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Abstract

Throughout this work, the reader will find a comprehensive review and discussion about the
state of the art and future perspectives of power electronics converters implemented in four-wire
applications. The three-dimensional Space Vector Modulation (SVM) problem for this kind of
converters is extensively discussed in this dissertation and a simple modulation algorithm for
a three-level four-leg NPC converter is proposed and successfully validated in an experimental
rig. Furthermore, additional issues barely reported in the literature for the four-leg NPC con-
verter, such as: design of different switching patterns without requirement of Look-up Tables
(LUT), the capability for balancing the voltages on the dc-link capacitors under unbalanced
and non-linear loads, the overmodulation problem in a three-dimensional space and study of
the switching frequency of the devices of the converter under modulation of non-sinusoidal and
non-balanced voltages, are widely discussed.

Afterwards, the proposed modulation technique is implemented in an aerospace application
as a Ground Power Unit (GPU), also known as Ground Power Supply. This power supply
provides fixed sinusoidal phase-to-neutral voltages of 400Hz and 110V to an unbalanced and
non-linear load, exploiting the capabilities of the four-leg NPC converter to handle with zero-
sequence components. For successfully achieve this purpose, resonant controllers are imple-
mented for compensation of until eleventh order harmonics, which are suitable solution for this
application, providing excellent steady-state and transient performance.
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Kurzfassung

In dieser Arbeit wird dem Leser ein umfassender Überblick über den Stand der Technik sowie
Zukunftsperspektiven für Umrichter mit 4 Zweigen in vierphasigen Systemen präsentiert. Die
dreidimensionale Raumzeigermodulation für diese Art von Umrichtern wird in dieser Arbeit
ausführlich diskutiert und ein neuer einfacher Modulationsalgorithmus für einen drei-Level
NPC Umrichter mit 4 Zweigen vorgestellt. Anschließend wird dieses Verfahren experimentell
am Prüfstand untersucht. Darüber hinaus werden weitere Probleme für drei-level NPC Um-
richter mit 4 Zweigen in dieser Dissertation analysiert und diskutiert, wie zum Beispiel: Entwurf
unterschiedlicher Pulsmuster ohne Umsetzungstabellen zu benötigen, die Fähigkeit zum Aus-
gleich der Spannungen an den Zwischenkreiskondensatoren für unsymmetrische und nichtlin-
eare Lasten, die Übermodulation in einem dreidimensionalen Raum und eine Untersuchung der
Schaltfrequenz des Umrichters für Modulation von nichtsinusförmigen und unsymmetrischen
Spannungen. Danach wird das vorgeschlagene Modulationsverfahren in einer Luft-und Raum-
fahrt Anwendung als Ground Power Unit (GPU), die auch als Bodenstromversorgung bekannt
ist, implementiert. Diese Stromversorgung speist eine unsymmetrische und nichtlineare Last
mit einer festen sinusförmigen Phasenspannung von 400 Hz und 110 V, wobei die Fähigkeit
des drei-Level Umrichters mit 4 Zweigen, die Nullkomponenten des Stromes einzustellen, aus-
genutzt wird. Zu diesem Zweck werden Resonanzregler zur Kompensation von Harmonischen
bis zur elften Ordnung implementiert. Es wird nachgewiesen, dass Resonanzwandler eine funk-
tionierende Lösung für diese Anwendung darstellen und eine ausgezeichnete stationäre und
transiente Funktion erzielt werden kann.
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CHAPTER 1

Introduction

The general structure of an electrical interconnected system is presented in Fig. 1.1, which
can be divided into three main sectors: generation, transmission and distribution systems. The
interconnection of several generation units to provide energy to the end consumers sets up a
complex network, which first approaches were established around the early 20th century. For
many decades this system was controlled by semi-automatic mechanical methods, based on a
demand-driven operation. By that, the inertia of the huge electrical generators incorporated in
the generation sector are fundamental to ensure the stability of the system, as their stored en-
ergy (inertia) allows to overcome unfavorable transients conditions, such as temporal failures or
connection/disconnection of large loads [1]. Furthermore, the inductive nature of the long trans-
missions lines facilitates the control of frequency and voltage magnitude along the system [1].
Thereby, the active power delivered by generators can be directly associated to the control of
the system frequency, while its reactive power, along with the use of reactive passive elements,
is associated to the control of the voltage magnitude at the different bars of the interconnected
system. Under this scenario, the three actors of the system were clearly identifiable and coordi-
nated by a Transmission (TSO) and Distribution System Operator (DSO) to maintain an stable
operation of the system.

After the first mercury arc valve was invented and used as the first rectifier by Peter Cooper
Hewitt in 1902 [3], a tremendous growth in research and development of power electronics
devices and applications started in this field and it is still being carried out until today. Thereby,
in 1920 the first mercury arc valve based rectifier came into the market and was implemented
in several low and high power industrial application, such as: rectification for public lighting,
railway applications, High Voltage Direct Current Systems (HVDC) or battery chargers [4].
It was not until the 60’s, with the introduction of solid state semiconductors, that low-power
mercury arc valves were replaced by solid stated semiconductors. Consequently, with the fast
development of solid state semiconductors, in 1975 they became also available in the market
for of high-power ranges, leaving obsolete the mercury arc valves.

Since 1975, the solid state semiconductors boosted the development of more sophisticated
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Figure 1.1: Simple representation of a typical electrical system composed of Generation, Trans-
mission and Distribution sectors. Diagram obtained from [2].

power electronic devices, such as IGBTs, IGCTs, GTOs, MOSFETS and Diodes [5]. By
that, several high performance applications have been introduced into the market in the last
four decades, such as: electrical drives for electrical machines, Uninterruptible Power Supply,
Dynamic Voltage Restorers, Active Filters, Static VAR Compensators, dc power supplies and
Active Front End rectifiers among others [5]. This fast development, along with the fast im-
provement of efficiency and reduction of prices on renewable energy systems, such as: Fuel
Cell, photovoltaic cells and wind mills, have been changing the structure of the generation sec-
tor during the last decade. Thus, instead of incorporation of the typical huge generation power
plants, several groups of small generation units, known also as Distributed Power Generation
(DPG), are being incorporated to the electrical system every year [6, 7]. Fig. 1.2 shows the
summary of the incorporation of installed power capacity for the last 15 years in the European
Union, presented by The European Wind Energy Association (EWEA) [8]. As it can be seen, in
2014 the Renewable Energy System (RES) represents almost the 80% of the installed capacity.

Figure 1.2: Growth of the installed power generating capacity per year in MW and Renewable
Energy System (RES) share (%) . Diagram obtained from [8].
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In this context, the use of power electronic converters is essential for the incorporation of RES
into the electric system. These interfaces can be used not only for delivering the energy from
the renewable source to the grid, but also for creating a more flexible and efficient electrical
system [6, 7]. Thereby, the incorporation of local generation units into the distribution grids,
together with the fast incorporation of electromobility and government policies to promote the
installation of RES by the end customers is leading to a new paradigm in the electrical sector,
known as µGrids, which modifies the typical Generation-Transmission-Distribution structure
to a decentralized system, where the generation sector is spread all over the network. Fig. 1.3,
shows a typical scheme of a µGrid, which can be considered as a four-wire network, where
several different customers are connected to the phase-to-neutral voltages of the grid. This
network provides several advantages compared to a standard electrical system, such as:

• Distributed Power Generation. Theoretically allows island operation mode.

• Bi-directional Power Flow.

• Active demand Management.

• Full controllability under faults and transients periods.

Residential Sector

Industrial and Commercial Sector

Electric Vehicles

Electrical Network

Fuel Cell
Generation

Wind Energy

Storage Systems

Diesel Generation

Photovoltaic Energy

4-Wire System

1 φ and 3 φ, balanced and unbalanced Loads

4-Leg Converter

4-Leg Filter

Figure 1.3: Representation of a µGrid connected to the electrical main grid. Delta-Wye trans-
former can be replaced by four-leg converters.

As presented in Fig. 1.3, a µGrid does not represent necessarily an isolated system, but it
is integrated into the electrical main grid. This enables island operation mode in case of grid
outage, providing a more reliable uninterrupted energy service to the final customers. However
nowadays, due to the lack of hierarchical controllability by DSOs and TSOs and the poor ca-
pability of the power converters to work as interconnected units, the operation of a µGrid is
restricted only to grid connection, limiting the isolated operation mode to prevent prospective
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damage to electrical system [6, 7]. This considerably limits the real potential of the system,
depriving of energy to customers when it is not strictly necessary. Naturally, this represents
a new challenge to the TSOs and DSOs and has been already acknowledge by the European
authorities through the European Distribution System Operators (EDSO) for Smart Grids and
the Agency for Cooperation of Energy Regulators (ACER), who highlighted the importance of
TSO-DSO cooperation for a efficient development of electrical grids [9].

The regulation of isolated operation and the control of the interconnected power electronic
converters to maintain an stable grid represent one of the important challenges for the coming
years, which can be considered the first transition step in the constitution of a new structure
of an electrical system. Thereby, the development of new topologies and control strategies for
controlling power flows, regulating voltage and frequency and compensating harmonic distor-
tion among interconnected power electronic converters plays a fundamental role to achieve this
efficient, flexible and reliable future network.

In this context four-leg converters play an important role, as they are the most efficient manner
to directly connect the generation unit to a four-wire network through a back-to-back converter,
avoiding expensive and bulky transformers, which have to be oversize and to handle the unbal-
anced and distorted currents typically produced in distribution systems. Furthermore, four-leg
converters can be operated to support the network for compensating voltage unbalance, regulat-
ing voltage frequency, injecting reactive power or compensating harmonic distortion at the grid
voltages.

A particular interesting application for four-leg converters is found in the aerospace indus-
try. Due to the high power rate of the electric network inside modern commercial aircrafts, a
plane itself can be conceptually considered as an isolated µGrid. In order to provide the aircraft
with electrical energy when it is landed, the use of an external 90kV A to 2MW power supply
is required, known as Ground Power Unit (GPU). This GPU must supply 400Hz, 115V rms
phase-to-neutral voltages [10] to the aircraft. The different unbalanced and nonlinear equip-
ment connected to its electrical grid, along with the 400Hz frequency required for the supplied
voltages makes this application a very challenging technical task.

Regardless of the application, either 50Hz/60Hz in domiciliary µGrid or 400Hz aircraft
electrical grid, the development of an efficient modulation algorithm, definition of switching
patterns and a suitable external control strategy that effectively compensates the system unbal-
ances and nonlinearities is a matter of high interest for future applications.

1.1 Technical Framework

Since the first experimental validation of a four-leg converter at the end of the 1990’ [11–14],
several works have reported in the literature for achieving an effective modulation algorithm for
this kind of converters. Most of these works can be grouped in applications for two-level four-
leg converters [15–20] or four-leg Matrix converters [21–23]. However when Medium Voltage
(MV) connection is required and/or high efficiency is desirable, the reduction of switching
frequency and Total Harmonic Distortion (THD) become key issues and conventional matrix
converters or two-level voltage source inverters (VSI) are less attractive or unfeasible solu-
tions. Consequently, four-leg multilevel converters, such as the four-leg Neutral-Point-Clamped
(NPC) converter, arise an interesting alternative.
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A three-level NPC converter has considerable advantages compared to a conventional two-
level converter. For instance, NPC converters can be connected to medium voltage systems
without a power transformer being required [7] and they can operate with a relatively high ef-
fective switching frequency, reducing the total harmonic distortion at the grid/load side [24].
Moreover, for a similar application, an NPC converter requires smaller power filter when com-
pared with a conventional two-level VSI [25]. In addition, lower dv/dt values, higher efficiency
and less stress in the devices are also considered important advantages of the NPC converter,
which can be exploit in four-wire applications.

The use of Pulse Width Modulation (PWM) applied independently to each leg of a four-leg
NPC converter has been addressed in [15,26–28]. However those strategies do not allow selec-
tion of variable vector switching sequences and they do not use all the vector redundancies to
control voltage balance on the dc-link capacitors, which is important when a low switching fre-
quency is required. Implementation of non-linear controllers such as Finite-Set Model Predic-
tive Control (FS-MPC), to track output voltage and current references have been also reported
in [19, 29, 30]. However, the variability of the switching frequency and the variable control
performance at different operating points are important drawbacks of this approach. Some ap-
proaches of Three-Dimensional Space Vector Modulation in abc [18, 31] and αβγ coordinates
frame [17, 32–37] have been also reported for multilevel four-leg converters. However, they
are either simulations or algorithms implemented in abc coordinates, where the direct control
of the zero-sequence of the converter is not possible. Thereby, the development of a simple
and efficient modulation algorithm in αβγ coordinates for multilevel four-leg converters, which
allows easy implementation of different switching patterns, implementation of overmodulation
techniques or balance of the dc-link voltage capacitors, remains still a matter of discussion in
the literature.

Throughout this work, the reader will find a comprehensive review and discussion about the
state of the art and future perspectives of power electronics converters implemented in four-wire
applications. The three-dimensional Space Vector Modulation (SVM) problem for this kind of
converters is extensively discussed in this dissertation and a simple modulation algorithm for
a three-level four-leg NPC converter is proposed and successfully validated in an experimental
rig. Consequently, the proposed modulation technique is implemented as a GPU, exploiting
the capabilities of the four-leg NPC converter to handle zero-sequence components. In order to
achieve this purpose, resonant controllers are implemented for compensation of until eleventh
order harmonics, demonstrating that it is a suitable solution for this application, providing ex-
cellent steady-state and transient performance.

1.2 Contributions

The contributions of this work can be summarized as follows:

• A three-dimensional Space Vector Modulation (SVM) algorithm in αβγ coordinates is
proposed and experimentally validated in a four-leg NPC converter. This algorithm uses
the symmetry of the αβγ modulation space to reduce the complexity the modulation
problem to a simple two-dimensional solution. Moreover, its generality makes it easily
implementable in any kind of four-leg topology.
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• A simple algorithm to design different switching patterns without need of extensive Look-
up Tables (LUT) is proposed and validated in a four-leg NPC converter. This algorithm
allows to fix the switching frequency and shape the harmonic spectrum of the modulated
waveform according the the requirements of the application.

• A method to actively balance the voltages on the dc-link capacitors of the four-leg NPC
converter using its redundant vectors has been implemented. The limitations for the dc-
link voltage balancing under different non-linear and unbalanced loads is theoretically
discussed and experimentally validated.

• An three-dimensional overmodulation algorithm in αβγ coordinate frame is proposed
and experimentally validated. This algorithm limits the reference vector the the al-
lowable modulation space avoiding the incorporation of additional low order or non-
characteristics harmonics into the modulated waveforms.

• Finally, the aforementioned techniques are successfully validated in the four-leg NPC
converter implemented as a GPU. The balance of the voltages in the dc-link capacitors,
fixed switching frequency and compensation of high order harmonics is obtained, per-
forming an excellent steady-state and transient response.

1.3 Outline
The rest of this work is divided in six Chapter . First, a summary of the modulation tech-
niques used in three-leg converters, which can be extended to four-leg converters, is presented
in Chapter 2. Thereafter, an extensive review of the state of the art of control strategies for
three-leg four-wire and four-leg power electronic converters connected to four-wire systems is
presented in Chapter 3. In order to implement a GPU, Chapter 4 presents the design of resonant
controllers for compensation of harmonic distortion. The discretization of this controller for
real implementation is also discussed in this chapter. Once the reported literature of four-leg
converters has been reviewed and the control structure for a GPU has been discussed, the pro-
posed SVM algorithm for a three-level four-leg NPC converter and its experimental validation
is presented in Chapter 5. This modulation algorithm is used in Chapter 6, where a GPU is ex-
perimentally tested using resonant controllers for compensation of nonlinearity and unbalance
components. Finally, Chapter 7 presents the final conclusions of this work and an outlook to
continue future research in this field.
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CHAPTER 2

Background Theory

Abstract: This chapter provides the theoretical background of modulation strategies implemented in two-level and
three-level NPC converter. The chapter focuses on Space Vector Modulation and provides a complete review of
its most important features such as arrangement of switching patterns, overmodulation strategies and methods for
balancing the dc-link voltages in a NPC converter.

The two-level voltage source inverter (VSI) and three-level Neutral Point Clamped (NPC)
VSI have been subject of intensive research during the past decades [5]. The first has become
the standard topology for most of the low voltage applications such as: electric drives, power
conditioners, uninterruptible power supplies and grid connected converters, while the three-
level NPC converter was introduced as a solution for medium voltage range [24] and has been
extensively used in electric drive and grid connected applications [38]. Furthermore, it has been
also preferred in applications where high efficiency is required, as photovoltaic applications
[39], [40].

Two important groups of control techniques have been proposed in the literature for synthe-
size an output voltage in a VSI. In the first group, the output voltage of a VSI is modulated
based on a linear approximation, using the available switching states of the converter. These
methods are usually known as Pulse Width Modulation (PWM) Techniques, or open-loop PWM
techniques, and are mainly divided as Carrier-Based PWM and Space Vector PWM (SVPWM)
(or simply Space Vector Modulation (SVM)) [41], [42]. On the other hand, a second group of
techniques indirectly modulate the output voltage by using non-linear control techniques such
as: predictive control [43] [44], hysteresis comparators [42] or look-up tables based methods
such as: Optimal Pulse Patterns (OPP) [45] or Space Vector based Current Controllers [46].
Most of these methods are also known as close-loop PWM techniques [47].

The open-loop PWM techniques provide fixed and controllable switching frequency, which
yields to fixed switching power losses and also a predefined harmonic spectrum. They have been
preferred in several industrial applications and became the most standard and mature technique
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implemented in three-leg converters [42, 47]. This Chapter presents an overview of the current
state of open-loop Pulse Width Modulation (PWM) techniques applied to two- and three-level
NPC VSIs.

2.1 The Two-level Voltage Source Inverter

Fig. 2.1 shows the circuit diagram of a two-level VSI. This converter possesses six switches
denoted as Sa, Sb, Sc and S̄a, S̄b, S̄c. In order to avoid short circuits, switches S̄i represents
always the complementary state of the switches Si, for i ∈ {a, c, b}. The dc-link voltage has
been virtually split into two dc voltage sources, creating a middle point denoted as z, which is
used as reference point for obtaining the output voltages viz for i ∈ {a, b, c}.

ia

ib

ic

2Vdc z

a

b

c+

+ Sa Sb Sc

S̄a S̄b S̄c

+

-

O

Load

P

N

Vdc

Vdc

Figure 2.1: Two-level Voltage Source Inverter Topology connected to a three-phase balanced
load.

2.1.1 Carrier-Based Pulse Width Modulation

A three-phase VSI aims to convert the dc voltage, 2Vdc, into a balanced and symmetrical three-
phase sinusoidal system. For this purpose, the sinusoidal carrier-based Pulse Width Modulation
(SPWM) was early introduced in 1964 [48], which successfully accomplished control of the
output voltages in a power electronic converter. Usually in this method, each leg of the converter
is controlled independently based on the comparison of a triangular waveform, or also known
as carrier waveform, with a sinusoidal reference, or modulating, waveform. This method, also
named suboscillation method [42], is illustrated in Fig. 2.2.
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Comparator 2-level VSI

a

b

c

ga,ā

gb,b̄

gc,c̄

+ -

-

-

+

+

v∗azv
∗
az

v∗bz

v∗cz

Reference

Carrier

vcr

Figure 2.2: Diagram for individual pulse width modulators for each phase of a two-level VSI.

From Fig. 2.2, v∗az, v
∗
bz and v∗cz represent the normalized input references of (2.1) to (2.3) and

vcr is the normalized triangular carrier wave, whose peak value is equal to v̂cr=1. Thereafter,
gi,̄i, for i ∈ {a, b, c}, represents the trigger signals for each device of the converter presented in
Fig. 2.1, which are obtained as a result of the comparison between the references and the carrier
waveform.

v∗az = v̂∗ sin (ωt) (2.1)

v∗bz = v̂∗ sin

(
ωt− 2π

3

)
(2.2)

v∗cz = v̂∗ sin

(
ωt+

2π

3

)
(2.3)

v̂∗ =
vmax
Vdc

(2.4)

ω = 2πf1 (2.5)

Fig. 2.3 shows the comparison of a 50Hz sinusoidal reference with a 450Hz carrier wave-
form. The output voltages vaz and vbz are depicted in the figure as result of the comparison
between modulating and the carrier waveforms. Thereby, when the carrier wave is greater than
the modulating wave v∗iz, the switch Si is switched-off. Likewise, the switch Si is switched-on
for vcr ≤ v∗iz, while S̄i is always the complement of Si, for i ∈ {a, b, c}. Finally, Fig. 2.3
shows the output line-to-line voltage vab, which represent the effective output voltage of the
VSI. Although not showed, voltages vbc and vca are identical to vab but shifted in 120◦ and 240◦

respectively.



10 CHAPTER 2. BACKGROUND THEORY

time (s)

1

0

-1

2Vdc

0

-2Vdc

Vdc

0

-Vdc

Vdc

0

-Vdc

v∗az v∗bz v∗cz vcr

0.02 0.030

vaz

vbz

vab

Figure 2.3: Sinusoidal PWM method for three reference values v∗az, v
∗
bz, v

∗
cz and a carrier

wave vcr. For the sinusoidal waveforms, the frequency f1 is equal to 50Hz and for the car-
rier fcr=450Hz. The amplitude modulation index ma has been set to 0.75.

In order to regulate the frequency and amplitude of the output voltages, the following two
indices are defined as:

ma =
v̂∗

v̂cr
(2.6)

mf =
fcr
f1

, (2.7)

where ma is called amplitude modulation index and is defined as the ratio between the normal-
ized amplitudes of the reference signals v̂∗, and the triangular wave, v̂cr. Similarly, mf is called
the frequency modulation index, defined as the ratio between the the frequency of the carrier fcr
and the fundamental frequency of the reference waveform f1. Commonly, the peak amplitude
of the reference signals v̂∗, changes according to the loads requirements, while the amplitude
of the triangular wave, v̂cr, remains constant. Thus, ma defines the magnitude of the modulated
output voltage. In order to modulate the output voltages in a linear range, the amplitude of the
references v̂∗ can not be greater than v̂cr, i.e. ma ≤ 1. When ma is equal to one, the modulated
waves viz, for i ∈ {a, b, c} posses a fundamental component with a magnitude equal to Vdc,
which generates a line-to-line voltage with a peak magnitude equal to

√
3Vdc.
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Figure 2.4: Fast Fourier Transformation (FFT) for the line-to-line voltage vab using SPWM
with (a) mf=9 and ma=0.75 and (b) mf=15 and ma=0.75. The amplitude are given as peak
magnitudes normalized respect to Vdc.

Fig. 2.4a shows the harmonic spectrum of the voltage vab of Fig. 2.3. As it can be appreci-
ated, the magnitude for the fundamental component is equal to 1.3Vdc, which is equivalent to:
ma

√
3 Vdc, for ma=0.75. This shows that the regulation of the output voltage is accomplished

linearly for ma ≤ 1. Additionally, two issues can be noticed from the harmonic spectrum:
a) the harmonic components for orders less than mf − 2 are negligible and b) the harmonic
components are always around the harmonic-orders n · mf , for n ∈ N, where for each n the
harmonic components are present at n ·mf ±k, for k ∈ Z [41]. This is valid always for mf ≥ 9
and multiple of 3.

The magnitude and number of the harmonic components n · mf ± k, change with ma and
mf . Thereby, for instance, Fig. 2.4b shows the results for increasing the carrier frequency to
650Hz (mf=15). Similarly to Fig. 2.4a, as ma has not changed its value, the magnitude of the
fundamental component remains equal to 1.3 · Vdc. Additionally, the harmonic components are
also found at n ·mf ± k. However, the increase of mf provides a more symmetrical harmonic
spectrum and shift the harmonic components to higher order frequencies.

2.1.1.1 Operation Modes

When the frequency of the controlled waveform f1 changes during operation, as in electric drive
applications, two possible operation modes can be implemented [42]. In the first method, called
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Asynchronous PWM, the frequency of the carrier signal fcr is not modified when the frequency
f1 changes. Therefore, the frequency modulation index mf takes non-integer values and the
harmonic components of the modulated waveforms are continuously spread across the harmonic
spectrum. On the other hand, by Synchronous PWM, the frequency of the carrier signal fcr is
instantaneously modified according to f1 in order to maintain a constant frequency modulation
index mf . Hence, the modulated waveforms perform a harmonic spectrum as presented in
Fig. 2.4. Asynchronous PWM method has been recognized because of its simplicity, usually
implemented with analogue circuits. However, the fast incorporation of digital processor and
real time computers in last decades have enabled an easy implementation of Synchronous PWM
as well.

Besides the harmonic spectrum, the main difference between Synchronous PWM and Asyn-
chronous PWM technique, relies on the switching frequency performed by each device of the
converter presented in Fig. 2.1. From Fig. 2.3, it can be seen that vaz possesses nine positive
and negative pulses in one fundamental period T1. Thus, Sa and S̄a are switched-on and -off
nine times in a fundamental period T1, performing a switching frequency per device fsw equal
to 9f1 or equivalently:

fsw=mff1=fcr (2.8)

From this formulation it is straightforward that the Asynchronous PWM method generates
a constant switching frequency for each device of the converter presented in Fig. 2.1, while
Synchronous PWM changes the switching frequency of the devices according to fcr.

2.1.1.2 Zero-Sequence Injection

The injection of a zero-sequence component to the sinusoidal reference voltages v∗iz, for i ∈
{a, b, c}, have been extensively studied in the literature as a method to increase the linear range
of the SPWM method [49]. This injection does not produce any additional distortion to the line-
to-line voltages vab, vbc or vca, because the zero-sequence component is completely eliminated
after subtracting the phase-voltages viz to obtain the line-to-line voltages. The incorporation
of a zero sequence component to the reference values v∗iz flats the top of the sinusoidal refer-
ence wave, allowing compensation of a higher fundamental waveform (see Fig. 2.5). Although
several zero-sequence signal injection methods have been proposed in the literature, only a few
of them have gained acceptance and popularity in the scientific community, mainly because of
their effectiveness and simple implementation [42]. By that, the injection of third-harmonic
component to the reference sinusoidal wave viz, for i ∈ {a, b, c}, is considered as the standard
zero-sequence signal injection method in the literature. This method is known as third-harmonic
injection PWM (THIPWM), where the reference signals for each phase are described as:

v∗∗az = v∗az + v∗3th = v̂∗ sin (ωt) +
v̂∗

6
sin (3ωt) (2.9)

v∗∗bz = v∗bz + v∗3th = v̂∗ sin

(
ωt− 2π

3

)
+
v̂∗

6
sin (3ωt) (2.10)

v∗∗cz = v∗cz + v∗3th = v̂∗ sin

(
ωt+

2π

3

)
+
v̂∗

6
sin (3ωt) , (2.11)
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In order to maximize v̂∗, the amplitude of the third harmonic has to be equal to one sixth of the
amplitude of the fundamental reference [41]. Thus, v̂∗ can reach a peak value of 2√

3
before v∗∗iz

exceeds the amplitude of the carrier wave, i.e. v̂cr=1. This is shown in Fig. 2.5. Therefore, the
use of THIPWM increases the linear range of modulation to ma ≤ 2√

3
, boosting the modulated

phase voltages viz in 15%. This results in output phase-voltages with a fundamental magnitude
of 2√

3
Vdc. Equivalently, the maximum peak value for the fundamental line-to-line voltage under

THIPWM is equal to 2Vdc.
Additionally, some methods use injection of discontinuous zero-sequence waveforms to boost

the output voltages [49–51]. This so called Discontinous PWM methods are not as simple as
THIPWM, but they provide lower harmonic distortion of the output voltages and higher control-
lability of the switching power losses for overmodulation range, i.e. for ma ≥ 2√

3
. Particularly,

Depenbrock’s PWM [52] and Ogasawar’s PWM [53] have been recognized because of their
easy implementation and high performance.

v∗iz

1

-1

0

v∗∗iz
vcr

v∗3th

2/
√

3

-2/
√

3

ωt

N
or

m
al

iz
ed

A
m

pl
itu

de
s

Figure 2.5: Third Harmonic Injection PWM (THIPWM) Method for the maximum achievable
magnitudes. The subindex i represents each phase of the converter. i ∈ {a, b, c}.

It is important to mention that the maximum feasible fundamental component for the phase
voltages viz is obtained under six-step operation mode. In this operation mode, no switching
takes place within half cycle of each reference waveform and either a positive or negative volt-
age level is only applied depending on the polarity of the reference signal. The fundamental
component under this operation has a magnitude of:

v̂6step=
4

π
Vdc (2.12)

Some references define the amplitude modulation index based on this maximum achievable
value. Therefore, the maximum amplitude modulation index is defined as 1, only achievable
under six-step operation. In order to avoid confusions, the following table summarizes the
maximum output voltage and amplitude modulation indices for both nomenclatures.
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Table 2.1: Summary of Carrier based PWM Methods

PWM Definition Maximum Max. fundamental Max. fundamental

Method ma ma component of vaz , vbz , vcz component of vab, vbc, vca

SPWM v̂∗

v̂cr
1 Vdc

√
3Vdc

THIPWM v̂∗

v̂cr
2√
3
≈ 1.15 2√

3
Vdc 2Vdc

SPWM v̂∗

v̂6step

π
4
≈ 0.785 Vdc

√
3Vdc

THIPWM v̂∗

v̂6step

π
2
√

3
≈ 0.907 2√

3
Vdc 2Vdc

2.1.2 Space Vector Modulation
Although Carrier-Based PWM techniques were for several years the predominant technique
used for the control of power electronics converters, with the incorporation of digital real-time
control platforms, Space Vector Modulation (SVM) technique became, and is still today, the
most widely used and preferred technique for controlling power converters [54], [41]. SVM
techniques posses several advantages compared to Carrier-Based PWM methods, such as: in-
herent injection of zero-sequence component, possibility of implementing different switching
patterns for shaping harmonic spectrum or distributing the power losses, less ripple on the out-
put currents/voltages, more flexibility for implementing overmodulation algorithms and also
provides a more intuitive implementation for digital controllers [42]. This section introduces
the principles of operation and presents a review through the literature for the most relevant
issues of SVM technique.

2.1.2.1 Space of Vectors

From Fig. 2.1 it is possible to define the vector viabc as the normalized states of the output
voltages for the ith switching combination, given by:

viabc =
1

Vdc
[vaz, vbz, vcz] (2.13)

The operation of the converter of Fig. 2.1 allows eight possible switching combination, which
generate the output voltages. The output voltages and the states of the switches are summarized
in Table 2.2.

The vector defined in (2.13) can be expressed in an equivalent orthogonal system, denoted as
αβγ coordinate system, where the zero-sequence is independently expressed over the γ axis.
For this purpose, the following linear transformation, introduced by Clarke [55] in 1951, can be
used:

T αβγ
abc =

2

3

 1 −1/2 −1/2

0
√

3/2 −
√

3/2

1/2 1/2 1/2

 (2.14)
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Table 2.2: Summary of the output Switching Combinations for a two level-VSI.

Output phase-voltages Output phase-to-phase voltages On-State Switch

viabc=V
−1
dc [vaz , vbz , vcz ] viph-ph=V −1

dc [vab, vbc, vca]

v0
abc= [ 1, 1, 1] v0

ph-ph= [0, 0, 0] Sa, Sb, Sc

v7
abc= [-1, -1, -1] v7

ph-ph= [0, 0, 0] S̄a, S̄b, S̄c

v1
abc= [ 1, -1, -1] v1

ph-ph= [2, 0, -2] Sa, S̄b, S̄c

v2
abc= [ 1, 1, -1] v2

ph-ph= [0, 2, -2] Sa, Sb, S̄c

v3
abc= [-1, 1, -1] v3

ph-ph= [-2, 2, 0] S̄a, Sb, S̄c

v4
abc= [-1, 1, 1] v4

ph-ph= [-2, 0, 2] S̄a, Sb, Sc

v5
abc= [-1, -1, 1] v5

ph-ph= [0, -2, 2] S̄a, S̄b, Sc

v6
abc= [ 1, -1, 1] v6

ph-ph= [2, -2, 0] Sa, S̄b, Sc

where the coefficient 2
3

have been chosen for maintaining the same amplitudes for the signals
in both representations, i.e. abc and αβγ . However, transforming an electrical system from
abc to αβγ using (2.14) yields to two systems which posses different active and reactive power
magnitudes. Thereby, when a power invariant transformation is required, this coefficient is

substituted by
√

2
3
. Applying (2.14) to the eight phase-voltages viabc, represented in the first

column of the Table 2.2, the vectors in αβγ coordinates are obtained, and presented in Table 2.3,
which represent the possible voltages generated by the converter in the αβγ space.

As it was presented previously in Section 2.1.1, the injection of any zero-sequence compo-
nent, i.e. three identical signals injected in each phase of the converter, to the phase voltages
of the converter can boost the output line-to-line voltages without introducing any additional
distortion. As the γ axis directly represents the zero-sequence of a system, when the αβγ coor-
dinate system is used for representation of the possible switching combination, the magnitudes
present at the γ component can take any value, giving an extra degree of freedom to the sys-
tem. Thereby, the γ component can be neglected and the eight different vectors generated by
the converter, vkαβγ k ∈ {0, 1, ..., 7}, can be represented in the αβ plane. Fig. 2.6a shows the
space vector diagram for a two-level VSI, where the vectors v0

αβ and v7
αβ are placed at the origin

of the system, known as zero vectors. The vectors v1
αβ to v6

αβ , also known as active vectors,
are symmetrically placed each 60◦, generating voltage in the four different quadrants of the αβ
plane and dividing the region into six different sectors. As the zero and active vectors are placed
always in the same position, they are also known as stationary vectors.

Once all the possible states of the converter have been represented in the αβ plane, a reference
vector has to be also characterized in this plane for achiving its modulation. Hence, applying
(2.14) to the three-phase reference system already presented in (2.1) to (2.3), but shifted in 90◦

for convenience on the equations, the following vector is obtained:
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Table 2.3: Output Switching Combinations in αβγ and abc coordinates.

Output phase-voltages in αβγ Output phase-voltages

vkαβγ=
[
vα, vβ , vγ

]
viabc=V

−1
dc [vaz , vbz , vcz ]

v7
αβγ= [ 0, 0, 1] v7

abc= [ 1, 1, 1]

v0
αβγ= [ 0, 0, -1] v0

abc= [-1, -1, -1]

v1
αβγ=

[
4
3
, 0, -1

3

]
v1
abc= [ 1, -1, -1]

v2
αβγ=

[
2
3
, 2
√

3
3
, 1

3

]
v2
abc= [ 1, 1, -1]

v3
αβγ=

[
-2

3
, 2
√

3
3
, -1

3

]
v3
abc= [-1, 1, -1]

v4
αβγ=

[
-4

3
, 0, 1

3

]
v4
abc= [-1, 1, 1]

v5
αβγ=

[
-2

3
, -2
√

3
2
, -1

3

]
v5
abc= [-1, -1, 1]

v6
αβγ=

[
2
3
, -2
√

3
2
, 1

3

]
v6
abc= [ 1, -1, 1]

v∗αβγ = v̂∗ cos (ωt) êα + v̂∗ sin (ωt) êβ + 0êγ (2.15)

|v∗αβγ| = v̂∗ (2.16)

∠v∗αβγ = θ = ωt (2.17)

this reference vector, also depicted in Fig. 2.6a and denoted as v∗αβ , possesses a constant ampli-
tude equal to v̂∗ and describes a circumference over the αβ plane. Additionally, its phase shift
is denoted as θ and its rotational speed is given by:

ω = 2πf1, (2.18)

where f1 is the fundamental frequency of the reference signals. From Fig. 2.6a, the maxi-
mum permissible magnitude for the reference vector, v∗αβ , before it exceeds the borders of the
hexagon, is equal to 2√

3
. Therefore, equivalently to the THIPWM method, the maximum ampli-

tude for the fundamental component of the reference signals is equal to v̂∗ = 2√
3
. Nevertheless,

for the SVM method, the incorporation of the zero-sequence is not explicitly presented in the
reference vector, it is actually inherently incorporated in the method as each of the stationary
vectors posses a zero-sequence component (see Table 2.3). Equivalently to the PWM methods,
an amplitude modulation index can be defined as (2.19), where its limits for linear operation are
given in (2.20).
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ma =
vmax
Vdc

= v̂∗ (2.19)

0 ≤ ma ≤
2√
3

(2.20)
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Figure 2.6: (a) Space Modulation Region for a two-level VSI and (b) close look of sector I with
the vectors that approximate v∗αβ in one sampling time.

2.1.2.2 Dwell Time Calculation and Reference Vector Sampling

The principle of operation of the SVM method is based on the volt-second balancing. Hence,
the reference vector is periodically sampled over a cycle, where each of the sampled value
can be approximated applying two active vectors and the zero vectors during one sampling
interval defined as Ts. The time that each stationary vector needs to be applied within Ts for
approximating the reference value is known as dwell time. The number of sampled values over
a cycle is defined as:

Λ =
T1

Ts
(2.21)

From Fig. 2.6a, and denoted with red and black crosses, two possible sets of sampled values
over a cycle for Λ = 6 are shown. Although the angle between two samples is fixed by Ts, and
equivalently defined as:

θs=2π
Ts
T1

, (2.22)

the position of the sampled values in the αβ plane depends on the initial sampling angle θi.
Thereby, for obtaining a symmetrically sampled reference vector on the αβ plane, the sampling
angles for each of the Λ sampled values are defined as:
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θksp = θi + kθs; k ∈ {0, 1, ..,Λ− 1} (2.23)

θi = π
Ts
T1

=
π

Λ
(2.24)

where θksp represent the angle for the kth sampled value.
Although the symmetrical sampling of the reference vector is not mandatory for implement-

ing SVM, its implementation results in a better harmonic spectrum of the modulated waveform,
which is specially important in low switching frequency applications. Furthermore, it allows
even harmonics elimination, which is relevant for grid connected applications [54].

When the approximation of a sampled reference vector is achieved using its two closest
stationary vectors at each sampling time Ts, the switching losses are minimized, voltage har-
monic spectrum is improved and the currents ripple is minimized [50]. Thus, Fig. 2.6b shows
a sampled reference vector being modulated with its two closest stationary vector in Sector I.
Additionally the proportional lengths of the stationary vectors required for modulating this ref-
erence value are also depicted, which represent the length of the stationary vectors multiplied
by its dwell time. In order to calculate the dwell times for each of the selected stationary vectors
of Fig. 2.6b, the following equation must be solved:

v∗αβ · Ts = v1
αβ · d1 + v2

αβ · d2 + v0
αβ · d0 (2.25)

Ts = d0 + d1 + d2 (2.26)

Substituting (2.15) and the components of v1
αβ and v2

αβ , obtained from Table 2.3, in (2.25)
and (2.26) the dwell times for the each vector of the sector I can be obtained as:

d1 =
Ts
√

3v̂∗

2
sin
(π

3
− θ
)

(2.27)

d2 =
Ts
√

3v̂∗

2
sin (θ) (2.28)

d0 = Ts − d1 − d2, θ ∈
[
0,
π

3

[
(2.29)

Although (2.27) to (2.29) were obtained for the Sector I, they can be used for any sector by
replacing θ for θ̂, where θ̂ is defined as:

θ̂ = θ − (k − 1)
π

3
, for k ∈ {1, 2, 3, 4, 5, 6}, (2.30)

and k represents the sector of the sampled reference value.

2.1.2.3 Switching Sequence and Harmonic Spectrum

Once obtained the stationary vectors and their respective dwell times, a certain sequence to
arrange these vectors through the sampling time Ts has to be defined. For each sampling time,
always two active vectors and the zero vector, which possesses two redundancies (v0

αβγ and
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v7
αβγ), are selected. The order in which these switching states are applied defines the switching

losses and harmonic spectrum of the output modulated waveform. This is the main criteria for
selecting a certain switching sequence, which is always a trade-off between the switching losses
and the harmonic spectrum of the modulated waveforms.

The basic principle for achieving a proper switching sequence requires that during the sam-
pling time Ts, only one device turns off and a second device, from the same leg, turns on during
the transition from one vector to another. This principle has been named as minimum switching
transition throughout this work.

Considering the minimum switching transition constrain, the possible sequences that can be
arranged with the three selected stationary vectors is considerably reduced and mainly divided
in two groups. These are named as named Single-Redundancy Sequence and Non-Redundancy
Sequence throughout this work. The first group uses both redundancies of the zero vectors,
i.e. v0

αβγ and v7
αβγ , while a second group uses only one redundancy, either v0

αβγ or v7
αβγ , for

achieving modulation of the reference sampled value at each sampling time Ts. Thereby, Single-
Redundancy Sequence improves the harmonics spectrum at expenses of higher switching losses
, while Non-Redundancy Sequence is usually implemented when reduction of the switching
losses is required, as in soft-switching techniques for high power applications [56], [54]. Addi-
tionally, each of these groups can be subdivided into Symmetrical or Asymmetrical Sequence.

a) Single-Redundancy Sequences for two-level VSI:

Fig. 2.7a and Fig. 2.7b show the Single-Redundancy Symmetrical and Single-Redundancy
Asymmetrical sequences for the selected vectors of sector I respectively. Although both pat-
terns perform the same switching frequency over a fundamental cycle, the Single-Redundancy
Symmetrical sequence offers a better voltage harmonic distortion. On the other hand, the
Single-Redundancy Asymmetrical sequence aligns three switching commutation at the transi-
tion between two sampling times, which is used in soft-switching commutation techniques for
reducing the switching losses [38]. Furthermore, it can be noticed that for both sequences the
minimum switching transition rule is accomplished.

Comparing Fig. 2.7a and Fig. 2.7b with Fig. 2.7c and Fig. 2.7d, an alternative sequence can
be generated when starting with v7

αβγ instead of v0
αβγ . As the vector v0

αβγ generates negative
phase voltages at each output phase of the converter (vaz, vbz and vcz), the sequences starting
with v0

αβγ are named as n-type, while the sequences staring with v7
αβγ are defined as p-type.

Although both sequences can look different, they are identical but shifted in half sampling time.
Alternating n- and p-type sequences over a fundamental cycle allows shape of the harmonic
spectrum and control over the distribution of the power losses among the switches of a VSI, as
shown latter in this section.

The average switching frequency performed by each device over one fundamental period T1

is defined as f̄devi . This value can be expressed as the addition of two terms and obtained as:
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Figure 2.7: Different Redundant switching sequences. (a) Single-Redundancy Symmetric n-type
sequence, (b) Single-Redundancy Asymmetric n-type sequence, (c) Single-Redundancy Symmet-
ric p-type sequence and (d) Single-Redundancy Asymmetric p-type sequence.
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f̄devi = f̄ sdevi + f fdevi (2.31)

f̄ sdevi =
Λ∑
n=1

f sndevi
Λ

(2.32)

f fdevi =
ki
2
f1, (2.33)

where the index devi represents the ith device among the 8 that compose the two-level converter.
The term f sndevi in (2.32) represents the switching frequency perform by the ith device at each
sampling time Ts, where the index sn represents the nth sampling interval over T1 (the total of
intervals in one period is equal to (2.21)). Therefore, using (2.21), the general expression of
(2.32) is obtained for calculating the average switching frequency for the ith device over one
fundamental period T1.

Equation (2.32) computes the average of the switching commutations inside each sampling
interval Ts. However, it does not deal with the extra switching commutations involved during
the transition from one sampling time to another. These extra transitions occur when the final
vector of a sequence is not equal to the first vector of the sequence applied in the next sampling
time and is represented as f fdevi . This extra switching commutations are mainly generated when
alternating between n- and p-type patterns or when using Asymmetric sequences. Thereby, an
increment of the switching frequency over one fundamental period is generated, which can be
calculated as (2.33), where f1 is the fundamental frequency and ki represents the total number
of on and off commutations, generated by the ith device, during all the transition between two
sampling times along one fundamental period.

Table A.1 and Table A.2 from Appendix A show the sequences over one fundamental cycle
for the Single-Redundancy Symmetric n-type and the Single-Redundancy Symmetric p-type se-
quence. For both cases, as no alternation of n-p type pattern is used, the last vector of a sequence
is always the same vector that starts the following sequence, even when changing between two
sectors. Additionally, all the devices of the converter are switched-on and-off one time at every
sampling time Ts. Thus, the average switching frequency for every device over one fundamental
cycle is calculated as:

f̄ sdevi = fs (2.34)

f fdevi = 0 (2.35)

f̄devi = fs + 0 = fs (2.36)

On the other hand, Table A.3 and Table A.4 of Appendix A, present the switching pattern over
one cycle for the Single-Redundancy Asymmetric p-type and the Single-Redundancy Asymmet-
ric n-type sequence respectively. Evidently, the three phases perform an extra commutation not
only changing from one sector to another, but also during the transition between every sampling
time. Thereby, the switching frequency is calculated as:
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Figure 2.8: Output modulated waveform vab for a reference vector with fundamental frequency
f1=50Hz, ma = 0.8 2√

3
, fs=600Hz and its harmonic spectrum for a Single-Redundancy Sym-

metric sequence (a) without even-order harmonic elimination (f̄ sdevi=600Hz) and (b) with even-
order harmonics elimination (f̄ sdevi=750Hz).

f̄ sdevi =
fs
2

(2.37)

f fdevi =
Λ

2
f1 =

fs
2

(2.38)

f̄devi =
1

2
(fs + Λf1) = fs (2.39)

where Λ was defined in (2.21). Hence, both sequences, Single-Redundancy Symmetric and
Single-Redundancy Asymmetric, perform same switching frequency, but, as mentioned above,
they generate different harmonic spectrum and power losses. Additionally, alternating between
Single-Redundancy Asymmetric p-type and Single-Redundancy Asymmetric n-type every sam-
pling time results in a switching frequency equal to f̄devi=

fs
2

per device, with f fdevi = 0.
Fig. 2.8a shows the output modulated waveform for a Single-Redundancy Symmetric p-type

sequence. As it can be seen, the modulated wave is not half-wave symmetrical, producing
even-order harmonics. This could be not acceptable in grid-connected application, where even-
order harmonics are stringently restricted by the standard IEEE 519-1992 [57]. This issue
can be solved by alternating the sequences between Redundant Symmetric p-type and Single-
Redundancy Symmetric n-type each 60◦ as shown in Fig. 2.9. Fig. 2.8b shows the output wave-
form and harmonic spectrum obtained applying this alternated sequence. Comparing both har-
monic spectrum it can be noticed that the even-order harmonics have been eliminated, but the
odd harmonics have increased in order to compensate this elimination. Table A.5 in Appendix A
summarizes the sequence for each sub-sector of Fig. 2.9. From this table, it can be noticed that
an extra switching is generated in every leg of the converter at each time that the sequence
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Figure 2.9: Division of the Modulation Region of a two-level VSI for implementation of Even-
Order harmonics elimination. The six sectors have been subdivided, were the index p denotes
use of the type-p sequence and the index n the use of type-n sequence.

changes from p- to n-type pattern. Thereby, the switching frequency per device for the even-
harmonic elimination sequence is calculated as:

f̄ sdevi = fs (2.40)

f fdevi =
6

2
f1 = 3f1 (2.41)

f̄devi = fs + 3f1 (2.42)

Thus, for eliminating the even-order harmonics an increment of 3f1 per device is required.
As f1 is usually much smaller than fs, the increment in the switching frequency is commonly
negligible. Therefore, the switching frequency and the harmonic distortion are practically the
same for both sequences. It is important to notice that for achieving even-harmonic elimination
a symmetrical sampling is required.

b) Non-Redundancy Sequences for two-level VSI:

Equivalently to Fig. 2.7, in Fig. 2.10 the different patterns for a Non-Redundancy sequence
are shown. As it can be seen, either for Symmetric or Asymmetric patterns, this sequence main-
tains one of the legs clamped to the same voltage. For that reason, it is also known as Flat-top
Modulation or Discontinuous Modulation. Table A.6 and Table A.7 from Appendix A show
the sequence for a complete fundamental cycle for the Non-Redundancy Symmetric n-type se-
quence and the Non-Redundancy Symmetric p-type sequence respectively. From these tables, it
can be noticed that each phase of the converter is clamped to one phase during one third of the
cycle (2π

3
), reducing the switching frequency for every device in one third and calculated as:



24 CHAPTER 2. BACKGROUND THEORY

v2
αβγv0

αβγ

d0
2

d1
2 d2

d1
2

d0
2

v0
αβγ v1

αβγ v2
αβγ v1

αβγ v0
αβγ v1

αβγ

vaz

vbz

vcz

vab

vaz

vbz

vcz

vab

d0 d2d1

d0 d1d2

vaz

vbz

vcz

vab

vaz

vbz

vcz

vab

v7
αβγ v2

αβγ v1
αβγ v2

αβγ v7
αβγ v1

αβγv7
αβγ v2

αβγ

d0
2

d2
2 d1

d2
2

d0
2

0

Vdc

Vdc

Vdc

2Vdc

Vdc

Vdc

Vdc

2Vdc

-Vdc

-Vdc

-Vdc

0

Ts

(a)

Ts

(b)

Ts

(c)

Ts

(d)

Vdc

Vdc

Vdc

2Vdc

-Vdc

-Vdc

-Vdc

0

-Vdc

-Vdc

-Vdc

0

Vdc

Vdc

Vdc

2Vdc

-Vdc

-Vdc

-Vdc

Figure 2.10: Different Non-Redundancy switching sequences. (a) Non-Redundancy Symmet-
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f̄ sdevi =
2

3
fs (2.43)

f fdevi = 0 (2.44)

f̄devi =
2

3
fs (2.45)

Although the switching frequency is equal for all devices, each leg of the converter is clamped
to either the positive or the negative pole for one third of the fundamental period, which results
in an unequally distribution of the conduction power losses among the switches. Applying the
Non-Redundancy Symmetric n-type sequence with the same parameters as showed in Fig. 2.8,
the harmonic distortion of the modulated wave increases to approximately 92%. Nevertheless,
the switching frequency per device is reduced to f̄devi = 400Hz.

Alternating, for every sector, between Non-Redundancy Symmetric n- and p-type sequences
[54], each leg of the converter can be clamped to negative and to the positive pole for one sixth
of the fundamental period. This allows equal distribution of the conduction power losses among
the switches over a fundamental cycle as shown in Table A.8. Similarly to even-order harmonic
elimination pattern, the switching frequency per device is increased and can be calculated as:

f̄ sdevi =
2

3
fs (2.46)

f fdevi =
6

2
f1 = 3f1 (2.47)

f̄ sdevi =
2

3
fs + 3f1 (2.48)

Using this sequence, the power losses can be reduced up to a 50% for a load with unitary
power factor [58], [50], [20].

2.1.3 Overmodulation Strategy
As it was presented in the previous section, in order to achieve a modulation within the linear
range, the path for the reference vector has to be enclosed by the hexagon of Fig. 2.6. Thereby,
the amplitude of the reference vector is limited to ma ≤ 2√

3
. However, the reference vector can

be synthesized further of this region when a proper overmodulation algorithm is applied. This
method is based on the volt-second balancing and can be divided into two operation modes [59].
Fig. 2.11a shows the overmodulation in operation Mode I. In this case, when the reference vector
is placed beyond the hexagon, its path is limited to the corresponding borders of the hexagon.
Then, a new reference path is generated around the corners, which has to compensated the volt-
seconds lost during the portion where the reference vector was out of the modulation region.
The overmodulated path is marked as a red line in Fig. 2.11a. Thereby, over a cycle, the same
volt-seconds are modulated by the original circular path (blue dotted line of Fig. 2.11a) and the
overmodulated limited path (red line of Fig. 2.11a).

It is evident that there is a point where the available region around the corners of the hexagon
will not be enough for compensating the volt-seconds lost across the trajectory of the path.
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Figure 2.11: Overmodulation method in (a) Mode I and (b) Mode II operation.

This limit is achieved for ma ≈ 1.212. Once this limit is achieved, the Mode II is imple-
mented. Under this operation mode, there is no trajectory for compensating the non-modulated
volt-seconds, but one of the active vectors is applied until the trajectory of the reference path in-
tersects the hexagon. Fig. 2.11b shows this procedure. Thereby, from this figure and looking at
sector I, the vector v1

αβγ is applied during the time that the reference path is inside the hexagon,
after that, the path is limited to the border of the hexagon and is modulated by v1

αβγ and v2
αβγ

(the zero vector is not used). Evidently, for a circular reference path that completely encloses
the hexagon (ma ≥ 4

3
), no borders of the hexagon are used and only the active vectors are

used every 60◦. This results in the six-step operation mode, producing the maximum allowable
output phase-voltage (v̂6step=

4
π
Vdc in (2.12)).

It is important to mention that the use of overmodulation introduces low-order harmonics,
which are no characteristics of the SVM operated under the linear region. Additionally, al-
though the fundamental component is boosted, it differs from the reference value not only in
magnitude but also on its phase shift. This can be harmful for controlling power conditioners,
where the phase shift of the fundamental and harmonics modulated voltages are crucial for a
proper compensation [60].

2.2 The Three-level Neutral Point Clamped VSI

Introduced in 1981 [24], the three-level Neutral Point Clamped (NPC) VSI has become today
a standard topology for medium-voltage (MV) drives in the industry [38]. Additionally, it has
also been preferred in low voltage range when high efficiency is required, as for photovoltaic ap-
plications [40] [39]. Compared to a two-level VSI, a three-level VSI offers several advantages,
such as: reduction of the dv/dt and the corresponding Electromagnetic Interference (EMI), im-
provement of the output harmonic spectrum because of its three-level nature, reduction of the
switching frequency per device and, maybe its main feature, distribution of the device blocking
voltage, where each device of the converter withstand only half of the dc-link voltage. Usually a
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three-level NPC converter operates in applications up to a range of 4.16kV , composed of either
IGBT or IGCT semiconductor devices, where the latter are usually preferred for high power ap-
plications. Currently, IGBTs posses a maximum collector-emitter blocking voltage of 6.5kV at
600A, while for a IGCT the maximum blocking voltage is 6.5kV at 4.2kA [61], [45]. Fig. 2.12
shows the topology of a thee-leg three-level NPC converter. It is composed of twelve switches
with their respective antiparallel diodes, named as S1i, S2i, S̄1i and S̄2i and six clamped diodes
denoted as Di and D̄i for i ∈ {a, b, c}. Furthermore, for achieving its three-level nature, the
dc-link is split by two capacitors, namely C1 and C2, which voltages must remain balanced to
Vdc for proper operation.

ia

ib

ic

S̄2c

S̄1c

S̄2b

S̄1b

S̄2a

S̄1a

S1c

S2c

S1b

S2b

S1a

S2a

iP

iC1

C1

vc1

vc2 C2

iC2

iN

z

iz
2Vdc

+

-

P

N

O

Load

a

b

c

Da Db Dc

D̄a D̄b D̄c

Figure 2.12: Three-level Neutral Point Clamped Topology.

2.2.1 Principle of Operation
Each leg of the converter presented in Fig. 2.12 can generate three different phase voltages viz
for i ∈ {a, b, c}. Fig. 2.13 shows the three permitted states for the phase a of the converter,
considering that the voltages vc1 and vc2 are balanced to Vdc. As it can be seen in Fig. 2.13a,
when the upper switches are closed, the output phase voltage (viz) produced by the VSI is
Vdc. Similarly when the middle switches are closed , Fig. 2.13b, the output phase voltage is
zero. Finally, from Fig. 2.13c, when the bottom switches are closed, the output voltage is equal
to -Vdc. Thereby, the three-level NPC can produce three different levels at the output phase
voltages, namely Vdc, 0 or -Vdc.

From Fig. 2.13 the conduction of the semiconductors under different operation modes can be
appreciated. The conduction of the different devices in one leg depends on relation between the
direction of the output current ia and polarity of the output voltage vaz, i.e. the power factor
of the load. Thus, considering Fig. 2.13a and a positive load current ia, the current flows only
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Figure 2.13: Switching states and semiconductor devices conduction for (a) positive, (b) zero
and (c) negative output phase voltages.

through the switches S1a and S2a, avoiding conduction of all diodes. This is shown with a blue
line in Fig. 2.13a. Contrary, for ia < 0 and maintaining the same switching combination, the
current flows through the antiparallel diodes of switches S1a and S2a, showed with a dotted red
line in Fig. 2.13a. Based on the same procedure, Fig. 2.13b and Fig. 2.13c show the conduction
of the semiconductors for the two remaining switching combinations.

From the previous discussion it can be also concluded that each device withstand only half
of the dc-link voltage at each switching state. In real implementation a proper sequence is
performed during the transition from one state to another to avoid transients overvoltages [54].
Additionally, when the middle switches are closed, a current flows through the neutral-point z,
which imbalance the voltages in each of the two capacitors C1 and C2. This represents the main
drawbacks of the NPC converter and special strategies to maintain these voltages balanced have
been reported in the literature and summarized in Section 2.2.3 of this Chapter .

Considering that each leg of the converter can generate three possible phase voltages, the
current through the neutral-point iz can be calculated as:

iz =
∑
x=a,b,c

S̄1xS2xix, (2.49)

where S̄1x and S2x ∈ {1, 0} and indicates whether the switch is close (”1”) or open (”0”)
respectively.
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2.2.2 Space Vector Modulation
Similarly to the two-level VSI, Carrier-Based PWM and Space Vector Modulation algorithms
presented in Subsection 2.1.2 can be extended to be applied in Multilevel converters [38]. For
the Carrier-Based PWM method, two triangular carrier references are generated and compared
with the positive and negative semi-cycle of reference signals. This is also known as level-
shifted PWM, which represents the natural extension of the bipolar PWM method [41]. As a
result of this comparison, the control signals to trigger the four switches of each leg are ob-
tained. This method presents equivalent characteristics as for a two-level inverter, presented in
Subsection 2.1.1, which after injection of third harmonic reaches a maximum modulation index
equal to 2√

3
[41]. Although this method is effective and simple, it does not allow modification of

the switching patterns, which is very important in medium voltage range, where low switching
frequency ranges are required. Furthermore, as the switching sequences can not be arranged,
it is not a suitable technique for implementing advanced methods for balancing the voltages of
the dc-link capacitors, which is a key issue in a NPC converter. Thereby, an extension of the
Space Vector Modulation algorithm presented in Subsection 2.1.2 is required for achieving a
more flexible and sophisticated control algorithm for a to three-level NPC converter which is
presented in this Section .

2.2.2.1 Space of Vectors

Considering that each leg of the converter produces three possible switching combination, the
three-level NPC converter possesses 33=27 different switching states, namely [vaz, vbz, vcz],
which generate 19 different line-to-line voltages. Table A.9 from Appendix A summarizes all
these possible switching combinations, which have been normalized as presented in (2.13).
Additionally, applying the Clarke transformation presented in (2.14) to each of these switching
combination, its αβγ representation is obtained and also presented in Table A.9. Furthermore,
this table also present the current through the neutral-point, calculated as (2.49), generated by
each switching combination.

Fig. 2.14 shows the representation of the 27 different stationary vectors in the αβ plane
for a three-level NPC converter. As it was previously discussed in Subsection 2.1.2, the γ
component can be neglected, as it represents an independent variable which can unrestrictedly
variate without negatively affecting the modulated signals. As it can be seen in Fig. 2.14, only
19 vectors are depicted in the αβ plane and differentiated as zero, small, medium and large
vectors. The eight remaining vectors, to complete the 27 combinations, are represented as
two redundancies for the zero vector and one redundancy for each of the small vectors (see
Table A.9). Although the switching combination of a redundant vector are not identical, they
share the same αβ components, i.e. generate the same line-to-line voltages, which place them
in the same position in the αβ plane and can be considered as equivalent vectors for modulating
the output voltages. Redundant vectors are very important in a NPC converter, as they produces
the same output line-to-line voltages, but generate opposite current through the neutral-point
(iz), which allows the balance of the voltages in the capacitors vc1 and vc2 .
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2.2.2.2 Dwell-time Calculation

Once obtained the space of vectors, the reference vector must be represented inside this region to
be synthesized at each sampling time Ts. Similarly to a two-level VSI, the reference vector can
be also represented as (2.15). Fig. 2.15 shows the modulation region and the reference vector
placed in Sector III. Beside of being divided into the standard six sectors, the additional vectors
of this topology subdivide each sector into four regions, denoted as ρ ∈ {1, 2, 3, 4}. Each of
these regions define the smaller triangle that can contain the reference vector. Consequently,
the three vectors that compose one triangle will be used for modulating the sampled reference
value at each sampling time Ts.

In order to achieve the modulation of the reference vector, first its sector and region has to be
identified by a simple algorithms using the vector angle θ and its magnitude |v∗αβ| [62]. Let us
consider the reference vector of Fig. 2.15, placed in sector III, region 2 (ρ = 2). By that, the
stationary vectors that modulate the reference at this sampling time are: v3

αβγ , v4
αβγ and v9

αβγ .
In order to calculate their dwell times, the following expression has to be fulfilled during the
sampling time Ts:

v∗αβ · Ts = v4
αβ · d1 + v3

αβ · d2 + v9
αβ · d3 (2.50)

Ts = d1 + d2 + d3, (2.51)

Thus, the dwell times are obtained as:
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Figure 2.15: Modulation Region for a three-phase three-level NPC converter.
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α v9
α

v4
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β

1 1 1


−1  v∗α

v∗β
1

 , (2.52)

or alternatively, referencing the equation to only one of the stationary vectors:[
d1

d2

]
= Ts

[
v4
α − v9

α v3
α − v9

α

v4
β − v9

β v3
β − v9

β

]−1 [
v∗α − v9

α

v∗β − v9
β

]
(2.53)

d3 = Ts − d1 − d2, (2.54)

where the αβ coordinates of each stationary vector are obtained from Table A.9. Although
current Digital Signal Processors (DSP) can normally afford the inversion of the matrix pre-
sented in (2.52) or (2.53), the dwell time calculation can be also obtained from a preset look-up
table [54] (see Table A.10 from Appendix A). Similarly to (2.27) to (2.29), the look-up table
store the formulas for calculation of the dwell times for each sector and region according to the
angle of the reference vector θ.

2.2.2.3 Switching Sequence and Harmonic Spectrum

Unlike the modulation region presented for the two-level VSI in Fig. 2.6a, each sector of the
modulation region for a three-level NPC converter has been subdivided into four regions (see
Fig. 2.15), forming regions that posses one (ρ=3 and ρ=4), two (ρ=2) or even three (ρ=1)
redundant vectors.

From Fig. 2.15 it is seen that region ρ=1 is formed by the zero vector and two small vec-
tors, ρ=2 is formed by two small vectors and one medium vector and regions ρ=3 and ρ=4
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are formed by one small, one medium and one large vector. Therefore, considering the redun-
dancies of each redundant vector, regions ρ=3 and ρ=4 posses four available switching combi-
nations, region ρ=2 possesses five available switching combinations and region ρ=1 possesses
seven available switching combination (zero vector possesses three redundancies), which could
be used for modulating a reference vector at each sampling time. Thereby, using always all the
available redundancies of the small and zero vectors would produce sequences with different
number of switching transitions depending on the region where the reference vector is placed,
generating different switching frequencies for each device of the converter. This is usually not
desired and a sequence that produce the same switching frequency in every region is commonly
implemented. This can be achieved by using the redundancies of only one small vector in each
region.
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Figure 2.16: (a) Single Redundancy Symmetric n-type sequence and (b) Single Redundancy
Symmetric p-type sequence for sector I, region ρ=3 of a three-level NPC converter.

Thereby, consequently with the definitions of Section 2.1.2.3, the Single-Redundancy se-
quence designates a sequence formed by using the redundancies of only one small vector at
each sampling time. Satisfying the minimum switching transition principle introduced in Sub-
section 2.1.2, Fig. 2.16 shows the Single-Redundancy Symmetric patterns for a reference vector
placed in sector I, region 3 (ρ = 3). Fig. 2.16a shows a Single Redundancy Symmetric n-type
sequence, while Fig. 2.16b shows the Single Redundancy Symmetric p-type sequence (Symmet-
ric and p-n type definitions were presented in Subsection 2.1.2.3). Both sequences use the only
redundant vector present at this region. Therefore, they represent the only two possible Single
Redundancy Symmetric sequences for this region.

On the other hand, for a reference vector placed in regions ρ=1 or ρ=2, two possible Single
Redundancy Symmetric n- and p-type sequences can be generated. Their difference depends on
which small vector is used with redundancy. Fig. 2.17a and Fig. 2.17c show the two possible
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Figure 2.17: (a) Single Redundancy Symmetric n-A-type sequence and (b) Single Redundancy
Symmetric p-A-type sequence (c) Single Redundancy Symmetric n-B-type sequence and (d) Sin-
gle Redundancy Symmetric p-B-type sequence for sector I, region ρ=2 of a three-level NPC
converter.
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Figure 2.18: Modulation region of the three-level NPC converter for (a) identification of se-
quences type-A and type-B and (b) identification of regions for p-type and n-type pattern used
in even-order harmonics elimination. Sub index in each sector makes reference to the use of
p-type or n-type sequences.

n-type sequences for a reference vector placed in sector I, region 2 (ρ=2). The first uses the
redundancies of v1

αβ and is denoted with the character A, while the second uses the redundancies
of v2

αβ and is denoted with the character B. Similarly, Fig. 2.17b and Fig. 2.17d show the two
equivalent p-type sequences. As it can be seen from Fig. 2.16 and Fig. 2.17, regardless of the
region, the same number of switching transitions are performed for each leg of the converter.
This produces a constant switching frequency for each device of the converter.

The selection of sequence type-A or type-B is based on the influence that each of the small
vectors of one region has over the neutral-point balancing. In order to obtain proper balance
of the neutral-point voltage, always the redundancy of the closest small vector to the reference
vector has to be selected. This defines the use of type-A or type-B sequences.

Consequently, as shown Fig. 2.18a, regions ρ=1 and ρ=2 have been subdivided into ρ=1A,
ρ=1B, ρ=2A and ρ=2B, each sub-region defines the area where each small vector posses
largest dwell time. Thus, always the redundancy of the small vector that posses the largest dwell
time is used. Hence, for instance, for a vector placed in sector I, region ρ=2A the redundancy
of v1

αβ is used, generating the sequences of Fig. 2.17a or Fig. 2.17b. Similarly, for a reference
vector placed at sector I, region ρ=2B the redundancy of v2

αβ is used, generating the sequences
of Fig. 2.17c or Fig. 2.17d.

The sequence arrangement of Fig. 2.18a presents the best trade-off among the switching
frequency, harmonic spectrum and neutral-point voltage balance capability and is used in a wide
range of applications [54]. Table A.11 from Appendix A provides the switching arrangement
for each each sub-region of sector I of Fig. 2.18a. (same tables can be equivalently obtained for
the other sectors).

From Fig. 2.13, it can be concluded that only two of the four switches in each leg are involved
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during the transition between two allowable states of the converter. Thereby, in order to switch-
on and -off every switch in one leg, a transition of the type: P→ O→ N→ O→P has to be
accomplished. Considering that during the positive semi-cycle of each reference phase-voltage
v∗iz, for i ∈ {a, b, c}, the switches S2i and S̄2i do not commutate (same for S1i and S̄1i during the
negative semi-cycle), the switching frequency for each device will be reduced by half during
one fundamental cycle. Thereby, using Table A.11, the average switching frequency per device
over one fundamental cycle can be calculated as (see (2.31)):

f̄ sdevi =
fs
2

(2.55)

f fdevi =
f1

2
(2.56)

f̄ sdevi =
fs
2

+
f1

2
(2.57)

where the switching frequency for each device is approximately half of the sampling frequency
fs. The additional term f1

2
in the averaged switching frequency is originated because of the

alternation on the redundancy of the two small vectors inside each region. This alternation can
be avoided and the switching frequency would be reduced to fs

2
. However, this worsens the

control over the neutral-point , reducing the switching frequency in a negligible value.
Additionally, alternating between p- and n-type patterns every 60◦ (as showed in Fig. 2.18b)

elimination of the even-order harmonics can be achieved [63]. The sequences for each sub
sector of sector I are presented in Table A.12 from Appendix A. The switching frequency per
device is slightly increased implementing even harmonics elimination and can be calculated as:

f̄ sdevi =
fs
2

(2.58)

f fdevi =
2

2
f1 = f1 (2.59)

f̄ sdevi =
fs
2
fs + f1 (2.60)

Fig. 2.19 shows the output line-to-line voltages and harmonic spectrum with and without
elimination of even-order harmonics for a three-level NPC VSI. As expected, the even har-
monic are eliminated and both sequences present practically same harmonics distortion. This
is achieved by an slight increase of the average switching frequency from 625Hz to 650Hz.
Additionally, the first dominant group of harmonic components is placed at twice the sampling
frequency fs. This is the main characteristic of the three-level NPC converter, where the modu-
lated waveforms posses an equivalent harmonic frequency higher than the switching frequency
of the devices.

Generating a Non-Redundancy sequence without using any redundancy of the small vectors
can be also implemented, obtaining same conclusions as presented in Subsection 2.10. In this
case, each phase of the converter is clamped to one phase for one third of the fundamental
period. This reduces the switching frequency and power losses per device. Nevertheless, it
worsens the harmonic spectrum and seriously affects the balance of the control over the volt-
age on the dc-link capacitors [64], [65]. This can be used when the power losses need to be
minimized [54].
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Figure 2.19: Output modulated waveform vab for a reference vector with fundamental frequency
f1=50Hz, ma = 0.8 2√

3
, fs=1200Hz and its harmonic spectrum for a Single-Redundancy Sym-

metric sequence (a) without even-order harmonic elimination (f̄ sdevi=625Hz) and (b) with even-
order harmonics elimination (f̄ sdevi=650Hz).

2.2.3 The Neutral Point Potential Problem
Maintain the balance of the voltages over the dc-link capacitors vc1 and vc2 is an important
issue in a NPC VSI. From Table A.9 it can be observed that only small and medium vectors
have an influence over the neutral-point voltage balancing, while zero and large vectors have
no influence, i.e. iz = 0. Furthermore, the two redundancies of one small vector generate two
currents iz with the same magnitude and opposite direction, while maintaining the same output
line-to-line voltages. This feature is the basic principle used to compensate the current iz over
one sampling time Ts, which consequently allow the control over the voltages vc1 and vc2 of
Fig. 2.12.

Let us assume that the previously defined Single Redundancy sequence is implemented.
Thereby, only one redundant vector, i.e. small vector, is used at each sampling time Ts. Con-
sidering that the current iz generated by each switching combination remains constant during
the time that this vector is applying in Ts, the average current iz over one sampling time can be
expressed in a general form as:

īz = d1p · iz1 + d2 · iz2 + d3 · iz3 − d1n · iz1 (2.61)
d1 = d1p + d1n (2.62)

where d1, d2 and d3 represent the dwell times for each of the three vectors that compose a
region, calculated in (2.50), and iz1 , iz2 and iz3 represent the currents generated through the
neutral-point by each of these three vectors, as presented in Table A.9. In this equation, the
dwell time d1 has been divided into d1p and d1n representing the only two redundancies of a
small vector selected in each sampling time. Thereby, controlling the time distribution between
d1p and d1n, and satisfying with (2.62), īz and consequently the voltages vc1 and vc2 can be
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regulated during each sampling time.
Based on the previous discussion, several methods for controlling īz, i.e. controlling d1p and

d1n, can be implemented. These methods can be mainly categorized as follow [66]:

a) Passive Control Scheme:
This open-loop method controls the neutral-point voltage by equally dividing the dwell times

d1p and d1n over each sampling time. Thereby, considering that the measured line currents
remain constant during Ts, the effect of iz1 over īz is completely eliminated (see (2.61)). Never-
theless, the average current īz is not equal to zero, being affected by the two remaining currents,
namely iz2 and iz3 .

Considering a system with symmetric and balanced currents, the effect of iz2 and iz3 over the
current īz is naturally compensated over one fundamental cycle. Thereby, the voltages on vc1
and vc2 oscillates around its middle point, i.e. Vdc (see Fig. 2.12) with a frequency equal to three
times the fundamental frequency of the line currents [66]. The amplitude of this oscillation, i.e.
its ripple, is a function of the power factor of the load, the magnitude of the line currents and
the value of the capacitances C1 and C2. Generally, the ripple of the neutral-point voltage is
minimum for power factor equal to one, while for pure inductive or capacitive loads it perform
its maximum value. An empiric method for estimating the size of each capacitor regarding the
nominal load current can be found in [66].

The natural the compensation of the current īz over one fundamental period is possible only
under the following conditions:

• Perfectly symmetric and balanced line currents.

• The size of the capacitor C1 and C2 must be identical.

• The sampling of the reference voltage vector must be accomplished as Symmetric Sam-
pling.

When one of these criteria is not fulfilled, the voltages vc1 and vc2 diverge. Additionally,
as no voltage or currents measurement are used, this methods can only maintain the initial
condition of the voltages on C1 and C2, presenting problems after transient operation.

b) Hysteresis Control Scheme:
It is the simplest closed-loop control method for NP voltage balancing [67]. In this method,

the direction of each phase current must be measured at each sampling time. Thus, the direction
of the neutral-point current iz is obtained and either d1p or d1n is used in order to compensate
the deviation produced by iz to the neutral-point voltage. This method provides good balance
of the voltages vc1 and vc2 even for the conditions where the passive control scheme diverge.
Additionally to the voltage oscillation of three times the fundamental frequency in vC1 and vC2 ,
this method introduces a ripple equal to the switching frequency, i.e. approximately half of the
sampling frequency.

c) Active Control Scheme:
This is a more sophisticated closed-loop control technique, based on the measurement of vc1

and vc2 [68]. Using these measurements, an outer controller, usually a PI controller, provides
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a neutral-point current reference ī∗z at each sampling time. This control scheme is depicted in
Fig. 2.20.

v∗c1

vc1

PI ī∗z

–
+ Controller

ia, ib, ic

Active
Control

d1p, d1n

Figure 2.20: External closed-Loop controller for active control of the neutral-point current iz.

Therefore, time distribution between d1p and d1n is controlled in order to equal īz to ī∗z at each
sampling time. Compared to the previous presented method, this method does not introduce
high frequency ripple on the neutral-point and provides the best performance. Additionally,
it provides balancing of the voltages vc1 and vc2 even after critical transients, unsymmetrical
sampled reference, different size of dc-link capacitors or unbalanced currents. However, it can
presents problem under unsymmetrical and non-sinusoidal currents, specially when they posses
continuous dc components.

d) Other Control Schemes:
Another method that has gained attention lately is the so called, Virtual Space Vector PWM

(VSVPWM) [69]. In this method, the vectors that modulate a reference vector are not obtained
as the three nearest vectors that enclose the reference sampled value, but as a combination of
vector that allows to obtain iz=0 at each sampling time. This provides a better performance
compared to the presented methods under unbalanced and non-linear loads or under the over-
modulation region. However, it worsens the harmonic spectrum of the modulated output volt-
ages and the power losses are increased.

A method for balancing the voltages on the dc-link capacitors under overmodulation opera-
tion has been proposed in [70]. This method analyses the reduced utilization of small vectors
in the overmodulation range and proposes a suitable switching sequence to achieve balance of
neutral-point voltage. It is important to mention that the outer boundaries of the modulation
region for a two-level VSI or a three-level NPC are equivalent (same hexagon). Therefore,
neglecting the problem of the neutral-point voltage balancing, the overmodulation method pre-
sented for a two-level in Subsection 2.1.3 can be also used in a three-level NPC converter [70].
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CHAPTER 3

Control of Power Converters for four-wire
Applications

Abstract: This chapter provides an extensive review of the state of the art of power electronic converters for
four-wire applications. A theoretical comparison between three-leg four-wire and four-leg converters is provided.
Moreover, a detailed description of the reported SVM techniques for two-level and multilevel four-leg converters
is provided and discussed in this chapter.

Theoretical discussion about power converters for four-wire systems was early introduced
in the late 1980’s [71]. However, its implementation came just at the end of the 1990’s, as
a solution for mitigating the harmonics distortion present in four-wired unbalanced systems
[11–14]. After this event, mainly two topologies were subject of intensive research for the
following years, namely the two-level three-leg four-wire converter and the four-leg two-level
converter. These topologies are depicted in Fig. 3.1 and represent the main focus of this chapter.

The three-leg four-wire converter of Fig. 3.1a splits the dc-link voltage to obtain the fourth
wire, while a four-leg converter uses an extra leg for this propose. The extra wire provided
by both converters allows circulation and control of the zero-sequence component, which is
required in four wire applications, where the load is usually unbalanced and non-linear.

The additional leg in a four-leg converter provides additional number of switching combi-
nations. Thereby, compared to the eight possible switching combinations of Fig. 3.1a (see
Table 2.2 in Chapter 2.1.2), the two-level four-leg converter of Fig. 3.1b possesses sixteen
switching combinations. These switching combinations are used for modulating the output
phase-voltages of the converters presented in Fig. 3.1, i.e. viz in a three-leg four wire converter
or vif in a four-leg converter, for i{a, b, c}.

Consequently, from simple inspection of Fig. 3.1, three main advantages of the four-leg con-
verters over the three-leg four-wire converters can be observed and are summarized as follows:
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Figure 3.1: Topology for a (a) two-level three-leg four-wire converter and a (b) two-level four-
leg converter.

• A four-leg converter uses full dc-link voltage (2Vdc) for modulating each half cycle of the
output phase-voltages vif , for i ∈ {a, b, c}. In contrast, a three-leg four-wire converter
uses only the half of it. This increases the maximum achievable output phase-voltage
for a four-leg converter in 15%, compared to a three-leg four-wire converter [35] (see
Subsection 3.1.1).

• The incorporation of the fourth leg in a four-leg converter provides three different voltage
levels in the phase-voltages vif , for i{a, b, c}, namely 2Vdc, 0 and −2Vdc. In contrast, for
a three-leg four-wire converter only two levels are available, namely Vdc/2 and −Vdc/2.
Therefore, a four-leg converter is able to modulate waveforms with improved harmonic
spectrum.

• A four-leg converter handle the current through the neutral wire, if , with the additional
fourth leg, while a three-leg four-wire converter need to split the dc-link capacitor. This
introduces an extra complexity, as the capacitors must be balanced and an additional
algorithm for achieving that balancing must be implemented. Furthermore, it worsens
the harmonic distortion of the modulated waveform, as a trade-off between the optimal
switching sequence arrangement and the balance of the voltage in the dc-link capacitors
must be met. Additionally, the capacitors must be usually very large in order to provide
the neutral current if without producing an unacceptable neutral-point voltage ripple [72].
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Due to the advantages mentioned above, two-level four-leg converters have arisen as the pre-
ferred topology in the last decade and have been used several applications, such as: power
quality enhancer [73–79] grid connected and island mode converters for DG [80–84], failure-
tolerant converters [85,86], Uninterruptible Power Supply (UPS) [16,87], common-mode active
filters [25, 88] and minimization of the common-mode leakage current in MV drives [89]. Be-
sides the two-level three- and four-leg converters, additional topologies have been proposed as
solutions for four-wire applications, such as: four-leg matrix converters for aerospace appli-
cations [21, 90, 91] and multilevel topologies, proposed as solution for medium voltage range
applications, such as: three-level four-leg flying capacitor converter [92, 93] and four-leg NPC
converter [28, 30, 85, 94]. The latter topology is extensively discussed in Chapter 5 and repre-
sents the focus of this thesis.

The modulation of the output voltages in four-wire converters become a more complex task
compared with a three-phase VSI, as it requires control over the zero-sequence generated by the
VSI. Several approaches for achieving modulation in four-wire converters have been proposed
in the literature, the most relevant methods can be summarized as: closed-loop hysteresis current
controllers in abc and αβγ coordinates [13,95–97], Carrier-Based PWM strategies for four-wire
converters [15, 26–28], finite set model predictive control [19, 29, 30] and Three-Dimensional
Space Vector Modulation in abc [18, 31] and αβγ coordinates frame [17, 32–37].

This chapter presents a review of the mentioned control strategies for four-wire converters.
The chapter focuses in the Three-Dimensional Space Vector Modulation, as, to the opinion of
the author and as it is discussed in this chapter, it arises as the most promising strategy for
controlling converters for four-wire applications.

3.1 Three-Dimensional SVM for four-wire VSI

When the zero-sequence of a converter has to be controlled, the αβ representation presented in
Chapter 2 does not provide enough information for accomplishing the modulation. Therefore,
a third coordinate, namely the zero-sequence component, has to be considered, resulting in
a three-dimensional SVM. The three-dimensional SVM methods can be summarized in two
groups: The Three-dimensional SVM in αβγ coordinates frame, introduce by Zhang et. al in
1997 [32,34,98] and its equivalent modulation in abc coordinates frame, introduced by Perales
et. al in 2003 [18] and extended for multilevel converters in [31]. This section presents both
methods and discuss its features.

3.1.1 Three-Dimensional SVM in αβγ reference frame
Three-dimensional SVM in αβγ coordinate frame is the natural extension of the two-dimensional
SVM method discussed in Chapter 2. Using a third coordinate for representing the zero-
sequence of the converter, a three dimensional space is generated. Thereby, and unlike the
two-dimensional SVM method, the smallest region that contain a reference vector in the space
is not a triangle, but a tetrahedron composed by four vectors. This section explains the pro-
cedure for obtaining these four vectors and how to calculate their corresponding dwell times.
Additionally, the sequence arrangement and three-dimensional overmodulation method are also
discussed.
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3.1.1.1 Space of Vectors and Tetrahedron Identification

The four-leg converter of Fig. 3.1b possesses 16 different switching combination. These com-
binations are summarized in the first and second column of Table B.1 from Appendix B. From
this table, vabcf represents the phase-voltages of each leg respect to the reference point z and
vabcf represents the abc voltages respect to the fourth leg f . Applying the Clarke transforma-
tion, presented in (2.14), to the 16 vabcf vectors of table Table B.1, the stationary vectors in
αβγ coordinates are obtained. Each of these 16 vectors are denoted as viαβγ and presented in
the third column of Table B.1.

Fig. 3.2a shows the space of vectors formed by the 16 different vectors of a two-level four-
leg VSI in the αβγ space. This space represents the allowable volume where a reference vector
can be placed and linearly modulated. Additionally, Fig. 3.2b shows the intersection between
the region of Fig. 3.2a and the αβ plane. This hexagon has been subdivided into six sectors,
where each sector can be extended in the γ axis forming a pentahedron. The pentahedrons
corresponding to each sector are shown in Fig. 3.3. Each of these pentahedrons are composed by
seven vectors, where the vectors v0p,0n

αβγ ,v1
αβγ and v2

αβγ are common for every pentahedron. The
seven vectors of each pentahedron generate four tetrahedrons, indicated with different colors
in Fig. 3.3, which represents the smallest region that can contain a reference sampled value.
Thereby, the first goal of the three-dimensional SVM is to generate an algorithm to find these
four vectors at every sampling time.

Let us define a reference vector placed inside the region presented in Fig. 3.2a in a general
form as:

v∗αβγ=
[
v∗α, v

∗
β, v

∗
γ

]
(3.1)

This vector is usually formed by unbalanced and non-sinusoidal components, describing any
trajectory in the αβγ plane. Thereby, in order to identify the tetrahedron that enclose this vector
at every sampling time, the following two steps are required:

• Similarly to Subsection 2.1.2, the sector of the reference vector v∗αβγ in the αβ plane is
identified. This is obtained based on the angle of the reference vector in the αβ plane,
calculated as:

θ = atan
(
v∗β/v

∗
α

)
(3.2)

• Thereafter, the seven vectors that compose the pentahdron corresponding to the selected
sector are loaded from a look-up table. In order to obtain the tetrahedron that con-
tains the reference vector avoiding complex three-dimensional search, a simple com-
parison using the polarity of the reference vector in abc coordinates can be used. For
instance, let us consider a reference vector placed in sector III, which polarities in abc
are: v∗abcf= [−,+,−]. From Fig. 3.3c, the only tetrahedron able to provide the suitable

voltages for each phase of the converter is formed by the vectors v11
αβγ , v0p,0n

αβγ , v6
αβγ and

v5
αβγ . This combination is unique for each pentahedron, enabling simple identification of

the tetrahedron.

Fig. 3.4a shows the modulation space formed by the eight switching combinations of the
two-level three-leg four-wire VSI presented in Fig. 3.1a (vectors viαβγ of this figure are referred
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Figure 3.2: (a) Modulation region in the αβγ space for a two-level four-leg VSI and (b) its
intersection with the αβ plane.
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Figure 3.3: Pentahedrons formed by a two-level four-leg VSI. The pentahedrons are divided
according to Fig. 3.2, for (a) sector I, (b) sector II, (c) sector III, (d) sector IV, (e) sector V and
(f) sector VI.
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to Table 2.3). Compared to Fig. 3.2a, this space limits the reference vector to a smaller region,
reducing the compensation capability.

From Fig. 3.4a it can be seen that the projection of the stationary vectors of a three-leg four-
wire converter into the αβ plane are placed in the same position as for a four-leg converter
(see Fig. 3.2b). However, the intersection of this region with the αβ plane generates an smaller
surface compared to Fig. 3.2b. Fig. 3.4b shows, with red dotted line, the intersection between
the modulation region of Fig. 3.4a and the αβ plane. Likewise, the outer hexagon represents
the intersection surface obtained in Fig. 3.2b for a four-leg VSI. From this comparison it can
be conclude that for a reference vector v∗αβγ which describe a circular trajectory in the αβ
plane, i.e. balanced and symmetric references, the three-leg converter provides a maximum
modulation range of ma ≤ 1, while it limit is ma ≤ 2√

3
in a four-leg converter. This results

in output phase-voltages with a peak magnitude of Vdc for a three-leg four-wire and 2√
3
Vdc

for a four-leg converter. Thereby, the fourth leg increases the output phase-voltages in 15%.
Although this definition does not compare the complete capability of the converter in the αβγ
space, it is normally used as a comparison parameter. Furthermore, it is important to remark
that the outer boundaries of the allowable modulation is independent of the number of levels of
the converter. Therefore, this statement is also valid for multilevel converters.
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Figure 3.4: (a) Modulation region in the αβγ space for a two-level three-leg four-wire VSI
and (b) with red dotted line, its intersection with the αβ plane. v∗max2

αβγ and v∗max1
αβγ denote the

maximum amplitude of a reference vector rotating in the αβ plane for a two-level three-leg
four-wire and a four-leg VSI respectively.

3.1.1.2 Dwell-time calculation

Once obtained the four stationary vectors that form the tetrahedron that encloses the reference
vector, their dwell times have to be calculated. Let us define the four selected stationary vectors
in a general form as: vs1αβγ , vs2αβγ , vs3αβγ and v0

αβγ . As the zero vector v0p,0n
αβγ is always present in
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every tetrahedron, it have been directly denoted as v0
αβγ . Thereby, the dwell time for each of

these vectors can be calculated as:

 d1

d2

d3

 = Ts

 vs1α vs2α vs3α
vs1β vs2β vs3β
vs1γ vs2γ vs3γ


−1  v∗α

v∗β
v∗γ

 (3.3)

d0 = Ts − d1 − d2 − d3, (3.4)

where Ts represents the sampling time and d0 to d3 the dwell time for the corresponding vectors
v0
αβγ to vs3αβγ . The αβγ components of each of these vectors can be obtained form the third

column of Table B.1 in Appendix B. In order to avoid the calculation of the inverse matrix
presented in (3.3) at each sampling time, a preset look-up table with the values of the inverse
matrix for each tetrahedron is usually employed [99].

3.1.1.3 Switching Sequences and Switching Frequency

In order to define the switching frequency of each device and the harmonic spectrum of the
modulated waveforms, an appropriate switching pattern is required, which has to accomplish
the minimum switching transition principle for minimizing output currents ripple and harmonic
distortion. Fig. 3.5 shows the Single-Redundancy Symmetric n-type and p-type sequences, and
the Non-Redundancy Symmetric n-type and p-type sequences for a two-level four-leg VSI. These
sequences are defined based on the definitions presented in Subsection 2.1.2.3. The sequences
of Fig. 3.5 are generated with the four stationary vectors that enclose the reference vector in a
tetrahedron formed by the vectors: v10

αβγ , v11
αβγ , v0n,0p

αβγ and v4
αβγ in sector II (see Fig. 3.3b).

Fig. 3.5 presents the Symmetric sequences for modulating a reference vector at each sam-
pling time, the equivalent Asymmetric sequences can be easily obtained using just half of the
pattern during Ts (see Fig. 2.7 and Fig. 2.10). Thereby, similar conclusions to those presented
in Subsection 2.1.2.3 can be obtained [20, 41, 54]:

• Single-Redundancy Symmetric sequences presented in Fig. 3.5a and Fig. 3.5b perform the
lowest harmonic distortion and the highest switching frequency. Therefore, this pattern
is commonly used in applications where a good harmonic distortion is required and the
switching losses are not a critical issue.

• Single-Redundancy Symmetric and Single-Redundancy Asymmetric sequences perform
the same switching frequency. However, Asymmetric sequences align four switching
commutations simultaneously during the transition between two sampling times. This
allows to synchronize the switching of the three phases minimizing the switching power
losses, commonly used in soft-switching methods [20].

• Non-Redundancy Symmetric or Asymmetric sequences, presented in Fig. 3.5c and Fig. 3.5d,
maintain one phase of the converter clamped at the same voltage level for each sampling
time. As a results, each leg of the converters is at the same state for one third of the period.
This reduces considerable the switching losses, but increase the harmonic distortion of
the output voltages. Additionally, alternation between n-type and p-type sequences every
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Figure 3.5: Switching sequences for a two-level four-leg VSI. (a) Single-Redundant Symmetric
n-type sequence, (b) Single-Redundant Symmetric p-type sequence, (c) Non-Redundant Sym-
metric n-type sequence and (d) Non-Redundant Symmetric p-type sequence.

60◦ avoids unequally distribution of the power losses among the semiconductors of the
VSI (see Subsection 2.1.2.3).

The Table B.2 from Appendix B shows the Single-Redundant Symmetric n-type sequence for
each tetrahedron of Fig. 3.3. From this table and considering (2.31) to (2.33), the switching
frequency for each device of the four-leg VSI presented in Fig. 3.1b can be calculated as:
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f̄ sdevi = fs (3.5)

f fdevi = 0 (3.6)

f̄devi = fs + 0 = fs (3.7)

Thereby, each leg of the converter posses the same switching frequency, this includes the
fourth leg.

3.1.1.4 Three-Dimensional Overmodulation Method

An overmodulation method for three-dimensional SVM in αβγ coordinates was presented in
[26,33]. This method instead of compensating the volt-seconds of the reference vector over one
fundamental cycle, as presented in Subsection 2.1.3, it saturates the reference vector to either
the borders the polygon presented in Fig. 3.2 or the borders of a cylinder cover at the top and at
the bottom by a semi-sphere and paced inside the polygon of Fig. 3.2. The cylinder represents
the extension into the γ axis of the maximum allowable circular path in the αβ plane presented
in Fig. 3.4b. This method can successfully limit the reference vector inside the modulation
region. However, the saturation modifies the amplitude and phase shift of the fundamental and
harmonics components of the modulated waveforms. This can affect the overall performance of
VSI when is used for harmonics compensation. A method for solving this problem is presented
in Section 5.6.

3.1.2 Three-Dimensional SVM in abc reference frame

Equivalently to the three-dimensional SVM algorithm in αβγ coordinate frame, an algorithm
to modulate a reference vector in the abc coordinates frame have been recently presented in
the literature [18, 31]. Compared to its analogue in αβγ coordinates, this method has gained
attention mainly because its simplification in the identification of the four stationary vectors
and in the dwell time calculation, avoiding the use of look-up tables.

In order to obtain the modulation region in the abc coordinate frame, the 16 switching com-
binations presented in the second column of Table B.2 have to be used. The modulation region
formed by these 16 switching combinations is presented in Fig. 3.6. Note that in this figure the
switching combinations of Table B.2 have been normalized in order to obtain points spaced by
one integer value, which is required for implementing this algorithm.

Let us assume a reference vector placed inside the modulation region of Fig. 3.6 in abc
coordinates as:

v∗abcf =
[
v∗af , v

∗
bf , v

∗
cf

]
, (3.8)

where the subindices of the voltages are referred to Fig. 3.1b. Calculating the smallest following
integer of each coordinate of v∗abcf using the floor() function, a pivot vector can be calculated
as:
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Figure 3.6: Modulation Region for a two-level four-leg converter in abc coordinate frame.

v̂∗abcf =
[
v̂∗af , v̂

∗
bf , v̂

∗
cf

]
(3.9)

v̂∗af = floor
(
v∗af
)

(3.10)

v̂∗bf = floor
(
v∗bf
)

(3.11)

v̂∗cf = floor
(
v∗cf
)

(3.12)

Thereby, the pivot vector v̂∗abcf represents one of the 16 switching states of Table B.2. Based
on this pivot vector, a cube that contains the reference vector can be generated. In order to
obtain each vertex of this cube, the following eight possible switching combinations has to be
generated:

• v̂∗abcf =
[
v̂∗af , v̂

∗
bf , v̂

∗
cf

]
• v̂∗1abcf =

[
v̂∗af + 1, v̂∗bf , v̂

∗
cf

]
• v̂∗2abcf =

[
v̂∗af + 1, v̂∗bf + 1, v̂∗cf

]
• v̂∗3abcf =

[
v̂∗af , v̂

∗
bf + 1, v̂∗cf

]
• v̂∗4abcf =

[
v̂∗af , v̂

∗
bf , v̂

∗
cf + 1

]
• v̂∗5abcf =

[
v̂∗af + 1, v̂∗bf , v̂

∗
cf + 1

]
• v̂∗6abcf =

[
v̂∗af + 1, v̂∗bf + 1, v̂∗cf + 1

]
• v̂∗7abcf =

[
v̂∗af , v̂

∗
bf + 1, v̂∗cf + 1

]
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Figure 3.7: Six different tetrahedrons formed inside a predefined cube for identification of the
reference vector v∗abcf . Each tetrahedron is identified as (a) T1, (b) T2, (c) T3, (d) T4, (e) T5 and
(f) T6.

Fig. 3.7 shows the cube formed by these eight vectors, plotted with a displaced center located
at v̂∗abcf . Using the eight vertices of the cube, the six different tetrahedrons of Fig. 3.7 can be
formed. Thereby, in order to identify the tetrahedron that contains the reference vector, a three
dimensional search must be accomplished. This search compares the relative position of the
reference vector respect of a minimum of three different 45◦ planes that cut the cube. This
comparison is summarized in the diagram of Fig. 3.8.

After performing the algorithm presented in the diagram of Fig. 3.8, one of the six tetra-
hedrons of Fig. 3.7 is obtained, identifying the set of four stationary vectors that enclose the
reference vector. Similarly to the three-dimensional SVM in αβγ coordinate frame, after ob-
taining the stationary vectors, the calculation of its dwell-times is required. This calculation
is summarized in Table 3.1 for each tetrahedron of Fig. 3.7. As the pivot vector v̂∗abcf changes
accordingly with the reference vector v∗abcf , this table provides the stationary vectors and dwell-
times for the complete modulation region of Fig. 3.6.

The algorithm presented in the diagram of Fig. 3.8 achieves simple identification of the sta-
tionary vectors and calculation of their dwell times for modulating a reference vector in the
abc reference frame. However, as it is a generic algorithm, it does not recognize whether the
reference vector remains inside the region presented in Fig. 3.6 or not. This could results in
selecting a set of stationary vectors, which do not belong to the allowable modulation space. In
other words, these switching combinations could not be physically feasible by the converter. To
assure proper operation of the converter under all conditions, avoiding erroneous selection of
stationary vectors or dwell times calculation, identification of these non-feasible switching com-
binations is required, which would increase the computational burden. For the best knowledge
of the author, a solution for this issue or an overmodulation method for limiting the reference
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Reference given by external Controller
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v̂∗af = floor(v∗af )
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v∗bf 6 v∗cf + v̂∗bf − v̂∗cf
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v∗bf 6 v∗af + v̂∗bf − v̂∗af v∗bf > v∗af + v̂∗bf − v̂∗af

T1 T2 T3 T4 T5 T6

Figure 3.8: Diagram for tetrahedron identification. The selected tetrahedron definition, T1 to T6

are based on Fig. 3.7.

vector to the interior of the polygon presented in Fig. 3.2 have not been reported yet.
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Table 3.1: Dwell time calculation and Stationary vectors in abc coordinates.
Tetrahedron Stationary vectors Dwell time calculation

T1

v̂∗abcf d1 = 1 + v̂∗af − v∗af
v̂∗1abcf d2 = −v̂∗af + v̂∗cf + v∗af − v∗cf
v̂∗5abcf d3 = v̂∗bf − v̂∗cf − v∗bf + v∗cf
v̂∗6abcf d4 = −v̂∗bf + v∗bf

T2

v̂∗abcf d1 = 1 + v̂∗cf − v∗cf
v̂∗4abcf d2 = v̂∗af − v̂∗cf − v∗af + v∗cf
v̂∗5abcf d3 = −v̂∗af + v̂∗bf + v∗af − v∗bf
v̂∗6abcf d4 = −v̂∗bf + v∗bf

T3

v̂∗abcf d1 = 1 + v̂∗cf − v∗cf
v̂∗4abcf d2 = v̂∗bf − v̂∗cf − v∗bf + v∗cf
v̂∗6abcf d3 = v̂∗af − v̂∗bf − v∗af + v∗bf
v̂∗7abcf d4 = −v̂∗af + v∗af

T4

v̂∗abcf d1 = 1 + v̂∗bf − v∗bf
v̂∗3abcf d2 = −v̂∗bf + v̂∗cf + v∗bf − v∗cf
v̂∗6abcf d3 = v̂∗af − v̂∗cf − v∗af + v∗cf
v̂∗7abcf d4 = −v̂∗af + v∗af

T5

v̂∗abcf d1 = 1 + v̂∗bf − v∗bf
v̂∗2abcf d2 = v̂∗af − v̂∗bf − v∗af + v∗bf
v̂∗3abcf d3 = −v̂∗af + v̂∗cf + v∗af − v∗cf
v̂∗6abcf d4 = −v̂∗cf + v∗cf

T6

v̂∗abcf d1 = 1 + v̂∗af − v∗af
v̂∗1abcf d2 = −v̂∗af + v̂∗bf + v∗af − v∗bf
v̂∗2abcf d3 = −v̂∗bf + v̂∗cf + v∗bf − v∗cf
v̂∗6abcf d4 = −v̂∗cf + v∗cf

3.1.3 Discussion on Three-Dimensional SVM Algorithms for four-wire
Applications

This section has presented a review of the current state of the art for three-dimensional SVM
algorithms proposed for controlling four-leg VSIs. Although SVM in αβγ or abc coordinates
are equivalent from a mathematical point of view, there are important issues that has to be
considered. The following points summarized the advantages offered by each method.

Advantages of three dimensional SVM in αβγ frame compared to its analogue in abc coor-
dinates:

• The αβγ orthogonal frame provides the zero-sequence component of a system as an in-
dependent variable. This allows direct control and visualization of the zero-sequence
component, which is the central feature of four-wire systems [95].

• The instantaneous power theory (pq theory) has been developed for compensating sys-
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tems in presence of unbalances and harmonic distortion [100–102]. This theory has
been developed in αβγ coordinate, not only because it allows identification of the zero-
sequence, but also because it enables the separation of positive and negative sequences
from the αβ components, which is important for the realization of controllers in dq coor-
dinate frame [6]. Thereby, close-loop controllers implemented in four-wire applications
are usually design in the αβγ coordinates frame. The implementation of SVM in the αβγ
space avoids extra transformation from αβγ to abc coordinate system, allowing simpler
and unified implementation of the overall control scheme.

• As presented in Fig. 3.2, the modulation region of a four-leg converter in the αβγ space is
basically an extension over the γ axis of the standard two-dimensional hexagon presented
in Subsection 2.1.3. This enables simpler extension of the strategies used for generating
switching sequences and selective harmonic elimination presented in Chapter 2, Subsec-
tion 2.1.3.

• The αβγ modulation region presented in Fig. 3.2 provides a geometry which enables
an easy identification of a reference vector placed out of this space. This facilitates the
implementation of overmodulation methods in a three dimensional space, as presented
in [26, 33].

Advantages of three dimensional SVM in abc coordinate frame compared to its analogue in
αβγ coordinate frame:

• The three-dimensional SVM in abc provides simpler identification of the set of stationary
vectors that enclose a reference vector and simpler calculation of its dwell-times compared
to its analogue in αβγ frame. This becomes an important issue for converters with several
switching combinations, such as Multilevel converters.

• Due to generic structure of the three-dimensional SVM method in abc coordinates, it
can be easily extended to Multilevel converters. Its implementation in a three-level four-
leg NPC VSI was presented in [31]. Contrary, the huge number of tables required for
implementing a three-dimensional SVM in αβγ frame makes this method impracticable
for converters with high number of levels, at least in its current state.

The choice between these two methods is still not a resolved issue in the literature [103].
However, it can be said that for two-level VSIs the algorithm in αβγ has gained major attrac-
tion, while for multilevel converters the use of abc coordinates arises as a better alternative.
Consequently, the aim of this thesis is to develop an algorithm that integrates the advantages
of both methods, i.e. a method in αβγ coordinates frame, which perform fast identification of
the stationary vectors, simple calculation of the dwell times and that can be easily extended to
multilevel converters. This algorithm is presented in Chapter 5.

3.2 Other control Schemes for four-wire Applications
Besides the three-dimensional SVM algorithms presented in the previous sections, additional
methods for accomplishing control of four-wire VSIs have been reported during the last two
decades. This section briefly introduces the most relevant methods, which have gained interest
in the research community.
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3.2.1 Hysteresis PWM Current control

As a natural extension of the current controllers for the three-phase VSIs [46], the closed-loop
Hysteresis PWM Current controllers were the first strategy used for accomplishing control of
the output voltages in converters for four-wire applications, mainly three-leg four-wire VSIs.

The diagram of Fig. 3.9a shows the control scheme of the Hysteresis PWM Current control
for the three-leg four-wire VSI presented in Fig. 3.1a. This scheme accomplishes the control
of the output currents ia, ib and ic by directly comparing the measured line currents with its
arbitrary references, i∗a, i

∗
b and i∗c , provided by an external controller. Note that these references

can be non-sinusoidal as in a active filter (see Fig. 4.1). Thereby, the output of each hysteresis
controller directly trigger the devices of each leg of the converter through the signals ga,ā, gb,b̄
and gc,c̄. The width of the hysteresis band is denoted as ε and it is dynamically regulated by
an additional controller, called Voltage Balancing. This controller regulates the width of the
hyteresis band (ε) for actively balance the voltages vC1 and vC2 [11,13]. This controller performs
the same features reported for three-phase converters, namely: high transient response, high
frequency ripple in the controlled currents and a non-fixed switching frequency, i.e. spread
voltage and current harmonic spectrum. A method that uses four hysteresis comparators applied
to four-leg VSI is presented in [104].

Although this method affords good control of the line currents, the current through the neutral
wire is not being directly controlled. This results in a neutral current iz with a ripple up to
three times higher compared to the line currents [95]. To solve this problem, Verdelho et.
al. [14, 95, 105], proposed the hysteresis PWM current controller in αβγ coordinates presented
in Fig. 3.9b. This controller uses the Clarke transformation presented in (2.14), to separates the
zero-sequence of the reference currents from its αβ active components. Thus, a direct control
over the abc currents, represented by iα and iβ , and over the current through the neutral wire iz,
represented by iγ , is achieved. This results in four currents, namely ia, ib, ic and if , that perform
the same ripple.

From Fig. 3.9b, the outputs of the hysteresis controllers are denoted as dα, dβ and dγ and
represents the entry of a preset look-up table to obtain a suitable switching combination of the
converter. Thereby, the selected switching combination should generates a set of three voltages
in the αβγ coordinates which compensates the direction (or sign) of dα, dβ and dγ . However,
a two-level three-leg four-wire VSI posses only eight switching combinations, leaving entries
of dα, dβ and dγ which can not be completely compensated. For solving this problem, a vector
which partially accomplishes the requirements of dα, dβ and dγ is selected. The solution for
selecting this vector is not unique and several option can be chosen. In [95] two different solu-
tions are proposed. This problem can be overcome using a four-leg converter, which possesses a
higher number of switching combinations. It is important to notice that in Fig. 3.9b, the balance
of the voltages in the capacitors C1 and C2 is incorporated in the reference currents, which have
been modified by an external controller. Thereby, when the reference currents i∗α, i∗β and i∗γ are
properly tracked, it will automatically balance the voltages on the dc-link capacitors [14].

A three-dimensional Hysteresis PWM Current controller was also introduced in [96,97,106].
This generates a cubical hysteresis region implemented directly in αβγ space. This method was
implemented in cylindrical coordinate frames to facilitates the three-dimensional comparisons,
required to identify when the reference vector is out of the hysteresis cube. As result, the method
behaves similar to the already presented method that uses independent hysteresis controllers in
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Figure 3.9: Closed-loop Hysteresis current PWM control scheme including balancing of the
dc-link voltages for a three-leg four-wire VSIs in (a) and abc and (b) αβγ coordinates.
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αβγ coordinates. Additionally it gives more flexibility for implementing switching sequences.
The method successfully implemented in a two-level converter and also in a three-level three-leg
four-wire NPC converter.

3.2.2 Carrier-Based PWM
This method has been already presented in Chapter 2 for standard three-leg VSIs. It uses the
comparison of a triangular carrier with a modulating waveform to directly control the devices
that modulate the output phase-voltages in a VSI. Accordingly, the SPWM method was in-
troduced as the simplest method to achieve modulation of a three-leg VSI. This method only
achieve a maximum linear modulation index ofma ≤ 1, but it maintains the phase-voltages vaz,
vbz and vcz as sinusoidal waveforms, without incorporation of zero-sequence component. Con-
sidering that the voltages vaz, vbz and vcz are the phase-voltages to be modulated in a three-leg
four-wire converter (see Fig. 3.1a), the SPWM method can be directly applied in this topology,
performing similar characteristic as mentioned in Section 2.1.1 [107].

Unlike the three-leg four-wire converter, when a four-leg converter is implemented (see
Fig. 3.1b), the voltages to be modulated are not longer referenced to the middle point of the
dc-link, but to the fourth leg of the converter. Thereby, the output phase-voltages in a four-leg
VSI are represented as:

vaf = vaz − vfz (3.13)
vbf = vbz − vfz (3.14)
vcf = vcz − vfz, (3.15)

where each voltage is limited by the dc-link magnitude as:

−vdc ≤ vaz, vbz, vcz ≤ vdc (3.16)
−2vdc ≤ vaf , vbf , vcf ≤ 2vdc, (3.17)

from these equations, four voltages respect to the middle point of the converter are obtained,
namely vaz, vbz, vcz and vfz. Therefore, if both components of any of the pairs (vaz, vfz), (vbz,
vfz) and (vcz, vfz) change in the same magnitude, it would not be noticed in the output voltages
vaf , vbf or vcf , but it allows to modulate output phase-voltages with a higher fundamental
component. This is the same principle used in the zero-sequence injection method presented
in Section 2.1.1.

Let us consider a set of reference phase-voltages v∗af , v∗bf and v∗cf , given by an external con-
troller. In order to be able to implement a carrier based PWM algorithm, a suitable set of
reference voltages v∗az, v

∗
bz, v

∗
cz and v∗fz have to be obtained to latter be compared with a trian-

gular carrier waveform. This comparison should modulates the reference phase-voltages and
maximize the utilization of the dc-link voltage. Hence, using (3.13) to (3.15), the reference
values can be written as:

v∗az = v∗fz + v∗af (3.18)

v∗bz = v∗fz + v∗bf (3.19)

v∗cz = v∗fz + v∗cf (3.20)
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L1 : v∗fz + vmax
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Figure 3.10: Limitation region for identification of the references voltages v∗az, v
∗
bz, v

∗
cz and v∗fz.

vmax=max{v∗af , v∗bf , v∗cf}, vmid=middle{v∗af , v∗bf , v∗cf}, vmin=min{v∗af , v∗bf , v∗cf}.

Considering that v∗af , v∗bf and v∗cf remain constant for a small sampling time and using v∗fz
as the abscissa and v∗az, v

∗
bz, v

∗
cz as the ordinate of a Cartesian plane, each equation of (3.18) to

(3.20) can be represented as a line with unitary slope over the planes: (v∗az, v
∗
fz), (v∗bz, v

∗
fz) and

(v∗cz, v
∗
fz). This is shown in Fig. 3.10, where the three lines are represented as L1, L2 and L3

in the terms of vmin, vmid and vmax, which represent the maximum, middle and minimum value
of the reference phase-voltages v∗af , v∗bf and v∗cf . From this figure, it can be seen that the black
dotted line represent the pairs (v∗az, v

∗
fz), (v∗bz, v

∗
fz) and (v∗cz, v

∗
fz) that generate constant phase-

voltages v∗af , v∗bf and v∗cf inside a feasible modulation region. Thereby, as v∗fz is the common
coordinate for the three coordinate pairs (v∗az, v

∗
fz), (v∗bz, v

∗
fz) and (v∗cz, v

∗
fz), the intersection

of a vertical line with L1, L2 and L3 gives a possible solution for modulating v∗af , v∗bf and v∗cf .
Fig. 3.10 shows, marked as three red points, this intersection for v∗fz=0. This intersection points
are obviously equal to the reference phase-voltages v∗af , v∗bf and v∗cf , denoted as vmin, vmid and
vmax (see (3.18) to (3.20)). As the solution for v∗az, v

∗
bz, v

∗
cz and v∗fz must remain inside the

feasible modulation region, the sector for placing this vertical line, i.e. the reference value of
v∗fz, is limited by:

v∗fzmin ≤ v∗fz ≤ v∗fzmax , (3.21)

denoted with blue dotted lines in Fig. 3.10 and calculated as:

vfzmin = −Vdc − vmin (3.22)
vfzmax = Vdc − vmax (3.23)
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In order to obtain a switching pattern equivalent to the Single-Redundancy Symmetric sequence
presented in Section 3.1.1 for a two-level four-leg VSI, the following criteria must be used for
selecting v∗fz:

v∗fz = −vmax
2

; for vmin > 0

v∗fz = −vmin
2

; for vmax < 0 (3.24)

v∗fz = −vmax + vmin
2

; Otherwise

Once obtained v∗fz, the references v∗az, v
∗
bz and v∗cz are obtained from (3.18) to (3.20). After-

wards, this constant values are compared with one period of a triangular carrier during the next
sampling time Ts, generating the trigger signals for the eight devices of the two-level four-leg
VSI [15, 108]. This process is repeated at each sampling time.

The main advantage of this method rely on the simple calculation of the references leg volt-
ages v∗az, v

∗
bz, v

∗
cz, v

∗
fz and the straight acquisition of the duty cycles of each device, obtained

directly by comparison of the calculated references with a triangular carrier at each sampling
time Ts. However, the calculation of v∗fz to perform different switching patterns or to success-
fully accomplish overmodulation methods become complex and, to the best knowledge for the
author, it has not been reported. Additionally, the utilization of the redundant switching com-
binations is very limited, as reported in its extension to multilevel converters [36, 109]. This
become important in multilevel converters, where shape of the harmonic spectrum, balance
of the voltages on the dc-link capacitors or distribution of the switches power losses are im-
portant issues. Thereby, the method can be a good alternative to the three-dimensional SVM
methods for two-level four-leg converters, implemented with the Single-Redundancy Symmetric
sequence. However, it does not provide enough flexibility for multilevel topologies.

3.2.3 Finite Set Model Predictive Control
Finite Set Model Predictive Control (FS-MPC) is a model-based control strategy that has gained
attention in the power electronics research community during the last decades [38, 43, 44, 110].
Although predictive control is a very well established control theory implemented in industrial
applications already in the 1970’s [111,112], it was not until the develop of very fast micropro-
cessors that it was of interest in the power electronics field, mainly because of the typical fast
dynamics of electrical systems.

Based on the model of the controlled system and a set of measured variables, this method
calculates, at each sampling time Ts, the future values of the controlled variables for each of
the switching combinations of the converter. This predictions are then evaluated into a cost
function, which is minimized for obtaining the most suitable switching combination that ac-
complishes a set of control goals. Afterwards, the selected switching combination is applied at
the beginning of the next sampling time. The main advantages, highlighted in the literature, of
this controller are [38, 43, 44, 110]:

• Fast transient response compared to conventional linear controllers.

• Easy incorporation of different control goals in a single cost function.
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Figure 3.11: FS-MPC control Diagram for a two-level four-leg VSI used as an active filter.
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• It exploits the discrete nature of the converter. Thereby, the cost function can be min-
imized by simply evaluating it with a finite set of switching combinations. This avoid
complex multi-objective minimization problems.

Fig. 3.11 shows the control scheme implemented for a two-level four-leg VSI active fil-
ter [94]. The aim of this scheme is to control the current injected by the filter (iF ) in order
to compensate the harmonics and unbalances generated by the load current iL and obtain sinu-
soidal grid currents is. For this propose, at the beginning of each kth sampling time, the grid
voltages vcc, the filter currents iF and load currents iL are measured. Then, based on these
measured variables and a discrete model of the system, implemented usually with backward
or forward Euler discretization [113], 16 different currents can be predicted for each of the 16
switching combinations of the two-level four-leg converter. Each of these 16 predicted currents
are denoted as inF (k + 1), where the index n denotes the nth prediction. Thereafter, in order to
track a the reference filter currents i∗F (k), a cost function is evaluated for each of these 16 pre-
dictions and minimized to obtain the switching combination that perform the minimum error.
The structure of the cost function is usually proposed as one- or two-norm errors, that is:

gn1 = ||i∗F − inF | |1 = |i∗a − ina |+ |i∗b − inb |+ |i∗c − inc | (3.25)
gn2 = ||i∗F − inF | |2 = (i∗a − ina)2 + (i∗b − inb )2 + (i∗c − inc )2 (3.26)

Thus, the switching combination that minimizes the cost function, either g1 or g2, at each
sampling time Ts is selected to be applied at the beginning in the following sampling time. This
control action is denoted as Smin in the diagram of Fig. 3.11 and represents the states of each
of the eight switches of the two-level four-leg VSI.

This control strategy have been applied in two level and three-level NPC VSIs based active
filters and power suplies [19, 29, 30, 94, 114, 115]. Furthermore, it achieves fast tracking of
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current references and it also allows simple balance of the voltages on the dc-link just by incor-
porating an extra term in the cost function. However, it presents certain issues that still have not
been overcome, such as:

• It performs a variable switching frequency, which can generate resonances with second-
order output filters and produces unequally distributed power losses.

• The incorporation of additional control goals to the cost function entails a trade-off among
several targets. The priority that the controller gives to each of these control tasks is based
on a constant value, named weighting factors, that multiply each term. The selection of
these weighting factors to obtain the best performance is still a matter of research and up
to date, they are mainly obtained based on try an error or empirical procedures [116].

• The performance of the controller changes as the operation point of the converter changes.
Thereby, for instance, when controlling a current through a load with a small inductance,
the switching frequency of the devices increase considerably compared to a load which
posses a slower dynamic. Same occurs when the amplitude of the controlled current
changes. This variability can be an important issue, specially for system where the load
dynamically changes, as usually required in four-wire applications [117].

Recent research on predictive control addresses this problem and uses a suitable modified
cost function in order to avoid the empirical calculation of weighting factors [110, 118]. How-
ever, this requires an accurate model of the controlled system, available in electrical drives
applications, but usually not available in four-wire applications.

3.2.4 Additional Control Strategies
Additional control algorithms have been also reported recently in the literature. In [17] the 16
switching combinations of the two-level four-leg VSI have been divided into two groups accord-
ing to the polarity of the zero-sequence component of each switching combination. Thereby,
the standard two-dimensional SVM is applied to each group of eight vectors. Although this al-
lows modulation of the output voltages avoiding three-dimensional search. The compensation
capability of the converter is not fully exploit.

In [27], each leg of a three-level four-leg converter, connected to an output LC filter, is decou-
pled and treated independently as three three-level buck converters. This simplify the modula-
tion algorithm to single-phase converters, but reduces the utilization of the redundant vectors
and also increase the output voltage harmonic distortion of the converter, as the modulation
operates equivalently to a Non-Redundant sequence for the three-dimensional SVM method
presented in Section 3.1.1.

In [28] a generalized PWM algorithm, similar to the carrier-based method presented in Sec-
tion 3.2.2, for three-leg four-wire is proposed. Furthermore, by introduction of a shifting volt-
age term, it also allows its implementation in four-leg converters. This method is based on the
voltage-seconds approximation and directly calculates the duty cycles for the switches of each
leg avoiding vectorial representation of the switching states. This method is equivalent to the
three-dimensional SVM algorithm for three-leg four-wire topologies. However, its implemen-
tation in four-leg multilevel converters have not been reported. Furthermore, important issues
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such as: utilization of different switching patterns, utilization of the dc-link or utilization of
the redundant vectors for balancing the voltages on the dc-link capacitors in four-leg multilevel
converters have not been yet reported. Moreover, it does not work in a three-dimensional space,
which reduce flexibility of the algorithm and limits the implementation of more sophisticated
control techniques for balancing the voltages on dc-link capacitors such as Virtual Space Vector
PWM (VSVPWM) [69]. Additional modulation algorithms formulated in a general form for
multi-leg converters, which could be potentially used in four-leg converters, have been reported
in [119–122].

3.2.5 Discussion and Remarks
This chapter has summarized the most relevant control strategies for three-leg four-wire and
four-leg VSIs. The three-dimensional SVM techniques, either in αβγ of abc coordinate frame,
arise as the most flexible techniques that exploit all the features of four-leg converters. However,
their complexity or impediment of working in an αβγ domain has encouraged the development
of new alternative methods, as an effort for reducing the complexity of the SVM algorithms.
Naturally, this simplification come usually together with restrictions that reduce the flexibility
and capability of the converter. However, they can be good candidates for certain applications.

The following remarks can be concluded from the current state of the art for controlling
converters in four-wire applications:

• Currently, the four-leg converters arise as the most suitable topology for four-wire ap-
plications. Compared to the three-leg four-wire topologies, four-leg converters provides
a superior performance, allowing 15% more of dc-link voltage utilization and a larger
range of compensation of zero-sequences. Additionally it does not require huge dc-link
capacitors to provide circulation path to the neutral wire.

• The three-dimensional SVM technique together with the hysteresis PWM current control,
both in αβγ coordinates, arise as the most mature and reliable techniques for controlling
four-leg converters with fixed and variable switching frequency. The first present an ex-
tension of the standard SVM algorithm, providing extension of well known arrangement
of switching sequences, power losses distribution and overmodulation methods. The sec-
ond is also an extension of the typical hysteresis control in αβ coordinates, which is even
standard in commercial drive application, such a Direct Torque Control (DTC) [123]. The
use of both techniques has been well reported for two-level converters. However, both of
them have limitations for multilevel applications. The first require complex calculations
and large number of tables, while the second limits the utilization of redundant vectors
and produces a high switching frequency.

• The Carrier based SPWM used for standard three-leg converters can be directly used
in three-leg four-wire converters. This a simple alternative to control these converters
when no special requirements of switching sequences or harmonics spectrum has to be
accomplished. For the best knowledge of the author, the implementation of this method
in multilevel converters have not been reported. Nevertheless, the unbalanced nature
of loads in four-wire applications and the limited use of the redundant vectors would
complicates the balance of the voltages on the dc-link capacitors.
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• The Carrier Based PWM technique developed for four-leg converters, presented in Sec-
tion 3.2.2, arises as an interesting alternative for controlling two-level four-leg convert-
ers, as it is demonstrated that perform equivalent switching patterns as in the three-
dimensional SVM. However, its limited use of the redundant switching combinations
reduce the controllability over the voltages on the dc-link capacitors in multilevel appli-
cations [109] and become its main drawback.

• The three-dimensional SVM technique implemented in abc coordinates appears as the
first technique that provides an easy extension to four-leg multilevel converters and also
allows flexible utilization of the redundant vectors. However, it is still in a premature
state and important issues such as: arrangement of switching sequences, elimination of
selective harmonics or overmodulation methods have not been reported yet.

The development of a simple three-dimensional SVM algorithm in the αβγ frame suitable
for multilevel converters is subject that still remains open and cover in this dissertation. A
simple three-dimensional SVM algorithm in the αβγ is proposed and validated in a four-leg
NPC VSI. Furthermore, this topology with the proposed SVM technique are implemented as a
400Hz power supply for aerospace applications.
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CHAPTER 4

Resonant Controllers for Voltage Source Power
Converters

Abstract: This chapter presents the guidelines for designing resonant controllers for compensation of multiple
harmonic components. First the Nyquist stability analysis is discussed and analyzed for single and multiple
resonant controllers. Thereafter the importance of the approximation method used for discretization of resonant
controllers and compensation of the computational delay when high order harmoncs are being compensated is
discussed.

In recent years, resonant controllers have arisen as an interesting alternative for directly con-
trolling sinusoidal waveforms of arbitrary frequencies with zero steady-state error. These con-
trollers are of particular interest in systems where several harmonic components have to be
compensated. This is mainly because it avoids the implementation of multiple rotating dq-
frames, obtained by using Park Transformation for each harmonic, and multiple Phase-Looked
Loop (PLL) systems [6,124]. Its implementation has been reported in several applications such
as: Active Power Filters (APFs) [125–133], Uninterruptible Power Supplies (UPSs) for non-
linear loads [21,134–136], dynamic voltage restorers (DVRs) [137] , active rectifiers [138,139],
aerospace applications [140,141] and grid connected converters for photovoltaic [142,143] and
wind energy systems [144–147].

The Fig. 4.1 shows the control scheme, based on resonant controllers, for the two most repre-
sentative applications used for harmonics compensation in four-wire systems, i.e. an APF and
a UPS for unbalanced and non-linear loads.

In the Fig. 4.1a the APF has been connected to a four-wire system via a first-order filter,
which transfer function is given by:

P1(s) =
If (s)

Vf (s)− Vcc(s)
=

1

Lfs+Rf

(4.1)

where If (s), Vf (s) and Vcc(s) are the representation in the frequency domain of iF , vF and vcc
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Figure 4.1: Control diagram for a (a) Active Power Filter and (b) and UPS for four-wire sys-
tems using Resonant Controllers. For (a) and (b): load currents iL = [iLa, iLb, iLc], converter
output currents iF = [iFa, iFb, iFc], converter output voltages vF = [vFaf , vFbf , vFcf ], refer-
ence voltages for SVM v∗

αβγ=[v∗α, v
∗
β, v

∗
γ], trigger signals for the converter gi,̄i. For (a): grid

currents is=[isa , isb , isc ], common coupling voltages vcc=[vccaf , vccbf , vcccf ]. For (b): output fil-
tered voltages vabcf=[vaf , vbf , vcf ], reference for the output filtered voltages in αβγ coordinates
v∗UPSαβγ =[v∗UPSα , v∗UPSβ , v∗UPSγ ].

respectively.
The APF of Fig. 4.1a aims to control the converter output currents iF to compensate the grid

currents is from the unbalances and harmonic distortion produced by the load currents iL. For
this propose, a set of resonant current controllers have to be designed to track each harmonic
component of the reference current i∗Fαβγ . This reference is given by an external controller [60]
and is usually calculated by using the instantaneous power theory [100, 102]. Afterwards, the
output of each resonant controller are added to provide a voltage reference v∗

αβγ that is going to
be synthesized by a power converter.

In Fig. 4.1b the control scheme for an UPS connected to an isolated four-wire system is
presented. The UPS provides balanced and symmetric three-phase four-wire voltages (vabcf ) to
an unbalanced and non-linear load, compensating the droop voltages across the filter, namely
Rf and Lf . In order to control the voltages at the terminals of the output LC filter, a single-loop
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voltage resonant controller has been proposed in Fig. 4.1b. This single-loop voltage controller
receives the voltage tracking error eαβγ and directly provides the reference voltages v∗

αβγ to be
synthesized by the power converter [148]. The required transfer function for designing a proper
controller for a second-order system, namely the LC filter is given by

P2(s) =
Vabcf (s)

VF (s)
=

1

LfCfs2 +RfCfs+ 1
(4.2)

where Vabcf (s) represents the voltage at the loads terminals, i.e., vabcf , and VF (s) is the voltage
at the converter terminals, i.e., vF , in the frequency domain. Equivalently to the control scheme
presented for the APF, a set of resonant controllers, each of them tuned for controlling one spe-
cific frequency, have to be designed when several voltage harmonics need to be compensated.

In order to design a proper resonant controller for each of the two presented application, its
implementation for first- and second-order systems has to be analysed. This chapter presents
an overview of the design of resonant controllers with multiple resonances applied to first- and
second-order systems. This analysis covers the design of transient response of resonant con-
trollers, stability margins and discretization for implementation in a real-time digital hardware.
The design methods and stability considerations discussed in this chapter are later successfully
validated in an experimental rig for an aerospace application presented in Chapter 6.

4.1 Multi-Resonant Controller Structures

According to recent literature, the most common structures for designing a resonant controller
can be mainly summarized as follows [21, 128, 148, 149]: Resonant controller, Proportional
Resonant controller, Vector Proportional Integral Resonant controller and Resonant controller
with general lead-lag networks . These different structures basically differ in the number and
positioning of the zeros of the controller, which allow to accomplish different dynamic perfor-
mance requirements, maintaining an stable close-loop system. Their selection is mainly based
on the application and the complexity of the plant.

The general form of a simple resonant controller in the s-domain can be represented as:

R(s) =
k∑

n=1

Rn(s) =
k∑

n=1

Kn
s

s2 + ω2
n

(4.3)

where Kn represents the gain and ωn is the resonance frequency for the nth resonant com-
pensator Rn(s). At the frequency ωn, the controller Rn(s) produces infinite gain in open-loop,
which ensures zero steady-state error for tracking a reference signal at this frequency [150,151].
Therefore, the implementation of damping factors to increase the stability margin must be
avoided, unless it is strictly necessary [60].

An extended structure can be implemented to control the phase-shift injected by each con-
troller Rn(s) around the frequency ωn [125]:

Rc(s) =
k∑

n=1

Rc
n(s) =

k∑
n=1

Kn
s cosϑn − ωn sinϑn

s2 + ω2
n

(4.4)
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Thereby, each controllerRc
n(s) injects an angle of π

2
+ϑn and−π

2
+ϑn around each resonance

frequency ωn, giving an extra degree of freedom for the design of the controller. This structure
is usually implemented for increasing the stability margins of a controller by compensating the
phase-shift introduced by the plant at ωn and calculated by

ϑn=− ∠P1,2(jωn) (4.5)

where P1,2(jωn) represents either the first- or second-order plant P1(s) of (4.1) or P2(s) of (4.2)
evaluated at ωn. Note that for ϑn = 0 the controller presented in (4.4) is equivalent to (4.3).
Fig. 4.1 shows the open-loop Bode diagram of Rc

1(s) designed for a resonance frequency of
ω1=100πrad. Three different compensation angles, namely ϑ1

1 ϑ
2
1 and ϑ3

1, have been used for
illustrating its effect over the phase of the controller. It is noted that for ϑ1

1=0, the resonant con-
troller inject and angle of ±90◦ around 100πrad. Additionally, the magnitude of the controller
is not affected by changing the compensation angle.

A proportional term KP can be added to the resonant controllers presented in (4.3) and (4.4)
to provide a faster transient response, giving also an additional degree of freedom for the design.
This controller structure is known as Proportional Resonant (PR) Controller and is expressed
as:

G(s) = Kp +
k∑

n=1

Rn(s) = Kp +
k∑

n=1

(
Kn

s

s2 + ω2
n

)
(4.6)

Gc(s) = Kp +
k∑

n=1

Rc
n(s) = Kp +

k∑
n=1

(
Kn

s cosϑn − ωn sinϑn
s2 + ω2

n

)
(4.7)

whereG(s) andGc(s) represent the PR controllers without and with control over the phase-shift
injection, or also known as delay compensation.
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The structure presented in (4.7) represents the most suitable and flexible configuration for
most of the applications of resonant controllers for power converters. However, a more general
structure can be obtained introducing arbitrary number of lead-lag networks [21, 136]. This
structure is represented as:

RNet(s) =
k∑

n=1

(
Kn

s

s2 + ω2
n

·
k∏
i=1

s+ ai
s+ bi

)
(4.8)

where {ai, bi} ∈ R. This structure is more flexible and can be employed for complex plants,
where the previous methods does not provide enough degree of freedom for achieving the con-
trol requirements. A particular structure implemented for first-order plants have gained attention
lately in the literature and it is known as Vector Proportional Integral (VPI) Resonant Controller,
given by [130, 131]

Rc
V PIn = Kn

(s cosϑn − ωn sinϑn)(sLf +Rf )

s2 + ω2
n

(4.9)

where Lf and Rf are the parameters of a first-order filter. This structure allows phase compen-
sation ϑn for the controlled frequency ωn, and uses a lead network to cancel the dynamic of a
first-order plant. It provides easy design and good performance, but it is very sensible to vari-
ations on the filter parameters. Thereby, errors in the estimation of real parameters can easily
lead to instability or amplify considerably the noise in a real implementation [150, 151].

4.2 Multi-Resonant Controllers for First-Order Systems
The design of any controller must accomplish with three important principles: a) it must satisfy
the dynamic close-loop requirements, b) it must provide enough stability margins to deal with
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parameters uncertainties, usually found in real implementations and c) it must be as simple
as possible, to guarantee a successful implementation. Therefore, the methods and resonant
controller structures presented and analysed in the following section are based on these three
principles.

Fig. 4.3 shows the general control diagram for a set of k resonant controllers implemented
for tracking k harmonic components presents in Y ∗(s) and applied to a general plant P (s).
Using P (s) as the first-order filter P1(s) of (4.1), Y ∗(s)=I∗f (s) and Y (s)=If (s), the diagram of
Fig. 4.3 represents the current control structure for a first-order filter (see Fig. 4.1a). With I∗f (s)
and If (s) as the reference and controlled current signals in frequency domain.

Kp

Rc1(s)

Rck(s)

Y ∗(s) Y (s)
P (s)

Rc2(s)

Figure 4.3: General close-loop control scheme for a proportional resonant controller with delay
compensation (Gc(s)) applied to a plant P (s).

For the sake of generality, the controller with angle compensation Gc(s) of (4.7) has been
selected for implementation in Fig. 4.3. However, as will be demonstrated, the compensation
angle ϑn is usually not required and in most of the cases a PR controller G(s) of (4.6), setting
ϑn=0 in Gc(s), provides enough flexibility for successfully controlling k sinusoidal current
components of frequencies ωn, for n ∈ {1, 2, .., k}.

4.2.1 Single-Resonant Controller Design

As a first approach, let us consider the resonant controller of (4.3) for compensation of only one
fundamental current component of frequency ω1 in a first-order plant P1(s). This controller is
given by

G(s) = Kp +R1(s) = Kp +K1
s

s2 + ω2
1

(4.10)

Due to the complex conjugate poles of a resonant controller G(s), the design of its transient
response using standard root-locus or bode methods provides usually an inaccurate approxima-
tion. However, by shifting G(s) in the frequency domain from ω1 to ω0=0, this controller can
be approximated to an equivalent standard Proportional Integral (PI) controller [124]. Thereby,
each resonant controller Rn(s) of (4.3) can be shifted in the frequency domain for placing its
resonance frequency ωn at ω0=0 by using

Rdc(s) = Rn(s+ jωn) +Rn(s− jωn)−R2n(s) (4.11)
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where Rdc(s) represents the controller Rn(s) with its resonance frequency ωn shifted to ω0=0
and it is expressed as:

Rdc(s) =
K1

s
(4.12)

Equivalently, the controller Rdc(s) can be shifted back to a desired resonance frequency ωn by
using:

Rn(s) =
Rdc(s+ jωn) +Rdc(s− jωn)

2
(4.13)

Thereby, using (4.11), the proportional resonant controller of (4.10) can be expressed as an
equivalent PI controller as:

Gdc(s) = Kp +Rdc(s) = Kp +
K1

s
(4.14)

So that, the simple PI controller of (4.14) can be used for obtaining the gain parameters K1

and Kp that accomplishes with a certain design criteria. The design can be accomplished by
a root-locus analysis and then directly implement the gain parameters K1 and Kp in (4.10) for
controlling a signal of frequency ω1. Fig. 4.4 shows the root-locus design for the controller
Gdc(s) of (4.14) and the first-order plant of (4.1). The close-loop poles have been placed to
obtain a damping factor of ξ=0.54 and a settling time tset=1.6ms.

Fig. 4.5 shows the time domain step-response for the implementation of both controllers,
Gdc(s) of (4.14) and the G(s) of (4.10). Both controllers have been implemented to the same
first-order plant P1(s) and with the same gains parameters Kp and K1 which are obtained from
the design of Fig. 4.4. As it can be seen, the transient step-response performed by the signal
controlled by Gdc(s), namely idcf (t), is equivalent to the step-response displayed by the sinu-
soidal signal controlled by G(s), i.e. if (t). The settling time for both signals is approximately
1.6ms and their overshoot Mp ≈ 1.25%. This is slightly larger than the 1.16% considered in
the root-locus design of Fig. 4.4. This non-ideal response is explained by the influence of the
extra zero incorporated in the close-loop transfer function of the system composed by Gdc(s)
and P1(s) [150, 151]. This close-loop function is expressed as:

Idcf (s)

I∗dcf (s)
=

Kp
Lf

(s+ K1

Kp
)

s2 + s(
Rf+Kp
Lf

) + K1

Lf

(4.15)

where I∗dcf (s) and Idcf (s) are the direct-current reference and controlled signals in s-domain.
The equivalent close-loop transfer function for a system composed by the proportional resonant
controller G(s) in (4.10) and P1(s) can be expressed as:

If (s)

I∗f (s)
=

Kp
Lf

(s2 + ω2
1) + 2K1

Lf

s(s2 + ω2
1) +

Rf+Kp
Lf

(s2 + ω2
1) + 2K1

Lf

(4.16)

From simple inspection of (4.15) and (4.16) it can be noticed that substituting s=0 in (4.15)
and s=jω1 in (4.16) results in a perfect tracking of each reference signal with an unitary gain
and without phase-shift errors. In order to minimize the effect of the extra zero of (4.15) over
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Figure 4.4: Root-Locus for a Proportional Integral controller Gdc(s)=Kp + K1

s
and a first-

order plant P1(s)= 1
Lf s+Rf

, with parameters Rf=1Ω and Lf=3mH . The controller gains are
Kp=13.81 and K1=61407 for obtaining a close-loop response with settling time tset≈1.63ms
and a maximum peak response of Mp ≈ 1.16%, namely damping factor ξ≈0.54 and natural
frequency ωnat≈4530rad/s.

the close-loop transient response, the values of K1 and Kp should be selected to place the zero
s=−K1

Kp
as far as possible from the real part of the complex conjugate close-loop poles showed

in Fig. 4.4 [150,151]. The real part of the complex conjugate close-loop poles can be expressed
as ξωnat. Thereby, a good rule for considering negligible the effect of the extra zero over the
transient response of the close-loop system is given by [150]:

K1

Kp

≥ 10|ξωnat| (4.17)

It is important to mention that, in order to have a theoretical equivalent transient response
for both controllers, i.e. transient response of a dc signal and of a sinusoidal signal of an arbi-
trary frequency ωn, the input reference-step must excite the same frequencies in both controllers
during the transient interval. This means, that for achieving a perfect equivalent transient re-
sponse, the sinusoidal waveform should be equivalent to a constant step during the transient
response. Although this is usually not achievable, a very good approximation is obtained when
the designed settling time is relative small compared to the period of the controlled sinusoidal
signal. Thus, an empirical good criteria for considering both transient responses approximately
equivalent is to use

tset ≤
Tn
4

(4.18)
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Figure 4.5: Time domain step-responses for a Proportional Resonant Controller G(s)=Kp +
K1

s2+ω2
1

and a PI controller Gdc(s)=Kp + K1

s
with Kp=13.81, K1=61407 and ω1=100πrad/s

implemented in a plant P1(s)= 1
Lf s+Rf

, with parameters Rf=1Ω and Lf=3mH . The overshoot
for both responses approximately Mp ≈ 1.25% with a settling time tset≈1.6ms. if (t), i∗f (t)
idcf (t) and i∗dcf (t), represents the controlled and reference signals for the alternating and the
equivalent dc currents.

where tset is the settling time used in the design of Gdc(s) and Tn is the period of the controlled
sinusoidal signal of frequency ωn.

In order to demonstrate this criteria, Fig. 4.6 shows the time response of a proportional reso-
nant controller tuned at a frequency ω3=300πrad/s and implemented with the same parameters
Kp and K1 used in Fig. 4.5. As it can be seen, the settling time is still equivalent to the dc re-
sponse. However, the overshoot has decreased from 1.25 to 1.17, this is mainly because the
designed settling time tset represents now almost one quarter of the period of the reference sig-
nal, T3=6.6̄ms and the sinusoidal reference waveform can no longer be considered as a constant
step.
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with Kp=13.81, K3=61407 and ω3=300πrad/s

implemented in a plant: P1(s)= 1
Lf s+Rf

, with parameters Rf=1Ω and Lf=3mH . The settling
time for both responses is approximately tset≈1.6ms. The overshoot for the sinusoidal response
is approximately is Mp ≈ 1.17%, while for the dc response is approximately Mp ≈ 1.25%.
if (t), i∗f (t) i

dc
f (t) and i∗dcf (t), represents the controlled and reference signals for the alternating

and the equivalent dc currents.

4.2.2 Multi-Resonance Controller Design

The implementation of several resonant controllers in one transfer function, as presented in
(4.7) and Fig. 4.3, leads to an unavoidable coupling effect among the controllers, which distort
the transient response designed for each individual controller. For the sake of the analysis, a
simple current resonant controller for compensation of two current harmonics at frequencies ω1

and ω3 can be used. This controller is given by

G(s) = Kp +R1(s) +R3(s) = Kp +K1
s

s2 + ω2
1

+K3
s

s2 + ω2
3

(4.19)

Ideally, in a fully decoupled controller, the transient response produced by a resonant con-
troller designed only for ω1, as in Fig. 4.5, should keep unaltered after introducing a second
resonant controller for controlling ω3, as presented in (4.19). Likewise, the transient response
performed by a resonant controller designed only for ω3, as presented in Fig. 4.6, should be the
same transient response performed by the controller G(s) of (4.19), if the same parameters Kp

and K3 are used.
This ideal decoupled performance of each resonant controller is theoretically not achievable,

mainly because the magnitude response of R1(s) (or equivalently R3(s)) is not zero around ω3

(or equivalently ω1), generating a crossing effect. Thereby, the step response ofG(s) for a signal
of frequency ω1 (or equivalently ω3) can be completely different to the individual response
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of R1(s) (or equivalently R3(s)) if the controller R3(s) (or equivalently R1(s)) possesses a
considerable gain at this frequency. Additionally, the phase response interaction between R1(s)
andR3(s) is also unavoidable and should be analysed. For this purpose, let us analyse the open-
loop response of a system composed by G(s) of (4.19) and a first order plant P1(s) of (4.1). It
can be expressed as:

N1,3(s) = P1(s)(Kp +R1(s) +R3(s)) (4.20)

N1,3(s) =
Kp

Lfs+Rf

+K1
s

(s2 + ω2
1)(Lfs+Rf )

+K3
s

(s2 + ω2
3)(Lfs+Rf )

Fig. 4.7 shows the transfer functions for P1(s)(R1(s) +R3(s)), P1(s)R1(s) and P1(s)R3(s) .
Each transfer function has been implemented using the same parameters obtained in the previ-
ous design (see Fig. 4.5) and consideringK3=K1. As it can be seen from Fig. 4.7, the open-loop
response of (R1(s) + R3(s))P1(s) possesses a negative infinite amplitude peak (zero absolute
gain) at ωq, which produces a step of 90◦ in its phase response. This abrupt change in the phase
response results in an equivalent phase for (R1(s) + R3(s))P1(s) and R3(s)P1(s) around ω3.
Similarly, (R1(s) +R3(s))P1(s) and R1(s)P1(s) also posses same phase response around ω1.

This similarity between the independent resonant controllers and the multi-resonant con-
troller is subject to the selection of the gains of each controller, namely K1 and K3. Thereby, to
obtain an approximated decoupled design, the following remarks, based on Fig. 4.7, should be
considered:

• The adjustment ofK1 orK3 moves the magnitude responses |P1(s)R1(s)| or |P1(s)R3(s)|
upward or downward, while maintains the phase responses inalterable. This adjust-
ment moves the intersection frequency ωq, shifting the negative infinite gain peak of
P1(s)(R1(s)+R3(s)) and affecting the coupling of the controllers. Thereby, for instance,
a high value ofK1 compared toK3 moves ωq towards ω3. This results in a reduced gain of
|P1(s)(R1(s) + R3(s))| for frequencies that approach to ω3 from the left side, which can
be prejudicial if the frequency of the controlled signal slightly variates in a small range.

• The selection of K1 and K3 should provide a phase band ∆ωq that generates an equiv-
alent phase response for ∠P1(s)(R1(s) + R3(s)) and ∠P1(s)R1(s) (or equivalently
∠P1(s)R3(s)) around ω1 (or equivalently ω3) with a sufficient margin range. Thereby,
for instance, a high value of K1 compared to K3 produces a very small phase band ∆ωq
and the equivalence between ∠P1(s)(R1(s) + R3(s)) and ∠P1(s)R3(s) is valid only for
a narrow band around ω3. As it will be studied later, this can lead to stability problems.

Thus, for reducing the coupling effect of a set of k resonant controllers: Rn(s) for n ∈
{1, 2, ..., k}. A good design criteria is to select the gains of each resonant controller Kn for
placing the intersection frequency between |P1(s)Rn(s)| and |P1(s)Rn+1(s)|, defined by ωqn ,
to a similar distance from ωn and ωn+1, ensuring a good margin ∆ωqn .

In order to proof the previous analysis, Fig. 4.8a shows the step response for the controller
of (4.19), implemented with the same parameters used in Fig. 4.7. As it can be seen, firstly
a sinusoidal step reference with a frequency ω1 is implemented. Compared to Fig. 4.5, the
transient response is slightly affected by the unavoidable coupling effect of both controllers, i.e.
R1(s) and R3(s). However, the transient response can still be considered acceptable similar
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Figure 4.7: Bode diagram for the frequency response of P1(s), P1(s)(R1(s) + R3(s)),
P1(s)R1(s), P1(s)R3(s). With K1=K3=61407, ω1=100πrad/s, ω3=300πrad/s, Lf=3mH and
Rf=1.0Ω.

to the transient response obtained in Fig. 4.5. After 20ms, a sinusoidal step reference with an
amplitude of 20% and frequency ω3 is introduced. The response has also increased its overshoot
compared to its independent implementation showed Fig. 4.6. However, it still performs a
reasonable similar transient response compared to Fig. 4.6.

Similarly, Fig. 4.8b shows the same procedure but increasing K3 in ten times. As it can be
seen, although K1 have not been changed, the coupling effect dramatically affected its transient
response. Naturally, the transient response for ω3 the at 20ms has been also affected.

In general, the transient response of a multi-resonant controller is mainly determined by the
resonant controller designed for the fundamental frequency ω1, as the magnitude of the con-
trolled signal at this frequency is usually much larger than the additional compensated compo-
nents. Moreover, the additional gainsKn for the resonant compensators,Rn(s) for n ∈ {2, ..k},
can be selected to find a suitable trade-off between fast elimination of the steady-state error for
the signal of frequency ωn and to provide sufficient stability margins (as shown in the following
section).

As an alternative solution to reduce the coupling effect of resonant controllers, a set notch
filters can be implemented previous the input of each resonant controllerRc

n(s) of Fig. 4.3. This
can reduce the coupling affect among the k controllers Rn(s) for n ∈ {1, 2, ..k}, as they only
receive signals of frequency ωn at which they are tuned. However, this increases the complexity
of the controller. Additionally, the dynamic of the notch filters also interfere in the transient
response of the controllers [152].
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Figure 4.8: Time domain step-responses for a Proportional Resonant Controller G(s)=Kp +
K1

s2+ω2
1

+ K3

s2+ω2
3

and a PI controller Gdc(s)=Kp + K1

s
with (a) Kp=13.81, K1=K3=61407,

ω1=100πrad/s and ω3=300πrad/s implemented in a plant: P1(s)= 1
Lf s+Rf

, with parameters
Rf=1Ω and Lf=3mH in (b) only K3=614070 has been changed. if (t), i∗f (t) i

dc
f (t) and i∗dcf (t),

represents the controlled and reference signals for the alternating and the equivalent dc currents.

4.2.3 Nyquist Stability Analysis

After obtaining the parameters that perform a desired transient response for a resonant con-
troller with one or multiple resonances, its relative stability has to be studied to ensure a robust
operation. Usually, the phase- and gain-margins obtained in a bode plot are enough indica-
tors to proof the relative stability of a certain controller design. However, these parameters are
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only valid for open-loop responses that monotonically decay, which produces only one phase-
margin and one gain-margin across the frequency spectrum. When resonant controllers are
implemented, the bode magnitude response can cross the abscissa (0dB) multiple times, lead-
ing to multiple phase-margins. Likewise, the phase response perform a step of 180◦ for every
resonance frequency, which can lead to several gain-margins. Thereby, typical phase- and gain-
margins are not a reliable indicator for stability when resonant controllers are implemented. A
more suitable and reliable indicator of relative stability margins is the reciprocal of the sen-
sitivity peak, namely the minimum distance of a Nyquist plot to the critical instability point
(−1, 0j) [151].

In order to obtain a stable close-loop response, the Nyquist plot of the open-loop transfer
function of a system should not enclose the point (−1, 0j) in the complex plane [151]. Thus,
the open-loop transfer function for a resonant controller implemented for compensation of a
frequency ω1 applied to a first-order plant is given by

N1(s) = P1(s)(Kp +R1(s)) =
Kp

Lfs+Rf

+K1
s

(s2 + ω2
1)(Lfs+Rf )

(4.21)

In order to obtain the stability margins of N1(s), let us analyse the effect that each term of
(4.21) has over the Nyquist diagram:

• Fig. 4.9a shows the Nyquist diagram of KpP1(s), plotted for positive (in solid lines) and
negative (in dotted lines) frequencies. Several curves are plotted to observe the effect
of an increment in Kp. As it can be seen, for ω : 0 → ∞, the plot starts at the point
(Kp
Rf
, 0j) with ω= 0 and finishes at (0, 0j) when ω →∞. Due to the magnitude of P1(s)

monotonically decreases to zero while its phase-response also decreases monotonically
from 0◦ to −90◦ (see Fig. 4.7), the Nyquist path does not present discontinuities, describ-
ing always a curve in the right side of the plane. Hence, an increment in Kp enlarge the
curve, shifting the starting point to the right side of the plane. Thereby, the term KpP1(s)
shifts the open-loop Nyquist diagram of N1(s) to the stable region, pushing it away from
the critical point (−1, 0j).

• Fig. 4.9b shows the Nyquist of P1(s)R1(s) for positive frequencies (the path for negative
frequencies is symmetrically placed in the plane). From simple inspection of (4.21), the
starting point of the Nyquist plot is (0, 0j) for ω=0. Thereafter, the plot rapidly increases
its magnitude being theoretically infinite when ω reaches ω1 from the left side (ω−1 ). After
ω is infinitesimally larger than ω1, the magnitude starts to decrease and the phase have
been shifted in −180◦, which makes the curve appears from the other extreme of the
diagram (see Fig. 4.7). After that, the magnitude slowly decreases to zero, arriving to the
starting point (0, 0j). As illustrated in Fig. 4.7, the phase-response of P1(s)R1(s) is not
affected by the term K1 and it is only determined by the parameters of the plant Lf , Rf

and the controlled frequency ω1. Thereby, its starting angle (for ω=0) and arriving angle
(for ω → ∞) are always 90◦ and −180◦. However, a large value of K1 maintains these
starting and arriving angles for a larger range of frequencies. Although an increment
of K1 does not change the phase-response of P1(s)R1(s), it influences the closeness of
the curve to the point (−1, 0j), when ω → ∞, affecting negatively the stability margin
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as shown in Fig. 4.9b. It is important to mention that the modification of Kp and K1

correspondingly changes the transient response as discussed in the previous section.

• Fig. 4.9c and Fig. 4.9d shows the complete open-loop response for N1(s). Each diagram
shows the effect of changing Kp or K1 respectively. As it can be expected, an increment
in Kp, maintaining K1 constant, pushes the Nyquist plot away from the critical stability
point (−1, 0j), shifting also the starting point Kp

Rf
. Contrary, an increment of K1, main-

taining Kp constant, pushes the Nyquist trajectory closer to the critical point (−1, 0j),
reducing the stability margin.
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Figure 4.9: Nyquist plot and analysis for the open loop responses of (a) c1 · KpP1(s) for
c1={0.5, 1.0, 1.5}, (b) c2 · P1(s)R1(s) for c2={10−3, 10−2, 1}, (c) P1(s)(c1 ·Kp + c2 · R1(s))
for c1={0.1, 0.5, 1.0} and c2=1.0 and (d) P1(s)(c1 · Kp + c2 · R1(s)) for c1=1.0 and
c2={0.1, 0.3, 1.0}. Kp=13.81, K1=61407, ω1=100πrad/s, Rf=1Ω and Lf=3mH .

The Fig. 4.10 shows open-loop response of N1(s) with the same parameters listed in the
caption of the Fig. 4.4. As it can be seen, the path starts at (Kp

Rf
, 0j) ≈ (14, 0j) and tends to

infinity with an asymptote of 47◦ as ω approaches to ω−1 , describing the path marked by σa.
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Thereafter, the curve appears from the other extreme of the plot, 180◦ behind, describing the
path σb that converge to the point (0, 0j) as ω approaches to infinity. The critical frequency
ωc and the phase-margin PMN1(s) are also showed in the Fig. 4.10 by using a unitary circle.
As the path does not describe any point with a phase of 180◦, the gain-margin is not depicted.
The minimum distance between the critical point (−1, 0j) and the Nyquist plot is defined as
η and it represents the inverse of the sensitivity peak [151]. This index combine both, phase-
and gain-margins in only one indicator. Thereby, a small value of η leads to small stability
margins and the system can become easily unstable. Additionally, a small value of η leads to
very underdamped transient responses [151].
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Figure 4.10: Nyquist diagram for the open-loop response N1(s) of (4.21). The implemented
parameters are: Rf=1Ω, Lf=3mH , Kp=13.81, K1=61407 and ω1=100πrad/s. ωc≈5800rad/s.

Fig. 4.11 shows the Nyquist diagram for a first-order plant and a resonant controller im-
plemented with compensation two frequencies, namely the response of the open-loop function
N1,3(s) presented in (4.20). Using the bode plot presented in Fig. 4.7, the diagram of Fig. 4.11
can be easily understood. Thereby, the plot starts again in (Kp

Rf
, 0j) ≈ (14, 0j) for ω=0 and

tends to infinity as ω approaches to ω−1 , describing the path marked by σa. However, after ac-
complishing the 180◦ phase step, the path approaches again to (Kp

Rf
, 0j) ≈ (14, 0j) through the

path marked as σb (see Fig. 4.7). Thereafter, the path tends again to infinity as ω approaches to
ω−3 describing the path marked as σc to finally appears 180◦ behind, approaching to (0, 0j) as
denoted by the curve σd. Similarly to Fig. 4.10, the asymptote for ω−1 is still 47◦, but a second
asymptote is placed now as ω approaches to ω−3 with an angle of 19◦. Generally, the incorpo-
ration of additional resonant controllers lead to the same number of additional asymptotes and
−180◦ turns in the Nyquist plot.

As it can be seen from Fig. 4.11, the incorporation of a second resonant controller has re-
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duced the distance of the Nyquist plot to the critical point (−1, 0j) from 0.91 to 0.71, reducing
the stability margin. Consequently, the phase-margin have been also reduced. Generally, the
incorporation of additional resonant controllers for compensation of higher order frequencies
reduces this stability margin. So that, the gains of the resonant controllers Kn are usually read-
justed to obtain a minimum reasonable stability margin. An empirical good estimation for the
stability margin can be considered as η ≥ 0.4.

Additionally, a change of plant parameters or gain of the controllers could lead to the path de-
noted as σb in Fig. 4.11 crosses the unitary circle, generating multiple phase- and gain-margins.
This confirm that these are not reliable stability indicators and their consideration can lead to
erroneous conclusions regarding the stability of the system [60].
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Figure 4.11: Nyquist diagram for the open-loop response N1,3(s). The implemented pa-
rameters are: Rf=1Ω, Lf=3mH , Kp=13.81, K1=61407, K3=61407, ω1=100πrad/s and
ω3=300πrad/s.

In case that a readjustment of the controller gains K1 or K3 of (4.21) is required to increase
the stability margin of a system. The new close-loop transient response can be estimated by
obtaining the close-loop poles of the system using the equivalent PI controller for the resonant
controller set at ω1, as shown in Fig. 4.4. The modification of the gain parameters for the
additional resonant controllers, i.e., K3 should be selected to maintain them as decoupled as
possible, as explained in the previous section. This is also valid for compensation of n different
frequencies.
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4.2.4 Resonant Controller with angle compensation
As it was presented in (4.7), a compensation angle ϑn can be introduced to each resonant con-
troller, to manipulate the angle of the open-loop transfer function around each resonance fre-
quency ωn. Adjusting this angle, it is possible to shift the the asymptotes of the Nyquist plot
when ω approaches to each of the resonance frequencies ωn. In Fig. 4.10 it was shown that the
Nyquist curve tends to infinite asymptotically with an angle of 47◦, which also define the angle
of the curve when it appears from the bottom of the plot, after rotating −180◦, influencing the
stability margin η. Thereby, using a proportional resonant controller with angle compensation
as follows:

Gc(s) = Kp +K1
s cosϑ1 − ωn sinϑ1

s2 + ω2
n

(4.22)

ϑ1=− ∠P1(s = jω1) (4.23)

permits the positioning of the asymptote angle at 90◦, increasing the stability margin η.
Fig. 4.12a shows the Nyquist diagram for implementation of this controller for a first-order
plant. Its open-loop transfer function can be expressed as:

N c
1(s)=P1(s)Gc(s)=

Kp

Lfs+Rf

+
K1(s cosϑ1 − ω1 sinϑ1)

(Lfs+Rf )(s2 + ω2
1)

(4.24)

where ϑ1 has been selected as (4.23). As it can be seen from Fig. 4.12a, the starting point has
been marked as κ0, which from simple inspection of (4.24) can be expressed as:

κ0=
Kp

Rf

− K1 sinϑ1

Rfω1

(4.25)

and must be placed at the right side of the critical point (−1, 0j), which gives an insight for
the selection of the values Kp and K1. Consequently, the curve tends to infinite with an angle
of 90◦ as ω approaches to ω−1 to then appears from the bottom of the plot and converge to
the origin with also an angle of 90◦. Thereby, the stability margin η have been increased to
1.0, which produces a more robust controller against uncertainties and mismatches on the plant
model and its parameters. However, this increment of stability is accomplished at expenses
of an usually overdamped transient response. Note that the open-loop response illustrated in
Fig. 4.12a possesses two phase margins, namely PM1

N1(s) and PM2
N1(s), which confirm that a

typical bode analysis is not a suitable indicator for resonant controllers.
In order to obtain an approximation of the transient response performed by (4.22), its equiva-

lent PI controller can be obtained using (4.11). This, equivalent controller centred at ω0=0 can
be expressed by

Gc−dc(s) = Kp +
K1 cosϑ1

s
(4.26)

Using (4.26) and the first order plant P1(s) of (4.1), the close-loop poles of an equivalent dc
system can be obtained and an approximated transient response can be estimated.

It is important to remark that the equivalence presented in (4.26) or (4.14) are useful sim-
plifications for approximating the transient response of a resonant controller, when the desired



4.2. MULTI-RESONANT CONTROLLERS FOR FIRST-ORDER SYSTEMS 81

settling time accomplishes (4.18) [153]. However, they do not represent neither the same close-
loop nor the same open-loop systems. Although this equivalence can be useful for designing
an approximated transient response, the stability analysis of both functions are not equivalent.
Hence, a Nyquist stability analysis using the resonant controllers G(s) of (4.6) or Gc(s) of (4.7)
must be accomplished for ensure stability.
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Figure 4.12: Nyquist diagram for resonant controllers implemented with angle compensation.
In (a) Nyquist diagram of (4.24) with parameters: Kp=13.81, K1=6140.7, ω1=100πrad/s,
ϑ1≈ − 47◦ and in (b) the Nyquist diagram of (4.27) with parameters: Kp=69.08, K1=6140.7,
K3=6140.7, ϑ1≈−47◦, ϑ3≈−19◦, ω1=100πrad/s and ω3=300πrad/s. For both cases the plant
parameters are: Rf=1Ω, Lf=3mH .

Fig. 4.12b shows the Nyquist diagram for compensation of two frequencies. Similarly to
(4.24), its open-loop transfer function can be expressed as:

N c
1,3(s)=

Kp

Lfs+Rf

+
K1(s cosϑ1 − ω1 sinϑ1)

(Lfs+Rf )(s2 + ω2
3)

+
K3(s cosϑ3 − ω3 sinϑ3)

(Lfs+Rf )(s2 + ω2
3)

(4.27)

From simple inspection of (4.27), the initial point of the Nyquist plot (κ0, 0j) can be expressed
as:

κ0=
Kp

Rf

− K1 sinϑ1

Rfω1

− K3 sinϑ3

Rfω3

(4.28)

which have to be placed at the right side of the critical point (−1, 0j). Starting from this point,
the Nyquist path tends to infinity as ω approaches to ω−1 with an asymptote of 90◦ (path σa) to
then appears 180◦ behind (path σb) and again describes a semicircle rotation as ω approaches to
ω−3 (path σc), crossing the real axis again at the point (κ1, 0j). Finally, the path approaches to
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the point (0, 0j) as ω tends to infinity (path σd). The upper right corner of Fig. 4.12b shows a
closer view of the origin of the plane. As it can be seen, the path tends to the point (0, 0j) with
90◦, leading to a stability margin of η=1.

As it was seen in Fig. 4.12a, in order to avoid the enclosure of the critical point (−1, 0j),
the starting point of the Nyquist plot (κ0, 0j) has to accomplish with κ0 > −1. However,
when multiple resonant controllers are implemented, the Nyquist path crosses the real axis
multiple times. This was observed in Fig. 4.12b, where the path also crosses the real axis
at the point (κ1, 0j) because of a second compensated frequency. For ensuring stability, all
these cross points must be placed at the right side of the critical point (−1, 0j), which force
to readjust the proportional gain Kp and the controllers gains Kn when several frequencies are
compensated. The general expression for obtaining the initial point (κ0, 0j) for a controller
designed for compensation of k different frequencies, is expressed as:

κ0=
Kp

Rf

−
k∑

n=1

Kn sinϑn
Rfωn

(4.29)

Thereby, depending of the compensated angles ϑn and the number of controllers, the values for
Kp and Kn can be selected to ensure κ0 > −1.

As demonstrated in Section 4.2.3, a resonant controller without compensation of the phase-
shift introduced by the plant can successfully accomplishes a good stability margin and a proper
transient response in a first-order plant. Thereby, although its implementation helps for increas-
ing the stability margins, it is not strictly required for ensure stability.

The compensation angle become necessary mainly under the following two situations, which
are correspondingly study in the following two section of this chapter:

• When the phase-shift introduced by the plant shifts the asymptotes of the Nyquist plots
beyond −90◦, which would generate a path that enclose the critical point (−1, 0j). This
can occurs in a second-order system, where the plant can introduce a phase-shift between
0◦ to −180◦.

• Similarly, the Nyquist plot can enclose the critical point (−1, 0j) when the computational
time delay, introduced by digital computers in real implementation, represents more than
more than 90◦ of a compensated signal. This usually occurs when high-order harmonics
are being compensated.

4.3 Multi-Resonant Controllers for Second-Order Systems
Generally, the output voltages vabcf of a power supply connected to an output LC filter, as
presented in Fig. 4.1b, can be regulated based on two different control structures:

• The first structure assumes that the voltage dynamic (vabcf ) is much slower that the cur-
rent dynamic (iF ) and divides the problem into two independent control-loops [151].
Thereby, an external voltage control-loop and an internal nested current control-loop are
independently designed. In order to ensure proper operation, both controllers have to be
decoupled. This usually achieved by tuning the internal nested current controller with a



4.3. MULTI-RESONANT CONTROLLERS FOR SECOND-ORDER SYSTEMS 83

bandwidth around ten times higher than the bandwidth of the outer controller. The use of
a nested control structure provides a simple design of the controllers, as the second-order
plant is reduced to two first-order plants. Additionally, it also provides the advantage of a
direct control over the current iF .

• When high-order voltage harmonics has to be compensated, the internal current controller
of a nested control structure must perform a very fast dynamic response to maintain the
internal and external control loops decoupled. This is usually not achievable, because the
bandwidth of the internal current controller is physically limited in real implementation
by the sampling time of the digital controllers and the switching frequency of the power
converter [148, 154]. Additionally, when the dynamics of voltage and currents are simi-
lar, the nested controller can not be considerer decoupled, generating coupling effect and
a poor performance. This issues can be solve by using a direct voltage control-loop, as
presented in Fig. 4.1b. This control structure has gained attraction in aerospace appli-
cations, where fundamental frequencies between 400Hz to 800Hz has to be controlled
and high-order harmonics have to be compensated [154,155]. Thereby, the direct voltage
control-loop has been selected for analysis in this chapter and will be later implemented
in an aerospace application in Chapter 6.

The closed-loop control scheme presented in Fig. 4.3 can be used for representing the close-
loop voltage control for the UPS presented in Fig. 4.1b. Consequently, from Fig. 4.3, P (s) is
expressed as P2(s) of (4.2), Y (s)=Vf (s) and Y ∗(s)=V ∗f (s). Where Vf (s) and V ∗f (s) are the
frequency domain representation of one phase of the controlled and reference output voltages,
i.e. vαβγ and v∗UPSαβγ of Fig. 4.1b.

Fig. 4.13 shows the bode diagram for the second-order plant P2(s) designed with a resonance
peak at approximately 2400Hz. Unlike the bode diagram of the first-order plant presented in
Fig. 4.7, a second-order plant generates an abrupt magnitude and phase change at fres, which
leads to a system that can easily become unstable, complicating the tuning of the multiple reso-
nant controllers. Therefore, in order obtain a controller that provides larger stability margin, the
resonant controller of (4.4), using Kp=0, arises as the most suitable alternative for controlling
a second-order system. Hence, a resonant controller for controlling a fundamental voltage of
400Hz and compensation of a 5th harmonic component of 2000Hz can be expressed as:

Rc(s)=Rc
1(s) +Rc

5(s)=K1
s cosϑ1 − ω1 sinϑ1

s2 + ω2
1

+K5
s cosϑ5 − ω5 sinϑ5

s2 + ω2
5

(4.30)

ϑ1=− ∠P2(jω1) (4.31)
ϑ5=− ∠P2(jω5) (4.32)

The bode diagram for the open-loop transfer function composed by this resonant controller
and the second-order filter P2(s) is also illustrated in Fig. 4.13. As it can be seen, its phase
response is equal to ±90◦ at each resonance frequency ω1 and ω5. This is because of the com-
pensation angles ϑ1≈1.5◦ and ϑ≈22◦ introduced in (4.30).

Hence, in order to obtain the stability margins of the close-loop system, a Nyquist analysis of
the open-loop transfer function P2(s)Rc(s) is required. Let us first consider the implementation
of only one resonant controller, namely only Rc

1(s) of (4.30). Fig. 4.14a shows the Nyquist
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Figure 4.13: Bode diagram for the second-order plant P2(s) of (4.2) and the resonant controller
Rc(s)=Rc

1(s) + Rc
5(s) of (4.30). The implemented parameters are: Lf=219µH , Rf=0.5Ω,

Cf=20µF , ω1=800πrad/s, ω5=4000πrad/s K1=1250, K5=150, ϑ1 ≈ 1.5◦, ϑ5 ≈ 22◦.

diagram of the open-loop function Rc
1(s)P2(s) for three different values of K1. As expected,

and zoomed at the upper left corner of Fig. 4.14a, the diagram starts at κ0 for each of the
different values of K1. This initial point can be calculated in a general form as (P2(0j)Rc(0j)),
i.e.,

κ0=−
k∑

n=1

Kn sinϑn
ωn

(4.33)

Afterwards, the path tends to infinite with an angle of 90◦ (path σa), rotating−180◦ to appear
from the bottom of plot (path σb). However, instead of directly approaching to zero, as presented
in Fig. 4.12a for a first-order filter, it performs a curve towards the critical point (−1, 0j). This
curve is product of the damped resonance of the filter P2(s) at the frequency fres (see Fig. 4.13).
Therefore, in order to avoid an unstable close-loop operation, i.e., avoid the enclosure of the
critical point (−1, 0j), the gain of the controller K1 has to be limited. In Fig. 4.14a, the red
line represents the Nyquist plot for a controller which gain produces an unstable operation,
enclosing the point (−1, 0j). Thenceforth, the Nyquist path approaches to the origin (0, 0j),
through the path denoted as σb.

Consequently, Fig. 4.14b shows the Nyquist diagram for the complete open-loop response
P2(s)Rc(s) of (4.30), with compensation of the fundamental voltage of 400Hz and the 5th

voltage harmonic of 2000Hz. Two different values of K5 have been implemented to observe
its influence on the Nyquist path. As usual, the plot starts at κ0 for ω=0 (κ1

0 or κ2
0 for each

value of K5), calculated as (4.33). Thereafter, the path describes the trajectory denoted as σa,
approaching to infinity with an angle of 90◦ as ω approaches to ω−1 . Consequently, the trajectory
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Figure 4.14: Nyquist diagram for (a) P2(s)Rc
1(s) with K1={625, 1250, 2500} and start-

ing points in increasing order: κ1
0= − 0.0064, κ2

0= − 0.0129, κ3
0= − 0.0257 and for (b)

P2(s)(Rc
1(s) +Rc

5(s)) with K1=1250, K5={150, 600}, ϑ5 ≈ 22◦ and starting points in increas-
ing order: κ1

0= − 0.0171, κ2
0= − 0.0309. For both plots, Lf=219µH , Rf=0.5Ω, Cf=20µF ,

ω1=800πrad/s, ω5=4000πrad/s and ϑ1 ≈ 1.5◦.

rotates −180◦ and appears from the bottom of the plot, denoted as σb. Then, it crosses the real
axis and tends again to infinity with an angle of 90◦ (see Fig. 4.13) as ω approaches to ω−5 ,
following the path described by σc. Thereafter, it appears again from the bottom of the plot,
describing the characteristic curve produced by the resonance peak of the second-order filter,
denoted as σd. Finally the path converge to the origin of the plot (0, 0j). As it can be observed,
the gain K5 of the resonant controller Rc

5(s) has to be limited to avoid enclosure of the critical
point (−1, 0j).

Note that in case of compensation of frequencies beyond fres, the compensated angle dramat-
ically increases. For instance, in case of compensation of component of frequency ω7=7ω1, the
required compensating angle is ϑ7≈153◦. Therefore, the compensation angle for this frequency
become mandatory to accomplish an stable close-loop operation.

The value of K1 usually determines the transient response of the system, because it defines
the performance of the fundamental waveform. Thereby, as no proportional term is used, K1 is
usually selected as large as possible to obtain a fast transient response, but it has to be limited
to avoid instability operation and to leave enough stability margin for incorporation of the the
additional controllers, which gains parameters, K5 in this example, pushes the Nyquist diagram
to unstable operation.
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The proximity of the Nyquist path to the critical point (−1, 0j) in Fig. 4.14b is directly pro-
portional to the magnitude of the resonant peak of P2(s) at fres. Thereby, the natural damping
resistance Rf present in the inductance Lf of P2(s) is very important for achieving an stable
operation and consequently the proportional termKp is usually not implemented for controlling
second-order systems by using resonant controllers, as this term enlarge the path described by σb
of Fig. 4.14a or σd of Fig. 4.14b, leading easily to instability. When the value of Rf is not large
enough to ensure a proper stability margin, a virtual resistance Rf can be employed to enlarge
the stability margins. This is known as virtual resistor or active damping method [99,156,157].
However, it produces a comparable effect to the reduction of the gain values of the resonant
controllers Kn.

Eliminating the proportional term Kp permits the design of an stable and more robust close-
loop system, but leads to an slower overdamped response, typical of pure integral controllers.
However, this is not critical issue, as the gain of each resonant controller can be usually tuned
high enough for achieving an acceptable transient performance, accomplishing with power qual-
ity standards. This has been proven in Chapter 6 through the implementation of a Ground Power
Unit (GPU) for aerospace applications accomplishing with the military standard: MIL-STD-
704F Aircraft Electric Power Characteristics [10].

The Fig. 4.15 shows the transient response for the stable controller designed in Fig. 4.14b.
As it can be seen, the transient response for the fundamental frequency reference step has an
small coupling effect with the 5th harmonic component. However, it is rapidly eliminated after
approximately one cycle (2.5ms). Thereafter, at time 10ms a second step reference for incor-
poration of 10% of 5th harmonic component is performed. As it can be seen, after the transient
response, the tracking error is eliminated after one to two cycles (5ms).
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1.0
1.2

-1.2
0 0.005 0.01 0.015 0.02 0.025time(s)

5th harmonic Injection

v∗f (t)
vf (t)

Figure 4.15: Transient response of a controlled voltage vf (t) for a second-order plant P2(s) and
a resonant controller Rc(s)=Rc

1(s) + Rc
5(s) for compensation of fundamental 400Hz and fifth

harmonic of 2000Hz. The initial reference signal is equal to v∗f (t)= cos(800πt) and at t=10ms
it become v∗f (t)= cos(800πt) + 0.1 cos(4000πt). The parameters for the plant are: Lf=219µH ,
Rf=0.5Ω, Cf=20µF . The parameters for the controller are: ω1=800πrad/s, K1=1250, ϑ1 ≈
1.5◦, ω5=4000πrad/s, K5=150, ϑ5 ≈ 22◦.
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4.4 Implementation of Resonant Controllers in Digital Sys-
tems

In order to implement a controller in a digital system, its discretization and stability analysis in
discrete-time is required. Fig. 4.16 shows the typical single-loop control structure implemented
for controlling the discrete current or voltage variable represented as Y (k). The discrete form
of the nth resonant controller with angle compensation presented in (4.4) are denoted as Rc

n(z)
for n ∈ {1, 2, .., k}. A power converter, used as actuator, is represented as constant gain and
the computational calculation time required for computing the control algorithm in a digital
system is represented as a single discrete-time delay Ts. A discrete-time representation for the
continuous-time plant P (s) of Fig. 4.3 can be obtained by its Hold Equivalent model P (z).

Rc1(z)

Calculation
Y ∗(k)

(z−1)
P (s)

Rck(z)

Kp

Y (k)
Sampler

(SVM)

HoldConverter

(Γ)

P (z)

e(k) u(k) Γu(t)e−sTs Y (t)Γu(k − 1)

(Ts)

Figure 4.16: Discrete-time single-loop control structure for implementation of resonant con-
trollers. Y ∗(k) and Y (k) represents the reference and controlled discrete-time variables. Rc

n(z)
for n = {1, 2, .., k} represent a resonant controller with delay compensation for compensation
of a signal with frequency ωn in discrete-time.

4.4.1 Summary of Discretization Methods
Several different discretization methods can be used for transforming a continuous-time system
X(s) into its equivalent discrete-time system X(z). They can be summarized as follows [150,
151, 158]:

• Numerical Integral Approximation: This methods use a numerical approximation of the
continuous derivative operator s= d

dt
, for substituting it in X(s) and obtaining the equiva-

lent discrete-time system X(z). The most common approximations are: Backward-Euler
rule (4.34), Forward-Euler rule (4.35), Tustin or Trapezoidal rule (4.36) and Tustin with
prewarping (4.37). Unlike Backward- or Forward-Euler rule, the Tustin approximation is
the only that exactly maps the stability region of the continuous-time domain (left side
of the s-plane) into the stability region of the discrete-time domain (unitary circumfer-
ence) [150, 158]. For this reason, this is also known as bilinear transformation. Although
Tustin approximation provides the advantage of an equivalent stability region for both,
continuous- and discrete-time systems, it maps the complete continuous-time imaginary
axis (s=jω) only into 0 to 2π, which leads to large approximation error for high-order
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frequencies. In order to overcome this problem, an extended method, namely Tustin
with prewarping of (4.37), can be implemented. This method centered the approximation
around ω0. Thereby, it ensures that the continuous- and discrete-time systems behave
approximately similar around this frequency (at ω0 both system are equivalent).

Xbe(z)= X(s)|s= z−1
Ts

(4.34)

Xfe(z)= X(s)|s= z−1
zTs

(4.35)

X t(z)= X(s)|
s=

2(z−1)
Ts(z+1)

(4.36)

X tpw(z)= X(s)|
s=

ω0(z−1)

tan(
ω0Ts

2 )(z+1)

(4.37)

• Hold Approximation: This method has been presented in the diagram of Fig. 4.16.
Thereby, a continuous time systemX(s), embedded into a discrete-time control structure,
is preceded by a hold circuit which transform the discrete input signal into a continuous
signal for X(s). Thereafter, the output of X(s) is sampled at Ts rate to be converted
again in a discrete-time signal. This complete system represent the equivalent discrete-
time function X(z). The precision of the discrete representation depends on the order of
hold circuit. Thereby, the most commonly implemented hold circuits are the zero-order
hold (ZOH) and the firs-order hold (FOH) approximations. These approximations are
described in (4.38) and (4.39) respectively, where Z represents the z-transform.

Xzoh(z)=
(z − 1)

z
Z
{
L−1

{
X(s)

s

}}
(4.38)

Xfoh(z)=
(z − 1)2

zTs
Z
{
L−1

{
X(s)

s2

}}
(4.39)

• Zero-Pole matching Approximation: By using the discrete z-transform, a continuous-
time pole s0 is related to a discrete-time pole z0 as z0=es0Ts , where Ts represents the
implemented sampling time. Using this equivalence, the zeros of the continuous time
system can be also mapped to the discrete-time system to obtain its equivalent discrete
representation [150, 151, 158].

• Other Approximations: The impulse invariant approximation is also an alternative for dis-
cretization of continuous-time systems. In this approximation, the impulse response of
the continuous-time system is obtained and then sampled to obtain its equivalent discrete
impulse response. Thereby, a discrete-time representation of X(s) is obtained as (4.40).
Another alternative of discrete representation is the delta-transform presented in (4.41).
This transformation uses an equivalent variable γ to represent the discrete-time equiva-
lent model. This model has the advantage that is coherent with the continuous transfer
function X(s). Thus, a delta transfer function expressed as function of Ts approaches to
its equivalent transfer function in the s-domain when Ts approaches to zero [151].

X imp(z)=Z
{
L−1 {X(s)}

}
(4.40)

Xδ(γ)=Ts X(z)|z=Tsγ+1 (4.41)
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4.4.2 Discretization of First- and Second-Order Systems
In order to design a resonant controller in the z-domain, a discrete time representation of the
controlled plant must be obtained. The control structure presented in Fig. 4.16 represents an
hybrid system [151], where a discrete controller provides a reference actuation signal to a power
converter, which synthesize this signal to finally provide it to a continuous plant P (s). Thereby,
it results convenient to discretize P (s) by using hold approximations. Usually, input of the
equivalent discrete time plant P (z), Γu(k − 1), is maintained as a constant value during each
sampling period Ts and a PWM or SVM method is used to approximate this constant value
(u(k)) during one period Ts. Therefore, the hold circuit of Fig. 4.16 is usually approximated
by a zero-order hold (ZOH) [159]. Thereby, using (4.38) in the first order plant of (4.1), its
equivalent discrete-time transfer function can be obtained by

P zoh
1 (z)=

1− e−RfTs/Lf
Rf (z − e−RfTs/Lf )

(4.42)

The similarity between the continuous-time plant and the discrete-time plant depends on the
selected hold approximation. Thereby, an inappropriate selection of the hold method can nega-
tively affect the discrete-time stability analysis of the close-loop system of Fig. 4.16. Fig. 4.18a
illustrates the bode response for the first-order continuous-time plant P1(s) and its discretization
by using zero- and first-order hold methods. These discrete-time equivalences are represented
as P foh

1 (z) and P zoh
1 (z) respectively. As it can be seen, for high order frequencies, there is

an important mismatch between the continuous-time plant P1(s) and its ZOH discretization
P zoh

1 (z). This difference is also illustrated in Fig. 4.18b in a Nyquist diagram. Thereby, unlike
P1(s), that approaches to (0, 0j) as ω tends to infinity, P zoh

1 (z) and P foh
1 (z) approaches to the

negative and positive real axis respectively as ω tend to the Nyquist frequency ωnyq=πfs.
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Figure 4.17: (a) Bode and (b) Nyquist diagram for the continuous-time first-order plant P1(s)
and its ZOH (P zoh

1 (z)) and FOH (P foh
1 (z)) equivalent discrete-time representations. Sampling

time Ts=100µs (fs=10kHz) and filter parameters are Rf=1Ω, Lf=3mH .
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Using the ZOH discretization method of (4.38) to the second-order plant P2(s) of (4.2), its
discrete form is given by

P zoh
2 (z)=1− z − 1√

1− ξ2

(
ze−ξωnatTs

√
1− ξ2 sin (Tsωnat

√
1− ξ2 − arcos(ξ))

z2 − 2ze−ξωnatTs cos (Tsωnat
√

1− ξ2) + e−2ξωnatTs

)
(4.43)

ωnat =
1√
LfCf

(4.44)

ξ =
Rf

√
LfCf

2Lf
(4.45)

where Rf , Lf and Cf are the parameters of the second-order filter. In order to compare the
effect of the discretization on a second-order plant, Fig. 4.18a shows the bode diagram for dis-
cretization of the second order filter P2(s) of (4.2) by three different methods. As it can be
seen, the FOH discretization (P foh

2 (z)) provides the best phase approximation, but it changes
the magnitude response at ωres. On the other hand, the ZOH discretization method produces
the larger mismatch with the continuous-time plant, specially on the phase response. Addition-
ally, the Tustin with prewarping discretization (P tpw

2 (z)) has been implemented to show that it
provides the best approximation. This is because it approximates the function P2(s) around the
prewarping frequency ω0, set as the damped resonance frequency ωres for this plant. This is
confirmed in the Nyquist diagram presented in Fig. 4.18b, where the ZOH approximation even
crosses the negative real axis, enclosing the critical instability point (−1, 0j). Thus, it is possi-
ble that implementing an stable close-loop controller designed in the s-domain does not result
in a stable operation in discrete-time real implementation and, so that, a discrete-time stability
analysis is required previous the real implementation, specially when high-order frequencies,
or frequencies close to the damped resonance ωres, are being compensated.
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Figure 4.18: (a) Bode and (b) Nyquist diagram for the second-order plant P2(s) and its ZOH
(P zoh

2 (z)), FOH (P foh
2 (z)) and Tustin with prewarping (P tpw

2 (z)) with ω0=Ωres discretization.
Ts=100µs (fs=10kHz), Rf=0.5ω, Lf=219µH and Cf=20µF , ωres=4800πrad/s.
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4.4.3 Discretization of Resonant Controllers
In order to implement a resonant controller Rn(s) of (4.3) or Rc

n(s) of (4.4) in a digital system,
its discretization has to fulfil two important requirements:

• The discretization method must not shift the resonant frequency ωn of each resonant con-
troller.

• In order to ensure zero steady-state error, the discretization method must maintain an
infinite gain at the resonant frequency ωn.

Among the methods presented in (4.34) to (4.41), the only methods that accomplish these
restrictions are: ZOH, FOH, zero-pole matching, impulse invariant and Tustin with prewarping
approximation [60]. Additionally, the methods Tustin with prewarping and FOH provide the
best approximation overall the frequency spectrum, as it was illustrated in Fig. 4.18, and are
specially suitable as discretization methods for resonant controllers [160].

Thereby, substituting the resonant controllerR(s) of (4.3) into the Tustin and FOH discretiza-
tion methods of (4.37) and (4.39), the discrete representation of R(s) is obtained and given
by [149, 158, 161]:

Rfoh(z)=
k∑

n=1

Rfoh
n (z)=

k∑
n=1

Kn
(1− cos (ωnTs))(1− z−2)

ω2
nTs(1− 2z−1 cos (ωnTs) + z−2)

(4.46)

Rtpw(z)=
k∑

n=1

Rtpw
n (z)=

k∑
n=1

Kn
sin (ωnTs)(1− z−2)

2ωn(1− 2z−1 cos (ωnTs) + z−2)
(4.47)

where Ts is the discretization sampling time, ωn is the resonance frequency of the nth resonant
controller, Rfoh(z) and Rtpw(z) represent the discretized resonant controller implemented with
FOH and Tusting with prewarping respectively. The prewarping frequency of Rtpw(z) has been
selected as the resonance frequency of each resonant controller ωn.

Similarly, substituting the resonant controller with angle compensation Rc(s) of (4.4) into
the Tustin with prewarping and FOH discretization methods of (4.37) and (4.39), the discrete
representation of Rc(s) is obtained and given by [149, 158, 161] 1:

Rc−foh(z)=

k∑
n=1

Kn
cos(ωnDnTs)(1− z−2)(1− cos(ωnTs)))

ω2
nTs(1− 2z−1cos(ωnTs) + z−2)

(4.48)

−
sin(ωnDnTs)

[
ωnTs − sin(ωnTs) + z−1(2sin(ωnTs)− 2ωnTscos(ωnTs)) + z−2(ωnTs − sin(ωnTs))

]
ω2
nTs(1− 2z−1cos(ωnTs) + z−2)

Rc−tpw(z)=

k∑
n=1

Kn

1
2 (1− z−2) cos (ωnDnTs) sin (ωnTs)− (1 + 2z−1 + z−2) sin (ωnDnTs) sin2 (ωnTs2 )

ωn(1− 2z−1 cos (ωnTs) + z−2)
,

(4.49)

1Note that the equation provided in [149, 161] for Rc−foh(z) is not correct. The correct equation is presented
in this section.
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where Rc−foh(z) and Rc−tpw(z) represent the discretized resonant controller with delay com-
pensation implemented with FOH and Tusting with prewarping respectively, Ts is the discretiza-
tion sampling time and ωn is the resonance frequency of the nth resonant controller. The pre-
warping frequency of Rc−tpw(z) has been selected as the resonance frequency of each resonant
controller ωn. The term Dn represents the number of samples for compensating the phase-
shift introduced by the first- or second-order plant. Equivalently to ϑn of (4.4), Dn for the nth

resonant controller is given by:

Dn=
−∠P zoh

1,2 (zn=ejωnTs)rad

Tsωn
(4.50)

where P zoh
1,2 (zn=ejωnTs) represents the ZOH discrete-time representation of a first- or second-

order plant evaluated at the resonance frequency zn. Note that substituting Dn=0 in (4.48) and
(4.49) leads to the expressions (4.46) and (4.47).

4.4.4 Computational Delay Compensation

Although the computational delay z−1=e−jωnTs , described in Fig. 4.16, is usually negligible for
controlling signals of fundamental frequency ω1 ≤ 100Hz at standard sampling frequencies
fs ≥ 5kHz. This delay becomes an important portion of the period of a compensated signal
of frequency ωn, when resonant controllers are implemented for compensation of high-order
harmonics. Hence, for instance, a single delay Ts, at a sampling rate fs=16.8kHz, produces
an equivalent phase-shift of ϑd1=8.5◦ for compensation of a signal of fundamental frequency
ω1=400Hz. Likewise, it represents a phase-shift of ϑd11=94◦ for compensation of a 11th har-
monic component.

In a Nyquist diagram, the phase-shift ϑdn, generated by the computational delay to the nth

resonant controller Rc
n(s), shifts the asymptote produced by the nth resonance ωn in an angle

of ϑdn. This may lead to a Nyquist path that encloses the point (−1, 0j), generating an unstable
close-loop system [148, 162]. In order to overcome this problem, the computational delay has
to be compensated. Thus, to generate asymptotes at ±90◦ for each resonant frequency ωn, the
compensation angle ϑn of each controller Rc

n(s) of (4.4) must be calculated as:

ϑn=ϑPn + ϑdn (4.51)

ϑPn=− ∠P1,2(s=jωn) (4.52)

ϑdn=ωnTs (4.53)

where ϑPn represents the angle for compensation of the phase-shift produced by the plant and
ϑdn is the compensation angle for a unitary computational delay Ts. Similarly, for a discrete
resonant controller Rc−foh(z) of (4.48) or Rc−tpw(z) of (4.49), the compensation is achieved
just by increasing Dn in one unit. Hence, the compensation term Dn is expressed as:

Dn=DP
n +Dd

n=
−∠P zoh

1,2 (zn=ejωnTs)rad

Tsωn
+ 1 (4.54)

where DP
n is the compensation of the phase-shift produced by the discrete-time first- or second-

order plant P zoh
1,2 and Dd

n represents the compensation of the computational delay Ts. The
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discrete-time delay compensation Dd
n can be also selected as two sampling units in case that

the digital hardware implementation introduces an additional delay [126].

4.4.5 Multi-Resonant Controller design in z-domain
In order to visualize the difference between a continuous-time and discrete-time controller de-
sign, Fig. 4.19a shows the open-loop Nyquist Diagram for a continuous-time and a discrete-time
resonant controller for compensation of a fundamental 400Hz component and a 11th harmonic
signal of 4400Hz implemented in a second-order plant. Both resonant controllers, Rc(s) of
(4.4) and Rc−foh(z) of (4.48), have been designed for compensation of the phase-shift intro-
duced by the second-order plant P2(s) of (4.2) and P zoh

2 (z) of (4.43) respectively and for com-
pensation of the computational delay Ts.

Similarly to the Nyquist diagram presented in Fig. 4.14b , the Nyquist plot for the open-loop
functionRc(s)P2(s) of Fig. 4.19a starts at κ0, while forRc−foh(z)P zoh

2 (z) it starts at κfoh0 , which
can be obtained by simple inspection of (4.48) replacing z=1. Thereafter, both responses tends
to infinity with an asymptote of 90◦ as ω approaches to ω−1 (path denoted by σa), compensating
the phase-shift introduced by the plant and the computational delay. Thenceforth, the Nyquist
path appears from the bottom of the plot and describe the typical curve that approaches to the
instability point (−1, 0j) (path denoted by σb) produced by the damped resonance of the second
order plant. Afterwards, both paths describe a trajectory towards the origin (0, 0j), but before
arriving to it they tends again to infinity as the frequency ω approaches to the second controlled
frequency, i.e. ω11. This path is marked as σc. Finally, the path appears again from the bottom of
the plot to approach to the origin (0, 0j) as ω tends to infinity for the continuous-time response
and as ω tends to the Nyquist frequency πfs for the discrete time equivalent response.

Fig. 4.19b shows the effect of eliminating the computational delay compensation for the res-
onant controller designed for the 11th harmonic, i.e. ϑd11=0 and Dd

11=0 for the continuous- and
discrete-time controller respectively. As expected, for frequencies ω < ω11, the Nyquist dia-
gram describe the same path as illustrated previously in Fig. 4.19a. However, as ω approaches
to ω−11, the asymptote is not placed at 90◦ any more and, as discussed above, it has been shifted
in 94◦ generating a path that enclose the critical point (−1, 0j) and leading to an unstable close-
loop system. Therefore, the delay compensation become neccesary in this case and must be
implemented to avoid unstable operation.

It should be noticed that the selection of the compensation angles for placing the asymptotes
at 90◦ in the Nyquist diagram does not represent a theoretical optimum value, which maximize
stability margin η [60]. However, it is a very simple rule which provides satisfactory results
for first- and second-order systems. Furthermore, due to the natural mismatch between the
ideal model used for the controller design and the real model used in an experimental rig, some
fine-tuning is usually necessary to exactly fulfil with the design specifications. Therefore, the
presented method of setting the asymptotes to 90◦ is considered as a more simple and effective
solution and will be implemented throughout this work.
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Figure 4.19: Nyquist diagram for the open-loop transfer function of a system composed by
(black lines in (a) and (b)): a continuous resonant controller for compensation of first and
eleventh harmonics, Rc(s)=Rc

1(s) + Rc
11(s) of (4.4) and a second order plant P2(s) of (4.2)

and (red lines in (a) and (b)): a discrete-time resonant controller for compensation of first and
eleventh harmonicsRc−foh(z)=Rc−foh

1 (z)+Rc−foh
11 (z) of (4.48) and discrete second-order plant

P zoh
2 (z) of (4.43). For (a) in Rc(s): ϑ1≈1.48◦ + 8.5◦≈10◦,ϑ11≈173◦ + 94◦≈267◦, K1=1250,
K11=150, ω1=800πrad/s, ω11=8800πrad/s. In Rc−foh(z): Ts=

1
16800

, D1≈0.7 + 1≈1.7,
D11≈2.3 + 1≈3.3, K1=1250 and K11=150, ω1=800πrad/s, ω11=8800πrad/s. For P2(s) and
P zoh

2 (z): Rf=0.5Ω, Lf=219mH , Cf=20µF , ωref≈4800πrad/s. For (b) ϑ11=≈173◦ and
D11≈2.3, the rest of the parameters have not been modified.
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CHAPTER 5

Space Vector Modulation for a four-leg NPC
Converter

Abstract: This chapter proposes a three-dimensional space vector modulation in αβγ coordinates for a four-leg
NPC converter. First, the modulation space is studied and a simple algorithm for selecting the voltage vectors
and calculate its dwell time is proposed. Consequently, an analysis of the voltage fluctuations on the dc-link
neutral-point voltage presented and explained by subdividing the modulation space into different regions based
on the number of redundant vectors. This allows to estimate the ripple and oscillation frequency on the dc-link
neutral-point for designing the dc-link capacitors operating under non-linear and unbalanced systems. Thereafter,
the analysis of the harmonics content on the modulated waveforms and switching frequency of the devices under
different switching sequences is also addressed. Finally, a new overmodulation scheme in a three-dimensional
space is proposed. Unlike the standard saturation methods, this scheme maintains the reference vector path
inside the modulation region avoiding the incorporation of additional undesirable harmonics into the modulated
waveform, maximizing the utilization of the dc-link voltage.

Different control algorithms have been proposed in the literature for controlling a four-leg
converter, such as: predictive control [19, 29, 30], carrier-based PWM strategies [15, 26–28]
and SVM algorithms in abc [18, 31] and αβγ coordinate frames [17, 32–37]. As discussed in
Chapter 3, three-dimensional SVM in abc and αβγ coordinates arise as the most flexible and
promising techniques for modulating the output voltages in a four-leg converter. Whereas its
implementation in abc coordinates provides a fast vector identification, dwell-time calculation
and easy extension to multi-level VSI, the three-dimensional SVM implemented αβγ provides
decoupling of zero-sequence, which is essential for generating different switching patterns, e.g.
even harmonics elimination, implementation of overmodulation algorithms and direct control
of the zero-sequence component. Nevertheless, at least in its current state, the high number
of calculation has limited the use of SVM in αβγ space only to two level VSI. This chapter
proposes a three-dimensional SVM algorithm in αβγ coordinates that can be easily extended
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for multilevel converter. Additionally, it gives an extensively analysis of the use of redundant
vectors for controlling the balance of the voltages on the dc-link capacitors and to generate
different switching patterns. Finally a three-dimensional overmodulation method is introduced.

5.1 Four-leg Neutral Point Clamped Converter

A three-level NPC converter has considerable advantages compared to a conventional two-level
converter. For instance, NPC converters can be connected to medium voltage systems without
a power transformer being required [7] and they can operate with a relatively high effective
switching frequency, reducing the total harmonic distortion at the grid/load side [24]. Moreover,
for a similar application an NPC inverter requires smaller power filter when compared with a
conventional two-level VSI [25]. In addition, lower dv/dt values, higher efficiency and less
stress in the devices are also considered important advantages of the NPC converter over the
conventional two-level topology.
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Figure 5.1: Electrical diagram for a four-leg NPC

Recently, two-level four-leg converters [109], [18], [20] and four-leg matrix converters [21],
[90] have gained interest as solutions for applications where compensation of zero-sequence
is necessary. However, when MV connection is required and/or high efficiency is desirable,
the reduction of switching frequency along with an acceptable harmonic distortion become
key issues which is usually unfeasible by conventional matrix converters or two-level VSI. By
that, the application of four-leg NPC converters has been recently discussed in the literature
[27, 29–31, 79, 94]. This topology is presented in Fig. 5.1 and is foreseen to be an interesting
solution for MV systems where a path for the circulation of zero-sequence current is required,
such as in isolated/grid connected Distributed Power Generation Systems (DPGSs), µGrids,
active filters for distribution systems and high-power four-wire UPS as for instance for large
data centers. Additionally, due to the higher effective switching frequency of its modulated
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waveforms compared to the switching frequency of each device. It become an attractive solution
for aerospace applications, which require high fundamental frequencies, in the range of 400Hz
to 800Hz [32, 34, 91, 136].

5.2 Definition of the Space of Vectors
The four-leg NPC converter of Fig. 5.1 is composed of dc-link capacitors C1 and C2 and the
switches per phase are S1x, S2x and S̄1x, S̄2x, where x ∈ {a, b, c, f} and represents each leg of
the inverter. Switches S̄1x, S̄2x represent the complement of the switches S1x, S2x respectively.
Each leg of the converter has three possible states (S1x, S2x) ∈ {(1, 1), (0, 1), (0, 0)}. Thus, the
four-leg NPC can perform 34=81 switching states. Moreover, the current through the neutral-
point (iz) is given by

iz =
∑

x=a,b,c,f

S̄1xS2xix (5.1)

In the rest of this work the poles a, b and c of each leg are referred as phases, while pole
f is referred as the neutral wire/leg. In order to implement a SVM algorithm, first the space
formed by the 81 combination must be analyzed. Thereby, in order to achieve decoupling of
the zero-sequence component, the αβγ transformation presented in (2.14) has to be used. The
81 switching combinations and the reference vector in the αβγ coordinates can be expressed as
follows:

viαβγ = T αβγ
abc viabc (5.2)

v∗αβγ = T αβγ
abc v∗abc (5.3)

viabc = [viaf , v
i
bf , v

i
cf ] (5.4)

viαβγ = [viα, v
i
β, v

i
γ] (5.5)

The vector viαβγ of (5.2) provides the αβγ representation of the phase-to-neutral voltages
produced by the ith switching combination viabc, with i ∈ N : [1, 81]. Note, that each component
of the vector viabc in (5.4) has five possible states, normalized by half of the dc-link voltage (Vdc),
i.e. {-2,-1,0,1,2}. Although the instantaneous value of the reference vector is commonly given
directly in αβγ coordinates by an external controller, same transformation can be applied to the
instantaneous reference vector in case it is given in abc coordinates, as shown in (5.3). Thus,
v∗
abc and v∗

αβγ contains the instantaneous components of the reference vector in abc and αβγ
coordinates respectively.

After applying (5.2) to the 81 different switching combinations, 65 different vectors in the
αβγ space, represented by viαβγ , are generated. Its switching combinations are shown in Ta-
ble C.1 and C.2 from Appendix C. These vectors are classified as follows: 14 redundant vec-
tors, 50 non-redundant vectors and 1 zero vector with a triple redundancy. For convenience,
Table C.1 and C.2 summarize this information with the following notation: the zero vector
is represented as v0z

αβγ , v0n
αβγ or v0p

αβγ; redundant vectors are represented as vknαβγ or vkpαβγ , for
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Figure 5.2: Representation of the 65 different vectors in the αβγ space for a four-leg NPC
converter. Additionally, the external surface generated by the most distant vectors and the αβ
plane are shown.

k ∈ N : [1, 14], where the sub-index n or p distinguishes the relative positive or negative
polarity of the output voltages respect to the neutral point z (see Fig. 5.1). Finally, vkαβγ for
k ∈ N : [15, 50] represent the non-redundant vectors.

The normalized voltages of each leg respect to the neutral point z, viabcf , the magnitude of
each vector viαβγ and current through the NP generated by each switching combination iz(viαβγ)
are also available in Table C.1 and C.2 as additional information. Furthermore, the vectors viαβγ
are arranged in increasing order according to its magnitude. This emphasizes that eight different
amplitudes are present. Hence, the normal classification of short, medium and long vectors,
typically used for the three-leg NPC converter, is no longer applicable.

Once obtained the coordinates of the 65 different vectors, its position in the αβγ space must
be studied in order to define the allowable modulation region. Fig. 5.2 shows the 65 different
points in the αβγ space. For a better understanding, differentiation of black and red points are
used to indicate whether the points are above or under the the αβ plane. Furthermore, Fig. 5.2
shows the external surface of the polygon formed by the joint of the largest vectors (most distant
points to the origin), which correspond to the complete allowable modulation region, where a
reference vector can be linearly modulated.

Fig. 5.3 shows a top view of Fig. 5.2, as expected, the region formed by the projection of
the 65 points onto the αβ plane is the same as in a three-leg NPC converter. Additionally, each
vertex of this region represents the projection of three, four or five of the 65 different vectors
that share the same αβ components. Similarly, Fig. 5.4 show the αγ and βγ view of Fig. 5.2.
Thereby, Fig. 5.2 to Fig. 5.4 provide full description of the three-dimensional location for the
65 vectors in the αβγ space.

As it was mentioned in Chapter 2, the modulation of a reference vector using the four nearest
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Figure 5.4: (a) αγ and (b) βγ view of the complete modulation region for a four-leg NPC
converter.
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vectors that enclose it, yields to minimization of the number of switching commutations and
harmonic distortion [50]. This is particularly important in multilevel converters, where low
voltage harmonic distortion, low switching frequency and low power losses are typically de-
manded. Thus, the selection of these four vectors form the smallest region, i.e. a tetrahedron,
that can contain the reference vector in the αβγ space and are ultimately the vectors to be used
for accomplishing the modulation algorithm at each sampling time. Analyzing the region of
Fig. 5.2, it can be concluded that it is form of 192 different tetrahedrons. However, each of
this tetrahedrons are composed of a different number of redundant vectors. Thus, in order to
understand how the modulation region is constructed, it is necessary to classify each tetrahe-
dron based on the number of non-redundant vectors that they possess. Additionally, as it will
be shown, this classification allows simple realization of different switching patterns and gives
a perception of the control capability of the voltage over the dc-link capacitors.

Table 5.1 shows the classification for the different kind of tetrahedrons presents inside the
modulation region of Fig. 5.2. The first column of this table shows the type of tetrahedron
TTn, where n represents the number of non-redundant vectors for each kind of tetrahedron.
Thus, for instance, tetrahedrons of type 1 (TT1) possesses one non-redundant vector and three
redundant vectors. Additionally, the last column of this table shows that 24 tetrahedrons of this
kind are found in the complete region of Fig. 5.2. Similarly, tetrahedrons of type 2 (TT2) are
composed of 2 redundant vectors and 2 non-redundant vectors and there are 48 of them in the
entire modulation region.

Table 5.1: Tetrahedrons Classification

Tetrahedron Redundant Non-Redundant Zero Total of
Type (TT) Vectors. Vectors Vectors Tetrahedrons
TT0 3 0 1 24
TT1 3 1 0 24
TT2 2 2 0 48
TT3 1 3 0 96

Fig. 5.5 shows the internal composition of the modulation space presented in Fig. 5.2. The
complete region can be understood as being built up from different regions, each one forming a
surface and enclosing the volume of the previous one.

The first region is formed from the 24 TT0 (and has the zero vector as its center). Fig. 5.5a
shows this first region, composed of all the redundant vectors (i.e v0 to v14). In addition, over
the surface of the region generated by the TT0, two TT1 are depicted to highlight how the next
region is formed. Therefore a TT1 is formed by three redundant vectors (provided by the surface
of the region in Fig. 5.5a) and another fourth vector (which must be a non-redundant because
all the fifteen redundant vectors are forming the first region). All the 24 TT1 form the second
region, which is shown in Fig. 5.5b. Thereupon the TT2 are formed based on the surface of the
last region. Fig. 5.5c shows how this is accomplished for two TT2. Thus, one TT2 contains
2 redundant vectors and one non-redundant vector (provided by the surface generated by TT1)
and a fourth vector which must be non-redundant. The region formed by all the 48 TT2 is
depicted in Fig. 5.5d. Finally, and based on the same methodology, the 96 TT3 are formed,
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Figure 5.5: Different tetrahedrons in the αβγ space for a four-leg NPC converter. In (a) the
region formed by all the TT0 and two TT1, (b) region formed by all TT1, (c) region formed by
all the TT1 and two TT2, (d) region formed by all TT2 and (e) region formed by all the TT3.

which are shown in Fig. 5.5e. Clearly, this last external surface represents the same polygon
showed previously in Fig. 5.2.

5.3 The Reference Vector in αβγ the Space

Regardless the application, a four-leg converter is typically used for compensation of the zero-
sequence and/or harmonic components. Thereby, the components of the reference voltage vec-
tor that this kind of converters synthesize, either v∗αβγ or v∗abc, are usually non-sinusoidal and
unbalanced three-phase system. In general, the components of v∗abc can be balanced/unbalanced
and/or sinusoidal/non-sinusoidal, which allows the reference vector v∗αβγ to describe any pos-
sible trajectory within the αβγ space. Let’s consider a simple sinusoidal system in abc coordi-
nates, which voltages v∗abc can be expressed as:
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v∗af (t) = A cos(ωt+ φa) (5.6)

v∗bf (t) = B cos(ωt− 2π

3
+ φb) (5.7)

v∗cf (t) = C cos(ωt+
2π

3
+ φc) (5.8)

This system represents a generalization of a symmetric and balanced three-phase system.
Ideally, the magnitudes A, B and C are equal and the phases φa, φb and φc are equal, leading to
the standard circle in the αβ plane, which equations in αβγ coordinates are given by

v∗α(t) = m cos(ωt) (5.9)

v∗β(t) = m cos(ωt− π

2
) (5.10)

v∗γ(t) = 0 (5.11)

with m=A=B=C and φa=φb=φc=0. Thus, as presented in Chapter 2, m represents the
magnitude of the reference vector, or also called modulation index and is the most important
variable that define the path of the reference vector. Contrary, this definition is not longer
valid for a non-balanced and/or non-symmetrical three-phase system, where A 6= B 6= C and
φa 6= φb 6= φc. For this case, each component of the reference vector v∗αβγ can be expressed as:

v∗α(t) = mα cos(ωt+ φα) (5.12)

v∗β(t) = mβ cos(ωt− π

2
+ φβ) (5.13)

v∗γ(t) = mγ cos(ωt+ φγ) (5.14)

From (5.12) to (5.14), the path described by the reference vector v∗αβγ depends no longer on
one modulation index m, but on the indices mα, mβ , mγ and the phases φα φβ and φγ .

Considering mα 6= mβ and mγ 6= 0, an unbalanced system is generated and the trajectory
of the reference vector is not longer a circle in the αβ plane, but an ellipse inclined in the
γ axis. Fig. 5.6a illustrates a top view in the αβ plane of the path described by a reference
vector with modulation indices mα = 1.0, mβ = 0.77 and mγ = 0.17 (A = 0.95 2√

3
, B =

0.47 2√
3
, C = 0.85 2√

3
) and φa=φb=φc=0◦. From Fig. 5.6a, the elliptical path, and the selected

triangles that enclose the reference vector at each sampling time, can be clearly distinguished.
Likewise, Fig. 5.6b shows the elliptical path in the αβγ frame and the tetrahedrons that enclose
the reference path at each sampling time.

Typically, in balanced systems, the modulation index m is limited to mmax = 2√
3

to main-
tain the path described by the reference vector inside the modulation region in the αβ plane.
Nevertheless, for unbalanced system, three different indices have been defined, namely mα, mβ

and mγ . In consequence, it is theoretically possible that one or two of them posses a magni-
tude larger than mmax as long as the others modulation indices are small enough to allow the
reference vector path to remain inside the modulation region of Fig. 5.2.
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α
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βα

γ

(b)

Figure 5.6: Voltage reference vector path for modulation indices ma = 0.95,mb = 0.47,mc =
0.85, φa=φb=φc=0◦ in (a) the αβ space and (b) the αβγ space.

Let’s consider now that also harmonics have to be compensated. In that case, the components
of the reference vector can be written in a general form as

v∗α(t) =
n∑
h=1

mαh cos (h · ω + φαh) (5.15)

v∗β(t) =
n∑
h=1

mβh cos (h · ω + φβh) (5.16)

v∗γ(t) =
n∑
h=1

mγh cos (h · ω + φγh) (5.17)

As it can be concluded from (5.15) to (5.17), in presence of harmonics compensation, unlim-
ited different trajectories can be described by the reference vector. The purpose of the modula-
tion is to synthesize each sampled values of this trajectory as accurate as possible maintaining
the balance of the voltages on the dc-link capacitors. This can be successfully achieved as long
as the path described by the reference vector remains inside the region presented in Fig. 5.2, as
it will be shown in the following section. However, in case this path goes beyond the allow-
able modulation region, an algorithm to limit this trajectory must be implemented. This will be
further study in section 5.6.

5.4 Synthesis of the Reference Vector
In the previous sections, the description of the three-dimensional modulation region in the αβγ
space formed by a four-leg NPC converter was described. Furthermore, the characterization of a
reference vector moving inside this space for an unbalanced and non-sinusoidal system was also
introduced. In this section, an efficient algorithm for identification of the four nearest vectors
that enclose the reference vector and calculation of their dwell times at each sampling time is
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presented. For this propose, it will be assume that the trajectory described by the reference vec-
tor v∗αβγ always reside inside the allowable modulation region of Fig. 5.2. Finally, the utilization
of the redundant vectors to generate different switching patterns will be also addressed.

5.4.1 Tetrahedron Identification
For the sake of explanation, let us assume an instantaneous random value for the normalized
reference vector in abc coordinates as v∗abc =[x, y, z], where x; y; z ∈ R : [−2, 2] and its αβγ
representation, v∗αβγ , is inside the modulation region of Fig. 5.2. The vectors vs1αβγ , vs2αβγ , vs3αβγ
and vs4αβγ represent the four nearest vectors, generated by the converter, that enclose v∗αβγ . Ad-
ditionally, vs1abc, v

s2
abc, v

s3
abc, v

s4
abc and vs1abcf , vs2abcf , vs3abcf , vs4abcf represent the selected vectors in abc

coordinates and the states for each leg of the converter respectively (see Table C.1).
The aim of a SVM algorithm is to identify these four vectors with their respective dwell-

times with the minimum computational effort. Thereby, as (5.2) is a linear transformation,
the seek of the four vectors that enclose the reference vector at each sampling time, denoted
also as vs1−s4αβγ or vs1−s4abc , is equivalent for either abc or αβγ coordinate system. Nevertheless,
the implementation of the modulation algorithm in αβγ coordinate system presents several
advantages compared to its analogue abc reference frame, such as: a) avoid transformation
from αβγ to abc coordinate system of the control references given by external controllers,
b) direct control and visualization of the zero-sequence component, important in numerous
applications [11, 13, 14, 32, 34, 98], c) simple implementation of overmodulation algorithms,
specially important in power quality conditioners [26, 33], which is extensively discussed in
section 5.6, d) straight implementation of even harmonics elimination, specially important in
grid connected applications [54] and e) visualization, in the αβγ space, of the capability for
balancing the voltage in the dc-link capacitors. Furthermore, as it will be shown later in this
section, the αβγ coordinate system arrange the vectors in such a way that the identification of
the tetrahedron can be reduced to the αβ plane, avoiding three-dimensional search.

Considering that the transition between two adjacent vectors of the converter generates an
unitary voltage step in only one phase of the converter (e.g. v1p

abc([1,0,0]) ↔ v15
abc([1,0,-1]))

(minimum switching transition principle). It can be affirmed that each component of v∗abc is
contained between the components of the vectors v0abc and v0′abc

. Where, using the floor()
function to each coordinate of v∗abc, they can be obtained as:

v0abc=floor (v∗abc) (5.18)
v0′abc

=v0abc + [1, 1, 1] (5.19)

Thus, these two vectors become the first two solutions of the four vectors vs1−s4abc (or its equiv-
alent vs1−s4αβγ ). In order to find the two remaining vectors, Table 5.2 shows the six possible
transition vectors, in abc and αβγ coordinates, that can be used to complete the sequence of
four vectors. Note, that a transition from v0abc to v0′abc

is also allowable, as it involves only one
switching transition on the fourth leg of the converter, e.g. v10p ([0,-1,-1] or [POOP])↔ v10p

([1,0,0] or [POOO]), in this case only the fourth leg has changed from positive state "P" to the
zero state "O", i.e. adding a zero sequence component. This will be further discussed in the
subsection 5.4.3 of this chapter.
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Table 5.2: Vectors for Tetrahedron Selection in abc and αβγ coordinates

Transition vectors in abc coordinates Transition vectors in αβγ coordinates

v0abc=vs1abc=floor (v∗abc) + [0, 0, 0] v0αβγ=vs1αβγ=T αβγ
abc vs1abc + [0, 0, 0]

v1abc=v0abc + [1, 0, 0] v1αβγ=v0αβγ + [2
3
, 0, 1

3
]

v2abc=v0abc + [1, 1, 0] v2αβγ=v0αβγ + [1
3
,
√

3
3
, 2

3
]

v3abc=v0abc + [0, 1, 0] v3αβγ=v0αβγ + [−1
3
,
√

3
3
, 1

3
]

v4abc=v0abc + [0, 1, 1] v4αβγ=v0αβγ + [−2
3
, 0, 2

3
]

v5abc=v0abc + [0, 0, 1] v5αβγ=v0αβγ + [−1
3
,−
√

3
3
, 1

3
]

v6abc=v0abc + [1, 0, 1] v6αβγ=v0αβγ + [1
3
,−
√

3
3
, 2

3
]

v0′abc
=vs4abc=v0abc + [1, 1, 1] v0′αβγ

=vs4αβγ=v0αβγ + [0, 0, 1]

From Table 5.2, and starting the sequence with v0αβγ , the following sequences, ς1 to ς6,
accomplish the minimum switching transition principle:

• ς1 : v0αβγ− v1αβγ− v2αβγ− v0′αβγ

• ς2 : v0αβγ− v3αβγ− v2αβγ− v0′αβγ

• ς3 : v0αβγ− v3αβγ− v4αβγ− v0′αβγ

• ς4 : v0αβγ− v5αβγ− v4αβγ− v0′αβγ

• ς5 : v0αβγ− v5αβγ− v6αβγ− v0′αβγ

• ς6 : v0αβγ− v1αβγ− v6αβγ− v0′αβγ

Hence, only one of these six sequences ς1 to ς6 contain the four vectors that enclose the
reference v∗αβγ at each sampling time. In order to identify the correct group of vectors, Fig. 5.7a
and Fig. 5.7b show the cube formed by the eight vectors of Table 5.2 in abc and αβγ coordinates
with a displaced origin located at v0abc and v0αβγ respectively. The transformation of (5.2)
rotates the cube of Fig. 5.7a up in 90◦, placing v0′αβγ

over v0αβγ . Each cube is formed by six
tetrahedrons, corresponding to the six possible switching sequences ς1 to ς6. For a better visual
understanding, only three tetrahedrons are depicted with different colors inside each cube (the
oder three are symmetrically placed). In order to identify the tetrahedron that contains v∗abc from
5.7a, six different planes that cross the cube of Fig. 5.7a must be generated and compared with
v∗abc [18,31]. Unlike Fig. 5.7a, each vertex of the cube illustrated in Fig. 5.7b is placed according
its zero sequence component. Thereby, only v0αβγ and v0′αβγ

share the same αβ values and are
overlapped from a top view.

Fig. 5.8 show a top view of both cubes in a non-displaced origin reference frame. Unlike
Fig. 5.8a, in Fig. 5.8b none of the six vectors, v1αβγ to v6αβγ , is overlapped in the αβ plane.
Thereby, the simple calculation of φ, in Fig. 5.8b, provides straightforward identification of
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v0abc

v5abc

v1abc

v2abc

v3abc

v0′abc

v4abc

v0′αβγ

v0αβγ

v5αβγ

v6αβγ

v4αβγ

v3αβγ

v2αβγ

v1αβγ

T αβγ
abc

(a) (b)

a

b

c

α

β

γ

v6abc

Figure 5.7: Modulation region in the αβγ space for a four-leg NPC converter.

the two remaining vectors, vs2αβγ and vs3αβγ , to complete the sequence vs1αβγ to vs4αβγ and the
corresponding identification of the tetrahedron that contains v∗αβγ . This reduces the search
of the tetrahedron to a two-dimensional problem, same as for standard three-leg converters,
avoiding three-dimensional computation. From Fig. 5.8a a light green region is observed in the
upper half of the square. This color is obtained because of the superposition of the yellow and
light blue tetrahedrons of Fig. 5.7a, which does not occurs in αβγ coordinate system as can be
observed in Fig. 5.8b.

a

b

v5abc ;v0abc

v0′abc
;v2abcv4abc ;v3abc

v6abc ;v1abc
v5αβγ

v4αβγv∗abc

v6αβγ

v1αβγ

v2αβγv3αβγ

v∗αβγ

α

β

(a) (b)

v0,0′αβγ

φ

v̂αβγ

Figure 5.8: Modulation region in the αβγ space for a four-leg NPC converter.

The following equations summarize the three required steps for selection of the tetrahedron
when the reference vector is given in αβγ coordinate:
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v0αβγ=T αβγ
abc

[
floor

(
T abc
αβγ v

∗
αβγ

)]
(5.20)

v̂αβγ=v∗αβγ − v0αβγ (5.21)

φ=tan−1

(
v̂β
v̂α

)
(5.22)

Finally, the selection of the vectors can be obtained based on φ as shown in Table 5.3.

Table 5.3: Selected Sequence of Vectors

φ vs1−s4αβγ

φ ∈
[
0, π

3

[
v0αβγ − v1αβγ − v2αβγ − v0′αβγ

φ ∈
[
π
3
, 2π

3

[
v0αβγ − v2αβγ − v3αβγ − v0′αβγ

φ ∈
[

2π
3
, π
[

v0αβγ − v3αβγ − v4αβγ − v0′αβγ

φ ∈
[
π, 4π

3

[
v0αβγ − v4αβγ − v5αβγ − v0′αβγ

φ ∈
[

4π
3
, 5π

3

[
v0αβγ − v5αβγ − v6αβγ − v0′αβγ

φ ∈
[

5π
3
, 2π
[

v0αβγ − v6αβγ − v1αβγ − v0′αβγ

Note that, from Table 5.2, the vectors v1αβγ to v6αβγ are always calculated based on v0αβγ .
Therefore, they do not need to be saved in any look-up table. Additionally, it should be noticed
that from Table 5.3 the vectors vs1abc to vs4abc or vs1abcf to vs4abcf can be equivalently obtained.

5.4.2 Dwell time Calculation

Once the four stationary vectors, vs1αβγ to vs4αβγ , or equivalently written as vs1−s4αβγ , are obtained
using (5.22) and Table 5.3, their dwell times must be calculated. The dwell time for each of the
selected stationary vectors basically define the duty-cycle time (on-state or off-state time) for
each of the switches of the converter during a sampled period Ts. Thereby, a reference vector
can be synthesized as an average value using the selected vectors over Ts. Defining d1, d2, d3

and d4 as the dwell times for each of the selected vectors vs1−s4αβγ , their normalized values can be
obtained from:

4∑
n=1

vsnαβγdn=v∗αβγ (5.23)

From (5.23), an inverse matrix operation is required for calculating the dwell times. However,
based on Table 5.3, only six different sequence combinations can be generated for enclosing the
reference vector v∗αβγ . If this sequences are referred to the vector v0αβγ , only six matrices are
required to calculate the dwell-times in all the space and the inversion of the matrices is avoided.
Thereby, subtracting v0αβγ to each vector of (5.23), the calculation of the dwell times can be
easily obtained using v̂αβγ and φ, from (5.21) and (5.22), as:



108 CHAPTER 5. SPACE VECTOR MODULATION FOR A FOUR-LEG NPC CONVERTER

 d2

d3

d4

 = Dn

 v̂α

v̂β

v̂γ

 (5.24)

d1 = 1− d2 − d3 − d4 (5.25)

where, Dn is a 3x3 matrix that takes six different values depending on the selected sequence,
i.e. φ. Thereby, based on Table 5.2, Dn can be expressed as:

D1 =


3
2

-
√

3
2

0

0
√

3 0

-1
2

-
√

3
2

1

 φ ∈
[
0,
π

3

[
(5.26a)

D2 =


-3

2

√
3

2
0

3
2

√
3

2
0

-1
2

-
√

3
2

1

 φ ∈
[
π

3
,
2π

3

[
(5.26b)

D3 =

 0
√

3 0

-3
2

-
√

3
2

0

1 0 1

 φ ∈
[

2π

3
, π

[
(5.26c)

D4 =

 0
√

3 0

-3
2

√
3

2
0

1 0 1

 φ ∈
[
π,

4π

3

[
(5.26d)

D5 =


-3

2
-
√

3
2

0
3
2

-
√

3
2

0

-1
2

√
3

2
1

 φ ∈
[

4π

3
,
5π

3

[
(5.26e)

D6 =


3
2

√
3

2
0

0 -
√

3 0

-1
2

√
3

2
1

 φ ∈
[

5π

3
, 2π

[
(5.26f)

(5.26g)

The diagram of Fig. 5.9 summarizes the proposed methodology for achieving a SVM in αβγ
coordinate frame for a four-leg NPC converter. It shows that after two steps it is possible to
identify the sequence of vectors vs1−s4αβγ (or their equivalents vs1−s4abc ; vs1−s4abcf ) that enclose the
reference v∗αβγ . Likewise, the calculation of their corresponding dwell-times, d1 to d4, can be
easily obtain based basically only on the calculation of v0αβγ .

Although this methodology is proposed and implemented for a four-leg NPC converter in
this work, the generality of the algorithm enables its implementation in any topology where
the zero-sequence component has to be controlled and a three-dimensional SVM algorithm is
needed.
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((5.20), (5.21), (5.22))

v∗αβγ
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Calculation of v0αβγ ; v̂αβγ;φ:
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vs1αβγ=v0αβγ

φ ∈
[
0, π

3

[
φ ∈

[
π
3
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3

[
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3
, π
[

φ ∈
[
π, 4π

3

[
φ ∈
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3
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3
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[
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Figure 5.9: General diagram for a three-dimensional SVM. dᵀ denotes the transpose of the
vector d= [d2, d3, d4]. The dwell time d1 is obtained as d1=1− d2 − d3 − d4; ∀ φ.

5.4.3 Switching Patterns for a four-leg NPC converter

After the stationary vectors and their dwell times have been obtained, a proper switching pattern
that arrange these vectors during the sampling time Ts has to be defined. The selection of
this pattern, also known as switching sequence, is always a trade-off between the number of
commutations, i.e. power losses, and the accuracy of tracking of a reference signal, i.e. current
or voltage ripple. Therefore, the selection between different patterns mostly depends on the
application.

As presented in Chapter 2 and 3, for a two-level inverter, either three- or four-leg, zero-vectors
are always available at each sampled period, which along with the active vectors synthesize a
reference. Hence, two important categories of switching sequences were defined, i.e. Single-
Redundancy Sequence and Non-Redundancy Sequence. They mainly differ in the number of
zero-vector redundancies used in the modulation [163], [50].

For a n-level NPC converter, either three or four leg, not only the harmonic spectrum has to
be considered when designing a switching pattern, but also the capability to balance the voltage
on the dc-link capacitors. Thus, the Non-Redundancy Sequence is not a suitable alternative,
as it seriously limits the dc-link voltage balance capability. Furthermore, not only the zero-
vector possesses redundancy, but also several different active vectors leading to several different
possible switching combinations, which quantity depends on the number of legs and levels of
the converter. Thereby, typically for 3 or 5 level three-leg converters, a preset look-up table
containing the switching sequences to be implemented in each region of the modulation space
is arranged (see Chapter 2).
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For the best knowledge of the author, the definition of switching patterns implemented in a
four-leg NPC converter has not been yet explored, which presents a more difficult challenge,
as the high number of tetrahedrons makes impracticable the use of preset look-up tables and an
algorithm for determining this sequences has to be developed.

In this section, a simply algorithm which avoids the use of tables for obtaining the correct
sequence is presented. Additionally, two relevant switching patterns, named Full-Redundancy
Sequence and Single-Redundancy Sequence, for the three-level four-leg NPC converter are pro-
posed. The first proposed switching pattern employs all possible redundancies of the selected
vectors, while the second uses only one redundant vector during each sampling period. This two
different patterns, offer different features regarding the switching frequency of each device and
controllability of the NP current iz. Thereby, they can be selected according to the application.
As a general condition for both proposed patterns, only one device is switched on and a second
device, from the same leg, is switched off during the transition from one switching combination
to another. This accomplishes the already defined minimum switching transition principle.

5.4.3.1 Full Redundancy Switching Pattern

This switching sequence makes use of all the available switching combinations, i.e. redundant
vectors, at each sampled period Ts. The use of all redundancies of the stationary vectors increase
the controllability over the NP current of the four-leg NPC converter, which results in a better
control over the voltage in the dc-link capacitors. Additionally, it can increase the equivalent
switching frequency of the modulated waveform, which reduce the size of output filters.

Let us consider the two different tetrahedrons, TT1 and TT2, which vectors (vs1−s4αβγ ) are
shown in Table 5.4 and arranged in a descending order respect to their γ coordinate. In order
to select a suitable switching sequence, each vector is shown with their respective positive and
negative redundancies (as non-redundant vectors possess only one switching combination, they
use the entire row). To generate a switching sequence that uses all the available switching
combinations, first a pivot vector has to be selected.

Table 5.4: Sequence of the Switching Vectors

Full-redundancies sequence

for a TT1

• v1n v1p

[ONNN ] [POOO]

v15

[PONO]

v4n • v4p

[OONO] [PPOP ]

v10n v10p

[ONNO] [POOP ]

Full-redundancies sequence

for a TT2

v15

[PONO]

v4n • v4p

[OONO] [PPOP ]

• v10n v10p

[ONNO] [POOP ]

v45

[PONP ]

The pivot vector of the sequence is always selected as the vector that possesses the largest
number of positive(P)/negative(N) states (marked as •). Thus, starting from this pivot vector, a
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Figure 5.10: Switching commutation for each leg of the four-leg NPC converter and the phase-
to-neutral output voltages using Full-Redundancy Symmetric n-type sequence for: (a) pattern
using a TT1 formed by {v1,v15,v4,v10} and (b) a TT2 formed by {v15,v4,v10,v45}.

descending/ascending direction must be followed until each vector has been transitioned once.
Thereby, depending on the selected pivot vector, two possible sequences can be selected. When
the selected pivot vector posses the largest number of positive states, the sequence is called
p-type sequence. Similarly, a sequence starting with the pivot vector that posses the largest
number of negative states is defined as n-type sequence.

The arrows of Table 5.4 show the n-type sequence for each tetrahedron. This sequence is
then mirrored in one sampled time Ts to symmetrically align the pattern, generating the Full
Redundancy Symmetric n-type sequences as depicted in Fig. 5.10.

From Fig. 5.10a it can be noticed that the TT1, composed of 3 redundant vectors and one
non-redundant vector, generates a sequence composed of seven different vectors. Likewise, the
sequence generated by a tetrahedron TT2, illustrated in Fig. 5.10b, is arranged by using only six
vectors. Using this switching pattern, different switching frequencies per device are generated
depending on the different tetrahedrons that enclose the reference vector over one fundamental
path.

In Chapter 2, a methodology to obtain the switching frequency per device was presented.
Hence, in (2.31) a general expression for calculation of the per-device average switching fre-
quency over a fundamental period T1 was presented and is rewritten here for convenience as

f̄devi = f̄ sdevi + f fdevi (5.27)
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where f̄ sdevi , presented in (2.32), represents the average switching frequency of the ith device
over the Λ sampling times Ts contained in one fundamental period T1. The term f fdevi , presented
(2.33), represents the extra switching commutations (ki), for the ith switching device, generated
during the transition from one sampling time to another over one fundamental period T1. For
convenience these expressions are rewritten here as

f̄ sdevi =
Λ∑
n=1

f sndevi
Λ

(5.28)

f fdevi =
ki
2
f1, (5.29)

From the sequences presented in Fig. 5.10, it can be noticed that some phase voltages, i.e.
viz i ∈ {a, b, c, f}, posses only two transitions during one sampling time, e.g vaz and vcz in
Fig. 5.10a, while other phases posses four transitions, e.g vbz and vfz in Fig. 5.10a. The phase
voltages modulated with four transitions require that all the four devices of one leg are switched
on and off in one sampling time. Differently, when only two transitions are involved, two
switches in one leg are switched on and off in one sampling time (see Fig. 2.13).

Thus, for instance, for the sampling interval showed in Fig. 5.10a, the switching frequency
for each device of phases a and c are obtained as

f sndevS̄1a,1c
=f sndevS1a,1c

=fs (5.30)

f sndevS̄2a,2c
=f sndevS2a,2c

=0 (5.31)

Similarly for phases b and f of Fig. 5.10a, the switching frequency perform by each device is
given by

f sndevS̄1b,1f

=f sndevS1b,1f
=fs (5.32)

f sndevS̄2b,2f

=f sndevS2b,2f
=fs (5.33)

By that, the average switching frequency of each device over one fundamental period T1

is determined by the number of voltage transitions used in each leg of the converter at each
sampling time. Consequently, this is determined by the type of tetrahedrons selected over T1

and summarized as follows:

• In a TT0: All four legs of the converter posses four voltage transitions. Therefore, for a
reference vector that moves close to the origin of the modulation region and its trajectory
only select TT0 (see Fig. 5.5a), the switching frequency for each device would be equal
to fs.

• In a TT1: Two legs of the converter posses four voltage transitions and two legs posses
two voltage transitions.
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• In a TT2: One leg of the converter possesses four voltage transitions while three legs
posses two voltage transitions.

• In a TT3: All four legs of the converter posses only two voltage transitions. Therefore,
for a ac reference vector that moves around the boundaries of the modulation region and
its trajectory selects only TT3 (see Fig. 5.5e), the switching frequency per device would
be equal to fs

2
.

As a result, using Full Redundancy Symmetric switching pattern, the switching frequency of
each device will be determined by the type of tetrahedrons that the reference path involves in one
fundamental cycle. Although this frequency can be different for each device of the converter
and its exact calculation depends on every path described by the reference vector, neglecting
f fdev, it can be bounded by:

fs
2
< f̄devi < fs (5.34)

Therefore, the use of this switching pattern is most suitable for applications where the switch-
ing frequency of the devices is not critically limited and a better harmonic distortion of the con-
trolled signal together with high controllability and less ripple over the current through the NP
of the converter is desirable.

5.4.3.2 Single Redundancy Switching Pattern

Although the previous switching sequences provides good controllability for balancing voltages
over the dc-link capacitors. It produces high and unequal switching frequencies for each device
of the converter, which in some applications may be unacceptable. In order to reduce and
equally distribute the switching frequency among all the devices, a method that uses only one
redundancy is presented in this section.

At least one redundancy is required, as it allows the control over the NP current iz. Thereby,
only the redundancies of the redundant vector with the largest dwell time, i.e. with the highest
influence over the NP current, is implemented at each sample time. The sequence pattern is
based on the same algorithm explained in the previous section. However, the pivot vector is not
selected based on the number of positive(P)/negative(N) states, but it is the redundant vector
with the largest dwell time. Consequently, starting from this vector, a n- or p-type sequence
can be generated and the sequence stops once it reaches the redundancy of this pivot vector.
Thus, for instance, for the TT1 of Table 5.4 and using v10p as the pivot vector, the p-type
sequence is: v10p,v1p,v15,v4n,v10n. Using v4n as the pivot vector, the correct n-type sequence
is: v4n,v15,v1p,v10p,v4p. This last sequence is shown in Fig. 5.11a, where only two voltage
transitions per leg are employed at each sampling time. Similarly, Fig. 5.11b shows the n-type
sequence for the TT2 of Table 5.4 using also v4n as the pivot vector. Comparing Fig. 5.10 with
Fig. 5.11 the reduction and evenness of the switching frequency at each leg is evident. Thereby,
regardless of the path described by the reference vector, neglecting f fdev and considering that
ac signals are being modulated, the switching frequency per device over a fundamental cycle is
given by:

f̄dev =
fs
2

(5.35)
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Figure 5.11: Switching commutation

Therefore, under this pattern the switching frequency for each device is nearly constant and
will be increased only by the small term f fdev, which has to be determined by every different
reference path.

5.5 Voltage balance of the dc-link Capacitors

In order to complete the SVM algorithm for the four-leg NPC converter, a strategy to balance
the dc-link capacitors must be defined. Different techniques to balance the voltages on the
dc-link capacitors for the three-leg NPC converters have been reported in the literature. These
methods were presented in Chapter 2 and were mainly categorized as: active control, passive
control and hysteresis control [66], [53], [164]. In this work an active control methodology for
a four-leg NPC is described, as it will be later implemented in an experimental rig. Thereby, the
dwell times for the redundant vectors are calculated in order to track a reference NP current, ī∗z,
which is provided by an external PI controller (see Fig. 2.20).

Using (5.1), the NP current iz generated by each of the four vectors that form the selected
tetrahedron, i.e. vs1αβγ , vs2αβγ , vs3αβγ and vs4αβγ , can be calculated. Thus, the averaged NP current
in one sample time Ts can be expressed as
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īz =
4∑
i=1

λi · di · izi
(
vsiαβγ

)
(5.36)

Where izi
(
vsiαβγ

)
represents the current through the NP generated by vsiαβγ (calculated as

(5.1)). In case vsiαβγ possesses redundancies, then the current produced by the positive redun-
dancy is used in (5.36). Consequently, di are the dwell times for each of the selected vectors
calculated in (5.24). Furthermore, λi is known as the sub-modulation index and represent the
time proportion between the positive and negative redundancies of a redundant vector. The cal-
culation of λi is limited to λi ∈ [−1, 1] and is calculated to obtain an averaged NP current īz
equal to the external reference i∗z. Due to (5.36) is a general representation, the sub-modulation
index λi must be set to 1 for non-redundant vectors

The number of unknown indices λi to be calculated in (5.36) depends on the available re-
dundant vectors. Thus, when the Single-Redundancy Symmetric switching pattern is used, only
one index λi needs to be calculated at each sample time, which can be directly obtained using
(5.36).

On the other hand, for Full-Redundancy Symmetric switching pattern, the number of indices
λi to be calculated in (5.36) can be greater than one, which entails infinite number of solutions
for each λi. Thereby, in order to solve this equation, the following method is used:

• Firstly, only the λi for the redundant vector with the largest dwell time is obtained, while
the others indices λi are equaled to 0.

• In case that after the first calculation the condition īz=i∗z is not fulfilled, i.e. the first sub-
modulation is saturated to 1 or−1. The sub-modulation index λi for the redundant vector
with the second largest dwell time is included into the equation and calculated. Similarly
to the first step, the rest of the indices λi are equaled to 0.

• The same process continue until the condition īz=i∗z is fulfilled or no more redundant
vectors are available.

This strategy minimize the number of sub-dwell times equal to zero, which can produce
undesirable switching transitions.

Once the sub-modulation index λi have been calculated, the sub-dwell times dip and din have
to be obtained. Equation (5.37) shows the calculation of dip and din based on λi. The sub-
dwell times dip and din represent the dwell time for the positive and negative redundancies of a
redundant vector respectively.

dip = (1 + λi) · di2

din = (1− λi) · di2

|λi| ≤ 1


i ∈ {1, 2, 3, 4} (5.37)
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5.6 Overmodulation Limitation
Previously in this chapter it has been assumed that the reference vector always resides inside
the modulation region presented in Fig. 5.2. Although this assumption is usually true during
normal operation, under special circumstances such as: transients, overload for short periods
of time or excessive compensation of harmonic content, the reference vector can be beyond
the limits of this space. In Chapter 2, the conventional methods for overmodulation were pre-
sented. These overmodulation methods are intend for electrical drives, where boosting the
fundamental component of the modulated waveform is achieved at expenses of incorporation
of non-characteristic low order harmonics. The incorporation of these non expected low order
harmonics can be acceptable in drive application. However, for power conditioner, where the
compensation of harmonics content is one of the main objectives, this can cause serious prob-
lems, such as: excitation of resonances in output filters or loads, phase shift of the compensated
harmonics, which can produce malfunction of the close-loop controllers, or increment of the
harmonic distortion of the controlled signal beyond of the standards requirements. Therefore,
a method for limiting the reference vector without introducing extra harmonics and achieving
maximum utilization of the dc-link voltage is required. For the best knowledge of the author,
this issue have not been reported in the literature, where most of the authors either saturate the
reference vector to the limits of the modulation region, to a unitary circle or assume a dc-link
voltage large enough to always be able to modulate any reference vector [26, 33, 59].

The increment in the number of levels of a converter only subdivide the modulation region in
more and smaller sub-regions, introducing more available vectors inside a region and allowing a
finer tracking of a controlled signal. However, the external boundaries of the modulation region
is exclusively defined by the dc-link voltage level. Thereby, as the study of overmodulation
strategies only involve the boundaries of a modulation space. It can be said that this study is
independent of the number of levels of the converter and only regards whether the modulation
is achieved in αβ or αβγ space.

5.6.1 Overmodulation Limitation in αβ plane
Three-leg converters are usually intend to work with three phases and no consideration of un-
balances or zero sequence components. Therefore, its zero sequence, or γ axis, is usually
neglected and a modulation is achieved in the αβ plane. In order to limit the reference vec-
tor without introducing additional harmonic components and maximizing the utilization of the
dc-link voltage, a constant gain has to used to limit the trajectory of the reference vector to the
point that its trajectory is tangent to the boundaries of the modulation region. To achieve this,
let us represent the reference vector for a power conditioning converter as:

v∗αβ = v∗fαβ + v∗hαβ , (5.38)

where the reference vector v∗αβ has been separated into its fundamental component v∗fαβ and
its harmonic component v∗hαβ , which contains all the harmonic components to be later modu-
lated by the converter.

Fig. 5.12 shows the decomposition of v∗αβ into v∗fαβ and v∗hαβ for a reference vector placed
beyond the boundaries of the modulation region in the αβ plane (it is assumed that v∗fαβ is inside
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√

3
3

vα
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Figure 5.12: Limitation for the reference vector represented in the first quadrant of the modula-
tion region in the αβ plane.

the modulation region). Additionally, v̂∗αβ represents the typical saturation of the reference
vector, where v∗αβ is limited to the border of the hexagon. Otherwise, the proposed method
limits v∗αβ to ṽ∗αβ by limiting the harmonic component v∗hαβ to ṽ∗hαβ by

ṽ∗hαβ = η · v∗hαβ , (5.39)

and η represent a constant value that limits v∗hαβ to maintain the reference path inside the
modulation region. Thus, ṽ∗αβ is obtained as the addition of the limited vector ṽ∗hαβ and the fun-
damental component v∗fαβ . In order to obtain η, the intersection between v∗hαβ and the boundary
line of each sector has to be calculated. The equations that define the borders for each sector
(LS1 to LS6) are described as:

LS1 : vβ = −vα +
4
√

3

3
(5.40)

LS2 : vβ =
2
√

3

3
(5.41)

LS3 : vβ = vα +
4
√

3

3
(5.42)

LS4 : vβ = −vα −
4
√

3

3
(5.43)

LS5 : vβ = −2
√

3

3
(5.44)

LS6 : vβ = vα −
4
√

3

3
(5.45)

The intersection point between one of these straights and the reference vector v∗hαβ provides
the vector ṽ∗αβ . Thereby, η can be easily calculated as

η=
|ṽ∗αβ − ṽ∗fαβ |
|v∗hαβ |

(5.46)
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This procedure is performed at every sampling time, where η is overwritten always that a
smaller value is found. Thereby, after a cycle, only one constant value is used to limit the
reference vector.

Let us consider as example the following reference vector, for compensation of 7th harmonic:

v∗af =
2
√

3

3
[0.9 sin (ωt) + 0.2 sin (7ωt)] (5.47)

v∗bf =
2
√

3

3

[
0.9 sin

(
ωt− 2π

3

)
+ 0.2 sin

(
7ωt− 7

2π

3

)]
(5.48)

v∗cf =
2
√

3

3

[
0.9 sin

(
ωt+

2π

3

)
+ 0.2 sin

(
7ωt+ 7

2π

3

)]
(5.49)

Applying the Clarke transformation of (5.3) in (5.47) to (5.49), the reference vector v∗αβ is
obtained and depicted in Fig. 5.13. Fig. 5.13b shows the reference vector v∗αβ and the vector
v̂∗αβ , which represents the path saturated by the borders of the allowable modulation region.
On the other hand, in Fig. 5.13a, the vector ṽ∗αβ represents the path obtained by the proposed
limitation. It can be clearly seen, that the limited curve described by ṽ∗αβ remains inside and
tangent to the boundaries of the modulation region, this confirm that the dc-link voltage is being
fully utilized.
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Figure 5.13: (a) Reference vector v∗αβ and the limited reference ṽ∗αβ , with η ≈ 0.5. In (b) v̂∗αβ
represents the limitation of the reference vector by saturation of the trajectory to the borders of
the modulation region.

Fig. 5.13 shows the Fast Fourier Transformation (FFT) for the α and β components of v∗αβ ,
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,∠ṽ∗β7

}= − 90◦. Additionally, for v̂∗αβ: ∠v̂∗α5
=0◦, ∠v̂∗α11

=0◦,
∠v̂∗α13

=180◦ and ∠v̂∗β5
=90◦, ∠v̂∗β11

=90◦, ∠v̂∗β13
=90◦.

v̂∗αβ and ṽ∗αβ . As the system is balanced and symmetric, the magnitude of the harmonic compo-
nents of the α and β waveforms for each of the above mentioned vectors are identical and they
differ only on their shift phases. Likewise, this harmonic spectrum also represents the harmonic
content of the reference voltages in abc coordinates.

From Fig. 5.14 it is clearly observed that the proposed method does not incorporate additional
harmonics to the limited waveform. However, it increase the error in tracking the 7th harmonic.
Thus, ṽ∗αβ represents the maximum feasible trajectory to track the reference vector without
incorporation of additional harmonics.

One additional issue has to be considering before implementing this method. As showed in
Fig. 5.12, in order to limit the harmonic vector v∗hαβ the correct border, i.e. sector, has to be
selected to then intersect v∗hαβ with one of the straights presented in (5.40) to (5.45). Intuitively
the same sector of v∗αβ is firstly used. However, as shown in Fig. 5.15, around the corners of
each sector it is feasible that the sector of v∗αβ differs with the sector where v∗hαβ has to be
intersected. This would lead to a limited reference vector which resides out of the modulation
region. In order to overcome this problem, after calculating ṽ∗hαβ , it is verify that ṽ∗αβ belongs to
the modulation region. In case it resides out of the modulation region, then ṽ∗hαβ is recalculated
using the boundary of closest adjacent sector.

To conclude, the diagram of Fig. 5.16 summarizes the proposed method for limiting the
reference vector without incorporation of additional harmonics. For now it has been considered
that the fundamental vector v∗fαβ is placed inside the allowable modulation region previous to the
limitation of v∗hαβ . However, v∗fαβ could also be placed beyond the boundaries of the modulation
region, which will be analyzed in the following subsection.
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Figure 5.15: Representation of a false selection of sector for limiting v∗hαβ . v∗αβ belongs to
sector II. However v∗hαβ should be limited with the border of sector I.
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5.6.2 Overmodulation Limitation in αβγ Space
Although, for simplicity, the proposed overmodulation methodology was introduced for bal-
anced and symmetric systems in the αβ plane, its real potential is exploited for unbalanced and
non-symmetric systems.

When an overmodulation algorithm wants to be implemented in a power conditioner, two
important conditions has to be accomplished. Firstly, it is important to avoid incorporation of
additional harmonics on the reference vector, as they can produce undesirable resonances, spe-
cially when they are connected with second or third order systems. Secondly, as it was presented
in Chapter 4, when these extra harmonic coincide with one of the components compensated by a
close-loop controller, it will trigger a false compensation, which could lead to overamplification
of the compensated signal. Moreover, the phase shift of each reference harmonic component
must remain unalterable after the overmodulation algorithm, as a mismatch in the phase shift
between the reference signal and the real modulated signal could also produce overamplifica-
tion of the compensated signal, generating trip of the overvoltage or overcurrent protections.
This is specially important for compensation of high order harmonics as presented in Chapter 4.

Extending the method presented in subsection 5.6.1, to the αβγ space, the reference vector
presented in (5.38) can be expressed as

v∗αβγ = v∗fαβγ + v∗hαβγ + v∗zsαβγ , (5.50)

where v∗αβγ is the reference vector in the αβγ space, which is decomposed into its fundamen-
tal component v∗fαβγ , harmonic components v∗hαβγ and the zero sequence components v∗zsαβγ ,
which represents the compensated harmonics that only posses values on the γ axis.

In Fig. 5.17a the αβγ space of Fig. 5.2 is redrawn with a reference vector inside the region.
In Fig. 5.17a the decomposition of v∗αβγ into its three components is presented. For a better
understanding, Fig. 5.17b shows a top view of Fig. 5.17a. As expected, the zero sequence
vector v∗zsαβγ is represented simply as a point in the αβ plane.

Similarly to the previously explained methodology, the aim is to restrict v∗αβγ to the αβγ
space shown in Fig. 5.17 by limiting each of its components. Thereby, the limited reference
vector can be expressed as

ṽ∗αβγ = ṽ∗fαβγ + ṽ∗hαβγ + ṽ∗zsαβγ (5.51)

ṽ∗fαβγ = ξ · v∗fαβγ (5.52)

ṽ∗hαβγ = η · v∗hαβγ (5.53)

ṽ∗zsαβγ = τ · v∗zsαβγ , (5.54)

where ξ, η and τ are constant values. Thus, first ξ is obtained limiting the fundamental vec-
tor, v∗fαβγ , to the allowable modulation region. Consequently, calculating η the harmonic vector
v∗hαβγ is also limited. Finally, v∗zsαβγ is limited calculating τ . In order to intersect each com-
ponent with the boundaries of the allowable modulation region, the equations for the surface
planes that form the polygon presented in Fig. 5.17a must be obtained. The six lateral bound-
aries of this polygon are formed by the γ extension of the six straights that form the hexagonal
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Figure 5.17: (a) Reference vector v∗αβγ in the αβγ space decomposed into its fundamental,
harmonics and zero sequence components (v∗fαβγ , v∗hαβγ , v∗zsαβγ ). In (b) a top view of this figure.

modulation region of Fig. 5.17b. By that, same equations presented in (5.40) to (5.45) can be
used for represent these surfaces. Additionally, the polygon is bounded at the top and bottom
by three different planes. Each of these planes are placed above or below of different pairs of
sectors according to Fig. 5.17b as follows:

Top boundary planes:

Sector S1 and S6, P1: vγ = 2− vα (5.55)

Sector S2 and S3, P2: vγ = 2 +
vα
2
−
√

3

2
vβ (5.56)

Sector S4 and S5, P3: vγ = 2 +
vα
2

+

√
3

2
vβ (5.57)

Bottom boundary planes:

Sector S1 and S2, P4: vγ = −2 +
vα
2

+

√
3

2
vβ (5.58)

Sector S3 and S4, P5: vγ = −2− vα (5.59)

Sector S5 and S6, P6 : vγ = −2 +
vα
2
−
√

3

2
vβ (5.60)
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In order to calculate ξ, η and τ , first the fundamental vector v∗fαβγ is intersected with the
corresponding plane. The intersection point is defined as vintfαβγ and ξ is obtained as

ξ=
|ṽintfαβγ

|
|v∗fαβγ |

(5.61)

If the fundamental vector has to be limited, it automatically defines η=0. However, usually
the dc-link voltage is designed to avoid this condition and ξ is commonly equal to 1. Addi-
tionally, ξ can be virtually limited to a smaller value to provide a margin for compensation of
harmonics components. Thereafter, with ξ=1, the intersection of v∗hαβ with its corresponding
plane is achieved and defined as vinthαβ

. Thereby, η is obtained as

η=
|vinthαβγ − ξv

∗
fαβγ
|

|v∗hαβγ |
(5.62)

Finally, using the limited fundamental and harmonic components, ṽ∗fαβγ and ṽ∗hαβγ , the inter-
section point of the the zero-sequence component v∗zsαβγ with one of the top or bottom planes
is defined as vintzsαβγ and τ is calculated as

τ=
vintzsγ − ξv

∗
fγ
− ηv∗hγ

v∗zsγ
(5.63)

Due to the zero-sequence vector v∗zsαβγ possesses only γ component, only the γ component
of the fundamental and harmonic vectors are used in (5.63).

5.7 Experimental Rig
The experimental rig used to validate the three-dimensional SVM proposed in this Chapter is
illustrated in Fig 5.18 (load is not shown). It is mainly composed of a control platform and the
power electronics interface, based on the four-leg NPC converter presented in Fig. 5.20. The
control platform is based on a Pentium-System board (2Gb RAM host PC with a 3.2GHz Pen-
tium processor running the Arch-Linux operating system) and an FPGA board. This Pentium
system runs the algorithm in real time using the Real Time Application Interface (RTAI) for
Linux and is connected to the FPGA board by means of an ISA-bus. The FPGA board receives
the measured states, implements over-voltage and over-current protection, implements the com-
mutation with the Pentium Processor, implements 2µs dead time for each IGBT and sends the
control signals to the IGBTs. Furthermore, the gate-signals are sent through optical fibers from
the FPGA board to the four-leg NPC .

A more detailed view of the power electronics interface is illustrated in Fig. 5.19. For com-
pleteness, the output second order LC filter is shown as it will be used in the next chapter.
Moreover, voltage and current measurements boards are also depicted. The current measure-
ment board is based on a 60A, 2MHz bandwidth, Sensitec CMS3015 current sensor. The
voltage measurement board is based on 500V voltage transducer LEM LV25-P.
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Fig. 5.20 shows a more detailed view of the four-leg NPC converter. It is based on the
Microsemi IGBT-APTGL60TL120T3G, 60A and 1200V , with a heat sink designed for up to
around 6kW . The drive circuit for each of the four leg of the converter, the dc-link capacitors
and the fiber optics signals coming from the control platform can be clearly identify. The dc
voltage is provided by a dc power supply, Heiden EA PS 81000-30, 1kV , 30A.

The experimental data has been acquired using a Textronix DPO 3024 Digital Phosphor Os-
ciloscope, 200MHz, 1GS/s.

Control Platform

Power Electronics Interface

Oscilloscopes

Figure 5.18: Complete view of a 6kW experimental rig for a four-leg NPC converter.
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4-leg NPC Converter

Current Measurement

Voltage Measurements

dc-link Capacitors

Filter Inductance Lf

Filter Capacitance Cf

Figure 5.19: Power electronic interface and measurements boards for a 6kW experimental rig
based on a four-leg NPC converter.

dc-link

Fiber Optic trigger signals from Control Plataform

Leg a Leg b Leg c Leg f

outputa

outputb

outputc

outputf

Figure 5.20: Power electronics board and dc-link interface for a four-leg NPC converter.

5.8 Experimental Assessment

In order to validate the proposed three-dimensional SVM and the overmodulation algorithm
presented in this chapter, this section is divided in three parts. Firstly, the proposed three-
dimensional SVM algorithm is tested in a four-leg NPC converter. The algorithm is imple-
mented in open-loop and in open circuit under different scenarios to show the effectiveness of
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the algorithm. Secondly, the control over the dc-link voltage is analyzed under different unbal-
anced and non-linear loads. Finally, the proposed overmodulation algorithm is also tested under
different conditions.

5.8.1 Three-dimensional SVM

In order to proof the good performance of the three-dimensional SVM, two important criteria
has to be analyzed. First, the output voltage must be able to precisely modulate each of the
harmonic components present at the reference waveform, accomplishing with their phase and
magnitude. Secondly, the modulated waveforms must accomplish with the minimum switching
transition principle, generating a proper pulse pattern, which reduces the harmonic distortion
and switching losses.

Fig. 5.21 shows the output phase-to-neutral voltages for the four-leg NPC converter pre-
sented in Fig. 5.1 implemented with Single-Redundancy Symmetric switching pattern (see Sec-
tion 5.4.3.2), which produces an approximately constant switching frequency under any con-
dition. No load have been connected to the terminals of he converter. The reference for each
phase of Fig. 5.21 has been selected as

v∗af=
270

2

2√
3

0.95 cos(100πt) (5.64)

v∗bf=
270

2

2√
3

0.95 cos(100πt− 2π

3
) (5.65)

v∗cf=
270

2

2√
3

0.95 cos(100πt+
2π

3
) (5.66)

(5.67)

Moreover, the dc-link voltage and sampling frequency are set to (see Fig. 5.1)

2Vdc=270V (5.68)
fs=6kHz (5.69)
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Figure 5.21: Output voltages vaf ,vbf and vcf for a four-leg NPC converter with their respective
references v∗af ,v∗bf and v∗cf in red.

From Fig. 5.21 it can be observed that because of the fourth leg of the converter, five levels are
generated at the output phase-to-neutral voltages. This reduces the THDv, permit full utilization
of the dc-link voltage and allows minimization of the output filter. The harmonic spectrum
of vaf is shown in Fig. 5.22. Clearly, the first group of predominant harmonics are around
6kHz. Additionally, the fundamental component is exactly modulated with a peak magnitude
of 270

2
2√
3
0.95 ≈ 153.5V .

Fig. 5.23 shows the output voltages for each phase (leg) of the converter. As it can be seen,
the fourth leg has to modulate a third harmonic in order to boost the phase-to-neutral output
voltages and fully utilize the dc-link voltage. From Fig. 5.23, the switching frequency of each
device of the four-leg NPC converter presented in Fig. 5.1 can be obtained. Thereby, for each
leg of the converter, the switching transitions performed during the positive semi-cycle of the
modulated waveform define the switching frequency of S1i (and its complementary switch S̄1i),
while the switching transitions performed during the negative semi-cycle define the switching
frequency of S2i (and its complementary switch S̄2i) for i ∈ {a, b, c, f}. Thereby, according to
(5.27) and using the data provided by Fig. 5.23, the switching frequency for each device of the
converter are given by
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Figure 5.22: FFT for vaf of Fig. 5.21. The amplitude has been normalized by 270√
3

.

fS1a=fS1b
=fS1c=fS1f

=3000Hz (5.70)

fS2a=fS2b
=fS2c=3000 + 50=3050Hz (5.71)

fS2f
=3000 + 150=3150Hz (5.72)

As expected, the switching frequency for each device is around half of the sampling fre-
quency (fs=6kHz). Hence, although the average switching frequency defined by the Single
Redundancy Symmetric switching pattern at each sampling time is always 3kHz, the transition
between tetrahedrons generates an extra switching commutation during the negative semi-cycle,
which is noticed as an increment in 50Hz in the switches S2a, S2b and S2c and 150Hz in S2f .
However, this is an small quantity compared to the average switching frequency of 3kHz, de-
fined by the sampling frequency fs=6kHz.

Fig. 5.24 shows a closer view of Fig. 5.21 around 21ms. The alignment and fixed switching
frequency of the Single Redundancy Symmetric switching pattern is clearly identify at each
sampling time Ts.

In order to evaluate the modulation algorithm under a general case. The following unbalanced
and non-sinusoidal references are used for modulation

v∗af=
270√

3
(0.9 cos(ωt) + 0.1 cos(3ωt) + 0.1 cos(5ωt)) (5.73)

v∗bf=
270√

3

(
0.9 cos(ωt− 2π

3
) + 0.1 cos(5ωt+

2π

3
) + 0.15 cos(7ωt− 2π

3
)

)
(5.74)

v∗cf=
270√

3

(
0.8 cos(ωt+

2π

3
) + 0.15 cos(7ωt+

2π

3
) + 0.1 cos(11ωt− 2π

3
)

)
(5.75)

Fig. 5.25 shows the phase-to-neutral output voltages vaf , vbf and vcf with their respective ref-
erences. The same sampling frequency (fs=6kHz) and dc-link voltage (270V ) of the previous
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Figure 5.23: Output phase voltages vaz, vbz, vcz and vfz for the voltages presented in Fig. 5.21.
Sampling frequency fs=6kHz, dc-link voltage 270 V.

example has been implemented. As it can be seen, each modulated waveform follows precisely
their references. Fig. 5.26 shows the FFT analysis for each of the modulated waveforms. It
can be clearly noticed that each of the modulated waveforms perfectly track their harmonic
references presented in (5.73) to (5.75).

Additionally, Fig. 5.27 shows the phase voltages for each leg of the converter. Unlike
Fig. 5.23, the modulated voltage vfz of Fig. 5.27 does not represent an ideal third harmonic,
but it has been modified to track each of the different harmonics in each leg of the converter.
Similarly to the previous example, from Fig. 5.27 the switching frequency of each device of the
converter can be calculated as follows

fS1a=fS1b
=fS1c=fS1f

=3000Hz (5.76)

fS2a=fS2b
=fS2c=3000 + 50=3050Hz (5.77)

fS2f
=3000 + 150=3250 (5.78)

It can be noticed that the incorporation of additional harmonics slightly modified the switch-
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Figure 5.24: Closer view of the output phase voltages vaz, vbz, vcz and vfz presented in Fig. 5.21.
Sampling frequency fs=6kHz, dc-link voltage 270 V.

ing frequency compared to the previous example presented in (5.70) to (5.72). The deviation
of the switching frequency is caused by the modification of the path described by the reference
vector. Thereby, additional commutations are incorporated when the reference vector changes
between the different tetrahedrons. However, its deviation is still negligible compared to the
average switching frequency defined by the Single Redundancy Symmetric switching pattern,
i.e. 3kHz.

As presented in Chapter 2, alternating every 60◦ in the αβ plane between positive and nega-
tive Single Redundancy Symmetric switching pattern allows the elimination of even order har-
monics harmonic components. Thereby, simply dividing the αβγ space in the same manner,
elimination of even order harmonics can be also achieved for modulation of symmetric wave-
forms in a four-leg NPC converter. Fig. 5.28 shows the output waveform for modulation of a
sinusoidal balanced reference with and without implementation of even order harmonics. Like-
wise, Fig. 5.29 shows their respective harmonic spectrum.
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Figure 5.25: Output voltages vaf ,vbf and vcf for a four-leg NPC converter with their respec-
tive references v∗af ,v∗bf and v∗cf in red for unbalanced and non-sinusoidal references. Sampling
frequency fs=6kHz, dc-link voltage 270 V.
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Figure 5.27: Output phase voltages vaz, vbz, vcz and vfz for the voltages presented in Fig. 5.25.
Sampling frequency fs=6kHz, dc-link voltage 270 V.
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Figure 5.28: Experimental assessment of three-dimensional SVM for a four-leg NPC (a) vaf
without even-harmonic eliminations and (b) vaf with even-harmonic elimination. Measure-
ments are with the load disconnected, fSVM = 1200Hz, m = 0.95 and Vdc = 545V .
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Figure 5.29: Normalized amplitude of harmonic components based on 50Hz fundamental fre-
quency. The FFT for the waveform of (a) Fig.5.28a and (b) Fig. 5.28b.
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5.8.2 dc-link Voltage Balance

The balance of the voltages on the capacitorsC1 andC2, presented in Fig. 5.1, can be considered
an issue of primary importance when controlling a NPC converter. The unbalance of these
voltages generate an unequal voltage distribution across the semiconductors of the converter,
which directly yields to a failure condition. In order to analyze the control capability of a four-
leg NPC converter, the active control presented in Section 5.5 of this Chapter and the Single
Redundancy Symmetric switching pattern have been implemented.

Fig. 5.30 shows the hardware scheme used for testing the voltage balance capability.
Fig. 5.31 shows the voltages vC1 and vC2 under three different load conditions. The voltage

references, modulated in open-loop, for each phase-to-neutral voltage are given by

v∗af=
270√

3
0.9 cos(ωt) (5.79)

v∗bf=
270√

3
0.9 cos(ωt− 2π

3
) (5.80)

v∗cf=
270√

3
0.9 cos(ωt+

2π

3
) (5.81)

(5.82)

From Fig. 5.31, two steps marked as ti and tc can be observed. First, at ti, the three-dimensional
modulation algorithm is initialized and implemented without active control over the voltages
vC1 and vC2 . Under this condition, the dwell-times for each redundant vector is equally divided
at every sampling time Ts. At tc, the active control algorithm is activated, using (5.36) and
(5.37) to calculate the dwell-times for each redundancy of the only redundant vector used in the
implemented Single Redundancy Symmetric switching pattern.

In Fig. 5.31a, a balanced RL three-phase load has been connected (rectifier not connected,
see Fig. 5.30). As it can be seen, before the initialization of the modulation algorithm (at ti),
the voltages vC1 and vC2 are almost balanced (initial condition). However after ti, due to the
transient response of the line currents generated by the initialization of the control algorithm,
the voltages settle in an unbalanced condition. This phenomena is expected, because the im-
plemented algorithm does not have any feedback of the voltages vC1 or vC2 . At tc, the active
control for balancing vC1 and vC2 has been incorporated (see Fig. 2.20 of Chapter 2 for visual-
ization of the external control loop). Clearly, the voltages tends to a balanced condition around
134V . A closer view of vC1 and vC2 is also provided in Fig. 5.31a, where the typical oscillation
of three times the fundamental frequency can be observed. Fig. 5.31b and Fig. 5.31c represent
the same analysis explained above, but with unbalanced load conditions. In Fig. 5.31b, phase
c has been disconnected and in Fig. 5.31c, phase b and c have been disconnected. As it can be
appreciated, and similarly to Fig. 5.31a, after ti the voltages settle in an unbalanced condition
(initial condition is now unbalanced). However, after the incorporation of active control at tc,
the voltages tends to a balanced condition. This can be better observed in Fig. 5.32, where the
difference between vC1 and vC2 has been plotted. As it can be observed, before activating the
active control to balance the voltages in the capcitors at tc, the difference vC1 − vC2 oscillates
around a displaced center, while after tc they oscillate around zero.
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Figure 5.30: Representation of the hardware scheme of a four-leg NPC converter connected to
a general RL linear load and a non-linear load.

From 5.31 and Fig. 5.32 it is evident that the ripple magnitude and the oscillation shape of
vC1 and vC2 is determined by the load conditions, i.e. by the neutral-point current iz. Thereby,
as a general rule, the more balance is the load, i.e. smaller neutral-point current iz, the smaller
ripple is achieved into the dc-link voltage oscillation.

Fig. 5.33 shows the voltages vC1 and vC2 for the same load conditions presented in Fig. 5.31,
but with the incorporation of a parallel three-phase rectifier as shown in Fig. 5.30. Thus, in 5.33a
the three phase RL load is connected, in 5.33b the RL load of phase c has been disconnected
and in 5.33c the RL load of phases b and c has been disconnected. As mentioned before,
the incorporation of additional current harmonics have changed the voltage ripple and voltage
shape compared to Fig. 5.31. However, the voltages vC1 and vC2 are still unbalanced before
the incorporation of the active control at tc. Fig. 5.34 and Fig. 5.35 shows the lines and neutral
currents for each condition. This shows the capability of the converter to handle zero-sequence
components maintaining the voltage balance on the dc-link capacitors.

In order to proof the voltage balance capability under modulation of non-sinusoidal wave-
forms, i.e. the selection of different type of tetrahedrons, the phase-to-neutral references have
been modified to
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load R=30Ω, L=22mH , (b) phase c has been disconnected, (c) phase b and c has been discon-
nected.
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v∗af=
270√

3
(0.9 cos(ωt) + 0.7 cos(3ωt) + 0.1 cos(5ωt) + 0.3 cos(9ωt)) (5.83)

v∗bf=
270√

3

(
0.9 cos(ωt− 2π

3
) + 0.7 cos(3ωt) + 0.1 cos(5ωt+

2π

3
)+ (5.84)

0.15 cos(7ωt− 2π

3
) + 0.3 cos(9ωt)

)
v∗cf=

270√
3

(
0.8 cos(ωt+

2π

3
) + 0.7 cos(3ωt) + 0.15 cos(7ωt+

2π

3
)+ (5.85)

0.3 cos(9ωt) + 0.1 cos(11ωt− 2π

3
)

)
Fig. 5.36 shows the voltages vC1 and vC2 for modulation of the non-sinusoidal references

of (5.83) to (5.85) implemented with the same RL load and three-phase rectifier presented
in Fig. 5.33. It can be noticed that, the incorporation of several different harmonics into the
reference vector, does not present a limitation for accomplishing the balance of the dc-link
voltages. By that, regardless of the reference vector path, the balance of the voltages is always
possible as long as the currents does not posses a dc component. This is basically explained
because ac line currents generate an ac current through the neutral-point of the converter, i.e.
iz. This leads to a natural oscillation of the voltages vC1 and vC2 around an arbitrary point,
as it has been shown, avoiding divergence. Fig. 5.37 and Fig. 5.38 show the line and neutral
currents for the corresponding cases presented in Fig. 5.36. As it can be seen from Fig. 5.38
the converter is capable of handling non-sinusoidal currents through the fourth leg with similar
magnitudes to the line currents. This emphasis that the fourth leg should not be designed with
smaller nominal rates. Unless the line current harmonics are strictly restricted.

To illustrate the limitation of the balance over the dc-link voltages vC1 and vC2 , a diode
connected in series with the RL load of phase a has been implemented as shown in Fig. 5.39.

Fig. 5.40a and Fig. 5.40b show the voltages vC1 and vC2 after the activation of the modu-
lation algorithm, occurred at ti, with and without active control of the voltages vC1 and vC2

respectively. As it can be seen, in Fig. 5.40b the hardware protection has been tripped, set at
|vC1 − vC2|=20V . Thereby, the incorporation of a dc component in ia force the utilization of
an active control algorithm to achieve balancing of the dc-link voltages. This is because the dc
component of ia is also present in the neutral-point current iz. By that, the natural oscillation of
the voltages vC1 and vC2 around an arbitrary value when the dwell-times of the redundant vector
are equally divided is not achievable. Thus, the active control algorithm must compensate the
dc component introduced by ia.

Although the balancing of the voltages vC1 and vC2 was achieved in 5.40a, the active control
of the dc-link voltages does not ensure the successful voltage balancing when line currents
posses dc component. This is shown in Fig. 5.40c, where increasing the magnitude of the
voltage references, i.e. reducing the dwell-time of the only redundant vector, also produce
trip of the voltage protection. Thereby, the balancing of the voltages can be only achieved
when the dwell-time of the redundant vector over one fundamental cycle is large enough for
compensating the dc-component introduced by ia.

This can be explained looking at Fig. 5.5, where it was shown that a reference vector that
moves around the center of the modulation region possesses a larger voltage balance capability,
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Figure 5.37: Line currents ia, ib and ic under non-sinusoidal modulated voltages for (a) bal-
anced three-phase load R=30Ω, L=22mH and a three-phase rectifier with load Rrec=60 (in
parallel)(b) RL load of phase c has been disconnected, (c) RL load of phase b and c has been
disconnected.



142 CHAPTER 5. SPACE VECTOR MODULATION FOR A FOUR-LEG NPC CONVERTER

0
5

10

-5
-10

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

time (s)

0
5

10

-5
-10

0
5

10

-5
-10

(a)

(b)

(c)

i f
(A

)
i f

(A
)

i f
(A

)

Figure 5.38: Neutral current if under non-sinusoidal modulated voltages for (a) balanced three-
phase load R=30Ω, L=22mH and a three-phase rectifier with load Rrec=60 (in parallel) (b)
RL load of phase c has been disconnected, (c) RL load of phase b and c has been disconnected.

a

b

c

f

RL
Load

Figure 5.39: Non-linear load for generating dc component in phase a.

because every vector posses redundancy. However, when its path moves around the borders of
the modulation region, using the TT3 tetrahedrons, the voltage balance capability is reduced, as
these tetrahedrons posses only one redundant vector. Additionally, the closer is the reference
path to the outer boundaries, the harder become the voltage balancing because the dwell-time of
the only redundant vector, used in every sampling time Ts, is reduced. Fig. 5.41 and Fig. 5.42
show the line and neutral currents ia, ib, ic and if for each case presented in Fig. 5.40.

A more critical case occurs when only the load of phase a is connected. Similarly to Fig. 5.40,
Fig. 5.43 shows the dc-link voltages vC1 and vC2 under three different cases. In Fig. 5.43a and
Fig. 5.43b the modulation algorithm has been implemented with and without active control of
the dc-link voltages respectively. As it can be seen, the balance is still possible, but the active
control of the dc-link voltages is necessary. Although the compensation of the voltages can
still be achieved, the threshold of divergence is smaller compared to Fig. 5.40. Thereby, for
a single phase load, the voltages already diverge with a reference amplitude of 0.7 2√

3
. It is

caused because the dwell-time of the only redundant vector is not enough for compensate the
dc component generated by ia. Fig. 5.43 shows the line current ia (same as if ) for each case
illustrated in Fig. 5.44.
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5.8.3 Overmodulation

In order to analyze the overmodulation algorithm presented in Section 5.6, an arbitrary refer-
ence vector which path is beyond the borders of the allowable modulation region is generated.
This reference is limited to the allowable modulation space by the proposed overmodulation
method and then provided to the three-dimensional SVM to finally be modulated by the four-
leg NPC converter in open-circuit. By analyzing the harmonic spectrum of the modulated output
voltages, the effectiveness of the proposed method can be studied. For the analysis, the three-
dimensional SVM modulation has been implemented with a sampling frequency of fs=12kHz
and with the Single Redundancy Symmetric switching pattern. The algorithm for balancing
the voltages on the dc-link capacitors has not been implemented and the dwell-times for both
redundancies of the redundant vector have been equally divided.

Let us consider the components of a general reference vector v∗abc=(v∗af , v
∗
bf , v

∗
cf ), for com-

pensation until the 11th odd harmonics, as follows:

v∗af =
2√
3

∑
i=1,3,5,7,9,11

ai sin (i · ωt+ φai) (5.86)

v∗bf =
2√
3

∑
i=1,3,5,7,9,11

bi sin (i · ωt+ φbi) (5.87)

v∗cf =
2√
3

∑
i=1,3,5,7,9,11

ci sin (i · ωt+ φci) (5.88)

The general form of equations (5.86) to (5.88) represent the typical waveforms modulated
by a four-leg converter for compensating unbalanced and non-symmetric waveforms, where
several single phase loads are connected to the different phases of the converter.

As first example, consider the reference vector shown in the first column of Table 5.5, com-
posed of three unbalanced, but symmetric fundamental components. In order to limit this vector
to the allowable modulation region, the proposed overmodulation algorithm and the standard al-
gorithm that saturates the reference vector to the borders of polygon have been implemented in
the experimental setup of Fig. 5.18.The second and third column of Table 5.5 show the har-
monic components of the output voltages of the converter after limiting the reference vector by
the proposed algorithm, i.e. ṽ∗αβγ , and the vector limited by the boundaries of the polyhedron,
represented as v̂∗αβγ . The vectors have been expressed in abc coordinates and its components are
measured at the output terminals of the four-leg NPC converter in open-circuit. Unlike v̂∗αβγ ,
the proposed limitation method does not add any additional harmonic component to the limited
reference.
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Table 5.5: Limitation for unbalanced fundamental reference vector. For ṽ∗αβγ , the limiting
factors are: ξ ≈ 0.87, η=1.0 and τ=1.0.

H.Order
√

3
2
v∗abc (·100)

√
3

2
ṽ∗abc (·100)

√
3

2
v̂∗abc (·100)

1st [90∠0◦, 110∠240◦, 120∠120◦] [78∠0◦, 96∠240◦, 104∠120◦] [89∠0.6◦, 105∠238.4◦, 114∠121◦]

3rd [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠219.4◦, 4∠91◦, 3∠−71.9◦]

5th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 3∠82.8◦, 3∠264.9◦]

7th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠156.8◦, 1∠77.8◦, 2∠−63.7◦]

9th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠217.3◦, 0∠0◦, 1∠41.1◦]

11th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 1∠−78.1◦, 1∠119.7◦]

Fig. 5.45 shows the path described by the original reference vector v∗αβγ , the limited vector
ṽ∗αβγ and for v̂∗αβγ in the αβγ space and the αβ plane. Unlike v̂∗αβγ , the path described by
ṽ∗αβγ is also an ellipse, similar to the original reference v∗αβγ , but it remains inside the allowable
modulation region, being tangent to its interior borders. This yields to a limited reference ṽ∗αβγ ,
which maximize the utilization of the dc-link voltage without introducing additional harmonics
components or phase shift on the controlled signals (see Table 5.5). Additionally, Fig. 5.46
shows a reconstruction of the output voltages for both limitation methods using only the first
eleven harmonic components of Table 5.5. As it can be seen, although the proposed method
reduces the amplitude of the sinusoidal references, it avoids the high distortion produced by the
standard method saturating the reference to the borders of the polygon.

Fig. 5.47 shows the output voltages for the same conditions presented in Table 5.5, but con-
necting an output LC filter at the terminals of the four-leg NPC converter. Similarly to Fig. 5.46,
the effectiveness of the proposed method can be clearly appreciated.
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αβγ in the αβγ space for a sinusoidal unbalanced

reference and (b) a top view of this figure.
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ṽ∗bf

A
m

pl
itu

de
pe

ru
ni

t
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Figure 5.46: Reconstruction of output voltages using the first eleventh harmonics components
for (a) the reference vector v∗abc and its limitation ṽ∗abc inside the αβγ space. In (b) the saturation
v̂∗abc is depicted.

In some works the idea of limiting the αβ space by a circle, instead of using the natural
hexagon, is extended to four-leg converters using a cylinder for limiting the modulation space
in the αβγ space [33]. Although this idea is effective for balanced and symmetric systems,
it is not an effective solution for unbalanced systems, as saturating the reference by a circular
boundary produces same effects as saturating the reference by the borders of the polygon, i.e.
incorporation of additional harmonics and phase shift of the controlled components.

Adding a fifth harmonic to the reference vector of Table 5.5, Table 5.6 is obtained. Compar-
ing the second column of Table 5.6 with the second column of Table 5.5, not only the tracking
of the fifth harmonic is achieved, but also a larger compensation for the fundamental compo-
nent is possible. This is achieved because the vector generated by the fifth harmonic, i.e. v∗hαβγ ,
possesses opposite direction to the fundamental vector ṽ∗fαβγ , when the later goes beyond the
borders of the polygon, pushing the path showed in Fig. 5.45 towards the origin of the space.
This is shown in Fig. 5.48, where the incorporation of the fifth harmonic allows a better utiliza-
tion of the modulation space. Table 5.7 presents the same reference vector, but modifying the
phase shift of the fifth harmonics. In this case, the vector v∗hαβγ contributes to generate a path
beyond the allowable modulation region. Therefore, the fundamental waveform is again limited
as in Table 5.5 and the fifth harmonic is not fully compensated. However, for both cases, the
proposed method does not produce additional harmonics or phase shift in the modified reference
vector.

Let us now consider another example where not only fifth harmonic is compensated but also
eleventh harmonic. Table 5.8 shows this example. Again v∗fαβγ has been limited as originally in
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Table 5.6: Limitation for unbalanced fundamental reference vector and fifth harmonics. For
ṽ∗αβγ , the limiting factors are: ξ ≈ 0.89, η=1.0 and τ=1.0.

H.Order
√

3
2
v∗abc (·100)

√
3

2
ṽ∗abc (·100)

√
3

2
v̂∗abc (·100)

1st [90∠0◦, 110∠240◦, 120∠120◦] [80∠0◦, 98∠240◦, 107∠120◦] [89∠0.3◦, 106∠238.7◦, 115∠121◦]

3rd [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [2∠179◦, 2∠83.8◦, 3∠−54.3◦]

5th [10∠0◦, 10∠120◦, 10∠240◦] [10∠0◦, 10∠120◦, 10∠240◦] [9∠−2.2◦, 9∠119◦, 9∠243.4◦]

7th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 2∠−79.1◦, 2∠92.6◦]

9th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠8.8◦, 1∠266.7◦, 1∠112.8◦]

Table 5.7: Limitation for unbalanced fundamental reference vector and fifth harmonics. For
ṽ∗αβγ , the limiting factors are: ξ ≈ 0.87, η=0.9 and τ=1.0.

H.Order
√

3
2
v∗abc (·100)

√
3

2
ṽ∗abc (·100)

√
3

2
v̂∗abc (·100)

1st [90∠0◦, 110∠240◦, 120∠120◦] [78∠0◦, 96∠240◦, 104∠120◦] [88∠0.4◦, 104∠238.5◦, 113∠121◦]

3rd [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [3∠210◦, 3∠66.8◦, 2∠−52.8◦]

5th [10∠90◦, 10∠180◦, 10∠−84◦] [9∠90◦, 9∠180◦, 9∠−84◦] [8∠90.9◦, 7∠175.6◦, 9∠259.4◦]

7th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠72.9◦, 3∠−10.5◦, 3∠193.4◦]

9th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠107.6◦, 0∠0◦, 1∠−81◦]

11th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠199.3◦, 1∠224.6◦, 1∠32.8◦]

13th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 1∠211◦, 0∠0◦]

Table 5.5. Additionally, compared to Table 5.6 or Table 5.7, v∗hαβγ has increased its magnitude
and η is limited now to η ≈ 0.4. Additionally, from the third column of Table 5.8, it is evident
that the phase shift for the compensated components have been highly deviated.

From the modulation space of a four-leg NPC presented in Fig. 5.2, it can bee seen that a
four-leg converter is able to compensate large zero sequence components. This is demonstrated
in Table 5.9, where a large third-order zero sequence component is introduced to the reference
vector, which has been fully compensated without affecting the compensation of fifth harmonic.

As definition, a zero sequence component is generated when the three abc reference signals
posses the same amplitude and phase shift. Thereby, its αβ components are zero and it possesses
only a γ component (represented as v∗zsαβγ ). This usually occurs in a balanced system by: 3th,
9th, 15th, etc, harmonic components. However, in an unbalanced system, where the loads at
each phase of the converter are different, it seldom occurs. Thus, in unbalanced systems, even
the typical zero sequences systems such as: 3th, 9th or 15th posses not only γ component, but
also αβ components. Under this condition, they are treated as any other harmonic, belonging
to the vector v∗hαβγ . Table 5.10 shows an example of this situation, where the amplitudes for
the third harmonic of the reference vector are different for each phase. Comparing the second



5.8. EXPERIMENTAL ASSESSMENT 151

Table 5.8: Limitation for unbalanced fundamental reference vector, fifth and eleventh harmon-
ics. For ṽ∗αβγ , the limiting factors are: ξ ≈ 0.87, η=0.4 and τ=1.0.

H.Order
√

3
2
v∗abc (·100)

√
3

2
ṽ∗abc (·100)

√
3

2
v̂∗abc (·100)

1st [90∠0◦, 110∠240◦, 120∠120◦] [78∠0◦, 96∠240◦, 104∠120◦] [87∠0.5◦, 104∠238.5◦, 113∠120.9◦]

3rd [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [2∠207.9◦, 3∠76.4◦, 2∠−46.5◦]

5th [10∠90◦, 10∠180◦, 10∠−84◦] [4∠90◦, 4∠180◦, 4∠−84◦] [7∠92.7◦, 7∠171.8◦, 9∠258.5◦]

7th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [2∠85.4◦, 3∠−20.2◦, 3∠190.7◦]

9th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠128.4◦, 1∠64.8◦, 0∠0◦]

11th [5∠16.4◦, 7∠127.5◦, 4∠25.2◦] [2∠16.4◦, 3∠127.5◦, 1∠25.2◦] [3∠20.4◦, 5∠141.3◦, 1∠268.1◦]

13th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠16.3◦, 2∠259.5◦, 2∠112◦]

column of Table 5.9 with Table 5.10 it can be seen that the third harmonics is not longer treated
as a zero sequence component, but it is limited as any other component of v∗hαβγ .

Table 5.9: Limitation for unbalanced fundamental reference vector, fifth harmonics and 90% of
third order zero sequence component. For ṽ∗αβγ , the limiting factors are: ξ ≈ 0.87, η=0.9 and
τ=1.0.

H.Order
√

3
2
v∗abc (·100)

√
3

2
ṽ∗abc (·100)

√
3

2
v̂∗abc (·100)

1st [90∠0◦, 110∠240◦, 120∠120◦] [78∠0◦, 96∠240◦, 104∠120◦] [88∠0.4◦, 104∠238.5◦, 113∠121◦]

3rd [90∠0◦, 90∠0◦, 90∠0◦] [90∠0◦, 90∠0◦, 90∠0◦] [88∠−0.9◦, 91∠1.8◦, 91∠−0.9◦]

5th [10∠90◦, 10∠180◦, 10∠−84◦] [9∠90◦, 9∠180◦, 9∠−84◦] [8∠90.9◦, 7∠175.6◦, 9∠259.4◦]

7th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠72.9◦, 3∠−10.5◦, 3∠193.4◦]

9th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠107.6◦, 0∠0◦, 1∠−81◦]

11th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠199.3◦, 1∠224.6◦, 1∠32.8◦]

13th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 1∠211.3◦, 0∠0◦]
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Table 5.10: Limitation for balanced fundamental reference vector, third, fifth and eleventh har-
monics. For ṽ∗αβγ , the limiting factors are: ξ ≈ 1.0, η ≈ 0.35 and τ=1.0.

H.Order
√

3
2
v∗abc (·100)

√
3

2
ṽ∗abc (·100)

√
3

2
v̂∗abc (·100)

1st [90∠0◦, 90∠240◦, 90∠120◦] [90∠0◦, 90∠240◦, 90∠120◦] [88∠0◦, 87∠239.1◦, 86∠120◦]

3rd [20∠0◦, 10∠0◦, 10∠0◦] [7∠0◦, 3∠0◦, 3∠0◦] [19∠−1.7◦, 10∠3.1◦, 11∠0.3◦]

5th [20∠90◦, 10∠180◦, 10∠−84◦] [7∠90◦, 3∠180◦, 3∠−84◦] [19∠83.2◦, 10∠165.3◦, 12∠264◦]

7th [10∠0◦, 30∠240◦, 40∠120◦] [3∠0◦, 10∠240◦, 14∠120◦] [9∠4.4◦, 27∠238.4◦, 36∠122.6◦]

9th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠173.2◦, 1∠115.4◦, 2∠−31.7◦]

11th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [2∠−53.7◦, 2∠96.1◦, 1∠180◦]

13th [0∠0◦, 0∠0◦, 0∠0◦] [0∠0◦, 0∠0◦, 0∠0◦] [1∠145.2◦, 3∠59.1◦, 3∠254◦]

5.9 Discussion and Final Remarks

This chapter provided a comprehensive analysis of the three-dimensional SVM for a four-leg
NPC converter. The experimental results presented in this chapter are intended to validate the
proposed techniques to synthesize the output voltages of a four-leg NPC converter, including
the balance of the voltages in dc-link capacitors. Therefore, they are mostly implemented in
open-loop control and some of them in open circuit. An implementation of these algorithms
under a closed-loop control is presented in the next chapter for an aerospace application.

The following remarks summarizes the contributions of this chapter, which can be also con-
sidered as contributions to the state of the art in this matter:

• A simple algorithm for achieving a space vector modulation in αβγ coordinates was
proposed and experimentally validated. The algorithm reduces the complexity of the
three dimensional search of tetrahedrons to only two dimensions, based on a simple three
steps algorithm. Due to the generality of the proposed algorithm, it can be also applicable
in further topologies, where control of the zero sequence is required.

• An algorithm for determining a suitable switching pattern for a four-leg NPC converter,
considering the voltage balance of the dc-link capacitors was also addressed. An experi-
mental validation of a switching pattern using a single redundant vector at each sampling
time for achieving a nearly constant switching frequency for each device of the converter
was successfully implemented and tested under different unbalanced and non-sinusoidal
references.

• Using the proposed algorithm for generating the switching pattern, an active method for
balancing the voltages on the dc-link capacitor was successfully implemented. It was
showed that the ripple of the voltages in each of the dc-link capacitors is directly pro-
portional to the unbalance level of the load. Additionally, the shape and frequency of
the ripple of these voltages is defined by the line currents and is not restricted to be a
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sinusoidal of three times the fundamental frequency as in a three-leg NPC converter. Fur-
thermore, a limitation for balancing the dc-link voltages occurs when a dc component is
introduced in any of the line currents. This dc component is transfer to the NP current iz,
which makes the dc-link voltages diverge unless the dwell times of the redundant vectors
are large enough to compensate this dc component over one fundamental cycle.

• An overmodulation algorithm for limiting a reference vector without introducing addi-
tional harmonics or phase shift on the reference values was presented in this section. This
algorithm effectively limit a reference vector within the modulation range either in an αβ
plane or αβγ space, maximizing the utilization of the dc-link voltage. For this propose,
the utilization of αβγ coordinates is very useful, as it makes easy to identify when the
reference vector is out of the allowable modulation space.
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CHAPTER 6

A four-leg NPC Converter as a Gound Power
Supply

Abstract: This chapter shows the utilization of a four-leg NPC converter as a Ground Power Unit (GPU) for
aerospace applications. The fourth leg of the converter allows to handle unbalanced and non-linear loads presents
in an aircraft. Furthermore, the multilevel nature of a four-leg NPC converter enables the reduction of the
switching frequency in each device of the converter, which is crucial in this application due to the high 400Hz

fundamental frequency. Additionally, it also allows compensation of higher order harmonic compared to two-
level topologies. The resonant controllers described in Chapter 4 and the three-dimensional SVM algorithm with
voltage balance of the dc-link capacitors presented in Chapter 5 have been implemented to successfully achieve
control of a GPU compensating up to the eleventh harmonic component.

In the last decades, the aircraft industry has faced a tremendous development in the tech-
nology used for communication, services and control systems within an aircraft [165], [166].
Electronic devices have played a fundamental role in this growth, leading to a more complex
and sophisticated electrical system within the plane. The supply of electrical energy has to fulfill
stringent power quality and safety regulations [10], [167]. By that, typical voltage levels within
an aircraft have changed in the last decades, first 28V dc was used [168]. However, nowadays
and because of the higher power range and incorporation of sophisticated electronic devices, the
standards typically establish a phase-to-neutral voltage level of 115V rms at 400Hz [10]. The
operation of an aircraft can be divided into two modes: ground and flight operation mode [168].
During flight operation mode, oil is used to drive the turbines, which are used to provide the air-
craft with electrical energy. When the aircraft is landing and turbines are slowing down (ground
operation mode), the electricity is provided to the aircraft by an Auxiliary Power Unit (APU),
located normally at the rear of the aircraft. However, once the plane has landed, the use of
the APU is restricted to avoid noise and pollution. Thereby, a Ground Power Unit (GPU) is
connected to the aircraft instead. This connection was normally coordinated by operators to
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(a) (b)

Figure 6.1: (a) Power Electronics based GPU and (b) Diesel operated GPU.

first shut down the APU and then connect the GPU to the aircraft. Nonetheless, in the last gen-
eration of commercial aircrafts (Boing 777, MD-11, Airbus 360) power transfer is achieved
without interruptions and no previous disconnection of the APU is required, this is known
as non-break power transfer (NBPT) [169]. Although GPUs have been for decades based on
motor-generation system [168], this configuration is being replaced by static power converters,
which provides more reliability, better power quality, better performance, lower price, lower
maintenance and higher efficiency, becoming an standard solution for this application. Fig. 6.1
shows a typical solid state based and a diesel operated GPU connected to an aircraft.

The electrical system of an aircraft can be considered as a three-phase, four-wire unbalanced
system, where different loads are connected to each of the phase-neutral voltages. Therefore,
a GPU is designed as a four-wire power supply with phase-to-neutral voltages of 115V rms,
400Hz and with a power operation range between 30-200kV A, being 90kV A the most typical
power rate. Furthermore, a 100% overload for 1s is usually required [169].

Fig. 6.2 shows the standard solution for a power electronics based GPU [154]. Three H-
bridges, sharing the same dc-link, are used to control independently each of the output phase-
to-neutral voltages. This allows to compensate the unbalanced drop voltages presents in the
output filter, giving full controllability at the output of the converter. An alternative configura-
tion reported in the literature uses transformers to add the output voltages of several inverters,
generating an steeped output waveform [170]. Although this configuration offers good THDv

and low switching frequency, its controllability is complicated and the high number of elements
reduce its reliability. Recently, new topologies such as matrix converters have been imple-
mented in the literature as GPU [23,155,171]. This topology performs good power quality and
does not require dc-link capacitors, which entails a compact design and higher reliability. How-
ever, it requires a high number of switches and high switching frequencies per device, which
is its main drawback. By that, a four-leg NPC converter arises as a promising new solution
for implementation of GPUs. The fourth leg provides an extra path to control zero-sequences
components. Moreover, the topology reduces the switching frequency of each device com-
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Figure 6.2: Six legs converter used as standard solution for a four-wired, 400 Hz Ground Power
Unit. An isolation transformer could be required to avoid ground loops between the input grid
and the load. A second order LC power filter is used at the aircraft side.

pared with a standard solution, allowing a higher efficiency, higher sampling rate and higher
harmonics compensation [172]. Furthermore, the higher number of levels at the output voltage
allows to use a smaller output filter and therefore a less bulky solution with lower reactive power
consumption.

Standard Uninterruptible Power Supplies (UPS) for 50/60Hz operate at switching frequen-
cies between 2−12kHz. The high rate between the fundamental and the switching frequency
allows to successfully implement several control schemes, such as: nested d-q controllers, res-
onant controllers, repetitive and predictive controllers [90, 135, 148, 173, 174]. When a 400Hz
GPU is designed, the use of a 2kHz switching frequency is not longer an alternative, because
the ratio between the fundamental component and switching frequency is dramatically reduced.
Therefore, in this application the switching frequency has to be typically around 10−15kHz
and even higher when harmonic compensation is required. Moreover, because of the high band-
width required for the inner current loop used in double-loop nested controllers, this kind of
controllers are not practically implementable and the use of single-loop voltage controllers have
been preferred for this application. By that, in [169] a robust single-loop strategy has been pro-
posed to control the output voltage of a GPU. However, although it achieves good performance
under linear loads, it is not capable of compensating harmonic distortion under no-linear loads.

The necessity of providing harmonic compensation presents a new challenge for GPUs, orig-
inated from the large incorporation of electronic devices within an aircraft. Thereby, because
of its easy implementation and high performance, recently resonant controllers have arisen as
a competitive solution to control UPSs [21, 129, 133, 154, 155, 171]. In [154] a resonant con-
troller have been proposed as a solution for a standard two-level, 400Hz GPU. The implemen-
tation includes third (1200Hz), fifth (2000Hz) and seventh (2800Hz) harmonic compensation.
Nonetheless, in GPU applications (400Hz and 90kV A), the two-level nature of the converter
limits higher harmonics compensation because of the physical limitation of the switching de-
vices. This problem has been overcame by the proposed multilevel topology, where regulation
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of the fundamental 400Hz voltage signal as well as compensation of the third, fifth, seventh,
ninth and eleventh harmonic components are successfully achieved. Furthermore, special con-
siderations such as sensitivity peak and discretization method must be taken into consideration
during the controller design for ensuring stability and fast transient response when high order
harmonics wants to be compensated [60,149,151]. This was extensively discussed in Chapter 4
and is implemented in the following sections.

6.1 Ground Power Unit Controller Design
Fig. 6.3 shows the proposed solution for a 400Hz, 110V rms GPU, where the aircraft is rep-
resented as a linear/non-linear, balanced/unbalanced load. A small output LC filter, designed
with a resonance at 2.4kHz, is connected to the output of the converter. A single-loop resonant
controller is implemented to control the output voltages of the GPU, compensating third, fifth,
seventh, ninth and eleventh harmonics. The three-dimensional SVM algorithm along with the
overmodulation method proposed in Chapter 5 are used to synthesize the output voltages. Fur-
thermore, using the redundant vectors of the four-leg NPC and the measurement of the dc-link
voltages and output currents, a Proportional-Integral controller is implemented to balance the
voltages on the dc-link capacitors.
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Figure 6.3: Control scheme for the proposed four-leg NPC used as GPU. An small output LC
filter is used to obtain 400Hz sinusoidal output voltages. Rf represents the series resistance,
Lf is the filter inductance and Cf is the capacitor of the filter. Lf=425µH , Cf=10µF and
Rf=0.4Ω.

6.1.1 Resonant Controller Design
The second-order transfer function that represents the output LC filter of Fig. 6.3 is given by

P (s) =
Vo(s)

Vi(s)
=

1

LfCfs2 +RfCfs+ 1
(6.1)



6.1. GROUND POWER UNIT CONTROLLER DESIGN 159

where Vo(s) and Vi(s) represent the output and input voltages of the LC filter. As it was
introduced in Chapter 4, the general form of a suitable resonant controller able to compensate
the time delay introduced by the real time controller and the phase shift introduced by the LC
filter of (6.1) is given by

Rc(s) =
∑

n=1,3,..,11

Rc
n(s) =

k∑
n=1

Kn
s cosϑn − ωn sinϑn

s2 + ω2
n

(6.2)

where Kn represents the gain, ωn is the resonance frequency and ϑn is the compensation
angle for each of the nth resonant compensators.

In order to implement (6.2) in a real-time digital platform, a discrete-time representation of
the system must be obtained. The diagram of Fig. 6.4 shows the discrete-time close loop control
structure.

Rc3(z)

Calculation
v∗o(k)

(z−1)
P (s)

Rc11(z)

vo(k)
Sampler

(SVM)

HoldConverter

(Γ)

P (z)

e(k) u(k) Γu(t)e−sTs vo(t)Γu(k − 1)

(Ts)

Rc1(z)

Figure 6.4: Discrete-time single-loop control structure for implementation of resonant con-
trollers. v∗o(k) and vo(k) represents the reference and controlled discrete-time output voltages.
Rc
n(z) for n = {1, 3, 5, 7, 9, 11} represent a resonant controller with delay compensation for

compensation of a signal with frequency ωn in discrete-time, with ω1=800πrad/s.

The computational delay has been represented as one sampling time delay and the converter
as a constant gain Γ. Additionally, the plant is discretized by using a ZOH approximation.
This discretization is presented in (6.3) and obtained using (4.43) with fs=16.8kHz and the
parameters given in Fig. 6.3.

P zoh(z)=
0.38z + 0.37

z2 − 1.19z + 0.94
(6.3)

The selection of the discretization method used in a resonant controller plays a fundamental
role for the stability of the system. By that, Tusting with Prewarping (TPW) and First Order
Hold (FOH) approximations are the most suitable discretization methods, as they maintain the
resonance frequency and its infinite gain unalterable (see Chapter 4). Thus, the FOH discrete
form of the controller presented in (6.2) is given by
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Rc−foh(z)=
∑

n=1,3,..,11

Rc−fohn (z)=

k∑
n=1

Kn
cos(ωnDnTs)(1− z−2)(1− cos(ωnTs)))

ω2
nTs(1− 2z−1cos(ωnTs) + z−2)

(6.4)

−
sin(ωnDnTs)

[
ωnTs − sin(ωnTs) + z−1(2sin(ωnTs)− 2ωnTscos(ωnTs)) + z−2(ωnTs − sin(ωnTs))

]
ω2
nTs(1− 2z−1cos(ωnTs) + z−2)

where Ts is the discretization sampling time, Kn represents the gain and ωn is the resonance
frequency for each of the nth resonant compensators. Equivalently to ϑn of (6.2), Dn in (6.4) is
the number of samples to be compensated by the nth resonant controller and is given by

Dn=
−∠P zoh(zn=ejωnTs)rad

Tsωn
+ 1.0 (6.5)

where P zoh(zn=ejωnTs) is the ZOH discrete-time LC filter given in (6.3), evaluated at the res-
onance frequency zn and the unitary term is for compensating the computational delay.

Table I shows the phase shift introduced by the plant and the equivalent phase shift generated
by the computational time delay Ts for each of the compensated frequencies. The values are
expressed for the continuous and discrete-time representations, using a sampling frequency of
fs=16.8kHz.

Table I: Angle Compensation ϑn and Dn for ω1,3,5,7,9,11

ωn rad/s -∠P (jωn) -∠P zoh(zn=ejωnTs) -∠e−jωnTs ϑn Dn

ω1=2π · 400 0.59◦ 4.87◦ 8.57◦ 9.16◦ 1.56
ω3=2π · 1200 2.27◦ 15.13◦ 25.71◦ 27.98◦ 1.58
ω5=2π · 2000 8.69◦ 30.11◦ 42.85◦ 51.54◦ 1.70
ω7=2π · 2800 167.42◦ 197.11◦ 60◦ 227.42◦ 4.28
ω9=2π · 3600 175.59◦ 214.11◦ 77.14◦ 252.73◦ 3.77
ω11=2π · 4400 177.18◦ 224.21◦ 94.28◦ 271.46◦ 3.37

For the sake of explanation, before displaying the complete design for the six resonant con-
trollers, only compensation of the fundamental component (400Hz) is analyzed. Thereby,
Fig. 6.5 shows the discrete-time Bode and Nyquist diagrams for the open-loop transfer function
of the control scheme of Fig. 6.4. The resonant controller of (6.4) has been implemented for
n=1 and with the compensation term D1 of Table I. Furthermore, the discrete-time representa-
tion of the second order plant of (6.3) has been used.

Fig. 6.5a shows that the angle of the open-loop transfer function at ω1 is set to±90◦. This im-
proves the stability margin of the close-loop system and it is achievable because of the compen-
sation term D1 introduced in the resonant controller. This can be also observed in the Nyquist
diagram of Fig. 6.5b, where the path marked as σ1 shows the trajectory tending to infinity with
an angle of ξ1=90◦ for ω ≈ ω−1 . Likewise, the path marked as σ2 shows the trajectory for
ω ≈ ω+

1 , which is also parallel to the imaginary axis, with ξ1= − 90◦. Consequently, before
the path tends to the origin of the plane (ω → ωnyq), it describes a curve which approaches to
the critical point (−1, 0j). This path is generated by the resonance of the LC filter (ωc) and
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mainly define the minimum distance between the point (−1, 0j) and the Nyquist curve, i.e. the
inverse of the sensitivity peak η. The gain of the controller K1 can be selected to adjust η in
the Nyquist diagram. By that, K1 is tuned to select a good trade off between stability margin
and transient response. The path marked with dotted line represents the Nyquist diagram for
negative frequencies, which is symmetrically placed respect to the path depicted for positive
frequencies.
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Figure 6.5: (a) Bode and (b) Nyquist diagram for the open-loop system H(z) =
Rc−foh

1 (z)P zoh(z)z−1. Ts = 1/16800 s, Rf = 0.4 Ω, Lf = 425 µH and Cf = 10 µF.
ωc = 2π · 2400 rad/s, Nyquist frequency ωnyq=

2π·16800
2

rad/s. For Rc−foh
1 (z): D1=1.28,

ω1 = 800π rad/s, K1 = 850. In (b) Nyquist response for positive and negative frequencies
(dotted lines) is shown.
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Fig. 6.6 shows the discrete Bode and Nyquist diagram for the final design. This includes the
compensation of the fundamental 400Hz component and compensation up to the eleventh odd
harmonic components. The six parameters Dn of Table I have been used for implementation of
the complete resonant controller of (6.4). Similarly to Fig. 6.5a, the Bode diagram of Fig. 6.6a
possesses six peaks at each of the resonant frequencies ω1,3,5,7,9,11. The phase shift introduced
by the LC filter and computational delay have been compensated in the controller for each
of resonance frequencies. Thereby, a phase of ±90◦ around ω1,3,5,7,9,11 is obtained. This is
illustrated in Fig. 6.6b, where each of the resonance frequencies generates a path that tends
to infinity with 90◦ and then appears 180◦ forward from the bottom of the graph. Thereby,
the paths σ1 and σ2 are associated to the fundamental frequency ω1. Consequently, each of
the following pairs of paths, i.e. σ3,4, σ5,6, σ7,8, σ9,10 and σ11,12, are associated with each of
the five compensated harmonics, i.e. ω3,5,7,9,11. It can be noticed that between path σ6 and σ7

(between the fifth (2.0kHz) and seventh (2.8kHz) harmonic) the trajectory approaches to the
critical point (−1, 0j). As mentioned before, this is generated by the resonance of the LC filter,
placed at approximately 2.4kHz, which present the main limitation for increasing the gain of
the controllers (K1,3,5,7,9,11).

Compared to Fig. 6.5b, in Fig. 6.6b the gainK1 for the fundamental controller has been noto-
riously reduced from 850 to 150. However, a similar value for the inverse of the sensitivity peak
η is obtained in the Nyquist diagram. This reduction is explained due to the incorporation of the
additional controllers, which gains also contribute to expand the Nyquist trajectory towards the
critical point (−1, 0j). Thus, the gains for each of the harmonic compensators, i.e. K3,5,7,9,11,
have been selected to achieve a good trade off between a safe stability margin and a fast transient
response. Although these parameters are firstly designed by a theoretical approach a fine tuning
is usually necessary during real implementation to achieve the desired performance. The fol-
lowing chapter presents an experimental validation of this controller implemented under several
different scenarios.
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Figure 6.6: (a) Bode and (b) Nyquist diagram for the open-loop system H(z) =
Rc−foh(z)P zoh(z)z−1. Ts = 1/16800 s, Rf = 0.4 Ω, Lf = 425 µH and Cf = 10 µF.
ωc = 2π · 2400 rad/s, Nyquist frequency ωnyq=

2π·16800
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rad/s. For Rc−foh(z): K1=150,
K3,9,11=100, K5,7=50 Dn and ωn from Table I.
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6.2 Experimental Results
In order to validate the proposed four-leg NPC topology and the resonant controller design
as a suitable solution for a GPU. The diagram of Fig. 6.3 has been implemented in the ex-
perimental rig presented in Fig. 5.18. The aircraft of Fig. 6.3 has been replaced by several
linear/non-linear, balanced/unbalanced loads. Table II shows the different experimental param-
eters used on the consecutive experimental results. The three-dimensional SVM has been imple-
mented with a switching frequency of fs=16.8kHz and with the Single-Redundancy Symmetric
switching pattern throughout this section. Furthermore, the overmodulation method presented
in Chapter 6.1.1 and the active balance of the voltages on the dc-link capacitors have been also
implemented.

Table II: General Parameters of the Implemented Systems
Parameter Value Parameter Value

C1 3300 uF Z 10 Ω ; 2mH
C2 3300 uF Z1 10 Ω ; 2mH
Vdc 325− 430 V Z2 14 Ω ; 2mH
Cf 10 uF Z3 17 Ω ; 2mH
Lf 425 uH Single/Three-phase Full Wave 220uF ; 60 Ω
fsw 16.8 kHz Diode Bridge Rectifier

6.2.1 Steady-State Performance
Using the controller designed in Section 6.1.1 for compensation of up to the eleventh odd har-
monics and the parameters of the first column of Table II. Fig. 6.7 shows the performance of
the proposed system of Fig. 6.3 under balanced operation, using Z of Table II as the load for
each of the phases of the converter (2.5kW approximately). As it can be seen, under this situa-
tion the voltages and currents posses very low distortion, even considering the small output LC
filter and the high fundamental frequency. The output voltages posses an output effective value
of 110V rms, frequency of 400Hz and a harmonic distortion below 1.2%, calculated using the
first 50 harmonics of each output voltages. The theoretical voltage required in the dc-link of
the four-leg NPC converter to modulate output phase-to-neutral voltages with a magnitude of
110V rms is given by

2Vdc=110
√

2
√

3 ≈ 270V dc (6.6)

However, in order to provide enough voltage to compensate the drop voltages present on
the LC filter. This value has been increased in the experimental rig to 325V dc. The balanced
nature of the load avoids the generation of neutral current. Thus, for this case, i′f=0, reducing
the losses of the fourth leg to a negligible value.

Fig. 6.8 shows the unbalanced operation of the converter, using Z1, Z2 and Z3 as loads for the
output phase-to-neutral voltages of the converter: va′f ′ , vb′f ′ and vc′f ′ respectively. The power
consumption of each branch are approximately: 0.95kW , 0.65kW and 0.75kW respectively. As
it can be seen, the controller successfully compensates the different magnitudes of drop voltages
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Figure 6.7: (a) Output voltages va′f ′ , vb′f ′ and vc′f ′ and (b) output currents ia′ , ia′ , ic′ for a
GPU under balanced linear load with load equal to Z. Sampling frequency of fs=16.8kHz.
THDva′f ′

=1.11%, THDvb′f ′
=1.11% and THDvc′f ′

=1.12%.

on each phase of the filter, maintaining the output voltages balanced with an effective value of
110V rms and frequency of 400Hz. Moreover, the voltage harmonic distortion of each voltage
is less than 2%, which is very good considering the small output filter and the small rate between
the fundamental and the switching frequency. In addition, it successfully accomplished with
the maximum allowable voltage harmonic distortion of 5% stated in military standards [10].
Furthermore, from Fig. 6.8b, the converter is able to handle a zero sequence current, i.e. i′f , that
possesses a higher magnitude than the line current i′c and similar magnitude to ia′ and ib′ . This
remarks the fact that the fourth leg of the converter does not have to be designed with a reduced
nominal power rate.

In order to evaluate the performance of the proposed topology and control strategy under
non-linear loads, a three-phase full wave diode bridge rectifier with a RC load at the dc side is
connected at the output of the GPU (see Table II). Fig. 6.9 shows the output voltages and cur-
rents using the balanced load (Z) and the 1.2kW three-phase full wave diode bridge rectifier of
Table II. As described above, odd harmonics until the 11th component have been compensated.
As it can be seen, although the currents are very distorted, the output voltages remains with
a low harmonic distortion, with a total voltage harmonic distortion below 3.0%. Additionally,
their effective value and frequency are successfully regulated to 110V rms and 400Hz. In or-
der to provide enough voltage for compensation of harmonic components, the dc-link voltage
has been increased to 420V dc. Due to the connected rectifier does not produce zero sequence
current and the linear load is balanced, the neutral current i′f is negligible and is not depicted.
Fig. 6.10 shows the reference voltages generated by the controller, which subsequently are syn-
thesized by the three-dimensional SVM algorithm. Clearly, the reference voltage is far from an
ideal sinusoidal. However, this is the required waveform to compensate the voltage drop pro-
duce by the distorted current circulating through the filter inductance Lf to subsequently obtain
a sinusoidal load voltage.

Fig. 6.11 shows the output voltages under the same conditions of Fig. 6.9, but with com-
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Figure 6.8: a) Output voltages va′f ′ , vb′f ′ and vc′f ′ and (b) output currents ia′ , ia′ , ic′ for a
GPU under unbalanced linear load with load equal to Za, Zb and Zc. Sampling frequency of
fs=16.8kHz. THDva′f ′

=1.8%, THDvb′f ′
=1.9% and THDvc′f ′

=1.9%.

pensation of only fundamental 400Hz component. Although the fundamental component of
these output voltages are still regulated to 110V rms and 400Hz, the total harmonic distortion
is approximately 10%, which does not fulfill the maximum 5% required by the standards [10].
By that, the compensation of high order harmonics is mandatory to provide suitable output
voltages.

Fig. 6.12 shows the performance of the GPU under an unbalanced linear load and the three-
phase diode bridge rectifier of Table II. Thereby, even under unbalanced situation the output
voltages are properly regulated and with a harmonic distortion below 3.3%. Additionally, the
zero-sequence current generated by the linear unbalanced load is also depicted in Fig. 6.12c.

Finally, Fig. 6.13 shows the performance of the proposed GPU connected to a 0.4kW the
single-phase full wave diode bridge rectifier and to the unbalanced linear load (Z1, Z2, Z3)
of Table II. As the single-phase full wave diode bridge rectifier introduces a distorted zero
sequence component, the neutral current is not sinusoidal and contains the harmonics generated
by the rectifier. This current also contains some even harmonics which are not compensated
by the controller. Thereby, although the total harmonic distortion of the output voltages is still
below the required 5% the phase where the single.phase rectifier is connected possesses a higher
harmonic distortion.
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Figure 6.9: (a) Output voltages va′f ′ , vb′f ′ and vc′f ′ and (b) output currents ia′ , ia′ , ic′ for a
GPU connected to a balanced linear load (Z) and the three-phase rectifier of Table II. Sampling
frequency of fs=16.8kHz. THDva′f ′

=2.8%, THDvb′f ′
=3.0% and THDvc′f ′

=3.0%.
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Figure 6.10: Reference voltages v∗a′f ′ , v
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b′f ′ and v∗c′f ′ for a GPU connected to a balanced linear

load (Z) and the three-phase rectifier of Table II.
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Figure 6.11: a) Output voltages va′f ′ , vb′f ′ and vc′f ′ and (b) output currents ia′ , ia′ , ic′ for a GPU
connected to a balanced linear load (Z1, Z2 and Z3) and the three-phase rectifier of Table II.
Compensation of only fundamental 400Hz component. Sampling frequency of fs=16.8kHz.
THDva′f ′

=9.7%, THDvb′f ′
=9.8% and THDvc′f ′

=9.5%.
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Figure 6.12: (a) Output voltages va′f ′ , vb′f ′ and vc′f ′ and (b) output currents ia′ , ia′ , ic′ (c) if ′
for a GPU connected to a unbalanced linear load (Z1, Z2 and Z3) and the three-phase recti-
fier of Table II. Sampling frequency of fs=16.8kHz. THDva′f ′

=3.3%, THDvb′f ′
=3.1% and

THDvc′f ′
=3.3%.
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Figure 6.13: (a) Output voltages va′f ′ , vb′f ′ and vc′f ′ and (b) output currents ia′ , ia′ , ic′ (c) if ′ for
a GPU under unbalanced linear load (Z1, Z2 and Z3) and the single-phase rectifier of Table II.
Sampling frequency of fs=16.8kHz. THDva′f ′

=2%, THDvb′f ′
=1.6% and THDvc′f ′

=2.7%
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6.2.2 Transient Performance
Although the steady-state condition represents the most important operation mode of a GPU, its
transient response must also accomplish with certain requirements. In this section it is demon-
strated that the proposed solution provides an excellent transient response under different con-
ditions and accomplishes with standards requirements tested in critical conditions.

Fig. 6.14 shows the performance of the GPU for disconnection of a balanced load (2.8kW ).
A three-phase mechanical switch has been connected to the load and opened at t0. As it can be
seen, the output voltages return to a sinusoidal condition after approximately 2 cycles, i.e. 5ms.
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Figure 6.14: (a) Output phase-to-neutral voltages va′f ′ , vb′f ′ , vc′f ′ and (b) line currents i′a, i
′
b and

i′c for disconnection of balanced load of 2.8kW .

Fig. 6.15 illustrates the transient from an unbalance operation to a full balanced load. A three-
phase mechanical switch has been connected to incorporate load at t0. As it can be observed,
the output voltages are almost not affected by the load impact.

Fig. 6.16 shows the regulation of the voltages on the dc-link capacitors from an open cir-
cuit condition to the full 2.8kW balanced linear load. The voltage deviation is less than 5V ,
converging to its reference after around 100ms. This validates the effectiveness of the voltage
balance algorithm used on the three-dimensional SVM and the proper design of the PI controller
for balancing the voltage on each capacitor.

Fig. 6.17 presents the transient response for the load impact of a 1.27kW three-phase full
wave diode bridge rectifier of Table II. Even considering that this is a critical load impact,
the controller can reject disturbances after approximately 16ms (6-7 cycles). As the capacitor
placed at the dc side of the rectifier is not charged before the load impact, it behaves as a short
circuit and the voltage is not controllable for around 1 cycle. Additionally, the limitation given
by the standard in [10] for transient operation has been also depicted in Fig. 6.17a. It can be
noticed that the transient response accomplish with required standard , which still allows an
overvoltage of 118V rms after 87.5ms.
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Figure 6.15: (a) output phase-to-neutral voltages va′f ′ , vb′f ′ , vc′f ′ and (b) line currents i′a, i
′
b and

i′c for load impact from unbalanced load Z1, Z2, Z3 to a balanced load of 2.8kW .
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Figure 6.16: Voltage on the dc-link capacitors C1 and C2 from open circuit to a balanced load
of 2.8kW .
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transient response fo the connection of the three-phase rectifier of Table II. Previous the impact
the unbalanced linear load (Z1,Z2,Z3) of Table II is connected.
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6.3 Final Remarks
In this Chapter it has been shown that the four-leg NPC converter can be successfully imple-
mented as a GPU for aerospace applications. The higher equivalent frequency of the modulated
output voltages, compared to a two-level topology, allows to compensate higher harmonic com-
ponents, reduce the output filter and reduce the switching frequency, i.e. power losses, in each
switching device of the converter. A controller designed for compensation until 11th order har-
monic was implemented reducing the THD of the output voltages to a maximum of 3.3% even
under very unbalanced and non-linear load conditions. Additionally, the transients response
provided by the converter accomplishes easily with the requirements of the standards.

The implementation of this application serves also to demonstrate the excellent performance
of the proposed three-dimensional SVM algorithm, the implementation of the switching pattern
and the algorithm to actively balance the voltages of the dc-link capacitors in a real application
and under demanding conditions.

It is important to remark the importance of the discretization process of the controller and the
compensation of the phase-shift produced by the LC filter and the computational delay before
implementation. The incorporation of these factors are crucial to avoid malfunction of the
converter under different loads, specially non desirable resonances of the high order controlled
harmonics.
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CHAPTER 7

Conclusions

Throughout this dissertation, the reader has been provided with an extensive analysis and dis-
cussion of modulation techniques implemented in power electronics converters for four-wire
applications. It has been demonstrated that four-leg converters provides a superior performance,
better utilization of the dc-link voltage and less harmonic distortion, compared to the three-leg
four-wire converters, becoming the most promising topology to be the standard solution for
four-wire applications.

Three-dimensional SVM algorithm has demonstrated to be the most flexible and suitable
solution to synthesize output voltages in four-leg converters. Moreover, its implementation in
αβγ coordinate frame provides several advantages, such as:

• Very simple calculation of dwell-times.

• Direct control of zero-sequence component.

• Flexibility to design different switching patterns and control the devices switching fre-
quency.

• Optimal utilization of redundant vectors to balance the voltages of the dc-link capacitors
in multilevel converters.

• Possibility to shape the harmonic spectrum, i.g. even order harmonics elimination.

• Simple extension to further four-leg topologies.

A novel three-dimensional overmodulation algorithm proposed in this work has demonstrated
to be an effective method to maintain the reference vector inside the allowable modulation
space, without incorporate additional undesirable harmonic components into the modulated
waveforms. This is of special interest in four-leg converters, which are usually implemented for
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compensation of harmonic distortion, where the addition of unexpected harmonics can originate
harmful resonances or malfunction of the external controllers.

Regarding the balance of the voltages on the dc-link capacitors of a four-leg NPC converter,
it was demonstrated that the balance is always possible as long as the output line currents of
the converter do not contain a dc component. The incorporation of a dc component limits the
voltage balance capability even using an active control for maintaining the voltages balanced.
The limitation is restricted to the magnitude of the dc component and the path described by
the reference voltage vector. Thereby, the balance is possible only when the dwell times of
the redundant vectors used in the modulation over one fundamental period are large enough to
compensate the dc component introduced by the current.

The four-leg NPC converter has proven to be a suitable solution to implement it as a GPU.
Its multilevel nature allows compensation of high order harmonics, while maintaining a low
switching frequency in each device of the converter. Thereby, harmonic components of 4.4kHz
were compensated with a switching frequency of only approximately 8.4kHz in each device of
the converter. The discretization method used to implement the resonant controller in a digital
platform is of fundamental importance for achieving an stable operation. Thereby, TPW and
FOH methods are the most suitable approximations, as they maintain the infinitive gain and the
resonance frequency unalterable after the discretization process. Likewise, the compensation
of the time delay produced by the computational calculation is also crucial to ensure stability
when high order harmonics are being compensated. This is mainly because this time represents
an important portion of the period of high order harmonics. A lack of compensation of this
delay can directly originate an unstable close-loop system, which was analyzed in an Nyquist
analysis.

Finally, it is important to mention that for a successful experimental implementation, the
following technical issues were of crucial importance:

• The utilization of fiber optic for sending the gate signals from the real time system to
the converter is very important to avoid false trigger of the switching devices. This is
specially important when voltages over 350V are used in the dc-link.

• The type of cable and method for transmitting the measured variables from the measure-
ment boards to the real time controller is crucial to achieve a noiseless measurement. In
this work, the measurements were sent as differential signal using a 5m pair-crossed and
shielded cable.

• As the four-leg NPC converter is not a commercial topology, the design of the electronic
board is very important to reduce the drop voltage and losses of the power stage and
reduce the noise in the drive circuit of each switching device. For this proposed, a six
layer PCB was designed in cooperation with Nottingham University.

7.1 Outlook
In its current state, the two-level four-leg converter is the only topology that can be considered
as a mature technology, which has been in commercial applications, such as: active filters and
programmable power supplies, mainly for research purpose.
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The use of multilevel four-leg converters is still mainly limited to experimental prototypes
and represents still an open and interesting field for future research. The following points gives
a guide, to the opinion of he author, for continue the research in this field:

• Different strategies for balancing the voltage on the dc-link capacitors in a four-leg NPC
converter can be implemented to overcome the limitation occurred when the line currents
posses dc component.

• The proposed algorithm can be implemented in different promising topologies, such as:
Matrix Converters or flying capacitors converters.

• In order to improve the harmonic distortion, reduce the switching frequency per device
and reduce the size of output filter in a GPU application, the implementation of the pro-
posed modulation technique can be applied in a higher order multilevel converter. This
can proof the simple extension of the algorithm.

• The implementation of four-leg converters as part of a µGrid is still a topic which can be
further explored. Several challenges are still open in this field, such as: analysis of low-
voltage ride-through capabilities considering zero-sequence component, analysis of droop
control or faster methods for controlling power flow in four-wire networks or capability
of a coordinated transition of a set of converters from island mode to grid connected
operation.

• The use of back-to-back converters using a standard rectifier and a four-leg converter for
direct connection of generation units to four-wire systems also represent an interesting
future application. This avoids the use of transformes, which have to be connected in
Delta-Wye to provide a neutral connection and have to be oversized to be able to handle
unbalances and distorted currents typically found in distribution systems.

• Another interesting application is to use a combined control scheme based on a non-
linear controller, such as FS-MPC, with a modulated scheme, such as SVM. This can be
applicable when compensation of several harmonics is required, as the implementation of
the controller become very demanding in computational effort.
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Table A.1: Redundant Symmetric n-type sequence. P=1; N=-1

Sector I
v0
αβγ v1

αβγ v2
αβγ v7

αβγ v2
αβγ v1

αβγ v0
αβγ

[NNN] [PNN] [PPN] [PPP] [PPN] [PNN] [NNN]

Sector II
v0
αβγ v3

αβγ v2
αβγ v7

αβγ v2
αβγ v3

αβγ v0
αβγ

[NNN] [NPN] [PPN] [PPP] [PPN] [NPN] [NNN]

Sector III
v0
αβγ v3

αβγ v4
αβγ v7

αβγ v4
αβγ v3

αβγ v0
αβγ

[NNN] [NPN] [NPP] [PPP] [NPP] [NPN] [NNN]

Sector IV
v0
αβγ v5

αβγ v4
αβγ v7

αβγ v4
αβγ v5

αβγ v0
αβγ

[NNN] [NNP] [NPP] [PPP] [NPP] [NNP] [NNN]

Sector V
v0
αβγ v5

αβγ v6
αβγ v7

αβγ v6
αβγ v5

αβγ v0
αβγ

[NNN] [NNP] [PNP] [PPP] [PNP] [NNP] [NNN]

Sector VI
v0
αβγ v1

αβγ v6
αβγ v7

αβγ v6
αβγ v1

αβγ v0
αβγ

[NNN] [PNN] [PNP] [PPP] [PNP] [PNN] [NNN]

Table A.2: Redundant Symmetric p-type sequence. P=1; N=-1

Sector I
v7
αβγ v2

αβγ v1
αβγ v0

αβγ v1
αβγ v2

αβγ v7
αβγ

[PPP] [PPN] [PNN] [NNN] [PNN] [PPN] [PPP]

Sector II
v7
αβγ v2

αβγ v3
αβγ v0

αβγ v3
αβγ v2

αβγ v7
αβγ

[PPP] [PPN] [NPN] [NNN] [NPN] [PPN ] [PPP]

Sector III
v7
αβγ v4

αβγ v3
αβγ v0

αβγ v3
αβγ v4

αβγ v7
αβγ

[PPP] [NPP] [NPN] [NNN] [NPN] [NPP ] [PPP]

Sector IV
v7
αβγ v4

αβγ v5
αβγ v0

αβγ v5
αβγ v4

αβγ v7
αβγ

[PPP] [NPP] [NNP] [NNN] [NNP] [NPP ] [PPP]

Sector V
v7
αβγ v6

αβγ v5
αβγ v0

αβγ v5
αβγ v6

αβγ v7
αβγ

[PPP] [PNP] [NNP] [NNN] [NNP] [PNP ] [PPP]

Sector VI
v7
αβγ v6

αβγ v1
αβγ v0

αβγ v1
αβγ v6

αβγ v7
αβγ

[PPP] [PNP] [PNN] [NNN] [PNN] [PNP ] [PPP]
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Table A.3: Redundant Asymmetric n-type sequence. P=1; N=-1

Sector I
v0
αβγ v1

αβγ v2
αβγ v7

αβγ

[NNN] [PNN] [PPN] [PPP]

Sector II
v0
αβγ v3

αβγ v2
αβγ v7

αβγ

[NNN] [NPN] [PPN] [PPP]

Sector III
v0
αβγ v3

αβγ v4
αβγ v7

αβγ

[NNN] [NPN] [NPP] [PPP]

Sector IV
v0
αβγ v5

αβγ v4
αβγ v7

αβγ

[NNN] [NNP] [NPP] [PPP]

Sector V
v0
αβγ v5

αβγ v6
αβγ v7

αβγ

[NNN] [NNP] [PNP] [PPP]

Sector VI
v0
αβγ v1

αβγ v6
αβγ v7

αβγ

[NNN] [PNN] [PNP] [PPP]

Table A.4: Redundant Asymmetric p-type sequence. P=1; N=-1

Sector I
v7
αβγ v2

αβγ v1
αβγ v0

αβγ

[PPP] [PPN] [PNN] [NNN]

Sector II
v7
αβγ v2

αβγ v3
αβγ v0

αβγ

[PPP] [PPN] [NPN] [NNN]

Sector III
v7
αβγ v4

αβγ v3
αβγ v0

αβγ

[PPP] [NPP] [NPN] [NNN]

Sector IV
v7
αβγ v4

αβγ v5
αβγ v0

αβγ

[PPP] [NPP] [NNP] [NNN]

Sector V
v7
αβγ v6

αβγ v5
αβγ v0

αβγ

[PPP] [PNP] [NNP] [NNN]

Sector VI
v7
αβγ v6

αβγ v1
αβγ v0

αβγ

[PPP] [PNP] [PNN] [NNN]
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Table A.5: Redundant Symmetric n-p alternating type sequence for even-order harmonics elim-
ination. P=1; N=-1

Sector In
v0
αβγ v1

αβγ v2
αβγ v7

αβγ v2
αβγ v1

αβγ v0
αβγ

[NNN] [PNN] [PPN] [PPP] [PPN] [PNN] [NNN]

Sector Ip
v0
αβγ v2

αβγ v1
αβγ v7

αβγ v1
αβγ v2

αβγ v0
αβγ

[PPP] [PPN] [PNN] [NNN] [PNN] [PPN] [PPP]

Sector IIp
v0
αβγ v2

αβγ v3
αβγ v7

αβγ v3
αβγ v2

αβγ v0
αβγ

[PPP] [PPN] [NPN] [NNN] [NPN] [PPN ] [PPP]

Sector IIn
v0
αβγ v3

αβγ v2
αβγ v7

αβγ v2
αβγ v3

αβγ v0
αβγ

[NNN] [NPN] [PPN] [PPP] [PPN] [NPN] [NNN]

Sector IIIn
v0
αβγ v3

αβγ v4
αβγ v7

αβγ v4
αβγ v3

αβγ v0
αβγ

[NNN] [NPN] [NPP] [PPP] [NPP] [NPN] [NNN]

Sector IIIp
v0
αβγ v4

αβγ v3
αβγ v7

αβγ v3
αβγ v4

αβγ v0
αβγ

[PPP] [NPP] [NPN] [NNN] [NPN] [NPP ] [PPP]

Sector IVp
v0
αβγ v4

αβγ v5
αβγ v7

αβγ v5
αβγ v4

αβγ v0
αβγ

[PPP] [NPP] [NNP] [NNN] [NNP] [NPP ] [PPP]

Sector IVn
v0
αβγ v5

αβγ v4
αβγ v7

αβγ v4
αβγ v5

αβγ v0
αβγ

[NNN] [NNP] [NPP] [PPP] [NPP] [NNP] [NNN]

Sector Vn
v0
αβγ v5

αβγ v6
αβγ v7

αβγ v6
αβγ v5

αβγ v0
αβγ

[NNN] [NNP] [PNP] [PPP] [PNP] [NNP] [NNN]

Sector V
v0
αβγ v6

αβγ v5
αβγ v7

αβγ v5
αβγ v6

αβγ v0
αβγ

[PPP] [PNP] [NNP] [NNN] [NNP] [PNP ] [PPP]

Sector VIn
v0
αβγ v1

αβγ v6
αβγ v7

αβγ v6
αβγ v1

αβγ v0
αβγ

[NNN] [PNN] [PNP] [PPP] [PNP] [PNN] [NNN]

Sector VIp
v0
αβγ v6

αβγ v1
αβγ v7

αβγ v1
αβγ v6

αβγ v0
αβγ

[PPP] [PNP] [PNN] [NNN] [PNN] [PNP ] [PPP]
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Table A.6: Non-Redundant Symmetric n-type sequence. P=1; N=-1

Clamped

Phase

Sector I
v0
αβγ v1

αβγ v2
αβγ v1

αβγ v0
αβγ

vcz=-1
[NNN] [PNN] [PPN] [PNN] [NNN]

Sector II
v0
αβγ v3

αβγ v2
αβγ v3

αβγ v0
αβγ

vcz=-1
[NNN] [NPN] [PPN] [NPN] [NNN]

Sector III
v0
αβγ v3

αβγ v4
αβγ v3

αβγ v0
αβγ

vaz=-1
[NNN] [NPN] [NPP] [NPN] [NNN]

Sector IV
v0
αβγ v5

αβγ v4
αβγ v5

αβγ v0
αβγ

vaz=-1
[NNN] [NNP] [NPP] [NNP] [NNN]

Sector V
v0
αβγ v5

αβγ v6
αβγ v5

αβγ v0
αβγ

vbz=-1
[NNN] [NNP] [PNP] [NNP] [NNN]

Sector VI
v0
αβγ v1

αβγ v6
αβγ v1

αβγ v0
αβγ

vbz=-1
[NNN] [PNN] [PNP] [PNN] [NNN]



184 APPENDIX A. TABLES BACKGROUND THEORY

Table A.7: Non-Redundant Symmetric p-type sequence. P=1; N=-1

Clamped

Phase

Sector I
v7
αβγ v2

αβγ v1
αβγ v2

αβγ v7
αβγ

vaz=1
[PPP] [PPN] [PNN] [PPN] [PPP]

Sector II
v7
αβγ v2

αβγ v3
αβγ v2

αβγ v7
αβγ

vbz=1
[PPP] [PPN] [NPN] [PPN ] [PPP]

Sector III
v7
αβγ v4

αβγ v3
αβγ v4

αβγ v7
αβγ

vbz=1
[PPP] [NPP] [NPN] [NPP ] [PPP]

Sector IV
v7
αβγ v4

αβγ v5
αβγ v4

αβγ v7
αβγ

vcz=1
[PPP] [NPP] [NNP] [NPP ] [PPP]

Sector V
v7
αβγ v6

αβγ v5
αβγ v6

αβγ v7
αβγ

vcz=1
[PPP] [PNP] [NNP] [PNP] [PPP]

Sector VI
v7
αβγ v6

αβγ v1
αβγ v6

αβγ v7
αβγ

vaz=1
[PPP] [PNP] [PNN] [PNP] [PPP]
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Table A.8: Non-Redundant Symmetric p-n alternating type sequence. P=1; N=-1

Clamped

Phase

Sector I
v7
αβγ v2

αβγ v1
αβγ v2

αβγ v7
αβγ

vaz=1
[PPP] [PPN] [PNN] [PPN] [PPP]

Sector II
v0
αβγ v3

αβγ v2
αβγ v3

αβγ v0
αβγ

vcz=-1
[NNN] [NPN] [PPN] [NPN] [NNN]

Sector III
v7
αβγ v4

αβγ v3
αβγ v4

αβγ v7
αβγ

vbz=1
[PPP] [NPP] [NPN] [NPP ] [PPP]

Sector IV
v0
αβγ v5

αβγ v4
αβγ v5

αβγ v0
αβγ

vaz=-1
[NNN] [NNP] [NPP] [NNP] [NNN]

Sector V
v7
αβγ v6

αβγ v5
αβγ v6

αβγ v7
αβγ

vcz=1
[PPP] [PNP] [NNP] [PNP] [PPP]

Sector VI
v0
αβγ v1

αβγ v6
αβγ v1

αβγ v0
αβγ

vbz=-1
[NNN] [PNN] [PNP] [PNN] [NNN]
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Table A.9: Switching combination for a three-level NPC Converter. For convenience P=1, O=0
and N=-1. It is considered that ia + ib + ic=0.

viabc=V
−1
dc [vaz, vbz, vcz] viαβγ= [vα, vβ , vγ] iz

v0
abc= [P, P, P] v

0p
αβγ= [0, 0, 1] 0

v1
abc= [O, O, O] v0z

αβγ= [0, 0, 0] 0

v2
abc= [N, N, N] v0n

αβγ= [0, 0, -1] 0

v3
abc= [P, O, O] v

1p
αβγ= [2

3
, 0, 1] -ia

v4
abc= [O, N, N] v1n

αβγ= [2
3
, 0, 0] ia

v5
abc= [P, P, O] v

2p
αβγ= [1

3
,
√

3
3

, 1] ic

v6
abc= [O, O, N] v2n

αβγ= [1
3
,
√

3
3

, 0] -ic

v7
abc= [O, P, O] v

3p
αβγ= [-1

3
,
√

3
3

, 0] -ib

v8
abc= [N, O, N] v3n

αβγ= [-1
3
,
√

3
3

, -1] ib

v9
abc= [O, P, P] v

4p
αβγ= [-2

3
, 0, 0] ia

v10
abc= [N, O, O] v4n

αβγ= [-2
3
, 0, -1] -ia

v11
abc= [O, O, P] v

5p
αβγ= [-1

3
, -
√

3
3

, 0] -ic

v12
abc= [N, N, O] v5n

αβγ= [-1
3
, -
√

3
3

, -1] ic

v13
abc= [P, O, P] v

6p
αβγ= [1

3
, -
√

3
3

, 1] ib

v14
abc= [O, N, O] v6n

αβγ= [1
3
, -
√

3
3

, 0] -ib

v15
abc= [P, O, N] v7

αβγ= [1,
√

3
3

, 1] ib

v16
abc= [O, P, N] v8

αβγ= [0, 2
√

3
3

, 0] ia

v17
abc= [N, P, O] v9

αβγ= [-1,
√

3
3

, -1] ic

v18
abc= [N, O, P] v10

αβγ= [-1, -
√

3
3

, -1] ib

v19
abc= [O, N, P] v11

αβγ= [0, -2
√

3
3

, 0] ia

v20
abc= [P, N, O] v12

αβγ= [1, -
√

3
3

, 1] ic

v21
abc= [P, N, N] v13

αβγ= [4
3
, 0, 1] 0

v22
abc= [P, P, N] v14

αβγ= [2
3
, 2
√

3
3

, 1] 0

v23
abc= [N, P, N] v15

αβγ= [-2
3
, 2
√

3
3

, -1] 0

v24
abc= [N, P, P] v16

αβγ= [-4
3
, 0, -1] 0

v25
abc= [N, N, P] v17

αβγ= [-2
3
, -2
√

3
3

, -1] 0

v26
abc= [P, N, P] v18

αβγ= [2
3
, -2
√

3
3

, 1] 0
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Table A.10: dwell time calculation for sector k, with θ̂ = θ− (k− 1)π
3

for k ∈ {1, 2, 3, 4, 5, 6}.

ρ d1/Ts d2/Ts d3/Ts

1
√

3ma sin
(
π
3
− θ̂
) (

1−
√

3ma sin
(
π
3

+ θ̂
)) √

3ma sin
(
θ̂
)

2
(

1−
√

3ma sin
(
θ̂
)) (√

3ma sin
(
π
3

+ θ̂
)
− 1
) (

1−
√

3ma sin
(
π
3
− θ̂
))

3
(

1−
√

3ma sin
(
π
3

+ θ̂
)) (√

3ma sin
(
θ̂
)) (√

3ma sin
(
π
3
− θ̂
)
− 1
)

4
(√

3ma sin
(
θ̂
)
− 1
) (√

3ma sin
(
π
3
− θ̂
)) (

1−
√

3ma sin
(
π
3

+ θ̂
))

Table A.11: Redundant Symmetric n-type sequence for the sector I of the modulation region for
a NPC converter.

Sector I, ρ=1A
v1n
αβ v2n

αβ v0z
αβ v

1p
αβ v0z

αβ v2n
αβ v1n

αβ

[ONN] [OON] [OOO] [POO] [OOO] [OON] [ONN]

Sector I, ρ=1B
v2n
αβ v0z

αβ v
1p
αβ v

2p
αβ v

1p
αβ v0z

αβ v2n
αβ

[OON] [OOO] [POO] [PPO] [POO] [OOO] [OON]

Sector I, ρ=2A
v1n
αβ v2n

αβ v7
αβ v

1p
αβ v7

αβ v2n
αβ v1n

αβ

[ONN] [OON] [PON] [POO] [PON] [OON] [ONN]

Sector I, ρ=2B
v2n
αβ v7

αβ v
1p
αβ v

2p
αβ v

1p
αβ v7

αβ v2n
αβ

[OON] [PON] [POO] [PPO] [POO] [PON] [OON]

Sector I, ρ=3
v1n
αβ v13

αβ v7
αβ v

1p
αβ v7

αβ v13
αβ v1n

αβ

[ONN] [PNN] [PON] [POO] [PON] [PNN] [ONN]

Sector I, ρ=4
v2n
αβ v7

αβ v14
αβ v

2p
αβ v14

αβ v7
αβ v2n

αβ

[OON] [PON] [PPN] [PPO] [PPN] [PON] [OON]
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Table A.12: Redundant Symmetric n-p-type sequence for the sector I of the modulation region
for a NPC converter for achieving even-order harmonics elimination.

Sector I, ρ=1A
v

1p
αβ v0z

αβ v2n
αβ v1n

αβ v2n
αβ v0z

αβ v
1p
αβ

[POO] [OOO] [OON] [ONN] [OON] [OOO] [POO]

Sector I, ρ=1B
v2n
αβ v0z

αβ v
1p
αβ v

2p
αβ v

1p
αβ v0z

αβ v2n
αβ

[OON] [OOO] [POO] [PPO] [POO] [OOO] [OON]

Sector I, ρ=2A
v

1p
αβ v7

αβ v2n
αβ v1n

αβ v2n
αβ v7

αβ v
1p
αβ

[POO] [PON] [OON] [ONN] [OON] [PON] [POO]

Sector I, ρ=2B
v2n
αβ v7

αβ v
1p
αβ v

2p
αβ v

1p
αβ v7

αβ v2n
αβ

[OON] [PON] [POO] [PPO] [POO] [PON] [OON]

Sector I, ρ=3
v

1p
αβ v7

αβ v13
αβ v1n

αβ v13
αβ v7

αβ v
1p
αβ

[POO] [PON] [PNN] [ONN] [PNN] [PON] [POO]

Sector I, ρ=4
v2n
αβ v7

αβ v14
αβ v

2p
αβ v14

αβ v7
αβ v2n

αβ

[OON] [PON] [PPN] [PPO] [PPN] [PON] [OON]



189

APPENDIX B

Tables Two Level four-wire Converters



190 APPENDIX B. TABLES TWO LEVEL FOUR-WIRE CONVERTERS

Table B.1: Switching combination for a two-level four-leg VSI. For convenience P=1, O=0
and N=-1.

viabcf= [vaz, vbz, vcz, vfz] viabcf= [vaf , vbf , vcf ] viαβγ= [vα, vβ , vγ]

v
0p
abcf= [P,P,P,P] v0n

abcf= [O,O,O] v
0p
αβγ= [0, 0, 0]

v0n
abcf= [N,N,N,N] v

0p
abcf= [O,O,O] v0n

αβγ= [0, 0, 0]

v1
abcf= [P,P,P,N] v1

abcf= [2P, 2P, 2P] v1
αβγ= [0, 0, 2]

v2
abcf= [N,N,N,P] v2

abcf= [-2P,-2P,-2P] v2
αβγ= [0, 0, -2]

v3
abcf= [P,N,N,P] v3

abcf= [O,-2P,-2P] v3
αβγ= [4

3
, 0, -4

3
]

v4
abcf= [P,P,N,P] v4

abcf= [O,O,-2P] v4
αβγ= [2

3
, 2√

3
,-1

3
]

v5
abcf= [N,P,N,P] v5

abcf= [-2P,O,-2P] v5
αβγ= [-2

3
, 2√

3
, -4

3
]

v6
abcf= [N,P,P,P] v6

abcf= [-2P,O,O] v6
αβγ= [-4

3
, 0, -2

3
]

v7
abcf= [N,N,P,P] v7

abcf= [-2P,-2P,O] v7
αβγ= [-2

3
, - 2√

3
, -4

3
]

v8
abcf= [P,N,P,P] v8

abcf= [O,-2P,O] v8
αβγ= [2

3
, - 2√

3
, -2

3
]

v9
abcf= [P,N,N,N] v9

abcf= [2P,O,O] v9
αβγ= [4

3
, 0, 2

3
]

v10
abcf= [P,P,N,N] v10

abcf= [2P,2P,O] v10
αβγ= [2

3
, 2√

3
, 4

3
]

v11
abcf= [N,P,N,N] v11

abcf= [O,2P,O] v11
αβγ= [-2

3
, 2√

3
, 2

3
]

v12
abcf= [N,P,P,N] v12

abcf= [O,2P,2P] v12
αβγ= [-4

3
, 0, 4

3
]

v13
abcf= [N,N,P,N] v13

abcf= [O,O,2P] v13
αβγ= [-2

3
, - 2√

3
, 2

3
]

v14
abcf= [P,N,P,N] v14

abcf= [2P,O,2P] v14
αβγ= [2

3
, - 2√

3
, 4

3
]
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Table B.2: Single-Redundancy Symmetric n-type sequence for a two-level four-leg VSI. P=1;
N=-1

Sector I
v0n
αβγ v9

αβγ v10
αβγ v1

αβγ v
0p
αβγ v1

αβγ v10
αβγ v9

αβγ v0n
αβγ

T1 [NNNN] [PNNN] [PPNN] [PPPN] [PPPP] [PPPN] [PPNN] [PNNN] [NNNN]

Sector I
v0n
αβγ v9

αβγ v10
αβγ v4

αβγ v
0p
αβγ v4

αβγ v10
αβγ v9

αβγ v0n
αβγ

T2 [NNNN] [PNNN] [PPNN] [PPNP] [PPPP] [PPNP] [PPNN] [PNNN] [NNNN]

Sector I
v0n
αβγ v9

αβγ v3
αβγ v4

αβγ v
0p
αβγ v4

αβγ v3
αβγ v9

αβγ v0n
αβγ

T3 [NNNN] [PNNN] [PNNP] [PPNP] [PPPP] [PPNP] [PNNP] [PNNN] [NNNN]

Sector I
v0n
αβγ v2

αβγ v3
αβγ v4

αβγ v
0p
αβγ v4

αβγ v3
αβγ v2

αβγ v0n
αβγ

T4 [NNNN] [NNNP] [PNNP] [PPNP] [PPPP] [PPNP] [PNNP] [NNNP] [NNNN]

Sector II
v0n
αβγ v11

αβγ v10
αβγ v1

αβγ v
0p
αβγ v1

αβγ v10
αβγ v11

αβγ v0n
αβγ

T1 [NNNN] [NPNN] [PPNN] [PPPN] [PPPP] [PPPN] [PPNN] [NPNN] [NNNN]

Sector II
v0n
αβγ v11

αβγ v10
αβγ v4

αβγ v
0p
αβγ v4

αβγ v10
αβγ v11

αβγ v0n
αβγ

T2 [NNNN] [NPNN] [PPNN] [PPNP] [PPPP] [PPNP] [PPNN] [NPNN] [NNNN]

Sector II
v0n
αβγ v11

αβγ v5
αβγ v4

αβγ v
0p
αβγ v4

αβγ v5
αβγ v11

αβγ v0n
αβγ

T3 [NNNN] [NPNN] [NPNP] [PPNP] [PPPP] [PPNP] [NPNP] [NPNN] [NNNN]

Sector II
v0n
αβγ v2

αβγ v5
αβγ v4

αβγ v
0p
αβγ v4

αβγ v5
αβγ v2

αβγ v0n
αβγ

T4 [NNNN] [NNNP] [NPNP] [PPNP] [PPPP] [PPNP] [NPNP] [NNNP] [NNNN]

Sector III
v0n
αβγ v11

αβγ v12
αβγ v1

αβγ v
0p
αβγ v1

αβγ v12
αβγ v11

αβγ v0n
αβγ

T1 [NNNN] [NPNN] [NPPN] [PPPN] [PPPP] [PPPN] [NPPN] [NPNN] [NNNN]

Sector III
v0n
αβγ v11

αβγ v12
αβγ v6

αβγ v
0p
αβγ v6

αβγ v12
αβγ v11

αβγ v0n
αβγ

T2 [NNNN] [NPNN] [NPPN] [NPPP] [PPPP] [NPPP] [NPPN] [NPNN] [NNNN]

Sector III
v0n
αβγ v11

αβγ v5
αβγ v6

αβγ v
0p
αβγ v6

αβγ v5
αβγ v11

αβγ v0n
αβγ

T3 [NNNN] [NPNN] [NPNP] [NPPP] [PPPP] [NPPP] [NPNP] [NPNN] [NNNN]

Sector III
v0n
αβγ v2

αβγ v5
αβγ v6

αβγ v
0p
αβγ v6

αβγ v5
αβγ v2

αβγ v0n
αβγ

T4 [NNNN] [NNNP] [NPNP] [NPPP] [PPPP] [NPPP] [NPNP] [NNNP] [NNNN]
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Table B.3: Single-Redundancy Symmetric n-type sequence for a two-level four-leg VSI. P=1;
N=-1

Sector IV
v0n
αβγ v13

αβγ v12
αβγ v1

αβγ v
0p
αβγ v1

αβγ v12
αβγ v13

αβγ v0n
αβγ

T1 [NNNN] [NNPN] [NPPN] [PPPN] [PPPP] [PPPN] [NPPN] [NNPN] [NNNN]

Sector IV
v0n
αβγ v13

αβγ v12
αβγ v6

αβγ v
0p
αβγ v6

αβγ v12
αβγ v13

αβγ v0n
αβγ

T2 [NNNN] [NNPN] [NPPN] [NPPP] [PPPP] [NPPP] [NPPN] [NNPN] [NNNN]

Sector IV
v0n
αβγ v13

αβγ v7
αβγ v6

αβγ v
0p
αβγ v6

αβγ v7
αβγ v13

αβγ v0n
αβγ

T3 [NNNN] [NNPN] [NNPP] [NPPP] [PPPP] [NPPP] [NNPP] [NNPN] [NNNN]

Sector IV
v0n
αβγ v2

αβγ v7
αβγ v6

αβγ v
0p
αβγ v6

αβγ v7
αβγ v2

αβγ v0n
αβγ

T4 [NNNN] [NNNP] [NNPP] [NPPP] [PPPP] [NPPP] [NNPP] [NNNP] [NNNN]

Sector V
v0n
αβγ v13

αβγ v14
αβγ v1

αβγ v
0p
αβγ v1

αβγ v14
αβγ v13

αβγ v0n
αβγ

T1 [NNNN] [NNPN] [PNPN] [PPPN] [PPPP] [PPPN] [PNPN] [NNPN] [NNNN]

Sector V
v0n
αβγ v13

αβγ v14
αβγ v8

αβγ v
0p
αβγ v8

αβγ v14
αβγ v13

αβγ v0n
αβγ

T2 [NNNN] [NNPN] [PNPN] [PNPP] [PPPP] [PNPP] [PNPN] [NNPN] [NNNN]

Sector V
v0n
αβγ v13

αβγ v7
αβγ v8

αβγ v
0p
αβγ v8

αβγ v7
αβγ v13

αβγ v0n
αβγ

T3 [NNNN] [NNPN] [NNPP] [PNPP] [PPPP] [PNPP] [NNPP] [NNPN] [NNNN]

Sector V
v0n
αβγ v2

αβγ v7
αβγ v8

αβγ v
0p
αβγ v8

αβγ v7
αβγ v2

αβγ v0n
αβγ

T4 [NNNN] [NNNP] [NNPP] [PNPP] [PPPP] [PNPP] [NNPP] [NNNP] [NNNN]

Sector VI
v0n
αβγ v9

αβγ v14
αβγ v1

αβγ v
0p
αβγ v1

αβγ v14
αβγ v9

αβγ v0n
αβγ

T1 [NNNN] [PNNN] [PNPN] [PPPN] [PPPP] [PPPN] [PNPN] [PNNN] [NNNN]

Sector VI
v0n
αβγ v9

αβγ v14
αβγ v8

αβγ v
0p
αβγ v8

αβγ v14
αβγ v9

αβγ v0n
αβγ

T2 [NNNN] [PNNN] [PNPN] [PNPP] [PPPP] [PNPP] [PNPN] [PNNN] [NNNN]

Sector VI
v0n
αβγ v9

αβγ v3
αβγ v8

αβγ v
0p
αβγ v8

αβγ v3
αβγ v9

αβγ v0n
αβγ

T3 [NNNN] [PNNN] [PNNP] [PNPP] [PPPP] [PNPP] [PNNP] [PNNN] [NNNN]

Sector VI
v0n
αβγ v2

αβγ v3
αβγ v8

αβγ v
0p
αβγ v8

αβγ v3
αβγ v2

αβγ v0n
αβγ

T4 [NNNN] [NNNP] [PNNP] [PNPP] [PPPP] [PNPP] [PNNP] [NNNP] [NNNN]
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Table C.1: The 81 different switching combinations for a four-leg NPC converter in the αβγ
space.(P=1, O=0 and N=-1)

abc Vector αβγ Vector Current Vector Vector

viabcf viabc viαβγ NP Magnitude Classification

[vaz , vbz , vcz , vfz] [viaf , vibf , vicf ] [viα, viβ , viγ ] iz(v
i
αβγ) |viαβγ |

[OOOO] v0z
abc=[0,0,0] v0z

αβγ=[0, 0, 0] 0

0 Zero Vectors[PPPP] v0p
abc=[0,0,0] v0p

αβγ=[0, 0, 0] 0

[NNNN] v0n
abc=[0,0,0] v0n

αβγ=[0, 0, 0] 0

[ONNN] v1n
abc=[1,0,0] v1n

αβγ=[ 2
3 , 0, 1

3 ] ia

√
5

3

Redundant Vectors

[POOO] v1p
abc=[1,0,0] v1p

αβγ=[ 2
3 , 0, 1

3 ] -ia

[NONN] v2n
abc=[0,1,0] v2n

αβγ=[- 1
3 ,
√

3
3 , 1

3 ] ib

[OPOO] v2p
abc=[0,1,0] v2p

αβγ=[- 1
3 ,
√

3
3 , 1

3 ] -ib

[NNON] v3n
abc=[0,0,1] v3n

αβγ=[- 1
3 , -
√

3
3 , 1

3 ] ic

[OOPO] v3p
abc=[0,0,1] v3p

αβγ=[- 1
3 , -
√

3
3 , 1

3 ] -ic

[OONO] v4n
abc=[0,0,-1] v4n

αβγ=[ 1
3 ,
√

3
3 , - 1

3 ] -ic

[PPOP] v4p
abc=[0,0,-1] v4p

αβγ=[ 1
3 ,
√

3
3 , - 1

3 ] ic

[ONOO] v5n
abc=[0,-1,0] v5n

αβγ=[ 1
3 , -
√

3
3 , - 1

3 ] -ib

[POPP] v5p
abc=[0,-1,0] v5p

αβγ=[ 1
3 , -
√

3
3 , - 1

3 ] ib

[NOOO] v6n
abc=[-1,0,0] v6n

αβγ=[- 2
3 , 0, - 1

3 ] -ia

[OPPP] v6p
abc=[-1,0,0] v6p

αβγ=[- 2
3 , 0, - 1

3 ] ia

[OONN] v7n
abc=[1,1,0] v7n

αβγ=[ 1
3 ,
√

3
3 , 2

3 ] ia + ib

2
√

2
3

[PPOO] v7p
abc=[1,1,0] v7p

αβγ=[ 1
3 ,
√

3
3 , 2

3 ] -ia - ib

[ONON] v8n
abc=[1,0,1] v8n

αβγ=[ 1
3 , -
√

3
3 , 2

3 ] ia + ic

[POPO] v8p
abc=[1,0,1] v8p

αβγ=[ 1
3 , -
√

3
3 , 2

3 ] -ia - ic

[NOON] v9n
abc=[0,1,1] v9n

αβγ=[- 2
3 , 0, 2

3 ] ib + ic

[OPPO] v9p
abc=[0,1,1] v9p

αβγ=[- 2
3 , 0, 2

3 ] -ib - ic

[ONNO] v10n
abc =[0,-1,-1] v10n

αβγ=[ 2
3 , 0, - 2

3 ] -ib - ic

[POOP] v10p
abc=[0,-1,-1] v10p

αβγ=[ 2
3 , 0, - 2

3 ] ib + ic

[NONO] v11n
abc =[-1,0,-1] v11n

αβγ=[- 1
3 ,
√

3
3 , - 2

3 ] -ia - ic

[OPOP] v11p
abc=[-1,0,-1] v11p

αβγ=[- 1
3 ,
√

3
3 , - 2

3 ] ia + ic

[NNOO] v12n
abc =[-1,-1,0] v12n

αβγ=[- 1
3 , -
√

3
3 , - 2

3 ] -ia - ib

[OOPP] v12p
abc=[-1,-1,0] v12p

αβγ=[- 1
3 , -
√

3
3 , - 2

3 ] ia + ib

[OOON] v13n
abc =[1,1,1] v13n

αβγ=[0, 0, 1] ia + ib + ic

1
[PPPO] v13p

abc=[1,1,1] v13p
αβγ=[0, 0, 1] -ia - ib - ic

[NNNO] v14n
abc =[-1,-1,-1] v14n

αβγ=[0, 0, -1] -ia - ib - ic

[OOOP] v14p
abc=[-1,-1,-1] v14p

αβγ=[0, 0, -1] ia + ib + ic
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Table C.2: Continuation of Table C.2.

abc Vector αβγ Vector Current Vector Vector

viabcf viabc viαβγ NP Magnitude Classification

[vaz , vbz , vcz , vfz] [viaf , vibf , vicf ] [viα, viβ , viγ ] iz(v
i
αβγ) |viαβγ |

[PONO] v15
abc=[1,0,-1] v15

αβγ=[1,
√

3
3 , 0] -ia - ic

2
√

3
3

[OPNO] v16
abc=[0,1,-1] v16

αβγ=[0, 2
√

3
3 , 0] -ib - ic

[PNOO] v17
abc=[1,-1,0] v17

αβγ=[1, -
√

3
3 , 0] -ia - ib

[ONPO] v18
abc=[0,-1,1] v18

αβγ=[0, - 2
√

3
3 , 0] -ib - ic

[NPOO] v19
abc=[-1,1,0] v19

αβγ=[-1,
√

3
3 , 0] -ia - ib

[NOPO] v20
abc=[-1,0,1] v20

αβγ=[-1, -
√

3
3 , 0] -ia - ic

[PPNO] v21
abc=[1,1,-1] v21

αβγ=[ 2
3 , 2
√

3
3 , 1

3 ] -ia - ib - ic

√
17
3

[PNPO] v22
abc=[1,-1,1] v22

αβγ=[ 2
3 , - 2

√
3

3 , 1
3 ] -ia - ib - ic

[NPPO] v23
abc=[-1,1,1] v23

αβγ=[- 4
3 , 0, 1

3 ] -ia - ib - ic

[PNNO] v24
abc=[1,-1,-1] v24

αβγ=[ 4
3 , 0, - 1

3 ] -ia - ib - ic

[NPNO] v25
abc=[-1,1,-1] v25

αβγ=[- 2
3 , 2
√

3
3 , - 1

3 ] -ia - ib - ic

[NNPO] v26
abc=[-1,-1,1] v26

αβγ=[- 2
3 , - 2

√
3

3 , - 1
3 ] -ia - ib - ic

[POON] v27
abc=[2,1,1] v27

αβγ=[ 2
3 , 0, 4

3 ] ib + ic

2
√

5
3

[OPON] v28
abc=[1,2,1] v28

αβγ=[- 1
3 ,
√

3
3 , 4

3 ] ia + ic

[OOPN] v29
abc=[1,1,2] v29

αβγ=[- 1
3 , -
√

3
3 , 4

3 ] ia + ib

[PNNN] v30
abc=[2,0,0] v30

αβγ=[ 4
3 , 0, 2

3 ] 0

Non-Red Vectors

[NPNN] v31
abc=[0,2,0] v31

αβγ=[- 2
3 , 2
√

3
3 , 2

3 ] 0

[NNPN] v32
abc=[0,0,2] v32

αβγ=[- 2
3 , - 2

√
3

3 , 2
3 ] 0

[PPNP] v33
abc=[0,0,-2] v33

αβγ=[ 2
3 , 2
√

3
3 , - 2

3 ] 0

[PNPP] v34
abc=[0,-2,0] v34

αβγ=[ 2
3 , - 2

√
3

3 , - 2
3 ] 0

[NPPP] v35
abc=[-2,0,0] v35

αβγ=[- 4
3 , 0, - 2

3 ] 0

[OONP] v36
abc=[-1,-1,-2] v36

αβγ=[ 1
3 ,
√

3
3 , - 4

3 ] ia + ib
[ONOP] v37

abc=[-1,-2,-1] v37
αβγ=[ 1

3 , -
√

3
3 , - 4

3 ] ia + ic

[NOOP] v38
abc=[-2,-1,-1] v38

αβγ=[- 2
3 , 0, - 4

3 ] ib + ic

[PONN] v39
abc=[2,1,0] v39

αβγ=[1,
√

3
3 , 1] ib

√
21
3

[OPNN] v40
abc=[1,2,0] v40

αβγ=[0, 2
√

3
3 , 1] ia

[PNON] v41
abc=[2,0,1] v41

αβγ=[1, -
√

3
3 , 1] ic

[ONPN] v42
abc=[1,0,2] v42

αβγ=[0, - 2
√

3
3 , 1] ia

[NPON] v43
abc=[0,2,1] v43

αβγ=[-1,
√

3
3 , 1] ic

[NOPN] v44
abc=[0,1,2] v44

αβγ=[-1, -
√

3
3 , 1] ib

[PONP] v45
abc=[0,-1,-2] v45

αβγ=[1,
√

3
3 , -1] ib

[OPNP] v46
abc=[-1,0,-2] v46

αβγ=[0, 2
√

3
3 , -1] ia

[PNOP] v47
abc=[0,-2,-1] v47

αβγ=[1, -
√

3
3 , -1] ic

[ONPP] v48
abc=[-1,-2,0] v48

αβγ=[0, - 2
√

3
3 , -1] ia

[NPOP] v49
abc=[-2,0,-1] v49

αβγ=[-1,
√

3
3 , -1] ic

[NOPP] v50
abc=[-2,-1,0] v50

αβγ=[-1, -
√

3
3 , -1] ib
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APPENDIX D

List of symbols and abbreviations

D.1 List of symbols
General remark:
The following convention was used for variables:

Scalars are italic letters: x
Vectors are bold lower case letters: x
Matrices are bold upper case letters: X
References are marked with a star superscript: x∗
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D.2 List of abbreviations

APU Auxiliar Power Unit
APF Active Power Filter
ACER Agency for Cooperation of Energy Regulators
ac Alternating Current
CPU Central Processing Unit
dc Direct Current
DSO Distribution System Operator
DVR Dynamic Voltage Restorer
DTC Direct Torque Control
DPGS Distribute Power Generation System
EDSO European Distribution System Operators
EMI Electromagnetic Interference
EWEA The European Wind Energy Association
FPGA Field Programmable Gate Array
FOH First-Order Hold (approximation)
FFT Fast Fourier Transformation
FS-MPC Finite-Set Model Predictive Control
GTO Gate Turn-off (Thyristor)
GPU Ground Power Unit
HVDC High Voltage Direct Current (System)
IGBT Insulated Gate Bipolar Transistor
IGCT Integrated Gate-Commutated Thyristor
ISA Industry Standard Architecture (bus)
LC Inductive and Capacitive (filter)
MV Medium Voltage
NP Neutral Point
NBPT Non-Break Power Transfer
MOSFET Metal Oxide Semiconductor Field Effect Transistor
NPC Neutral Point Clamped
OPP Optimal Pulse Pattern
PI Proportional Integral (controller)
PC Programmable Computer
PWM Pulse Width Modulation
PLL Phase Lock Loop
PR Proportional Resonant (controller)
RTAI Real-Time Application Interface
RES Renewable Energy System
RL Resistive and Inductive (load)
SVM Space Vector Modulation
SPWM Sinusoidal PWM
SVPWM Space Vector PWM
TSO Transmission System Operator
THIPWM Third Harmonic Injection PWM
THD Total Harmonic Distortion
TPW Tustin with Prewarping
TTi Tetrahedron Type i
UPS Uninterruptible Power Supply
VSVPWM Virtual Space Vector PWM
VSI Voltage Source Inverter
ZOH Zero-Order Hold (approximation)



LIST OF FIGURES 199

List of Figures

1.1 Simple representation of a typical electrical system composed of Generation, Transmission and
Distribution sectors. Diagram obtained from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Growth of the installed power generating capacity per year in MW and Renewable Energy System
(RES) share (%) . Diagram obtained from [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Representation of a µGrid connected to the electrical main grid. Delta-Wye transformer can be
replaced by four-leg converters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Two-level Voltage Source Inverter Topology connected to a three-phase balanced load. . . . . . . 8
2.2 Diagram for individual pulse width modulators for each phase of a two-level VSI. . . . . . . . . . 9
2.3 Sinusoidal PWM method for three reference values v∗az , v∗bz , v∗cz and a carrier wave vcr. For the

sinusoidal waveforms, the frequency f1 is equal to 50Hz and for the carrier fcr=450Hz. The
amplitude modulation index ma has been set to 0.75. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Fast Fourier Transformation (FFT) for the line-to-line voltage vab using SPWM with (a)mf=9 and
ma=0.75 and (b) mf=15 and ma=0.75. The amplitude are given as peak magnitudes normalized
respect to Vdc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Third Harmonic Injection PWM (THIPWM) Method for the maximum achievable magnitudes.
The subindex i represents each phase of the converter. i ∈ {a, b, c}. . . . . . . . . . . . . . . . . 13

2.6 (a) Space Modulation Region for a two-level VSI and (b) close look of sector I with the vectors
that approximate v∗αβ in one sampling time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Different Redundant switching sequences. (a) Single-Redundancy Symmetric n-type sequence,
(b) Single-Redundancy Asymmetric n-type sequence, (c) Single-Redundancy Symmetric p-type se-
quence and (d) Single-Redundancy Asymmetric p-type sequence. . . . . . . . . . . . . . . . . . . 20

2.8 Output modulated waveform vab for a reference vector with fundamental frequency f1=50Hz,
ma = 0.8 2√

3
, fs=600Hz and its harmonic spectrum for a Single-Redundancy Symmetric sequence

(a) without even-order harmonic elimination (f̄sdevi=600Hz) and (b) with even-order harmonics
elimination (f̄sdevi=750Hz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 Division of the Modulation Region of a two-level VSI for implementation of Even-Order harmon-
ics elimination. The six sectors have been subdivided, were the index p denotes use of the type-p
sequence and the index n the use of type-n sequence. . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Different Non-Redundancy switching sequences. (a) Non-Redundancy Symmetric n-type sequence,
(b) Non-Redundancy Asymmetric n-type sequence, (c) Non-Redundancy Symmetric p-type se-
quence and (d) Non-Redundancy Asymmetric p-type sequence. . . . . . . . . . . . . . . . . . . . 24

2.11 Overmodulation method in (a) Mode I and (b) Mode II operation. . . . . . . . . . . . . . . . . . 26
2.12 Three-level Neutral Point Clamped Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.13 Switching states and semiconductor devices conduction for (a) positive, (b) zero and (c) negative

output phase voltages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



200 LIST OF FIGURES

2.14 Stationary vectors generated by the three-level NPC Converter. v0
αβγ is known as zero vector, v1

αβγ

to v6
αβγ as Small vectors, v7

αβγ to v12
αβγ as Medium vectors and v13

αβγ to v18
αβγ as Large vectors. Small

and Zero vectors are also known as Redundant vectors. . . . . . . . . . . . . . . . . . . . . . . . 30
2.15 Modulation Region for a three-phase three-level NPC converter. . . . . . . . . . . . . . . . . . . 31
2.16 (a) Single Redundancy Symmetric n-type sequence and (b) Single Redundancy Symmetric p-type

sequence for sector I, region ρ=3 of a three-level NPC converter. . . . . . . . . . . . . . . . . . . 32
2.17 (a) Single Redundancy Symmetric n-A-type sequence and (b) Single Redundancy Symmetric p-A-

type sequence (c) Single Redundancy Symmetric n-B-type sequence and (d) Single Redundancy
Symmetric p-B-type sequence for sector I, region ρ=2 of a three-level NPC converter. . . . . . . . 33

2.18 Modulation region of the three-level NPC converter for (a) identification of sequences type-A and
type-B and (b) identification of regions for p-type and n-type pattern used in even-order harmonics
elimination. Sub index in each sector makes reference to the use of p-type or n-type sequences. . . 34

2.19 Output modulated waveform vab for a reference vector with fundamental frequency f1=50Hz,
ma = 0.8 2√

3
, fs=1200Hz and its harmonic spectrum for a Single-Redundancy Symmetric se-

quence (a) without even-order harmonic elimination (f̄sdevi=625Hz) and (b) with even-order har-
monics elimination (f̄sdevi=650Hz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.20 External closed-Loop controller for active control of the neutral-point current iz . . . . . . . . . . 38

3.1 Topology for a (a) two-level three-leg four-wire converter and a (b) two-level four-leg converter. . 40
3.2 (a) Modulation region in the αβγ space for a two-level four-leg VSI and (b) its intersection with

the αβ plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Pentahedrons formed by a two-level four-leg VSI. The pentahedrons are divided according to

Fig. 3.2, for (a) sector I, (b) sector II, (c) sector III, (d) sector IV, (e) sector V and (f) sector
VI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 (a) Modulation region in the αβγ space for a two-level three-leg four-wire VSI and (b) with red
dotted line, its intersection with the αβ plane. v∗max2

αβγ and v∗max1

αβγ denote the maximum amplitude
of a reference vector rotating in the αβ plane for a two-level three-leg four-wire and a four-leg VSI
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Switching sequences for a two-level four-leg VSI. (a) Single-Redundant Symmetric n-type se-
quence, (b) Single-Redundant Symmetric p-type sequence, (c) Non-Redundant Symmetric n-type
sequence and (d) Non-Redundant Symmetric p-type sequence. . . . . . . . . . . . . . . . . . . . 47

3.6 Modulation Region for a two-level four-leg converter in abc coordinate frame. . . . . . . . . . . . 49
3.7 Six different tetrahedrons formed inside a predefined cube for identification of the reference vector

v∗abcf . Each tetrahedron is identified as (a) T1, (b) T2, (c) T3, (d) T4, (e) T5 and (f) T6. . . . . . . . 50
3.8 Diagram for tetrahedron identification. The selected tetrahedron definition, T1 to T6 are based on

Fig. 3.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.9 Closed-loop Hysteresis current PWM control scheme including balancing of the dc-link voltages

for a three-leg four-wire VSIs in (a) and abc and (b) αβγ coordinates. . . . . . . . . . . . . . . . 55
3.10 Limitation region for identification of the references voltages v∗az , v∗bz , v∗cz and v∗fz . vmax=max{v∗af , v∗bf , v∗cf},

vmid=middle{v∗af , v∗bf , v∗cf}, vmin=min{v∗af , v∗bf , v∗cf}. . . . . . . . . . . . . . . . . . . . . . 57
3.11 FS-MPC control Diagram for a two-level four-leg VSI used as an active filter. iF=[iFa , iFb , iFc ],

is=[isa , isb , isc ], iL=[iLa , iLb , iLc ], vcc=[vccaf , vccbf , vcccf ]. . . . . . . . . . . . . . . . . . . . 59

4.1 Control diagram for a (a) Active Power Filter and (b) and UPS for four-wire systems using
Resonant Controllers. For (a) and (b): load currents iL = [iLa, iLb, iLc], converter output
currents iF = [iFa, iFb, iFc], converter output voltages vF = [vFaf , vFbf , vFcf ], reference volt-
ages for SVM v∗

αβγ=[v∗α, v
∗
β , v
∗
γ ], trigger signals for the converter gi,̄i. For (a): grid currents

is=[isa , isb , isc ], common coupling voltages vcc=[vccaf , vccbf , vcccf ]. For (b): output filtered
voltages vabcf=[vaf , vbf , vcf ], reference for the output filtered voltages in αβγ coordinates
v∗UPSαβγ =[v∗UPSα , v∗UPSβ , v∗UPSγ ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Bode plot for Rc1(s)=K1(s cosϑ1−ω1 sinϑ1)
s2+ω2

1
with ω1=100πrad., K1=10 and three different com-

pensation angles. ϑ1
1=0◦,ϑ2

1=30◦ and ϑ3
1=45◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



LIST OF FIGURES 201

4.3 General close-loop control scheme for a proportional resonant controller with delay compensation
(Gc(s)) applied to a plant P (s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Root-Locus for a Proportional Integral controller Gdc(s)=Kp + K1

s and a first-order plant
P1(s)= 1

Lfs+Rf
, with parameters Rf=1Ω and Lf=3mH . The controller gains are Kp=13.81

and K1=61407 for obtaining a close-loop response with settling time tset≈1.63ms and a max-
imum peak response of Mp ≈ 1.16%, namely damping factor ξ≈0.54 and natural frequency
ωnat≈4530rad/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Time domain step-responses for a Proportional Resonant Controller G(s)=Kp + K1

s2+ω2
1

and a PI

controller Gdc(s)=Kp + K1

s with Kp=13.81, K1=61407 and ω1=100πrad/s implemented in a
plant P1(s)= 1

Lfs+Rf
, with parameters Rf=1Ω and Lf=3mH . The overshoot for both responses

approximately Mp ≈ 1.25% with a settling time tset≈1.6ms. if (t), i∗f (t) idcf (t) and i∗dcf (t),
represents the controlled and reference signals for the alternating and the equivalent dc currents. . 71

4.6 Time domain step-responses for a Proportional Resonant Controller G(s)=Kp + K3

s2+ω2
3

and a PI

controller Gdc(s)=Kp + K3

s with Kp=13.81, K3=61407 and ω3=300πrad/s implemented in a
plant: P1(s)= 1

Lfs+Rf
, with parameters Rf=1Ω and Lf=3mH . The settling time for both re-

sponses is approximately tset≈1.6ms. The overshoot for the sinusoidal response is approximately
is Mp ≈ 1.17%, while for the dc response is approximately Mp ≈ 1.25%. if (t), i∗f (t) idcf (t) and
i∗dcf (t), represents the controlled and reference signals for the alternating and the equivalent dc
currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Bode diagram for the frequency response ofP1(s), P1(s)(R1(s)+R3(s)), P1(s)R1(s), P1(s)R3(s).
With K1=K3=61407, ω1=100πrad/s, ω3=300πrad/s, Lf=3mH and Rf=1.0Ω. . . . . . . . . . 74

4.8 Time domain step-responses for a Proportional Resonant Controller G(s)=Kp + K1

s2+ω2
1

+ K3

s2+ω2
3

and a PI controller Gdc(s)=Kp + K1

s with (a) Kp=13.81, K1=K3=61407, ω1=100πrad/s and
ω3=300πrad/s implemented in a plant: P1(s)= 1

Lfs+Rf
, with parameters Rf=1Ω and Lf=3mH

in (b) only K3=614070 has been changed. if (t), i∗f (t) idcf (t) and i∗dcf (t), represents the controlled
and reference signals for the alternating and the equivalent dc currents. . . . . . . . . . . . . . . . 75

4.9 Nyquist plot and analysis for the open loop responses of (a) c1 ·KpP1(s) for c1={0.5, 1.0, 1.5},
(b) c2 ·P1(s)R1(s) for c2={10−3, 10−2, 1}, (c) P1(s)(c1 ·Kp+ c2 ·R1(s)) for c1={0.1, 0.5, 1.0}
and c2=1.0 and (d) P1(s)(c1 · Kp + c2 · R1(s)) for c1=1.0 and c2={0.1, 0.3, 1.0}. Kp=13.81,
K1=61407, ω1=100πrad/s, Rf=1Ω and Lf=3mH . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.10 Nyquist diagram for the open-loop response N1(s) of (4.21). The implemented parameters are:
Rf=1Ω, Lf=3mH , Kp=13.81, K1=61407 and ω1=100πrad/s. ωc≈5800rad/s. . . . . . . . . . 78

4.11 Nyquist diagram for the open-loop response N1,3(s). The implemented parameters are: Rf=1Ω,
Lf=3mH , Kp=13.81, K1=61407, K3=61407, ω1=100πrad/s and ω3=300πrad/s. . . . . . . . 79

4.12 Nyquist diagram for resonant controllers implemented with angle compensation. In (a) Nyquist
diagram of (4.24) with parameters: Kp=13.81, K1=6140.7, ω1=100πrad/s, ϑ1≈−47◦ and in (b)
the Nyquist diagram of (4.27) with parameters: Kp=69.08, K1=6140.7, K3=6140.7, ϑ1≈− 47◦,
ϑ3≈− 19◦, ω1=100πrad/s and ω3=300πrad/s. For both cases the plant parameters are: Rf=1Ω,
Lf=3mH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.13 Bode diagram for the second-order plant P2(s) of (4.2) and the resonant controllerRc(s)=Rc1(s)+
Rc5(s) of (4.30). The implemented parameters are: Lf=219µH ,Rf=0.5Ω,Cf=20µF , ω1=800πrad/s,
ω5=4000πrad/s K1=1250, K5=150, ϑ1 ≈ 1.5◦, ϑ5 ≈ 22◦. . . . . . . . . . . . . . . . . . . . . 84

4.14 Nyquist diagram for (a) P2(s)Rc1(s) with K1={625, 1250, 2500} and starting points in increas-
ing order: κ1

0= − 0.0064, κ2
0= − 0.0129, κ3

0= − 0.0257 and for (b) P2(s)(Rc1(s) + Rc5(s))
with K1=1250, K5={150, 600}, ϑ5 ≈ 22◦ and starting points in increasing order: κ1

0= −
0.0171, κ2

0= − 0.0309. For both plots, Lf=219µH , Rf=0.5Ω, Cf=20µF , ω1=800πrad/s,
ω5=4000πrad/s and ϑ1 ≈ 1.5◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



202 LIST OF FIGURES

4.15 Transient response of a controlled voltage vf (t) for a second-order plant P2(s) and a resonant
controller Rc(s)=Rc1(s) + Rc5(s) for compensation of fundamental 400Hz and fifth harmonic
of 2000Hz. The initial reference signal is equal to v∗f (t)= cos(800πt) and at t=10ms it be-
come v∗f (t)= cos(800πt) + 0.1 cos(4000πt). The parameters for the plant are: Lf=219µH ,
Rf=0.5Ω, Cf=20µF . The parameters for the controller are: ω1=800πrad/s, K1=1250, ϑ1 ≈
1.5◦, ω5=4000πrad/s, K5=150, ϑ5 ≈ 22◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.16 Discrete-time single-loop control structure for implementation of resonant controllers. Y ∗(k) and
Y (k) represents the reference and controlled discrete-time variables. Rcn(z) for n = {1, 2, .., k}
represent a resonant controller with delay compensation for compensation of a signal with fre-
quency ωn in discrete-time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.17 (a) Bode and (b) Nyquist diagram for the continuous-time first-order plant P1(s) and its ZOH
(P zoh1 (z)) and FOH (P foh1 (z)) equivalent discrete-time representations. Sampling time Ts=100µs
(fs=10kHz) and filter parameters are Rf=1Ω, Lf=3mH . . . . . . . . . . . . . . . . . . . . . . 89

4.18 (a) Bode and (b) Nyquist diagram for the second-order plant P2(s) and its ZOH (P zoh2 (z)),
FOH (P foh2 (z)) and Tustin with prewarping (P tpw2 (z)) with ω0=Ωres discretization. Ts=100µs
(fs=10kHz), Rf=0.5ω, Lf=219µH and Cf=20µF , ωres=4800πrad/s. . . . . . . . . . . . . . 90

4.19 Nyquist diagram for the open-loop transfer function of a system composed by (black lines in
(a) and (b)): a continuous resonant controller for compensation of first and eleventh harmon-
ics, Rc(s)=Rc1(s) + Rc11(s) of (4.4) and a second order plant P2(s) of (4.2) and (red lines in
(a) and (b)): a discrete-time resonant controller for compensation of first and eleventh harmon-
ics Rc−foh(z)=Rc−foh1 (z) + Rc−foh11 (z) of (4.48) and discrete second-order plant P zoh2 (z) of
(4.43). For (a) in Rc(s): ϑ1≈1.48◦ + 8.5◦≈10◦,ϑ11≈173◦ + 94◦≈267◦, K1=1250, K11=150,
ω1=800πrad/s, ω11=8800πrad/s. InRc−foh(z): Ts= 1

16800 , D1≈0.7+1≈1.7, D11≈2.3+1≈3.3,
K1=1250 and K11=150, ω1=800πrad/s, ω11=8800πrad/s. For P2(s) and P zoh2 (z): Rf=0.5Ω,
Lf=219mH , Cf=20µF , ωref≈4800πrad/s. For (b) ϑ11=≈173◦ and D11≈2.3, the rest of the
parameters have not been modified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Electrical diagram for a four-leg NPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Representation of the 65 different vectors in the αβγ space for a four-leg NPC converter. Addi-

tionally, the external surface generated by the most distant vectors and the αβ plane are shown. . . 98
5.3 αβ top view of the complete modulation region for a four-leg NPC converter. . . . . . . . . . . . 99
5.4 (a) αγ and (b) βγ view of the complete modulation region for a four-leg NPC converter. . . . . . 99
5.5 Different tetrahedrons in the αβγ space for a four-leg NPC converter. In (a) the region formed by

all the TT0 and two TT1, (b) region formed by all TT1, (c) region formed by all the TT1 and two
TT2, (d) region formed by all TT2 and (e) region formed by all the TT3. . . . . . . . . . . . . . . 101

5.6 Voltage reference vector path for modulation indices ma = 0.95,mb = 0.47,mc = 0.85,
φa=φb=φc=0◦ in (a) the αβ space and (b) the αβγ space. . . . . . . . . . . . . . . . . . . . . . 103

5.7 Modulation region in the αβγ space for a four-leg NPC converter. . . . . . . . . . . . . . . . . . 106
5.8 Modulation region in the αβγ space for a four-leg NPC converter. . . . . . . . . . . . . . . . . . 106
5.9 General diagram for a three-dimensional SVM. dᵀ denotes the transpose of the vector d= [d2, d3, d4].

The dwell time d1 is obtained as d1=1− d2 − d3 − d4; ∀ φ. . . . . . . . . . . . . . . . . . . . . 109
5.10 Switching commutation for each leg of the four-leg NPC converter and the phase-to-neutral output

voltages using Full-Redundancy Symmetric n-type sequence for: (a) pattern using a TT1 formed
by {v1,v15,v4,v10} and (b) a TT2 formed by {v15,v4,v10,v45}. . . . . . . . . . . . . . . . . . 111

5.11 Switching commutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.12 Limitation for the reference vector represented in the first quadrant of the modulation region in the

αβ plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.13 (a) Reference vector v∗αβ and the limited reference ṽ∗αβ , with η ≈ 0.5. In (b) v̂∗αβ represents the
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