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Abstract—Cache partitioning is a promising technique to
reduce energy consumption of the cache subsystem for MPSoCs.
Currently, most existing techniques focus primarily on static
partition on core level. In this paper, we present a task-level
approach and show that it outperforms core-level strategies.
By taking the interference patterns of individual tasks into ac-
count, our approach generates optimal task-level cache partition
schemes as well as feasible schedules at compilation time by
means of a mixed integer linear programming formulation. We
also present techniques to prune the exploration space of our
formulation. Experimental results using real-world benchmarks
demonstrate that our approach achieves 33% energy savings on
average compared to core-based cache partition approaches.

I. INTRODUCTION

Multi-core architectures are believed to be one of the major
solutions for future embedded systems, due to their advantages
in performance and power consumption. Memory subsystem
is an essential part of such architectures. To alleviate the high
latency of the off-chip memory, multi-core architectures are
typically equipped with small L1 caches for every core and a
relatively large L2 cache shared among all cores. ARM Cortex-
A15 series [3] and openSPARC series [14] are examples of
this class of architectures. Although the cache subsystem can
significantly improve the performance, its energy consumption
is a concern. Several studies [16], [20] show that the energy
consumption of the cache subsystem accounts for over 50%
of the overall chip, due to its large on-chip area and high
access frequency. Therefore, reducing the energy consumption
of the cache subsystem, in particular the L2 cache, is critical
to further prolong the lifespan of the system.

Another known issue of the cache subsystem is that the
cache hierarchy complicates the behavior of a system, resulting
in difficulties for the analysis of system properties, e.g.,
timing and energy consumption. This complication is further
aggravated when the L2 cache is shared by multiple cores and
suffers the consequent inter-core interferences. For instance,
cache prefetches from one core can displace prefetches from
another core at runtime. Cache partitioning is a promising
technique to tackle the aforementioned problem, which parti-
tions the shared L2 cache into separate regions and designates
one or a few regions to individual cores. Cache partitioning
also has the advantage that it can provide spatial isolation
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of the cache, which is required by safety standards such as
ARINC 653 in the avionic domain.

Most of the state-of-art techniques [7], [11], [16] on cache
partitioning consider the problem at core level. However,
designating a region with a constant size to individual cores is
often ineffective w.r.t the energy consumption, since the tasks
assigned on the same core might have different requirement
and sensitivity to the amount of cache allocated. We argue that
by carefully designing a task schedule and reconfiguring the
L2 cache partitioning for each task according to the schedule
at runtime, the energy consumption of the system can be
significantly reduced, compared to the core-level strategies.
A motivation example will further elaborate this issue in
Section IV.

This paper tackles the problem of schedule-aware cache
partitioning for energy optimization on MPSoCs. We present,
to the best of our knowledge, the first work that dynamically
partitions the shared L2 cache at the task level to improve
energy efficiency, taking into account the task dependencies
and time-triggered schedule. For a given set of applications
represented as directed acyclic graphics and a mapping of
the applications on the MPSoC, our approach can generate
a time-triggered non-preemptive schedule and a set of cache
configurations in the compilation time. At runtime, the L2
cache is dynamically reconfigured at every task invocation
according to the generated configurations. The generated
schedule and the cache configurations minimize the energy
consumption of the cache subsystem while guaranteeing the
timing constraints of the applications. The contributions of our
work are summarized as:

• We define an energy-minimization problem that combines
the cache partitioning and task scheduling and solve it by
means of mixed integer linear programming.

• We present a refinement technique to prune the design
space, such that our approach is more scalable with
respect to the number of applications and the number
of ways of the L2 cache.

• We conduct extensive simulations using real-life applica-
tions and demonstrate the effectiveness of our approach
by comparison with the previous work.

The rest of the paper is organized as follows: Section II
reviews related work in the literature. Section III presents
basic models and the definition of studied problem. Section IV



presents the motivation example and Section V describes the
proposed approach. Experimental evaluation is presented in
Section VI and Section VII concludes the paper.

II. RELATED WORK

Reconfigurable Cache: Numbers of reconfigurable cache
architecture have been proposed in the literature. Zhang et
al. [20] propose a highly reconfigurable cache architecture
where the cache ways could be tuned via hardware config-
uration registers. The number of partitioned cache ways is
constraint to be a power of two. Albonesi et al. [2] propose
a selective cache ways architecture where the cache can be
reconfigured to have any number of cache ways. It can be
realized with only minor changes in a conventional cache. To
improve the energy efficiency, the cache is reconfigured dy-
namically according to the behavior of a task [2], [20]. Instead
of tuning the number of cache ways, the authors in [17] present
a selective-sets cache architecture which varies the number of
cache sets. Yang et al. [18] propose an hybrid selective-sets-
and-ways organization for resizable caches and explore the
design alternatives. For the sake of low design complexity
and effectiveness, We focus on the cache architecture with
selective ways in [2] in this paper.
Cache Partitioning: Cache partitioning techniques are ex-
tensively studied to improve the performance of real-time
embedded systems. Bui et al. [4] exploit cache partitioning
to minimize the task utilization while taking into account the
tasks’ criticality. By leveraging configurable cache architec-
tures, the authors in [12] propose a technique to eliminate
inter-task cache interference and reduce cache energy con-
sumption. Wang et al. [15] propose a profile-based scheduling-
aware dynamic cache reconfiguration technique to reduce the
cache energy consumption for soft real-time systems. How-
ever, none of above works consider the multicore platforms.
For the multicore systems, Liu et al. [11] propose a joint
task assignment and cache partitioning technique to minimize
the overall WCET, where the shared cache is partitioned on
core level and cache locking is applied to guarantee a precise
WCET. Given a task-level cache partitioning, the authors in [8]
develop a sufficient schedulability test for non-preemptive
fixed priority scheduling for multicores. However, the work
does not consider how to partition the cache to individual
tasks. The authors in [7] propose a two-level utilization control
solution for energy optimization in multicore real-time sys-
tems, in which the cache assigned to a task is upper-bounded
by the cache quota of the core. Wang et al. [16] propose an
approach to optimize the energy of the cache subsystem for
multicore systems. In this work, they dynamically reconfigure
the private L1-cache on task-level and statically partition the
shared L2-cache to cores. All the works above model tasks as
a set of discrete independent tasks, which can not fully exploit
the parallel feature of multicore system. Besides, most of them
consider cache partitioning on core level.

III. MODELS AND PROBLEM DEFINITION

A. Hardware Model

This paper considers a typical multicore system with pri-
vate L1 cache and a shared on-chip L2 cache, as shown in
Fig. 1(a). The multicore system consists of 4 cores P =
{p1, p2, p3, p4} and cross switch serves as a high bandwidth in-
terface between the 4 cores and the 4-port L2 cache. This type
of interface has been used in the OpenSPARC processors [14]
(called CCX). In this work, we focus on partitioning the shared
L2 cache and assume the task occupies the entire private
L1 cache (both instrument and data cache). Considering the
design complexity and effectiveness, we use a resizable cache
architecture with selective ways as considered in [2] and use
a way-based partitioning strategy. As shown in Fig. 1(b), the
L2 cache is partitioned in the ways. Each core can dynamically
tune the number of selective-ways by reconfiguring way-mask.
For example, core 2 can select the 3rd and 6th way by
setting way-mask as 0x24. In this work, we dynamically assign
cache ways to tasks. We show that the existing work that
statically partition the L2 cache on core-level [7], [11], [16]
is suboptimal. Our approach can also be extended to handle
cache architectures that divide cache by sets.

L1 Cache

(I- and D-)

L2 Cache

Core 1

To Memory

CCX

L1 Cache

(I- and D-)

Core 2

L1 Cache

(I- and D-)

Core 3

L1 Cache

(I- and D-)

Core 4

(a) Multicore architecture with 2-level cache

Core1 Core2 Core3 Core4

(b) Way-based cache partition

Fig. 1. Hardware model.

B. Task Model

We consider the functionality of the entire system as an
applications set A, which consists of a set of independent
periodic applications. An application J ∈ A is modeled as
a directed acyclic task graph G(V,E,H), where vertexes V
denote the set of tasks T to be executed, the edges E represent
data dependencies between tasks and H denotes the period of
the application. The deadline D of the application is equal
to its period. We adopt the same assumption as [7], [8], [11],
[16] and assume that the worst case execution time (WCET) of
each task Ti with a specific L2 cache size can be determined.
We use wij to denote the WCET of task Ti ∈ V with j ways
L2 cache allocated and Wi = {wi1, wi2, ..., wis} to denote
the WCET profile of task Ti, where s is the total number of
ways in the L2 cache (cache capacity). Timing predictability
is highly desirable for safety-related applications. In this



paper, we consider a periodic time-triggered non-preemptive
scheduling policy. We use R to denote the set of the profiles
for all tasks in applications set A. A task profile ri ∈ R is
defined as a tuple ri =< Wi, si, hi, di >, where si, hi, di
are respectively the start time, period, and deadline of Ti. The
start time si is an unknown variable, which is determined by
scheduling S. The tasks belonging to the same application
share the same period and deadline.

C. Energy Model

The energy dissipation of cache subsystem comprises of
dynamic energy Edyn and static energy Esta [20]: Ecache =
Edyn+Esta. The dynamic energy dissipation Edyn originates
from cache accesses and cache misses:

Edyn = Naccess · Ehit +Nmiss · Emiss (1)
where Naccess and Nmiss are the number of cache accesses
and misses, respectively. The cache access energy Ehit is
constant according to cache specification. Emiss represents
the energy dissipation of a cache miss and is calculated as:

Emiss = Ememaccess + EµP stall + Eblock fill (2)
where Ememaccess is the energy dissipation for accessing the
off-chip memory, EµP stall is the energy dissipation when
the core is waiting for data from the off-chip memory, and
Eblock fill is the energy for filling the fetched data to the
cache block. The static energy Esta can be computed as
Esta = Psta · t, where Psta is the static power consumption
of cache and t is the total execution time. The data for Ehit,
Eblock fill, and Psta with a given cache specification can be
obtained using simulation tools like CACTI [5]. The access
and miss numbers Naccess and Nmiss are obtained using
SimpleScalar [13]. The value for Ememaccess and EµP stall

can be obtained from memory and processor specification [20].

D. Problem Statement

Given an applications set A with task profile R, a multicore
architecture P with s-way associative shared L2 cache, and
task mapping Π{T → P}, our goal is to find an optimal task-
level cache partition CP and feasible scheduling S so that
the energy of the cache system Ecache is minimized while
guaranteeing the timing constraints of all applications as well
as the cache capacity constraints.

IV. MOTIVATION

Consider two applications J1 = {T1, T2} and J2 =
{T3, T4, T5} with dependencies {T1 → T2} and {T3 →
T5, T4 → T5}, respectively. For simplicity, we assume J1 and
J2 have the same period of H = 8ms. The MPSoC has a dual-
core architecture P = {p1, p2}. A 4-ways cache is shared by
both cores. The task profiles under different cache configura-
tions are listed in Tab. I. We compare three different cache
partition schemes, namely the a even partitioning scheme, the
static core-based partition in [16], and a task-based partitioning
scheme. The schedule and the corresponding energy consump-
tion of the three approaches are shown in Fig. 2.

From Fig. 2, we can see that even partitioning has the
highest energy consumption. The reason is that, although tasks

TABLE I
TASK PROFILES FOR DIFFERENT CACHE SETTING.

T1 T2 T3 T4 T5

Mapping p1 p2 p2 p1 p2

WCET way1 5 3 5 3 2.9
way2 4 2 4.5 1.5 2.6

(ms)
way3 2 1.5 2 1 2
way4 2 1 2 1 2

Energy way1 9 12 13 14 9
way2 6 6 11 14 8

(uJ)
way3 4 5 8 7 6
way4 3 4 3 6 7

T1 and T3 could potentially consume much less energy if more
ways of the cache are granted, the pre-allocation of cache
excludes this possibility. The static core-based scheme, shown
in Fig. 2(b), consumes less energy, because T1 can run in a
more energy-efficient three-way cache setting. Nevertheless, it
still some limitations. As shown in the figure, by assigning
three ways to core p1, there is only one way left for core
p2. Task T3 must unfortunately run in the inefficient one-way
configuration. In contrast, the task-based scheme can overcome
this drawback. As shown in Fig. 2(c), from time 0 to 3, no task
is scheduled for core p2. Therefore, all four ways are assigned
to tasks T4 and T1. After T1 finishes, all these four ways are
reassigned to task T3 on core p2, since no task is running on
core p1 between time 3 to 5. After T3 finishes, the cache is
shared by both cores again. In this case, the task-based scheme
achieves the most energy efficient execution of the tasks.

The example indicates that the cache reconfiguration is
closely correlated to the schedule of the tasks. Although
assigning a larger portion of cache to a task can reduce
its execution time, we can not do it greedily due to other
constraints. For example, as shown in Fig. 2(c), task T2
can only be executed after T3 since there is no available
cache. T2 and T5 are scheduled to execute concurrently due
to their deadline constraint, which restricts T2 from using
all 4 ways to further reduce the energy consumption. To
tackle this correlation, more sophisticated method is needed
to systematically derive the cache reconfigurations as well as
the schedule. The next section presents our solution.

V. PROPOSED APPROACH

This section presents our mixed integer linear programming
(MILP) approach for cache partitioning and task scheduling.
We start with an MILP formulation that focuses only on the
scheduling problem. Then, the constraints of cache capacity
is integrated. Based on the observation that the MILP for-
mulation may suffer from the state explosion, we develop
a refinement, the so-called unified resource demand function
(URDF) that captures the cache demand of every task and
effectively models the interference between tasks, to reduce
the exploration space of the formulation.

A. Time-Triggered Task Scheduling

In this paper, we consider time-triggered non-preemptive
schedule. For each task Ti with the profile < Wi, si, hi, di >,
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Fig. 2. Schedules and energy consumption.

the k-th instance of task Ti starts at si + k · hi. Wi contains
the WCETs of the task with different cache configurations.
We use a set of binary variables cij to describe the amount of
cache allocated to the task Ti: cij = 1 if exactly j cache ways
are allocated to Ti and cij = 0 otherwise. In this case, the
actual WCET of Ti can be obtained as

∑s
j=1 cijwij , where s

is the total number of ways of the shared cache. To formulate
the scheduling problem by means of MILP, we have to cope
with the task dependency, deadlines, and non-preemption. We
present our formulation as follows.

Let ξ denote the overheads for cache reconfiguration and
task switch. The data dependency Tj → Ti requires the start
time of Ti to be no earlier than the finish time of Tj plus the
switching overhead:

sj +

s∑
k=1

cjkwjk + ξ ≤ si (3)

For deadline constraint, task Ti has to finish no later than its
deadline:

si +

s∑
k=1

cikwik ≤ di (4)

The non-preemptive constraint requires that any two tasks
mapped to the same core must not overlap in time. Let binary
variable denote the execution order of task Ti and Tj : z

ij
pp̃ = 1

if the i-th instance of task Tp finishes before the start of j-th
instance of Tp̃, and 0 otherwise. Hr and Hpp̃ denote the hyper-
period of all tasks and the hyper-period of only task Tp and
Tp̃ (i.e., LCM of periods of Tp and Tp̃), respectively. TS(Tp)
denotes the set of tasks that are mapped to the same core as Tp
does. The non-preemption constraint can thereby be expressed
as follows.
∀Tp, Tp̃ ∈ TS(Tp), i = 0, ..., (

Hpp̃

hp
− 1), j = 0, ..., (

Hpp̃

hp̃
− 1):

i · hp + sp +

s∑
k=1

cpkwpk − (1− zijpp̃)Hr + ξ ≤ j · hp̃ + sp̃

(5)

j · hp̃ + sp̃ +

s∑
k=1

cp̃kwp̃k − zijpp̃Hr + ξ ≤ i · hp + sp (6)

The constraints (5) and (6) ensure that either the instance of
Tp runs strictly before the instance of Tp̃, or vice verse.

B. Cache Partitioning Constraints

The constraints described above guarantee a valid time-
triggered schedule. The next step is to add the cache partition-
ing constraints. The goal here is to guarantee the feasibility of
cache partitioning, i.e., at any point in time, the sum of cache
ways allocated to the tasks currently being executed does not

exceeds the cache capacity. In other words, we must avoid
cache overflow. Before presenting the formulation, we state
following lemma.

Lem. 1: If the cache does not overflow at start instant of
any task within one hyper-period, the cache never overflows.

Proof: Note that the amount of cache allocated to a task is
constant during its execution interval. It acquires the resources
at the start instant and releases the resources at the finish
instant. Hence, cache overflow will not occur if the available
resources fulfill the requirement of tasks at its beginning.

From Lem. 1, we know only a finite number of time instants,
i.e., at the start of any task, need to be checked for cache
overflow. For a specific task Tp, we have to gather all tasks
that overlap with it and inspect the total cache demands. Let
Tp̃ /∈ TS(Tp) be a task running on a different core as Tp.
The timing relationship between Tp and Tp̃ can have three
possibilities: 1) Tp starts during the execution of Tp̃, i.e., the
two tasks overlap in time (or in other words Tp̃ interferes Tp),
as shown in Fig. 3(a); 2) Task Tp̃ starts after task Tp starts
(Fig. 3(b)). In this case, the interference occurs if the start
time of Tp̃ is earlier than the finish time of Tp. 3) Task Tp̃
ends before task Tp starts (Fig. 3(c)), i.e., no overlap in time.

Two binary variables are used to describe the three scenarios
above. The variable xijpp̃ is 1 if the start time of i-th instance
of Tp is later than the start time of the j-th instance of Tp̃,
and 0 otherwise. The variable yijpp̃ = 1 if the start time of i-th
instance of Tp is earlier than the finish time of j-th instance of
Tp̃ ends. Based the above definitions, we define the following
constraints.
∀Tp, Tp̃ /∈ TS(Tp), i = 0, ..., (Hr

hp
− 1), j = 0, ..., (Hr

hp̃
− 1):

j · hp̃ + sp̃ − (1− xijpp̃)Hr ≤ i · hp + sp (7)
i · hp + sp − xijpp̃Hr < j · hp̃ + sp̃ (8)

i · hp + sp − (1− yijpp̃)Hr ≤ j · hp̃ + sp̃ +

s∑
k=1

cp̃kwp̃k (9)

j · hp̃ + sp̃ +

s∑
k=1

cp̃kwp̃k − yijpp̃Hr < i · hp + sp (10)

The constraints (7-10), cover the interference scenarios in
Fig. 3, depending on the combination of xijpp̃ and yijpp̃.
• xijpp̃ = 1 and yijpp̃ = 1: (8) and (10) are trivially satisfied

while (7) and (9) restrict Tp and Tp̃ to be overlapped.
This corresponds to the scenario in Fig. 3(a).

• xijpp̃ = 0 and yijpp̃ = 1: (7) and (10) are trivially satisfied
while (8) and (9) constraint the execution order of the two
tasks to be the scenario in Fig. 3(b). Still, as mentioned
before, two possibilities could occur, i.e., Tp interferes
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Fig. 3. Timing relationship between two tasks.

Tp̃
1 and Tp does not interfere Tp̃. The two interference

scenarios, that Tp interferes Tp̃ and Tp̃ interferes Tp, are
distinguished by the symmetrical binary variable xjip̃p and
yjip̃p.

• xijpp̃ = 1 and yijpp̃ = 0: (8) and (9) are trivially satisfied
while (7) and (10) restrict the execution order to be the
scenario shown in Fig. 3(c).

Note that xijpp̃ and yijpp̃ can not be 0 at the same time, due to
contradiction between (8) and (10). Based on above analysis,
we know xijpp̃+yijpp̃−1 ∈ {0, 1} and use the term xijpp̃+yijpp̃−1
in the MILP formulation to indicate whether Tp̃ interfere Tp,
i.e, whether the scenario in Fig. 3(a) occurs.

Another related constraint is that each task must have
exactly one cache configuration.

s∑
k=1

cik = 1 (11)

Based on Lem. 1, we can now formulate the constraint to
guarantee feasibility of cache partitioning. At the start time of
a task Tp, the total cache demand consists of the parts from
Tp itself and the tasks that interfere with Tp, computed by∑s
k=1 cpk · k (for Tp) and (xijpp̃ + yijpp̃ − 1)

∑s
k=1 cp̃k · k(for

interference task), respectively. The term (xijpp̃ + yijpp̃ − 1)
indicates whether Tp̃ interferes with Tp. Thus, we have the
following constraint.
∀Tp, i = 0, ..., (Hr

hp
− 1) :

s∑
k=1

cpk · k +

j=Hr
hp̃
−1∑

Tp̃ /∈TS(Tp),j=0

(xijpp̃ + yijpp̃ − 1)

s∑
k=1

cp̃k · k ≤ s

(12)
One may notice that there are quadratic items in (12), i.e.,
(xijpp̃+yijpp̃−1)

∑s
k=1 cp̃k · k. However, we can transform this

quadratic term into a set of linear constraints using Lem. 2.
Here, we define an intermediate variable tijpp̃ = (xijpp̃ + yijpp̃ −
1)
∑s
k=1 cp̃k · k. and can obtain two linear conditions 0 ≤∑s

k=1 cp̃kk ≤ s from (11) and (xijpp̃ + yijpp̃ − 1) ∈ {0, 1}.
Lem. 2: Given a constant s > 0 and two constraint

spaces P1 = {[t, b, x]|t = b · x, 0 ≤ x ≤
s, b ∈ {0, 1}} and P2 = {[t, b, x]|0 ≤ t ≤
b · s, t ≤ x, t− b · s− x+ s ≥ 0, b ∈ {0, 1}}, then P1 ⇀↽
P2

Proof: P1 ⇒ P2: We obtain 0 ≤ t ≤ b · s according to
t = bx and 0 ≤ x ≤ s. From b ∈ {0, 1} and t = bx, we
have t ≤ x. Based on 0 ≤ x ≤ s and b ∈ {0, 1}, we can
obtain (b− 1)(x− s) ≥ 0. Hence, t− b · s− x+ s ≥ 0 holds.
P2 ⇒ P1 : If b = 0 holds, we can prove that t = 0 and
0 ≤ x ≤ s according to the definition of P2. If b = 1 holds,
we can obtain 0 ≤ t = x ≤ s from P2. Thus, P2 ⇀↽ P1.

1Note that Tp interferes Tp̃ and Tp̃ interferes Tp are two different scenarios.

Up to now, we have presented the formulation for the task
scheduling and cache partitioning. To minimize the energy
consumption of the cache subsystem in one hyper-period, the
following objective is used:

E =
∑
∀Ti

Hr

hi

s∑
j=1

cijE
ij
cache (13)

where s and Eijcache represent the cache capacity (in the
number of ways) and the energy consumption of cache subsys-
tem of task Ti under j-way cache configuration, respectively.
The energy profile of each task Ti under different cache
configuration can be obtained using the cache energy model
depicted in Section III-C.

C. MILP Formulation Refinement

The formulation described in Section V-B utilizes 3Q0

variables to model the interference between tasks at each
checking instant (i.e, variable xijpp̃, yijpp̃, and tijpp̃). Here, Q0

is the number of task instances that may interfere with the
task under consideration, i.e., Q0 =

∑
Tp̃ /∈TS(Tp)

(Hr

hp̃
). Since

the task Tp has Hr

hp
instances, the total amount of variables

can be calculated as:
V0 = 3

∑
∀Tp

∑
Tp̃ /∈TS(Tp)

Hr

hp

Hr

hp̃
(14)

As it can be seen, the total number of variables used increases
quadratically with the number of tasks in the application,
resulting in dramatically increased exploration space for the
MILP. To maintain the scalability of the approach, it is
important to develop techniques that can reduce the explo-
ration space. Here, we propose a novel approach based on
the concept of Unified Resource Demand Function (URDF).
URDF models the resource demand of task in the time domain.
For task Tp with start time sp and execution time ep, the cache
demand at instant t can be defined as:

URDF (t, Tp) =

⌊
t− sp
hp

⌋
+ 1−

⌈
t− sp − ep

hp

⌉
(15)

The URDF above indicates that Tp requires the cache only
in interval [sp + i · hp, sp + ep + i · hp]. The URDF has
several mathematic properties that are beneficial to model the
interference between tasks.

Prop. 1: URDF (t, Tp) ∈ {0, 1}. The URDF is 1 is the
task Tp requires the cache at time instant t and 0 otherwise.

Prop. 2: URDF (t, Tp) = URDF (mod(t, hp), Tp).
Prop. 3: Define intermediate variables Xt,Tp

=
⌊
t−sp
hp

⌋
and Yt,Tp

=
⌈
t−sp−ep

hp

⌉
, then UDRF could be linearized as

UDRF (t, Tp) = Xt,Tp + 1− Yt,Tp with two extra constraints
t−sp
hp
− 1 < Xt,Tp

≤ t−sp
hp

and t−sp−ep
hp

≤ Yt,Tp
<

t−sp−ep
hp

+ 1.
Using URDF to model the cache demand, we can reformulate
constraint (12) as following.
∀Tp, i = 0, ..., (Hr

hp
− 1):

s∑
k=1

cpk · k +
∑

Tp̃ /∈TS(Tp)

UDRF (sp + i · hp, Tp̃)
s∑

k=1

cp̃k · k ≤ s

(16)



Similar to the linear procedure of (12), we define interme-
diate variable aipp̃ = UDRF (sp + i · hp, Tp̃)

∑s
k=1 cp̃k · k.

According to Prop. 1 and Prop. 3, UDRF (sp + i · hp, Tp̃)
could be linearized as Xsp+i·hp,Tp̃

+ 1 − Ysp+i·hp,Tp̃
with

(Xsp+i·hp,Tp̃
+ 1 − Ysp+i·hp,Tp̃

) ∈ {0, 1}. Based on Lem. 2,
the non-linear item UDRF (sp + i · hp, Tp̃)

∑s
k=1 cp̃k · k in

(16) can also be linearized.
The advantage of this reformulation is that we do not need

to have separate variables and constraints for every instance
of task Tp̃ /∈ TS(Tp), resulting in significant reduction of
the number of variables and the exploration space. After
the refinement, we just need 3Q1 variables to model the
inter-core interference at a specific checking instant, where
Q1 is the cardinality of the set Tp̃ /∈ TS(Tp), i.e. Q1 =
|{Tp̃|Tp̃ /∈ TS(Tp)}|. Moreover, by applying Prop. 2, we can
further reduce the exploration space. We calculate ipp̃ =

Hpp̃

hp̃

for each task Tp̃ /∈ TS(Tp). Based on Prop. 2, we have
UDRF (sp+i ·hp, Tp̃) = UDRF (sp+mod(i, ipp̃) ·hp, Tp̃). It
indicates that UDRF at checking instant sp+mod(i, ipp̃) ·hp
can be reused at checking instant sp + i · hp. In this case,
we only need ipp̃ URDFs to model the interference between
Tp and Tp̃. Since each URDF needs 3 variables in the MILP
formulation, the total amount of variable is computed as:

V1 = 3
∑
∀Tp

∑
Tp̃ /∈TS(Tp)

Hpp̃

hp̃
(17)

Compared to (14), we can see the number of variables is
significantly reduced after the refinement.

VI. PERFORMANCE EVALUATIONS

In this section, we demonstrate the effectiveness of our
approach. We use SimpleScalar [13] for the simulation and
CACTI [5] for collecting the energy parameters of the
L2 cache. The CPLEX [6] solver is used to solve the MILP
problems. All experiments are conducted on a computer with
2.3GHz Intel CPU and 4GB memory.

A. Experiment Setup

To evaluate the effectiveness of our approach, we consider
five task graphs in our experiment: three FFT benchmarks, an
Adaptive Cruise Control (ACC) application, and an AES en-
cryption application. The ACC application from Autofocus [1]
is an optional cruise control system for road vehicles. It con-
sists of 8 tasks. The AES from CHStone [19] is an application
with 6 tasks for the encryption of electronic data. The task
graphs for FFT is obtained based on the implementation from
MiBench [9]. By employing Cooley-Tukey algorithm [10], N -
point FFT can be split into two parallel N

2 -point FFT. We
modified the FFT benchmark in MiBench into three different
task graphs with 4 tasks, 7 tasks, and 10 tasks, respectively.
The task graph with 4 tasks is obtained by splitting N -point
FFT into two N

2 FFT tasks. The graph with 7 tasks is obtained
by splitting N -point FFT into one N

2 FFT tasks and two N
4

FFT tasks. Similarly, we construct the graph with 10 tasks by
splitting N -point FFT into four N

4 FFT tasks. For simplicity,
FFT-N -M denotes task graph with M tasks for N -point FFT.

TABLE II
TASK GRAPH SETS.

Task graph Period[ms] Task#

Set1 FFT-2048-4,FFT-4096-7 50,100,200 21FFT-8192-10
Set2 FFT-256-4,ACC,AES 12,4,2 16

Set3 FFT-2048-7 40,20,5 19FFT-1024-4,ACC

Set4 FFT-512-4,AES 18,3,36 15FFT-1024-4
Set5 FFT-1024-10,AES 16,2 14

Set6 FFT-2048-10 40,5,10,20 29AES,ACC,FFT-512-7

We consider six combinations of these applications. Details of
the combinations are shown in Tab. II.

The SimpleScalar cycle-accurate architecture simulation
platform [13] is used for our experiment. We modified the
cache model in SimpleScalar to support way-based partition-
ing. The number of cache accesses and misses, as well as the
execution time (in cycles), under different cache configurations
are obtained using SimpleScalar. The energy parameters of the
L2 cache are collected from CACTI [5] with 60 nm technology
and [20]. In this paper, we use a 4-core architecture where
each core runs at 500 MHz. Private L1 data and instruction
caches are set to 4KB and 2KB, respectively. The shared L2
cache is configured to 32KB with 32-byte line size and 8-way
associativity. The latencies of L1 cache, L2 cache, and the
main memory are set to 1, 10, and 100 cycles, respectively.

B. Results

In this paper, we compare three approaches , i.e., equal
partitioning (EQUAL), the core-based approach (CORE-OPT)
from [16], and our approach (TASK-OPT). Fig. 4 shows
the energy consumption of the approaches normalized w.r.t
EQUAL. As it can be seen, our approach can on average
achieve 40% and 33% energy savings compared to EQUAL
and CORE-OPT, respectively.

Another interesting issue is the impact of the cache size
to the effectiveness of our approach. We vary the cache
size from 32K to 512K with fixed cache sets and line
configuration, i.e., the number of cache ways varies from
8 to 128. Fig. 5 illustrates the results where all values are
normalized to CORE-OPT. From the figure, we can make
the following observations: (1) Our approach can significantly
reduce the energy consumption (up to 75%) when the cache
size is small. This indicates that our approach is especially
useful for architectures with limited resources. (2) As cache
capacity increases, the achievable energy saving decreases.
This is caused by the fact that the tasks may saturate with
the amount of cache allocated, i.e. when the cache allocated
to a task exceeds a threshold, the benefit of assigning even
more cache is very limited, since the cache behavior, including
the number of cache accesses and misses, will be almost
identical. In other words, with larger cache capacity, the
scheduling problem becomes much easier and the performance
gap between CORE-OPT and TASK-OPT becomes smaller.



Fig. 4. Cache hierarchy energy reduction.

Fig. 5. Normalized energy consumption of the six task sets with different
cache sizes.

Nevertheless, our approach outperforms CORE-OPT in all
cases. (3) Although the performance of CORE-OPT and
TASK-OPT eventually converges with increasing cache size,
the speed of convergence depends highly on the complexity
of the application. This is because larger tasks need also more
cache to enter the saturation state. For example, as shown
in the figure, the performance for task set 1 converges much
slower due to the high complexity of the FFT tasks. This
indicates that our approach is more beneficial to handle future
applications with increasing complexity.

In the end, we conduct experiments to show the efficiency
of our refinement technique. We adopt the same examples
as above using 32KB cache configuration. We compare the
number of variables in the MILP and the solving time. Fig. 6
shows the results normalized to the baseline approach without
refinement. Note that, for the task set 6, the baseline approach
fails to finish within the time budget of 8 hours whereas the
refined approach finishes in about 15 minutes. Moreover, the
baseline approach needs 14270 variables in the formulation
while the refined approach only needs 4139, which results in
71% reduction of the number of variables for task set 6. In
Fig. 6, we can observe that the two curves follow the same
trend. On average, the refinement achieves 45% reduction on
the computation time and 67% on the number of variables.

VII. CONCLUSION

This paper presents an approach to minimize energy con-
sumption of the cache subsystem by partitioning the cache
on task-level. We propose an integrated solution for joint
task scheduling and cache partitioning based on mixed in-
teger linear programming. Our approach generates task-level

Fig. 6. Numbers of variables and computing time for six different task sets.

cache configurations as well as time-triggered non-preemptive
schedule at compilation time, which minimizes the energy con-
sumption of cache subsystem while guaranteeing the timing
constraints. Besides, we develop a novel technique that can
significantly reduce the exploration space of MILP. Experi-
ment results show that our approach can achieve 33% energy
savings compared to existing cache partitioning approaches.
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