 6 HZγ coupling, which

is already O(1/Λ2).

In the plots in the remainder of this section we show as a shaded band the region

0 ≤ q2 ≤ (12 GeV)2 (or s . 0.0091) where the decay (Z∗, γ∗) → `+`− is dominated by

intermediate qq̄ hadronic resonances and our calculation is not valid.6 We refer to ref. [52]

for a discussion of the low-q2 part of the spectrum.

3.3.1 Contact HZ`` interactions

First, we concentrate on the observability of the contact HZ`` interaction, setting the other

anomalous couplings to zero. The relevant couplings α̂VΦ` and α̂AΦ` are defined in eq. (2.14)

in terms of the d = 6 Lagrangian couplings. They enter the form factors H1,V/A, which are

non-vanishing already in the SM, through the combinations α̂eff
1,2, and implicitly through

the Z`` couplings gV,A according to eq. (2.16).

We begin our discussion by focusing on the vector contact interaction, that is, we put

α̂AΦ` = 0 for the moment, which in our operator basis amounts to α̂Φe = (α̂
(1)
Φ` + α̂

(3)
Φ` ). Due

to the gV suppression, the impact of the vector contact interaction in J1 and J2 and hence

dΓ/ds is small. This is confirmed in figure 2(a) which, besides the SM result, shows two

(barely visible) curves that describe the modifications for the maximally and minimally

allowed values in the range of eq. (2.18). To understand this analytically we exploit here

6In experimental studies this region is removed by means of a kinematic cut on the value of q2 [4, 29].
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(a) dΓ/ds (in 10−6 GeV) (b) −A(3)
φ (c) −Acθ1,cθ2

Figure 2. (a) dΓ/ds, (b) −A(3)
φ , (c) −Acθ1,cθ2 . Three scenarios are considered. The red solid-line is

the SM case. The dotted green line corresponds to (α̂VΦ`, α̂
A
Φ`) = (−5, 0)×10−3, and the dot-dashed

blue line to (α̂VΦ`, α̂
A
Φ`) = (5, 0)× 10−3. The shaded bands exclude

√
q2 < 12 GeV, where hadronic

resonances dominate.

and below the hierarchy gV � gA to write simplified expressions7 for the angular functions

that exhibit the dominant effects in dΓ/ds and the asymmetries. We also employ the

approximation r ≈ 1/2, which is correct up to 5%, and make use of the fact — appropriate

for H → Z`+`− — that s � 1. Within these approximations, the combination 4J1 + J2

that enters dΓ/ds in eq. (3.15) can be written as

4J1 + J2 '
√

2m2
H GF ḡ

4
A (1 + 16s)×[

1 + 2α̂
(1)
ZZ −

48s

1 + 16s
α̂ZZ + 4

(
δgA −

ḡV
ḡA
δgV

)
+ 2(1− 2s)

(
α̂AΦ` −

ḡV
ḡA
α̂VΦ`

)]
. (3.24)

This expression is valid including terms of order O(s). In the scenario considered here

where α̂ZZ = α̂
(1)
ZZ = 0, the corrections to the SM result are very small. This is due to

the gV suppression of the αVΦ` terms in eq. (3.24) (both the direct contribution and the

indirect one due to δgV ). In fact, the simplified formula shows that in a generic situation

α̂ZZ , α̂
(1)
ZZ and the axial contact interaction are expected to be more important than the

vector contact interaction. However, none of the anomalous couplings is enhanced relative

to the SM contribution.

In contrast, the asymmetries A(3)
φ , Acθ1,cθ2 proportional to J3 and J6 are sensitive to

the vector contact coupling since this and only this contribution is enhanced by 1/gV . The

results of figure 2(b) and 2(c) display the corresponding larger sensitivity to αVΦ`. However,

although larger than in dΓ/ds, the contact interaction is still a small correction of O(10)%

to the SM result. Larger asymmetries were obtained in ref. [24], since they allowed larger

values of α̂VΦ`. While we formally agree with their results, the estimate eq. (2.18) excludes

these values of α̂VΦ`.

7In the figures, however, we always use the exact expressions, not the simplified versions.
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The above observations can be easily understood from the simplified expressions for

the angular functions J3 and J6, which we can write as

J3 ' −64
√

2m2
H GF ḡ

2
A ḡ

2
V s

(
1− α̂AΦ` +

ḡA
ḡV
α̂VΦ`

)
,

J6 ' −32m2
H GF ḡ

2
Aḡ

2
V

√
s

(
1− α̂AΦ` +

ḡA
ḡV
α̂VΦ`

)
. (3.25)

In the last expressions we put α̂ZZ = α̂
(1)
ZZ = 0 and used eq. (2.16) to fix δgV,A = −α̂V,AΦ` .

Including the contributions from the denominator in their definition, the asymmetries A(3)
φ

and Acθ1,cθ2 are approximated by

−A(3)
φ ' 9π

√
2

2

ḡ2
V

ḡ2
A

√
s

1 + 16s

(
1 + α̂AΦ` +

ḡA
ḡV
α̂VΦ`

)
,

−Acθ1,cθ2 '
36 ḡ2

V

ḡ2
A

s

1 + 16s

(
1 + α̂AΦ` +

ḡA
ḡV
α̂VΦ`

)
. (3.26)

These asymmetries are largely dominated by the vector contact interaction enhanced by

the factor ḡA/ḡV ≈ 15. All other effects are subleading (including those arising from

the denominator, given in eq. (3.24)). Unfortunately, the asymmetries proportional to

these functions are intrinsically small, because they contain a global g2
V factor. Note that

in the denominators of the last expressions the term 16s is of order one and cannot be

expanded. This term is largely responsible for the shape of the curves in figures 2(b)

and 2(c). Interestingly, in the absence of other anomalous couplings the ratio between

these two asymmetries,
Acθ1,cθ2

A(3)
φ

' 4
√

2s

π
, (3.27)

is given by pure kinematics, independent of d = 6 corrections.

We now turn to the more general case where both the vector and axial-vector HZ``

couplings contribute. Figure 3 shows dΓ/ds and the same asymmetries as figure 2 for two

values of the axial coupling α̂AΦ` and fixed α̂VΦ` = 0.005. The essential features can be easily

understood with the help of the approximate expressions of eqs. (3.24), (3.25), and (3.26).

From eq. (3.24) we see that α̂AΦ` gives the dominant contribution in the d = 6 corrections to

dΓ/ds, but the fact that α̂AΦ` cannot exceed a few permille makes the modifications to SM

result very small (figure 3(a)). In the asymmetries, figures 3(b) and 3(c), the deviations

from the SM are essentially due to 1/gV enhanced contribution from α̂VΦ`. The inclusion of

α̂AΦ` for fixed α̂VΦ` barely alters this result.

3.3.2 Anomalous HZγ coupling

We next investigate the effect of the anomalous HZγ coupling, α̂AZ , and display it for the

two values α̂AZ = −0.013 and α̂AZ = 0.026, which limit the allowed range eq. (2.19) as

discussed in section 2.

The simplified expression relevant to dΓ/ds is given by

4J1 + J2 '
√

2m2
H GF ḡ

4
A (1 + 16s)

(
1− 12 ḡV gemQ`

ḡ2
A(1 + 16s)

α̂AZ

)
, (3.28)
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(a) dΓ/ds (in 10−6 GeV) (b) −A(3)
φ (c) −Acθ1,cθ2

Figure 3. (a) dΓ/ds, (b) −A(3)
φ , (c) −Acθ1,cθ2 . The red solid-line is the SM case. The dotted green

line corresponds to (α̂VΦ`, α̂
A
Φ`) = (5, 5) × 10−3, whereas the dot-dashed blue line to (α̂VΦ`, α̂

A
Φ`) =

(5,−5)× 10−3.

(a) dΓ/ds (in 10−6 GeV) (b) −A(3)
φ (c) −Acθ1,cθ2

Figure 4. (a) dΓ/ds, (b) −A(3)
φ , (c) −Acθ1,cθ2 . Three scenarios are considered. The red solid-line

is the SM case. The dot-dashed blue line corresponds to α̂AZ = −1.3 × 10−2, whereas the dotted

green line corresponds to α̂AZ = 2.6× 10−2.

from which we immediately deduce that the overall effect on dΓ/ds is very small due to

the ḡV suppression of the α̂AZ term (see figure 4(a)). Remarkably however, despite a g2
V

suppression, the asymmetry A(3)
φ , figure 4(b), can reach 5% for values of α̂AZ close to

the upper bound. The effect is less pronounced in the asymmetry Acθ1,cθ2 , but can reach

the percent level, see figure 4(c). The larger effect in the asymmetries is due to the fact

that in J3 and J6 the α̂AZ contribution is 1/gV enhanced. Moreover, the photon pole in

A(3)
φ is only partially cancelled by the

√
s factor. These features become evident from the
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Figure 5. dΓ/ds including terms of order O(1/Λ4) in the squared amplitude. The three scenarios

of figure 4 are considered: the red solid-line is the SM case, the dot-dashed blue line corresponds

to α̂AZ = −1.3× 10−2, whereas the dotted green line corresponds to α̂AZ = 2.6× 10−2.

approximate expressions

−A(3)
φ ' 9π

√
2

2

ḡ2
V

ḡ2
A

√
s

1 + 16s

(
1− gemQ`

8 ḡV s
α̂AZ

)
,

−Acθ1,cθ2 '
36 ḡ2

V

ḡ2
A

s

1 + 16s

(
1− gemQ`

4 ḡV s
α̂AZ

)
. (3.29)

The double enhancement by the factor 1/(gV s) ∼ O(103) implies that these asymmetries

can exceed their SM expectation, even when the anomalous couplings are generated by

BSM physics in the multi-TeV range. Note that in the presence of the anomalous α̂AZ
coupling the ratio of A(3)

φ and Acθ1,cθ2 is no longer free of d = 6 corrections.

In the case of the anomalous αAZ coupling, the square of the form factors Hi,V/A

contains terms proportional to α2
AZ/Λ

4, which are enhanced by the photon pole for small

s. Being formally of higher order in the 1/Λ2 expansion, they have been consistently

neglected up to this point. However, the 1/Λ4 photon-pole enhanced terms may give the

dominant contribution from anomalous couplings, also when the effective Lagrangian is

extended to d = 8 operators, because they are enhanced by 1/(s gV ) with respect to the

terms of order O(1/Λ2). In the specific case of αAZ , it is therefore mandatory to investigate

the photon-pole enhanced 1/Λ4 terms in the expressions for the J functions. The effect

on the di-lepton mass distribution dΓ/ds is indeed sizeable as can be seen by comparing

figure 4(a) to figure 5, which includes the enhanced O(1/Λ4) terms. In the low-s region,

dΓ/ds can now be enhanced by up to 20% above the SM for the larger value of αAZ . The

effects on asymmetries are less relevant and affect chiefly the part inside the shaded region

q2 ≤ (12 GeV)2. Therefore, we refrain from displaying the asymmetries in the presence of

O(1/Λ4) terms.
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(a) A(1)
φ (b) A(2)

φ (c) A(2)
φ

Figure 6. Asymmetries A(1,2)
φ in four different scenarios. The dot-long-dashed orange line cor-

responds to (α̂ZZ̃ , α̂AZ̃) = (4, 4) × 10−2, the dashed black line to (α̂ZZ̃ , α̂AZ̃) = (−2,−1) × 10−2,

the dot-dashed blue line corresponds to (α̂ZZ̃ , α̂AZ̃) = (4,−4) × 10−2, and the dotted green line

corresponds to (α̂ZZ̃ , α̂AZ̃) = (4, 0)× 10−2. The solid red line is the vanishing SM result.

3.3.3 CP-odd couplings

There are two asymmetries that are sensitive to the CP-odd couplings α̂
AZ̃

and α̂
ZZ̃

, A(1)
φ

and A(2)
φ , as defined in eq. (3.16). The asymmetry A(1)

φ , proportional to J4, is enhanced

by a prefactor 1/
√
s at small s. This asymmetry is largely dominated by the coupling α̂

AZ̃

due to a suppression by gV s of the α̂
ZZ̃

term. On the other hand, the asymmetry A(2)
φ ,

proportional to J8, receives contributions from both α̂
AZ̃

and α̂
ZZ̃

. Although the α̂
AZ̃

term

is multiplied by gV , the small s factor in front of α̂
ZZ̃

renders both contribution to be of

the same order. These features can be seen from the approximate expressions

A(1)
φ ' −9π

√
2

16

√
1− 12s√
s(1 + 16s)

ḡV gemQ`
ḡ2
A

α̂
AZ̃
,

A(2)
φ ' 16

√
1− 12s

π(1 + 16s)

(
s α

ZZ̃
+
ḡV gemQ`

4ḡ2
A

α̂
AZ̃

)
. (3.30)

The interplay between the two terms can generate an asymmetry-zero in A(2)
φ , provided

both CP-odd couplings have the same sign (recall Q` = −1). Its approximate location is at

s0 = − ḡV gemQ`
4ḡ2
A

α̂
AZ̃

α̂
ZZ̃

, (3.31)

the measurement of which would establish a relation between the two CP-odd effective

anomalous couplings. We illustrate these results in figure 6. For want of stringent experi-

mental bounds on these couplings we assume that they will not exceed a few times 10−2,

as is the case for the other couplings previously studied. In figure 6(a), A(1)
φ and three

different scenarios for α̂
ZZ̃

and α̂
AZ̃

are displayed. For lower values of s the asymmetry

can be of the order of 10%, but it goes to zero rather quickly at the kinematic end point.

This asymmetry is essentially independent of α̂
ZZ̃

. In figure 6(b) and 6(c) we show A(2)
φ
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for four different choices of α̂
ZZ̃

and α̂
AZ̃

. Figure 6(b) shows two cases where the cou-

plings have same signs and the asymmetry has a zero. The position of the zero can be

estimated from the approximate expression eq. (3.31). For α̂
AZ̃

= α̂
ZZ̃

the zero predicted

at s0 ' 0.028, in good agreement with figure 6(b) (dot-long-dashed orange curve). The

significance of the asymmetry-zero is somewhat limited in practice, since the asymmetry

itself is only at the permille level. The asymmetry, however, could reach a few percent for

values of the anomalous couplings one order of magnitude larger, which are not ruled out

experimentally [4]. In the next section we show that in e+e− → HZ(→ `+`−) the CP-odd

couplings can generate the asymmetry A(2)
φ at the percent level for anomalous couplings of

a few times 10−2.

Similar to the CP-even HZγ coupling, the anomalous coupling α
AZ̃

also generates

O(1/Λ4) terms that are photon-pole enhanced. The effect on dΓ/ds is similar to the CP-

even case shown in figure 5 and we do not show the CP-odd case here explicitly. The

asymmetries are again less affected by the 1/Λ4, and change mostly in the shaded region

q2 ≤ (12 GeV)2.

4 Angular asymmetries of e+e− → HZ(→ `+`−)

From the result for the decay H → Z`+`− it is straightforward to calculate the cross section

for the crossing-symmetric process e+e− → HZ(→ `+`−). In order to fully exploit crossing

symmetry we define the kinematics for e+e− → HZ(→ `+`−) as discussed in appendix A.2.

In particular, the angles θ1, θ2 and φ are now defined as in figure 14. According to these

definitions, the cross section can be written in terms of the same function J (q2, θ1, θ2, φ).

The process is described by the same set of form factors Hi,V/A and angular functions Ji,

see eq. (3.12), analytically continued in the energy s to describe the different kinematic

regime. The main difference between the two processes is that the di-lepton invariant mass

q2 = sm2
H is now given by the CM energy of the initial-state e+e− pair. The differential

cross section for e+e− → HZ(→ `+`−) is therefore expressed as before as

dσ

d cos θ1 d cos θ2dφ
=

1

m2
H

Nσ(q2)J (q2, θ1, θ2, φ), (4.1)

where the new normalisation reads

Nσ(q2) =
1

210(2π)3

1√
r γZ

√
λ(1, s, r)

s2
. (4.2)

Note that we still use the Higgs mass to construct the dimensionless variables s, r, and γZ ,

as in eq. (3.5).

The threshold energy for the reaction is given by
√
q2

th = (mH +mZ) ≈ 217 GeV which

gives, in units of m2
H , the minimal s value

sth = q2
th/m

2
H ≈ 2.98. (4.3)

The form factors are therefore probed at much higher energies, which leads to non-trivial

phenomenological consequences in comparison with H → Z`+`−. We limit our numerical
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analysis to intermediate energies accessible to a first-stage high-energy e+e− collider, and

study the range

sth ≤ s ≤ 7.0, (4.4)

which translates into q2
th ≤ q2 . (332 GeV)2. Depending on the value of the BSM scale

Λ, the effective Lagrangian description ceases to be valid for very high values of s. In the

theoretical expressions for the production process, this is seen from the fact that the d = 6

corrections relative to the SM generally contain terms of order sαk. The above chosen

range for s guarantees that the EFT description is valid when Λ is above 1 TeV.

The total e+e− → HZ cross section is given by

σ(s) =
32π

9

1

m2
H

Nσ(4J1 + J2). (4.5)

We define angular asymmetries analogous to those of Eqs. (3.16) and (3.17), normalizing

them by the total cross section. Since the normalizationNσ drops out in the ratios, the final

expression for the asymmetries in terms of J functions are identical to those of H → Z`+`−.

The SM cross section can be used to estimate the number of produced events. At√
q2 = 250 GeV and with an integrated luminosity of 250 fb−1 one expects around 2300

events, of which up to 1900 could be reconstructed [32] (assuming H → bb̄). This number

decreases to around 1400 for
√
q2 = 350 GeV and integrated luminosity of 350 fb−1 due to

a decrease in the cross section (see figure 7(a)).

In the remainder of this section we study the total cross section and asymmetries

to assess their sensitivity to d = 6 effective Higgs couplings in analogy with the decay

H → Z`+`−. For the purpose of comparison we consider the same scenarios as in the

previous section. Note that in e+e− collisions, due to the clean environment, one could also

consider Z decay to quarks. The vector and axial-vector couplings should then be replaced

by the appropriate values. A detailed anomalous coupling analysis of this possibility is,

however, beyond the scope of this paper.

4.1 Contact HZ`` interactions

We again begin with the case where the axial-vector HZ`` interactions are set to zero. In

figure 7 we show results for the same observables and coupling parameter choices that we

investigated for H → Z`+`−. In the total cross section αVΦ` effects remain gV suppressed

and therefore insignificant, as shown in figure 7(a). In the asymmetries, the modification

of the SM value due to α̂VΦ` is more pronounced in e+e− → HZ(→ `+`−) than in the decay

H → Z`+`− due to higher values of s, but the effect is still not dramatic, as shown in

figures 7(b). The asymmetries can be at most at the level of 1 to 2%.

The situation is more interesting, and different from Higgs decay, when the axial-vector

contact interaction is also present. Figure 8(a) shows that the total cross section is quite

sensitive to the axial-vector contact coupling. This can be understood with the help of the

approximate expression for the combination 4J1 + J2. As before, we exploit gV � gA and
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(a) σ(s) (b) −A(3)
φ (c) −Acθ1,cθ2

Figure 7. (a) σ(s), (b) −A(3)
φ , (c) −Acθ1,cθ2 . Three scenarios are considered. The red solid-line is

the SM case. The dotted green line corresponds to (α̂VΦ`, α̂
A
Φ`) = (−5, 0)×10−3, and the dot-dashed

blue line to (α̂VΦ`, α̂
A
Φ`) = (5, 0)× 10−3.

approximate r = 1/2, but we can no longer use that s is small. We then find

4J1 + J2 '
√

2m2
H GF ḡ

4
A

s+ 3

s− 1
×

[
1 + 2α̂

(1)
ZZ +

12(2s− 1)

s+ 3
α̂ZZ

−2(2s− 1)

(
α̂AΦ` −

ḡV
ḡA
α̂VΦ`

)
+ 4

(
δgA −

ḡV
ḡA
δgV

)]
'
√

2m2
H GF ḡ

4
A

s+ 3

s− 1

[
1− 2(1 + 2s) α̂AΦ`

]
. (4.6)

In the last equation we neglected the contributions from α̂VΦ` that are suppressed by ḡV

and we used that in the adopted scenario α̂
(1)
ZZ = α̂ZZ = 0. Since now 4s ∼ O(10), the

contribution from α̂AΦ` is significantly larger than in the invariant mass distribution dΓ/ds

of H → Z`+`−. For α̂AΦ` = 5× 10−3 the modification of the SM cross section reaches 15%

as shown in figure 8(a).

The anomalous contributions to the asymmetries A(3)
φ , Acθ1,cθ2 shown in figures 8(b)

and 8(c) are still largely determined by 1/ḡV enhanced α̂VΦ` contributions. The main

dependence on α̂AΦ` comes from the denominator of the asymmetries, but is subleading

compared to the α̂VΦ` terms from the numerator. For non-vanishing contact couplings the

asymmetries are well approximated by

−A(3)
φ ' −

9π
√

2

2

ḡ2
V

ḡ2
A

s− 1

2s− 1

√
s

s+ 3

[
1− (1 + 2s)

(
α̂AΦ` −

ḡA
ḡV
α̂VΦ`

)]
,

−Acθ1,cθ2 ' 9
ḡ2
V

ḡ2
A

1

s+ 3

[
1− (1 + 2s)

(
α̂AΦ` −

ḡA
ḡV
α̂VΦ`

)]
. (4.7)

The asymmetries can reach 2% for allowed values of α̂V,AΦ` . Relative to the SM value of the

asymmetry, the correction from anomalous couplings can still be 100%. The ratio of the

asymmetries is determined by kinematics as for H → Z`+`−.
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(a) σ (b) −A(3)
φ (c) −Acθ1,cθ2

Figure 8. (a) σ(s), (b) −A(3)
φ , (c) −Acθ1,cθ2 . Four scenarios with the same α̂VΦ` coupling are

considered. The red solid-line is the SM case. The dotted green line corresponds to (α̂VΦ`, α̂
A
Φ`) =

(5, 5)× 10−3, whereas the dot-dashed blue line to (α̂VΦ`, α̂
A
Φ`) = (5,−5)× 10−3.

(a) σ (b) −A(3)
φ (c) −Acθ1,cθ2

Figure 9. (a) σ(s), (b) −A(3)
φ , (c) −Acθ1,cθ2 . Three scenarios are considered: the red solid-line is

the SM result. The dot-dashed blue line corresponds to α̂AZ = −1.3× 10−2, the dotted green line

to α̂AZ = 2.6× 10−2.

Thus we conclude that the total cross section σ(s) can be significantly modified by

α̂AΦ` but is insensitive to α̂VΦ` in comparison, while the situation is opposite for (some of)

the angular asymmetries. Eq. (4.6) shows that the cross section of e+e− → HZ is also

quite sensitive to α̂ZZ due to the factor 12(2s− 1)/(s+ 3) ∼ O(20). Overall, e+e− → HZ

therefore seems to be better suited to discover contact interactions than H → Z`+`−.

4.2 Anomalous HZγ coupling

Turning to the anomalous HZγ coupling, we find the approximate expression

4J1 + J2 '
√

2m2
H GF ḡ

4
A

s+ 3

s− 1

(
1− s− 1

s+ 3

12 ḡV gemQ`
ḡ2
A

α̂AZ

)
(4.8)
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(a) A(1)
φ (b) A(2)

φ

Figure 10. Asymmetries A(1,2)
φ in two different scenarios. The dot-dashed orange line corresponds

to (α̂ZZ̃ , α̂AZ̃) = (4, 4) × 10−2, and the dashed black line to (α̂ZZ̃ , α̂AZ̃) = (−2,−1) × 10−2. The

red solid line is the vanishing SM result.

for the combination of angular functions that determines the cross section. Similar to the

case of H → Z`+`− the correction is gV suppressed and has little influence on σ(s) as

shown in figure 9(a).

The asymmetries can reach a few percent (figures 9(b) and 9(c)) for the largest allowed

values of the HZγ coupling. This again is due to the 1/gV enhancement of the correction.

Assuming other couplings to vanish, approximate expressions for the asymmetries in the

presence of the α̂AZ coupling are

−A(3)
φ ' −

9π
√

2

2

ḡ2
V

ḡ2
A

s− 1

2s− 1

√
s

s+ 3

[
1− gemQ` (s+ 1)

2ḡV
α̂AZ

]
,

−Acθ1,cθ2 ' 9
ḡ2
V

ḡ2
A

1

s+ 3

[
1− gemQ` (s− 1)

ḡV
α̂AZ

]
. (4.9)

There is no photon-pole enhancement in this case. Nevertheless, relative to the SM value

of the asymmetry, the correction from the anomalous coupling can still be 100%.

4.3 CP-odd couplings

In the e+e− → HZ(→ `+`−) case, the asymmetry A(1)
φ is again dominated by α̂

AZ̃
, but

the contribution from α̂
ZZ̃

is less suppressed than in H → Z`+`− due to the larger values

of s. The situation is opposite for A(2)
φ , where α̂

ZZ̃
dominates and α̂

AZ̃
gives a small gV

suppressed contribution. Although a zero may appear in both asymmetries due to the

interplay of the two CP-odd couplings, whenever a zero occurs the strong cancellation

between the two contributions keeps the asymmetry below the permille level. We therefore

provide approximate expressions that contain only the dominant effects:

A(1)
φ ' −9π

√
2

8

ḡV gemQ`
ḡ2
A

√
λ (s− 1)√
s (s+ 3)

α̂
AZ̃
,

A(2)
φ ' 8

√
λ

π(s+ 3)
α̂
ZZ̃
. (4.10)
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From these expressions one sees that the asymmetries can be at the percent level for CP-

odd couplings O(10−2). The exact results for the asymmetries A(1,2)
φ are shown in figure 10

for two coupling value sets.

5 Estimate of SM loop effects

Electroweak one-loop contributions to the processes studied here can be of similar size as

the tree-level d = 6 corrections discussed in the previous sections. For example, they are

around 2% percent for the H → 4` decay rate [49]. In this section we perform a rough

estimate of SM loop contributions and compare them to the effect from the anomalous

HZγ coupling. A full analysis is beyond the scope of the present work.

Let us consider the SM one-loop HZγ∗ and HZZ∗ amplitudes, whose explicit analyt-

ical expressions can be found in refs. [46–48]. The amplitude for the transition H → ZV

(with V = Z∗, γ∗) involves five form factors in general. However, when the particles are

on-shell or coupled to conserved currents, which is the case of interest here, only two form

factors contribute. We therefore write the amplitudes in the form

Mµν
HZV (H → Z(p)V (q)) = 2m2

Z (
√

2GF )1/2

[
qµpν

m2
H

DV (q2) + gµν EV (q2)

]
, (5.1)

where the loop functions DZ,γ and EZ,γ are functions of q2. The tree-level HZZ vertex is

treated separately and already included in eq. (2.12).8

In the previous sections we discussed the modifications of the form factors H1,V and

H2,V due to the anomalous HZγ coupling α̂AZ . Including the one-loop H → ZV ampli-

tudes of eq. (5.1) into the defining expression eq. (3.8), we find

H1,V =
2mH(

√
2GF )1/2 r

s− r
gV

[
1 + EZ(q2) +

Q` gem κ (s− r)
2rs gV

(
α̂AZ −

2 r

κ
Eγ(q2)

)]
,

H2,V =
2mH(

√
2GF )1/2

s− r
gV

[
r DZ(q2)− Q` gem(s− r)

s gV

(
α̂AZ + r Dγ(q2)

)]
, (5.2)

which should be compared to eq. (3.9). For the present purpose we have kept only the

anomalous HZγ interaction, setting all other d = 6 couplings to zero. The terms with an

intermediate photon are 1/gV enhanced with respect to the terms with an intermediate Z.

Since the one-loop H → ZZ amplitude is of the same order as the H → Zγ amplitude, we

can neglect the contributions from DZ and EZ in the further discussion.

We start by discussing the modifications to H1,V and H2,V in the decay H → Z`+`−.

The first important observation is that, since the Higgs boson cannot decay into WW

8The d = 6 corrections from the redefinition of the Lagrangian input parameters in the last equation

can be neglected since they generate terms that are loop and 1/Λ2 suppressed. It also needs to pointed

out that the form factors DZ,γ and EZ,γ are gauge invariant only if both external states are on their mass

shells. We use the expressions from refs. [46–48] where the ’t Hooft-Feynman gauge is adopted, and drop

the (presumably small) box-diagram contributions to the H → Z`+`− and e+e− → HZ processes, which

would be required to restore gauge invariance. In the q2 range relevant to the decay H → Z`+`− the gauge

dependence of the one-loop expressions for the HZγ∗ amplitude is expected to be small because the photon

is nearly on the mass shell in relation to m2
H .
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or tt̄, the loop contribution is real and does not generate an imaginary part of the form

factors. Therefore, the angular structures in the presence of these loop contributions remain

the same as discussed in the previous sections. Second, the s dependence of the loop

contribution is small, since s � 1. Therefore, the inclusion of the HZV amplitude at

one loop amounts, essentially, to shifting the value of α̂AZ by an amount given by the

expressions in round brackets in eq. (5.2). To estimate the size of this shift in H1,V and

H2,V , we compare the allowed range for the anomalous HZγ coupling,

α̂AZ ∈ [−1.3, 2.6]× 10−2, (5.3)

to the quantities
2 r

κ
Eγ(s = 0.01) = −7.1× 10−3, (5.4)

and

rDγ(s = 0.01) = 7.1× 10−3, (5.5)

respectively. (The energy dependence of this function is small in the s range relevant to

H → Z`+`−.) The shift is therefore small relative to the allowed values of α̂AZ . This is

shown explicitly in figure 11(a) for

δH1,V =
Q` gem κ (s− r)

2 r s gV

(
α̂AZ −

2 r

κ
Eγ(q2)

)
, (5.6)

and in figure 11(b) for H2,V . We therefore conclude that the previously discussed asymme-

tries are not affected dramatically by loop effects, at least in the study of the anomalous

HZγ interaction. In any case, SM loop effects are calculable and should simply be included

in a definitive analysis, when sufficient experimental data are available.

Turning to e+e− → HZ, we note that the form factors are now probed in the kinematic

range, where the off-shell momentum q2 ≥ (mH + mZ)2. The loop functions DV and

EV develop imaginary parts and therefore the form factors H1,V and H2,V are complex,

which generates additional angular structures in eq. (3.12). However, while the imaginary

parts are sizable, as shown in the two right panels figure 12(b) and figure 12(d), the

real parts of the form factors H1,V and H2,V relevant to the asymmetries discussed in the

previous sections, are not dramatically altered and even smaller than for H → Z`+`−. The

corresponding results for δH1,V and H2,V are displayed in the two left panels of figure 12.

Numerically, the contribution from 2 r
κ Eγ(q2) to δH1,V now ranges from (−0.66−i 12)×10−3

near threshold (s = 3) to (1.7 − i 5.9) × 10−3 at s = 7. Similarly rDγ(q2), which affects

H2,V varies from (1.4 + i 11) × 10−3 at s = 3 to (−1.5 + i 5.8) × 10−3 at s = 7. The real

part of these numbers should again be compared to the range given in eq. (5.3).

6 Summary

In this work we studied the observability of anomalous d = 6 Higgs couplings in H →
Z(→ `+`−)`+`− decay and in the crossing-symmetric process e+e− → HZ(→ `+`−). We

computed the differential decay width dΓ/dq2 of H → Z`+`−, the total cross section

of e+e− → HZ(→ `+`−), σ(s), as well as angular asymmetries in both processes. Our
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Figure 11. Dominant effects due to the H → ZV one loop amplitude in the form factors H1,V

and H2,V in decays H → Z`+`−. In (a) we show δH1,V , eq. (5.6), and (b) H2,V . The results within

the solid lines include the dominant loop contribution and α̂AZ ∈ [−1.3, 2.6]×10−2. Results within

the dashed line include solely the effects of α̂AZ .

particular interest regarded the question, see also ref. [24], whether angular asymmetries

have the potential to reveal BSM physics that would be hidden in dΓ/dq2 and σ(s). In

some of these asymmetries, the anomalous HZγ coupling, α̂AZ , and the vector contact

HZ`` interaction parametrized by α̂VΦ`, are enhanced with respect to the SM contribution

by a factor of 1/gV . These two types of interactions are therefore the prime targets of the

asymmetry analysis. Our main conclusions can be summarized as follows:

• We identify several angular asymmetries, which are indeed very sensitive to anoma-

lous couplings.

• Within the presently allowed range of the anomalous HZγ interaction strength, α̂AZ ,

modifications of angular asymmetries of O(1) and even larger relative to the SM value

are still possible indicating sensitivity to multi-TeV scales.

• Anomalous HZ`` contact interactions have smaller effects. This is mainly because

we find that their size is already tightly constrained by existing data, in agreement

with the constraints derived in ref. [38] (although this refers to another operators

basis). The effects of the contact HZ`` interactions in the angular asymmetries of

H → Z`+`− were previously investigated in ref. [24]. While we formally agree with

their results, we find significantly smaller asymmetries, since the typical values of

α̂VΦ` adopted in that paper are about a factor of four larger than those allowed in the

present analysis.

• At present, the CP-odd d = 6 couplings are not strongly constrained by data. We

showed that CP-odd asymmetry A(1)
φ can reach the few percent level in both in H →

Z`+`− decay and e+e− → HZ Higgs production. In H → Z`+`− an asymmetry-zero
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Figure 12. Dominant effects due to the H → ZV one loop amplitude in the form factors H1,V and

H2,V in e+e− → HZ(→ `+`−). In (a) and (b) we show Re(δH1,V ) and Im(δH1,V ), respectively. In

(c) and (d) we show Re(H2,V ) and Im(H2,V ) respectively. Results within the solid lines include the

dominant loop contribution and α̂AZ ∈ [−1.3, 2.6]× 10−2. Results within the dashed lines include

solely the effects of α̂AZ .

may occur. However, for allowed values of the CP-odd couplings the asymmetry that

can display this zero is never large.

• Most interesting asymmetries are small in absolute terms, reaching at most 10%, and

often much less, because they are suppressed by the small vector Z`` coupling.

• Overall, the process e+e− → HZ seems better suited than H → Z`+`− for the study

of anomalous HZ`` contact interactions due to the higher di-lepton invariant masses.

This is particularly true for the contributions of α̂AΦ` (as well as of α̂ZZ) to the total

cross section, where 15% percent modifications are possible. On the other hand,

H → Z`+`− provides better sensitivity to the anomalous HZγ coupling due to the

photon-pole enhancement.
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Figure 13. Kinematics of the four-body decay H → Z(→ `+`−)`+`−.

We further provided a rough estimate of SM loop contributions to the processes dis-

cussed here. These loop contributions have been calculated in the past and our estimate

suggests that loop effects are small compared to the presently allowed d = 6 effects. Once

sufficient data is available to attempt constraining d = 6 couplings from angular asymme-

tries, SM loop effects should simply be included. However, the experimental detection of

angular asymmetries will be challenging even with the planned higher statistics up-grades

of the LHC.
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A Kinematics

A.1 H → Z`+`−

Here we describe the kinematics and the angle conventions used in our results. The reaction

is labelled as H(pH)→ `−1 (p3)`+1 (p4)Z(p)(→ `−2 (p1)`+2 (p2)), where we labelled the two pairs

of leptons to distinguish the pair `−2 `
+
2 that arises from the decay of the on-shell Z boson

from the other. We have

p = p1 + p2, q = p3 + p4, (A.1)

and p2 = m2
Z . We denote momenta in the `+2 `

−
2 rest frame by an upper bar (p̄), whereas

momenta in the `+1 `
−
1 rest frame are denoted by an asterisk (p∗).

Using the conventions for the axes given in figure 13, we define the positive z direction

to be that of the on-shell Z three-momentum p in the Higgs rest frame. The angle θ1 is the

angle between the momentum p1 of `−2 and the z axis, in the `+2 `
−
2 rest frame. Accordingly,
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in the massless limit the momenta p1,2 are written in the Z rest frame as

p̄1 =
mZ

2
(1, sin θ1, 0, cos θ1), (A.2)

p̄2 =
mZ

2
(1,− sin θ1, 0,− cos θ1). (A.3)

The angle θ2 is the angle between the momentum p3 of `−1 in the `+1 `
−
1 rest frame and

the z axis. The momenta p3,4 in the rest frame of the lepton pair are written as

p∗3 =

√
q2

2
(1, sin θ2 cosφ, sin θ2 sinφ, cos θ2), (A.4)

p∗4 =

√
q2

2
(1,− sin θ2 cosφ,− sin θ2 sinφ,− cos θ2), (A.5)

where φ is the angle between the normal of the planes defined by the z direction and the

momenta p1 and p3. It is measured positively from the `+2 `
−
2 plane to the `+1 `

−
1 plane.

A.2 e+e− → HZ(→ `+`−)

The momenta are labelled as e−(p−)e+(p+)→ H(pH)Z(p)(→ `−(p1)`+(p2)), where in the

final state we kept the conventions used in the H → Z`+`−. We choose the z direction to

be defined by the momentum of the on-shell Z boson in the initial state rest frame, here

the incoming e+e− rest frame. The xz plane coincides with the plane defined by p and

p1, which complies with the previous definition. For the final state leptons, in the dilepton

rest frame and with m` = 0, the expressions of the momenta are formally the same as in

the H → Z`+`− case

p̄1 =
mZ

2
(1, sin θ1, 0, cos θ1), (A.6)

p̄2 =
mZ

2
(1,− sin θ1, 0,− cos θ1), (A.7)

where again θ1 is the angle between p1, the momentum of `−, and the z axis.

With these definitions, the incoming momenta in the e+e− rest frame (denoted with

an asterisk) are given by

p∗− =

√
q2

2
(1, sin θ−2 cosφ, sin θ−2 sinφ, cos θ−2 ), (A.8)

p∗+ =

√
q2

2
(1,− sin θ−2 cosφ,− sin θ−2 sinφ,− cos θ−2 ), (A.9)

where, to make a clear distinction, the angle θ−2 is the angle between the direction of flight

of the e− and the z axis in the e+e− rest frame. To best exploit the crossing symmetry of

the two processes, one should describe the reaction using the angle θ+
2 measured from the

z axis to the direction of flight of the e+, since in H → Z`+`− we chose to use the angle

between the direction of flight of `−1 and the z axis. Our results in section 4 are therefore

written in terms of the angle

θ+
2 ≡ θ2 = π − θ−2 , (A.10)

which makes the expressions for the squared amplitude in decay and scattering formally

identical.
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Figure 14. Kinematics for the scattering e+e− → HZ(→ `+`−).

B Explicit expressions for the J functions

Here we give the expressions of the J functions defined in eq. (3.13). In the following

results λ stands for

λ ≡ λ(1, s, r) = 1 + s2 + r2 − 2s− 2r − 2rs, (B.1)

and we recall that κ = 1 − s − r. The couplings gV,A are those of eq. (2.15) and contain

the d = 6 corrections. The explicit expressions for the J functions read at O(1/Λ2)

J1 =
8
√

2m2
H GF

(s− r)2

(
g2
A + g2

V

)2
r3s×(

1 +
2 (g2

V α̂
eff
1 + g2

Aα̂
eff
2 )

g2
A + g2

V

− 2κ α̂ZZ
r

+
gV Q`gem(s− r)κ α̂AZ

(g2
A + g2

V ) rs

)
,

J2 =
4
√

2m2
H GF

(s− r)2

(
g2
A + g2

V

)2
κ2 r2 ×(

1 +
2 (g2

V α̂
eff
1 + g2

Aα̂
eff
2 )

g2
A + g2

V

− 8 s α̂ZZ
κ

+
4 gV Q` gem(s− r)α̂AZ

(g2
A + g2

V )κ

)
,

J3 = −
128
√

2m2
H GF

(s− r)2
g2
A g

2
V r

3 s

(
1 + α̂eff

1 + α̂eff
2 −

2κ α̂ZZ
r

+
Q` gem(s− r)κα̂AZ

2 gV r s

)
,

J4 = −
16
√

2m2
H GF

(s− r)2
g2
A g

2
V κ

√
λ r3

s

(
4 s α̂

ZZ̃
+
Q` gem (r − s)α̂

AZ̃

gV

)
,

J5 =
κ

4
√
r s

J8,

J6 = −
64
√

2m2
H GF

(s− r)2
g2
A g

2
V κ
√
s r5 ×(

1 + α̂eff
1 + α̂eff

2 +
(λ− 2κ2)α̂ZZ

r κ
+
Q` gem(r − s)(λ− 2κ2)α̂AZ

4 gV r s κ

)
,

J7 =
4
√

2m2
H GF

(s− r)2

(
g2
A + g2

V

)2
κ
√
s r5 ×(

1 +
2(g2

V α̂
eff
1 + g2

Aα̂
eff
2 )

g2
A + g2

V

+
(λ− 2κ2)α̂ZZ

r κ
+
gV Q` gem(r − s)(λ− 2κ2)α̂AZ

2(g2
A + g2

V ) r s κ

)
,
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J8 =
8
√

2m2
H GF

(s− r)2

(
g2
A + g2

V

)2
r2
√
λ

(
2 s α̂

ZZ̃
+
gV Q` gem (r − s)α̂

AZ̃

(g2
A + g2

V )

)
,

J9 = J1. (B.2)
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[3] ATLAS collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data,

Phys. Lett. B 726 (2013) 120 [arXiv:1307.1432] [INSPIRE].

[4] CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final

state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].

[5] J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP 06 (2013) 103

[arXiv:1303.3879] [INSPIRE].

[6] A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812]

[INSPIRE].

[7] F. Feruglio, The Chiral approach to the electroweak interactions, Int. J. Mod. Phys. A 8

(1993) 4937 [hep-ph/9301281] [INSPIRE].

[8] V. Koulovassilopoulos and R.S. Chivukula, The Phenomenology of a nonstandard Higgs

boson in W(L) W(L) scattering, Phys. Rev. D 50 (1994) 3218 [hep-ph/9312317] [INSPIRE].

[9] B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys.

Rev. D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].

[10] R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian

for a Light Dynamical “Higgs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726

(2013) 926] [arXiv:1212.3305] [INSPIRE].
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