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Abstract

This thesis explores if and how identifying the character of face-to-face conversations can help

manage proactive actions, especially notifications, on smartphones so that they become less

disruptive. We motivate our research with the initial hypothesis that different types of con-

versation entail a different receptiveness to interruptions. This hypothesis is backed up by

surveys and eventually proved in a large-scale user study. We show that the social dimensions

depth/importance and formality/goal orientation of a conversation are strong indicators of re-

ceptiveness. We also provide evidence that, contrary to initial belief, valence is no indicator

by itself. Furthermore, we find that there are types of conversation, small talk for example,

in which individuals are even more receptive to notifications than in situations without any

verbal social interaction at all. This refutes the assumption currently dominating the literature

that the occurrence of a conversation is a strong predictor of unavailability. The study also

reveals that 44% of the time a message is received, people are engaged in a conversation,

attributing further importance to the consideration of conversational characteristics in notifi-

cation management. We investigate how and to what degree the character of a conversation

can be inferred by technical means – putting strong emphasis on the challenges of mobile

scenarios. For that, we study how state-of-the-art methods in speech-based machine learning

cope with the effects of noise and signal alterations through the manner the phone is carried

by the user. We demonstrate a system that keeps track of conversations in which the user is

engaged and that analyzes speech in terms of embedded affective and social cues. Eventually,

we find that information of either kind, derived from audio, improves the accuracy of personal

notification preference models for the average individual by more than 20 percent (relative

to the baseline set of common context attributes).

Funding for this research project was provided by the German Federal Ministry of Education

and Research under the grant ID 01IS12057. The sole responsibility for the report’s contents

lies with the author.
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Kurzfassung

Diese Arbeit folgt der Frage, ob und wie die Erkennung des Charakters von Konversationen

helfen kann, Benachrichtigungen auf Smartphones weniger störend zu gestalten. Der Frage

liegt die Vermutung zugrunde, dass unterschiedliche Gesprächstypen mit unterschiedlicher

Bereitschaft gegenüber Unterbrechungen einhergehen. Diese Hypothese wird durch Umfra-

gen untermauert und letztendlich durch eine großangelegte Studie bewiesen. Wir zeigen, dass

die sozialen Dimensionen "Tiefe/Wichtigkeit" und "Formalität/Zielgerichtetheit" starke Indika-

toren für Unterbrechbarkeit sind. Entgegen ursprünglicher Annahmen stellt sich Valenz nicht

als Indikator heraus. Darüber hinaus zeigt sich, dass die durchschnittliche Unterbrechbarkeit

bei bestimmten Gesprächstypen, z.B. Smalltalk, sogar höher ist als in Situationen ohne ver-

bale Interaktion. Dies widerlegt die in der Literatur gegenwärtig vertretene Meinung, dass das

Vorhandensein eines Gesprächs eine geringe Unterbrechbarkeit nahelegt. Unsere Studie offen-

bart, dass Individuen in 44% der Fälle, in denen eine Nachricht empfangen wird, in Gespräche

verwickelt sind. Dies unterstreicht wie wichtig die nähere Betrachtung von Gesprächscharak-

teristika ist. Wir untersuchen, ob und zu welchem Grad der Gesprächscharakter mit tech-

nischen Mitteln erfasst werden kann und legen dabei großen Wert auf die Betrachtung der

Herausforderungen von mobilen Szenarien. Dafür prüfen wir, wie gut neueste Methoden mit

den Auswirkungen von Hintergrundgeräuschen und Signalveränderungen umgehen, welche

durch die Trageposition des Geräts verursacht werden. Wir stellen ein System vor, welches

Gespräche des Nutzers erfasst und hinsichtlich in Sprache eingebetteter affektbezogener und

sozialer Merkmale analysiert. Letztendlich zeigt sich, dass aus Audio gewonnene Informatio-

nen beider Art die durchschnittliche Genauigkeit von persönlichen Modellen der Benachrich-

tigungspräferenz jeweils um mehr als 20% verbessern (relativ zur Baseline der gängigen Kon-

textattribute).

Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums

für Bildung und Forschung unter dem Förderkennzeichen 01IS12057 gefördert. Die Verant-

wortung für den Inhalt dieser Veröffentlichung liegt beim Autor.
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1. Introduction and Outline

The greater part of the first section of this introduction has been published in [Schulze and

Groh, 2014], further parts (cf. Chapter 13) are to appear in [Schulze and Groh, 2016]. All

contents of this thesis constitute original contributions by the lead author.

1.1. Introduction and Motivation

Whenever a mobile device initiates interaction to push information, either because of incom-

ing calls or messages or because of other proactive services, it runs the risk of interrupting

the user in her current activity. The disruptive effects of interruptions on task performance

have been well-studied and include slow recovery on task resumption, an increased number

of mistakes, and emotional impairments like stress or frustration [Roda, 2011], [Mark et al.,

2008].

The degree to which we are open to interruptions and insusceptible to their negative effects is

referred to as interruptibility or receptivity to interruptions [Fischer et al., 2010]. It is subject

to context and also interrelates with the type of interruption [Hansson et al., 2001]. Contex-

tual factors can often be inferred and, in turn, allow inference of interruptibility. Alignment

of notifications with interruptibility can be achieved, for example, by varying the timing of

notifications or their modality (e.g. ringing, vibrating etc.).

Not only the user might be interrupted by a mobile notification but also her social environ-

ment. Social norms and our willingness to conform to them let social interruptibility be re-

flected in personal interruptibility: when we are aware of the interruptive effects of a notifica-

tion on the people around us, we are likely to be less receptive to the interruption ourselves.

It is our general research goal to detect interruptibility in social situations in view of effec-

tively managing mobile notifications. In particular, we look at situations with explicit, verbal

interaction: conversations with user engagement.

While previous work has considered conversations in the context of interruption management,

it didn’t do so exhaustively: in most cases, only the presence of speech was taken into account
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1. Introduction and Outline

as a binary factor for determining interruptibility. This, however, doesn’t capture only conver-

sations in which the user engages as it doesn’t distinguish personal conversations from back-

ground chatter. Very rarely and insufficiently was the speaker to whom the voice belonged

taken into consideration. Furthermore, to the knowledge of the author, there is no study of

how the character of a conversation affects the interruptibility of the involved speakers. While

we can’t reasonably argue that it is the sole essential factor for determining interruptibility,

it is evident that the character of a conversation can play an important role. Our receptive-

ness to notifications in a heated argument may be different to that in the same argument,

but in a relaxed atmosphere. Likewise, during a focused and goal-oriented discussion we’re

intuitively less interruptible than in a casual chat with a friend. Motivated by this intuition,

we hypothesize that there are underlying factors in conversations that dictate an associated,

characteristic receptiveness – an information that could by harnessed by mobile notification

management systems for the benefit of the user.

For reasons of privacy, we restrict our research to information that is directly available to the

user’s personal mobile device. This contrasts information sharing strategies among multiple

users.

1.2. Research Questions

In this body of work we seek to answer the following research questions:

RQ1a Do different types of conversations entail a characteristic interruptibility for indi-

viduals?

RQ1b If so, do characteristic interruptibilities translate across individuals?

RQ2 How well can conversational characteristics be inferred from audio from a tech-

nical standpoint?

RQ3a Is information about conversational characteristics useful for notification manage-

ment?

RQ3b If so, what kind of characterization provides how much benefit?

RQ4 Is direct assessment of interruptibility based on low-level audio features more prof-

itable than a two-step approach with an intermediate classification of the charac-

ter of a conversation, which allows to incorporate additional socio-psychological

domain knowledge?
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1.3. Contributions and findings

In answer to our research questions, the following accomplishments and findings constitute

our contribution:

1. We show that different kinds of conversation, defined according to various aspects, all

have characteristic effects on people’s receptiveness to interruptions. These effects trans-

late across individuals. Some types of conversation exhibit an even higher associated

receptiveness than situations without any verbal social interaction. This finding ren-

ders current practice of using the occurrence of a conversation as a binary indicator for

unavailability inapt.

2. We reveal the richness of the acoustic medium in terms of social and affective infor-

mation in the context of notification management and demonstrate that conversational

characteristics derived from audio improve the accuracy of personal notification pref-

erence models on average by more than 20 percent. Social and affective information

encoded in speech have similar utility, likely due to a large overlap in relevant content.

3. We find that in terms of classification performance, the explicit characterization of a

conversation as an intermediate step provides no significant gain compared to implicit

characterization in terms of low-level and medium-level audio features. However, we

also point out and empirically back up the importance of an explicit characterization for

giving the user the means to formulate rules in notification management.

4. We conduct the first extensive evaluation of channel effects (signal alterations) induced

by smartphones as recording devices in everyday situations. We throughly compare

positional variance and handset/microphone variance as the two main factors causing

channel effects and find that the manner in which the user carries the smartphone clearly

has the dominating impact. Furthermore, we show that

a) there are no archetypal positions that allow for positional profiles as minimal

changes in position or environment (clothing fabric) have great effect on the sig-

nal, and that

b) conditioning on a multitude of different channel effects during training of the clas-

sifiers can help immensely to mitigate the impact on audio classification perfor-

mance.
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1.4. Outline

Part I: Background
Chapter 2 This thesis will open with a definition of the subject matter around which

our research revolves: mobile notifications. We will show how notifications create inter-

ruptions which in turn often disrupt the user with severe consequences. Context-aware

notification management will be introduced as a possible remedy. The state of the art in

sensing, inferring, and integrating context on mobile devices will be presented, and we

will show how currently captured attributes can be complemented by conversational

context information to better cover the user’s context in its entirety and to improve no-

tification management.

Part II: Conversational Factors in Receptivity
Chapter 3 The fundamentals of speech and conversation will be established as a basis

for conversation analysis.

Chapter 4 We will then elaborate on emotions and other affective phenomena as one

potential aspect under which conversations can be characterized.

Chapter 5 A social taxonomy of speech events by [Goldsmith and Baxter, 1996] will

be presented as basis for an alternative/complementing approach to classifying conver-

sations.

Part III: Implementation
Chapter 6 After covering the conceptual part of our research, we will proceed to the

implementation of a system for conversation analysis. For that, we will first introduce

a set of essential mathematical tools.

Chapter 7 To identify suitable methods for analysis, a dataset that properly reflects our

use-case scenario is needed. We will describe the methodology for synthesizing data

that accurately simulates conversations encountered in real-life scenarios with many

different kinds of background noise. As any conversation in our focus has to be captured

by a mobile phone, we will put emphasis on studying so-called channel effects, i.e. signal

alterations induced by the characteristics of the smartphone and the manner in which

it is carried.

Chapter 8 A short overview of general audio signal processing and our pipeline will

be presented.

Chapter 9 As the first of three research areas in speech processing on which we will

touch, Voice Activity Detection is covered. We will identify methods suitable for sepa-

rating speech from background noise and silence in our dataset. Although the better

part of all evaluated algorithms performs similarly well, Random Forests will end up as

our method of choice.
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Chapter 10 After that, we will compare methods for identifying sections of speech

that belong to a target user, in our case the owner of the smartphone. In accordance

with current research, so-called i-vectors will turn out to be the most effective one under

the constraint of channel effects.

Chapter 11 Emotion Recognition and Affect Regression will constitute the final area

of research that we cover for conversation analysis. Despite the constraints imposed by

our scenario (reduced feature set, noise, channel effects) we achieve results that don’t

deviate tremendously from results reported in recent literature. In absolute terms, how-

ever, they are only moderate. Best results in characterizing conversations with respect

to their affective components are achieved with Long Short-Term Memory Recurrent

Neural Networks.

Chapter 12 Eventually, we will present a system that integrates the above speech pro-

cessing methods into a real-time system for analyzing conversations captured by the

smartphone.

Part IV: Evaluation
Chapter 13 To evaluate our system and to study the utility of conversational context

in mobile notification management, we will conduct a large-scale two-week user study

with 54 users. This chapter constitutes the centerpiece of our research and most findings

will be presented and discussed here.

Chapter 14 We will conclude this thesis with a summary of our efforts and an outlook

on potential future research.
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2. Interruptions – the Downside of
Mobile Notifications

2.1. Mobile Notifications

We define the term notification as any cue emitted proactively by a mobile device with the

goal of creating awareness of an underlying event which, according to the system, requires

the user’s attention, e.g. the arrival of a message or an incoming call. Cues can be acoustic,

visual, tactile, or any other attribute that makes the device’s new state distinguishable from

the default, idle state.

Of course, different cues entail a different characteristic invasiveness. A flashing LED is by

most definitions less invasive than loud ringing [Kern and Schiele, 2003, p. 3]. Invasiveness

evidently has a strong effect on the time and manner the user’s attention is obtained. Re-

gardless of a notification’s invasiveness, at the time the user notices the device’s request for

attention, she is interrupted in her current mental focus. The degree of this interruption de-

termines the user’s perception of it and the consequences. In the following sections we shed

light on how interruptions are processed by the human mind and, subsequently, what negative

effects they may cause.

2.2. Cognitive Processing of Interruptions

There are multiple ways how a user responds to a notification. [Latorella, 1999] proposes a

model that formalizes the mental processing of a notification and the notification’s effect on

an ongoing task, in the literature often referred to as primary task. The model comprises four

stages [Latorella, 1999, p. 21ff]:

Detection The user is "engaged in an ongoing procedure" prior to the arrival of the

notification. "[Her] activated memory contains representations associated with the on-

going procedure, and, in particular, those associated with the current task. [An] annun-

ciation stimulus [(the notification)] heralds the interruption. If this stimulus is salient
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enough to overcome sensory thresholds, it is stored in short-term sensory stores for

further processing."

Interpretation If the stimulus is successfully detected, it is "translated to a working

memory representation of the interrupting task in terms of its performance require-

ments". The translation is defined as interpretation. "[The user’s] working memory now

supports both representations associated with the ongoing procedure, specifically the

interrupted task, and the interruption."

Integration If the notification is correctly interpreted with regard to the requirements

the interrupting task entails, one of three actions is taken: the user either decides to

schedule the interrupting task, to dismiss it or to perform it immediately. Either way,

preemption of the ongoing task is required for the user to weigh "benefits associated

with performing the interruption against costs of continuing the interrupted task".

Task resumption Eventually, the user continues performance of the original, inter-

rupted task.

For an in-depth analysis of the cognitive processing of interruptions that is aligned with di-

verse theoretical models of the human memory we refer the reader to [Roda, 2011] and

[Grundgeiger et al., 2010].

Literature in psychology that investigates interruptions and interruption management often

mentions the terms diversion, distraction, disturbance, and disruption – sometimes interchange-

ably. In this thesis we focus on interruptions, the forced mental processing of a perceptually

detected notification, and disruptions, the negative effects of processing the notification.

[Coraggio, 1990, p. 19] defines an interruption as "an externally-generated, randomly occur-

ring, discrete event that breaks continuity of cognitive focus on a primary task." This highlights

three important characteristics:

• The nature of the interruption is not controlled by the subject.

• The timing of the interruption is not known to the subject a priori. Coraggio clarifies:

"This does not inply that [the subject] expects to be free of interruption. [The subject]
may know that an interruption is possible – without knowing when (or if) it will happen."

• The interruption is of finite duration which distinguishes it from concurrent distractions

like background noise.

While lasting distractions, too, can cause attentional conflicts that impair task performance

[Groff et al., 1983], it is the disruptive nature of interruptions that can have tremendous

negative impact on the user’s tasks at hand [Speier et al., 2003]. This terminology is consistent

with Latorella’s definition of disruptions as "deleterious effects" [Latorella, 1999, p. 23] caused

by the cognitive processing of an interruption. Latorella further elaborates on the reasons for

these negative effects:
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"Interpretation requires attention resources to retrieve, or activate, long-term memory representa-

tions of the interrupting task; requires representation in working memory; and requires attention

resources to maintain this working-memory representation. Capacity limitations and differentia-

tion of these resources may result in deleterious effects. [...] If the [user] integrates the interrup-

tion, progress on the ongoing procedure is disturbed. Integration imposes additional attention

and working memory requirements associated with preemption and resumption of the interrupted

position. The execution of interruption response plans, and the process of scheduling when the

interruption will be performed require attention and working-memory." [Latorella, 1999, p. 23]

From this explanation it follows that not every interruption leads to the same degree of disrup-

tion. The more attention is drawn from performance of the primary task and directed to the

interruption, the more extensive is the disruption. However, it is evident that any notification

processed by the user generates disruption to some extent, even when the interrupting task is

dismissed and the interruption ignored.

2.3. The Costs of Interruptions

In the previous section we defined disruptions as negative effects resulting from limitations of

memory capacity in the human brain and attention resources required to process interruptions.

This section will further investigate the implications of disruptions.

In accordance with the common subjective notion that interruptions impair performance there

is substantial empirical evidence for negative effects of interruptions when resuming the in-

terrupted task:

Slow recovery Since any interruption needs to be processed, time passes between

preemption and resumption of the primary task. This is called the task resumption

lag [Grundgeiger et al., 2010]. The context associated with the primary task needs to be

recalled and attention needs to be shifted back to the primary goal until focus is restored

to a previous level. Depending on several factors, the task resumption lag can be quite

significant. Evidently, this results in a longer total time spent on performing the primary

task as is shown, for example, by [Kreifeldt and McCarthy, 1981], [Gillie and Broadbent,

1989], [Bailey et al., 2000], [Bailey and Konstan, 2006], and [Cutrell et al., 2001].
Naturally, it is also possible that interrupted users forget context information of the

primary task like the point where they left off when the interruption occurred [Cutrell

et al., 2001].
Mistakes Due to the attentional draw, users who are interrupted tend to commit errors

in resumed performance of the primary task [Kreifeldt and McCarthy, 1981], [Gillie

and Broadbent, 1989], [Cellier and Eyrolle, 1992], [Latorella, 1999], [McFarlane and
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Latorella, 2002], [Bailey and Konstan, 2006], [Grundgeiger et al., 2010].
Emotional impairments According to an empirical study conducted by [Mark et al.,

2008, p. 1] people who are interrupted often compensate for the delay by working faster

at the cost of "experiencing more stress, higher frustration, time pressure, and effort".

Along with that, interrupted users also experience annoyance and even anxiety [Bailey

and Konstan, 2006], [Adamczyk and Bailey, 2004].
Furthermore, interrupted tasks are perceived more difficult to be completed than non-in-

terrupted tasks [Bailey et al., 2001].

[Bailey et al., 2000, p. 5] also show that the resumption lag is related to the memory load of

a task at the time of interruption and therefore to nature and complexity of the primary task:

"A subject spent between 5% and 40% longer on an interrupted than a non-interrupted task.

Again, a task having a higher memory load at the time of interruption demonstrated a relative

increase in task completion time greater than that for a task having a smaller memory load."

This finding has been backed up by follow-up experiments [Bailey et al., 2001] and by other

researchers, e.g. [Speier et al., 2003] and [Czerwinski et al., 2004].

In addition to this individual-centered, cognitive viewpoint, disruptions can also be examined

under the aspect of social norms. In [Kern and Schiele, 2003], the term social interruptibility

is coined as a complement to personal interruptibility, putting emphasis on the social expec-

tations of “proper conduct”. In consequence, [Kern and Schiele, 2003] advocate the consid-

eration of the user’s social environment and the selection of less socially invasive modalities

when applicable. A corresponding study of subtle, public notification cues for mobile devices

is presented in [Hansson et al., 2001].

2.4. Avoiding Disruption Through Context-Aware
Notification Management

It is evident that the goal of creating awareness of events on mobile devices must be balanced

with the goal of minimizing personal and social disruptions as described in the previous sec-

tions. For example, the notification can be deferred [Horvitz et al., 2005a], the information

content can be reduced [Streefkerk et al., 2012], or the modality (ringing, vibrating, etc.)

be varied [Lopez-tovar and Charalambous, 2015]. Any such strategy requires the incorpo-

ration of context factors (cf. [Dey, 2001] for definitions of context), most often by means of

sensors, that allow for inference of the importance of the notification content, the user’s per-

sonal as well as the social surrounding’s receptivity to the notification, in the literature also

called interruptibility. Both terms refer to the degree to which subjects are open to a given

interruption. [Ho and Intille, 2005, p. 1] illustrate:
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"Consider an office worker sitting at a desk discussing a report with a supervisor. If the phone

rings and it is a co-worker with updated information for the report, the office worker is likely to

be receptive to the phone call. However, if the phone call is from a friend to discuss plans for the

weekend, then the office worker is likely to be less receptive. On the other hand, the office worker

might be receptive to the phone call from the friend if the phone displays the message visually

instead of using the ring to signal the interruption. The visual notification is less likely to disrupt

the flow of the current conversation, perhaps lowering the perceived burden of the interruption

for both people in the room."

2.4.1. Interruptibility and Context

In a well-grounded evaluation of the literature [Ho and Intille, 2005, p. 2] identified 11

context factors that influence a person’s interruptibility:

Factor Description

Activity of the user The activity the user was engaged in during the interruption

Utility of message The importance of the message to the user

Emotional state of the user The mindset of the user, the time of disruption, and the

relationship the user has with the interrupting interface or

device

Modality of interruption The medium of delivery, or choice of interface

Frequency of interruption The rate at which interruptions are occurring

Task efficiency rate The time it takes to comprehend the interruption task and

the expected length of the task

Authority level The perceived control a user has over the interface or device

Previous and future activities The tasks the user was previously involved in and might

engage in during the future

Social engagement of the user The users role in the current activity

Social expectation of group behavior Activities and expected reaction to interruption of nearby

people

History and likelihood of response The type of pattern the user follows when an interruption

occurs

Table 2.1.: High-level context factors that influence personal interruptibility

It should be noted that in the above model, social interruptibility is assumed to be reflected in

personal interruptibility, i.e. as the individual’s willingness to conform to social norms. While

this might not necessarily be true, i.e., a person might not care about or misinterpret her
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surroundings and might simply not acknowledge the de-facto social interruptibility ( [Kern

and Schiele, 2006, p.140] found only a 65% correlation of estimated social interruptibility for

various public scenes between users), it is debatable whether detecting this discrepancy would

be of any use. After all, one can make a point that the device must always act in accordance

with the owner’s expectations and intentions. Thus, our understanding of interruptibility is an

integrated one.

In recent years, sensor-based statistical models of interruptibility have become the focus of

a broad research community, most notably since the publication of [Fogarty et al., 2004]
and [Fogarty et al., 2005] which arguably laid part of the field’s foundation. As interruptibil-

ity is often low in the work place, a lot of research has been conducted in this, rather static,

context, e.g. [Fogarty et al., 2004], [Oliver et al., 2004], [Avrahami et al., 2007]. With the

advent of modern, sensor-rich smartphones and their ubiquity, a wider, more multifaceted

context could be studied, e.g. [Fisher and Simmons, 2011], [Rosenthal et al., 2011]. In Table

2.2 we provide an overview of context descriptors found in recent literature on interruption

management. As some authors use different sensors to measure similar factors, we grouped

the results of low-level sensor processing and analysis into medium-level categories. Each

category covers one or more high-level context factors [Ho and Intille, 2005] as listed above.

Medium-level context descriptor Examples

Whether the user is talking [Fogarty et al., 2004], [Avrahami et al., 2007]
Immediacy of conversation (e.g. phone, [Oliver et al., 2004], [Rosenthal et al., 2011]

face-to-face)

Computer activities (e.g. application, [Fogarty et al., 2004], [Oliver et al., 2004]
keyboard activity)

Movement (motion sensors) [Rosenthal et al., 2011], [Fogarty et al., 2004]
Social cues (e.g. angle of office door) [Avrahami et al., 2007], [Fogarty et al., 2004]
Relation to sender of mobile message [Fischer et al., 2010], [Rosenthal et al., 2011]
Rating/valence of content [Fischer et al., 2010]
Location and scenery (GPS, audio) [Kern and Schiele, 2006], [Nagel et al., 2004]
Time and calendar information [Rosenthal et al., 2011]
Task and interaction structure [Iqbal and Bailey, 2010], [Iqbal and Bailey, 2008]
Phone posture [Fisher and Simmons, 2011]

Table 2.2.: Context factors that influence personal interruptibility
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A closer look at how and what auditory context is mentioned in interruption-related litera-

ture reveals the limited exploitation of this seemingly information-rich medium. [Kern and

Schiele, 2006] classified background noises with respect to auditory scenery as an indicator

of the user’s (social) activity. Conversations were, however, not considered. So far, only the

probability of a conversation and its immediacy have been taken into account in other publica-

tions, e.g. in [Fogarty et al., 2004], [Siewiorek et al., 2003] and [Oliver et al., 2004]. For the

former, evidence was sometimes questionable: [Hashimoto et al., 2013] employed a Wizard of

Oz approach and detection of any human voice in the past 20 seconds served as an indicator

for the occurrence of a conversation. While that approach may work in very static contexts,

it is not reliable in dynamic everyday environments that involve other people. [Sawhney and

Schmandt, 2000] tackled this problem by first classifying audio segments to detect the voice of

the target speaker. If detected, the user was categorically marked as non-interruptible. While

speech detection and, to some degree, conversation-awareness have been harnessed for in-

terruption management, no exhaustive research has been conducted on how the character

of a conversation influences receptivity to mobile notifications, despite the variety of context

factors (cf. Table 2.1) involved: evidently, conversation conveys information on the activity of

the user, the emotional state of the user, the social engagement of the user, and the social expec-

tation of group behavior (activities and expected reaction to interruption of nearby people).

This renders conversations an ideal target for thorough study in the context of interruption

management.

There are obvious limitations as to how well the context factors and, in turn, personal and

social interruptibility can be inferred. As [Avrahami et al., 2007] demonstrate, even human

prediction of another person’s receptivity is highly prone to error. Cues are often missed or

misinterpreted. Of course, analogous limitations apply to sensor-based models. However, it

can be stated that overall they perform reasonably well in interruption management, often

better than their human counterparts in various experiments. “[People] viewing [...] audio

and video recordings can distinguish between ‘Highly Non-interruptible’ situations and other

situations with an accuracy of 76.9%. A model based on [handful of very simple sensors]
makes this same distinction with an accuracy of 82.4%. Both of these accuracies are relative

to a chance accuracy of 68% that could be obtained by always estimating that a situation was

not ‘Highly Non-interruptible’.” [Fogarty et al., 2004, p. 122]

2.4.2. Context integration

Knowing about the user’s context and her presumed interruptibility is by itself not a remedy

against disruptive notifications. The system has to incorporate contextual information in a

suitable way into the decision-making progress of when and how to notify the user. Queuing
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notifications and probing for moments with low interruptibility to deliver them in batches

is an unsound general strategy for multiple reasons. Some notifications require immediate

attention as their underlying event is urgent, e.g. an important phone call or the passing of

a point of interest by a traveling user, where a belated notification is likely worse than an

interruption. Also, the mental processing of a big set of queued notifications is monotonous

and cumbersome. Some notifications might get dismissed without the user being aware of

the corresponding event. Having this in mind, the evident goal for an intelligent notification

system must be to balance awareness for events and receptivity to notifications [Horvitz et al.,

2005a]. Strategies for this decision-making step can be grouped into three categories:

Utiliy based The most obvious approach is to formulate the balancing problem in

quantifiable terms of utility and costs. This has been favored by many of the earlier

publications by a group around Eric Horvitz, e.g. [Horvitz et al., 2002], [Horvitz and

Apacible, 2003], [Horvitz et al., 2005b], [Kapoor et al., 2007], [Kapoor and Horvitz,

2008], but also others like e.g. [Chen and Black, 2008]. The term expected cost of inter-

ruption (ECI) was coined in [Horvitz et al., 1999] by means of the expected attentional

status of the user (based on sensor evidence) and status-specific costs for a set of notifi-

cation modalities. Costs had been assigned to combinations of statuses and notification

modalities a-priori. The utility was defined in a relatively complex manner in terms of

negative expected costs for delayed action, based e.g. on inferred urgency of a message.

While the decision-theoretic approach by Horvitz allows for a nice mathematical for-

mulation of the problem, it constitutes merely a very simplistic framework that covers

neither the optimal assignment of the various costs (and thus utility) nor the inference

of the user’s attentional focus/state.

Machine learning based A more integrated, yet nontransparent way is the use of

supervised machine learning techniques like classification or regression. Given a set

of examples (training data), an optimal direct mapping of context data to notification

modality or ringer volume is learned, e.g. in [Rosenthal et al., 2011] or [Ho and Intille,

2005]. Classifiers can also be trained to predict an optimal time for delivery of the

notification or a reevaluation. While the decision-making process is nontransparent to

the user, the acquisition of training data is much more natural and graspable as the

user is only asked for how she wants her device to behave – although the user may be

prompted frequently. This is opposed to the elicitation of rather cryptic numeric costs

for all modalities, not just the desired one.

Rule based Entirely rule based systems mark a third approach. Here, complete control

is given to the user who declares a set of rules by hand, e.g.: If at the office, put the phone

on vibrate unless call from parents. This approach is not strictly orthogonal to the ones

above and can be combined with either one, provided that rules can be phrased. That

is often not the case with machine learning based “black box” systems.
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In the more narrow context of mobile notification management, the machine learning ap-

proach has been reported to achieve satisfactory results, e.g. by [Rosenthal et al., 2011]. For

the latter publication, a two-week user study was conducted for data acquisition and sensor

readings were mapped directly to the desired volume of the smartphone’s ringer. Averaged

over the various groups the reported accuracy reached around 85%. Within the scope of a

bachelor’s thesis and associated experiments [Wieczorek, 2013], we were able to reproduce

similar results, given enough training data (> 40 samples). It must be noted that, according

to the literature, e.g. [Rosenthal et al., 2011, p. 10], and our own experiments in [Wieczorek,

2013], there seem to be few universals in context-aware notification management. Individual

preferences diverge strongly. Consequently, interpersonal notification preference models, i.e.

models which are not trained from the target individual’s data but from data of a plethora of

other, supposedly representative individuals, perform far worse than personalized ones (56%

vs 78% accuracy in [Wieczorek, 2013, p. 39]).

2.5. Summary

Notifications are a necessary means of proactive services and communication systems for cre-

ating awareness of an underlying event which requires the user’s attention. In doing so, notifi-

cations interrupt the user in her current mental focus. Depending on that focus and the user’s

immersion (interruptibility or receptivity) and also on the invasiveness of the notification, the

interruption may have grave, disruptive effects. To mitigate this problem, an intelligent sys-

tem that manages the delivery of notifications and incorporates the user’s current context can

be employed. Various context factors can be inferred by means of sensors, integrated, and

balanced to find an optimal time and modality for the notification.

Although auditory context has been considered in a rudimentary fashion, the richness of the

medium has not been fully exploited. To the knowledge of the author, no closer evaluation

of the social and affective information encoded in speech and their utility in interruption and

notification management has ever been carried out. In this thesis, we aim at closing the gap

by studying the use of conversation analysis for intelligent notification management.
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3. Fundamentals of Speech and
Conversation

In order to conceptualize a system for conversation analysis it is important to first establish

some fundamental linguistic terminology that will be used throughout this thesis. Foremost,

basic phonetic units for the segmentation of speech have to be defined. [Laver, 1994, p.

110] distinguishes between feature, segment, syllable, (setting,) utterance, and speaking-turn

(from smallest to largest).

haɪ        m aɪ    neɪm      ɪz    (Florian)

Segments Syllable

Utterance

Figure 3.1.: Phonetic units in a short sample utterance.

The set of phonetic features constitutes the minimum set of descriptors used in order to account

for the differences between phonetic units. The portion of speech with relatively constant

phonetic features is called a phonetic segment (typically 30 to 200ms in duration [Fletcher and

McVeig, 1992, p. 30ff.]). In audio analysis a feature (not to be confused with the phonetic

feature) may be limited to a particular segment but may also be longer (suprasegmental or

prosodic, e.g. pitch) or shorter (subsegmental or spectral). Segments are usually phonological

units of the language, such as vowels and consonants. Multiple segments form a syllable which

can also be defined in phonological terms and itself represents a level of higher linguistic

organization. Finally, an utterance can be defined as a stretch of speech by a single speaker

delimited by silence and containing no internal pauses whereas the speaking-turn consists of

one or more utterances and denotes one speaker’s contribution to a conversation. [Laver, 1994,

p. 110 ff.], [Bernsen et al., 2012, p. 49], [Aronoff and Rees-Miller, 2003] “[M]ulti-utterance

turns are the norm in natural dialogues” [Atterer et al., 2008, p. 1]. However, the number
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of utterances per turn is highly dependent on context. [Panunzi et al., 2012, p. 160] reports

an average number of about 1.5 utterances per turn for conversations/dialogues and 3.7 for

monologues. These numbers are backed up by [Esposito et al., 2008, p. 110ff.] whose reports

also indicate high variance in natural conversations.

Not every turn transition happens with an intermediate pause. Overlaps are frequent [Ten

Bosch et al., 2005, p. 84ff.]. Also, not every transition attempt is successful. Sometimes, the

second speaker tries to take over and interferes with a short utterance but the first speaker

keeps the turn. [Weilhammer and Rabold, 2003, p. 2] therefore differentiate between five

types of (attempted) turn transitions with different characteristics. Various speech parameters

like for example speaking rate or the duration of pauses as the delimiter of both utterances

and turns are subject to conversational context, speakers (sex, age, education, culture etc.),

and language (a.o.). [Weilhammer and Rabold, 2003], [Jiahong et al., 2006], [Campione

and Véronis, 2002a], [Kendall, 2013], [Grothendieck et al., 2009] A comprehensive study of

universals and cultural variation in turn taking is presented in [Stivers et al., 2009].

There lies great informational value in the dynamics of conversational turn taking. For exam-

ple, [Esposito et al., 2008, p. 119] elaborates on the reflection of situational dominance in

turn taking patterns: “[Contrary] to naive assumptions of dialogue as a tennis-like exchange

of question and answer or topic and comment, it actually presents a complex pattern of simul-

taneous talking as partners take turns to dominate in the interaction.”
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4. Affective Characterization of
Conversations

In Chapter 1 we have motivated the characterization of conversations according to emotional

aspects. In this chapter, we first clarify that emotions are only a subset of affective phenomena

which we want to consider in their entirety. This allows us to also capture and interpret social

cues embedded in speech. An overview of affective behaviors which manifest themselves in

social cues is presented along with recent advances in computerized inference.

4.1. Fundamentals of Emotion and Affect

In psychology and cognitive sciences, the terms emotion, affect, feeling, and mood are fre-

quently encountered and sometimes used interchangeably. According to [Ekkekakis, 2012, p.

1], they all constitute affective phenomena. [Shouse, 2005] elaborates: A feeling “is a sensation

that is interpreted and labeled according to previous personal experiences” while emotion is

the projection of that feeling, its display. "Feelings are personal and biographical, emotions

are social, and affects are prepersonal. [...] Of the three central terms [...] feeling, emo-

tion, and affect affect is the most abstract [...].” [ibd.] While emotions as projections can be

captured computationally to some extent, affect can only be inferred. (Core) affect is a neu-

rophysiological state that underlies simple feelings [Russell, 2009, p. 1] and is experienced

constantly, although its nature and intensity vary over time [Ekkekakis, 2012]. Often, it is

used as an "[...] umbrella term that covers all evaluative or valenced (i.e., positive/negative)

states such as emotion, mood, and preference." [Juslin and Västfjäll, 2008, p. 561]. In this

thesis, we will follow and emphasize this comprehensive interpretation by focusing on core

affect and all emanating affective phenomena.

Recent developments in sensor technology gave rise to the research domain of Social Signal

Processing (SSP) [Vinciarelli et al., 2009] in which this thesis is partly rooted. We focus on the

affective components of social signals, i.e. of observable cues in interpersonal interaction that

have (hidden) social meaning (see Section 4.2 below). For further information and different

interpretations of fundamental terminology and concepts we refer the reader to the holistic
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theoretical review in [Calvo and D’Mello, 2010].

4.1.1. Models and representations

Among many (e.g. in [Plutchik, 1991], [Ekman, 2005]), two dominant theoretical perspec-

tives on emotions have emerged in affective computing [Hudlicka and Gunes, 2012], [Grand-

jean et al., 2008]. Both compete as general frameworks for characterizing emotions.

Categorical/discrete The arguably most intuitive and thus long-standing way of de-

scribing emotions (and other affective phenomena) is labeling them as discrete classes.

Commonly, prototypical/basic emotion categories like happiness, sadness, fear, anger,

etc. are used [Zeng et al., 2009, p. 39]. Most of the publicly available corpora for

emotion recognition are labeled discretely, in turn, forcing subsequent publications to

employ the same framework.

Dimensional/continuous However, a small set of basic emotions may often fail to

capture affective nuances as “people exhibit non-basic, subtle, and rather complex af-

fective states like thinking, embarrassment or depression“ [Gunes et al., 2011, p. 827] .

Thus, many researchers promote the use of dimensional models for underlying affective

components. An early and widely used [ibd.] model is the Circumplex Model of Affect

by [Russell, 1980] which is based on the two dimensions valence and arousal. In recent

years, this model was extended by [Fontaine et al., 2007] with the two complementing

dimensions power (also: control, potency) and novelty (also: predictability, expecta-

tion). While more complex, the dimensional approach has greater modeling power.

Coordinates in the affective space can of course be mapped to discrete emotions.

4.1.2. Temporal Characteristics

To clarify what actually constitutes our object of interest with respect to time, we refer to

[Cowie et al., 2001]’s temporal model of affect (cf. Figure 4.1). “Emotion in the narrow sense

– full-blown emotions – are generally short lived and intense.” [Cowie et al., 2001, p. 40]
However, as audio is our sole source for inferring affective information, we cannot necessarily

distinguish between temporal categories. If the user’s voice reflects happiness, it may be due

to short, recent event (→ emotion) or due to a general attitude over a longer stretch of time

(→ mood). The distinction, although possibly relevant, requires the observation of the user’s

affective state over a long period (months) which is outside the scope of this work. We focus

on the user’s predominant affective state for a time span of several minutes to assess her

punctual receptivity to notifications, ignoring the underlying cause for that state. We assume

that this is a suitable period for capturing social interactions, more precisely: conversations, as
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well as changes in the affective state caused by important events. These sudden changes are

assumed to be most relevant for interruptibility. Thus, our temporal window of consideration

will henceforth be referred to as socio-emotional real-time.

Expressions

Autonomic
Changes

Attitudes

Self Reported
Emotions (Fullblown)

Moods

Emotional Disorders

Traits

Seconds Minutes Hours Days Weeks Months Years Lifetime

Figure 4.1.: Temporal characteristics of affective categories [Cowie et al., 2001]

4.2. Inference of Affective Phenomena from Audio

Nonverbal communication, a special case of human-to-human communication where the means

used to exchange information consists of nonverbal cues [Richmond et al., 2008] in [Gökçay

and Yildirim, 2011, p. 135], is of particular interest for our purposes as the cues are often dis-

played outside conscious awareness and can therefore be considered honest signals [Pentland,

2008]. Their social character is emphasized by the alternative term social signal [Vinciarelli

et al., 2009]. [Gökçay and Yildirim, 2011, p. 135] elaborate on the close relation of affect and

social signals, and state that the latter “leak reliable information about the actual inner state

and feelings of people, whether they correspond to emotional state like anger, fear and sur-

prise, general conditions like arousal, calm, and tiredness, or [affective behavior in form of]
attitudes towards others like empathy, interest, dominance, and disappointment.” All affec-

tive aspects of social signals can be subsumed under the umbrella term affective phenomena.

Again, dimensional frameworks allow us to model the underlying affective components.

Evidently, social signals can have many forms: gesture, posture, gaze, et cetera [Vinciarelli

et al., 2009]. In this body of work, we focus entirely on vocal signals that accompany verbal

communication.

Several groups of features on multiple levels of granularity can be derived from the acoustics

of speech. On the lowest level, spectral and prosodic features (cf. Chapter 3) like MFCC,

PLP, pitch, energy, and speaking rate (tempo) can be found [Vinciarelli et al., 2009, p. 1747],
[Gökçay and Yildirim, 2011, p. 144]. “The prosody conveys a wide spectrum of socially
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relevant cues: emotions like anger or fear are often accompanied by energy bursts in voice

(shouts) [...], pitch influences the perception of dominance and extroversion [...], the speaking

fluency [...] increases the perception of competence and results into higher persuasiveness.”

[Vinciarelli et al., 2009, p. 1747] Silence, as a very basic, low-level element, is an important

aspect of human communication and can convey many messages. As silence usually segregates

stretches of speech, it is mostly considered in terms of pauses during verbal interaction that

can reflect hesitation, difficulty in encoding or decoding speech, or consciously and openly

displayed intentions with respect to the social interaction taking place: silence that signifies

respect for people we want to listen to or commands that respect from others, silence that two

lovers share, silence that ignores the other person and signals disinterest. [Richmond et al.,

2008, p. 102], [Vinciarelli et al., 2009, p. 1747] Evidently, interpretation of silence is highly

subject to context and thus other features. The direct relation to turn taking is obvious as

pauses typically separate turns and give structure while a lack of coordinating pauses between

turns indicates interruptions, hence a joint consideration suggests itself. The relevance of

turn taking with respect to roles in social interaction was already touched upon in Chapter

3. Turn transition characteristics, turn length, and overall turn share are strong indicators

for (im)patience and, going further, (in)equalities in status and dominance. [Sacks et al.,

1974, p. 700], [Smith-Lovin and Brody, 1989, p. 424, 430 ff.] Non-linguistic vocalizations

(also: vocal outbursts) like laughing, crying, groaning etc. mark another important group

of features, especially in regard to affect and social situations: “[Laughter] tends to reward

desirable social [behavior ...] and shows affiliation efforts, while crying is often involved in

mirroring [...], that is the mutual imitation of people connected by strong social bonds [...].
Also, research in psychology has shown that listeners tend to be more accurate in decoding

some basic emotions as well as some non-basic affective and social signals such as distress,

anxiety, boredom, and sexual interest from vocal outbursts like laughs, yawns, coughs, and

sighs [...].” [Vinciarelli et al., 2009, p. 1747] While sometimes regarded as non-linguistic

vocalizations, yelling and whispering are considered modes of speech in this thesis since they

commonly contain linguistic content.

As depicted in Figure 4.2, inference of high-level affective phenomena may happen progres-

sively along the levels of inferential granularity, i.e. with intermediate steps, or directly from

low-level features.
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Figure 4.2.: Feature groups derived from the acoustics of speech and their relevance for affect recognition
(based on [Vinciarelli et al., 2009, p. 1747 ff.], [Sacks et al., 1974, p. 700], [Gökçay and
Yildirim, 2011, p. 144 ff.] and own contributions)

Recent literature, perhaps most notably [Madan and Pentland, 2006], lists many successful at-

tempts in inferring particular affective phenomena from audio. Common affective phenomena

successfully derived from low-level audio in recent research are (a.o.):

• Dominance/role/status

• Persuasion

• Interest

• Attraction

• Puzzlement

• Influence/engagement

• Emphasis

• Consistency

• Agreement/rapport

• Antagonism/rebelliousness

• Mimicry/mirroring

• Empathy

• Activity

• Solidarity

• Willingness to compromise

For more information and extensive surveys including performance results we refer the reader

to [Gökçay and Yildirim, 2011, p. 145 ff.], [Zeng et al., 2009, p. 43], [Pentland, 2004],
[Salamin et al., 2013] (also the sources for the above list).
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Conversations

In Chapter 4 we have proposed an affective characterization of conversations for providing

conversational context information in notification management. In this chapter, we advocate

the use of a second manner for characterizing conversations, one with a greater focus on

interpersonal, social properties. For that purpose, we employ an already established taxonomy

of conversations from the field of communication research. It must be noted that the two

manners of characterizing conversations are not disjoint: an affective taxonomy/approach

naturally comprehends social elements (cf. list of affective phenomena) just like a social

taxonomy involves affect. However, we hypothesize that both manners of characterization

have unique aspects and are not equivalent. Intuitively, affect is more individual-centric. We

will revisit this point later on in this thesis.

5.1. An interpersonal taxonomy of speech events

In a series of three studies, [Goldsmith and Baxter, 1996] systematically developed “a descrip-

tive taxonomy of jointly enacted speech events in everyday relating”. In their first study, 903

open-ended diary log entries of 48 individuals monitoring their interactions over a course of

four weeks were collected and subjected to systematic interpretative analysis in order to iden-

tify: “(a) types of talk respondents recognized, (b) commonly used labels for referring to types

of talk, and (c) semantic dimensions used to differentiate among types of talk” (ibid.). A pre-

liminary taxonomy of 24 speech events was constructed. In the second study, exhaustiveness

of the taxonomy and generalizability w.r.t. age, sex, and ethnic differences were verified and

optimized, resulting in a refined taxonomy of the following 29 events:

1. Gossip

2. Making Plans

3. Asking a Favor

4. Reminiscing

5. Joking Around

6. Asking Out

7. Making Up

8. Catching Up

9. Small Talk

10. Conflict
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11. Serious Conversation

12. Talking About Problems

13. Love talk

14. Breaking Bad News

15. Recapping

16. Complaining

17. Sports Talk

18. Getting to Know

19. Group Discussion

20. Persuading

21. Decision Making

22. Getting/Giving Instructions

23. Class Information Talk

24. Lecture

25. Interrogation

26. Morning Talk

27. Bedtime Talk

28. Relationship Talk

29. Current Events Talk

In their third study, Goldsmith and Baxter systematically (in accordance with [Kruskal and

Wish, 1978]) identified three dimensions using multiple regression analyses on conversational

attributes collected in the previous studies:

Dimension 1 indicates the extent to which a speech event is perceived as formal and

goal-oriented.

Dimension 2 captures the extend to which a speech event is perceived as important, deep,

and involved.

Dimension 3 refers to the positive valence of a speech event (although the attribute fit

on this dimension is less robust than for the first two dimensions)

Figure 5.1.: Two-dimensional plots of speech events and their clusters according to [Goldsmith and Baxter,
1996, p. 101]
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Figure 5.1 depicts two-dimensional plots of all 29 speech events along combinations of the

above dimensions. By means of hierarchical cluster analysis Goldsmith and Baxter were also

able to identify six clusters of speech events [Goldsmith and Baxter, 1996, p. 101], subse-

quently called conversation types (colors refer to figure):

■ Superficial talk

■ Informal talk

■ Involving, positive talk

■ Negatively valenced talk

■ Formal goal-directed talk

■ Less formal goal-directed talk

5.2. Linking the taxonomy to interruptibility

In Chapter 1 we motivated our research with concrete examples of conversational situations

which intuitively entail a different receptivity to any kind of interruption: a heated argu-

ment, a casual chat, a focused discussion. We find our examples to be well reflected in both

Goldsmith and Baxter’s conversation types and conversational dimensions. The dimension of

formality seems to capture the social aspect of interruptibility, while valence and depth might

typify more of a personal component.

In a pre-study [Ristevski, 2015, p.32 ff.]we verified the adequacy of the six conversation types

(and, thus, also the dimensions) as context source for determining a person’s interruptibility.

This pre-study was conducted in form of a survey among 57 participants in Munich, Germany.

The sample included 2 teenagers (14-18y), 22 young adults (18-25y), 29 adults (25-65y),

and 4 senior citizens (>65y). The survey can be found in Appendix A. It provided informa-

tion about the context of our research and the relation to notification management. Every

participant was asked to assign a personal reachability level ranging from 1 to 5 – 1 being the

lowest reachability and 5 the highest – to each of the 29 speech events. The resulting scores

were averaged over the six conversation types (clusters of speech events) resulting in 57× 6

interruptibility scores. To see if these scores are statistically significant, we analyzed our with-

in-subject study [Martin, 2004, p. 148] by means of a Friedman test [Greene and D’Oliveira,

1985, p. 62 ff.] (non-parametric counterpart of an ANOVA) (χ2 = 175.4, p = 5.3e-36) and

follow-up multiple pairwise Wilcoxon signed-rank tests [Falk et al., 2014, p. 150] with Bon-

ferroni-Holm correction [Holm, 1979]. All pairwise comparisons showed significance on the

corrected .05 level except for Involving, positive talk vs Less formal goal-directed talk and Neg-

atively valenced talk vs Formal goal-directed talk. Exact results are listed in Appendix B. Figure

5.2 shows a boxplot of mean interruptibility scores by conversation type.
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Figure 5.2.: Survey results: mean interruptibility by conversation type (values seemingly cut off are exactly
5)

The significant differences clearly indicate that a characterization of conversations with

respect to social properties (according to [Goldsmith and Baxter, 1996]) provides a suit-

able and promising context source for determining a person’s receptivity to notifications.

The pre-study also serves the purpose of giving us a notion of the direction of differences be-

tween pairs of conversation types which allows us to use one-sided statistical tests with greater

confidence in the evaluation of the final user study (cf. Chapter 13). This of course assumes

that tendencies found in reported survey values still hold in real life. As we have no reason

to believe that the population of both samples (pre-study and final study) are different, we

make that assumption for those conversation types that already exhibited significant differ-

ences here.
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6. Methods

This chapter gives definitions for all signal processing and machine learning methods used

throughout the thesis for voice activity detection, speaker recognition, and affect recognition.

As they are well-described in the literature we refer the reader to the respective sources for

introductions and more detailed explanations. It must be noted that the features below mark

a set for experimentation. The selection of features for the final system will be addressed in

the according chapters.

6.1. Features

6.1.1. Spectral Entropy

The entropy of a signal’s spectrum gives cues about the frequency pattern of the sound [Lu

et al., 2009]. “In the frequency domain, voiced frames have [...] low spectral entropy.

On the other hand, [...] unvoiced frames or non-speech frames [...] yield relatively high

spectrum entropy.” [Lu et al., 2011, p. 7] Following a Fourier transform of the signal, the

probability density pi of the spectrum, i.e., of all N frequency components, is computed as

pi = s( fi)/
∑N

k=1 s( fk) [Shen et al., 1998, p. 1] where s( fi) is the spectral energy of frequency

component i. Spectral entropy is then obtained through H = −∑Ni=1 pi log pi [Shen et al.,

1998, p. 2]. This feature is commonly used for Voice Activity Detection.

6.1.2. Pitch

Pitch is a perceptual property that is “related to the fundamental frequency of vibration of

the vocal cords over some duration” [Beigi, 2011, p. 132]. The fundamental frequency, de-

noted f0, is the lowest frequency of a periodic signal. Due to the close relation of pitch and

fundamental frequency both terms are often used synonymously [Kinnunen, 2003, p. 30].
The pitch of the human voice lies in a characteristic frequency range [Furui, 2001, p. 250

ff.] which allows for the separation of speech from silence and, to some degree, even back-

ground noise [Xu et al., 2013], [Lu et al., 2009]. It varies between individuals and emotions,
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hence it is commonly used for all speech-related tasks. To estimate f0 we use the noise-ro-

bust PEFAC algorithm [Gonzalez and Brookes, 2014] which minimizes a cost function in the

frequency spectrum [Gonzalez and Brookes, 2014, p. 523] to select the statistically most

probable among several f0 candidates (peaks).

6.1.3. Zero Crossing Rate

Zero Crossing Rate (ZCR) is defined as the number of zero-crossings of all sample values

within a frame and can therefore be considered a lightweight approximation of the pitch [Lu

et al., 2011, p. 5]. It can be computed step by step using

ZCR f =

∑n
i=0 | sgn(si)− sgn(si−1)|

2
(6.1)

where si denotes the i-th sample in an n-sample frame [Lu et al., 2009, p. 5]. This feature is

commonly used for Voice Activity Detection.

6.1.4. Mel Frequency Cepstral Coefficients

At the time of writing (2014), Mel Frequency Cepstral Coefficients (MFCCs) constitute the

most dominant feature in the Speaker Recognition literature. Although various other features

can outperform MFCCs in specific settings, MFCCs are estimated as “difficult to beat in prac-

tice” [Kinnunen and Li, 2010].

MFCCs are a representation of the short-term power spectrum of an audio signal. They are

computed with the aid of the "[psycho-acoustically] motivated [Mel] filterbank" [Kinnunen

and Li, 2010, p. 5]. After the power spectrum of a windowed frame is obtained with the

discrete Fourier transform, the powers are mapped onto the frequency-warped Mel scaleM
[Stevens et al., 1937, p. 187ff.] with M channels and their logarithm is computed. These

last two steps are sometimes interchanged. In the final step a discrete cosine transform is

performed on the log Mel powers yielding n Mel Frequency Cepstral Coefficients. Formally,

we write [Beigi, 2011, p. 169ff.], [Kinnunen and Li, 2010]:

cn =
M∑

m=1

log(Mm) cos
�
πn
M
(m− 1

2
)
�

, n ∈ (0, )1, .., K . (6.2)

K ≤ M is the number of coefficients one wants to obtain. It is common to exclude c0 as it

represents the average energy of the frame and doesn’t provide discriminative information
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with respect to the speaker [Lu et al., 2011, p. 7].

In speaker recognition, it is common to perform Cepstral Mean and Variance Normalization

(CMVN) [Togneri and Pullella, 2011, p. 29], [Kinnunen and Li, 2010], [Strand and Egeberg,

2004], [Westphal, 1997]. Although the term suggests otherwise, it is not to be confused

with "global" centering and scaling to unit variance, a common practice in machine learn-

ing [Hsu et al., 2010, p. 4]. CMVN is a short-time normalization procedure over a running

or fixed-length window. Usually, the goal of normalization is to remove bias towards features

with bigger numerical values in distance-based optimization. CMVN, however, aims at re-

moving noise and other non-discriminative information that is assumed to be static over the

window but dynamic in general, e.g. channel effects or colored noise.

MFCCs represent the spectrum of the frame and are therefore static over the duration of

the frame. To incorporate time-dynamic information in frame-wise processing we augment

(concatenate) the feature vector of coefficients with temporal first-order derivatives ("deltas")

[Bimbot et al., 2004, p. 433].

We perform MFCC extraction with VOICEBOX1 for Matlab [The MathWorks Inc., 2014] 2014a.

6.1.5. (RASTA) Perceptual Linear Prediction

As an alternative to Mel frequency cepstral analysis, perceptual linear prediction (PLP) has

emerged [Hönig et al., 2005]. Both are very similar in nature and are based on the short-term

spectrum of speech. In PLP frequencies are warped according to the Bark Scale B [Zwicker,

1961]. “Differences between PLP and MFCC lie in the filter-banks, the equal-loudness pre-em-

phasis, [and] the intensity-to-loudness conversion” [Hönig et al., 2005, p. 2997]. For details

we refer the reader to [Hermansky, 1990], [Cheng et al., 2005] and [Hönig et al., 2005].

To boost robustness of PLP coefficients, [Hermansky and Morgan, 1994] introduced RelAtive

SpecTrAl filtering, RASTA for short. “[The human] ear is more sensitive to certain modulation

frequencies, and the RASTA processing attempts to filter out unimportant modulation frequen-

cies.’ [Kinnunen, 2003, p. 84]’ “Compared to CM[V]N, RASTA has an advantage in that [its
application] to the matched clean case produces negligible decrease in performance.” [Togneri

and Pullella, 2011, p. 40] “In general, it seems that conventional features like MFCC can out-

perform PLP in clean environment [sic.], but PLP gives better results in noisy and mis-matched

conditions.” [Kinnunen, 2003, p. 76]

To extract PLP coefficients and to perform RASTA filtering we employ the RastaMat library2.

1http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html, accessed July 9th, 2014
2http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/, accessed July 9th, 2014
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6.2. Classifiers

6.2.1. Gaussian Mixture Model

A Gaussian Mixture Model (GMM) can be considered a superposition of multiple Gaussian dis-

tributions to estimate a single target distribution. In the multivariate case each Gaussian base

distribution is characterized by its mean µk and covariance matrix Σk. Individual weights πk

which sum up to 1 determine the influence on the joint mixture model. All model parameters

are given by θ . Thus the GMM with K components (Gaussians) has the form

p(x|θ ) =
K∑

k=1

πkN (x|µk,Σk). (6.3)

Multiple methods exist for the estimation of θ [Görür and Rasmussen, 2010], [Herranz,

1999]. Throughout this thesis the Expectation-Maximization (EM) algorithm with random-

ized K-means initialization is employed. For a detailed description we refer the reader to

[Bishop, 2006, p. 435ff.]. To alleviate computational complexity we compute only diago-

nal covariance matrices, e.g. (Σk = diag(σ2
1,σ2

2, ..., )k), which is also empirically known to

improve results in speech processing [Togneri and Pullella, 2011, p. 31].

For general classification tasks each candidate class is represented by its own mixture model

λc , i.e., by the class-conditional (speaker-dependent) density. For any sample vector x the

class of the mixture with the highest posterior probability argmax
c

p(y = c|x,θ ) is chosen.

Since all classes share the normalization factor the maximum a posteriori (MAP) estimate

ŷMAP = argmax
c

p(x|y = c,θ )p(y = c|θ ) is used – the latter factor being the class prior.

Evidently, in a two-class scenario the decision function can also be formulated as a comparison

of the log likelihood ratio of both classes with a threshold.

In each iteration of the basic EM algorithm Θ(NK) computations [Bishop, 2006, p. 439]
are performed. For large UBMs and training sets empirical results on a 3.4Ghz Intel Xeon

exhibited computation times of several weeks and longer. We therefore employ the highly

parallel, GPU-based PyCASP [Gonina, 2013], at the time of writing the only CUDA-enabled

GMM framework written in Python.

6.2.2. Gaussian Naive Bayes

Like the Gaussian Mixture Model Naive Bayes models a class-conditional distribution that

can be used for a generative classifier. It assumes all features to be conditionally indepen-

dent of one another given the class label. We formulate the class-conditional density for a
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D-dimensional feature vector as a product of one-dimensional densities [Murphy, 2012, p.

84]:

p(x| y = c,θ ) =
D∏

j=1

p(x j|y = c,θ jc) (6.4)

In the case of real-valued features, individual univariate Gaussians can be used, yielding a

Gaussian Naive Bayes (GNB):

p(x|y = c,θ ) =
D∏

j=1

N (x j|µ jc ,σ
2
jc) (6.5)

In speech processing many features are decorrelated (e.g. MFCC, PLP; see Section 6.1.4).

From this it follows that with respect to our data the independence assumption of Naive Bayes

holds.

Because of its simplicity, fitting the model can be accomplished in O (DN) time. We refer

the reader to [Murphy, 2012, p. 85] for details. Our implementation is based on scikit-learn

[Pedregosa et al., 2011] v0.15.

6.2.3. Logistic Regression

Being a binary discriminative classifier logistic regression directly estimates the posterior prob-

ability by means of the logistic sigmoid function [Murphy, 2012, p. 21]:

p(y = 1|x,w) = sigm(w
⊺
x) with (6.6)

sigm(η)≜ eη

eη + 1
. (6.7)

We fit the model using a trust region Newton method with L2 regularization as described

in [Lin and Weng, 2008].

We employ scikit-learn [Pedregosa et al., 2011] v0.15 and liblinear [Fan et al., 208] v1.94.

6.2.4. Support Vector Machine

Support Vector Machines (SVM) for classification (SVC) are binary discriminative classifiers

that try to separate two classes in a set of D-dimensional samples by means of an D-1-dimensional

hyperplane with a maximized margin between the plane and the nearest data point of any

class. Let xi ∈ RD be a vector in a training set of size N and y ∈ RN be an indicator vector
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such that yi ∈ {−1, 1}. The dual form of this primal optimization problem can be formulated

as

min
α

1
2
α
⊺
Qα− e

⊺
α subject to y

⊺
α= 0 (6.8)

with 0≤ αi ≤ C , e = [1, ..., 1]
⊺
, (6.9)

and Q i j ≡K (xi ,x j), (6.10)

which constitutes a so-called C-SVC [Chang and Lin, 2011, p. 3ff.]. The optimal value of C is

determined empirically using cross-validation. An unknown vector x can then be classified us-

ing the decision function3 sgn(
∑N

i=1 yiαiK (x,xi)+ b). Extension of the concept to regression

of continuous data can easily be achieved [Smola and Scholkopf, 2004].

We employ the well-known [Murphy, 2012, p. 482], [Bishop, 2006, p. 299ff] infinite-dimen-

sional radial basis kernel K (x,x′) = exp(−γ|x− x′|2) which depends on the parameter γ > 0

( 1
N by default [Scikit-learn, 2012, p. 618]).

Our implementation utilizes scikit-learn [Pedregosa et al., 2011] v0.15 and libsvm [Chang

and Lin, 2011] v3.18. Note that the above optimization problem is a quadratic program

so even sophisticated state-of-the-art solvers take between O (N2) and O (N3) time [Murphy,

2012, p. 501]. To speed up the model computation at the expense of precision we also try out

stochastic gradient descent (SGD) which only approximates the gradient during optimization.

The algorithm as well as the resulting SVM are described in [Tsuruoka et al., 2009]. With SGD

we stop after 100 iterations.

6.2.5. Random Forest

Random Forests are ensembles of multiple decision trees with the decision function

f (x) = E[y|x] =
M∑

m=1

1
M

fm(x) (6.11)

where the m-th tree is given by

fm(x) =
L∑

l=1

wlI(x ∈ Rl) =
L∑

l=1

wlϕ(x;vl). (6.12)

In the above formula I is the binary indicator function, Rl denotes the l-th region in space, wl

is the mean response in this region and vl encodes the choice of variable to split on [Murphy,

3The computation of b is part of the model fitting procedure.
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2012, p. 546, 553]. Individual trees are trained on random subsets of both the samples and

the features. Further details on fitting the models can be found in [Breiman, 2001].

To measure the quality of a split we first compute the class-conditional probability

π̂c =
1
|D|
∑
i∈D
I(yi = c) (6.13)

where D is the data in the respective leaf [Murphy, 2012, p. 549].

Given π̂c we consider two split criteria in our experiments [Murphy, 2012, p. 549ff.]:

• Entropy: −∑Cc=1 π̂c log π̂c

• Gini impurity: 1−∑Cc=1 π̂
2
c

A split is discarded if after the split one of the leaves would contain less then δ ∈ {1, lg N , ln N}
samples. This constraint is tree-specific. Both the split criterion and δ are determined empiri-

cally using cross-validation.

scikit-learn [Pedregosa et al., 2011] v0.15 provides us with a fast and cache-friendly imple-

mentation of the Random Forest classifier. For experiments with small numbers of samples

(less memory consumption) we also use CudaTree4 v0.6, a massively parallelized GPU-pow-

ered framework.

6.2.6. Long Short-Term Memory Recurrent Neural Network

Let g be a non-linear activation function and H a number in N. Furthermore, let T be a 2nd

order tensor consisting of two weight matrices Θ(1) and Θ(2). We define

z(x) = g(Θ(1)x) = [g(θ (1)
⊺

1 x), ..., g(θ (1)
⊺

H x)] and (6.14)

p(y|x, T) = Cat(y|S (Θ(2)z(x))) (6.15)

where S is the sum-to-one constraint and Cat denotes the multinoulli distribution [Murphy,

2012, p. 283, 308, 563ff.]. This constitutes a basic feedforward neural network. z is called

the hidden layer with H hidden units. By recursively using the output z(i)(x) of a hidden layer

i as input for a subsequent layer i + 1, i.e., z(i+1)(z(i)(x)), we can construct a network with

multiple hidden layers of varying sizes H(i) and with custom layer weights Θ(i).

If nodes in one layer are not only connected to nodes in the subsequent layer, i.e. there are

connections within one layer or to a previous one, we speak of a recurrent network (RNN)

4https://github.com/EasonLiao/CudaTree, accessed July 1st, 2014

61

https://github.com/EasonLiao/CudaTree


6. Methods

as opposed to a feedforward network. [Murphy, 2012, p. 570] This allows for the modeling

of time-dependent data. However, only short temporal dependencies can be captured due

to the so-called vanishing gradient problem in training (the backpropagated error blows up

or decays exponentially [Eyben et al., 2009, p. 12]). The Long Short-Term Memory RNN,

an architecture unaffected by this problem, was introduced by [Hochreiter and Schmidhuber,

1997]. It uses memory cells to store information over longer stretches of time. Illustrations

and formal descriptions can be found in [Graves, 2013].

We experiment with two different GPU-accelerated implementations: a python-based imple-

mentation using Theano [Bastien et al., 2012] (optimizer: RMSProp [Dauphin et al., 2014],
cost function: cross-entropy [Rubinstein and Kroese, 2013]) and a C++ implementation us-

ing Currennt [Weninger and Bergmann, 2014] (optimizer: standard gradient decent, cost

function: SSE [Amaral et al., 2013]).

6.2.7. Factor Analysis

Factor analysis is a modeling method that can be used for generative classification, much like

Gaussian mixture models. An observation x ∈ RD is assumed to be generated by a hidden

class variable z ∈ RL so factor analysis is a latent model of the form [Murphy, 2012, p.383]

p(x|z,θ ) =N (Wz+µ,Ψ). (6.16)

In this equation W ∈ RD×L denotes the so-called factor loading matrix whose columns span

a linear subspace within the data space [Bishop, 2006, p. 571]. Ψ ∈ RD×D is a diagonal

covariance matrix. The underlying assumption of factor analysis is that the latent factors z

“will reveal something interesting about the data” [Murphy, 2012, p.384].

To fit the model we employ Bob v. 1.2.2 [Anjos et al., 2012] which uses a derivation of the

EM algorithm.
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6.3. Auxiliary Transformations

6.3.1. Whitening

The whitening transformation, also called sphereing, is a decorrelation technique that ensures

the data have a covariance matrix equal to the identity matrix I and equal variance along each

dimension. As [Murphy, 2012, p. 144] explains, this can be done by computing Λ− 1
2 U
⊺
x for

each vector x, with U being the eigenvectors andΛ the eigenvalues of the mean-free covariance

matrix X
⊺
X. The projection matrix is computed using Cholesky decomposition. Whitening is

equivalent to applying PCA followed by scaling [Murphy, 2012, p. 410].

6.3.2. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA), or more precisely: Fisher’s LDA – the most common type

of LDA –, is a projection z=Wx of a vector x ∈ RD to a lower-dimensional vector z ∈ RL using

the L×D projection matrix W. The transformation aims at maximizing the between-class vari-

ance while simultaneously minimizing the within-class variance5. Therefore, the cost function

is defined as

J(W) =
W
⊺
SbW

W⊺SwW
(6.17)

where:

Sb is the between-class scatter matrix6 defined as Sb =
∑K

k=1 Nk(mk −m)(mk −m)
⊺
,

Sw is the within-class scatter matrix defined as Sw =
∑K

k=1

∑
n∈Ck
(xn −mk)(xn −mk)

⊺
,

mk is the class k empirical mean 1
Nk

∑
n∈Ck

xn,

m is the overall empirical mean, and

Ck is the set of samples in class k.

The derivation of the above formula along with further explanations on how this can be re-

formulated as the eigenvalue problem Sb = λSw can be found in [Bishop, 2006, p.188ff.]
and [Murphy, 2012, p. 274ff.].

5LDA is closely related to PCA. Contrary to PCA, it searches vectors in the underlying space that best discriminate

among classes rather than those that best describe the data (overall variance) [Martínez and Kak, 2001].
6The scatter matrix equals the covariance matrix if we remove the division factor [Bishop, 2006, p.189].
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6.3.3. Within-Class Covariance Normalization

Within-Class Covariance Normalization (WCCN) [Hatch et al., 2006] is a projection z =Wx

such that Sw
N =WW

⊺
with Sw

7 being the within-class scatter matrix as defined above for LDA.

W is defined as the Cholesky factorization of ( 1
K Sw)−1. As the name suggests, WCCN aims at

normalizing the covariance within all classes.

6.4. Metrics

6.4.1. F1 Score

“The F1 score can be interpreted as a weighted average of the precision and recall, where an

F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision

and recall to the F1 score are equal.”8 The formula for the F1 score is:

F1 = 2 * (precision * recall) / (precision + recall) [Murphy, 2012, p. 185].

In the multi-class case, if not explicitly stated otherwise, the weighted F1 score is used.

For that, we calculate metrics for each class and find their average, weighted by support (the

number of true instances for each class).

6.4.2. Cosine Similarity and Correlation Coefficient

As the name suggest, the cosine similarity computes cosine of the angle between two vectors

x and x′ [van Dongen and Enright, 2012, p. 1]:

cov(x,x′)
σxσx′

. (6.18)

If the vectors stand for realizations of discrete probability distributions and are centered, Pear-

son’s correlation coefficient is obtained [van Dongen and Enright, 2012, p. 1, 2].

7https://www.idiap.ch/software/bob/docs/releases/last/sphinx/html/trainer/

generated/bob.trainer.WCCNTrainer.html#bob.trainer.WCCNTrainer, accessed November

2nd, 2014
8Source: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.

html, accessed September 29th, 2015
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6.4.3. Receiver Operating Characteristic and ROC AUC

The receiver operating characteristic curve (ROC) plots the true positive rate (sensitivity) over

the false positive rate (1-specificity) for different decision thresholds. The area under the

ROC, the ROC AUC, is a commonly used metric in machine learning for probabilistic binary

classification [Fawcett, 2006] that characterizes the curve as a single number [Murphy, 2012,

p. 183]. An ideal classifier’s ROC curve would go from the lower-left to the top-left corner and

then to the top-right corner, resulting in an AUC of 1.0 (100%), while a random classifier’s

curve would be a straight line from the lower-left to upper-right corner covering 50% of the

available space [Richert, 2013]. ROC and ROC AUC measure the general performance of a

classifier by covering a multitude of different decision thresholds instead of a single one.

6.4.4. Equal Error Rate and Half Total Error Rate

The equal error rate (EER for short) is the one point on the ROC curve at which the false

acceptance rate and the false rejection rate are equal [Cheng and Wang, 2004, p. 1], i.e.,

(PFA, PFR) = (EER, EER) or F PR = FNR (false positive rate equals false negative rate). “Since

FNR = 1− T PR, we can compute the EER by drawing a line from the top left to the bottom

right and seeing where it intersects the ROC curve.” [Murphy, 2012, p. 183] “[EER] is reported

in almost every publication on speaker recognition” [Brummer, 2010, p. 74] and has become

the de-facto standard metric in the speaker recognition literature. It is attractive if in practice

the cost of misclassification is equal for both directions.

Similarly, the Half Total Error Rate (HTER) is the average of the false positive and the false

negative rate [Nautsch, 2014, p. 110].
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The greater part of annotated corpora commonly used in any sub-discipline of speech process-

ing are recorded under studio conditions and/or lack natural ambient sounds encountered in

our daily lives. Self-recorded sets with suitable content, on the other hand, have to be anno-

tated manually – a process that is infeasible for the many hours of speech needed in a repre-

sentative audio corpus. To tackle this problem, we synthesized a proper data set according to

our needs – an approach taken by others as well, e.g. [Eyben and Weninger, 2013]. In the fol-

lowing chapter we describe this process and its essential components. The aim for our dataset

was to accurately simulate conversations encountered in real-life scenarios, captured by

a mobile phone. Therefore, we combined annotated corpora (from speaker recognition and

affect recognition) with real environmental background sounds (“noise”) and, with the help of

impulse responses, artificially modified the resulting audio signal to reflect imperfect recording

conditions of a smartphone being carried around (cf. Figure 7.1).

Figure 7.1.: Overview: sources of audio for synthesizing the dataset

7.1. Clean Speech

7.1.1. Speaker Recognition Data Sets

TIMIT The Texas Instruments/Massachusetts Institute of Technology corpus (TIMIT)

[Garofolo et al., 1993] is a collection of read speech designed to provide speech data for

acoustic-phonetic studies and for the development and evaluation of automatic speech

recognition systems. "TIMIT contains broadband recordings of 630 speakers of eight
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major dialects of American English, each reading ten phonetically rich sentences (16bit,

16kHz). 70% of the speakers are male, 30% female.

Buckeye The Buckeye Corpus of conversational speech [Pitt et al., 2007] contains high-

-quality recordings from 40 speakers in Columbus, OH conversing freely with an inter-

viewer. The sessions were conducted as sociolinguistics interviews with everyday top-

ics, and are essentially monologues. "The sample was stratified for age (under 30 and

over 40) and sex, and the sampling frame was limited to middle-class Caucasians." [Pitt

et al., 2005] The subjects spoke a total of 307,000 words adding up to about 26 hours

of English speech. Audio files have a sampling rate of 16kHz and are stored in 16-bit.

VoxForge VoxForge1 is an open-source project that provides a constantly growing,

free, and annotated corpus of read speech in various languages including English and

German. It is available in 44.1kHz, 16-bit format. While there is little meta information

on speakers, a pitch-based clustering suggests a male-female ratio of about 3:1.

Mobio The MOBIO database [McCool et al., 2012] consists of bi-modal (audio and

video) data taken from 152 people in five different countries. The free speech session

from which we take our samples consists of answers to 10 random questions, all in the

English language and recorded in non-studio settings (16kHz, 16bit). The database has

a female-male ratio or nearly 1:2 (100 males and 52 females).

7.1.2. Emotion/Affect Recognition Data Sets

FAU Aibo The FAU Aibo corpus [Steidl, 2009] consists of 9 hours of German speech

of 51 children at the age 10-13 years interacting with Sony’s pet robot Aibo. This spon-

taneous, emotionally colored speech has been recorded via a close-talk microphone

(16kHz, 16bit) and has been annotated with 11 emotion categories by five human la-

belers. We explicitly point out that this corpus is only used for selection and validation

of suitable affect recognition techniques. As children’s speech differs significantly from

adult speech, the corpus does not serve for the creation of general affect models to be

used with other data.

Semaine The Semaine corpus of emotionally colored conversations [McKeown et al.,

2012] constitutes our main data set for affect recognition. It comprises recordings of

150 participants, for a total of 959 conversations between an agent and a participant

– many of which were extensively annotated. In each recording the voice of the agent

features a certain emotion with the goal of eliciting a particular natural affective reac-

tion from the participant. 6-8 raters per clip then traced five affective dimensions and

27 associated categories.

1http://www.voxforge.org/, accessed November 15, 2014
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7.2. Noise

Given our aim to simulate real-life situations as captured by a potentially ubiquitous smart-

phone, our dataset must not only contain speech but must also reflect the acoustic character-

istics of the user’s assumed environment. To be able to further specify these characteristics,

we assume the exemplary target user to live and work in a major western or central European

city. Our selection of sound categories for this environment, also referred to as sound spaces,

is founded in the literature, logical deduction and empirical observation.

In [Yang and Kang, 2005, p. 214ff.], the authors identified the following main sound sources

in 14 urban open public spaces across cities in Italy, Greece, Germany, UK, and Switzerland:

traffic, surrounding speech, children, construction, water, demolition, church bells, foot-

steps, and birds. “In terms of function, the sites included residential squares (e.g. Kritis

Square, Petazzi Square, Jardin de Perolles), cultural and tourism squares (e.g. the Seashore

of Alimos, Peace Gardens, Barkers Pool, All Saint’s Garden, Silver Street Bridge, Florentiner

Square), railway station squares (e.g. Bahnhofsplatz, Place de la Gare), and multi-functional

squares (e.g. Karaiskaki Square, Makedonomahon Square, IV Novembre Square).” [ibd.]

In contrast to these urban places, [Szeremeta and Zannin, 2009] had 335 participants char-

acterize the soundscape (etym.: sound + landscape) of more natural public areas in terms of

four public parks. Even in such a setting the sound of traffic, besides speech, is predominant:

“The sounds of birds, vehicle traffic, other natural sounds and people were identified regu-

larly in the area of the 4 parks, making up a total of 89.9% of the sample and confirming that

these are the principal sounds that make up the soundscape of these areas. Thus, 32.6% of

the references involved birdsong, 28.5% vehicle traffic, 15.8% other natural sounds, and 13%

referred to human sounds [...].” [Szeremeta and Zannin, 2009, p. 6146]

Other authors classify everyday sounds according to activities they relate to. [Díaz and Pe-

drero, 2006] tried to determine average sound exposure by activity. For that they conducted a

cross-section study in Madrid, Spain where 35 participants had to constantly wear a so-called

noise dose meter for one week. A broad range of activities was observed yielding the following

sound environment categories: leisure (sports, social gatherings etc.), education (classroom,

meeting, library etc.), domestic (music, TV etc.), occupational (warehouse, office, workshop

etc.), shopping, sleep, and transportation (c.f. Figure 7.2). Similar sound spaces but differ-

ent contribution rates were identified by [Mehl and Pennebaker, 2003] for the population of

undergrad college students, underlining the validity of the model.
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Transportation
12.6

Shopping

4.1

Occupational
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3.4

Leisure

64.5

Domestic

Education

Figure 7.2.: Daily sound exposure according to activity [Díaz and Pedrero, 2006, p. 278]

Based on the above literature we defined the following categories of ambient sounds which

we jointly refer to as noise:

• Outdoor, street, nature, traffic ∗,∗∗
• Bar, cafe, crowd ∗,∗∗
• Public transportation ∗
• Indoor (living room, office, kitchen, bathroom etc.)

• In-car

• Shopping ∗
• Pocket movement

• Foot steps

Categories marked with a single star had to contain babble sounds (incomprehensible speech).

Two stars mark the occasional presence of music. While not mentioned in the literature, we

added one sound category that we deem essential in our scenario: sounds of the smartphone

moving in the pocket, creating friction with surrounding textile.

Samples for the above sound spaces were then obtained from the following sources:

QUT-NOISE The corpus is “designed to enable a thorough evaluation of voice activity

detection (VAD) algorithms across a wide variety of common background noise scenar-

ios” [Dean and Sridharan, 2010, p. 1]. From it we selected sound files that matched

the above categories and that did not contain intelligible speech.

freesound.org Freesound is a collaborative database of Creative Commons Licensed

sounds that provided samples of foot steps and various public scenarios for our experi-

ments.

Own recordings For a Master’s thesis project [Seitle, 2014], we asked two students
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from Munich to record and label their respective environment on two typical workdays

(full days including after-work activities). They were instructed to discard any segments

that contained intelligible speech. Recording was conducted using a Samsung Galaxy

S3 mini smartphone and an Apple iPad 2.

All audio files were grouped according to sound category. The combined noise set covers all

general sound spaces found in relevant literature and comprises 96 minutes of audio in 16kHz,

16-bit format.

7.3. Impulse Responses for Channel Effect Simulation

7.3.1. Motivation and Data

Much of the more recent literature in speaker recognition concerns itself with the compen-

sation of so-called channel effects, i.e. signal alterations caused by varying microphones for

training and testing as well as other factors “such as [...] environment [...] and transmission

means (e.g., landline, cellular, VolP, etc.).” [Reynolds, 2003, p. 1] In the context of ubiquitous

smartphones this also encompasses signal alterations induced by the characteristics of the po-

sition of the recording phone. Note that background sounds/noises are signals themselves

and do not constitute channel effects.

To further specify the kinds of channel effects relevant for our dataset, we again consulted

the literature: [Ichikawa et al., 2005] and [Reimers, 2010] both conducted gender-balanced

surveys in major Western cities (Helsinki, Milan, New York; Munich) to find out where “mobile

phones are carried whilst users are out and about in public spaces” [Ichikawa et al., 2005, p.

1]. Pockets and bags/backpacks account for 90% of the answers in each survey.

In signal processing, channel effects can be represented as so-called impulse responses (IR). An

IR describes how an abstract system alters an input signal [Pesaran and Shin, 1998, p. 18].
In our case, the entirety of textiles around the smartphone and also the smartphone frame

form such a system. We can calculate its corresponding impulse response experimentally by

comparing a known input signal with its system-recorded output. As every fabric covering

the microphone evidently alters the captured audio signal in a different, characteristic way,

we picked one representative for each of the two above categories: denim jeans and a leather

bag. Both exemplars are assumed to be common in the target population and also to be thick

enough to presumably cause high attenuation and alteration of the signal. As we hypothe-

sized that the orientation of the smartphone would have a measurable effect on the impulse

response, we recorded two orientation-specific IRs within a denim jeans pocket: one with the
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device in an upwards orientation (microphone towards the top), one in a downwards orienta-

tion (microphone towards the ground). Since the studies mentioned above focused on public

spaces, we included a presumed category for private spaces: the smartphone lying on a desk.

In summary, four representative IR categories were established.

Figure 7.3.: Sweep signal (40Hz-20kHz over 2.5s), signal recorded by a reference microphone, and spectral
density of the resulting impulse response.

All audio recording was carried out at TU Munich inside a sound-proof, decoupled, low-re-

flection recording booth with calibrated equipment. On a Dynaudio BM6A MKII near-field

monitor speaker we played a so-called sine sweep, a tone with rising frequency, ranging from

40 to 20,000 Hz (cf. Figure 7.3, top row) which we recorded on the smartphones in four

positions. By deconvolving the source signal and the recorded signal we obtained the target

impulse response.

7.3.2. Power spectra and similarity of impulse responses

In Figure 7.4 an exemplary spectogram (energy in the frequency spectrum over time) of a sine

sweep recorded with the LG G2 smartphone in four positions is plotted. Over the duration of

the sine sweep (horizontal axis) the frequency (vertical axis) rises from 0Hz on the far left to
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8kHz2 on the far right. White parts mark very high energy, red marks medium to high energy,

and blue denotes low energy. Attenuation of energy caused by fibre is clearly observable as

white parts turn red in the according spectrograms, especially in high-frequency space. As

would be expected, there is little attenuation when the smartphone is placed on the table.

Figure 7.4.: Spectrogram of the recorded sine sweep for the LG G2 in the positions: table (upper left),
pocket with microphone upwards (lower left), pocket with microphone downwards (upper
right), leather bag (lower right)

Figure 7.5 depicts the power spectral density [Moses and Randolph, 2004, p. 6] (energy per

frequency, integrated over time) of all 16 impulse responses (4 smartphones, 4 positions,

respectively). The differences in distribution of energy over the frequency spectrum, i.e. the

channel effects, are evident both between smartphones and between positions. Inter-position

variance is more dominant than inter-smartphone variance. We see that for the most part only

low frequencies are able to penetrate objects (e.g. fibre) between the source of the signal and

the recording device. For devices carried, for example, in a leather bag, most of the energy of

the original audio signal is attenuated.

2The sampling rate of the recording microphone was 16kHz, thus the maximum frequency in the signal is 8kHz.
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Figure 7.5.: Periodogram (power spectral density) of recorded impulse responses for four smartphones in
four positions, respectively.

To further compare the above channel effects in the domain of speech processing, we analyzed

the effect of our impulse responses on our main set of features in all speech processing tasks:

MFCCs. 10 seconds of white noise served as a reference signal from which MFCC vectors (18

coefficients + 1st-order time deltas, 20ms frames, 10ms overlap) were computed. In a white

noise signal, all noise is entirely random and hence, roughly, of equal energy over all frequency

ranges. The same white noise input signal was convolved with each of the various impulse

responses, the output then compared using cosine similarity. An alternative metric would

be correlation which is also based on the inner product of the vectors and thus equivalent

for centered data. In subsequent chapters we will quantify the impact of channel effects

on classification performance. At this point, we are interested in relative similarities. Thus,

for readability, we standardized all similarity scores with their mean and standard deviation

(computed over all
�16

2

�
= 120 pairs).
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Standardized intra-class similarity scores for smartphones are listed in Table 7.1. For each

smartphone, all position-specific feature vectors were compared with one another. For each

pair of positions, the absolute value3 of the cosine similarity was averaged over time, i.e. all

frames. Eventually, the mean similarity over all position pairs was computed as the phone’s

intra-class similarity score. It quantifies how similar the position-specific channel effects of

the target smartphone are compared to the overall similarity of all measured channel effects.

Analogously, Table 7.2 shows intra-class similarities for phone positions denoting how similar

different phones are when carried in the target position.

Our findings from the periodigrams above are reflected in the MFCC features. From the two

tables, one can draw the following conclusions for speech processing:

• On average, the channel effects caused by different positions are more dominant

than the ones caused by different phones (relative signal similarity 0.21 and 0.41, re-

spectively).

• There is an obvious order of effect magnitude: the more a phone is surrounded by

fibre, the less similarity of recorded speech signals there is. The majority of impulse

responses represent positions in which the phone is covered. On a desk, i.e. without

obstacles in the way of the speech wave, signals are much more similar than on average

(1.2 standard deviations above the mean).

HTC One X −0.1149

LG G2 −0.2364

Samsung S1 1.2304

Samsung S3 mini −0.0203

Mean 0.2147

Table 7.1.: Standardized intra-smartphone (differences between positions) cosine similarities between
MFCC vectors with channel effects.

Desk 1.2270

Pocket (microphone upwards) 0.6562

Pocket (microphone downwards) 0.0978

Leather bag −0.3233

Mean 0.4144

Table 7.2.: Standardized intra-position (differences between smartphones) cosine similarities between
MFCC vectors with channel effects.

3Note that the cosine similarity is symmetric and in the range [−1;1] with 0 marking orthogonality (no correla-

tion).
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The Samsung Galaxy S1 smartphone exhibits an exceptionally high intra-class similarity. In

the above computations, we assumed this somewhat strange phenomenon to accurately reflect

reality. It suggests that the microphone of this low-end phone and/or its frame are the deciding

factors, “averaging” any input signal compared to other phones with supposedly higher quality

components/manufacturing.

7.3.3. Approximation of impulse responses

The above impulse responses were extracted in a professional manner – a time- and resource-in-

tensive process that is inadequate for ad-hoc experimentation. While not the focus of this

thesis, we want to give short consideration to the idea of approximating impulse responses.

If successful, this would allow for much easier incorporation of emulated channel effects in

future research. The findings of this section also bear great relevance for smartphone-based

audio processing in general.

For the approximation, we replicated the sine sweep procedure described above in a 15m2

office room with standard computer equipment, i.e. multimedia sound speakers, and the

same smartphones as before. Positions used in the professional extraction were reconstructed

as concordantly as possible. Results are depicted in Figure 7.6.

It is evident that resemblance to the impulse responses in Figure 7.5 is superficial at best. We

validated this observation by computing cosine similarities of the resulting MFCC as done in

Section 7.3.2. Results are not listed here to avoid redundancy. We identified three differing

factors and thus three potential reasons for this dissimilarity: inadequate speakers, an inade-

quate room in terms of reverberation, and the possibility that there are no archetypal positions

that allow for positional profiles, i.e. minimal changes in position or environment (clothing

fabric) have great effect on the signal.

With further experimentation we were able to rule out the first two variables as major con-

tributors.

First, we compared the low-end speakers to acoustically decoupled high-end multimedia speak-

ers (Mackie CR3). The same sine sweep was played consecutively on both speaker and

recorded on an LG G2 smartphone in 30cm distance. Neither the smartphone nor any other

object was moved during the experiment. Impulse responses of the two sweeps are shown

in Figure 7.7. Energy distribution over the spectrum is very similar (cosine similarity 1.31

standard deviations above the mean similarity, cf. Section 7.3.2).
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7.3. Impulse Responses for Channel Effect Simulation

Figure 7.6.: Periodogram (power spectral density) of approximated impulse responses. Little resemblance
to real IRs (cf. Figure 7.5).

Figure 7.7.: Power spectral density comparison for low-end and high-end speakers as sound source. Very
little difference can be observed.

To identify reverberation in the room we again look at spectrogram of the original impulse

response and compare it with the spectrogram of the approximated IR. While there is some

reverberation present in the signal (“smear effect”), the effect is small and pertains only to fre-
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quencies higher than 2kHz. Most of the mismatch between the two sets of impulse responses

can be found below that mark where the majority of energy is located (see Fig. 7.7). Note

that the color disparity is caused by different speaker volumes for the two recording sessions.

Figure 7.8.: Comparison of spectrograms for real and approximated impulse response (exemplary). Re-
verberation only noticable above 2kHz.

We conclude that most of the variance can be attributed to imperfect recreation of the original

position. This underlines our findings from Section 7.3.2 and suggests that it is pointless

to create position profiles because small variance in position has too great an effect

on the signal to construct universal positional fingerprints. For our use-case, this also

invalidates Dunn/Reynold’s proposition [Dunn et al., 2001, p. 1ff.] of using handset-specific

profiles in speech processing as effects induced by positional variance, when present, occlude

smartphone-specific characteristics.

7.4. Audio Signal Mixing

After our thorough examination of channel effects, we get back to the main matter of this

chapter: the synthesis of a suitable dataset. In the preceding sections we have described the

individual components: speech, ambient noise, and impulse responses for the simulation of

channel effects. The according pools of audio files were combined in a procedure we denom-

inate signal mixing (cf. Figure 7.9). Every audio file (snippet) from the clean speech corpora

was processed exactly once. We iterated over all clean speech snippets until each one had been

processed. As the final dataset should contain some segments with and some without noise,

all mixing was probabilistic. With a certain probability the clean speech snippet in question

was mixed (superimposed) with other speech snippets and/or noise randomly drawn from the

two noise pools (ambient noise and pocket movement). Before being mixed together, all snip-

pets were convolved with the same randomly drawn impulse response to simulate recording

conditions encountered in real-life.
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Figure 7.9.: Signal mixing: superimposing audio segments to produce a noisy speech corpus

In greater detail, the procedure consisted of the following steps which were repeated until

every audio file of the speech corpus/corpora had been processed. The parameters were

chosen in accordance with [Eyben and Weninger, 2013, p. 3].

Produce clean speech segment containing multiple speech snippets
A random number n ∈ [1;5] of audio files was drawn without replacement from either

the entire pool of clean speech files or a speaker-specific pool – depending on the ex-

periment. Each snippet was re-sampled to the desired sampling rate fs and convolved

with one of the impulse responses. The latter was either selected a priori or picked at

random depending on the experiment. The amplitude of each speech signal was nor-

malized to the same loudness level according to the Replay Gain standard [Robinson,

2001], [Nygren, 2009] and then multiplied with a segment-wide random gain factor

gseg ∈ [+3dB;−20dB] to simulate different real-life situations with respect to volume.

This also reflects different distances to the recording smartphone. As hard cuts would

generally result in artifacts in the Fourier spectrum [Harris, 1978, p. 1ff.], linear fad-

ing over 1000 samples (in and out) was applied to the speech snippets. To ensure the

feasibility of fading, audio files shorter than 2000 samples were generally omitted. Af-

terwards, the individual snippets were concatenated sequentially to a single combined

speech signal.

One of the real-life scenarios to be simulated with the dataset was two or more people

talking at the same time. For instance, if one speaker would try to interrupt the other
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or both would start talking at the same time. Another likely real-life scenario is the

occurrence of an unrelated conversation in the background in which the owner of the

smartphone is not engaged. To account for such scenarios we defined a maximum of

three simultaneous speakers – not counting unintelligible babble of voices – at any given

time. In addition to the aforementioned segment-wide gain, a random speaker-specific

attenuation goverlap ∈ [0dB;−10dB] was applied to overlapping speech snippets so that

the speakers varied in their loudness. The probability of an overlap for two consecutive

snippets poverlap was set to 0.44, the empirical percentage of overlaps at turn transi-

tions in face-to-face conversations in [Ten Bosch et al., 2005, p. 84], with the starting

point of the new, second signal randomly placed within the first, i.e. the concatena-

tion of all preceding, possibly overlapping snippets in this current segment. If for two

consecutive snippets there was no overlap, a random amount s ∈ [0.5s;5s] of silence

was embedded in between. For that, we recorded 3 minutes of silence – as opposed to

using a zero-amplitude signal – and found it to be equivalent to pink noise. Whenever

the limit for concurrent speech signals was reached, a subsequent period of silence was

enforced. In that case, the earliest potential starting point for any follow-up snippet was

the end of the silence period. At first we chose the length of silence based on empiri-

cal data of real-life conversation. During the course of our experiments, however, we

decided not to consider temporal dependencies (cf. 9.1). Therefore, the final parame-

ters as they are listed here are based on the desired overall ratio of silence to speech in

the dataset which is roughly 60/40. This value should reflect reality and is based on

reports by [Mehl et al., 2001, p. 522] who conducted a study for which participants

were equipped with a recording device that captured acoustic samples over the course

of four days in the participant’s everyday life. The reported fractions of speech presence

(0.26+0.34= 0.6) in [Mehl et al., 2001] refer to waking time (16h) and were weighted

accordingly (16
24) under the assumptions that people sleep in silent environments.

The annotation of the individual snippets was merged accordingly.

Figure 7.10.: Two (unrelated) scenarios illustrating the mixing procedure: two speech snippets are
joined together with overlap (left); three snippets overlap one another followed by an
enforced period of silence (right).
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Produce noise segments and mix with speech segment
With the probability pambient = 0.56 the entire speech segment of the previous step was

mixed with ambient noise. If so, a segment of the same length as the speech segment

was drawn from the pool of ambient noises. As the various short noise files had been

concatenated to longer noise class specific files, a segment of the desired length was

easily obtainable. We base pambient on an upper bound in terms of the fraction of daily

activities that (arguably) require the absence of background noises (reading, sleeping,

etc.) as listed in [Mehl and Pennebaker, 2003, p. 861] and [Mehl et al., 2001, p. 522]4.

Irrespective of any ambient noise, an additional probability ppocket = 0.055 determined

whether the characteristic sound of movement of the smartphone in a pocket would

be present in the final segment. It was drawn with replacement as well. Our choice

for ppocket is founded on an average daily step count of 6,500 for US adults reported

in [Tudor-Locke et al., 2010]. With a walking speed of 100 steps per minute (mod-

erate-intensity walking [Marshall et al., 2009]) this translates to 65 minutes per day

(5%). Similar numbers are given by [De Cooman, 2015]. Across Europe, this number

is consistently 10% higher than in the US according to the latter source, leading to a

probability of 0.055.

Every noise signal was convolved with the impulse response, its amplitude first nor-

malized to equal loudness, then multiplied with the same gain factor as the speech

segment. At that point the speech segment and its noise segment counterpart had the

same loudness. Eventually, linear fading was performed before speech and noise were

superimposed with a random signal to noise ratio SNR ∈ [−2dB;20dB].

Due to the summing up and scaling of amplitudes, it was possible for any final mixed segment

to contain samples with an amplitude that exceeded the limits imposed by the data type. In

practice, however, this rarely happened. To still avoid hard clipping of an affected sample,

we post-processed all mixed audio files with dynamic range compression and reduced high

peaks with very short attack and release times (−10dB threshold, 1 : 5 compression ratio, 5ms

attack time, 10ms release time).

The above procedure was slightly modified for the data subset used to train and evaluate

individual speaker models. Whenever speech segments did not allow for the presence of

multiple speakers, the pool of speech files from which the snippets were drawn was confined

to the target speaker’s file pool.

48h of sleep translate to 33%; 16.4% for working and reading refer to 16h waking time and make up for 0.164 ·
16
24 = 11% overall
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7.5. Limitations

While we are confident that our dataset is a realistic representation of every-day environments

and scenarios, we are aware of three limitations that need to be mentioned:

• Spatial characteristics like reverberation in closed environments have not been consid-

ered. Recent literature reports that state-of-the-art speech processing algorithms are

able to cope with reverberation [Sadjadi et al., 2012], [Boil and Hansen, 2010].
• As is the case with any synthetic dataset, the so-called Lombard effect ("speakers alter

their style of speech in noisier conditions in an attempt to improve intelligibility [Woo

et al., 2006, p. 1]) is not reflected in our data.

• The drawing of noise segments from the various noise categories was entirely random

(equal probability) and didn’t account for the different percentages/likelihoods with

which the respective category is encountered in our daily lives. This limitation is due

to a lack of consistent data from the literature w.r.t. percentages and also due to the

fact that, intuitively, in some environments conversations have a higher probability of

emerging than in others. Our dataset focuses on conversations and disregards other

parts of people’s lives. In our case, obtaining perfectly representative data without an

extensive dedicated study is nearly impossible. Thus, we considered it most important

that any noise category be present in the data, regardless of its share.
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In the previous chapter we have presented our methodology for obtaining a dataset suitable

for our needs. Before we evaluate current state-of-the-art algorithms for recognizing speech,

speakers, and affect, we provide the reader with an overview of how constant audio streams

are (pre-)processed and discretized for further analysis.

First, acoustic sound must be captured digitally. Almost every current-generation mobile op-

erating system provides means in form of an API to obtain a live audio stream of the target

sampling rate using the device’s built-in microphone. For that, the OS keeps filling a buffer

from which the stream can be read in “chunks” of waveform samples. Our subsequent pro-

cessing of the signal follows the standard approach unanimously described in the literature

(e.g. [Kinnunen and Li, 2010], [Togneri and Pullella, 2011], [Beigi, 2011]). The procedure is

illustrated in Figure 8.1.

Pre-emphasis A high-pass filter is applied to the array (buffer) of waveform audio sam-

ples. “This emphasises the higher frequencies and compensates for the human speech

production process which tends to attenuate high frequencies.” Thus, we use a 1st-order

high-pass filter with the common coefficient value 0.97.

Framing The time-domain signal is then divided into segments of uniform length called

frames. Subsequent frames may overlap if their offset, the so-called frame increment,

is shorter than their length/size. Typically, frame lengths range from 20ms to 32ms

with offsets starting from 10ms to frame length, i.e. without any overlap. [Togneri and

Pullella, 2011, p. 27], [Wöllmer, 2013, p. 21]
Windowing To avoid artificial aliasing effects in the frequency spectrum introduced by

cutting the signal into segments, we smoothen the edges of frames by multiplying them

with a windowing function like, e.g., a Hanning or a Hamming window [Blackman and

Tukey, 1959]. It must be noted that the term window is used ambiguously in speech

processing as it also refers to a set of subsequent frames. If no clarification is provided,

usually the latter meaning is intended.
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Figure 8.1.: Signal processing steps: The sampled audio signal gets high-pass filtered and segmented into
potentially overlapping frames – depending on frame size and increment. A smoothing win-
dow function is applied to prevent spectral aliasing. Afterwards, features are extracted and
concatenated on a frame-by-frame basis. Along with concatenated temporal derivatives they
form feature vectors. Illustration based on [Togneri and Pullella, 2011, p. 27] and [Kinnunen
and Li, 2010, p. 15].

This is followed by domain-specific feature extraction. Once the frames are represented by

feature vectors, they are passed through the speech processing pipeline to establish a live

conversation model. This pipeline consists of three cascaded steps that we will cover in the

subsequent chapters.

1. Detect speech in a given audio stream using a suitable method from the domain of Voice

Activity Detection (Chapter 9).

2. Detect whether the speech/voice belongs to the target speaker, i.e., whether she is en-

gaged in a conversation (Speaker Recognition, Chapter 10).

3. Analyze the character of the conversation using methods from Emotion/Affect Recogni-

tion (Chapter 11).
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In this chapter, we cover the algorithmic detection of speech in a given audio signal. We first

present an overview of established and recently reported methods. Note that these methods

haven’t been tested on audio signals that contain channel effects. Therefore, we conduct our

evaluation in two steps: as we tackle this task like a general classification problem, we first

assess performance by including the same channel effects in training and testing. This will

give us a notion of how well the original task is performed on a realistic signal. As a second

step, the impact of unknown channel effects is studied.

We will conclude that most sophisticated general-purpose classifiers perform similarly well

with both known and unknown channel effects present (ROC AUC > 0.9) and that MFCCs

alone constitute a sufficient feature.

9.1. State-of-the-Art Methods

Voice activity detection (VAD), i.e., the discrimination of speech in a given signal, is an impor-

tant step in almost every speech processing pipeline [Sakhnov et al., 2009, p. 1], especially in

speaker recognition for filtering out segments that do not contain speech. While energy based

systems provide high accuracy in the absence of noise, performance degrades substantially in

low-SNR (signal-to-noise ratio) environments [Ramirez et al., 2007, p. 6]. Recent literature

commonly lists a handful of approaches for VAD in the presence of non-stationary noise. Most

frequently, [Ramirez et al., 2004] and [Sohn, 1999] are cited. The former calculate the so-

called Long-Term Spectral Divergence (LTSD) between speech and noise and compare it to a

dynamically adapted decision threshold. The latter propose a statistical approach based on

the likelihood ratio (LR) test and Hidden Markov models (HMM). Several authors, e.g. [Kin-

nunen et al., 2007] and [Dean and Sridharan, 2010], regard VAD as an ordinary classification

problem to be tackled by all-purpose classifiers like GMMs and SVMs. Most recently, [Eyben

and Weninger, 2013] employed Long Short-Term Memory Recurrent Neural Networks (LSTM

RNN) to shift focus on temporal dependencies. While there is no comprehensive evaluation

of all approaches in direct comparison, [Kinnunen et al., 2007], [Dean and Sridharan, 2010]
and [Eyben and Weninger, 2013] show that LTSD- and LR-based approaches are clearly out-
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performed by the more recent algorithms, particularly in terms of consistency.

Apart from spectral divergence, VAD features commonly found in the literature include spectral

entropy, zero crossing rate, cepstral features (MFCCs, PLPs) and pitch (cf. Section 6.1).

Table 9.1 gives a summarizing overview of state-of-the-art VAD methods and their relevant

properties for this work. For more specific information on performance we refer the reader to

the above evaluations.

Approach Time dependency Performance and robustness

Adaptive LTSD yes varying

LR HMM yes varying

LSTM RNN optional good (0.1 EER/0.96 AUC at [-6;25]dB SNR)

All-purpose classifiers no good (0.15 HTER at 0dB SNR)

Table 9.1.: Common VAD approaches for noisy environments. Performance reports pertain to different
conditions (signal-to-noise ratios).

Time dependent approaches require a training set that correctly reflects the temporal aspects

of real conversations. Although we tried to mimic these aspects in our dataset synthesis, it

may contain artificial dependencies that could falsify the results. Therefore, we consider only

universal time independent classifiers and restrict the LSTM to a single timestep, removing its

dependency. We will show (cf. Section 9.3.2) that this decision does not significantly impact

performance as our results are on par with those of time dependent classifiers as reported in

the literature.

9.2. Performance evaluation

9.2.1. Methodology

To evaluate voice activity detection on smartphone-recorded audio we allocated VAD subsets

from the corpora TIMIT and Buckeye, pooled the subsets and mixed them with noise as de-

scribed in Chapter 7. Each audio snippet was convolved with a randomly drawn impulse

response. 200,000 frames were drawn randomly for this experiment. 38.34% represented

speech. Although our corpus would have allowed for a bigger dataset, the potentially cubic

complexity of support vector machines imposed a practical constraint on our efforts to maxi-

mize validity. Each frame was represented by a 36-dimensional feature vector of 18 Mel and

18 delta Mel coefficients. All dimensions were normalized to standard score using the first two

moments (mean, standard deviation) over the entire training data (dimensions are already
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decorrelated, cf. Section 6.1.4). Training and testing was performed frame-wise. Classifiers

considered for VAD experiments were: SVM (full and stochastic gradient descent), Random

Forest, LSTM, GMM, Naive Bayes, Logistic Regression (cf. Section 6.2).

To determine the number of components (Gaussians) for the Gaussian mixture model we

drew on our previous results from [Seitle, 2014] where we found 8 components to be suit-

able. We then examined according density plots of all features for both classes (speech and

non-speech/other). As the exemplary plots of the first six MFCCs depicted in Figure 9.1 in-

dicate, the individual distributions can be approximated well by this small number of super-

imposed Gaussians. In [Seitle, 2014, p. 99] we demonstrated that increasing the model’s

complexity resulted in comparatively small performance gains and from 16 components up-

wards in considerable variance. To avoid the risk of overfitting and to minimize computational

complexity we therefore decided to go with the 8 components per model. Class priors for the

GMM were estimated from the dataset.
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Figure 9.1.: Probability density functions of the first six Mel Frequency Cepstral Coefficients (Gaussian
kernel density estimation) of the training data. Dashed lines are approximations by individual
8-component GMMs that evidently fit the target distribution adequately.
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Another observation can be made in Figure 9.1. While the distribution of non-speech MFCCs

bears remarkable similarity to the speech-specific distribution, there is a distinctive spike in ev-

ery plot. The most likely explanation for this phenomenon lies in the dichotomy of non-speech

frames: while simple silence (partly pink noise) shows little spectral variance (spikes), ambi-

ent background noises can fall into any spectral band.

Past experiences with random forests in voice activity detection [Seitle, 2014, p. 87] indicated

that the performance gain of random forests for more than 10 trees is negligible compared to

computational demands. Consequently, this setup was kept for our experiments.

As [Eyben et al., 2012, p. 17] briefly discuss, there is no established topology for LSTMs in

speech processing. We therefore follow their approach of restricting ourselves to a small set

of different topologies among which we choose for parameter selection. Single-layer config-

urations in our set comprised 10, 25 (2
3 o f inputs + outputs, [Sarle, 2002]), 50, 100, and

144 (4 · inputs) hidden units. Two-layer configurations were of the following sizes: (10, 20),

(20,10), (100, 10), (10, 100).

For each classifier 10-fold cross-validation (CV) was conducted to compute statistically sound

performance estimates with respect to generalization. The average performance over all folds

was reported for comparison. If model parameters had to be determined, additional 10-fold

CVs were executed for every possible parameter combination by means of nested cross-val-

idation [Varma and Simon, 2006]: in each of the ten outer folds the training set served as

basis for selecting the optimal parameter configuration. If m possible configurations had to

be evaluated, m inner 10-fold CVs were run on the training set of the outer fold. The reg-

ular performance estimation of the outer fold was then conducted using the best of the m

configurations. [Salzberg, 1997, p. 325]

Most classifiers described in Section 6.2 are probabilistic and thus return a real-valued prob-

ability as opposed to just a class label. Thus, for a binary classification problem a decision

threshold other than 0.5 can be established and evaluated. The performance criterion used

for the evaluation of voice activity detection is the area under the receiver operating charac-

teristic curve (ROC AUC, cf. Section 6.4.3), also used for example in [Eyben and Weninger,

2013]. It considers the entire spectrum of possible decision thresholds.

9.2.2. Results and Discussion

Figure 9.2 visualizes the result of the (outer) cross-validation. Keep in mind that an ideal clas-

sifier’s ROC curve would go from the lower-left to the top-left corner and then to the top-right

corner, covering as much area under the curve as possible (ideally 100% of the graph). It is

evident that logistic regression and support vector machines trained using stochastic gradient
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descent1 are comparatively unsuitable for the task. The other classifiers performed surpris-

ingly well and uniformly (AUC = 0.95). Only Gaussian naive Bayes fell short with a still

impressive score of 0.93.
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Figure 9.2.: Receiver operating characteristic (ROC) curves and corresponding area under curve (AUC)
of different classifiers for the task of voice activity detection (more is better). σ denotes the
standard deviation of AUC among outer cross-validation folds (less is better). Error bars in
zoomed-in area show standard deviation of the true positive rate among outer folds at a fixed
false positive rate of .5. N = 200, 000.

Figure 9.3 depicts the respective confusion matrix of all classifiers as a four-fold plot. While the

ROC AUC integrates over all decision thresholds, a fixed value had to be picked for calculating

the confusion matrices. Decision functions were left unchanged with the default threshold of

0.5 although we calculated an optimal threshold of about 0.39, approximately the same as

the rate of positive (voiced) samples in the dataset 2. The optimal threshold was found by

1SVM SGD does not provide classification scores, only categorical labels. This results in a single-point ROC

estimate (threshold 0.5) as opposed to a smooth curve.
2Further experiments showed little difference in performance for both thresholds.
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maximization of the Youden index [Schisterman et al., 2005] and was also roughly the same

as the equal error rate, i.e. the ratio of true positive and false positive rate. Counts were

summed up over all CV folds.
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Figure 9.3.: Confusion matrix of true and predicted classes in voice activity detection accumulated over all
CV folds (N = 200, 000, decision threshold: 0.5)

All nested cross-validations except for LSTMs exhibited stable model selections and showed no

indication of overfitting. For the former, the best performing topology was always single-lay-

ered but the optimal number of hidden nodes fluctuated between 100 and 144. Performance

discrepancies were negligible. Overall, the following configurations were found to be opti-

mal3:

· Random forest: M = 10,δ = ln N , split criterion: entropy

· Long Short-Term Memory RNN: i = 1, H1 = 144, learning rate: 1e-2, momentum:

0.9, cost: cross-entropy, optimization: RMSProp

· Support vector machine: C = 1.6

· Support vector machine SGD: α= 0.001, learning rate: 1e-07

Furthermore, we statistically analyzed the lists of AUC scores from the 10 outer CV folds as

performance seemed similar for some of the classifiers (cf. Fig. 9.2). For neither classifier

the null hypothesis that the sample of scores was drawn from a normal distribution could be

rejected (p > 0.05 using a Shapiro-Wilk test [Falk et al., 2014, p. 105]), thus normality is as-

3Classifiers not listed here are non-parametric or used default configurations as described in [Scikit-learn, 2012].
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sumed. For any given CV fold the AUC values of all classifiers were closely interrelated as they

were computed from the same training and test data. We therefore conducted pairwise one-

tailed paired t-tests (as opposed to pairwise independent t-tests) [Refaeilzadeh et al., 2009, p.

3].4 Due to their obvious inefficacy logistic regression and SVM SGD were excluded from

statistical analysis. We tested the hypothesis H0 that two classifiers perform alike at the given

task with an undirected alternative (two-tailed test). As this led to
�5

2

�
= 10 pairwise com-

parisons we adjusted the significance level to α∗ = 0.005 using the conservative Bonferroni

correction [Greene and D’Oliveira, 1985, p. 107]. Detailed results (effect sizes, p values) can

be found in Appendix C. All differences were significant except for Random Forests vs LSTMs.

Subsequently, both will be considered equivalent in terms of performance.

Although there is a statistically significant order over classifier performance (for the given met-

ric and data), it is reasonable to claim that differences among the top classifiers are negligible

in practice and that other considerations like computational demands in training and pre-

diction, on-line learning capability, availability of platform-optimized implementations, etc.

should dictate the final choice of a classifier for productive use.

Choice of features

We repeated the above experiments with different feature sets:

• Rasta PLP with deltas (18+18)

• Rasta PLP with deltas (18+18), pitch, zero crossings, spectral entropy

• MFCC with deltas (18+18), pitch, zero crossings, spectral entropy

No meaningful differences could be found.

Furthermore, we performed feature selection on our standard feature set (MFCC with deltas)

by means of Chi Squared Attribute Evaluation [Setiono, 1995] and Principal Component Anal-

ysis [Guo et al., 2002]. Both methods underlined the importance of using the whole set of

features. The χ2 test selected all 36 features, PCA attributed 95% of the variance to the first

32 features. Note that MFCCs are already decorrelated by means of a discrete cosine trans-

form. Normalizing the features with short-term CMVN (cf. Section 6.1) instead of global

moments caused significant deterioration (ROC AUC: 0.77). The most dominant distinction

between speech and silence lies in the amount of energy in the signal. Short-term normal-

4We acknowledge that t-tests are occasionally mentioned to exhibit a "somewhat elevated probability of Type I

error" [Dietterich, 1998, p. 1]. However, this is often omitted and alternatives have "not been widely accepted"

[Refaeilzadeh et al., 2009, p. 3]. Even Dietterich recommends paired t-tests due to their statistical power if

one considers the possibility of missing a difference to be more severe than the chance of erroneously detecting

one. We account for the slightly increased risk of committing a type I error by using the conservative Bonferroni

correction instead of the equally common but less strict Bonferroni-Holm [Holm, 1979] correction.
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ization marginalizes this discrepancy for windows with homogeneous content. We therefore

hypothesize that localized normalization doesn’t impede the identification of non-stationary

ambient noise but impairs the detection of silence.

9.3. Impact of unknown impulse responses

9.3.1. Methodology

To analyze the impact of test data coming from a different recording system than the training

data, we conducted two experiments. In the first experiment, E1, we simulated an unknown

smartphone in a known position, in the second, E2, an unknown smartphone in an unknown

position. For each experiment the VAD subset (see above) was convolved once with the train-

ing impulse responses and once with the test impulse responses. After that, we randomly

sampled 200,000 indices and picked the corresponding frames of each version of the VAD set.

Thus, the frames had the same original audio content, differing only in the induced channel

effect.

As we had four smartphones, the experiments comprised four evaluations, respectively, over

which we averaged. In E1, the training IR set consisted of the twelve IRs of the three non-target

smartphones in all four positions. The test IR set represented the same four positions, but of

the target smartphone. As an evaluation of all 16 possible phone-position combinations in

E2 would have been too time-consuming, we picked the four pairs along the diagonal of the

phone-position matrix (cf. Table 9.2). That way, each position and each phone was evaluated

once, respectively. Each training IR set consisted of the three non-target phones in any of the

three non-target positions.

Phone Test position

LG G2 pocket, microphone upwards

Samsung S3 mini pocket, microphone downwards

Samsung S1 desk

HTC One X leather bag

Table 9.2.: Phone-position combinations for testing in E2

For this series of experiments we employed Random Forests which constituted the second-best

classifier for known impulse responses. Support Vector Machines, the marginal winner (see

above), proved to be too time-consuming to train for continuous experimentation. All other

parameters including features were the same as in the previous experiments.
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9.3. Impact of unknown impulse responses

9.3.2. Results and Discussion

In E1, the overall ROC AUC score dropped only by a small percentage to 0.94 with the optimal

threshold staying almost the same (0.40). Similarly, performance for E2 was 0.93 with an

optimal threshold at 0.44. Equal error rates were found to be 14.2 and 15.2, respectively.

Confusion matrices for the default threshold of 0.5 are depicted in Figure 9.4.
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Figure 9.4.: Confusion matrix of true and predicted classes in voice activity detection with unknown im-
pulse responses – accumulated over all CV folds (N = 4 · 200, 000).

When we conducted additional experiments with no impulse responses present in the training

data at all, performance didn’t deteriorate substantially either (ROC AUC: 0.91). However, in

that case, the optimal decision threshold soared from 0.39 to 0.7, resulting in bad performance

for an unaltered default threshold of 0.5.

In conclusion, the effect of unknown impulse responses on classification performance in

voice activity detection can be considered negligible if accounted for by the incorporation

of some channel effects in the VAD model.
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In the preceding chapter, we evaluated common methods for detecting speech in a given sig-

nal. In this chapter, we move one step further along our audio processing pipeline to the field

of speaker detection. We consider various variations of two common techniques: UBM-GMMs

and i-vectors. A third technique, JFA, is ruled out early due to bad performance. We will con-

clude that particular i-vector configurations with dedicated channel compensation methods

perform very well in our use-case (equal error rate < 0.10).

10.1. State-of-the-Art Methods

10.1.1. GMM-MAP

In speaker detection/verification there is only a single target speaker and the set of impostors

is open, i.e., unknown. The entire set of speakers other than the target is usually modeled in

form of a single so-called Universal Background Model (UBM). The number of components for

an individual speaker model is highly dependent on the amount of training data. While some

authors, e.g. [Reynolds et al., 2000], list orders from 64 to 256, [Lu et al., 2011] showed that

for a small amount of individual training speech, 16 to 32 components are sufficient. For the

Universal Background Model the number of components is heavily increased along with the

number of training samples in order to represent the broad variety of phonetic classes in the

UBM’s population. Depending on available computational power and the use case scenario

common UBMs range from 128 to 2048 components [Reynolds et al., 2000, p. 26].

In addition to the estimation of the model parameters θ by the MLE-based EM approach (cf.

section 6.2.1), the parameters of an existing model can also be adjusted by MAP adaptation.

See [Reynolds et al., 2000] for mathematical details. This allows for adapting the UBM to

the target speaker, often by only shifting the means (cf. Fig. 10.1), instead of training a

speaker model from scratch. Benefits of this approach are, a.o., faster computation of the

speaker model, sufficiency of less individual training data through the incorporation of prior

knowledge ("speech [...] in general" [Kinnunen and Li, 2010, p. 10]), and a "tighter coupling"

between UBM and target speaker model "which allows for a fast-scoring technique" [Bimbot
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10. Speaker Detection

et al., 2004, p. 436]. The adapted model may be "better able to handle unseen data as it

inherits the modeling power of the underlying UBM" [Togneri and Pullella, 2011, p. 32].
MAP adaptation constitutes the de-facto standard for GMM-based speaker detection systems

throughout the literature.

Figure 10.1.: MAP adaptation (based on [Dehak and Shum, 2011])

Scoring

We evaluate two common types of scoring feature vectors with GMMs: the GMM-UBM ap-

proach [Togneri and Pullella, 2011, p. 32] simply compares the log-likelihood ratio of the

personal GMM and the UBM with a threshold that incorporates the priors of both classes.

The z-norm approach [Bimbot et al., 2004, p. 439] further normalizes the ratio. A pre-deter-

mined set of impostors, the impostor cohort, is scored against the personal GMM and the UBM

as part of the post-training procedure, mean and standard deviation of the log-likelihood ratio

scores are stored. When classifying unknown data, the log-likelihood ratio score of the feature

vectors is zero normalized. Only scores that according to the cumulative distribution function

of the standard normal distribution are highly unlikely to stem from the impostor population

are accepted. The desired percentage directly dictates the decision threshold.

10.1.2. Joint Factor Analysis

More recent techniques use Gaussian Mixture Models as an extended feature front-end in form

of Gaussian supervectors. Instead of scoring utterances against a trained personal GMM, a

new GMM is MAP-adapted from a UBM for each unknown utterance that is to be scored. Each

utterance, however defined in terms of duration, thus marks the training set of a model that is

built upon the UBM as prior for “speech in general”. The means of the Gaussians of this new,

"temporary" GMM are then concatenated to a so-called supervector that serves as a feature
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vector for any other classifier. [Kinnunen and Li, 2010, p. 18]

To compensate for channel effects the Joint Factor Analysis (JFA) technique was proposed.

It "considers the variability of a Gaussian supervector as a linear combination of the speaker

and channel components" [Kinnunen and Li, 2010, p. 19]. Using standard factor analysis

methods, an observed supervector M can then be decomposed into independent components:

M=m+s+c. In this equation m denotes a speaker-independent speech component, the UBM

supervector. Channel variability is modeled by the equation c = Ux where U is a rectangular

matrix, whose columns are the eigenchannels, and x is the vector of channel factors [Dehak

et al., 2009, p. 1]. The speaker component is modeled by s = Vy + Dz. It consists of the

rectangular matrix V, its columns being the eigenvoices, and the speaker factors y. Dz marks

a residual component. The hyperparameters of this model, U, V and D, are estimated on

large datasets [Kinnunen and Li, 2010, p. 19]. Channel compensation for an utterance is

conducted by simply discarding c and using s as the personal model. For more information

see [Kinnunen and Li, 2010], [Dehak et al., 2009], [Dehak, 2009].

Scoring

For scoring, the matrices U, V and D are used to get estimates of x, y and z in terms of their

posteriors given the observations (utterance to be classified). The log-likelihood score function

and its derivation are described in great length in [Kenny et al., 2007] and [Glembek et al.,

2009]. All scores are z-normalized (cf. Section 10.1.1).

10.1.3. Total Variability Space (I-Vectors)

A more sophisticated technique based on supervectors and factor analysis is motivated by

the observation that channel factors as modeled by the JFA often contain speaker-specific

information [Dehak, 2009, p. 86]. Instead of independently estimating the distinct speaker

and channel subspaces like in JFA, one can also estimate a so-called total variability space that

makes no distinction between speaker and channel factors. Instead of M=m+Vy+Dz+Ux the

model of an utterance vector becomes M=m+Tw with the low-rank total variability matrix T

and the total factors vector w, commonly referred to as i-vector (intermediate vector) [Dehak

et al., 2011, p. 789]. Channel compensation (and also dimensionality reduction) can be

performed by applying linear transformations to w, for example Linear Discriminant Analysis

(cf. Section 6.3.2) which maximizes inter-speaker variability and minimizes intra-speaker

variability. For more information we refer the reader to [Kenny et al., 2014].

97



10. Speaker Detection

Depending on whether the training data for a target speaker (enrollment data) is used as a

whole for creating the personal model through MAP-adapting the UBM or whether the data is

split into chunks which are used for individual adaptation, the target speaker is represented

by a single i-vector or multiple ones (cf. Figure 10.2). The decision is subject to the intended

scoring method. Here, we focus on single-vector models.

Figure 10.2.: Architecture and pipeline of a Total Variability system before scoring.

Scoring

We consider several common scoring procedures. Each is based on one of two meta-ap-

proaches to classifying utterances: cosine distance and Gaussian PLDA classification.

Cosine In the first approach, we measure the cosine similarity between the model i-vec-

tor and the test i-vector. The resulting score is then normalized. As with GMMs, we

evaluate z-norm and disregard t-norm due to its runtime impact. However, as [Dehak

et al., 2010] have shown the effect of subsequent zero and test normalization on cosine

similarity can be incorporated mathematically into the latter without the need for any

kind of explicit normalization. The method relies on pre-computed mean and covari-

ance statistics from a collection of impostor i-vectors. The literature refers to this modi-

fied cosine similarity metric as cosine kernel normalization [McLaren and Van Leeuwen,

2011], [Shum et al., 2010].

PLDA In the second and most recent approach, the model i-vector is used to train

a probabilistic LDA (PLDA) classifier [Prince and Elder, 2007] of the above JFA model
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M=m+Vy+Dz+Ux1. PLDAs have been employed successfully in speaker recognition,

for example in [Kenny et al., 2013] and [Rajan et al., 2013]. At the time of writing,

this approach “achieves state-of-the-art performance” [Rajan et al., 2013, p. 1]. The

three common types – standard, simplified and two-covariance PLDAs – are reviewed

in [Sizov et al., 2014] and are evaluated as mostly equivalent in terms of predictive

power. We treat the PLDA type as a model parameter and consider all three options. All

PLDA scores are z-normalized.

10.2. Performance evaluation

We conducted multiple experiments to evaluate the performance of current state-of-the-art

methods for speaker detection in our mobile context. It is characterized by the potential pres-

ence of a plethora of background noises as well as the likely alteration of acoustic signals

through handset variations and fabrics between signal source and receiving device. In Sec-

tion 9.2 the impact of known and unknown channel effects on performance in voice activity

detection was investigated. In speaker detection, contrary to VAD, the suitability of all meth-

ods we evaluate for coping with channel effects in general is already assessed by the literature.

For speaker detection we therefore focus on unknown channel effects and examine how they

are best compensated. All experiments in this chapter simulate the same scenario: a smart-

phone is carried in an unknown position. It records audio and subsequently performs speaker

detection.

The experiment pipeline comprised three steps: training of all general models (UBM, com-

pensation models etc.), user enrollment, i.e. training of the personal models, and evaluation.

We particularly focused on a comparison of different enrollment strategies with practical con-

straints, e.g. minimal user involvement, in mind, using the impulse responses described in

Section 7.3. The three enrollment strategies we evaluated were:

E1: Same phone, single position Enrollment data was recorded on the user’s tar-

get smartphone in a single session and, thus, position. For that we picked the smart-

phone position with the presumably smallest signal alteration: a desk in front of the

user. One might make a point that a more intuitive use-case would be that the user

holds her phone in her hand. While we know that signal alterations vary with small

positional changes, we expect the magnitude of these alterations for both cases to be

very similar as no objects or fabrics lie between sending and receiving end of the signal.

1While the total variability is preserved by the i-vector, it is broken down into between- and within-speaker vari-

ability by the PLDA. The JFA approach is mimicked in the total variability space instead of the GMM supervector

space. Note that it is common to apply both LDA and PLDA subsequently. The former for transformation, the

latter for transformation and classification.
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E2: Other phones, multiple positions The user’s enrollment data was recorded in

a single session on a studio microphone under clean conditions. In post-processing, a

plethora of positions was simulated by means of convolution with impulse responses of

other phones.

E3: Same phone, multiple positions Recording was conducted in multiple smaller

sessions (e.g. one minute each) on the user’s target smartphone. The position of the

phone was different for each session.

10.2.1. Methodology

Experiments were carried out on a custom speaker dataset which contained speech sampled

from each of our major corpora: five speakers from TIMIT, Buckeye, Mobio, and Voxforge, re-

spectively (9 female, 11 male). The UBM consisted of speech taken from TIMIT and Buckeye

(∼ 1, 500, 000 voiced frames). Voice Activity Detection was performed and only frames classi-

fied as speech were processed for speaker detection. We employed Random Forests (M = 10)

for VAD and used ∼ 5, 000, 000 frames of annotated speech from TIMIT and Buckeye for

training. All sets were fully disjoint. To improve robustness training data is often recorded

in more than one condition (cf. VAD methodology in Section 9.3.2). In the literature this

is called multiconditioning [sic] [Rajan et al., 2013], [Kinnunen and Rajan, 2013], [Woo

et al., 2006]. Usually, the term condition refers to background noise at a particular signal-

to-noise ratio [Ramirez et al., 2007] but can also extend to other aspects like the recording

source [McLaren and Van Leeuwen, 2011] and spatial characteristics like reverberation [Gar-

cia-Romero et al., 2012]. For our experiments, we mixed all speech data with noise at various

SNR levels and also convolved them – distributed equally – with varying impulse responses,

both on an utterance basis as described in Section 7.4. This procedure matches what [McLaren

and Van Leeuwen, 2011] and [Garcia-Romero et al., 2012] call pooling of sources. In its final

form, that is, after mixing, the speaker dataset consisted of ∼ 1, 000, 000 frames. In terms

of features, we kept the design of the VAD experiments described in Section 9.2.1: frames

of 20ms length with 10ms offset and 36-dimensional, standardized MFCC vectors including

1st-order deltas.

For the GMM, we selected optimal parameters, i.e. the number of mixtures, using the Bayesian

information criterion [Murphy, 2012, p. 163]. The optimal configuration was used later for

all supervector based approaches. The scoring method was considered a model parameter as

well. Parameter selection was performed in each CV fold, individually. Covariance matrices

were diagonal and only means were MAP-adapted. A mixed-gender model was used as “a

gender matched UBM performs significantly worse under cross-gender test conditions” [Dunn

et al., 2001, p. 2] which we encounter in real-life scenarios.
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For all other configurations we picked parameters that are commonly listed in the literature:

• For the plain TV approach with modified and unmodified cosine scoring as well as for

the standard PLDA, we used 400-dimensional whitened and length-normalized [Garci-

a-Romero and Espy-Wilson, 2011] i-vectors. We reduced the number of dimensions to

200 by applying LDA (not to be confused with PLDA) followed by WCCN (cf. Section

6.3). The rank of the standard PLDA matrices V and U was set to 200, respectively [Jiang

et al., 2014]. A diagonal covariance matrix was used.

• For the simplified and the two-covariance PLDA 600-dimensional i-vectors were whitened,

length-normalized, and transformed by LDA and WCCN. The LDA projection reduced

the number of dimensions to 550. The rank of V and U was set to 300 and 0, respectively.

Full precision matrices were used. [Sizov et al., 2014]

For each enrollment strategy E1, E2, and E3 we studied multiple target smartphones and target

positions which were not part of the training data. For that purpose the diagonal experiment

design described in Section 9.3.1 was reused, leading to four distinct (smartphone, position)

pairs and, thus, four runs per experiment. Mean performance is reported here. All impulse

responses not representing the target phone or the target position (including the approximated

ones, cf. Section 7.3.3) were used in the training process.

We averaged performance over all 20 speakers. In each of the 20 iterations per experiment

run one speaker was selected as target speaker, the remaining 19 were declared impostors

of that iteration. These iteration-specific impostors must not be confused with the general

impostor cohort which was used for score normalization. In each iteration we conducted

10-fold cross validation to pick different parts of the data for training and testing for both the

target speaker as well as for the impostors. The training subsets for impostors were discarded

(for that iteration) since only the target speaker’s model had to be trained. As recording

enrollment speech is cumbersome for the user, we limited the amount of training speech to

a maximum of ten minutes, discarding the rest. In practice, more enrollment data could, for

example, be obtained on the fly by tapping the user’s phone calls. For TV-based approaches, a

single i-vector was computed from the multiconditioned enrollment data which is equivalent

to averaging multiple i-vectors of different conditions as is done in [Rajan et al., 2013]. For all

of the 20 speakers the test data was cut into chunks of arbitrary duration [Kenny et al., 2013] to

simulate realistic turn-taking. The length was picked randomly from the range [4;20] seconds.

Other values that roughly reflect common turn durations would have been equally suitable and

remain to be tested. All chunks, i.e. turns, in the test set were shuffled (across speakers), then

concatenated to a single big test vector. As the GMM scores frames individually, smoothing

over a non-rolling window of 256 frames (2.5 seconds) [Lu et al., 2011], [Xu et al., 2013]
was applied, yielding one speaker prediction per window. The same fixed window size was

used for scoring with all variable-length TV-based classifiers to ensure a fair comparison. As
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performance metric we chose the equal error rate2. However, as the test set consisted mostly

of impostors (∼ 9
10) and the data was thus heavily imbalanced in favor of negative samples,

we also report the confusion matrix for further analysis by the reader (cf. Appendix D).

The UBM data was grouped according to speakers (n = 503) and reused as impostor cohort

as well as for estimation of all transformation matrices (TV, LDA, WCCN etc.), as is sometimes

done in the literature, e.g. [Finan et al., 1997], [Bimbot et al., 2004], [Dehak et al., 2011].

Our implementation largely relies on the Bob Spear framework [Khoury et al., 2014].

10.2.2. Results and Discussion

Parameter selection for the GMM was stable and the number of Gaussians was set to 256.

Although models of higher order are common in the literature, gains are often very small

[Nautsch, 2014, p. 88ff.]. Surprisingly, JFA exhibited abysmal performance in most exper-

iment runs. We therefore abandoned it mid-experimentation due to its computational de-

mands.

Figure 10.3 shows a custom boxplot of the results. The highlighted center of each box rep-

resents the classifier’s EER score averaged over all test speakers. In practice, the decision

threshold (here: the EER threshold) is chosen a-priori on a test set and remains the same in

all use-cases. Hence, we computed a given speaker’s EER score over all CV folds and positions

(runs), not as an average of individual folds or runs. The error bar marks standard deviation

of EER scores among speakers while the two single points above and below the bars mark

the best and the worst speaker-specific EERs. The box, as a second error indicator, marks the

standard deviation among positions of the smartphone.

Best performance was achieved with enrollment strategy E3 and the cosine TV classifier with

an average error rate of only 15%. The difference between E3 and E2, however, is small.

Only for GMMs E2 seems unfavorable. There are two potential explanations: either TV-based

approaches are generally superior to GMMs with respect to speaker recognition. Or the per-

formance gap is due to dedicated compensation methods for channel effects (LDA and WCCN)

which are not available for the GMM.

On the other hand, we see a noticeable discrepancy for TV-based approaches between E1

and the other two enrollment strategies. If channel compensation worked properly, it should

marginalize position-specific effects and we would observe no meaningful differences between

E1 and E3. We will revisit this observation in Section 10.2.3. We hypothesize a) that TV-based

approaches are generally more suitable for the task and b) that to unfold their potential these

2here: ROCCH EER, to be more specific; see [Brummer, 2010, p. 72ff.]
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10.2. Performance evaluation

approaches rely on multiconditioning with respect to channel effects. While this is in line

with the reported importance of multiconditioned enrollment data in [Rajan et al., 2013], the

disparity between clean and multiconditioned data is far more gaping in our scenario.

GMM-MAP TV cosine PLDA
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Figure 10.3.: Custom boxplots of speaker recognition performance (metric: equal error rate) for various
enrollment strategies.

In section 7.3.3 we saw that in terms of magnitude of their spectral alterations smartphone-spe-

cific effects are exceeded by position-specific effects. This observation is reflected in the simi-

larity of the two multiconditioned experiments, E2 and E3, for TV and PLDA.

Between-speaker variance seems to be slightly smaller for cosine-based scoring methods than

for PLDA while position-specific variance is equal for all approaches. As is to be expected, per-

formance deteriorates slightly the more the smartphone is covered. Analogously, the average

optimal decision threshold increases and the identification processes gets stricter.
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Figure 10.4.: E3: DET curves of speakers (non-linear axes). Green and red point mark FRR/FAR of maxi-
mum and minimum position-specific EER thresholds.

In practice, the decision threshold is set a priori with the help of a test set3. This raises the

question: how does the system perform in a position that radically differs from the one that

helped determine the threshold? To answer this question the detection error trade-off (DET)

curves [Martin et al., 1997] for a randomly drawn subset of the speakers in our evaluation

(TV cosine kernel) of E3 were plotted (Figure 10.4). Usually, we set the overall EER threshold

over all conditions (positions) as decision threshold. Here, we also calculated EER thresh-

olds for each condition individually, selected the maximum and the minimum threshold, and

3It is common to either aim for equal error rates or optimize overall performance and accept uneven rates of

false acceptance and false rejection.
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marked the according false positive rate and false negative rate in the DET plot. The results

underline how crucial it is to have data sets that include extreme situations and reflect real-

istic proportions of conditions. For some speakers, changing the position of the smartphone

may otherwise lead to disproportionately high misclassification rates. This can, for example,

be observed in the plot of speaker 16: while the overall EER threshold leads to an equal error

of roughly 12% (half total error rate: 12%), the EER threshold for an extreme position shifts

the error to a false acceptance rate of 1% and a false rejection rate of 58%, thereby massively

worsening overall performance (half total error rate: 29.5%). This effect is far greater in

speaker recognition than in voice activity detection.

Rasta PLP features instead of MFCCs did not improve performance (E3, TV cosine: EER 0.18,

similar DET curvature).

10.2.3. Examination of transformations for channel effect compensation

To revisit and test our hypothesis that LDA and WCCN fail to eliminate position-specific chan-

nel effects and that favorable performance is to be attributed to multiconditioning, we reran

our experiments for E3 in various configurations with respect to dedicated channel effects com-

pensation methods. If the hypothesis is true, we expect performance to be the same without

channel effects compensation. Results are visualized in Figure 10.5.
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E3: Same phone, multiple positions

Figure 10.5.: Comparison of different configurations w.r.t. channel effect compensation. Scores constitute
equal error rates.

It is evident that in our scenario both LDA and WCCN not only fail to improve speaker recogni-

tion under mismatched conditions, especially in combination they even exacerbate classifica-

tion. In its attempt to project the data into a space with minimal variance induced by different

smartphone positions, WCCN also discards characteristics of the speaker in the signal. We con-
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clude that best results achieved with LDA and without WCCN. This conclusion is not just based

on classification accuracy but also on the reduced dimensionality of LDA projected vectors and

the resulting speed-up in scoring.

10.2.4. Short-Term Cepstral Mean and Variance Normalization

While in the above experiments all feature vectors were standardized using mean and vari-

ance of the training data, we also investigated short-term normalization, often called CMVN

(cf. Section 6.1.4), on a by-window basis. CMVN was applied after VAD to not impede the

detection of silence (cf. Section 9.2.2). In combination with multiconditioning, short-term

normalization massively improved performance and reduced the EER for i-vectors with cosine

kernel normalization to 0.03. Previous conclusions held: cosine scoring remained superior to

PLDA scoring (EER 0.05) and transformations (LDA, WCCN) showed no impact. Badly picked

thresholds still amplified misclassification rates disproportionately.

10.2.5. Variable-length windowing

In speech processing research, the full audio dataset is usually available before an experiment

is conducted, i.e., there is no live audio stream. Thus, it is common to perform voice activity

detection, drop all frames without speech, and further process the remaining frames in subse-

quently formed windows to smoothen classification results. In a real use-case, however, VAD

can’t be performed in advance. As windows must only contain speech for speaker recognition

to work properly, having windows of fixed length is impractical as available frames aren’t pro-

cessed until the window is filled with speech. During real conversations pauses are bound to

occur and processing gets delayed frequently. Variable length also comes with the advantage

of an increased probability that the window only contains speech of a single speaker. Thus,

higher accuracy is to be expected. But variability in window length comes at a price: with

shorter windows one sacrifices reliability in the estimation of the speaker’s profile in the i-vec-

tor space. In our case, where the smoothing window also constitutes the basis for short-term

mean and variance estimation, the drawback also applies to CMV normalization. Along with

this trade-off we investigated whether i-vector extraction in the training procedure should

match its testing counterpart or whether we should aim for more reliable estimates and make

use of the fact that for training all information is available in advance.

Two approaches were compared: in the first, the training procedure for speaker models was

left untouched. Non-voiced frames were dropped in advance. Voiced frames were consec-

utively grouped in windows of 256 and CMV normalized. A single i-vector was computed

from the entirety of all voiced enrollment frames. In the second approach, windows of 256
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frames were formed prior to voice activity detection. Non-voiced frames were dropped and

windows with less than 50% speech discarded. After that, the length of each window lay in

the range [128;256]. To match the subsequent testing procedure, i-vectors were extracted on

a by-window basis. As we only consider single-vector models, a mean vector was computed

in accordance with [Rajan et al., 2013]. Both approaches shared the same testing procedure

and i-vectors were extracted like for training in the second approach. No other parameters

were changed with respect to previous experiments. Figure 10.6 depicts a plot of the results.

Matched Full-length
0.00

0.05

0.10

0.15

0.20

0.07 0.06

Data length in training

Figure 10.6.: Data length: should training data be of the same length as testing data or should the maxi-
mum be used? Scores mark the equal error rate.

The on average smaller size for variable-length windows causes performance to slightly dete-

riorate to an EER of 6%. Nevertheless, the system still achieves impressive accuracy.

Full-length training appeared to be slightly superior to truncated training where the same data

length was used as for testing. This finding would be in line with results in [Kanagasundaram

et al., 2011]. To find out whether the difference is statistically significant, we conducted

further tests. A Kolmogorov-Smirnov test [Lopes, 2011, p. 718] rejected the null hypothesis

that either set of scores was sampled from a normal distribution (p < 0.01). Instead of a

t-test we therefore conducted the nonparametric Mann-Whitney U test [Falk et al., 2014, p.

150]. The null hypothesis of both samples stemming from the same population could not

be rejected (p > 0.05) and no statistically significant difference was found between the two

training approaches.
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10.3. Summary

In conclusion, the following statements can be made:

• Speaker detection in a mobile context can be assumed to work reasonably well in every-

day scenarios.

• Multiconditioning and CMVN are essential for coping with variance in terms of the po-

sition in which the recording smartphone is carried.

• Multiconditioning is also crucial to determine an adequate speaker-specific a-priori de-

cision threshold.

• While both TV based approaches perform similarly, we choose cosine scoring with cosine

kernel normalization due to its implicit incorporation of test normalization and due to

its fast speed. LDA is performed to reduce the number of dimensions from 400 to 200

and thus to alleviate computational demands.

• With the above configuration, projecting and scoring an utterance of 2.56 seconds takes

about 0.06 seconds in our unoptimized implementation on a single 3.7GHz Intel Xeon

core. This corresponds to a real-time factor of 0.02.

• Matching the length of training and testing utterances does not seem to influence per-

formance.
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11. Affect Recognition

In this chapter we review current state-of-the-art methods for recognizing affect from audio

signals. As stated in Chapter 4, continuous affect recognition can be considered a superset of

discrete emotion recognition with greater modeling power. The benefits of predicting affective

dimensions are twofold: emotions are captured implicitly as well, and we evade the need for

training data of particular affective phenomena by instead modeling their underlying affective

components.

For reasons of performance we limit ourselves to MFCC features for this task. We will conclude

that affect recognition in naturalistic conditions (noise, channel effects) works moderately

well and we are able to coarsely capture the four affective dimensions (average correlation

coefficient between predicted affect function and ground truth: 0.5).

11.1. State-of-the-Art Methods

Techniques for affect recognition are similar to those used in speaker recognition and modern

speech processing in general. Thus, most of the theoretical concepts have been covered in

previous chapters. Study of the literature reveals two differences: in affection and emotion

recognition, a wider variety of features is used due to the incorporation of prosodic informa-

tion – this is opposed to a focus on spectral features in speaker recognition. Second, as affect

recognition is continuous, classification must obviously be replaced by regression.

Support Vector Regressors (SVR), variations of their classifier counterparts introduced in Sec-

tion 6.2, have successfully been employed by many researchers [Gunes et al., 2011, p. 829],
[Zeng et al., 2009, p. 49] and have also won [Kächele et al., 2014] the 2014 Affect and

Depression Recognition Challenge (AVEC 2014) [Valstar et al., 2014]. In [Schäfer, 2015, p.

44] we have achieved results comparable to those of SVRs using Random Forest Regressors if

features were limited.

A more recent trend has its roots in the still emerging field of Deep Learning [Han et al.,

2014]. In particular, Long Short-Term Memory Recurrent Neural Networks (LSTM, cf. Section

6.2) have been reported to outperform SVRs in many scenarios, e.g. [Wöllmer, 2013, p. 134
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ff.], [Eyben et al., 2012], [Tian et al., 2015].

As mentioned above, emotion and affect recognition usually involve a plethora of features. A

manageable set of low-levels descriptors if often inflated by the inclusion of delta coefficients

and various statistical functionals, with a resulting size in the thousands: e.g., the Compare

feature set, baseline set for various INTERSPEECH challenges in affect recognition, comprises

6373 features [Schuller et al., 2015]. To reduce complexity, [Eyben et al., 2012] performed

correlation-based feature selection on low-level descriptors. For each of the four affective

dimensions (Chapter 4), MFCCs are found to be the most important subset: “We see that

MFCC are always the most frequently selected features (also supported by Wu et al. [2010b])
[...]” [Eyben et al., 2012, p. 15]. As our current pipeline (voice activity detection and speaker

detection) relies only on MFCCs and their 1st-order deltas, we confine ourselves to this limited

set of features for affect recognition as well. Compared to sets commonly used in that domain,

this cutback appears to be drastic. However, the reader must keep in mind that all feature

extraction must eventually be performed on a mobile device in real-time. Restriction to the

single most promising set of features seems sensible. Also, some features are simply unsuitable

for mobile use-cases. For example, energy/loudness, which correlates strongly with activation

[Eyben et al., 2012, p. 23], is bound to vary for other reasons than affect: the user might move

away from the smartphone or have it covered. Furthermore, fairly successful approaches with

feature restrictions similar to ours have been published, e.g. [Eyben et al., 2009], although

the evaluation methodology was not comparable to ours.

While most bodies of work perform regression on their features directly, others project them

into Total Variability (i-vector) space first, e.g. [Lopez-Otero et al., 2014] who also limited

features to MFCCs. The i-vector approach seems more suitable for our use-case as it allows

for easy compensation of channel effects, an issue not explicitly considered by those who use

MFCCs directly. Lopez et al. advocate the use of i-vectors “due to the ability of this paradigm

to get rid of the speaker and channel variabilities”. Furthermore, they find that “experimental

results obtained in the framework of the AVEC 2013 affect recognition sub-challenge showed

an improvement [...] when using the [i-vector] paradigm, as well as a huge dimensionality

reduction of the feature vectors used to represent the speech segments. [Lopez-Otero et al.,

2014, p. 9] In our evaluation we will compare both approaches.
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11.2. Performance evaluation

11.2.1. Methodology

Experiments were conducted using the Semaine corpus (cf. Chapter 7) which contains record-

ings of naturalistic emotionally colored conversations between an operator and a participant.

The former acts according to a predefined emotional stereotype and tries to elicit an emotional

reaction from the user. Each recording session is then annotated by a subset of eight specially

trained human raters in total with the help of the so-called FeelTrace program. Among other

things, it provides adjustable sliders for the four affective dimensions listed in Section 4.1:

valence, activation, power/potency, novelty/expectation. Each dimension is mapped to the in-

terval [-1;1]. Furthermore, sessions were fully transcribed on the word level.

Figure 11.1.: Affect distribution in Semaine

We partly aligned our methodology with

the one described in [Eyben et al., 2012,

p. 8 ff.]: As sessions were annotated by

multiple raters, we computed average

labels as ground truth (cf. distribution

in Figure 11.1), omitting sessions with

less than three rater annotations. Un-

fortunately, some of the annotations are

malformed with respect to length. An-

notations longer than the corresponding

sound files were truncated. If any affect

annotation was considerably shorter than the sound file (< 99 %), the session was omitted,

otherwise truncated. We ended up with 69 sessions of 20 participants.

The data was split up and grouped by participant. We conducted speaker-independent tests as

in real life, systems usually don’t have access to speaker- and affect-specific training samples.

For performance validation we iterated over speakers: the target speaker’s data was used for

testing, the data of the remaining speakers for training. With our evaluation we wanted to

answer the question of how well affect recognition works in our mobile scenario (limited fea-

tures, noise, unknown channel effects). Therefore, we mixed Semaine with ambient noise

and induced channel effects by convolution of the original signal with according impulse re-

sponses. The mixing methodology was the same as the one described in Section 7.4. To each

of the speakers we assigned a particular test impulse response. The training data of the other

speakers was multi-conditioned on a session basis, i.e. each session was convolved as a whole

with an impulse response randomly drawn from the pool of remaining IRs (different position

and phone than test data). While we first used the entire set of non-target speakers for train-
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ing, we noticed an improvement using subsampling. Hence, we used a random subset of ten

speakers for training. All data underwent CMVN (windowed standardization of MFCCs).

Under the assumption that emotions/affect components are rather static within a moderate

time frame (socio-emotional real-time, cf. Section 4.1.1) and don’t fluctuate wildly, [Eyben

et al., 2009, p. 14] apply a low-pass filter on affect predictions to smoothen out high-frequency

fluctuations (blatant example of an unwanted time series prediction: 1- 2- 0 - 1 - 40 - 2 - 1).

Through cross-validation we evaluated the filter specified in said publication, a Butterworth

filter [Parks and Burrus, 1987] as well as a Savitzky-Golay filter [Savitzky and Golay, 1964],
the latter two being common low-pass filter implementations (e.g. [Ferris et al., 2005], [Pan

et al., 2003], [Ruffin and King, 1999], [Chen et al., 2004]). The filter’s optimal window size

was determined via CV as well. Note that applying a low-pass filter comes with a trade-off:

for a given prediction, half of the window has to be known in advance. A prediction delay is

introduced subject to the window size, thus the latter should not exceed a reasonable length

for socio-emotional real-time recognition.

For the time-sensitive LSTM we employed a strategy once again similar to the one described

in [Eyben et al., 2012, p. 18]where sessions were split in sequences. For the sake of simplicity

we didn’t align sequences with user turns but rather divided each session into 50 sequences

to obtain sequences of varying length (across sessions), roughly comparable to those listed in

the above body of work. For the NN topology we used a design with only one hidden layer

and 50 units, the same design that was used in [Eyben et al., 2009, p. 14] with a similarly

reduced set of features. The authors highlighted the importance of adding Gaussian white

noise to the training data to prevent overfitting for some configurations. We not only made

the same observation, presumably due to the channel effects we even had to increase the

standard deviation from σn = 0.3 to σn = 0.9 to get a good generalization. A learning rate

of α=1e-6 was picked for gradient decent with 70 mini-batches and a momentum of 0.8 (cf.

Section 6.2.6 for optimizer, Currennt implementation). Training was stopped after 100 epochs

or after 5 epochs without improvement to the validation set (10% of the training data). It must

be mentioned that some trained LSTMs exhibited erratic behavior: despite convergence and

low cost evaluations on the validation set, predictions appeared to be random (no correlation

to ground truth at all). As this could be checked without involving the test set, training was

reiterated in such a case with different initialization in terms of weights and noise.

Parameter selection (classifier parameters, VAD threshold, smoothing window size) was con-

ducted with 10-fold cross validation.
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11.2.2. Results and Discussion

As was to be expected, results improved with the width of the smoothing window. The im-

provement saturated at a width of about 25 seconds. In live use, a window of that size would

introduce a delay of 12.5 seconds which we consider a perfectly acceptable trade-off. Best

performance was achieved with a Savitzky-Golay filter. The differences between the tested

VAD decision thresholds (0.3, 0.4, 0.5; cf. Section 9.2.2), i.e. the aggressiveness of the voice

detection, were minor.

Result of our tests with a smoothing window of 25s and a VAD threshold of 0.5 are listed in

Table 11.1. Unfortunately, the i-vector computation very frequently raised numerical prob-

lems using the standard OpenBLAS linear algebra library. Hence, we decided to omit them.

In the table below we included results on clean Semaine data reported in recent literature

for reference. Note that those results were obtained under different conditions with different

methodologies.

Dimension LSTM RF SVR SVR Ref I LSTM Ref II LSTM Ref III

Valence 0.399 0.244 0.280 −0.085 0.454 0.48

Activation 0.570 0.379 0.342 0.653 0.757 0.47

Power 0.509 0.294 0.251 0.367 0.522 −
Expectation 0.517 0.306 0.178 0.190 0.549 −

Table 11.1.: Affect recognition performance for the Semaine corpus (with background noise and channel
effects) using only MFCCs. Results reported in the literature (I, II: [Eyben et al., 2012, p. 19,
20]; III: [Eyben et al., 2009, p. 15]) were obtained under different conditions and with
different methodologies.

The above results are ambiguous. On one hand we were able to achieve results that don’t de-

viate tremendously (though visibly) from those reported in the literature – despite our harsh

constraints. On the other hand the above figures indicate only moderate performance of

state-of-the-art techniques at recognizing affect from speech in real-life situations. Also, a

look at the correlation of the affect annotations in Semaine between the various raters (Table

11.2) reveals considerable disagreement across human listeners. This observation has been

addressed before by [Eyben et al., 2012, p. 10] who to some extent – but not entirely – ques-

tion the reliability of the annotation as a ground truth. In any case, it underlines the difficulty

of the task in general. The overall correlation between our predictions and the averaged an-

notations is slightly higher than the correlation of annotations between different raters.
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Dimension Inter-rater correlation

Valence 0.771

Activation 0.567

Power 0.228

Expectation 0.250

Table 11.2.: Inter-rater correlation for affect annotation in the Semaine corpus [Eyben et al., 2012, p.
10]. The low agreement for power and expectation is striking.

We conclude that we are able to coarsely capture the four core affective components

that form human emotions and shape affective phenomena from speech signals in naturalistic

environments. We perform best at recognizing activation (CC: 0.57) and worst at recognizing

valence (CC: 0.4). The GPU-based implementation of our LSTM runs with a real-time factor

of magnitude e-4 on an Nvidia Titan X GPU.
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Analysis and Context Sensing

In this chapter we describe the architecture of a system for capturing conversations on mobile

devices and analyzing them with respect to their character. The system employs and inte-

grates techniques presented in previous chapters and implements the processing pipeline as

described at the end of Chapter 8.

The system also has a component for collecting additional context information of various kinds

for the sole purpose of conducting the user study that we describe in chapter 13.

12.1. Conversation Analysis

In its core the system is composed of two modules: a mobile application for the Android op-

erating system that acts mostly as sensory unit and a remote server application for offloading

more demanding computations and for storing information. These two components consti-

tute the live system and keep track of ongoing conversations the target user is engaged in in

real-time. It is complemented by optional real-time or post-hoc analysis components. The

schematics of this architecture are outlined in Figure 12.1.

Using the smartphone’s microphone the mobile Android application records audio from the

environment of user and device and iteratively feeds the audio stream into a frame buffer.

Mel frequency cepstral coefficients (MFCCs, cf. Section 6.1) are extracted from each frame.

Consecutive frames are grouped into windows and passed on to a voice activity detection

classifier. If the classifier finds more than 50% of the frames in a window to be speech, the

window is passed on further, otherwise discarded. Where it is passed depends on whether

there is an Internet connection available over Wifi1. If so, the window is transmitted to a

dedicated server that stores the speaker model (i-vector) and a corresponding threshold (cf.

Section 13.1). An i-vector is computed from all voiced frames in the window and compared

1One hour of audio surmounts to roughly 100MB of gzip-compressed MFCC data – too much for common 4G

data plans in 2015.
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to the speaker i-vector. If the score is above the threshold, the speaker is detected. Either way,

the window and the score are stored on the server for further analysis. A boolean indicator

of the detection result is returned to the client. If no active Wifi connection to the server is

available, a local fall-back speaker model (GMM) is used. This model is less complex than the

remote i-vector model and therefore less battery-consuming at the cost of accuracy. Using the

more complex i-vector models on a mobile device proved to be infeasible due to computational

demands. In the fall-back scenario, the window is also stored in the local database.

Figure 12.1.: Architecture of a live system for tracking and analyzing conversations in a mobile scenario.

Recording on the device is controlled by the so called Audio Probing Engine. To avoid unnec-

essary computations and battery drainage, it probes periodically for the presence of speech

and, thus, conversations. The properties of the probing are dynamic and the engine switches

between multiple states. If the presumed likelihood of a conversation involving the target user

is low, probing is infrequent and short. If speech and the user’s voice are detected, probing is

increased in frequency and duration. This leads to constant feedback loops (cf. Figure 12.1).
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A worker process running every five minutes on the mobile device keeps both databases in

sync whenever Wifi is available. Results stored in any of the two databases can be queried

for two purposes: windows with speech can be subjected to further analysis to determine the

character of the conversation they belong to and context-sensitive services, like e.g., in our

case, a notification management system, can use the database as additional context provider

w.r.t. conversations.

In our conversation analysis system we consider only conversations in which the user’s voice

is detected. Other speech events are treated as random background chatter and are ignored.

Thus, the system in general and the Probing Engine in particular rely a.o. on the accuracy

of the speaker detection unit which to some degree depends on the presence of Wifi. From

that it follows that there is a small theoretical bias towards detecting conversations in settings

with Wifi. To minimize it for our planned user study, we take two measures: while real-time

conversation analysis on a server is just as feasible as the preceding real-time speaker detec-

tion, we conduct our analysis post-hoc. In our study, no live results are required. This allows

us to re-run i-vector based speaker detection on the server for those windows that are stored

on the mobile device during times when no Wifi is available, even when the speaker is not

detected by the local fall-back system. The only remaining dependency on real-time results is

with the Probing Engine that has to content itself with the slightly weaker fall-back system.

As a second measure, for the study, whenever a new message arrives on the smartphone we

automatically override the engine and switch to the most exhaustive probing state. As incom-

ing messages trigger the collection of context information (this will be described in Section

12.3), we can be sure to capture any ongoing conversation from that moment onwards along

with all other context information. We ask the reader to bear in mind that even without our

countermeasures the bias is a small and temporary one. According to forecasts [Cisco, 2014]
of mobile Internet traffic in Germany and extrapolating from a reported annual growth rate

of 57% [Ekholm, 2015], by the year 2019 common data plans will be big enough to cover

the demands of this system. More importantly: based on mobile CPU performance develop-

ment [Triggs, 2015] we expect smartphones to be potent enough for local real-time i-vector

computation and hence conversation analysis within the next two years (2016/2017).

From a technical standpoint, the details of the various modules are (cf. Section 10.2.1):

Voice Activity Detection Random Forest, 20 trees, δ = ln N

Speaker Detection 400-dimensional whitened, length-normalized i-vectors; 200-di-

mensional LDA; cosine kernel normalization; cosine similarity scoring

Speaker Detection (fall-back) 256-dimensional MAP-adapted, z-normalized Gaus-

sian Mixture Models
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During the setup of the system, speech samples (enrollment data) of the target speaker are

recorded on the smartphone (cf. Section 13.1) and sent to the server where both the i-vector

model as well as the GMM are built. The trained GMM is then sent back to the smartphone.

To have an optimal speaker recognition decision threshold for scores of unknown speech data

that is to be classified, we compute speaker-specific ERR thresholds [Brummer, 2010, p. 72ff.]
as described in Section 10.2.1.

For the user study, each participant’s enrollment data was split into 80% training data and

20% speaker data for computing the EER threshold. The combined enrollment data of all

other participants served as non-speaker (impostor) data w.r.t. this threshold.

12.2. Dynamic Probing

Figure 12.2.: Activity diagram of dynamic probing with three states (else labels omitted).

The probing engine, responsible for adjusting frequency and duration of any recording, must

find a balance between consuming as little energy as possible and not missing any conversation

that may emerge. It dynamically switches between three probing states subject to evidence

and thus confidence that a conversation is taking place (cf. Figure 12.2). In the default

state, idle, the system is confident that there is no conversation at all. Thus, probing is short
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and infrequent. If the system detects speech in the acoustic environment, it switches to the

according state, speech. At this point, the system assumes a conversation to take place but

there is not enough evidence to assume the target user’s involvement. Probing is now longer

and more frequent. If the user is detected and the system is therefore confident that the user

is engaged in a conversation, audio is recorded constantly – even during periods of the other

party speaking – until there is no more evidence of the user’s involvement. This is to ensure

that no short utterances of the user are missed and to allow for unconstrained analysis. State

transitions can only occur in incremental steps, no direct jump from idle to speaker is possible

and vice-versa.

Parameters are chosen in accordance with empirical data from the literature: in idle, the sys-

tem listens for any evidence of speech. As the probing is infrequent, it is important to always

record a long enough stretch of audio to ensure naturally occurring pauses in a conversation

be averaged out. Otherwise the system might by chance capture mainly a pause and thus ex-

trapolate from an instant that is not representative. In general, more than half of any window

captured during a conversation must contain speech in order for the conversation to be rec-

ognized. To determine the optimal probing length we consider the worst case scenario with

respect to pauses. According to both [Weilhammer and Rabold, 2003, p. 3] and [Campione

and Véronis, 2002b, p. 2ff.] more than 90% of all pauses in spontaneous speech in German

are shorter than 2 seconds. Therefore, the duration of a recording should be four seconds or

longer. Due to implementation details, our smallest unit for recording, a window, is 2560ms

long. Two windows span a suitable time frame of 5.12 seconds. However, it has yet to be

shown that this also constitutes an adequate upper bound: as the average length of an utter-

ance, a stretch of speech containing no internal pauses, lies somewhere between 2.7 and 3

seconds [Xu et al., 2013, p. 3], [Jiahong et al., 2006, p. 2ff.], the amount of speech captured

in an unfavorable moment (pause, utterance, pause) still dominates the recording. We must

also take into account the voice activity detection classifier: if the false negative rate (speech

misclassified as non-speech) is higher than the false positive rate (non-speech misclassified

as speech) or vice versa, our theoretical construct no longer holds. Hence, we ensure equal

misclassification rates by using the equal error rate as decision threshold for the VAD classifier.

In probing for involvement of the user in speech state, there is little theory to consider. While

it intuitively makes sense to take into account average turn lengths, empirical data shows

too much variance subject to context like for example the conversation topic [Esposito et al.,

2008, p. 110ff.] to construct a meaningful general model. As probing should be more frequent

and longer than in idle, we pick according values between those in idle and speaker.

The delay between consecutive probing iterations in idle and speech is 55s (60-second cycles)

and 17s (30-second cycles) respectively.
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12.3. Context Sensing

In addition to the conversation analysis components described above, the Android app also

comprises a sensing component for non-conversational context. While both components are

completely independent of one another, they both provide context information relevant for

notification management (cf. Section 2.4.1). Since it is our goal to study the utility of conver-

sational context in notification management, this second component is relevant for our user

study and provides the baseline context for our research upon which we want to improve.

Thus, we will compare the baseline context alone with a combination of baseline and conver-

sational context. For the baseline context, our app collects data from all relevant hardware

and software sensors listed in the literature on context-aware notification management (cf.

Section 2.4.1):

• Time

• Calendar events

• Environmental noise level

• Contacts

• Activity (inferred from accelerometer and gyroscope)

• Location

• Usage patterns (times of user interaction)

To infer activity we employ the relatively new (2015) Google Play API for Activity Recogni-

tion2. It distinguishes between the following self-explanatory activity states: IN_VEHICLE,

ON_BICYCLE, ON_FOOT, STILL, TILTING (picking up the device), and UNKNOWN. Given enough

sensory evidence, ON_FOOT can be rendered more precisely as RUNNING or WALKING.

For our user study, the collection of context data is triggered whenever a new message is

received on the device.

12.4. Preservation of Privacy

While Android’s location API provides geographical information in terms of latitude and longi-

tude, raw coordinates are not meaningful input for our classifier. They also constitute sensitive

data that we don’t want to track. To preserve privacy, all coordinates are only stored locally

in a separate auxiliary database along with a cluster id. If a new pair of coordinates points

to a location within a 500 meter range of any previously encountered location, the cluster id

2https://developers.google.com/android/reference/com/google/android/gms/location/

ActivityRecognition, accessed September 6, 2015
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of that previous point is used. Otherwise a new cluster id is assigned. After assignment of

an old or new cluster id, that id is then stored in the regular database as geographical con-

text information. When the app is uninstalled, the separate database with all coordinates is

deleted.

All communication between server and client is encrypted with SSL. For practical use in ev-

ery-day situations there is no need for the server back-end to run outside user space, i.e. the

user can host the server application at her own machine. It is only for our study that we host

a centralized back-end in order to acquire data for research purposes.

All audio is transmitted in an obfuscated, information-reduced representation (features in-

stead of raw audio). Nevertheless, we have to mention that there are reports of successful

attempts to partially reconstruct speech signal elements from MFCC vectors [Milner and Shao,

2002]. No linguistic analyses are performed, i.e. the system makes no attempt to capture or

interpret any content of “what has been said”.

12.5. Energy Consumption

Feature extraction constitutes the most resource-demanding task along the processing pipeline

on the mobile device. The key step in extracting MFCCs is the transformation from time data

to frequency data using the Fast Fourier Transform [Smith, 1997, p. 225ff.], its common

implementation being “Cooley-Turkey” [Cooley and Tukey, 1965]. By instead employing the

proprietary ARM-optimized FFT library SuperPowered [SuperPowered, 2015] we were able

to reduce the overall energy consumption of our system by roughly 30%. We describe our

efforts with some in-depth analyses on multiple devices in [Wahib-ul haq, 2015].

Constant app usage including continuous conversation tracking, context sensing and

client–server communication reduces battery life on average by about 35%. Without

the dynamic probing strategy diminution increases to about 45% of the baseline battery life.

Battery drainage is most pronounced on lower-end devices.
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13. User Study

13.1. Methodology

To answer our research questions (highlighting indicators on the margin in this chapter) and to

evaluate the system presented in Section 12.1, a large-scale user study was conducted. Fund-

ing was provided by the German Federal Ministry of Education and Research (Bundesminis-

terium für Bildung und Forschung, Förderkennzeichen 01IS12057). The greater part of this

chapter is published as [Schulze and Groh, 2016].

To advertise the study which we titled “smart notifications”, a two-week campaign was launched

comprising public Facebook posts, print media (posters and flyers) in public places in and

around Munich, announcements in various lectures at the Technical University Munich, and

word-of-mouth advertising among friends and colleagues. Interested parties were promised

a financial compensation of 300 euro for their diligent participation in a 14-day study on in-

telligent notification management which involved installing an Android app and answering

a short questionnaire on arrival of any SMS or WhatsApp message [Church and de Oliveira,

2013]. Furthermore, the study would also include an initial and a concluding survey. Regis-

trations were collected through a website that also offered information on the outline of the

study and the data to be collected. Apart from due diligence, two additional requirements

were stated: a medium- to high-end Android smartphone running version 4.3 or newer, and

frequent internet connectivity over Wifi. Throughout the course of the campaign we acquired

181 registrations. Due to public Facebook posts, registrations arrived from cities all across

Germany, not just Munich. From this pool we randomly recruited 57 people (16 female, 41

male), 39 of whom reported to be students, the rest reportedly being full-time employees.

Age ranged from 18 to 38 with a median of 25.

Our evaluation started with the initial online survey in which participants were asked to rate

their supposed interruptibility for each of the 29 conversation types listed in Section 5.1.

With this survey we also intended to get participants acquainted with all elements of the

conversation taxonomy from which they would have to pick during the study.

The smart notifications app was distributed to participants via email two days prior to the start
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of the study. After the installation an on-screen assistant walked users through the recording

of two 30-seconds enrollment samples in two positions (cf. Section 10.2.1). Participants were

instructed to always ensure that their notification style be set in a way that they would not

miss incoming messages unless the social situation imposed restrictions.

Once the actual study had started, the app listened for incoming messages via SMS and What-

sApp. Each such event triggered the collecting of sensor information to capture the user’s

current context (cf. Section 12.3). It also triggered the display of a three-page popup ques-

tionnaire encompassing the following questions/requests:

• “Shortly state your social situation (people, activity, setting etc.)” [Free text field]
• “If you were in a conversation, which label best describes its character?” [Drop-down

list]
• “How do you rate your emotions in this situation on the following scales?” [100-point

sliders]
– Negative, unpleasant — positive, pleasant

– Powerlessness, submissiveness — control, dominance

– Calmness, thoughtfulness — agitation, activity

– Familiarity, expectedness — surprise, unpredicted

• “How appropriate would each of the following notification styles have been?’ [100-point

sliders]’
– Loud ringing

– Chime

– Vibration

– Optical (LED, text, dialog)

Answers were bundled with corresponding sensor readings and transmitted to our servers

if a Wifi connection was available at the time. Otherwise they were stored on the device

and scheduled for later transmission. To balance usability and practicality with our need for

data, a maximum of three stacked questionnaires was implemented in case of multiple missed

messages. Newly spawned questionnaires replaced older ones in the stack and hence always

referred to most recent messages. To avoid imprecise or incorrect answers caused by vague

memory, popups that remained unanswered for six hours were discarded.

Independently from the above functionality, the app periodically captured audio recordings

of the smartphone’s environment using the built-in microphone. This “probing” for conversa-

tions was conducted with varying duration and frequency subject to computed likelihood as

described in Section 12.2. In the process, MFCC features were extracted locally on the device

and sent to the server. The server stored the features in a database, computed i-vectors, and

performed speaker detection (all cf. Section 12.1). Results were sent back to the client app in
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real-time (<1s) as the probing parameters depended on them. Since further characterization

of speech with respect to affect and social properties was not instrumental for the operation

of our study, we deferred all related analyses to the end. The participant-specific decision

threshold for speaker recognition was computed after all enrollment data for the study had

been collected. All non-target participants were used as impostors for the respective target.

On the server side, each morning at 8am a dedicated application counted the number of

answers we had received from each participant in the previous 24 hours. To obtain a sufficient

amount of data we sent dummy messages (“Thank you for participating in this study :)’’) to

participants whose answer count was below a pre-defined target of six messages per day. From

the difference between actual count and target count we computed according probabilities to

send out the desired number of messages distributed randomly over the day.

After two weeks the study ended and participants were informed they could uninstall the app.

A final online survey was conducted. Its first question targeted the desired autonomy of an

intelligent notification system. Participants were asked to decide whether they would prefer

an autonomous system built from a user model, a model-based system with optional rules to

be defined by the user, or an entirely rule-based system. The latter would include the option to

define no rule at all, thus disregarding the user’s context. In the second question participants

were asked to pick the type of information with higher value for interacting with an intelligent

notification system: the type of conversation (taxonomy) or conversational attributes like

speed, emotions etc. In addition, participants were instructed to justify their choice in words.

The third and final question aimed at eliciting privacy concerns and had participants rate their

consent of a hypothetical notification system, running on a conversational partner’s phone,

that would capture and process the participant’s voice. For that, a five-point Likert scale was

employed.

13.2. Results

Over the course of the study 7,741 notification bundles were sampled, each consisting of sen-

sor readings representing the user’s context at the time a message arrived, and answers to the

according mini-questionnaire. Three participants who had answered less than 30 question-

naires, were excluded from the study ex post and not paid any compensation. To ensure the

validity of our data, we discarded 575 bundles where in the corresponding questionnaire the

rating of the situation in four affective dimensions (four sliders) had been conducted in less

than three seconds, a duration which we deemed too small for adequate diligence (mean dura-

tion including discarded samples: 14.96 seconds). This threshold was chosen as it constituted

a local minimum in the histogram that visibly delimited a first peak.
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13.2.1. Interruptibility and social type of conversation

Figure 13.1 depicts a pie chart with the distribution of the remaining 7,166 bundles with

respect to the type of conversation that took place when a message was received.

No conversation

56.0

Superficial talk

17.0

Informal talk

15.9

Involving and positive talk
1.5

Negatively valenced talk

1.6

Formal and goaldirected talk

3.9
Less formal goaldirected talk

4.1

Figure 13.1.: Relative shares of conversation types in collected data. 44% of the time when a message was
received people were engaged in a conversation (based on [Schulze and Groh, 2016]).

As participants were not asked to state their interruptibility when a message arrived but rather

to rate the individual suitability of four notification modalities on a 100-point Likert scale (see

above), we inferred an interruptibility score from the invasiveness of the top-rated modality.

For that, we ordered the modalities from least invasive to most invasive: Optical (LED, text,

dialog), Vibration, Chime, Loud ringing. The index of the modality with the highest suitability

score was weighted with said score in percent, resulting in an interruptibility score within the

range [0.0, 4.0]. If the choice of most suitable modality was ambiguous, the most invasive can-

didate was picked. We then compared interruptibility scores of different conversation types

(cf. Figure 13.2). To equally weigh participants and not attribute more value on the prefer-

ences of those participants who were involved in more conversations than the others, only one

score per user and conversation type was considered. If a user had multiple interruptibility

scores for a given conversation type, the scores were averaged.
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Figure 13.2.: Conversation types and average associated interruptibility (based on [Schulze and Groh,
2016]).

It is evident that the various conversation types entailed different receptivities to notifications. RQ1

Participants were more receptive when engaged in superficial or informal talk than when in

other types of conversation, even more receptive than when not engaged in any conversation

at all. People were least interruptible when engaged in a negative conversation like “talking

about problems”, “breaking bad news” or “conflicts”. These results indeed reflect those from

pre-study presented in Section 5.2. To see whether the differences are statistically significant,

we conducted pairwise tests and corrected for multiple comparisons with Bonferroni-Holm

[Holm, 1979]. Due to the within-subjects design [Martin, 2004, p. 148] of the study and our

previous knowledge from the pre-study we used a one-sided Wilcoxon test for related samples

[Falk et al., 2014, p. 150] and considered only participants who had provided interruptibility

scores for both types of conversation in question. Note that not all possible pairs were tested,

only those that would presumably provide evidence for trends along dimensions as observed

in the pre-study. Results were as follows:
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Type A Type B Q n p α∗ p < α∗

Superficial talk Formal goal-directed talk 122.0 37 0.0002 0.0063 3

Superficial talk Negatively valenced talk 89.0 33 0.0003 0.0071 3

Superficial talk Involving and positive talk 122.0 34 0.0023 0.0083 3

Informal talk Negatively valenced talk 129.5 33 0.0035 0.01 3

Informal talk Formal goal-directed talk 187.0 35 0.0065 0.0125 3

Superficial talk Informal goal-directed talk 201.0 38 0.007 0.0167 3

Informal talk Involving and positive talk 214.0 35 0.049 0.025

Informal talk Informal goal-directed talk 289.0 39 0.0794 0.05

When plotted against [Goldsmith and Baxter, 1996]’s conversational dimensions (cf. FigureRQ1

13.3) the six conversation clusters clearly show a gradual change in associated interruptibility

along the depth and to a good extent the formality of a conversation – a change backed up

by the above tests: the more formal a conversation and the higher the perceived involve-

ment of the conversationalists, the smaller the receptiveness to notifications from the

mobile device. The influence of depth is the most pronounced. Valence by itself seems to be

no indicator of interruptibility.

Figure 13.3.: Heatmap of conversation types and associated interruptibility in [Goldsmith and Baxter,
1996]’s conversation space (based on [Schulze and Groh, 2016]).
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13.2.2. Interruptibility and affective state

Unlike the type of conversation which was represented as a set of discrete categories, the

affective characterization of a conversation was continuous. Therefore, two scatter plots are

provided to visualize results: one for opportune moments (Figure 13.4), one for inopportune

moments (Figure 13.5). Clusters (DBSCAN, epsilon = 6, min = 20; cf. [Ester et al., 1996])
in the respective affective space are highlighted. Figure 13.6 complements the scatter plots

with a histogram of affective states (how often participants exhibited a certain state).

1

2

7

3

4
5 5 6 6

8
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    excitement
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4  Anger
5  Contentment
6  Stress
7  Fear
8  Love

5

Figure 13.4.: Scatter plots of opportune moments a notification was received. Each box corresponds to
a pair of affective dimensions. The plots show how opportune moments are distributed in
the affective space. Clusters are highlighted. Many of them roughly correspond to emotions
according to [Fontaine et al., 2007, p. 1055], some important examples are denoted in the
plot (indices mark emotion location). The values in each affective dimension range from 0
(negative) to 100 (positive) with 50 corresponding to a neutral state. Based on [Schulze
and Groh, 2016].
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Figure 13.5.: Scatter plots of inopportune moments a notification was received and how they are dis-
tributed in the affective space. Cf. Figure 13.4.

7

Figure 13.6.: Histograms of affective states. Participants seem to have experienced many situations
that caused moderately high valence (“good”) and moderately high activation (“agitated”,
“aroused”). There are noticeable spikes (many situations) with low potency (“not in con-
trol”) and low novelty (“familiar”).
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The above plots show that moments which are (in)opportune for receiving notifications spread

widely over all affective dimensions. However, they do not spread evenly and coarse clusters

can be identified. Many samples fall directly on an axis marking a line in the center of the

individual images (value of 50 in the respective affective dimension). Other samples cluster

around regions in the outer quadrants. The absent continuity and the existence of clusters

suggest that interruptibility, high and low, corresponds to distinct emotions. The clusters

indeed cover or are near regions in which well-identified emotions are located according to

[Fontaine et al., 2007, p. 1055], most notably happiness, contentment, anger, and stress. The

cluster locations in both figures are similar which implicates that no affective region (emotion)

can be exclusively associated with a particular interruptibility. The plots don’t allow for a closer

quantitative evaluation as the cluster sizes in terms of samples cannot be inferred from their

width/spread.

To corroborate our belief that there are no trends with respect to interruptibility along any

axis, we visualize the relative distribution of interruptibility scores for all affective dimensions

(Figure 13.7). The dimensions are further divided according to polarity, i.e. whether the

samples have a negative coordinate in that dimension (0-40 in the scatter plot), a coordinate

near zero (40-60 in the scatter plot), or a positive coordinate (60-100 in the scatter plot).

Only potency and novelty show traces of a small trend towards higher interruptibility for

higher affective values (diagonal slope) – no definite trend though.

Valence Activation Potency Novelty

- 0 +

Interruptibility

- 0 + - 0 + - 0 +

Figure 13.7.: Relative distribution of interruptibility scores, grouped by negative, neutral, and positive
values in the respective affective dimension (based on [Schulze and Groh, 2016]).

Hereupon, we divided the valence× arousal space in 3×3 sectors (35-30-35 in each dimension)

according to [Russell, 1980]’s circumplex model of affect. Figure 13.8 depicts the model and

for each sector the corresponding average interruptibility score (higher values mark more

opportune situations). In spite of the obvious differences for the various emotions there is no

clear trend along any axis, i.e. dimension, which is in line with Figure 13.7.
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Figure 13.8.: Circumplex model of affect according to [Russell, 1980] with corresponding interruptibility
values.

Analogous division of the potency × novelty space

yielded similar results (cf. Figure 13.9 to the

right). We observe a different value for each sector

and a potentially indicated trend along both axes.

Compared to valence × arousal, variance is much

smaller here.

In conclusion: none of the four affective dimensions

exhibit a clear individual correlation with interrupt-

ibility. However, the different average interruptibil-

ity values of the sectors (Figures 13.8, 13.9, 13.7)

for both pairwise combinations and the correspon-

dence of the dominating clusters in each sector to

emotions (Figures 13.4, 13.5) indicate that emo-

tions can be associated with certain degrees of in-

terruptibility. This clearly supports the hypothesis

that affective characteristics provide utility in notifi-

cation management. In Section 13.2.5 we will eval-

uate their potential more thoroughly.

Figure 13.9.: Interruptibility in the po-
tency × novelty space (cf.
[Fontaine et al., 2007] for
mapping to emotions)
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13.2.3. Comparison of social and affective characteristics

We revisit our hypothesis from the introduction of Chapter 5 that an affective and a social

characterization of conversations share common aspects but are also intrinsically different. To

examine the relationship of both manners of characterization and furthermore to investigate

how well social information can be modeled by basic affective dimensions, we employed statis-

tical regression analysis. For that, we first looked at the three social dimensions in [Goldsmith

and Baxter, 1996]’s taxonomy: formality/goal-orientation, depth/importance, and valence.

For each relevant sample in our dataset1 we extracted the positional value with respect to

the two non-affective dimensions (formality, depth). Unfortunately, [Goldsmith and Baxter,

1996] do not provide a numerical mapping of where in the dimensional space the 29 speech

event types lie exactly, they only provide a graphical representation. By placing a [0;100]
grid on top of the (rotated) image, we were able to quantify each speech event’s position.

However, this is only an approximation. We noticed small inconsistencies between the two

provided plots and computed average values in that case.

13.2.3.1. One-to-one mapping

Having two values per sample for the social dimensions, three values for the affective dimen-

sions (activation, potency, expectation), and one overlapping value that characterizes both

(valence) we first computed correlation coefficients between pairs of dimensions. This tells

us how well one dimension can be expressed in terms of the other or simply how often com-

parable values occur. Negative values indicate an opposite direction.

Dimension Valence Activation Power Novelty Formality Depth

Valence 1.0 0.293 −0.248 −0.296 −0.185 −0.190

Activation 1.0 −0.281 −0.170 −0.080 −0.126

Power 1.0 0.268 0.126 0.098

Novelty 1.0 0.162 −0.002

Formality 1.0 0.449

Table 13.1.: Correlation (Pearson) between pairs of dimensions

For comparison, we provide the same table calculated from data that underwent more

aggressive purging of supposedly suboptimal or even invalid samples. For that, we discarded

all samples where the mean edit time was below 12 seconds instead of three. As stated

1A sample was considered relevant if the data was obtained during a conversation (44% of all samples).
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before, the mean edit time was 14.96 seconds.

Dimension Valence Activation Power Novelty Formality Depth

Valence 1.0 0.273 −0.216 −0.316 −0.118 −0.177

Activation 1.0 −0.349 −0.139 −0.063 −0.089

Power 1.0 0.217 0.1413 0.179

Novelty 1.0 0.258 0.028

Formality 1.0 0.428

Table 13.2.: Correlation (Pearson) between pairs of dimensions (aggressive filtering of samples)

According to [Cohen, 1988, p. 77ff.] correlation coefficients, in the social sciences, of .10

are “small”, those of .30 are “medium”, and those of .50 are “large” in terms of magnitude

of effect sizes. These conventions are validated in terms of upper bounds by meta studies

listed in [Hemphill, 2003]. If we follow this interpretation, the most pronounced correlations

(valence/novelty, activation/power, possibly novelty/formality) are of medium size, the correla-

tion between formality and depth can almost be considered large. Again, these values indicate

how often values in both dimensions co-occur in everyday conversations.

13.2.3.2. Many-to-one mapping

Secondly, we examined a mapping of multiple affective dimensions to single social dimensions

and computed regression models in which the target social dimension was expressed as a

linear combination of the affective dimensions (including interactions between the latter).

Full reports can be found in Appendix E.1. The model formality ∼ power ∗ expectation ∗
activity ∗ valence (the dependent variable formality is expressed as a linear combination of the

independent variables, including interactions between any combination of these variables)

exhibited a correlation of 24.3 (Pearson’s correlation coefficient, cf. Section 6.4.2). The same

model for the dependent variable depth yielded a correlation coefficient of 24.1. With the

more aggressive data filtering mentioned above correlation increased to 40.9 and 33.5. Please

note that this doesn’t necessarily mean that the filtered data is more valid. Our supposedly

increased validity comes at the cost of predictive power due to a reduced number of samples.

The correlation coefficients suggest that in our data there is indeed an overlap of medium

size (see section above) between social and affective aspects of conversations. However,

no social dimension can be expressed by a combination of other social or affective dimensions.

We conclude that detection of affective characteristics helps with – but doesn’t fully

suffice for – capturing the social aspects of conversations.
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13.2.4. Inferring conversational characteristics from audio

So far we have looked at our research questions through the lens of social psychology and

have only considered the ground truth labels of our data. But how well can the conversational

characteristics described by these labels be inferred from audio? How well can information

technology capture the user’s social and emotional context?

While Chapters 9, 10, and 11 gave us a good notion of the answer to this question, we have

yet to examine the performance of speech processing techniques in a real scenario. In our

evaluation study we collected audio data of conversations participants have engaged in in

moments a notification was received (tnot). To be able to handle our analysis, we decided to

consider a window of six minutes around tnot , three in each direction. That left us with 16GB

of audio features corresponding to 1279 notifications from 53 participants. Given the still

vast amount of data, we decided to examine the whole six-minute window as a single unit.

Note that through this we make the assumption that the character of a short conversation is

static. This assumption conveniently aligns with the fact that we have only a single target

label for each aspect of the conversation – provided by the user in the on-screen questionnaire. RQ2

Dimension Correlation

Valence 0.469

Activation 0.529

Power 0.524

Novelty 0.485

Formality/goal-orientation 0.521

Depth/importance 0.583

Table 13.3.: Performance for inferring affective and social dimensions from audio obtained through our
user study, measured by Pearson correlation between user-stated and predicted values.

For each six-minute segment we discarded all those windows (256 frames, not to be confused

with the smoothing window) that didn’t belong to the target user in order to eliminate con-

versations of other people. From the remaining windows a single i-vector was computed (see

previous chapter for parameter listings). This vector represented the user’s entire participa-

tion in that particular conversation. Vectors (conversations) were grouped by participants. We

then built a Random Forest Regressor model (50 trees) for each participant using the entire

data set of the remaining participants for training and the participant’s own data for testing

(speaker-independent analysis). We did not experiment with pre-trained models using the

Semaine corpus as a basis as we didn’t have enough confidence in its reliability for the rea-

sons stated in Chapter 11. Other models like the top-performing LSTM were tried out but
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performed slightly (∼ 5% avg.) worse than the Random Forest. Regression results in terms

of correlation coefficients for the various dimensions are listed in Table 13.3 above.

13.2.5. Notification management with conversational characteristics

We have shown that different social and affective properties (sectors in the affective space)

entail characteristic tendencies with respect to interruptibility. We have also demonstrated

that these properties can be inferred from audio with a reasonable accuracy. This raises the

question whether information on conversational characteristics can actually help improve

notification management. To answer this question we used the notification bundles (sensor

data + ground truth via mini-questionnaire) collected in our study to infer the most suitable

notification modality based on the user’s context. We employed Random Forests with 50

trees (δ = ln N , cf. Section 6.2.5) to compute participant-specific notification preference

models using 10-fold stratified cross validation, and averaged scores over all participants.

Participants with less than 30 samples were omitted to ensure a sufficient amount of training

data. We compared several models than can be grouped into three categories:

• basic context information without any conversational characteristics2 (minutes

since the screen was last turned on, hour of the day, day of the week, minutes to next

calendar entry, minutes passed since last calendar entry, number of messages received

from sender of the incoming message, location, activity inferred from accelerome-

ter/gyroscope, background noise level in terms of mean absolute amplitude) [baseline]

• basic context information plus conversational context as provided by the user (ground

truth):

– social type of conversation in terms of [Goldsmith and Baxter, 1996]’s taxonomy

– affective state of mind characterized in four affective dimensions

– social type of conversation and affective state

• basic context information plus conversational context inferred from audio

– uninterpreted audio features (i-vector)

– social type of conversation

– affective state

– approximated turn-taking statistics (turn share:
#windowsspeaker

#windowsothers
, average turn dura-

tions in terms of windows)

2To guarantee a fair comparison we only considered samples collected during a reported conversation.
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Figure 13.10.: Classification performance in terms of F1 scores: context (true and inferred) to notification
modality (based on [Schulze and Groh, 2016])

As can be seen in the bar plot in Figure 13.10, information on conversational charac-

teristics does indeed improve classification – substantially so. While the F1 score of the

baseline, i.e. the basic non-conversational context attributes listed in the literature, averaged

0.62, all classifications that contained any kind of conversational data scored between 0.76

and 0.8. Corresponding confusion matrices can be found in Appendix E. In detail, we make

the following observations:

• In notification management, affect (emotion) seems to provide slightly greater utility

than social properties: 0.785 compared to 0.763 (Wilcoxon’s Q = 60.0, p = 0.267). We

emphasize once again the underlying assumption that the affective state of mind of the

user is always reflected in her speech. The combination scores 79.5.

• The uninterpreted i-vector representation of an audio signal carries almost as

much information as the ground truth w.r.t. affect and exactly as much as the

ground truth w.r.t. social type of conversation (F1: 0.763). This constitutes a major

finding as, from a performance standpoint, it renders further (error-prone) interpreta-

tion obsolete. It is a 20% improvement over the baseline. RQ3,4

• Turn-taking statistics are not reflected in i-vectors. However, they don’t seem to provide

additional utility (F1: 0.768).
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We have stated (cf. Section 2.4) that the context information related to conversation that is

taken into account in interruptibility literature is mostly binary: whether there is speech at a

given time or not (e.g. [Hashimoto et al., 2013]). In section 13.2.1 we have already shown

that this binary indicator is inadequate for determining a person’s receptivity to notifications

as the latter is subject to the character/type of conversation: e.g. during small talk we are

more interruptible than at moments without verbal communication at all (on average). To

demonstrate how this finding translates to notification management, we have conducted an-

other classification run with just a binary indicator of an ongoing conversation complementing

the baseline context attributes – no other conversational information. As this run used more

data than the ones above, which had necessarily included only those notification samples that

related to conversations, we have refrained from including it in Figure 13.10. The resulting

F1 score of the “binary run” was 0.596 and only marginally higher than a 0.592 run of the

baseline context attributes with the same data, suggesting little to no gain from a binary indi-

cator. Further tests do not reveal a statistically significant difference (Wilcoxon’s Q = 141.0,

n = 24, p = 0.80). As the 0.592 baseline score is near the corresponding baseline score in

the above plot (for which we used only part of the data), we consider it safe to state that the

binary score can also be compared fairly to the other values of the first runs.

It is evident that implicit (i-vector) as well as explicit characterization of conversations

considerably outperforms a binary conversation indicator in automatic notification man-

agement.

13.3. Discussion

As we have seen, implicit characterization of speech events by means of i-vector features

yields results almost as good as an explicit characterization in terms of affective coloring or

social aspects with respect to a ground truth given by the user. Thus, we have concluded

that, from a performance standpoint, explicit characterization as an intermediate step (cf.

Figure 13.11) is superfluous. However, classification performance is not the only consideration

when designing an automated notification system for practical use as opposed to an academic

proof of concept. In our final questionnaire we asked participants how they would want

to be supported by a system for notification management. Only 25.93% stated that they

would prefer an entirely autonomous system that learned from the user’s behavior observed

during a training period. The majority of participants (61.11%) expressed a desire to have

optional control over an otherwise automated system by means of a set of user-defined rules.

12.96% would not even want any assistance beyond actions defined by rules. This finding is

in accordance with the literature that attributes significant importance to a perceived ability

of the user to control any system in question (cf. Section 2.4).
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Figure 13.11.: Classification performance with and without an intermediate step of explicit interpretation
of audio (based on [Schulze and Groh, 2016])

But how can rules with respect to audio be formulated if there is no explicit interpretation

of any kind? From the perspective of usability, well-working high-level interpretation

of the conversational context is essential to audio-based notification management.

While significant misclassification in this intermediate step doesn’t necessarily hurt overall

performance, it renders rules pointless. Given that current state-of-the-art methods perform

reasonably well – but not great at the task of high-level interpretation, there is much room

for improvement.

From the regression analysis in Section 13.2.3 we have learned that affective and social

characterizations of conversations overlap in approximately a third of the properties that

they measure. This leads us to the question of why a combination of the information both

characterizations provide doesn’t result in summation of the individual performance gains

over the baseline in notification management. Affective characteristics boosted performance

by 16.5 points, social characteristics by 14.3 points (both ground truth). Yet their combination

makes for an increase of “only” 17.5 points. One potential explanation leads us back to our

assumption that the affective state of mind of the speaker, to which our ground truth pertains,

is reflected in her speech. While a discrepancy might indeed be the case to some extent, a

massive inconsistency would most likely result in abysmal affect recognition performance –

which is not the case. Another, much more simple and plausible explanation would be that

the overlap translates differently to notification management. If information that can be

harnessed in notification management were mostly found in that overlap, then the gain in

performance would be accordingly smaller than the sum of individual gains. Consider the

following fictional illustration: the social dimension formality and the affective dimension

novelty have a correlation of 0.258 as most of the correlation is found for positive values

of both dimensions: formal situations that we are unfamiliar with. These are situations in

which we have to conform to norms and don’t want to make a bad impression by the ringing

of our phone. Therefore, the information of high formality and high novelty is of great utility
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in interruption management. In other situations, where there is little correlation, neither

dimension is a good predictor for receptivity.

Another important aspect that we haven’t treated holistically so far is privacy concerns when

capturing audio, speech in particular. While we have covered this point from a technical per-

spective and have designed our system with the requirement of preserving privacy in mind,

the success of such a system in practice stands and falls with how the user perceives its han-

dling of sensible information. In our user study we put emphasis on informing participants

how their data would be collected and analyzed, and what measures we had taken to pre-

serve their privacy. After the study, 9.26% stated that they would not feel comfortable if the

system ran on the mobile device of another person that was part of a conversation the user

was engaged in. A further 33.33% felt slightly uneasy about the scenario of their voice being

captured on someone else’s device. Only 57.41% felt indifferent or had a positive attitude

towards the scenario. We reckon that concerns of participants that go beyond our measures

to preserve privacy and beyond a lack of their being informed about those measures, can’t be

addressed by design. A significant part of the population simply does not constitute a potential

user base for a partly audio-based notification management system. Hence, the benefits of

our approach over those listed in the literature are not universal, our system has clear

limitations in terms of user acceptance.
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In this final chapter we first want to give a short and concise summary of our accomplishments

by directly answering the research questions stated in the introduction. A follow-up section

will then shed light on limitations of our system and how we could have approached the

matter differently. We conclude this thesis with a short outlook.

14.1. Summary of accomplishments

In this thesis we have evaluated the utility of conversational context for mobile notification

management. Motivated by our hypothesis that people’s interruptibility in conversations

is subject to the character of that conversation we have first looked at different ways for

characterizing speech events. As our hypothesis was sparked by intuitive examples of highly

emotional situations, affect as the underlying component model was an obvious choice. The

second manner of characterization, partly rooted in the affective space as well, was a social

taxonomy of speech from the domain of communication research. While it was evident that

both approaches overlap, the extent of that overlap was initially unclear and – for our data –

later revealed to lie between 25 and 40%. The data was obtained through a large-scale user

study (n = 53) over the course of two weeks and is therefore considered a sample with high

representative power and validity. With its help we were able to prove our initial hypothesis

and show that conversations highly vary in their associated average interruptibility depending

on their affective and social character (RQ1).

The suitability of state-of-the-art methods from voice activity detection, speaker detection,

and affect recognition for inferring conversational characteristics “in the wild” was verified.

In the course of our extensive analysis we found that channel effects (signal alterations)

caused by the position and manner in which a smartphone is carried are unpredictable and

much more substantial than those induced by differences in the device itself. Dedicated

transformations and multiconditioning during model training however clearly help alleviate

the effects. In real-life scenarios, social and affective properties can be derived from audio

recorded by the smartphone with moderate success (regression: correlation coefficient

slightly above 0.5, RQ2).
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Conversational context in audio was demonstrated to be highly beneficial for predicting suit-

able notification modalities in automatic notification management. Both affective and social

characteristics provide similar utility and either kind improves the performance of personal

preference models by more than 20% compared to the baseline set of common context at-

tributes (F1 score: 0.62→ 0.76, RQ3). Explicit decoding of conversational context embedded

in speech, i.e. inference of social and affective properties, offers no apparent advantage over

the implicit, subsymbolic information of the same kind provided by the raw i-vector represen-

tation. However, it allows for the formulation of user-defined rules which constitutes a crucial

aspect of usability (RQ4).

14.2. Limitations, critical reflections and outlook

In some of the sections we have already pointed out small limitations of our methodology,

for example imperfections of our dataset synthesis, the omitted consideration of temporal

dependencies in voice activity detection, the limited user acceptance of audio processing

on account of privacy concerns, or the restrictions for creating a rule-based system due to

suboptimal inference of context. Even under critical examination, none of these limitations

were incisive enough to compromise the validity of our research to any extent. In this

section, we therefore want to regard the bigger picture and reflect critically upon our overall

approach to improving notification management with the help of conversational context.

As source for conversational context we employed acoustic features without discussing the

obvious alternative: linguistic content, i.e. spoken words and their meaning. Additional

incorporation of linguistic features, e.g. by means of N-Grams or vector space models, has

been shown to improve performance in affect recognition. [Wöllmer, 2013, p. 143ff.] Of

course the degree of improvement is highly subject to the considered keywords and the

correctness and unambiguousness of their associated affective state. Our decision to focus

only on acoustic features was mainly motivated by the additional complexity of linguistic

models and their integration, in particular for frame-wise classification (words span many

consecutive frames→ additional time-dependent models that need to be fused with acoustic

models). Also, while there is a small set of established keywords that are known to correlate

with affect, a lot of research remains yet to be conducted to optimize it. Nevertheless, we

think that the proper consideration of linguistic aspects could greatly increase the accuracy

in affect recognition and also in inferring social characteristics of conversations.

Despite decades of fruitful research with respect to interruptibility and context-sensitive

systems, intelligent assistants in mobile notification management haven’t emerged as main-

stream products so far and the transition of evidently well-working systems from academia

to the real world remains yet to be seen. Nevertheless, with Wearable Computing becoming
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more pervasive there are convincing arguments that research on intelligent notification

management will be forced to undergo a revival and that context-sensitivity will find its

way into commercial applications. On one hand, wearable devices, as the name implies,

are bound to increase pervasiveness of technology in our daily lives and consequently

disruptiveness for untimely notifications. On the other hand, it can be assumed that their

limited interaction capabilities will render speech the main input modality (cf. Google Glass).

Tapping into an already existing speech recognition pipeline with shared audio features will

not only minimize the computational impact of our proposed conversation analysis, it will

also guarantee the user’s consent to the processing of her voice.

We conclude this thesis with the prospect that our findings will help improve notification

management on future mobile devices.
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A. Taxonomy Questionnaire

Speech event

Superficial talk:
- small talk (a kind of talk to pass time and avoid 
being rude)

1 2 3 4 5 n/a 1 2 3 4 5 6

- sports talk (the kind of talk that occurs while 
playing or watching a sporting event)

1 2 3 4 5 n/a 1 2 3 4 5 6

- current events talk (a conversation in which the 
topic is limited to talking about news and current 
events)

1 2 3 4 5 n/a 1 2 3 4 5 6

Informal talk:

- gossip (exchanging opinions or information about 
someone else when that person isn't present)

1 2 3 4 5 n/a 1 2 3 4 5 6

- joking around (a playful kind of talk to have fun or 
release tension)

1 2 3 4 5 n/a 1 2 3 4 5 6

- catching up (the kind of conversation you have 
when you haven't talked with someone recently, 
and you talk about the events in your lives that 
have occurred since you last spoke)

1 2 3 4 5 n/a 1 2 3 4 5 6

- recapping the day's events (telling about what's up 
and what happened to each person during the day)

1 2 3 4 5 n/a 1 2 3 4 5 6

- getting to know someone (the kind of small talk 
you have when you want to be friendly and get 
acquainted with someone)

1 2 3 4 5 n/a 1 2 3 4 5 6

- morning talk (the kind of routine talk you have 
when you first wake up in the morning)

1 2 3 4 5 n/a 1 2 3 4 5 6

- bedtime talk (the kind of routine talk you have 
right before you go to bed) 1 2 3 4 5 n/a 1 2 3 4 5 6

Involving and positive talk:

Personal reachability Frequency of occurrence

"The goal of this questionnaire is to determine the level of reachability (via any kind of a mobile 
communication device, eg. smartphone) of individuals during different speech events, which they might 
take part in. 
Reachability means: how acceptable it is for you, with your environment in mind, to be reached at that 
moment.
The scale ranges from 1 (least reachable) to 5 (completely reachable), where a good guideline would be: 1 - 
no notification, 2 - LED notification, 3 - vibrations, 4 - silent ringtone/beep, 5 - normal ringtone/beep 
Furthermore, in order to assess each answer's relevance, you will have to assign a weight to each answer, 
depending on how often you find yourself in the respective situation.
The second scale ranges from 1 (never) to 6 (very frequently):
1 - never, 2 - very rarely, 3 - rarely, 4 - occasionally, 5 - frequently, 6 - very frequently
The questionnaire is anonymous, which means the collected data will only be used to create a statistic in 
order to classify the situations mentioned below."  
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A. Taxonomy Questionnaire

- reminiscing (talking with someone about shared 
events you experienced together in the past)

1 2 3 4 5 n/a 1 2 3 4 5 6

- making up (conversations in which one or both 
people apologize for violating some expectations)

1 2 3 4 5 n/a 1 2 3 4 5 6

- love talk (talk that has little content but expresses 
love and gives attention and affection)

1 2 3 4 5 n/a 1 2 3 4 5 6

- positive relationship talk (talking about the nature 
and state of a relationship) 1 2 3 4 5 n/a 1 2 3 4 5 6

Negatively valenced talk:
- conflict (conversations in which the two people 
disagree)

1 2 3 4 5 n/a 1 2 3 4 5 6

- serious conversation (a two-way, in-depth 
discussion or exchange of feelings, opinions, or 
ideas about some personal and important topic)

1 2 3 4 5 n/a 1 2 3 4 5 6

- talking about problems (a conversation in which 
one person tells about some problem he or she is 
having and the other person tries to help)

1 2 3 4 5 n/a 1 2 3 4 5 6

- breaking bad news (a conversation in which one 
person doesn't know about something bad that has 
happened and another person tells them the bad 
news)

1 2 3 4 5 n/a 1 2 3 4 5 6

- complaining (expressing negative feelings, 
frustrations, gripes, or complaints about some 
common experience where negative feelings are 
directed toward the topic but not toward the other 
people in the conversation)

1 2 3 4 5 n/a 1 2 3 4 5 6

- negative relationship talk (talking about the nature 
and state of a relationship) 1 2 3 4 5 n/a 1 2 3 4 5 6

Formal and goal-directed talk:
- group discussion (talk to exchange information, 
persuade other people, or make decisions when a 
group is gathered)

1 2 3 4 5 n/a 1 2 3 4 5 6

- persuading conversation (conversation in which 
one person has the goal of convincing the other 
person to do something)

1 2 3 4 5 n/a 1 2 3 4 5 6

- decision-making conversation (conversation in 
which people have the goal of making a decision 
about some task)

1 2 3 4 5 n/a 1 2 3 4 5 6

- giving/getting instructions (a conversation in 
which one person gives another person information 
or directions about how to do some task)

1 2 3 4 5 n/a 1 2 3 4 5 6

- class information talk (informal conversations in 
which you find out about class assignments, exams, 
or course material)

1 2 3 4 5 n/a 1 2 3 4 5 6
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- lecture (a one-way kind of conversation in which 
one person tells another person how to act or what 
to do)

1 2 3 4 5 n/a 1 2 3 4 5 6

- interrogation (a one-way kind of conversation in 
which one person grills the other person with 
questions)

1 2 3 4 5 n/a 1 2 3 4 5 6

Less formal goal-directed talk:
- making plans (talking to arrange a meeting or 
arrange to do something with someone)

1 2 3 4 5 n/a 1 2 3 4 5 6

- asking a favor (talk with the specific purpose of 
getting someone to do something for you)

1 2 3 4 5 n/a 1 2 3 4 5 6

- asking out (the kind of talk when one person asks 
another person out on a date) 1 2 3 4 5 n/a 1 2 3 4 5 6
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B. Taxonomy Evaluation

>>> s t a t s . f r iedmanchisquare ( experimentDF [ ’ S u p e r f i c i a l ta lk ’ ] , experimentDF [ ’ In formal ta lk ’ ] , experimentDF [ ’ I nvo l v ing and
p o s i t i v e ta lk ’ ] , experimentDF [ ’ Nega t ive ly valenced ta lk ’ ] , experimentDF [ ’ Formal and goal−d i r e c t ed ta lk ’ ] ,
experimentDF [ ’ Less formal goal−d i r e c t ed ta lk ’ ] )

>>> p _ l i s t = []
>>> f o r i in range ( len ( experimentDF . columns . va lues ) ) :
. . . f o r j in range ( i+1, len ( experimentDF . columns . va lues ) ) :
. . . p r i n t ’Now comparing s i t u a t i o n \ ’% s \ ’ with s i t u a t i o n \ ’% s \ ’ ’ % ( experimentDF . columns . va lues [ i ] ,

experimentDF . columns . va lues [ j ] )
. . . s t a t s . wilcoxon ( experimentDF [ experimentDF . columns . va lues [ i ] ] , experimentDF [ experimentDF . columns . va lues [ j ] ] )
. . .
(175.3468354430378 , 5.2722146210378925e−36)
Now comparing s i t u a t i o n ’ S u p e r f i c i a l ta lk ’ with s i t u a t i o n ’ Informal ta lk ’
(216.5 , 3.5135613263323865e−06)
Now comparing s i t u a t i o n ’ S u p e r f i c i a l ta lk ’ with s i t u a t i o n ’ Invo lv ing and p o s i t i v e ta lk ’
(12 .0 , 1.4306931845803308e−10)
Now comparing s i t u a t i o n ’ S u p e r f i c i a l ta lk ’ with s i t u a t i o n ’ Negat i ve ly valenced ta lk ’
(16 .5 , 1.2206993696371506e−10)
Now comparing s i t u a t i o n ’ S u p e r f i c i a l ta lk ’ with s i t u a t i o n ’ Formal and goal−d i r e c t ed ta lk ’
(2 .0 , 5.7062169600658888e−11)
Now comparing s i t u a t i o n ’ S u p e r f i c i a l ta lk ’ with s i t u a t i o n ’ Less formal goal−d i r e c t ed ta lk ’
(58 .5 , 9.1367037137132691e−09)
Now comparing s i t u a t i o n ’ Informal ta lk ’ with s i t u a t i o n ’ Invo lv ing and p o s i t i v e ta lk ’
(45 .5 , 5.4361724437713947e−10)
Now comparing s i t u a t i o n ’ Informal ta lk ’ with s i t u a t i o n ’ Negat i ve ly valenced ta lk ’
(13 .5 , 1.0490448191638121e−10)
Now comparing s i t u a t i o n ’ Informal ta lk ’ with s i t u a t i o n ’ Formal and goal−d i r e c t ed ta lk ’
(10 .0 , 8.7187628936168313e−11)
Now comparing s i t u a t i o n ’ Informal ta lk ’ with s i t u a t i o n ’ Less formal goal−d i r e c t ed ta lk ’
(240.0 , 8.9355093745796235e−06)
Now comparing s i t u a t i o n ’ Invo lv ing and p o s i t i v e ta lk ’ with s i t u a t i o n ’ Nega t ive ly valenced ta lk ’
(223.0 , 2.7033804823437234e−06)
Now comparing s i t u a t i o n ’ Invo lv ing and p o s i t i v e ta lk ’ with s i t u a t i o n ’ Formal and goal−d i r e c t ed ta lk ’
(209.0 , 9.2572037584112372e−07)
Now comparing s i t u a t i o n ’ Invo lv ing and p o s i t i v e ta lk ’ with s i t u a t i o n ’ Less formal goal−d i r e c t ed ta lk ’
(511.0 , 0.029920610743119667)
Now comparing s i t u a t i o n ’ Negat ive ly valenced ta lk ’ with s i t u a t i o n ’ Formal and goal−d i r e c t ed ta lk ’
(706.0 , 0.45288680999021413)
Now comparing s i t u a t i o n ’ Negat ive ly valenced ta lk ’ with s i t u a t i o n ’ Less formal goal−d i r e c t ed ta lk ’
(165.0 , 6.5549199598712932e−07)
Now comparing s i t u a t i o n ’ Formal and goal−d i r e c t ed ta lk ’ with s i t u a t i o n ’ Less formal goal−d i r e c t ed ta lk ’
(194.5 , 8.4806805710186242e−07)

Sorted according to p−value ; corresponding Holm−co r rec ted alpha ; p<alpha ?

5.7062169600658888e−11, 0.0033333333333333335 , YES
8.7187628936168313e−11, 0.0035714285714285718 , YES
1.0490448191638121e−10, 0.0038461538461538464 , YES
1.2206993696371506e−10, 0.004166666666666667 , YES
1.4306931845803308e−10, 0.004545454545454546 , YES
5.4361724437713947e−10, 0.005 , YES
9.1367037137132691e−09, 0.005555555555555556 , YES
6.5549199598712932e−07, 0.00625 , YES
8.4806805710186242e−07, 0.0071428571428571435 , YES
9.2572037584112372e−07, 0.008333333333333333 , YES
2.7033804823437234e−06, 0.01 , YES
3.5135613263323865e−06, 0.0125 , YES
8.9355093745796235e−06, 0.016666666666666666 , YES
0.029920610743119667 , 0.025 , NO [ ’ I nvo l v ing and p o s i t i v e ta lk ’ vs ’ Less formal goal−d i r e c t ed ta lk ’ ]
0.45288680999021413 , 0.05 , NO [ ’ Nega t i ve ly valenced ta lk ’ vs ’ Formal and goal−d i r e c t ed ta lk ’ ]

Listing B.1: Output of statistical tests
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C. Voice Activity Detection
Performance

>>> e x e c f i l e ( ’ run_vad_proba_ana ly s i s _ s c r ip t . py ’ )
Checking whether the samples were NOT drawn from a normal d i s t r i b u t i o n (H0)

SVM: p i s 0 .640.
RF : p i s 0 .251.
GMM: p i s 0 .298.
NN: p i s 0 .286.
GNB: p i s 0 .742.

SVM vs RF : The t− s t a t i s t i c i s 37.632 and the p−value i s 0.00000.
SVM vs GMM: The t− s t a t i s t i c i s 86.836 and the p−value i s 0.00000.
SVM vs LSTM: The t− s t a t i s t i c i s 12.788 and the p−value i s 0.00000.
SVM vs GNB: The t− s t a t i s t i c i s 132.371 and the p−value i s 0.00000.
RF vs GMM: The t− s t a t i s t i c i s 17.231 and the p−value i s 0.00000.
RF vs LSTM: The t− s t a t i s t i c i s −1.535 and the p−value i s 0.15913.
RF vs GNB: The t− s t a t i s t i c i s 87.846 and the p−value i s 0.00000.
GMM vs LSTM: The t− s t a t i s t i c i s −8.758 and the p−value i s 0.00001.
GMM vs GNB: The t− s t a t i s t i c i s 47.718 and the p−value i s 0.00000.
NN vs GNB: The t− s t a t i s t i c i s 27.559 and the p−value i s 0.00000.

Listing C.1: Output of statistical tests
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D.1. Experiment E1

D.1.1. GMM

EER :
Overa l l mean EER i s 0.32 with s td 0.04
Worst speaker i s 5 with EER 0.37
Best speaker i s 0 with EER 0.24
Overa l l mean IR−s p e c i f i c EER i s 0.15 ( not g loba l ! )
Standard dev ia t i on of EER between IRs i s 0.07 ( not g loba l ! )
Worst da ta se t i s 0 with 0.26 ( not g loba l ! )
Best da ta se t i s 1 with 0.08 ( not g loba l ! )

Thresholds :
Mean IR−s p e c i f i c th resho ld f o r IR #0 i s 7.26 with s td 1.17 ( not g loba l ! )
Mean IR−s p e c i f i c th resho ld f o r IR #1 i s 6.56 with s td 1.03 ( not g loba l ! )
Mean IR−s p e c i f i c th resho ld f o r IR #2 i s 10.72 with s td 0.86 ( not g loba l ! )
Mean IR−s p e c i f i c th resho ld f o r IR #3 i s 5.94 with s td 0.96 ( not g loba l ! )
Mean ( over speakers ) of standard dev ia t i on ( over IRs ) of th resho ld i s 1.91 ( not g loba l ! )
Standard dev ia t i on of f i n a l th re sho ld s i s 0.82

>>> g loba l_confus ion_mat r ix
[[173042 , 4905] , [91067 , 8986]]

D.1.2. TV cosine

EER :
Overa l l mean EER i s 0.36 with s td 0.07
Worst speaker i s 5 with EER 0.47
Best speaker i s 3 with EER 0.24
Overa l l mean IR−s p e c i f i c EER i s 0.21 ( not g loba l ! )
Standard dev ia t i on of EER between IRs i s 0.01 ( not g loba l ! )
Worst da ta se t i s 0 with 0.22 ( not g loba l ! )
Best da ta se t i s 1 with 0.19 ( not g loba l ! )

Thresholds :
Mean IR−s p e c i f i c th resho ld f o r IR #0 i s 1.24 with s td 0.27 ( not g loba l ! )
Mean IR−s p e c i f i c th resho ld f o r IR #1 i s 2.03 with s td 0.55 ( not g loba l ! )
Mean IR−s p e c i f i c th resho ld f o r IR #2 i s 2.78 with s td 0.72 ( not g loba l ! )
Mean IR−s p e c i f i c th resho ld f o r IR #3 i s 1.61 with s td 0.38 ( not g loba l ! )
Mean ( over speakers ) of standard dev ia t i on ( over IRs ) of th resho ld i s 0.58 ( not g loba l ! )
Standard dev ia t i on of f i n a l th re sho ld s i s 0.34

>>> g loba l_confus ion_mat r ix
[[161730 , 5695] , [102419 , 8156]]

D.1.3. TV PLDA

EER :
Overa l l mean EER i s 0.25 with s td 0.07
Worst speaker i s 6 with EER 0.37
Best speaker i s 1 with EER 0.09
Overa l l mean IR−s p e c i f i c EER i s 0.09 ( not g loba l ! )
Standard dev ia t i on of EER between IRs i s 0.05 ( not g loba l ! )
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Worst da ta se t i s 0 with 0.17 ( not g loba l ! )
Best da ta se t i s 2 with 0.05 ( not g loba l ! )

Thresholds :
Mean IR−s p e c i f i c th resho ld f o r IR #0 i s 4.25 with s td 0.38 ( not g loba l ! )
Mean IR−s p e c i f i c th resho ld f o r IR #1 i s 4.04 with s td 0.50 ( not g loba l ! )
Mean IR−s p e c i f i c th resho ld f o r IR #2 i s 5.69 with s td 0.38 ( not g loba l ! )
Mean IR−s p e c i f i c th resho ld f o r IR #3 i s 3.90 with s td 0.43 ( not g loba l ! )
Mean ( over speakers ) of standard dev ia t i on ( over IRs ) of th resho ld i s 0.75 ( not g loba l ! )
Standard dev ia t i on of f i n a l th re sho ld s i s 0.31

>>> g loba l_con fus ion_mat r ix
[[195000 , 4038] , [69088 , 9874]]
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E.1. Comparison of Affective and Social Properties

Listing E.1: Results of a linear regression with cut-off value 3s
>>> s c i py . s t a t s . pearsonr ( f o r m l i s t , d e p t h l i s t )
(0.44903972592515906 , 1.059538502970626e−156)
>>>
>>> s c i py . s t a t s . pearsonr ( f o r m l i s t , a c t l i s t )
(−0.079742874896584978, 7.1645162777420164e−06)
>>> s c i py . s t a t s . pearsonr ( f o r m l i s t , power l i s t )
(0.1256658069448448 , 1.335223311427177e−12)
>>> s c i py . s t a t s . pearsonr ( f o r m l i s t , n o v l i s t )
(0.16249735596635015 , 3.798946871919697e−20)
>>> s c i py . s t a t s . pearsonr ( f o r m l i s t , v a l l i s t )
(−0.18474386126367329, 1.1497343728965807e−25)
>>>
>>> s c i py . s t a t s . pearsonr ( d e p t h l i s t , a c t l i s t )
(−0.12551314181939466, 1.4216357590579875e−12)
>>> s c i py . s t a t s . pearsonr ( d e p t h l i s t , power l i s t )
(0.097726649954149369 , 3.6818030745080808e−08)
>>> s c i py . s t a t s . pearsonr ( d e p t h l i s t , n o v l i s t )
(−0.0020331759989521193, 0.90902717555658263)
>>> s c i py . s t a t s . pearsonr ( d e p t h l i s t , v a l l i s t )
(−0.19006825062153879, 4.2626733873242802e−27)
>>>
>>> s c i py . s t a t s . pearsonr ( power l i s t , n o v l i s t )
(0.26810493949305653 , 3.5694735904484869e−53)
>>> s c i py . s t a t s . pearsonr ( a c t l i s t , n o v l i s t )
(−0.17008683876016112, 6.0189201954130593e−22)
>>> s c i py . s t a t s . pearsonr ( v a l l i s t , n o v l i s t )
(−0.29618581502113223, 4.9777041708374573e−65)
>>>
>>> s c i py . s t a t s . pearsonr ( power l i s t , a c t l i s t )
(−0.28171900539076011, 9.4725496555858899e−59)
>>> s c i py . s t a t s . pearsonr ( power l i s t , v a l l i s t )
(−0.24796560120712491, 1.6793983236672264e−45)
>>>
>>> s c i py . s t a t s . pearsonr ( a c t l i s t , v a l l i s t )
(0.29258829237658113 , 1.9639972535583739e−63)
>>>
>>> s c i py . s t a t s . pearsonr ( v a l l i s t , v a l l i s t _ t y p e )
(−0.039031969900711366, 0.028202804618900131)
>>>
>>> data = {}
>>> data [ ’ f o rma l i t y ’ ] = f o r m l i s t
>>> data [ ’ depth ’ ] = d e p t h l i s t
>>> data [ ’ power ’ ] = power l i s t
>>> data [ ’ novel ty ’ ] = n o v l i s t
>>> data [ ’ a c t i v i t y ’ ] = a c t l i s t
>>> data [ ’ valence ’ ] = v a l l i s t
>>> data [ ’ v a l _ s o c i a l ’ ] = v a l l i s t _ t y p e
>>>
>>> from pandas import DataFrame
>>> df = DataFrame ( data )
>>> df . co r r ()
a c t i v i t y depth f o r m a l i t y nove l ty power v a l _ s o c i a l \
a c t i v i t y 1.000000 −0.125513 −0.079743 −0.170087 −0.281719 −0.008992
depth −0.125513 1.000000 0.449040 −0.002033 0.097727 0.129190
f o r m a l i t y −0.079743 0.449040 1.000000 0.162497 0.125666 0.514977
nove l ty −0.170087 −0.002033 0.162497 1.000000 0.268105 0.066917
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power −0.281719 0.097727 0.125666 0.268105 1.000000 0.077833
v a l _ s o c i a l −0.008992 0.129190 0.514977 0.066917 0.077833 1.000000
valence 0.292588 −0.190068 −0.184744 −0.296186 −0.247966 −0.039032

valence
a c t i v i t y 0.292588
depth −0.190068
f o r m a l i t y −0.184744
nove l ty −0.296186
power −0.247966
v a l _ s o c i a l −0.039032
valence 1.000000
>>>
>>> import s ta t smode l s . ap i as sm
>>> from sta t smode l s . formula . api import o l s
>>>
>>> model = o l s ( " f o r m a l i t y ~ ∗ expec ta t ion ∗ a c t i v i t y ∗ valence " , data=data ) . f i t ( )
>>> p r i n t model . summary ()
OLS Regress ion Resu l t s
==============================================================================
Dep . Var i ab l e : f o r m a l i t y R−squared : 0.059
Model : OLS Adj . R−squared : 0.055
Method : Leas t Squares F− s t a t i s t i c : 13.21
Date : Tue , 06 Oct 2015 Prob (F− s t a t i s t i c ) : 6.83e−33
Time : 18:02:18 Log−L ike l ihood : −13092.
No . Observat ions : 3161 AIC : 2.622e+04
Df Res idua l s : 3145 BIC : 2.631e+04
Df Model : 15
Covariance Type : nonrobust
==================================================================================================
coef s td e r r t P>|t | [95.0% Conf . I n t . ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n t e r c e p t 54.2461 5.481 9.898 0.000 43.500 64.992
power −0.0199 0.102 −0.195 0.845 −0.219 0.179
nove l ty −0.1633 0.085 −1.914 0.056 −0.331 0.004
power : nove l ty 0.0011 0.001 0.787 0.431 −0.002 0.004
a c t i v i t y −0.2839 0.083 −3.405 0.001 −0.447 −0.120
power : a c t i v i t y 0.0017 0.002 1.024 0.306 −0.002 0.005
nove l ty : a c t i v i t y 0.0044 0.001 3.449 0.001 0.002 0.007
power : nove l ty : a c t i v i t y −2.619e−05 2.34e−05 −1.118 0.264 −7.21e−05 1.98e−05
valence −0.2670 0.076 −3.530 0.000 −0.415 −0.119
power : va lence 0.0006 0.001 0.420 0.674 −0.002 0.003
nove l ty : va lence 0.0031 0.001 2.287 0.022 0.000 0.006
power : nove l ty : va lence −1.067e−05 2.45e−05 −0.435 0.663 −5.87e−05 3.74e−05
a c t i v i t y : va lence 0.0039 0.001 3.649 0.000 0.002 0.006
power : a c t i v i t y : va lence −2.382e−05 2.16e−05 −1.101 0.271 −6.63e−05 1.86e−05
nove l ty : a c t i v i t y : va lence −6.328e−05 1.87e−05 −3.377 0.001 −0.000 −2.65e−05
power : nove l ty : a c t i v i t y : va lence 3.67e−07 3.53e−07 1.039 0.299 −3.26e−07 1.06e−06
==============================================================================
Omnibus : 938.450 Durbin−Watson : 1.495
Prob (Omnibus) : 0.000 Jarque−Bera ( JB ) : 2198.162
Skew : 1.676 Prob ( JB ) : 0.00
K u r t o s i s : 5.335 Cond . No . 1.86 e+08
==============================================================================

Warnings :
[1] Standard Er ro r s assume tha t the covar iance matr ix of the e r r o r s i s c o r r e c t l y s p e c i f i e d .
[2] The cond i t ion number i s large , 1.86 e+08. This might i n d i c a t e tha t there are
s t rong m u l t i c o l l i n e a r i t y or other numerical problems .
>>>
>>> model = o l s ( " depth ~ ∗ expec ta t ion ∗ a c t i v i t y ∗ valence " , data=data ) . f i t ( )
>>> p r i n t model . summary ()
OLS Regress ion Resu l t s
==============================================================================
Dep . Var i ab l e : depth R−squared : 0.058
Model : OLS Adj . R−squared : 0.053
Method : Leas t Squares F− s t a t i s t i c : 12.85
Date : Tue , 06 Oct 2015 Prob (F− s t a t i s t i c ) : 7.25e−32
Time : 18:02:18 Log−L ike l ihood : −13973.
No . Observat ions : 3161 AIC : 2.798e+04
Df Res idua l s : 3145 BIC : 2.807e+04
Df Model : 15
Covariance Type : nonrobust
==================================================================================================
coef s td e r r t P>|t | [95.0% Conf . I n t . ]
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n t e r c e p t 22.6164 7.242 3.123 0.002 8.418 36.815
power 0.5134 0.134 3.823 0.000 0.250 0.777
nove l ty 0.1359 0.113 1.206 0.228 −0.085 0.357
power : nove l ty −0.0047 0.002 −2.450 0.014 −0.008 −0.001
a c t i v i t y 0.1047 0.110 0.951 0.342 −0.111 0.321
power : a c t i v i t y −0.0048 0.002 −2.154 0.031 −0.009 −0.000
nove l ty : a c t i v i t y −0.0019 0.002 −1.133 0.257 −0.005 0.001
power : nove l ty : a c t i v i t y 4.952e−05 3.1e−05 1.599 0.110 −1.12e−05 0.000
valence 0.1774 0.100 1.776 0.076 −0.019 0.373
power : va lence −0.0085 0.002 −4.436 0.000 −0.012 −0.005
nove l ty : va lence −0.0028 0.002 −1.601 0.109 −0.006 0.001
power : nove l ty : va lence 7.76e−05 3.24e−05 2.396 0.017 1.41e−05 0.000
a c t i v i t y : va lence −0.0031 0.001 −2.191 0.028 −0.006 −0.000
power : a c t i v i t y : va lence 9.485e−05 2.86e−05 3.317 0.001 3.88e−05 0.000
nove l ty : a c t i v i t y : va lence 2.996e−05 2.48e−05 1.210 0.226 −1.86e−05 7.85e−05
power : nove l ty : a c t i v i t y : va lence −9.282e−07 4.67e−07 −1.989 0.047 −1.84e−06 −1.31e−08
==============================================================================
Omnibus : 179.349 Durbin−Watson : 1.618
Prob (Omnibus) : 0.000 Jarque−Bera ( JB ) : 208.532
Skew : 0.623 Prob ( JB ) : 5.22e−46
K u r t o s i s : 2.829 Cond . No . 1.86 e+08
==============================================================================

Listing E.2: Results of a linear regression with cut-off value 12s
>>> s c i py . s t a t s . pearsonr ( f o r m l i s t , d e p t h l i s t )
(0.42873141287849226 , 3.3657957646902214e−33)
>>>
>>> s c i py . s t a t s . pearsonr ( f o r m l i s t , a c t l i s t )
(−0.06279601345799822, 0.094068664300586982)
>>> s c i py . s t a t s . pearsonr ( f o r m l i s t , power l i s t )
(0.14130581222237854 , 0.00015502333264610512)
>>> s c i py . s t a t s . pearsonr ( f o r m l i s t , n o v l i s t )
(0.25790149948414132 , 2.7857053781020626e−12)
>>> s c i py . s t a t s . pearsonr ( f o r m l i s t , v a l l i s t )
(−0.11766932332800091, 0.0016595900672746547)
>>>
>>> s c i py . s t a t s . pearsonr ( d e p t h l i s t , a c t l i s t )
(−0.088816122777072015, 0.017767323969451784)
>>> s c i py . s t a t s . pearsonr ( d e p t h l i s t , power l i s t )
(0.17891238514944055 , 1.552112593718851e−06)
>>> s c i py . s t a t s . pearsonr ( d e p t h l i s t , n o v l i s t )
(0.027719853914942361 , 0.4602105072658178)
>>> s c i py . s t a t s . pearsonr ( d e p t h l i s t , v a l l i s t )
(−0.17707130605232144, 1.9926637629376016e−06)
>>>
>>> s c i py . s t a t s . pearsonr ( power l i s t , n o v l i s t )
(0.21720903988607485 , 4.7492514401912062e−09)
>>> s c i py . s t a t s . pearsonr ( a c t l i s t , n o v l i s t )
(−0.139272788945175, 0.00019307054219834966)
>>> s c i py . s t a t s . pearsonr ( v a l l i s t , n o v l i s t )
(−0.31584766852968643, 5.8692318086013981e−18)
>>>
>>> s c i py . s t a t s . pearsonr ( power l i s t , a c t l i s t )
(−0.34910349484104897, 7.7933288425051462e−22)
>>> s c i py . s t a t s . pearsonr ( power l i s t , v a l l i s t )
(−0.21575014328500658, 6.0474002593085584e−09)
>>>
>>> s c i py . s t a t s . pearsonr ( a c t l i s t , v a l l i s t )
(0.27322070283080341 , 1.1778805349701851e−13)
>>>
>>> s c i py . s t a t s . pearsonr ( v a l l i s t , v a l l i s t _ t y p e )
(0.06451983611020122 , 0.085364876269014192)
>>>
>>> data = {}
>>> data [ ’ f o rma l i t y ’ ] = f o r m l i s t
>>> data [ ’ depth ’ ] = d e p t h l i s t
>>> data [ ’ power ’ ] = power l i s t
>>> data [ ’ novel ty ’ ] = n o v l i s t
>>> data [ ’ a c t i v i t y ’ ] = a c t l i s t
>>> data [ ’ valence ’ ] = v a l l i s t
>>> data [ ’ v a l _ s o c i a l ’ ] = v a l l i s t _ t y p e
>>>
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>>> from pandas import DataFrame
>>> df = DataFrame ( data )
>>> df . co r r ()
a c t i v i t y depth f o r m a l i t y nove l ty power v a l _ s o c i a l \
a c t i v i t y 1.000000 −0.088816 −0.062796 −0.139273 −0.349103 −0.029167
depth −0.088816 1.000000 0.428731 0.027720 0.178912 0.147709
f o r m a l i t y −0.062796 0.428731 1.000000 0.257901 0.141306 0.568043
nove l ty −0.139273 0.027720 0.257901 1.000000 0.217209 0.173183
power −0.349103 0.178912 0.141306 0.217209 1.000000 0.084712
v a l _ s o c i a l −0.029167 0.147709 0.568043 0.173183 0.084712 1.000000
valence 0.273221 −0.177071 −0.117669 −0.315848 −0.215750 0.064520

valence
a c t i v i t y 0.273221
depth −0.177071
f o r m a l i t y −0.117669
nove l ty −0.315848
power −0.215750
v a l _ s o c i a l 0.064520
valence 1.000000
>>>
>>> import s ta t smode l s . ap i as sm
>>> from sta t smode l s . formula . api import o l s
>>>
>>> model = o l s ( " f o r m a l i t y ~ ∗ expec ta t ion ∗ a c t i v i t y ∗ valence " , data=data ) . f i t ( )
>>> p r i n t model . summary ()
OLS Regress ion Resu l t s
==============================================================================
Dep . Var i ab l e : f o r m a l i t y R−squared : 0.167
Model : OLS Adj . R−squared : 0.149
Method : Leas t Squares F− s t a t i s t i c : 9.284
Date : Tue , 06 Oct 2015 Prob (F− s t a t i s t i c ) : 4.99e−20
Time : 18:01:48 Log−L ike l ihood : −2980.4
No . Observat ions : 712 AIC : 5993.
Df Res idua l s : 696 BIC : 6066.
Df Model : 15
Covariance Type : nonrobust
==================================================================================================
coef s td e r r t P>|t | [95.0% Conf . I n t . ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n t e r c e p t 28.1934 15.861 1.778 0.076 −2.948 59.335
power 0.5347 0.259 2.063 0.039 0.026 1.043
nove l ty 0.0547 0.247 0.222 0.825 −0.430 0.539
power : nove l ty −0.0056 0.004 −1.465 0.143 −0.013 0.002
a c t i v i t y −0.3327 0.241 −1.380 0.168 −0.806 0.141
power : a c t i v i t y −0.0032 0.004 −0.763 0.446 −0.012 0.005
nove l ty : a c t i v i t y 0.0100 0.004 2.665 0.008 0.003 0.017
power : nove l ty : a c t i v i t y 7.961e−06 6.68e−05 0.119 0.905 −0.000 0.000
valence 0.2939 0.235 1.251 0.211 −0.167 0.755
power : va lence −0.0093 0.004 −2.368 0.018 −0.017 −0.002
nove l ty : va lence −0.0055 0.004 −1.305 0.192 −0.014 0.003
power : nove l ty : va lence 0.0002 6.73e−05 2.660 0.008 4.68e−05 0.000
a c t i v i t y : va lence 0.0022 0.003 0.671 0.502 −0.004 0.008
power : a c t i v i t y : va lence 5.93e−05 5.52e−05 1.074 0.283 −4.91e−05 0.000
nove l ty : a c t i v i t y : va lence −7.665e−05 5.92e−05 −1.295 0.196 −0.000 3.96e−05
power : nove l ty : a c t i v i t y : va lence −9.795e−07 1.01e−06 −0.967 0.334 −2.97e−06 1.01e−06
==============================================================================
Omnibus : 134.188 Durbin−Watson : 1.260
Prob (Omnibus) : 0.000 Jarque−Bera ( JB ) : 216.752
Skew : 1.210 Prob ( JB ) : 8.57e−48
K u r t o s i s : 4.202 Cond . No . 2.14 e+08
==============================================================================

Warnings :
[1] Standard Er ro r s assume tha t the covar iance matr ix of the e r r o r s i s c o r r e c t l y s p e c i f i e d .
[2] The cond i t ion number i s large , 2.14 e+08. This might i n d i c a t e tha t there are
s t rong m u l t i c o l l i n e a r i t y or other numerical problems .
>>>
>>> model = o l s ( " depth ~ ∗ expec ta t ion ∗ a c t i v i t y ∗ valence " , data=data ) . f i t ( )
>>> p r i n t model . summary ()
OLS Regress ion Resu l t s
==============================================================================
Dep . Var i ab l e : depth R−squared : 0.112
Model : OLS Adj . R−squared : 0.092
Method : Leas t Squares F− s t a t i s t i c : 5.823
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E.2. Context to Modality

Date : Tue , 06 Oct 2015 Prob (F− s t a t i s t i c ) : 1.93e−11
Time : 18:01:48 Log−L ike l ihood : −3149.8
No . Observat ions : 712 AIC : 6332.
Df Res idua l s : 696 BIC : 6405.
Df Model : 15
Covariance Type : nonrobust
==================================================================================================
coef s td e r r t P>|t | [95.0% Conf . I n t . ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n t e r c e p t −12.3073 20.120 −0.612 0.541 −51.811 27.197
power 1.1871 0.329 3.611 0.000 0.542 1.832
nove l ty 0.6315 0.313 2.017 0.044 0.017 1.246
power : nove l ty −0.0129 0.005 −2.673 0.008 −0.022 −0.003
a c t i v i t y 0.3859 0.306 1.262 0.208 −0.215 0.987
power : a c t i v i t y −0.0111 0.005 −2.069 0.039 −0.022 −0.001
nove l ty : a c t i v i t y −0.0041 0.005 −0.857 0.392 −0.013 0.005
power : nove l ty : a c t i v i t y 0.0001 8.47e−05 1.258 0.209 −5.98e−05 0.000
valence 0.8354 0.298 2.803 0.005 0.250 1.420
power : va lence −0.0237 0.005 −4.783 0.000 −0.033 −0.014
nove l ty : va lence −0.0114 0.005 −2.129 0.034 −0.022 −0.001
power : nove l ty : va lence 0.0003 8.53e−05 3.117 0.002 9.84e−05 0.000
a c t i v i t y : va lence −0.0092 0.004 −2.267 0.024 −0.017 −0.001
power : a c t i v i t y : va lence 0.0003 7.01e−05 4.084 0.000 0.000 0.000
nove l ty : a c t i v i t y : va lence 7.32e−05 7.51e−05 0.975 0.330 −7.42e−05 0.000
power : nove l ty : a c t i v i t y : va lence −2.718e−06 1.29e−06 −2.115 0.035 −5.24e−06 −1.95e−07
==============================================================================
Omnibus : 14.927 Durbin−Watson : 1.437
Prob (Omnibus) : 0.001 Jarque−Bera ( JB ) : 15.538
Skew : 0.353 Prob ( JB ) : 0.000423
K u r t o s i s : 2.843 Cond . No . 2.14 e+08
==============================================================================

Warnings :
[1] Standard Er ro r s assume tha t the covar iance matr ix of the e r r o r s i s c o r r e c t l y s p e c i f i e d .
[2] The cond i t ion number i s large , 2.14 e+08. This might i n d i c a t e tha t there are
s t rong m u l t i c o l l i n e a r i t y or other numerical problems .

E.2. Context to Modality

>>> confm
array ([[222 , 58 , 28 , 8] ,

[ 51 , 268 , 71 , 7] ,
[ 28 , 54 , 127 , 9] ,
[ 13 , 9 , 6 , 16]])

>>> confm_wi th_t rue_s i t
ar ray ([[265 , 33 , 18 , 0] ,

[ 26 , 325 , 44 , 2] ,
[ 24 , 43 , 141 , 10] ,
[ 7 , 3 , 8 , 26]])

>>> confm_with_true_emo
array ([[273 , 24 , 19 , 0] ,

[ 25 , 334 , 34 , 4] ,
[ 24 , 43 , 144 , 7] ,
[ 7 , 6 , 3 , 28]])

[ confus ion matr ix f o r t rue a l l un fo r tuna te l y l o s t ]

>>> confm_with_ivec
array ([[263 , 36 , 17 , 0] ,

[ 21 , 329 , 43 , 4] ,
[ 24 , 45 , 142 , 7] ,
[ 9 , 5 , 4 , 26]])

>>> con fm_wi th_ i vec_ in f _ s ing l e_va l _ac t
ar ray ([[265 , 32 , 18 , 1] ,

[ 24 , 339 , 30 , 4] ,
[ 24 , 43 , 143 , 8] ,
[ 7 , 4 , 5 , 28]])
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E. Evaluation

>>> con fm _ wi t h _ i v e c_ in f _ t e n fo ld_ s i t
ar ray ([[267 , 34 , 15 , 0] ,

[ 25 , 331 , 37 , 4] ,
[ 25 , 41 , 145 , 7] ,
[ 9 , 5 , 3 , 27]])

>>> confm_with_ivec_turn
array ([[260 , 34 , 22 , 0] ,

[ 22 , 338 , 32 , 5] ,
[ 25 , 38 , 147 , 8] ,
[ 8 , 5 , 5 , 26]])

>>> con fm_wi th_ i vec_ in f_a l l
a r ray ([[269 , 31 , 16 , 0] ,

[ 24 , 333 , 36 , 4] ,
[ 24 , 44 , 142 , 8] ,
[ 8 , 5 , 4 , 27]])
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