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Abstract

In commerce it is very important to have a good knowledge about the customers’ be-
haviour and about the possibility to influence the sales. Especially in online business,
from the customers’ side it is very easy to change to another shop and purchase almost
everywhere. This results in a very challenging competitive situation.

This master’s thesis analyses data from an online shop sampled over a period of two
years. Different aspects are covered:

e The product hierarchy is used for several levels of aggregation to support different
strategies of the shop from simple pricing to optimisation of the portfolio.

e Several modelling approaches, especially GLMs, GAMs and copula models including
different assumptions on the distribution of the response variable are conducted.

e A detailed analysis turns out the relevant covariates like for example prices, adver-
tisement, substitution effects and seasonality.

The results show a good fit and can be applied to the relevant shop activities.



Zusammenfassung

Als Héandler ist es besonders wichtig, gut iiber das Kundenverhalten und die Mo6glichkeiten,
wie man die Verkaufszahlen beeinflussen kann, Bescheid zu wissen. Insbesondere im Online-
Handel ist es fiir die Kunden sehr einfach zwischen verschiedenen Shops zu wechseln und
fast iiberall einzukaufen. Dies fiithrt zu einer herausfordernden Wettbewerbs-Situation.

Diese Masterarbeit beschéftigt sich mit Daten eines Online-Shops, die iiber einen Zeitraum
von zwei Jahren gesammelt wurden. Verschiedene Aspekte werden behandelt:

e Der Produkthierarchie entsprechend werden die Artikel verschieden stark aggregiert,
um unterschiedliche Strategien des Shops wie zum Beispiel die Preissetzung oder die
Optimierung des Portfolios zu verbessern.

e Mehrere Modellierungsansétze, insbesondere GLMs, GAMs und Copula-Modelle mit
verschiedenen Annahmen iiber die Verteilung der Zielvariablen werden betrachtet.

e Eine detaillierte Analyse zeigt die relevanten Einflussvariablen aus den unterschiedlichen
Bereichen wie z.B. Preise, Werbung, Substitution und Saisonalitét.

Die Modelle bieten eine gute Moglichkeit, die Daten zu beschreiben. Daraus kénnen im
Shop entsprechende Mafinahmen abgeleitet werden.
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Chapter 1

Introduction

In commerce it is very important to have a good knowledge about the customers’ be-
haviour and about the possibility to influence the sales. Especially in online business,
from the customers’ side it is very easy to change to another shop and purchase almost
everywhere. This results in a very challenging competitive situation. The price elasticity
thus plays an important role. In addition, the shop owner can carry out various activities
to raise the attractiveness of the shop or of the offered items. Further, several strategical
aspects have to be covered.

In this thesis we analyse one specific online shop. We investigate the influence of the basic
attributes

e prices of the shop
e prices of the competitors

e advertising

on the quantity sold of one specific product group of this online shop. Some mechanisms
like substitution effects and seasonality are considered as well. This will be carried out by
applying several statistical methods.

At first, in chapter 2, we summarise the mathematical background of the used meth-
ods.

In chapter 3 we explain the shop structure and the data available. Following the typi-
cal procedure steps

e data cleaning
e cxploratory data analysis

e selecting and fitting models

we derive several models for different items and different levels of aggregation.

Finally, in chapter 4 we put the models into the economical context to validate them
for application in business.



Chapter 2

Mathematical Background of
Modelling

In this chapter we explain some mathematical background of the methods used for mod-
elling and evaluation. Since this thesis does not deal with extending the theoretical con-
cepts, but with applying the appropriate techniques, in the following the relevant common
knowledge is described. Thus, referencing each formula in literature is omitted. Neverthe-
less, the related literature is listed in section 6.3.

2.1 Generalised linear models (GLM)

The typical regression problem looks as follows: We want to explain a variable of interest,
the so called response variable, through several independent variables. The most common
approach for such a problem are regression models. Since these are an essential component
of this thesis, we give a short introduction into the basic concepts. For more details please
refer to Czado et al. (2013).

2.1.1 Multiple linear regression models

Setting up a multiple linear regression model, we start from a set of measured data. Fur-
thermore, we have some structural information available about the general framework.
This could for example be the order of the measurements or the conditions under which
the data was taken. To be able to interpret things correctly, we are looking for structures
within the data. We will now introduce the multiple linear regression model. Please note,
that this model is only appropriate for normally distributed response variables. Never-
theless, it plays a central role in the theory of statistical regression and can be seen as
starting point for generalised linear regression models, which also allow for a non-normally
distributed response.

In multiple linear regression we describe our response variable Y as a linear function
of the known predictors with a random error variable e. Written as formula, it is

Y = o+ frar + ... +5k$k+€=50+2?:15j55j+6-
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The parameters to be estimated are the intercept [y as well as the regression coefficients
B1, ..., Br. This means, we have p = k+ 1 regression parameters which have to be estimated
from the observations (y;, z;) = (vi, i1, .., Tix), where i = 1,... n.

Most of the time, we will refer to this using vector notation.

Definition (Linear model in vector notation)

Y = X3 + ¢ with € ~ N,(0,0%I,,), where

1 r11 12 - . . 1k zl
T21 . Lok ?
X = ER™PY = € R",
1 201 XTp2 .- . . T '
Yn

B = (B, B, 0r) ERP and p =k + 1.

Estimation and analysis are based on the following assumptions:

Definition (Assumptions on a linear model)

e Linearity. The relationship between the covariate vector x; and the random re-
sponse Y; is of the form

Yi= 060+ Bixa + ... + Bezir + €,

where i = 1,...,n and ¢; is a random variable that satisfies E(e;) = 0.
e Independence. The random variables ¢; are independent.

e Variance homogeneity. The random variables ¢; have a constant variance
Var(¢;) = Var(V;) = o2

e Normality. The random variables ¢; follow a normal distribution.

The assumption of linearity implies, that the expectation of Y; is a linear function of the
unknown regression parameters f, ..., O, i.e.

E(Y;) = Bo+ Bixir + ... + BrTi-
In vector notation, the mean and the variance of the linear model can be written as

E(Y)=Xg and Var(Y) = ¢*1L,.
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Please note, that in multiple linear regression the interpretation of the regression coeffi-
cients is not that straight forward like in case of simple linear regression, because there are
no descriptive two dimensional plots giving the relationship between the covariates and
the response variable. In multiple linear regression, we do not have a simple regression
line, but a hyperplane H. This does not change anything for f,. It can still be seen as
the estimated value of the response variable when all of the covariates are equal to zero.
But, regarding the remaining 5;, j = 1,2,..., we have to be careful. These have to be
interpreted as the change in the expectation E(Y) per unit change of the regressor x;j,
when the remaining covariates are held constant. Thus, the §; correspond to the gradient
of the hyperplane with respect to x;j, i.e. 3; = g—g for j=1,2,...

Estimation of the regression coefficients
We now briefly discuss how to estimate the regression coefficients, i.e. how to obtain

/é = (/@07517 7Bk) € RP,

Generally speaking, there are two most common techniques: the least squares estimation
and the maximum likelihood estimation. It is easy to see, that both methods yield the
same results, if the model assumptions of independence, homogeneity and normality are
fulfilled:

We have
Y; = Bo + Brxa + ... + Bexax + €, with ¢ ~ N(0,0?) i.i.d. and i = 1, ..., n.
For reasons of clarity, we use the following abbreviation for the mean term:

Bo + Brxir + .. + BrTik = i = X' 3.

Thus, we have Y; ~ N(u;, 0?), which are independent for i = 1,...,n.

To determine our optimal model parameters, let us start with the maximum likelihood
method, where we have to maximise

n

I U
log(L(B,0°ly)) = log (H 27026 5oz (Wi u1)2>

i=1

n

1
= —glog(QMQ) — 5 > (Wi — )’

202 4
=1

Ly - xXp)(y - Xp).

202
The first term on the right hand side does not depend on 3. Hence, it is enough to min-
imise the second term on the right hand side, which is given by —#(y - XB)(y —XB3).
Due to the negative sign of this term, we get the maximum likelihood estimate from this
minimisation.

= —glog(QWJQ) -

As ﬁ is a constant term, we only have to determine
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ming((y — X8)"(y — X)), where 3 € R”.

In case of ordinary linear regression, minimising the above is exactly what we would do
when using the least squares estimation. Please note, that this is not the case for gener-
alised linear models.

Assuming that X has full column rank, the solution to the above is given by
B=Bly) = (X"X)"'X"y,

which is a non-random estimate for 3.

Properties of the estimator

B is an unbiased estimator for 3:
E(B) = E(XTX)1XTy) = (XTX)"'XTE(Y) = (XTX)"'XTX3 = 8.
Concerning the variance of 8 we define A := (X7X)'X” which yields

Var(3) = Var(Ay) = AVar(y)AT.

Since the ¢; are uncorrelated with constant variance o2, so are the y;. Thus, the variance-

covariance matrix of y is given by 021, where I, is the n x n identity matrix. Using the
symmetry of X7X then gives us the result. Hence,

Var(8) = Ao, AT = o2(XTX) ' XTX(XTX) T = ¢%(XTX) .

2.1.2 Count regression models

In count regression, we usually have to deal with a response variable, which follows a
Poisson distribution or a Negative Binomial distribution. An ordinary linear regression
model is no appropriate choice for this kind of regression problem, but we have to switch
to generalised linear regression. Such being the case, we will now give a short introduction
to the corresponding statistical theory.

As we have seen above, the linear model consists of a random component Y, a systematic
component 7 = X3 and a link 7 = u, which connects the random component with the
systematic component.

The general ideas of linear modelling are widely applicable, but for generalised linear
models we have to extend these definitions to get appropriate equivalents.

For this purpose, we first have to introduce a new class of probability density functions
or probability mass functions in case of discrete random variables, respectively. This is
the so called exponential family. It describes a class of densities, which comprises a set of
distributions ranging both, continuous and discrete random variables. Many well known
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probability distributions like for example the Gaussian distribution, the Bernoulli distri-
bution and the Gamma distribution are members of this family. All these distributions
follow a general format.

Definition (Exponential family)

A probability density function or a probability mass function, respectively, is member
of the exponential family, if it can be written in the form

0y —b(8)

f(y|9,(1>) — ¢ a@® -l-c(y,cb)7

where
e a(-), b(-) and ¢(+) are known functions
e ® > 0 is a dispersion parameter
e 0 is the canonical parameter.

The dispersion parameter ® is unique only up to a constant.

The generalised linear model thus is a powerful generalisation of the linear regression
to the more general exponential family. The observed data enters the model through a
linear function X3 and the response is drawn from an exponential family distribution
with conditional mean p.

Next, we have a look at the components of a generalised linear model.

Definition (Components of a generalised linear model)

e Random component. The responses Y;, 1 < ¢ < n, are independent and follow
a probability density function or a probability mass function f(y|@,®) from the
exponential family with a canonical parameter 8 and a dispersion parameter ® > 0.

e Systematic component. As linear predictor we define

mi(B) =x:"B = fo + Prvir + ... + Brtik,
where B3 = (B, ..., Br)? consists of the p unknown regression parameters.

e Parametric link component. The relationship between the linear predictor n;
and the mean yu; of Y; is defined by the link function g(u;) = n7:(8) = %7 3.

If Y follows an exponential family distribution, the expectation and the variance are
defined by

E(Y[X) = b/(0) and Var(Y) = b"(8)a(®).
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Both formulas can be derived using the definition of the probability density function or
the probability mass function in exponential family form:

We usually can interchange integration and differentiation, and thus the log-likelihood
of an exponential family distribution is given by

l(ev (I)|Y) = 10g(f<Y|97 CD))

Replacing the concrete observations y by the random variable Y allows to calculate the

expectation of g—é, since we then treat [ as a random variable. This gives us

E((al(eé?w)) —0

as well as

B(ZUOSN)) | p((2EAY) 12) — g,

Setting in the exponential family representation, we get

1(0,@ly) = 2@ + c(y, ).

Further, we have

ol6,2ly) __ y—b'(8)

00 a(P)
and
’ue.0ly) _ _ b'(6)
00?2 — a(®)

for the first and the second derivative with respect to 6.

To derive the expectation, we now have to solve

—b'(0
0=E(&) = _“a(qf) )

which gives us

which yields
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Link function

The link function relates the parameters of the distribution of the response y; and the
covariates X! = (z41, ..., Tk) !, where k again denotes the total number of regressors. This

relation is created by linking together the mean of Y; and the linear form of the covariates.
This means, we start from

pi = E(Y;|Xj),
which, as we have seen above, is a function of 8. Then, we take this as a linear model of
the covariates, i.e.

9(m) = %" B,
where g : R — R is called the link function, x; is the vector of regressors for the i-th
observation and 3 is the parameter vector.

Definition (Canonical link)
In the case that g(p;) =6, for all i = 1,...,n, g(-) is called a canonical link function.

An example for a generalised linear model with canonical link is the Poisson-GLM with
log link, where we have g : R — R, g(z) = log(z).

One nice property of canonical link functions is, that these ensure p to stay within the
range of the response variable.

Poisson Regression

A first approach when modelling count data typically is a Poisson regression. Below, we
present the general setup of such a Poisson regression model and discuss its most impor-
tant elements.

Definition (Poisson regression model with exposure units)

In the model setup for Poisson regression, we have n independent random variables Y;,
where
Y; ~ Poisson(t;u(xi, B)), i=1,....n,
with
—t. X i Xi, Yi
P(Y; = yi|x;) = etin 1,5)%.
In the above formulas,

e 1, > 0 is the exposure unit

o u(x;,08) = €X' # > ( is the unit Poisson rate.

To simplify calculations, Stirling’s formula can numerically be used for large y;. This
asymptotic formula provides a good approximation of the factorial and is given by

n! ~2mn(%)".



2.1. GENERALISED LINEAR MODELS (GLM) 9

Exposure unit

In the Poisson Regression model presented above, the unit Poisson rate u(x;, 8) is mul-
tiplied by an additional parameter ¢;, where ¢ = 1,...,n. Let us now check, what this
additional parameter means and how we can specify it correctly.

If we had to analyse data with varying observation period, we would have to bring this
inhomogeneity into the model. Thus, we would need the exposure unit: ¢; refers to the re-
spective time period of observation for u(x;, 3) and hence makes it possible to standardise
the unit of time.

In this thesis, the time period of observation is equal for the n samples, which yields
t; = 1 Vi. Thus, the model simplifies to

Y; ~ Poisson(u(x;, 3)), where the Y; are independent for i = 1, ..., n.

Here, pu(x;, 8) yields the expected number of events for observation i.
Let us now bring the Poisson distribution into the exponential family form:

e_tiu(xi”a) . (tZ/,L(XU /8))111

Yi!
— eyilog(tin(xi1,8)) —tin(xi,8)—log(yi!)

P(Y; =y;) =

ilog(t;n(x4,8))—(t;n(x4,8))
L ~log(y;!)

=e
This yields
0; = log(t;;u(x;,3)) for the canonical parameter,

as well as

and

c(yi, @) = —log(y:!).

The dispersion parameter ® is equal to 1, which also gives us a(®) = 1. Thus, the disper-
sion is known and so the Poisson distribution is member of the exponential family.

In case of equal time periods of observation, i.e. if ¢; = 1 V7, the link function connects

i = M(XiTﬁ)

and
ei — log(eu(xi:ﬁ))

in the way that
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pi = 0;.
Hence, our link function g(gu;) is of the form g(u;) = 6;. As mentioned above, this is also

called a canonical link.

Please note, that this does not hold when including an exposure unit ¢ # 1 Vi, since
we then have

9(ps) = log(ps) — log(t;) # .

The term log(t;) is the so-called ’offset’, which is based on known values.

Negative Binomial Regression

Considering the expectation and the variance of the Poisson distribution, we have the
rather strong condition

E(Y) = Var(Y) = A.

This property, which is also called equidispersion, often is not fulfilled by count data.
We then speak of overdispersion, if F(Y) < Var(Y), and of underdispersion, if E(Y) >
Var(Y).

Based on experience, underdispersion is rather seldom, whereas overdispersion appears
comparatively often. Hence, in many regression problems concerning count data, we have
to deal with E(Y) < Var(Y). This tells us, that the variance of Y appears to grow faster
than the Poisson model allows by assuming F(Y) = Var(Y). In this situation, a Negative
Binomial regression model often is a suitable approach.

To bring the overdispersion into the model, we still assume Y to follow a Poisson dis-
tribution, i.e.

Y ~ Poisson(A),

but now, we take A to be a random variable following a Gamma distribution. Thus, we
have the probability function of Y; conditional on a Gamma distributed random variable
Z; =2z; >0, ie.

Yi|Z; = z; ~ Poisson(z;),
where
Zi ~ T(pi, v;) with pu; = teXi' B and v; = Dp;.

The density function of Z; is defined as

_Puiz

fo(21) = sty (Fh2) e o

Having
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Var(Z;) = 1o

D, P
we get the marginal distribution of Y; through integration of the conditional distribution
Yi|Z; = z; ~ Poisson(z;) over z;. With the transformation s; = z;(1 + @) it follows

X 5=z i Yi 1 1
f(ilpi, @) = / ) (®z;) e —dz
0 .

;! NG 2
pru [ o
— / efzz‘(lJr(b)Zi(yH-‘l)#z l)dZi
LC(@pus)yi! Jo
L(®pi)yi! Jo (1 + @)uitPuat 1+

PPH - —s55 YitPui—1
= F((I)[Lz)yz|(1 + @)yi+¢’ui /; € s dSi
QT (y; + Ppuy)

_ Dy + @) ( 1 >®“i< 5 )yi
D(Pp)(yi+1) \1+ ¢ 1+1)

Thus, the marginal distribution of Y; is just given by the Negative Binomial distribution

Y; ~ NegBin(a;, b;),

1
+3°

where a; = ®p; and b; =

Setting ® = oo, this converges to the Poisson distribution.

2.1.3 Parameter estimation

In this section, we want to get an idea of how to estimate the regression coefficients for
a generalised linear model. Furthermore, we explain how to asses the quality and the ac-
curacy of our gained estimated values. This is the basis for interpreting regression results
correctly, which is essential to reach our goal of best possible prediction of future values.

Whereas in ordinary multiple linear regression the coefficients are mainly gained through
least squares estimation, this is no appropriate choice in case of generalised linear models.

This is due to the fact, that in least square estimation we aim at minimising the sum
of the squared errors. We assume, that the error terms are independent from each other
and follow a normal distribution with expectation equal to zero and a constant variance.
So we assume that there is no systematic information within the error terms.

Maximum likelihood estimation in turn starts from the assumption, that there is some
stochastic dependence present within the measured values. These are taken to follow a
certain distribution, but with unknown parameters. The regression coefficients now are
estimated by maximising the probability of obtaining the observed values. In case of Gaus-
sian distributed data, i.e. in case of linear regression, this yields the same results as the
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least squares estimation, which we have already seen above. But this is not the case for
generalised linear models, because we here allow for non-normally distributed data.

Since it is absolutely essential for maximum likelihood estimation to know the distri-
bution characteristics, we restrict to distributions coming from the exponential family
when performing generalised linear models.

Summarising the above, maximum likelihood estimation yields a model based estima-
tion of the regression parameters. In the following, we discuss how these estimates are
obtained and have a closer look at their properties.

Let f(y|@) denote the known probability density or probability mass function, respec-
tively, which comes from the exponential family. Assume, that it is an appropriate choice
to describe the distribution of our random vector Y = (Y7, ..., Y,). Furthermore, assume
that we have a full rank design matrix X. For a fixed realisation of y, f(y|@) is called the
likelihood function, which will be denoted by L(8).

In generalised linear regression we only consider independent random variables Y7, Y5, ..., Y,
with probability density function or probability mass function f(y;|x;, ) for given covari-
ates X1, Xa, ..., Xy, which yields

L(e) = H?:l f(yi|Xi7 0) = f(Xb "'7Xn|0)'

The maximum likelihood estimate 6 for the unknown parameter @ now is chosen such
that

L(B) > L(#) VO € O,

where © describes the set containing all valid values for 6.

To ease calculations, we take the natural logarithm of our likelihood function. Due to
the strict monotonicity, this yields the same maximisation results. In the following, we
thus consider

1(0) = log(L(0)) = >°i, log(f(yilxi, 8)) = =i, li(6).
To gain our estimated parameter B out of the above, we first have to bring 3 into the

model and then solve

AP) _ ~=n  In(f(yilxi,0)
o8 Dict gﬁ =0.

For this purpose, we start from a distribution of the exponential family given in the form
0;Y; )
(1110, @) = ectef 70
and want to get a likelihood function of the form L([3).

To bring B into the model, we use the properties of the components of a generalised
linear model: As we have seen above, 6; = 0;(1;) and the link function g(-) connects the
linear predictor 7; and the mean value y; in the sense that g(n;) = u;, where 7; is given
as 1; = x; 3. This gives
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0,057 By —b(8;(x; T B))
)

L(/@) = H?Zl e a(® +c(yi,®)
for the likelihood function, which yields

0; (x4* i —b(0; (%3t
1(B) =", ( ( ﬂ)ya(q’)( x:'B)) | C(yi7@)>_

Taking the partial derivative %ﬁﬁ) € RP now results in p equations which depend on 3

in a non-linear manner. The vector %g) of the derivatives of the log-likelihood function

with respect to 3 is also called the score vector. This will be denoted by s(3) = %g). The
maximum likelihood equations thus are s(3) = 0. An analytical solution does not exist.
For this reason, the maximum likelihood estimate usually is obtained using the Fisher
scoring method. To see how this works, we need a few definitions.

Definition (Weights in generalised linear models)

The weights in a generalised linear model are defined as

Wi o= Wi(B) := (5)* /1" (6y).

dn;

Definition (Unscaled score equations of a generalised linear model)

The equations defined by

Sj(ﬁvy) = Z?:l W’L<yl - Mz)fl_zzxzj = 07 where .7 = 17 ey Dy

are called the unscaled score equations.

Definition (Unscaled Hessian matrix and Fisher information in a generalised
linear model)

The unscaled Hessian matrix is defined as
H:=H(8,y) = —852%3’),

where s(3,y) denotes the p-dimensional vector with components s;(3,y) as defined above.

The unscaled Fisher information matrix is given by
[:=1(8) := E(-H(B,Y)).

Definition (Unscaled Fisher information of a generalised linear model)

The (7, s)-th element I,  of the Fisher information is given by
Ir,s - Z?:l b//(lgi) (3—:)2‘751‘8.251‘7‘ = Zzlzl Wi$isxir‘

Defining the diagonal matrix W := W(3) with the i-th diagonal element given by W;(3),
the Fisher information can be written as
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I(8) = XTW(B)X,

where X7 1= (xq, ..., X,) € RP*™,

To understand how the Fisher scoring algorithm works, let us summarise some useful
properties:

We have already seen, that
p=E(Y)="0(0) and Var(Y) = a(P) - v"().

Furthermore, we have

691‘ _ 0, i\—1 8217(91') —1 1
oy (59%) ( 962 ) b7 (0;)
and
Opi _ _Oui  Og(ps) _ (89(;”))_1 . ozl B _ (690”))_1 o
oB 0g(s) oB s 8 e i

Having this at hand, we can easily derive the maximum likelihood equations, which cal-
culate as

o1 z’"‘:( 90;  9b(6) 9,

o5~ a®) 2Yo5 " “os op’
=a(§))-§;<yz e
‘a<1<1>>'il<yi‘ o o
- @ Zb((?;)_u(—)) y

where the W; are the weights defined above.

In matrix notation, this is

0
% = a(lcp) XTWA(y — p),

where p is given by p = (u1, ..., 1), X is the design matrix, and W is defined as
W := diag(W;), with
Wij:{ W, ifi=j

0, otherwise °

For A, we have

A = diag(24e).

Opi
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All in all, the maximum likelihood functions now are of the form

XTWAy = XTWAL.

15

Unfortunately, these equations are typically highly non-linear in 3. Such non-linear equa-
tions are commonly solved using the iterative Newton-Raphson algorithm. In general, this

works as follows:

For a system of non-linear equations f(X) = (fi(z1, ..., Zn), vy fr(T1, oo,y

an initial value X(© € RP close to the solution, the set of all solutions is given by

x(m+) .= x(m _(Df(x

)L ),

where D f(x) denotes the p x p Jacobi-matrix of f(x), which is given by

(A
Ox1

Df(x) =

Ofn
o0z

of

Oxp

€ RP*P

ot

Oz

zn)) = 0 and

Coming back to our GLM, we want so solve g—[lg = (. Thus, to be able to apply the Newton-
Raphson algorithm, we need the Hessian matrix of the log-likelihood of our model. It is

given by
o2l
0B10B1
02
H - 862 -
521
85178/31

where the (r, s)-th element of H calculates as

an 1 ( /j%) Lir
06,08, 0P, (a(@) an( 0;) - M)

Op;

-~ 0Bs \/(0;) - 25e2
3 D R
~ #i) 858 b'(6;) - Og(ps)

Opi

a Ly
:a@)'(Z(y ) 55 (b,,( ;) - 29e)

i=1 Opi

921
0B108p

€ RP¥P,

92l
9Bp0Bp

+Zb// X ) ’

8;11
Ly
+ < -
Z 6

n
- E VVixirxis .
i=1

This in general depends on y;. To overcome this problem, we modify the Newton-Raphson
method by using the expected unscaled Hessian matrix, which is called the Fisher scoring

method.

Taking expectations yields
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921 _
E<8,8r865>

a(<I> Zz 1 szrxzsa

which in matrix notation is given as
9% 1 W
E<—W) = WXT X S Rpo.

Using the above, the iterative estimating procedure modifies to
B 1= BT (XTWX) I XTWA(y — p).
where W, A and p are evaluated at B(m) and (m) denotes the m-th iteration step.

Defining A := (XTWX), this can be written as

m+1) m ol
AB( + ﬁ( @)2 ot

For the j-th element of the left hand side, we now have

ﬁ(m+1 ZAysﬁ(m I ZW fu 1) 1y
:;;waxwﬁ )—i-ZW (9/M - Tij
= Z Wiz <Z zis B + (yi — i) ag:g)
g (i
—ZW%(M = 250 )
= Z Wixi_jzia
i=1

g (s
where z; := g(p;) + (y; — ;) %(;Z)‘

(AB™ V) alternatively can be written as

A.,B m+1 Z A]sﬁ m+1

- Z (walsxw> ey
= Z Wixiig* (i),
=1

where g*(p;) = Q(Ni)’,@:mmH)-

Thereof, we get



2.1. GENERALISED LINEAR MODELS (GLM) 17

Yoy Wimigz = 300 Wamijg* (i), with j = 1,..,p.

This now is equivalent to the maximum likelihood.

Summarising the above, the method of the Fisher scoring can be described as follows:
Algorithm (Fisher scoring for generalised linear model estimation of 3)

1. Choose starting values 8°) and a threshold value § > 0.

2. For r > 0 define

AU =Y + TH(BY)s(B),y),

where s(3,y) := (51(8,y), ..., 5,(8,y))" is the vector of score functions and I is the Fisher
Information.

3. If |B8"*Y — BW|| < 4, stop the algorithm. The maximum likelihood estimate of 3,
which is denoted by 3, then is set to BV,

Asymptotic normality of the maximum likelihood estimate

Our data sample (yi, ..., y,) is independent, but not identically distributed. Hence, there
does not exist an analytical solution for the maximum likelihood estimator 0 = 3 and we
only can deduce asymptotic properties. For this reason, we need appropriate regularity
conditions for our maximum likelihood estimators. Thus, we extend our definition of the
generalised linear model. For a given sample size n, the maximum likelihood estimate B
will be denoted by Bn and the corresponding log-likelihood by 1,,(3, ®|y). The regularity
conditions then are defined as follows:
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Definition (Regularity conditions for asymptotic normality of the maximum
likelihood estimators)

e The observation specific dispersion function a;(®) satisfies a;(P) = % for some
known and bounded weight W, where s = 1,....n

e The set of unknown true regression parameters 3 is an open subset of RP.

e For the function ¢(n) := (¢¥'(n))*" (v (n)), where ¥(n) = h(g~'(n)) gives the

current canonical parameters, it holds
0 <infimy  n(d(x" B)) < sup;—y
e The covariates satisfy the conditions
max;—1__,(x;7 (XTX)™x;) = 0 for n — oo
and

Amin(XTX) — oo for n — oo,

where Apin(A) is the minimal eigenvalue of the matrix A.

Based on this, we define the asymptotic normality of the maximum likelihood estimator
in a generalised linear model as follows:

Definition (Asymptotic normality of the maximum likelihood estimator in gen-
eralised linear models)

Under the regularity conditions just defined above, it follows that
B, — B in probability for n — oo

and

N

(COV (%j'y))) (B, — B) = N,(0,1,) in distribution, as n — co.

The covariance matrix of %’;'Y) then is defined as
Cos (B3 - X7D(3IX
where D(3) is a diagonal matrix with the i-th element given by

DZ(IB) = Zi((f)) = % : VVZ(/@)
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2.1.4 Asymptotic hypothesis tests in generalised linear models

Statistical hypothesis tests help on checking if we have found an appropriate estimator [‘3
In general, we test:

Hy: CB =) versus Hy : CB # 1,

where C is taken to be a full rank matrix of rank ¢ < p.

As an example, let us consider the most simple case
Hy: B; =0 versus Hy : 3; # 0,

which is an important special case of our general test problem.

This is, we test the null hypothesis, which states that the j-th covariate does not have any
influence on the response variable, against the alternative hypothesis, that it does have a
remarkable effect. Hence, we test for the significance of the effects belonging to 3;. This
is done by comparing the model without 3;, i.e. with 3; = 0, to the full model. The most
well known technique that deals with this test problem probably is the likelihood ratio
test.

Likelihood ratio test

The likelihood ratio test compares two models, where one of them, the so called 'null
model’, is a special case of the other one, which is referred to as ’alternative model’. The
null model of course represents the model under the null hypothesis, which is a reduced
form of the alternative model. The test is based on the likelihood ratio, which indicates
how many times more likely the data is to appear under the null model than under the
alternative model.

The likelihood ratio statistic is defined as

A=2(L(B) - L(B)).

Thus, the maximum log-likelihood estimate L(3) of the alternative or ’full’ model is

compared to the maximum likelihood estimate L(3 ) of the null model, where the test
hypothesis can be formulated as

Hy : CB* = 1) versus H; : CB* # ).
If the null hypothesis is true, then in the large sample limit it is
2(L(B) = L(B")) ~ Xp,—py»

where p; is the number of parameters [3; in the full model and pg the number of parameters
B in the null model, respectively.

If the maximum log-likelihood L(B) is significantly larger than L(,B*), we get a large
likelihood ratio statistic. In this case Hy will be rejected in favour of Hj.
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2.2 Generalised additive models (GAM)

For generalised linear models (GLMs) a linear or at least some other parametric relation-
ship between the covariates and the response variable is required. If the exploratory data
analysis already indicates, that this condition is not met by some of the covariates, i.e.
if we are not able to cover the non-linearities by appropriate simple transformations or
by changing the covariates, we try to improve our models by replacing the linear terms
of the covariates with unspecified smooth functions, which are estimated using penalised
regression splines.

A generalised additive model (GAM) is a generalised linear model (GLM), where the
linear predictor contains a sum of smooth functions of some of the covariates. The model
thus look as follows:

g(pi) = X8 + s1(w1i) + s2(w2i) + ...
with
p; = E(Y;) and Y; ~ a specific member of the exponential family distribution.
In the above notation,
e Y, is the response variable
e X7 is arow of the design matrix for any strictly parametric model components
e (3* is the vector of the regression coeflicients corresponding to X/
e s5; are the smooth functions of the covariates xy.
The smooth functions s; have to be estimated in a way, that
(i) = X[ 8" + s1(x;) + sa(wa;) + ...

becomes a linear model. For this purpose, we define a basis, which spans the space of
functions of which the s;, or at least a close approximation to the s;, is an element. This
is best explained restricting to the univariate case:

Consider a model with one smooth function for one covariate, i.e.
y = s(x) + €
where
e y is the response variable
e X is the covariate

e €is an i.i.d. N(0,0?) random variable.
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For reasons of understandability, we restrict to x € [0,1]" in the explanation.

So, let b;(z) denote the i-th basis function of the above mentioned basis. The smooth
function s then can be written as

S(ZL’) = 321 bz(x) : ﬁz

The linear predictor thus forecasts some known smooth function of the expectation of the
response variable, where the response variable follows an arbitrary distribution belonging
to the exponential family. The generalised additive model will then be fitted using pe-
nalised likelihood maximisation. This penalisation is needed to avoid complex overfitting,
which would result from allowing for any smooth function. So, using this penalised likeli-
hood maximisation, we try to balance between penalising the 'wiggliness’ an the 'badness
of fit’.

For further details on that, please refer to Wood(2006).

2.3 Exploratory data analysis

Typically, a model will not fit perfectly. Thus, depending on personal preferences and on
modelling purposes, we have to select a model, which fits best to our research question.
We typically suggest a set of models, which may possibly fit well to the data, and then
check them against each other by appropriate measures of goodness of fit. The quality of
the final model thus strongly depends on the quality of the set of suggested ones, because
the best fit typically just is the best fitting model out of this set. This already explains the
importance of the exploratory data analysis: We look for dependency structures within the
data and check up to what extend the model assumptions of a linear model are fulfilled.
This avoids problems during model fitting and assures a certain quality of the models.

The following explanations are mainly based on Fahrmeir et al. (2001). For a more detailed
introduction to the exploratory data analysis please refer to Tukey (1977).

2.3.1 Dependence measures

Correlation coefficients help making out dependencies among the variables. The Pearson
product-moment correlation coefficient, which is also known as r, R or Pearson’s r, proba-
bly is the most popular one, but, using this correlation coefficient, only linear relationships
can be detected.

To bring out also non-linear but monotonous relationships, rank based correlation co-
efficients can be used. These measure, how well the dependence structure between two
variables can be described by an arbitrary monotonous function without knowing the
probability distribution of the variables. Furthermore, rank based correlation coefficients
are robust against outliers. Two classical examples are the Kendall’s T and the Spearman’s

p-
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The Spearman’s p is very similar to the Pearson’s r. It calculates the difference between
the ranks, which makes it a special case of the Pearson’s r by converting the data into
ranks. The Kendall’s 7 in contrast does not calculate the differences between the ranks,
but it quantifies the difference between the percentage of concordant and discordant pairs
among all possible pairwise events. This makes it appear less direct than the Spearman’s
p. For this reason, the Spearman’s p is mostly used in place of usual linear correlation
when working with integer valued scores on a measurement scale, when there is a mod-
erate number of possible scores or when we don’t want to make rely on the assumptions
about the bivariate relationship. To check whether one has detected a linear or a non-
linear relationship using the Spearman’s p, a nice possibility would be to calculate both,
the Spearman’s p and the Pearson’s r, and then look at the difference between them: the
bigger it is, the less likely is a linear relationship.

Pearson product-moment correlation

This dimensionless correlation coefficient measures the linear relationship between two
variables. It is only suitable for at least approximately normally distributed random vari-
ables.

Definition (Pearson product-moment correlation)

Let X and Y be two at least approximately normally distributed random variables with in-
dependently sampled observations (z;,¥;), 7 = 1, ..., n. Then, the Pearson product-moment
correlation coefficient calculates as

iy (@i —%)(yi—¥) _ Bxy

= ’]”XY = = = ==
’ VI @R T (yi—y)? SxSy)

r

where

Se= /LT (s~ %2 and 5y = \ [T (s - y)?
are the standard deviations of x and y, respectively, and
Sxy = % > (T = %) (yi = ¥)
is the empirical covariance.
Let us put this into words: 54, accrues from summing up the multiplied deviations of
x and y from the respective means. The term 5435, brings the dispersion into the formula

and normalises the correlation coefficient. Due to this normalisation the Pearson’s r can
only take values between —1 and 1.

Point clouds concentrated on the first and the third quadrant yield positive correlation,
whereas point clouds concentrated on the second and the fourth quadrant yield negative
correlation. For randomly scattered point clouds the Pearson’s r takes values close to 0.
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Proposition (Properties of the Pearson product-moment correlation)
e 1 is symmetric
e —1<r<i1
e if there is no linear correlation it holds r = 0
e r = 1 in case of a perfect positive correlation

e r = —1 in case of a perfect negative correlation.

For the Pearson product-moment correlation, we typically use the following classification
scheme:

e || < 0.5 means weak correlation
e 0.5 < |r| < 0.8 indicates a medium strong correlation

e 0.8 < |r| occurs in case of a strong correlation.

Spearman’s p

In contrast to the Pearson’s r, the Spearman’s p can also be applied if the variables are
not normally distributed and even if the distribution is not known at all.

Definition (Spearman’s p)

Let X and Y be two random variables with n independently sampled observations (z;, v;),
i=1,..,n,and (rg(z;),rg(y;)),i = 1,...,n, the pairs of ranks. The Spearman’s p then is
defined as
roo— > i (rg(@i) —r9,) (rgy; —79y )
P VL@ 5,02 i (re(ui) —rgy )2

where the means of rgx and rg, are given by
TGk = 5 im r9(w) = 5 20y i = g and rgy = 5300 ro(y) = 5 X0 i = Mg
Obviously, the Spearman’s p corresponds to the Pearson’s r for the pairs of ranks. But,

since for the calculation only the rank of the values is required, the Spearman’s p can also
be applied to variables on ordinal scale.

Proposition (Properties of the Spearman’s p)

e —1<r, <1

e if there is no monotone correlation it holds 7y, = 0
e 1y, > 0 means a concordant monotone correlation

e 1, < 0 indicates a discordant monotone correlation
e r = 1 in case of a perfect concordance

e 7 = —1 in case of a perfect discordance.
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Kendall’s 7

In this thesis, the Kendall’s 7 will mainly be used in the context of copulas, when analysing
the dependence structure among the model residuals.

Definition (Kendall’s 7)

Let (X,Y) and (X*,Y™*) be independent pairs of continuous random variables, each with
a bivariate cumulative distribution function F. The Kendall’s 7 then is defined as

Txy = P(X = X)(Y =Y*) > 0) = P((X = X*)(Y = YV*) < 0) =
2P((X — X*)(Y —Y*) > 0) — 1.

The Kendall’s 7 thus calculates as the difference of the probability that the pairs (X,Y)
and (X*,Y*) are concordant, i.e. that either X > X* and YV > Y* or X < X* and
Y < Y*, and the probability, that (X,Y") and (X*,Y*) are discordant, i.e. X > X* and
Y<Y or X< X*and Y > Y™

Besides this, there also exists an empirical version of Kendall’s 7.
Definition (Empirical Kendall’s 7)

Let (z;,v4:), i = 1,..,N, be independent observations of a pair of continuous random
variables (X,Y’) with distribution function F. The empirical Kendall’s 7 then is defined
as

c d 2¢ 1

TTH MO

where

ec=\{i <j:wz <uzjy <y ANz > x5,y > y;t|, which gives the number of
concordant pairs

o d=|i<j:x <y >y ANz, > x5,y < y;}|, which gives the number of
discordant pairs.

Please note, that we do not have to consider the case X =Y and X* = Y™* in the above,
since the probability of this to appear is zero in case of two continuous random variables.

Due to (];[ ) = NVED g d, which exactly gives the total number of distinct pairs
(wi,y;) and (z;,y;), ¢ < j, the empirical Kendall’s 7 gives an analogous definition to the

theoretical version of the Kendall’s 7.

Proposition (Properties of Kendall’s 7)
e —1<7xy <1

e 7xy = 0if X and Y are independent
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e 7xy =1, if g : R — R is a strictly increasing function and ¥ = g(X)
o 7xy = —1,if g : R — R is a strictly decreasing function and Y = g(X)

® Ty (X)g(y) = Txyv, if g1 : R — R and go : R — R are two strictly increasing
functions.

The last property mentioned above depicts the difference between the Spearman’s p and
the Kendall’s 7 by emphasising the fact, that the Kendall’s 7 does not calculate the
difference between the ranks but that it quantifies the difference between the percentage
of concordant and discordant pairs of observations.

2.3.2 Scatter plots

In the exploratory data analysis, we typically consider a scatter plot matrix, which shows
the pairwise plots of the response and the covariates each against the others.

The upper or lower panel of the scatter plot matrix often is used to display a corre-
lation coefficient, where the scatter plots then help to avoid misinterpretation: If any
crucial covariate is missed, spurious correlation, spoofing of correlation or inversion of the
sign of correlation may occur. Furthermore, regarding the correlation coefficient, only the
strength of correlation can be determined. The effects of correlation cannot be detected.
Another problem is, that some dependencies might occur from the data set by random.
Investigating the scatter plots, we can identify at least some of these cases.

Furthermore, we typically read out the range of the different covariates from the scatter
plots and check the model assumptions of linearity, variance homogeneity and indepen-
dence:

Range of the covariates

When the mean value of the individual covariates is very large or small, or when the
range of a covariate reaches over several orders of magnitude, the numerical optimisation
algorithm used to find the regression coefficients may fail. Furthermore, it is always useful
to have the covariates on the same order of magnitude in order to prevent misinterpreta-
tion of the regression coefficients. Hence, we first have a look at the range of the different
covariates and do some scaling if necessary.

Linearity and variance homogeneity
Concerning the linearity assumption, we have a look at the scatter plots of the response
variable against the covariates. These should reveal a linear pattern. Otherwise transfor-

mations of the covariates are advisable.

In Poisson regression and in Negative Binomial regression, we cannot stay with the iden-
tical link like in ordinary linear regression, but we typically use the log-link specification.
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Due to this, the linearity assumption of a count model cannot be checked by just looking
at the scatter plots of the response variable against the covariates, since we have

Y, ~ Poisson(tiexiTﬁ )
with
log(y;) = log(t;) +x;1 B and u; = E(Y;).

This means, that log(y;) —log(t;) has to be linear in x;, if x; should enter the model linearly.

If we furthermore have to deal with discrete covariates with a low number of different
levels, i.e. if we have several observations y; with a common covariate vector x;, we can
make the plot easier legible by the following simplification:

Having only discrete values vy of the j-th covariate z;;, i € {1,...,n}, we calculate the
mean values of the corresponding subsets of y; for each discrete value of x; as

2oim1 Ly =y} i
n
2in1 Uayj=vi}

Yk =

Without loss of generality, we can use this mean value y;, instead of plotting all values.

Confidence intervals can be added to these plots, to check, if the assumption of con-
stant variance is reasonable.

Independence

The scatter plots amongst the covariates should preferably show no pattern, since we
assume them to be independent. This condition often is not fulfilled by the data. Regres-
sion with correlated covariates is possible, but if there are strong correlations this may
cause problems when calculating the regression coefficients or lead to model misinterpre-
tation due to a correlation-induced change in the signs of the regression coefficients. Thus,
in case of high correlation, it is advisable to remove one of the covariates.

Please note, that this problem cannot be solved including interaction terms: Essentially,
correlation between two covariates means the values of the one covariate relate in some
way to the values of the other, i.e. the values of one covariate generally co-occur with
certain values of the other. But, correlation does not say anything about whether two
covariates interact in their effect on a third covariate or not.

Interaction between two covariates however means, that the effect of one of the covariates
on the response variable is not constant, but that it differs at different values of the other.
Thus, two interacting covariates may be correlated or not. How to investigate interactions
correctly, will be our next issue concerning the exploratory data analysis.



2.3. EXPLORATORY DATA ANALYSIS 27

2.3.3 Interaction effects

Interaction terms allow to bring non-additive simultaneous effects between two or more
covariates into the model. This commonly is used, if we assume, that the relationship
between each of the interacting covariates and the response variable depends on the value
of the other interacting covariates. Whenever there is an interaction effect present in the
data, which is not included into the model, this means, that the interpretation of the
individual covariates may be incomplete or misleading.

The lowest level of interaction is the two-way interaction. In the corresponding inter-
action plot, the vertical axis represents the response variable. One of the two covariates,
which are investigated, is drawn on the horizontal axis and the other one is included by
plotting multiple lines on the graph. It is always advisable to put the covariate with the
higher number of levels on the horizontal axis in order to reduce the resulting number of
lines in the plot. If both have the same number of levels, we should choose the covariate
that has numerical values, if there is one. The correct interpretation of these plots can
roughly be summarised differentiating between two cases: Parallel lines in the plot mean
no interaction, whereas any crossing of the lines indicates, that there may be some inter-
action.

To investigate three-way interactions, there can be drawn several plots for each unique
pair of the three covariates: We pick the covariate with the smallest number of levels and
perform the same plots as above for the remaining two ones, where we now draw a sepa-
rate plot for each level of the covariate that was picked. If the resulting plots look all the
same, there is no interaction present. Whenever we find some differences among them, it
might be useful to check for this three-way interaction.

These plots of course are easy to understand, but they tell nothing about the significance
of the interaction effects. To investigate that, we could either reduce the full interaction
model until only significant terms remain, run a stepwise AIC approach or perform a
partial F test. This is part of the model selection and will be explained later on.

Please note, that including interaction terms into a regression model changes the interpre-
tation of the coefficients of the covariates from unconditional, i.e. from the case that there
is no interaction included, to conditional. Without the interaction terms, the regression
coefficients show the relationship between the covariate, to which they belong, and the
response variable, assuming all the other covariates to be on average value. Please make
sure, that you do not mix that up with the interpretation of 3y, which shows the value of
the response variable Y when all the covariates are equal to zero. Including interactions,
the situation changes: We now have to read the regression coefficient of a covariate in the
way, that it shows the effect of that covariate when the other covariates contained in this
interaction are equal to zero and averaged over the remaining covariates.

Let us first consider a two-way interaction model. The interaction term is constructed
out of the interacting covariates and usually comes into the model as multiplicative effect.
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This looks as follows:
Y =0+ X1+ 5 Xo+ 05 Xy - Xo.
In such a model, the regression coefficients can be interpreted as follows:
e 31 shows the relationship between X; and Y, when X5 is equal to zero
e 35 shows the relationship between X5 and Y, when X; is equal to zero
e (3 gives the strength of the interaction between X; and Xs.

We now consider three-way interactions. A model with a three-way interaction (and all
two-way interactions) looks as follows:

Y =B0+81- X1+ B2 Xo+B5- Xa+ B4 X1 - Xo+ 55 Xy - Xg+ - Xo- X5+ 87 - X1 - Xo - Xs.
When the interaction X; - X5 - X3 is included

e 34 shows the interaction between X; and X5, when X3 is equal to zero

e 35 shows the interaction between X; and X3, when X5 is equal to zero

e [ shows the interaction between X5 and X3, when X; is equal to zero.

This principle can directly be extended to any order of interaction.

Including interactions, the interpretation of the regression coefficients may cause prob-
lems, if the covariates cannot attain the value zero. Consider for example the covariate
‘price’. Interpreting the effect of any other covariate when the price is equal to zero does
not make sense, since this case will never occur. Here, centring may help on getting a rea-
sonable interpretation. Centring means, that we subtract the mean value for the sample
of the covariate from each individual observation, which yields a mean equal to zero for
the covariate. This allows to interpret the regression coefficient assuming the covariate to
be on average value instead of being equal to zero. The resulting regression coefficients
then usually are much more similar to the unconditional ones.

2.3.4 Seasonal effects

If the data was taken over several months or years, it is always worth to look for time
effects. Covering seasonal periodicity in appropriate dummy variables can explain a lot of
the variation in the model and thus may improve the model fit significantly.

To detect seasonal effects, we can cluster the data by weekday, month or quarter year
and check if we can make out any pattern. We can either just sum up the variable values
within the formed groups or normalise by broader defined grouping. If we for example
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look for monthly effects, we can divide the values for the individual months each by the
total sum over the corresponding year. Such kind of normalising is advisable especially
when there is an overall increase or decrease of the values over time, since this gives us
values, which all lie in the same range of the vertical axis. This eases the comparison of
the groups a lot.

2.4 Model selection

Assessing the goodness of fit, we want to check, if we are able to explain our data by the
chosen model in a reasonable manner. We usually measure the goodness of fit by means
of statistical scores or by appropriate statistical tests. In the following, we present the
two most common information-loss criteria AIC and BIC, and give a short introduction
to hypothesis testing and residual analysis.

2.4.1 Information-loss criteria AIC and BIC

The idea of information-loss criteria, or just ’information criteria’ in short notation, is
to select an appropriate but preferably simple model,where the complexity is measured
based on the number of parameters. The models are compared on the log-likelihood,
penalising additional parameters that come into the model in a manner depending on the
information criterion we use. This penalisation is applied, because if we add covariates to
our model, which actually are not needed, the likelihood almost always increases, since
the extra parameters usually let the model get closer to the data.

Especially, if our models are nested, the AIC and the BIC are appropriate methods for
assessing the goodness of fit, because the quality of the individual models is measured
relative to the others. Unfortunately, the goodness of fit cannot be measured in an absolute
sense.

AIC

The probably most well known information criterion is the Akaike information criterion
(AIC). Using AIC, we aim at minimising the information loss we have to take when
representing the true data by a model, i.e. we want to choose the model with the highest

A

value for I(B) — p. This is equivalent to coosing the model with the lowest AIC, which is
defined as

AIC = —21(B) + 2p,
where
e 3 is the parameter gained from the maximum likelihood estimation
e p is the degree of freedom.

Using the AIC, the penalisation is done by adding twice the number of parameters to be
estimated.
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Given a set of candidate models, the value of the AIC gives us the relative probabil-
ity that the individual models minimise the estimated information loss:

Let AIC,, denote the minimal AIC among our set of candidate models, then

AlC 50
(& 2

—AIC;

gives us the probability, that model i minimises information loss compared to the model
with the minimal AIC. This probability obviously decreases with increasing AIC. For this
reason, we always choose the model minimising the AIC as the 'best model’.

Please note, that the AIC is valid only asymptotically. For small data sets, correction
by including correlation might be necessary.

BIC
The BIC calculates as

BIC = —21(B) + log(n)p,
where
° B is the parameter gained from the maximum likelihood estimation
e p is the degree of freedom
e n is the number of observations contained in our data set.

In contrast to the AIC, we here multiply p by the logarithm of the sample size n when
penalising the free parameters. This is done, because large sample sizes often help on
improving the maximum likelihood estimate and thus models containing comparatively
many parameters appear more attractive than they actually are. Hence, using the BIC we
clearly penalise harder compared to the AIC for a number of observations greater than 8,
since we then have log(n)|,>s > 2.

To answer the question which one of these two information criteria we should use when
comparing our models, let us investigate them in more detail.

The AIC and the BIC both are maximum likelihood estimate driven information cri-
teria and penalise free parameters in an effort to avoid overfitting. In both cases, the best
model is the one that minimises the score. Due to the different ways of penalising the
free parameters, AIC presents the danger that it might overfit the model, whereas BIC
tends to underfitting. The AIC is aimed at finding the best approximating model to the
unknown data generating process. As such it fails to converge in probability to the model.
For the BIC by contrast convergence in probability is present when tending to infinity.
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We conclude, that the AIC and the BIC both are mathematically convenient approxi-
mations, which we can use in order to efficiently compare our models. Most of the time
they will more or less agree on the preferred model anyhow. If they would give significantly
different results for the ’best’ model, this indicates, that we probably have a high model
uncertainty.

2.4.2 Deviance

Deviance is a measure of goodness of fit for generalised linear models, which can be
interpreted in a similar way like the residual sum of squares in ordinary linear regression.
It is defined as

2(L(Bunax) — L(B)) - @,

where Bmax represents the maximised likelihood of the saturated model containing one
parameter per data point. Hence, 3, .. is evaluated by setting ft = y, which results in
the highest value that the likelihood can achieve for the given data.

In practice, we mostly use the scaled deviance, which calculates as

D* =

ejlb

In case of Poisson regression and Negative Binomial regression, the deviance and the
scaled deviance are the same due to ® = 1.

From the results of the likelihood ratio test, we conclude, that, in case of correct model
specification, we approximately have

D* ~ Xi—p-

In general, we distinguish between two forms of deviance: The null deviance and the
residual deviance. The null deviance indicates, how well the response variable is explained
by the null model, that only contains the intercept. The residual deviance gives us the
deviance for the model including the selected covariates. In case of properly chosen covari-
ates, the residual deviance of course is significantly smaller than the null deviance, since
the covariates should explain most of the variation in the response variable.

Deviance is often used for model selection in generalised linear models. We usually con-
sider an analysis of deviance table, which can be seen as the equivalent to ANOVA tables
in case of ordinary linear regression. Below we discuss two statistical hypothesis test,
which are often used in this context.

Residual deviance test

The residual deviance test is used to check the model assumptions of a specified gen-
eralised linear model. This comprises verifying the correct specification of the response
distribution, the link function and the linear predictors.
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Definition (Residual deviance test for a generalised linear model)

Reject the null hypothesis
Hy: the model assumptions of the specified generalised linear model are satisfied
against the alternative hypothesis
Hi: not Hy
at level o, if and only if
W > X?qu,lfon

where

* X7,_, denotes the 100(1—a)% quantile of a x*distribution with r degrees of freedom

e ® is an estimate for the dispersion parameter .

Partial deviance test

If we want to compare the fit of two nested generalised linear models, we most often use
the partial deviance test.

Definition (Partial deviance test for nested generalised linear models)

Reject the null hypothesis

Hy:06,=0
versus the alternative hypothesis
Hy: By #0,
if and only if
Dr=Dr

2
o > Xpa,l—a

where

B1 € RPY and By € RP? with py +py =p

Dpg gives the deviance of the reduced model

Dp gives the deviance of the full model

o ®p is an estimate for the dispersion paramter ® based on the full model.
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2.4.3 Coefficient of determination for linear models

The coefficient of determination (R?) is a measure for the overall fit of a linear model and
gives the percentage of variability in the response variable, which can be explained by the
model. It is defined as

2 ._ SSR
R = SST?

where
e SSR:= 3" (Y; — Y)? is the regression sum of squares
e SST :=>" (V; —Y)? is the total sum of squares

oY = %Z;;l Y.
Defining the sum of squared error as
SSE = Y7, (¥; — Vi)

1=

and using the relation

we can write
SST=SSR+SSE.
This yields

2 ._ SSR _ SSE
R =57 =1-%7
The R? lies in the unit interval [0, 1] and attains the value R? = 0 in the case, that there is
no linear relationship. The closer it is to 1, the better our model accounts for the variability
in the response. That means, in case of R? = 0, the best model would be Y = f3. This oc-
curs, if Y; =Y Vi. In case of R? = 1, Y can fully be explained by the model, i.e. Y; = Y; Vi.

Please note, that the R? only measures the quality of the linear approximation, but does
not check the model specification. This results in a higher R? for the models, that were
estimated using least squares. A high value for R? thus does not necessarily indicate a
good fit of the model.

If we want to compare several multiple linear regression models using R?, we have to
be careful: Adding a new covariate to an existing model will always increase the model’s
R?, or at least will not decrease it. As a consequence, model selection according to R?
often results in overfitting.

To overcome this problem, we better use the adjusted R?. This statistic, which is very
similar to the R?, is defined as

2 . SSE/(n—p)
Rlg =1 - S5t/
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In contrast to the R?, the adjusted R? may also attain negative values.

The adjusted R? is always lesser than or equal to the R?. When adding an additional
covariate to the model, the adjusted R? only increases, if the R? attains a greater value
than we would expect if the new covariate had no explanatory value at all.

Although the adjusted R? takes the number of estimated regression parameters into ac-
count, the penalisation of unnecessary complex models is not very strong. This again ends
up in models containing too many covariates.

2.5 Residual analysis

The examination of the residuals is one of the most important techniques when checking
the model fit. The residuals are the deviation of the observations from the sample mean.
Having a data set consisting of n observations, the i-th raw residual is defined as

Ty =Yi — Yi,
where

e Y, is the observed value

e y; represents the fitted value.

Regression analysis always tries to minimise these residuals e.g. by least squares estima-
tion or by the maximum likelihood method.

In case of generalised linear models we cannot simply examine these raw residuals, but
the residuals have to be standardised. The main reason for this need of standardisation is
the problem of checking the validity of the assumed mean variance relation ship.

In case of Poisson regression for example, the variance of the residuals should increase
in direct proportion to the size of the fitted values p;. Plotting the raw residuals against
the fitted values, it would cost a lot of effort to judge on the correct model specifica-
tion, since we would have to check whether the residual variability increases in proportion
to the mean. Examining standardised residuals instead, these approximately behave like
residuals from an ordinary linear regression and we just have to check for equal variance
among them.

2.5.1 Pearson residuals

The Pearson residuals calculate as the raw residuals divided by the square root of the
variance function V' (p).

Remember from above, that the variance function of a generalised linear model is given by
V(0) = 1"(0), which in mean parametrisation can be written as V(0) = V(h(p)) :== V().
Thus,
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where
e 7; is the i-th raw residual

e V(f1;) is the estimated variance function for the i-th observation.

These residuals have approximately zero mean and variance ® in case of correct model
specification. Further, they should not show any pattern when plotted against the fitted
values or the covariates.

Unfortunately, the distribution of the Pearson residuals often is quite asymmetric around
zero, which means that they do not behave like the residuals from an ordinary linear

regression. For this reason, we prefer the deviance residuals when checking the goodness
of fit.

2.5.2 Deviance residuals

The deviance residuals are best comparable to the residuals from an ordinary linear re-
gression. This is due to the fact, that the deviance is the equivalent to the residual sum
of squares in ordinary linear regression:

In the ordinary linear regression, the deviance calculates as the sum of the squared resid-
uals. The residuals thus are the square roots of the components of the deviance with the
appropriate sign.

By analogy to ordinary linear regression, we hence define the i-th deviance residual in
a generalised linear model as

rp = sign(yi — u)Vd;
where
e y; is the i-th observation of our data set
e [i; are the fitted means
e d, is the deviance contribution of observation i.
The deviance contribution is defined as
d; = —2[1((12),, ®lys) — Uy, D)) - P

The sum of squares of these deviance residuals then gives the deviance itself. Thus, if
all parameters were known, we would have D* ~ x2, which implies d; ~ 3. This yields
rP ~ N(0,1), which proves the similarity between the residuals from an ordinary linear
regression and the deviance residuals.
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Of course, it is not very meaningful to identify the distribution of one single d;, but
this nevertheless suggests that we can expect the deviance residuals to behave very simi-
lar like N(0,1) random variables, at least in the case of a well-fitting model.

Please note, that the residuals for non-normal generalised linear models are skewed.

2.6 Modelling the economic key figure
‘price elasticity’

Concerning price setting, the basic mechanism connecting the supply and the demand has
to be considered. Producers like to supply more goods at higher prices, because selling at
high prices brings along a good revenue and profit. Mathematically spoken, this means a
positive correlation between the price and the quantity sold.

The demand of the clients in contrast has a negative correlation. This means, that less
people are willing to purchase, if prices increase (except the product is essential). The
market is stabilised automatically, so that supply and demand are balanced. If prices ex-
ceed this equilibrium price, demand will decrease below supply. Lower prices by contrast
will push sales accordingly.

An important index in this context is the price elasticity.
Definition (Price elasticity)

The price elasticity is defined as

__ Aquantity sold%
n= Aprice%

Expressing this in mathematical terms, we get

_ OBYilX:) | myi

where
o E(Y;|X;) is the conditional expectation of the quantity sold Y; for given prices x;
e 1;; is a concrete price.

Let us now check, how we can retrieve this parameter directly from the regression coeffi-
cients.

In Poisson regression we do not have the simple linear interpretation of the regression
coefficients like in case of multivariate linear regression, but we have multiplicative expo-
nentiated coefficients. It is

E(Yi|X;) = e,
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where x7 = (1, ..., Tg;) " is the i-th column vector of the design matrix X.

The regression coefficients thus indicate the effect of a one unit change in z; on rate,
i.e. changing z;; by one unit induces a multiplication of E(Y;|X;) with e%.

Differentiation yields

OE(Yi|X;) 0e<'#

a.ﬁlfji a.ﬁljji
HePrzrit ALkt

al’ji
— ﬂj . it By
= ;- B(Y;]X5).
Using this result in the formula for the price elasticity gives us
- Owy E(Yi|X;)
xji

=05 BOAIX) - gy

= B; - ji.

Hence, our regression coefficient [3; gives us the proportionate change of the expected
quantity sold E(Y;|X;) induced by a one unit change in the price z;;. Thus, if 3, is posi-
tive, the mean value grows with increasing x;;, whereas for negative 3; it decreases with
increasing xj;. Thus, in this type of model, we have 1 depending on x;;.

Let us now inspect a model with the covariate for price on log-scale.

This gives us
E(Yi|X;) = eloslxi B),

where x7 again is the i-th column vector of the design matrix X.

Differentiation yields

OE(Yi|X;) HePlos(xi"B)

&xﬂ Omji

86’81 log(x14)+...+Prlog(zki)

81'2-3-
_ ﬁeﬁllog(xli)—i-...-i-,@klog(xki)
T4
T4

In this case we have
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T Oz E(Yi]Xa)?
which exactly is the definition of the price elasticity. Thus, we have
n= ﬁj?

i.e. with prices on log scale, 5; now measures the percentage change in E(Y;|X;) due to a
percentage change in x ;. Thus,  does not depend on x ;.

For further details on that, please refer to Yamamura (2012).

In economical context, the preferred approach is to have a constant value for n for a
small range of prices xj;. So, we preferably take all covariates concerning prices on log
scale. This way, the model directly gives us the well-known price elasticity.

2.7 Copula Modelling

Generally speaking, a copula represents the distribution function of a multidimensional
random vector with uniform margins, where the marginal and the common dependencies
are modelled separately. A detailed introduction to that is for example given in Czado
(2015).

In this thesis, we use copula models to model the dependency structure of the prod-
ucts using the deviance residuals of the derived GAMs.

Definition (Copula)

A function C' : [0,1]¢ — [0,1] is called a d-dimensional copula, if there exists a random
vector (Uy, ..., Uy) with U; ~ U[0,1], i = 1, ...,d, such that

P(U] S Uy, ...,Ud S Ud) = C(Ul, ...,ud).

Copula models are widely applicable, since Abe Sklar (1959) proved, that any multivariate
distribution can be split into its margins and a copula. This became the core theorem of
the copula theory.

Theorem (Sklar’s Theorem)

Let X be a d-dimensional random vector with joint distribution function F' and marginal
distribution functions F;, i = 1, ...,d, then

F(x1,...,70q) = C(Fy(71), ..., Fa(z4))
and

fzy, .y xq) = c(Fi(xy), ..., Fa(xq)) fi(z1)... fa(xaq)
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for some d-dimensional copula C' with density c. For absolutely continuous distributions
the copula is unique.

The inverse also holds, i.e. the copula corresponding to a multivariate distribution is
given by

and

— f(Ffl(ul)f"'vFgl(ud))
ST ) fa(Fy H (ua)) |

C(Ul, ceey ud)

From this theorem, we can easily conclude, why we define a copula as the distribu-
tion of uniformly distributed random variables: For a random vector (X7, ..., X,) with
marginal distributions Fi, ..., Fy and joint distribution F, it holds that F;(X;) ~ U[0, 1]
for i =1, ...,d. The corresponding copula C' then is defined as the distribution function of
(F1(X0), ..., Fa(X4a)).

One possibility to model copulas is by defining a Vine structure. We decompose the
multivariate distribution into a set of bivariate distributions, which are represented as bi-
variate copulas. Since this decomposition is not unique, we need to organise the bivariate
copulas in an appropriate tree structure. This allows to describe the whole multivariate
distribution as a copula, which calculates out of the bivariate copula densities.

A copula contains all information on the dependence structure in a multivariate ran-
dom vector. Due to Sklar’s Theorem, we can select bivariate copulas from a wide range of
parametric families. This allows a lot of flexibility regarding the shape of the distribution,
which results in much more precise approaches than classical multivariate models do.

2.7.1 Model selection

A copula model basically consists of
e a tree structure
e a set of copula families
e a set of copula parameters.
To specify an appropriate model for our data set we thus have to
e select a Vine structure specifying which unconditional and conditional pairs to use
e choose a bivariate copula family for each pair contained in the Vine structure

e estimate the corresponding parameters for each copula.
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2.7.2 Structure selection

Vine Copulas

Vine copulas are also called pair-copula constructions. This is due to the fact, that any
d-dimensional copula density can be decomposed into a product of d(d; U bivariate (condi-
tional) copula densities, or, looking at it the other way round, an arbitrary d-dimensional
copula density can be constructed by using only bivariate building blocks.

Regular vine trees (R-vine trees)

As already mentioned above, the decomposition of the density is not unique. Especially
in higher dimensions there is a countless number of different possibilities. To really find
the "best” model, we would have to check all the possible R-Vine constructions. But, as
the number of possible R-Vines on n variables increases with %' 2("7) (for details see
Morales-Napolean et al. (2010)), we usually apply an heuristic algorithm to specify the

structure of our n-dimensional model.

The structure selection typically is based on Kendall’s 7. This allows to measure de-
pendence independent from the assumed distributions, which turns out to be very useful
when working with different copula families.

Having this at hand, we investigate the corresponding algorithm in more detail: Start-
ing from the first tree, we define n — 2 conditional trees by a sequential method in such a
way, that the chosen pairs model the strongest pairwise dependencies, which are present
in the data. This iterative procedure of constructing the trees does not ensure to find
the 'global optimum’, but, nevertheless, it returns very good results. This is justified by
the fact, that the copula families specified in the first tree most often have the greatest
influence on the model fit. Furthermore, concentrating on the strongest dependencies, we
are very likely to attain a good fit since the copula distribution functions are very similar
when coming closer to independence.

To describe the structure of a Vine copula, usually a sequence of linked trees Ty, = (Vj, Ek),
k=1,..,d—1,is used. V, denotes the set of nodes and Ej, the set of edges in the tree
T;.. The tree structure then is constructed as follows:

Definition (Regular Vine (R-vine))

v = (T1,...,T4—1) is an R-vine tree sequence on d elements, if

(1) Each tree T} is connected, i.e. for all nodes a,b € T}, j = 1,...,d — 1, there exists a
path (ny,...,n;) € N* with a = ny, b = n.

(2) T is a tree with nodes Ny = 1,...,d and a set of edges Fj.
(3) For j > 2, Tj is a tree with nodes N; = E;_; and edges Ej.
(4) For j =2,...,d — 1 and {a, b} € E; it must hold that |a Ub| = 1.
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Condition (4) is the so-called proximity condition, which ensures that if @ and b are con-
nected by e in tree T}, j > 2, then a and b must share a common node in tree 7}_;.

Please note, that these trees are not directed, i.e. the set notation e = {a,b} does not
induce any ordering of its elements.

Regular vine copulas (R-vine copulas)
To be able to use the R-vine tree for copula modelling, we need to include a stochastic
component. For this purpose, we need an R-vine distribution.
R-vine copula
A copula C' corresponding to a random vector (Uy, ...,Uy), with U; ~ U[0,1], i =1, ...,d,
is called an R-vine copula, if there is a tuple (V,C) such that

(1) V is an R-vine tree sequence on d elements.

(2) C ={C.le € E,k=1,...,d — 1}, where C, is a bivariate copula.

(3) Each e € Ey, k=1,...,d — 1, can be identified as {a., b; D.}, and C., is the copula
corresponding to (Us,, Up,)|(Uk)rep, = (ur)rep., -

For an R-vine copula C' corresponding to the tuple (V,C'), where all included copulas
allow for a density, we can write the overall density as

C(“) = HZ;}_ eeEk Ca67be§De (Cae|De (uae uDe)’ Cbe|De (ube uDe))?

where up, = (u;);ep, is a subvector of u = (uy, ..., ug) and Cj, |p, is the conditional dis-
tribution of U;,|Up, = up,, j. € {1,...,d}.

In the following, this will be referred to in short notation as

ujeIDe = Cje‘De (ujeluDe )

We thus need n — 1 unconditional copulas for the first tree, n — 2 conditional copulas
for the second tree, etc. The corresponding copula families and parameters are chosen
arbitrarily and are independent of each other. But, due to the conditional variables in the
tree structure, the choice of the different copulas will of course influence each other.

The above defined density of an R-vine copula involves conditional distributions of the
form Cj,|p,, where j. € {ac,b.}. These conditional distributions can be expressed as a
recursive application of conditional distributions corresponding to bivariate copulas con-
tained in C. This is covered by h-functions.

Definition (h-function)

Let Uy, Uy ~ U[0, 1] and C be the copula of (Ui, Us), then the corresponding h-functions
are defined as
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haja(urfug) = Cipp(urfug) = M) P(Uy < u1|Us = uy),

Ouso
and

h2|1(U2|U1) = 02\1(U2|U1) = %ui’ul) = P(U2 < U2|U1 = u1).

Representing R-vines using R-vine matrices

The idea of the R-vine matrix is to store the indices {i(e), j(e)|D(e),e € Tj,j =1,...,n}
in a lower triangular matrix, which then describes the tree structure.

Definition (R-Vine Matrix)

Let M be a lower triangular matrix with entries m; ;, ¢ < j. Each entry m; ; is allowed to
take integer values from 1 to n. M is called an R-vine matrix if it satisfies the following
conditions:

(1) {mii,...mpni} C{mjj,...my } for 1 <i<j<n.

(2) myi; ¢ {mMH, ...,mn?iﬂ} for i = 1, e, = 1.

(3) Foralli=1,...,nand k =i+ 1,...,n — 1 there exists a j in {i + 1,...,n — 1} such
that

{m,w, {mk;+1,i, ey mnz}} = {mj,jv {mk,j> e mn]}}

or

{mk,i, {mk+17z‘, ey mm}} = {mk,j7 {mk+1,j> ey M5, mj,j}}~

From (1) it follows, that all the entries of the columns on the right of a selected column
are contained in this column. From (2) we conclude, that the diagonal entry of a column is
not contained in any column further to the right. Condition (3) exactly is the counterpart
of the proximity condition for R-vine trees.

The most important properties of an R-Vine matrix are, that all elements in a column are
different and that deleting the first row and column form a n-dimensional R-Vine matrix
always gives a (n-1)-dimensional R-Vine matrix.

Since each entry below the diagonal of this matrix describes one edge of the corresponding
tree, this type of lower triangular matrix is also used to describe the copula family and
parameters by entering the values at the matrix field for the corresponding edge.
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Special cases of R-vine copulas

Recall, that having n parameters, the number of possible R-vines is %' 9("2%) and that

taking into account, that numerous copula families do exist with their unknown param-
eters, it is a quite expensive calculation to determine the adequate tree structure with
the best fitting copulas. As we have already seen, there exist some heuristic algorithms to
receive well-fitting R-vines.

Another possibility of simplification is to restrict the tree structure. There are two special
types of R-vines, which have been applied successfully in various fields like for example
in the context of stock market or health. These two tree types are the canonical vines
(C-vines) and the drawable vines (D-vines).

A C-Vine is an R-vine which contains one node with the maximal degree in each tree, i.e.
each tree of a C-vine has a star structure. The ordering of the root nodes in the first tree
thus completely determines the C-vine structure.

A D-vine is an R-vine for which the first tree has nodes with degree two or less, which
gives a path structure. Subsequently, there is no other possibility to derive conditional
trees than following this path structure. Hence, the vine structure is completely defined
by the first tree.

C-vines and D-vines both have %' possible tree structures for n parameters, which is
remarkably less than for an R-vine. For n = 7 this reduces the number of possibilities by
the factor of 1/1024. Due to the limits in the structure, C-vines and D-vines are most suit-
able for data fulfilling some criteria: C-vine copulas for example can especially be applied
to data, of which pivotal variables can be identified and D-vine copulas may be useful in
particular for time series data. Nevertheless, both types can be used with arbitrary data.
But, of course, some statistical tests like for example the Vuong-test should be carried out
to examine the reasonableness of the selected models.

In the following, some methods and descriptions will be introduced referring to R-vines.
These in principle are also valid for C-vines and D-vines as special cases of R-vines.

2.7.3 Parametric copula families

We have already seen, that Sklar’s theorem directly gives us the copula density as

fET ) FT N (wa)) 940 (e i)
C(U’h "'7ud) T AET () fa(Fr (we)) T Quaug

where f, f1, ..., f4 denote the corresponding density functions of F| Fi, ..., Fy.

This allows us to use arbitrary parametric distribution functions I’ to construct para-
metric copula families. A short overview over the most well-known ones is given below:
We differentiate between elliptical and Archimedean copula families and introduce the
multivariate Gaussian copula and the t-copula, which both are elliptical copulas, as well
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as four Archimedean copula families, namely the Clayton copula, the Gumbel copula, the
Frank copula and the Joe copula.

Elliptical copula families

Multivariate Gaussian copula

Applying the above to the multivariate Gaussian distribution with zero mean and corre-
lation matrix R yields the multivariate Gaussian copula, which is defined as

C’(u, R) - (I)R<(I)_1(u1>7 LR (I)_l(ud))v

where ®~! denotes the inverse of the standard normal cumulative distribution function
® and P4(- - -; R) the multivariate standard normal distribution function with zero mean
and symmetric positive definite correlation matrix R € [—1;1]<.

The copula is given by
c(u; R) _ |R‘—0.5e%xT(Id—R*1)x7

where x = (21, ...,24)T € R? with 2; = & 1(u;) and i = 1, ...,d.

Multivariate t-copula

Similar to the multivariate Gaussian copula we can derive the multivariate t-copula from
the multivariate t-distribution as

C(u;R,v) =tr,(t; (ur), .oy ty—1(ua)),

where tp, denotes the distribution function of the multivariate standard t-distribution
with correlation matrix R € [—1,1]¢ and v > 0 degrees of freedom. Further, ¢, repre-
sents the inverse of the distribution function ¢, of the univariate standard t-distribution
with v degrees of freedom.

The multivariate Gaussian copula and the multivariate t-copula both range among the
most widely used copulas and are quite similar, which especially is true for high numbers
of degrees of freedom. For this reason it is common to abstain from using the t-copula for
degrees of freedom higher than 30, but to use Gaussian copulas instead.

Archimedean copulas

Besides this, there is a second important class of copulas, the one-parametric Archimedean
copulas. Some well-known examples for this class of copulas are the Clayton copula, the
Gumbel copula, the Frank copula and the Joe copula.
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Definition (Archimedean copula)

Let @ : [0,1] — [0,00] be continuous, strictly monotonous decreasing and convex with
®(1) = 0. Define &~ as the generalised inverse of @, i.e.

O~ (y) := inf{x € [0,00] : P(z) >y}, y € [0, 1].
Then, the Archimedean copula function is given by
C(Ul, ’LLQ) = qJ_(@(ul) + CI)(UQ))

Restricting to the bivariate case, this yields the following:

Clayton copula

For ®y(x) = *, 0 € (0,00), the Clayton copula is defined as
C(uy,ug) = (up? + uy? — 1)_5.

Gumbel copula

With &y(x) = (—log(l“))", 0 € [1, 00], the Gumbel copula is given by
C(ula u2) = 67Kilog(ul))9+(7log(uQ))9]% ‘
Frank copula
7]

Having ®y(z) = —log(<5—), with # € R\{0}, the bivariate Frank copula is defined
as

C(UI,UQ) = —%log(l + (6_9“171)(6_9”2,1)).

e 0—1

Joe copula

With ®y(z) = —log(1 — (1 — x)%), 0 € [1, 0], the Joe copula is derived as
1

O(Ul, UQ) =1- ((]_ — Ul)e + (1 - Ug)g - (1 - Ul)e(l — UQ>9)§.
For further details on that please refer to Nelsen (2006).

Independence copula

The independence copula is given by

C(u) = T2 wi.

With Skar’s theorem, we conclude, that a set of random variables is independent if and
only if their copula is the independence copula.

The related copula density simply is constant.
Truncated regular copulas

If all pair copulas at levels above a distinct level M are set to bivariate independence
copulas, the corresponding R-vine copula is said to be truncated at level M.
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2.7.4 Estimation of Vine copulas

In parametric models, the estimates of R-vine copulas usually are gained by maximisation
of the full likelihood. Due to the huge number of parameters that comes with increasing
dimension, there often is used a sequential estimation approach to find good starting val-
ues for this optimisation, which is based on bivariate estimation only.

Definition (Sequential estimate of an R-vine copula density)

Let C' be an R-vine copula corresponding to the tuple (V,C') and (ul), ...,ug))i:17_,_7n
given i.i.d. samples from C'. Then, a sequential estimate of an R-vine copula density is
obtained as follows:

(1) For all e € E; obtain estimates for c,, ..

(2) Fork=2,...,d—1:
For all e € E}y, and j = ay, be:

(i) Let j' € D, be another index such that C;j,p,\; € C and define D, := D.\j’".

(@) (@) )Z L

(ii) Based on the sample ( Ui Uirl .n, Obtain an estimate of the h-function

hjlinpr-
@ . -
(iii) Define ujyy, = Ry ]‘D,|uj,|D,) i=1,..n.
(iv) Based on (u (i )| Z(JZ)I D, )i=1,..n Obtain an estimate of the copula density c,, p..p.-

This algorithm thus works as follows: In the first tree, each node is assigned to one random
variable. From the samples of these random variables we then obtain estimates for all pair-
copulas that correspond to the edges of the tree. To get samples from the second tree, we
estimate the h-functions and apply them to obtain pseudo-samples, which can be used to
estimate the copulas for the edges in the second tree. Doing this also for the remaining
trees, we obtain estimates for all copula densities and all h-functions that are required to
determine the density of the full R-vine copula.

2.7.5 Family selection and parameter estimation

Coming to the family selection and the estimation of the corresponding parameters, the
importance of the tree structure finds even more expression, since the pair copula families
and the corresponding parameters both depend on the tree structure.

We have already seen, that the pair copula families are independent of each other and can
be chosen arbitrarily. So the question arising is, how to choose the appropriate parametric
families.

A first hint on that is given by the pair plots. Since pair copulas are defined for two vari-
ables in [0, 1]%, the pair plots resulting from any specified margins may not be processed.
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To overcome this problem, we always consider the transformation to a joint distribution
with standard normal margins instead. This allows a direct comparison to multivariate
normal shapes and brings out some characteristics like for example sharp corners in case
of tail dependence. Further, due to the characteristic shape of the pair plots, we can read
out well-fitting parametric families from this graphical examination.

But, to get more precise results, we usually want to compare the modelling results based
on some measure of goodness of fit. Of course, it is not viable to check all possible R-
vine copulas to find out the globally best fitting model. But, the parameters usually are
estimated for several different parametric families among which the best model is selected.

For a given parametric family, the corresponding family parameters usually are gained
via maximum likelihood estimation.

Definition (Maximum likelihood estimator MLE)

Let (Uy,...,Uy) ~ C’('), where 8 € © and ©® € RP is the family’s parameter space. Further,

denote ¢! as the density of C(g'). The maximum likelihood estimator of the parameter

vector 6 then is defined as
~MLE n . i i
0, :=argmaxgee |l c()(ug),...,ué)).

This value has to be maximised by varying the model parameters. As already described,
some penalising can be implemented to identify good and preferably simple models, which
usually is done using the information criteria AIC and BIC.

Definition (Akaike Information Criterion (AIC) and Bayesian Information Cri-
terion (BIC))

The two information criteria AIC and BIC are defined as
AIC = 237", log(cg) (ugi), o ug))) + 2p,
and

BIC := —2"" | log(cgi(u?), ey ug))) +log(n) - p,

where p is the number of parameters of the respective family and 0, the parameter esti-
mate.

As usual, the best fitting model minimises the score.
In case of bivariate estimation of one-parametric families, an alternative estimation is
provided by the inversion of the empirical Kendall’s 7. This is based on the one-to-one

relationship of the Kendall’s 7 and the parameter of some families.

Inversion of the empirical Kendall’s 7
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Let (Uy, Us) ~ Cé'), where @ € © and © C R is the family’s parameter space. Let further
U : ® — [—1;1] be a bijective function, such that ¥(0) = 7(Uy, Uy). The inversion of the
empirical Kendall’s 7 then yields

0, = U (7,(U1, Us))
as an estimator for 6.
In both cases consistency is lost when the model is misspecified.

Relationship between the copula parameters and the Kendall’s T

For bivariate Archimedean and elliptical copulas the parameters of the copula family
and the Kendall’s 7 can be related as follows:

Theorem (Kendall’s 7 for bivariate Archimedean and elliptical copulas)

If ¢ is a generator of a bivariate Archimedean copula, then the corresponding Kendall’s
T satisfies

_ 1 gt
T=1+4 [y St

For elliptical copulas we have the following relationship between the association parameter
0 and Kendall’s 7:

0 = sin(57).

For the different bivariate copula families introduced above, the Kendall’s 7 is given as
follows:

Family Kendall’s 7 T E
Gaussian 7 = Zarcsin(p) [—1,1]
t 7 = Zarcsin(p) [—1,1]
Gumbel T=1-% 0,1]
Clayton T = 545r_2 [0, 1]

Frank | 7=1-35+ 4DlTw) with D;(0) = foé ef_lda: (Debye-Function) | [—1,1]

—2+2v+21n(2)+w(%)+w(%"’%‘5)%)

T=1+(

—245
Joe with Euler’s constant v = lim, (37, + — In(n)) ~ 0.57721 | [0,1]
4 (g
and Digamma-function ¢(z) = LIn(I'(z)) = %

Table 2.1: Relationship between the Kendall’s 7 and the copula parameters for selected
elliptical and Archimedean copula families.
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2.7.6 Comparing copula models

The information criteria AIC and BIC, which are used to evaluate the goodness of fit in a
model, normally are only applicable to nested models. Since truncated copulas and copu-
las containing independence copulas are nested within the corresponding copulas without
independence copulas, these can be compared properly using the above.

But, for a precise comparison of different vine copula models, we need a suitable cri-
terion for non-nested models. For this purpose, we now introduce the Vuong test. This
statistical test is based on the Kullback-Leibler criterion, which measures the distance
between the true but unknown distribution and a specified, approximative model with
parameter estimate 6. Please note, that 0 is an estimate for the so called ‘pseudo true
value’ 8, but not for the parameter of the true density.

Definition (Kullback-Leibler criterion (KLIC))

The Kullback-Leibler criterion for the true density ho(-) and the estimated density f(-|0)
of a random vector X is defined as

KLIC(ho, f,) := [ ho(x)log ( ) dz = Eo(log(ho(X))) — Eo(log(f(X]9))),

where Ey denotes the expectation with respect to the true density hyg.

Of course, we strongly prefer the model with the minimal KLIC. As the true density
ho usually is unknown, the equivalent method is to choose the model with maximal
Eo(log(f(X]6)))-

Vuong test

Let us consider two competing models
e Model 1 X ~ f,(-6,)
e Model 2 X ~ f5(-62).

To decide, which of the models is more appropriate, Vuong’s closeness test - in the following
shortly Vuong test - is used. The Vuong test investigates the null hypothesis that both
models are an equally close approach to the data, i.e. that

Hy : KLIC(hy, f1,01) = KLIC(ho, f2,03).

This can equivalently be expressed as

Ho : Eo(log(f1(X[61))) = Eo(log(f2(X]62))).

Naturally, in case of

Eo(log(f1(X[61))) > Eo(log(f2(X[62))),
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we decide in favour of model 1, and vice versa.

The Vuong test also assigns a significance level to its decision.

Theorem (Asymptotic normality of the likelihood ratio statistics for two ap-
proximating non-nested models)

With LR, (91,92> as the likelihood ratio for the two models and w? as the variance

of the random variable log (;; g}g;;

tribution N(0,1) and is defined as

), the term v,, asymptotically follows the Normal dis-

L LRn(él,é2) D
Un == Vnw? n—00

N(0,1).
Thus, v, can be used to determine the significance level «, which is given by:
a=20(—|vy]).

So far, we did not take the number of model parameters into account. Whenever we sup-
pose the problem of overfitting models, we can use the adjusted version of the Vuong test.

Definition (Adjusted Vuong test statistics)

The adjusted Vuong test statistics is defined as
LR,(01,02) := LR,(81,02) — K, (fi1, fo)-

In the above formula, K, (f1, f2) denotes a correction term, for which the following two
versions are suggested:

o Akaike correction: KA(f1, f2) = k1 — ks
o Schwarz correction: KZ(f1, f2) == (%) log(n) — (%)log(n)

In the above, ki and ky denote the number of parameters in model 1 and in model 2,
respectively.

All in all, the Vuong statistic gives us a simple decision rule on hand, where for a given
significance level a the decisions are made as follows:

model 1, if ®7H1-%) <y,
prefer ... ¢ no model, if ®71(%) <y, <®H1-9%) .
model 2, if v, < ®71(%)



Chapter 3

Study of Online Sales Activities

3.1 Online sales activities
3.1.1 Data description
In the online shop, the hierarchy for organising the items is as follows:

Shop

- T/

<¢> Category <¢>

Cy

_— | T/

Product G
<¢> ro LFI::;,(,,roup <¢>

/\

Sub
<¢> usé;roup <¢>

k,r,u
Product Product
P o Piru,i

/I\ /’\

Article =) =) Article
Ak,r,u,1,1 " Ak,r,u,1,j

@) - Substitution effect expected
C¢> = Substitution effect not expected

Figure 3.1: Shop structure consisting of several levels: Category, product group, subgroup,
product and article.
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There are different categories. For each of the categories, there are several product groups,
which again consist of subgroups. As next level, there are products. These consist of sev-
eral product variants, which we will refer to as ’articles’ in the following.

Let us explain this shop structure using a supermarket example:
A category could be vegetables or beauty care.

The product groups are a rather rough grouping of the products, classifying them
by purpose of use. Thus, they are assumed to be completely independent. In our example
of the category beauty care, two possible product groups could be deodorants and shampoo.

The subgroups, which will be referred to as types in the following, pool the prod-
ucts by common characteristics. Again, illustrated at the supermarket’s product range,
possible subgroups of deodorants may be roll-on deodorant and deodorant spray, as well
as a split by brands. The definition of a subgroup aims at bundling the products, which
theoretically can be substituted with each other. Usually, customers do not switch be-
tween the subgroups due to habit or personal preferences. Hence, also the subgroups are
assumed to be independent.

Internally, more than one characteristic are assigned to the products. So evaluations can
be handled flexible by picking a specific characteristic as ’subgroup specifier’. Defining
subgroups using more than one characteristic, e.g. by multi-level subgroups, would lead
to a low number of members, which is not very helpful when doing statistics.

To have the shop as customer-friendly as possible, the client can select products by spec-
ifying any of the characteristic to find his preferred product. On the one hand, we have
subgroups classifying the products by type and on the other hand, we have an individual
subgroup for each brand. This helps the customers to increase their searching efficiency
and allows for different search strategies. Since all the different characteristics are main-
tained for the articles, the customer will find the desired article with any search strategy.

As a consequence of the definition of subgroups, the products within one subgroup are
comparatively similar. So we cannot assume independence here. Sticking to the deodorant
example, a product would be a specific type from a specific manufacturer like a deodorant
for sensitive female skin with rose scent from one brand. Thus, 'product’ is still abstract.

When speaking of articles, these are ’concrete’ variants of the products, which form
the assortment of the shop. Depending on the product, articles have different packaging
sizes, colours or are multipacks of other articles. The strongest substitution effects are
expected here.

Some articles are special offers and consist of one main item and a so called freebie,
which has a relative low value compared to the main item. To have unbiased prices re-
garding these special offers, the value of the freebie is deducted from the sales price of the
main item in the analysis.
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In this thesis we analyse one specific product group. The data set retrieved from the
online shop covers the daily sales data collected over a time period of two years; more
precisely from 01/11/2012 - 31/10/2014, which adds up to a total of 730 days. It covers
287 articles, where we have several data fields available for each article and time point.
These are shown in the table below.

data field description

DATE Date of observation. All further field contents refer to this specific
date. The data set contains sales data over a time period of 730
days, from 01/11/2012 to 31/10/2014 on daily basis.

BRAND We will consider articles of seven different brands A, B, C, D, E,
F and G.

TYPE Independent of brand, the articles are grouped in four types a,
b, ¢ and d.

PRODUCT Product to which the article belongs.

AS_ID Unique ID for the articles in the shop.

ASH_PRICE Price at which the articles are sold in the shop.

BLACK_PRICE

Recommended retail price.

COMP_1_PRICE

Article price from the competitor assumed to be most important
(rank 1).

Article price from the competitor (rank 2).

COMP_2_PRICE

Article price from the competitor (rank ... ).

COMP_10_PRICE

Article price from the competitor assumed to be least important
(rank 10).

SHOP_ABSATZ

Quantity sold of the different articles.

SALES_BMF SHOP_ABSATZ times ASH_PRICE.

STOCK Boolean flag: "TRUE’ indicates, that this article is in stock.

NL_STATUS Boolean flag: "TRUE’ indicates that this article was in a newslet-
ter.

GENERAL_NL Boolean flag: "TRUE’ indicates a general newsletter advertise-
ment independent of the articles.

BONUS Boolean flag: "TRUE’ indicates, that a freebie is packed to this
article additionally.

WEIGHT Content in UoM kg (of a single pack).

BUNDLE_SIZE

Amount of packs, of which the article consists.

Table 3.1: Available data fields in the data source.

The raw data has to be examined and prepared for the regression analysis.

3.1.2 Data cleaning

The assortment is quite dynamic. Several articles are not available in the shop during the
whole period of observation: Some were dropped from the product range or listed as new
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products, others run out of stock. Articles which are strongly loaded by these problems
would normally be dropped from the data set in order to have more or less complete data
for each article.

But, among these articles, there are several special offers which only are available from
time to time. These articles cannot be dropped, since they influence the sales significantly
and are needed to explain slumps in the sales of the regular articles. Thus, we use a more
sophisticated selection method for the articles based on the product affiliation:

As described above, the individual articles are different packaging or bundle sizes of the
products. Consider for example an arbitrary product, which is available in three different
packaging sizes and from time to time as a special offer, too. Thus, for this product, we
have four individual articles in the data set. We then select as follows:

If at each time point under consideration at least one of these four articles is available,
all the four of them will be included when modelling. Under this condition, we can create
complete data for example by taking average values for the different products, brands or
other groups of articles instead of only regarding one article at a time. Using this method,
the effect of special offers can easily be covered when modelling.

Otherwise, neither the product nor any of the corresponding articles will be considered.
This selection method reduces the amount from 287 articles to 29 articles. In the following
all explanations and figures are based on this subset of the data.

Structure of the articles selected for modelling

Having removed the inappropriate products, there remains a total amount of 29 articles
selected for modelling. Shown in the hierarchical structure of the shop, this looks as
follows:

Selected product group

Type a Type b Typec Typed

B

ARRRRAA A A AT

A1 A2 A3 A4 A5 A10A11A12A13A17A18A19A20A21 A22A23A24 AG A7 A8 AQ A25A26A27A14A15A16A28A29

Figure 3.2: Hierarchical structure of the considered product group showing the selected
29 articles. For the ease of use, the brand of the product is always displayed below the
product in italics.

We consider the articles Ay, ..., Asg, which come from 11 different products Py, ..., P;;. The
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products come from 7 brands, which are named from A to G and belong to four different
types named a, b, ¢ and d.
The table below summarises the articles grouped by type, brand and product, respectively.

brands | products | articles products | articles articles
type no. no. no. | brand no. no. | product no.
A 1 3 P 3

Py 2

B 3 6 Py 2

a 3 7 17 Ps 2
P 2

E 3 8 Py 3

Py 3

b 5 5 . C 1 4 P; 4
F 1 3 Py 3

c 1 1 D 1 3 Py 3
d 1 G 1 2 Py 2
)y 7 11 29 by 11 29 )y 29

Table 3.2: Grouping of articles, products and brands in absolute numbers.

brands | products | articles products | articles articles
type no. no. no. | brand no. no. | product no.
A 9 % 10% P 10%

Py %

B 27% 21% Py %

a 43% 64% 59% Ps ™%
P; ™%

E 27% 28% Py 10%

Py 10%

b 29% 18% | 24% | S e | R B 1%
F 9% 10% Py 10%

c 14% 9% 10% D 9% 10% Fs 10%
d 14% 9% ™% G 9% ™% P %
)y 100 % 100% 100% Y 100% 100% by 100%

Table 3.3: Grouping of articles, products and brands in percentage.
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Sales data of the articles selected for modelling

To get an overview over the sales relevance of the products, the table below contains the
average quantity sold for each of the articles. Weight and bundle size are necessary to
calculate the basic price for the articles later on. For some articles a freebie is added as a
bonus, which can be recognised at the boolean flag bonus.

bundle avg. daily
article product type brand weight size  bonus quantity sold
Al P a A 15 kg 1 0 45
A2 P a A 15 kg 2 0 72
A3 P a A 7 kg 1 0 30
A4 ) a B 14 kg 1 0 33
A5 Py a B 14 kg 2 0 155
A6 Py b C 4.5 kg 1 0 53
A7 P; b C 9 kg 1 0 101
A8 Py b C 18 kg 1 0 162
A9 Ps b C 18 kg 1 1 67
A10 Py a B 14 kg 2 0 33
All Py a B 14 kg 1 0 7
Al12 P a B 14 kg 2 0 14
A13 Ps a B 14 kg 1 0 3
Al4 Fs c D 5 kg 3 0 12
Alb Py ¢ D 5 kg 1 0 5
A16 Fs c D 5 kg 2 0 39
Al7 P; a E 15 kg 1 0 2
A18 P a E 15 kg 2 0 15
A19 Py a E 15 kg 2 0 45
A20 Py a E 15 kg 1 0 8
A21 Py a E 15 kg 2 1 42
A22 Py a E 14 kg 1 0 8
A23 Py a E 14 kg 2 0 58
A24 Py a E 14 kg 2 1 55
A26 Py b F 8 kg 1 0 2
A28 Py d G 2 kg 3 0 8
A29 Py d G 2 kg 1 0 1

Table 3.4: This table matches the articles with the corresponding product, type, brand,
weight and bundle size. Furthermore, it is displayed, if there is given away a bonus article
for free. To get an overview over the importance of the different articles, there is also given
the average quantity sold per day.
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Stock availability of the articles selected for modelling

The table below gives a short overview over the availability of the articles, where most of
them have a good availability. The ones being less than half of the time in stock probably
are these special offers of limited duration. During analysis, the days with no availability
of an article are ignored when analysing this article. But, when calculating an averaged
price for the product containing this article, we always use the data of the available articles
per time point. As already mentioned, the selection of articles was done in a way, that on
each day at least one of the articles within a product was in stock. Hence, sufficient data
is available.

products
availability av number percentage
0% < av < 50% 5 17%
50% < av < 80% 2 7%
80% < av < 90% 1 3%
90% < av < 100% 4 14%
av = 100% 17 59%
Total: 29 100%

Table 3.5: Availability of the articles given in absolute numbers and in percentage share.

Competitor prices of the articles selected for modelling

An important question is how to handle competitor prices. There are single days or short
periods where the prices for particular articles and competitors are not available for diverse
reasons. Furthermore, there might be slight deviations from the actual competitor price
for example because of time lags when taking the prices. To have complete data, the lastly
reported prices will be taken if no data is available. This compensates the lack of data
without removing observations from the data set. Furthermore, competitor prices will be
ignored if the deviation from the usual price range of the individual products is too high,
because then the data may be erroneous. In this case, also the lastly reported valid price
will be taken.

3.1.3 Data exploration

Any shop is heading for high sales, but, in the end, the clients’ behaviour determines the
sales. Thus, the quantity sold is set as response variable. It 'responds’ to the changes made
by the shop on directly affectable parameters like for example the prices, which are the
so called covariates. In this subsection we will explore the data. Suitable and necessary
conversions will be examined.

There are four topics to be worked through for the covariates: the influence of the shop
price itself, the effect of the competitor prices, the impact of advertising and the substi-
tution effects.
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Quantity sold
The quantity sold will be modelled as response variable. It will be denoted as
na,,+ ‘= quantity sold of article A4,, at time ¢.

No matter which kind of shop article is considered, the quantity sold does not count the
number of items the considered article consists of, but the number of sales. Thus, if we
for example consider a multipack consisting of three identical items, which was sold seven
times, then we have a quantity sold of seven, although we actually have sold twenty-one
items.

If we are interested in coarsening our models for example by clustering the articles by
type or brand, the response variable has to be adjusted. Clustering will merge articles of
different packaging sizes, as well as multipacks and special offers. Switching from quantity
sold to units sold, which in this context will be kilograms sold, allows for this kind of
consolidation. The figure ’kilograms sold’ is calculated as ’quantity sold’ times 'weight’
times "bundle size’.

To get a first impression of our response variable, the box plots with the standard bound-
aries 25% and 75%, which are given below, visualise the dispersion of the quantity sold
per day and article.
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Figure 3.3: Box plots of the quantity sold on daily basis. Each article is displayed sepa-
rately.
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The box plots are slightly skewed (as expected for count data) and show notable outliers in
both directions. The outliers showing extremely high quantity sold suggest the assumption,
that this is not just a random behaviour, but that this probably is induced by temporary
price reductions or advertisement.

Prices

Concerning prices, we have to be careful when measuring the influence of possible substi-
tutes. Consider for example a single article of arbitrary packaging size. Possible substitute
products are other packaging sizes or multipacks of the same product and similar articles
from other brands and potentially other packaging sizes.

Since we are doing pricing policy, the influence of the substitute products will be measured
by comparing prices. To keep things comparable, we will always consider the basic prices,
which in this context means the prices per kilogram. This way we avoid the problem con-
cerning different packaging sizes and multipacks.

Nevertheless, using the current article price or the article’s basic price will both have
the same relative increase or decrease and the result of the regression will be identical.

The freebies coming with special offers are not comparable with the articles considered,
because normally these do not come from a related product group. For this reason, the
regular selling price of these freebies will be determined and substracted from the article
price before calculating the basic price (per kilogram) of the special offers. Thus, the at-
tractiveness gained by freebies will be included in our models by lower basic prices for the
concerned articles.

The variable used for the current price of the articles A,,, where m = 1,...,29, will be
Da,,+ = shop price of article A,, per kilogram at time ¢.

Typically, for each article there is a set of predefined price values. Of course, these prede-
fined values can also be modified, but this is done rather seldom. The number of predefined
prices does vary across the articles. For this reason, we will differentiate between the num-
ber of different prices and the number of price changes for each article.

The dynamics in prices are shown in the following table. The number of prices means
the number of different prices used per article during the time period of observation. The
number of price changes indicates, how many times the price of the article was changed
during the time period of observation, where changing a price means to switch from one
of the predefined values to another.
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. number of number of . number of number of
article ) ) article ) )
prices price changes prices price changes

Al 3 5 Al6 3 2
A2 3 5 Al17 2 14
A3 3 2 A18 1 0
A4 3 4 A19 2 3
A5 5 8 A20 3 34
A6 3 17 A21 1 0
AT 5 26 A22 3 47
A8 6 45 A23 5 32
A9 2 1 A24 1 0
A10 4 5 A25 4 5
All 2 1 A26 1 0
A12 3 3 A27 1 0
Al3 3 2 A28 5 9
Al4 5 12 A29 2 1
Al5 3 2

Average: 3 9.8

Table 3.6: Dynamics of the prices per article: The number of prices gives the cardinality
of the set of different prices, whereas a price change means switching between the prices
available.

This evaluation shows sufficient dynamics on prices to do regression analysis.

The box plots below give a first insight into the interdependencies between the shop
price and the quantity sold. The relative frequencies of the prices are displayed above the
plots. Please note, that these relative frequencies always refer to the whole time period
of observation. Consequently, they will only add up to 1 for the 17 articles, that were in
stock the whole time. Three articles were selected to show the different effect types. The
whole set of the plots can be found in the appendix 7.1 to appendix 7.3.
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Figure 3.4: Box plots of the quantity sold over the shop price for the individual articles.
The data is given on daily basis. The box plots for all of the articles can be found in the
appendix 7.1 to appendix 7.3.
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The first effect characteristic is decreasing sales at increasing prices. This would be com-
monly expected. The behaviour was found at 17 articles.

The second characteristic is almost no effect on sales by price changes. This was found
ten times. Investigating the concerned articles in more detail, we find, that for 6 out of
them a pricing effect cannot be detected, because they did only have one price each.
The third effect is increasing sales at increasing prices. This occurs two times. These ar-
ticles did only use two prices each and had very low quantities sold. This thus is assumed
to be statistical noise.

We furthermore notice, that there are several outliers for most of the articles. These
seem to be concentrated at the prices with high relative frequencies. Thus, the more days
a price is active in the shop, the more likely it is, that outliers appear at this price.

Price cut

In the shop, there are always displayed two prices: the current shop price and the recom-
mended retail price. One could assume, that customers react on the percentage difference
between these two prices. Thus, this price cut could be defined as an independent vari-
able. But models including this as covariate nevertheless show comparatively bad fits. One
reason could be, that customers rather compare our current shop price for example to the
current prices of other online shops than to the recommended retail price.

Similarly, a price cut between the current shop price and the competitor prices could
be used.

But, no matter which price cut is used, since the price cut is calculated as the difference
between the current sales price and another price, there is a linear correlation between the
price cut and any price used in the subtraction. Since the current price and the competitor
price will surely be used as covariates, it is not reasonable to introduce the price cut as
an additional covariate.

Competitor prices

Competitor prices are taken for the most important competitors. The number of com-
petitors to be tracked varies from article to article. Prices can only be taken for common
brands. How many competitor prices are available, depends on the popularity of both,
the brand and the product variant. For private labels of course no competitor prices are
available. These thus cannot be compared to other online shops, which exactly is the in-
tention of such products.

The variable for the competitor prices will be defined as

ijﬁlm,t := price of article A,, per kilogram at time ¢ at competitor y.
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The bar plot below gives an overview over the number of competitors to be tracked for

each article.
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Figure 3.5: Bar plot showing the number of competitors to be tracked for each article.
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The number of competitor prices available obviously varies a lot. Even if it was the same
for any two articles, the competitors could be different ones. The influence of the com-
petitor prices might furthermore depend on the market share and on the prominence of
the competitor.

Concerning competitors, different influences are conceivable: The minimal competitor
price, the average competitor price or the competitors’ price range could be considered.
As these are highly correlated, it is not reasonable to include all of them in regression
analysis. For this reason, we will restrict to the minimum competitor price, because this
seems to be the most promising one.

Minimum competitor price

The minimum competitor price for article A,, at time ¢ is defined as

Y= miny(cim,t),

where we do not consider the raw article price, but the price per kilogram. Thus, it is the
minimum out of the competitor prices per time point, i.e. it is the currently lowest price
amongst all competitors. It does not represent the price of one specific competitor like the
cheapest in general, the cheapest averaged over time or across products.

The three dimensional scatter plots below visualise the dependence between the shop
price, the cheapest competitor price and the sales. For each unique pair (p% |, c%;t) of
shop price and cheapest competitor price the average sales are taken, i.e. we consider

- Zt 1{pA7n,t:p:k4m7czlm7tzcr4n;’t} ’ nAmvt

* m* =
msP A CA, t

na
D I s Bt

Of course, only articles with competitor prices available will be considered. The plots
below confirm the uplift of the average sales for a decreasing shop price and an increasing
minimum competitor price.
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Figure 3.6: Three dimensional scatter plots of the average daily sales for every pair of shop
price and currently cheapest competitor price. Of course, only the articles with competitor
prices available are considered.

Article-specific newsletter advertisement

Article-specific newsletters inform about currently reduced prices and motivate to buy by
emphasising the limited validity of these special offers. The variable contained in the data
set is a boolean flag, indicating whether the product was in the newsletter that day or
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not, i.e.

ad | 1, if article A, is in newsletter at time t
Amt =1 0, otherwise

Since this variable is on nominal scale, a scatter plot would not be helpful. Instead of that,
we have a look at the number of days having the article in the newsletter and the average
daily sales with and without article-specific newsletter advertisement.

To get the bar plot below, we sum up over the above defined variable, i.e. we consider

* —_—
adAm - Zte[1;730] adAm,t‘

Thus, for each of the articles, ad’; ~gives the overall number of days having this article in
the newsletter advertisement.

ady,,

OFRNWhOON

Figure 3.7: Bar plot showing the number of days on which the individual articles appeared
in the article-specific newsletter.

Most of the considered articles do never appear in the article-specific newsletter during
the whole time period of consideration, because normally only articles, which are classi-
fied as "top sellers’ are promoted with this kind of advertisement as a specific shop strategy.

Nevertheless, compared to the time period of observation of 730 days, having an over-
all number of at the longest 7 days of article-specific newsletter advertisement for an
article is a comparatively low number, since this is less than 1% of the time.

General advertisement

Besides this, there are also special offers, which affect the whole assortment. These are
for example price coupons or bonus articles, that are given away for free, when achieving
a certain minimum order value independent of the products you buy.

In the following, the general advertisement will be denoted by

1, if there is any general advertisement at time t
adf = :
t 0, otherwise

Within the time period of consideration of 730 days, there are 157 days with general
advertisement. This is a share of approximately 21,5% of the time.
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Relative uplift of sales induced by advertisement

In the following, we investigate the relative uplift of sales induced by newsletter adver-
tisement. We distinguish between days with article-specific newsletter advertisement, with
general newsletter advertisement, with both kinds of newsletter advertisement at the same
time and with no newsletter advertisement.

Let

ka,, = number of days with article A,, being in advertisement,
k* := number of days with general advertisement,
and
k** := number of days with both article-specific and general advertisement.

Then, the relative uplift of sales induced by article-specific newsletter advertisement is

defined as

_ Nuan
upa,, = No.a,,
where N; 4, represents the average number of sales for article A,, when appearing in
newsletter, i.e.

E Liady,, i=1,ad8=0} * VA, b5

m

kATYL

and Ny 4,, represents the average number of sales for article A,, without any newsletter
advertisement at all, i.e.

1
N, = 1 _ o .
0,Am = =a ka,, — k* — k** Et: {ad A, +=0,adf=0} * TVAp t

Similarly, for the relative uplift induced by general advertisement we have

Ny N, Am

U *
pAm No Am )

where N, = stands for the average sales of article A,, when general advertisement is
present, i.e.

*

1
Nia,, = o Z Liada, ,=0,ad8=1} * A t-
t
In the case, that both kinds of newsletter advertisement are active at the same time, we
calculate

both _ Niap,
No, A,
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where

ko

1
LAm — e Z 1{adAm,t:1,ad§:1} "M A, it
t

The three box plots below summarise the results. The first box plot shows the relative
uplift of sales induced by article-specific newsletters. Of course only articles appearing at
least once in the article-specific newsletter are considered. The second one summarises
the effect of general advertisement, where all of the 29 articles are taken into consider-
ation. The third one visualises the effect, which is brought about when article-specific
advertisement and general newsletter are active at the same time, where again of course
only articles that were at least once in the article-specific newsletter advertisement are
considered.

article—specific general both at the same time
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Figure 3.8: Box plots showing the relative uplift of sales induced by the article-specific
advertisement, by general newsletters and by both kinds of newsletter at the same time,
respectively. On the left and on the right, only articles, which appear at least once in the
article-specific newsletter are included. In the middle, all the 29 articles are considered.

Obviously, general advertisement also influences sales significantly, but not as much as the
article-specific advertisement does. Combining both kinds of newsletter advertisement on
average yields the highest number of sales. When comparing the box plots, it has to be
kept in mind, that an article-specific advertisement only lifts up the quantity sold for one
article on average by 40%. General advertisement however lifts up sales for all articles on
average by 18%. Just as a very rough estimate: If the shop only offered these 29 articles,
the total shop sales would raise by 18% on general advertisement and by 40% / 29 = 1.4%
on article-specific newsletter. So from a global perspective, general advertisement has a
much greater lever than the article-specific advertisement.

Below, the effect of the different kinds of advertisement is compared for the articles ap-
pearing at least once in the article-specific newsletter.
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Figure 3.9: Box plots visualising the effect of the different kinds of advertisement on the
articles appearing at least once in the article-specific newsletter.

The plot above highlights the surpassing effect of the combination of both kinds of newslet-
ter advertisement. Furthermore, we read out, that the general advertisement seems to have
a similar effect on all of the articles. It makes its presence felt in the quantity sold, but not
as much as the combination of both kinds of advertisement does. Concerning the article-
specific advertisement, we cannot make out a clear pattern of effect across the articles.

We furthermore notice, that there are almost no outliers present in case of article-specific
newsletter advertisement and in case of the combination of both kinds of advertisement.
On the one hand we could of course argue, that article-specific newsletter advertisement
always causes a peak in sales, which makes the data points lie closely together, but we also
have to keep in mind, that due to the sparse presence of the article-specific advertisement,
the corresponding box plots are drawn from a very small number of data points, which
makes outliers rather unlikely to appear.

The two plots below visualise the effect of advertisement on the articles without article-
specific newsletter advertisement. On these articles, too, general advertisement has a sim-
ilar effect across all the articles considered. Like in the plot above, there can be read out
a clear uplift of the quantity sold by this kind of advertisement.



68 CHAPTER 3. STUDY OF ONLINE SALES ACTIVITIES

120 -

80 -

s 3 newsletter
% : h
2 ! ‘ bot
o . - general
Ed o

40 -

*“L

Figure 3.10: Part 1: Box plots visualising the effect of the different kinds of advertisement
for the articles without article-specific advertisement.
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Figure 3.11: Part 2: Box plots visualising the effect of the different kinds of advertisement
for the articles without article-specific advertisement.
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Concerning the combination of both kinds of advertisement, we typically would expect a
lower uplift of the quantity sold by this kind of advertisement than by general newsletters,
since the considered articles are not included in the article-specific newsletter advertise-
ment. So, in case of the combination of both kinds of advertisement, there is some general
purchasing incentive, but, at the same time, there is article-specific advertisement for
closely related articles. Thus, the financially most worthwhile buying behaviour would be
to benefit from the general offer via buying the low-priced articles, which appeared in the
article-specific newsletter advertisement. This obviously is not the case. For some of the
articles, the combination of both kinds of newsletter advertisement, where the considered
articles are not included in the article-specific advertisement, induces an even greater up-
lift of sales than the general advertisement does. A plausible explanation would be, that
customers are tempted to the online shop by the low-priced articles in the article-specific
newsletter advertisement, but then decide to buy another related article.

Refining the box plots above, we could also consider the newsletter induced uplift of
sales multiplied by the depth of discount. This could be justified arguing that the effect
of advertisement strongly depend on the attractiveness of the current price. But, this
would result in strong correlations between the covariates ’depth of discount” and ’shop
price’. Thus, weighting advertisement by the depth of discount does not bring additional
information into the model compared to just taking the raw prices and a boolean flag for
advertisement.

Substitution effects

An important issue is to investigate the substitution effects between the different articles.
It has to be taken into account, that changing the prices of the individual articles will
probably make a part of the customers switch to alternative products with more attractive
prices. Thus, for optimal pricing, it is important to know about these dynamics to be able
to control the so-called substitution effects. The aim here is to get a kind of substitution
effect matrix, i.e. a matrix, which represents the strength of influence of the articles each
on another. This matrix does not necessarily have to be symmetric: It is easy conceivable,
that price induced switching from lower quality to higher quality is much more natural
than switching from high quality to cheaper products: Imagine we usually buy a rather
cheap product. If then there is a special offer for some premium brand, temporarily sold
at a price below the regular price of the cheaper product, we are very likely to change to
the premium brand and then back to our cheap product, when the special offer has ended.
Vice versa, if we usually buy the premium brand, we are much more resistant to price
levels, since we then obviously make decisions based on quality characteristics and not on
prices. Only if the prices get extremely unattractive or if our product is temporarily not
available we are about to look for alternative products.

To get more detailed information about substitution, we consider the following substi-
tution possibility matrix. Depending on how strongly the products are related to each
other, some clustering can be done. Considering one specific article, it is not far to seek,
that the other articles belonging to this product may have the most significant influence.
If for example the article we are intended to buy is available as a single pack and as a
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multipack at different basic prices we will reasonably take the article with the lower basic
price. Only in case that even the cheapest version of our desired product is not cheap
enough, we tend to look for product alternatives. Subject to brand awareness, we prob-
ably first look for alternatives within our usual brand and then expand our searching to
products of the same type.

Hence, if two articles are of same type, brand or product, these are considered as possible
substitutes. This will be indicated by '1’ if two articles are of the same type only, by 2’
if they are also of the same brand and by '3’ if they are even of the same product. Thus,
for the substitution possibility matrix S, we define

for unrelated articles

for articles of the same type

for articles of the same type and brand

for articles of the same type, brand and product

Sij =

W = O

In contrast to the substitution effect matrix, which we want to quantify via regression
analysis, the substitution possibility matrix of course has to be symmetric.
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To keep the number of covariates on a reasonably low level, we pool the remaining articles
of the same product within one variable and capture possible substitutes of other products
per brand and not per product or article. Above all, if we have to deal with special offers,
this seems to be a promising approach: Special offers usually are only available for a short
period within the time period of consideration. Due to this rare data, it would be difficult
to examine the substitution effect of one single special offer article. Nevertheless, these
articles normally affect sales significantly, which can easily be brought into the model
when considering the whole brand instead of the individual articles. For this purpose,
either the minimum basic price or the average basic price of the considered brand could
be used. Like in case of the competitor prices, we will consider the minimum basic price
of the substitutes in the following.
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3.2 Count regression models for the daily number
sold per article

In this subsection, we build some models, which predict the sales for article Ag. Our re-
sponse variable thus will be the quantity sold ng4,, for t = 1,...,730. We have to fit a
model to count data, which will be done using Poisson regression and Negative Binomial
regression.

As we understand from the graphic below, the considered article Ag is one out of the
four articles belonging to product P3. Product P; together with product P;y make up the
subgroup ’type b’. Concerning substitution effects, we have the three remaining articles of
the ’original’ product Pj, and the three articles of the substitute product P, where Py
was identified as a substitute as shown in the substitution possibility matrix introduced
above. To keep the number of covariates on a desirably low level, we will not consider the
substitution effect of each individual article, but the influence of the ’original’ product Ps,
and of the substitute product Pjg, respectively, by one covariate each. So, we stay with
two covariates to cover possible substitution effects.

Selected product group

Type a Type b Typec Typed
A E C F D G

P, Pq
B B B E E
A N AN A
NN NN AN
A1 A2 A3 A4 A5 A10A11A12A1 17A18A19A20A21|A2 23A24 |A6|A7 A8 A25A26A27A14A15A16A28A29
L.

Figure 3.12: This graphic exemplary illustrates the grouping of the articles to form suit-
able covariates covering possible substitution effects. Each of the green boxes forms one
covariate, when analysing article Ags; each of the red boxes for article Ag, respectively.
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3.2.1 Exploratory data analysis

In order to set up a model properly, certain preconditions and dependencies have to be
explored. In the following, we inspect the covariates as well as interactions and possible
time effects.

Choosing the covariates

As described in chapter 2, we have to check, if for i € {1,...,n} the plots of z;; ver-
sus log(y;) — log(t;) show a linear dependency. Due to t; = 1 for all i = 1,...,n we always
have log(t;) = 0 and hence can skip this term.

Since one of our major goals is to find out the price elasticity of the different articles,
we aim at bringing all covariates concerning prices into the model as logarithmised val-
ues. So, for the covariates ’article price’, 'minimum competitor price’, 'minimum price of
the other articles belonging to the same product’ and 'minimum price of the substitute
product Pyy’, we check the plots of log(z;;) versus log(y;) instead of x;; versus log(y;). If
these plots indicate a linear relationship, we will not check the plots for the 'raw’ variables
or other transformations.

Since we only have discrete values vy for the j-th covariate z;;, i € {1,...,n}, we cal-
culate the mean values of the corresponding subsets of y; for each discrete value of x;
as

2ic Yay=u) * Tij

Dict Liasj=u} .
Without loss of generality, we can use these mean values y; together with the corre-
sponding confidence bands instead of plotting all the values. This makes the plots easier
legible.

Yk =
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Figure 3.13: EDA-plots of the covariates versus the log mean rate estimate.

For the article price, we do only have three different values. Such being the case, we ab-
stain from bringing the article price into the model on logarithmic scale. Although this
way we do not get the price elasticity out of the regression coefficient, we treat the article
price as factor variable instead.

The variables concerning advertisement do only have two levels each. This makes it im-
possible to decide about the linearity. Being convinced, that advertisement does effect our
response variable, these two variables nevertheless will be used for modelling.

Regarding the minimum competitor price, the minimum price of the remaining articles
belonging to product P3 and the minimum price out of the articles belonging to the sub-
stitute product Pjg, we detect several problems: At first, we notice, that for the minimum
competitor price, we do only have three unique values, too. Thus, it is not far to seek, to
treat it as factor variable. But, since the plots of the minimum price out of the remaining
articles belonging to product P3 as well as the minimum price among the articles belong-
ing to the substitute product Pjy neither are that convincing, we check, if we can improve
the plots when modifying these covariates.

For the minimum price of the remaining articles belonging to product Pj, we could try
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to find a suitable variable transformation. But, due to the small range of the prices, the
non-linearity of the logarithm and square root does not have a visible effect when trans-
forming the variable. Hence, using square root or the non-transformed prices instead of
the logarithmised values will not help to improve the plots.

Instead, we check, if there are modified forms of the three covariates, that are more
suitable for modelling.

For each time point ¢, we define the average competitor price for article Ag as
a 1 Y
CA@,t T E Zy CAG,t7

the average price of the remaining articles belonging to the same product, to which article

Ag belongs, as
1 9

a R
Vgt *= Zg 1 Z DA ts
m=7 {PAm,t>0} A,,=7

and the average price for the substitute product as

1 27

a P
SAG,t — 227 1 Z pAm,t'
m=25 “{Pan, >0} A,,=25

Using these average prices instead of the minimum values yields the following plots:

log(quantity_sold_Ag)

log(quantity_sold_Ag)
log(quantity_sold_As)

T
0.54 0.56 0.58 0.60 0.25 0.30 0.35 0.40 —-0.02 0.00 0.02 0.04 0.06

log(avg_comp_A6) log(avg_prod_A6) log(avg_subst_P3)

Figure 3.14: Scatter plots of the response variable against the average prices of comparable
articles.

Taking the average prices instead of the minimum prices obviously gives us more different
values for the covariates. Hence, there is no need any more to treat one of them as factor
variable. Furthermore, checking the Pearson product-moment correlation coefficient, we
find, that the correlation improves slightly. This tells us, that the relationship between the
logarithm of the response variable and the average prices seems to be more linear than
in case of the minimum values. Such being the case, we will always consider the average
prices in the following.

Time effects
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Since our data was collected over a time period of two years, we possibly have to deal
with seasonality.

As a first approach, we cluster the data by month, and check, if we detect any pattern in
the plot.
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Figure 3.15: Quantity sold of article Ag clustered by month.

This does not yield a very clear pattern and seems to be random. Monthly seasonality
thus will not be included into the models. But, sales obviously increase over time. This of
course has to be covered by an appropriate covariate.

Another approach regarding time effects is, to look for weekday seasonality. For this
purpose, we cluster the data by year and weekday.

We have to keep in mind, that in 2012 the data was collected for eight weeks only, so
this does not reflect a whole year. In 2013 the data has been collected for the full year
and in 2014 for ten months. To have evenly spread data, we will not cluster by the year
in the classical sense, but we will split the data into two parts, one from the beginning
of November 2012 to the end of October 2013 and one from the beginning of November
2013 to the end of Oktober 2014. This way we end up with two 'full” years.
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Figure 3.16: Quantity sold of article Ag clustered by weekday and year 1 and year 2,
respectively.

We read out from the plot, that sales are rather poor on Friday and Saturday. We thus
will cluster these two days of the week together as 'weekend’ and use this as a covariate
to cover the weekday seasonality when modelling.
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Interaction effects

Next, we check, if it is advisable to include some interaction terms when modelling. For
reasons of interpretation, we always consider centred variables in this context.

The matrix below shows all possible pairwise interaction plots.
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I
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Figure 3.17: Interaction plot matrix for the set of covariates.

From this plot, we can roughly deduce, between which of our covariates there is some
interaction present.

The question arising is, which of these interaction effects are statistically significant and
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consequently should be included into the model. This will be examined when doing the
regression.

3.2.2 Poisson regression models for article Ag

In this subsection, we compare different Poisson regression models for article Ag and de-
cide, which one fits best to our data. At first, we perform a simple Poisson generalised
linear model. After that, we check, if we can improve the fit by including time effects and
interactions.

The simple Poisson regression model, which we want to start with, looks as follows:
Nagt ~ Poisson(pu(xg, 3)), t =1, ..., 730,
where
p(x, B) = etAh,
and
XeB = Bo+ B Pape + P2 -adag + B3 - adf + By - log(ch, ;) + Bs - log(vh, ;) + B6 - log(s%, ;)
Before we start analysing this model, let us have a closer look at the covariates. We differ

between quantitative and qualitative covariates and match them with the classical levels
of measurement. For each time point ¢, we have:

covariate | classification scale of description
measurement
M Ag t quantitative ratio scale discrete number representing the quan-
tity sold
DAt qualitative ordinal scale | factor variable covering the current

shop price per kilogram with three dif-
ferent ’levels’

ad 4, ¢ qualitative nominal scale | boolean flag representing the presence
respectively absence of article-specific
newsletter advertisement

ad$ qualitative nominal scale | boolean flag indicating the presence re-
spectively absence of general advertise-
ment
log(c%,.¢) quantitative ratio scale logarithm of the average competitor
price per kilogram
log(v4,,) | quantitative ratio scale logarithm of the average price of the

remaining product variants of product
P; per kilogram

log(s%,,) | quantitative ratio scale logarithm of the average price of the
substitute product Pjg per kilogram

Table 3.7: Statistical classification and description of the variables used for modelling.
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The simple Poisson regression model with the variables as described in the table above
yields the following regression results:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.50 0.33 7.46 0.00
medium price -0.09 0.02 -4.25 0.00
high price -0.43 0.03 -12.48 0.00
spec_nl_A6 0.03 0.05 0.61 0.54
general_nl 0.18 0.01 15.09 0.00
log(avg_comp_A6) -0.38 0.28 -1.33 0.18
log(avg_prod_A6) -0.91 0.24 -3.86 0.00
log(avg_subst_P3) 2.69 0.38 7.14 0.00
Null deviance: | 4520.32 on 729 degrees of freedom
Residual deviance: | 3481.87 on 722 degrees of freedom
AIC: | 7691.418

Table 3.8: Regression results for article Ag in the simple Poisson regression model.

We read out from the table, that the p-values are on a very low level for most of the
covariates. Hence, performing the test H; : 3; = 0 against K; : 3; # 0, the hypothesis can
be rejected at a significance level of & = 0.001 and smaller for j € {0,1,2,4,6,7}.

The article price comes into the model as factor variable. Thus, the low p-values of the
different price levels tell us, that the means of the medium and the high price level are
significantly different from the mean of the low price, which is the reference level. But,
these two significances can only tell us about the pairwise differences between the levels.
To find out whether the factor variable ’article price’” as a whole is significant, we have to
test whether there is any heterogeneity in the means of the levels of the article price. This
can be done using a y2-test, which we use to compare our current Poisson model including
the factor variable ’article price’ and the model without the factor variable ’article price’.

Resid. Df Resid. Dev Df Deviance Rao Pr(>Chi)
1 722.00 3481.87
2 724.00 3665.03 -2.00  -183.17 -173.86 0.00

Table 3.9: x2-test of the models with and without the factor variable ’article price’, re-
spectively.

As the p-value is clearly smaller than the significance level of 0.05, we do reject the null
hypothesis, and conclude, that the article price as a whole is highly significant.

The standard errors in our regression results are a first hint, that the Poisson model
is no good fit. In case of good fit, we would expect them to be at least one order of
magnitude below the regression coefficients. This is not fulfilled for the medium price, for
the article-specific newsletter advertisement, for the average competitor price and for the
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average price of the remaining articles belonging to product Ps.

The summary further yields the residual deviance, which here is rather high compared
to the number of degrees of freedom. If the residual deviance divided by the number of
degrees of freedom was close to one, this would indicate a good fit of the Poisson model.
Having a value of approximately 4.8, we are far away from that. This also tells us, that we
should try to find a more appropriate model. Hence, we will now check, if we can improve
the fit by including time effects.

The exploratory data analysis already hinted at a weekend seasonality and at an overall
trend. These effects will come into the model by including a trend variable and a dummy
variable to cover the weekend seasonality.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.24 0.47 6.82 0.00
medium price -0.07 0.02 -3.35 0.00
high price -0.43 0.04 -12.02 0.00
spec_nl_A6 0.01 0.05 0.19 0.85
general_nl 0.09 0.01 7.80 0.00
log(avg_comp_A6) -0.41 0.29 -1.39 0.16
log(avg_prod_A6) -0.47 027  -1.74 0.08
log(avg_subst_P3) 1.56 0.63 2.47 0.01
weekend -0.35 0.01 -27.76 0.00
trend 0.00 0.00 2.47 0.01
Null deviance: | 4520.32 on 729 degrees of freedom
Residual deviance: | 2661.35 on 720 degrees of freedom
AIC: | 6874.905

Table 3.10: Regression results for article Ag in the Poisson regression model including time
effects.

The influence of the weekend seasonality on the quantity sold obviously is strongly sup-
ported by the model. Regarding the significance of the covariates, which were already
included in the simple Poisson model, we do not detect remarkable changes for the article
price, for the variables covering advertisement and for the average competitor price. But,
the average price of the remaining product variants of product Pj3 looses significance, and
the average price of the substitute product Pjy becomes less significant compared to the
results from the simple Poisson regression model without any time effects.

For the standard errors, we stay with the problem of the comparatively high orders of
magnitude for some of the covariates, but dividing the residual deviance by the number
of degrees of freedom, we get a much smaller value, which now is about 3.70. Further, the
AIC has decreased distinctly.

We conclude, that this model clearly is a better choice than the simple Poisson regression
model.
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Nevertheless, we are still far away from good fit. We now check, if we can reach fur-
ther improvement by including interaction effects. To ease the model interpretation, we
consider centred covariates.

One possibility to investigate the two-way interactions is to start with the full two-way
interaction model and then delete the non-significant interaction terms. This approach
yields the following model:

Estimate Std. Error z value Pr(>|z])

(Intercept) 3.93 0.03 124.14 0.00

medium price -0.05 0.02 -2.29 0.02

high price -0.36 0.04 -8.30 0.00

spec_nl_centr 0.19 0.06 2.86 0.00

gen_nl_centr 0.09 0.01 7.59 0.00

avg_comp_centr 0.17 0.32 0.53 0.60

Prod_centr 4.37 0.88 4.97 0.00

Sub_centr 0.31 0.65 0.48 0.63

weekend -0.36 0.01  -28.09 0.00

trend 0.00 0.00 3.83 0.00

med:Prod_centr -5.05 0.87 -5.80 0.00

high:avg_comp_centr 14.76 2.01 7.33 0.00

spec_nl_centr:gen_nl_centr -0.39 0.10 -3.75 0.00

Prod_centr:trend -0.01 0.00 -5.03 0.00
Null deviance: | 4520.32 on 729 degrees of freedom
Residual deviance: | 2583.51 on 716 degrees of freedom

AIC: | 6805.061

Table 3.11: Regression results for article Ag in the Poisson regression model including time
effects and interactions.

In this model, we have four interaction terms. We notice, that compared to the model
without interactions, there are remarkable changes regarding the significance of the article-
specific newsletter and the average price of the remaining product variants of product Ps,
which now are classified as significant, whereas the average price of the substitute product
looses significance.

The residual deviance divided by the number of degrees of freedom for this model is about
3.61. Compared to the value from the Poisson model with time effects only, which was
about 3.70, we do not notice a distinct improvement. Also the AIC has only decreased
slightly. This indicates, that although we have included four additional covariates, our
model still is not able to describe our data adequately.

One reason might be, that the interaction terms cannot explain much of the variation
in the model, although they reach the significance level of 0.05.
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We notice, that the interaction between the article-specific newsletter advertisement and
the general advertisement is a very sparse covariate: The multiplication of these two co-
variates yields an even more sparse variable, which in the concrete case of article Ag results
in a covariate where only 3 out of 730 observations are non-zero. This is a share of about
0.4% of the time period of observation. Thus,this interaction term is equal to zero for
more than 99% of the time period of observation, which makes it appear little convenient.

To find out, if this interaction model nevertheless is a better choice than the time ef-
fect Poisson model without interactions, we again perform a y2-test:

Resid. Df Resid. Dev. Df Deviance Rao Pr(>Chi)
1 720.00 2661.35
2 716.00 2583.51 4.00 77.84 78.95 0.00

Table 3.12: y2-test for the Poisson model including time effects and the Poisson model
with interactions.

As the p-value is clearly below the significance level of 0.05, we do reject the null hypoth-
esis, that the Poisson model including time effects is good enough, and decide in favour
of the Poisson interaction model.

Not being able to further improve the model, we now check the residuals and the link
specification of our best fit. This helps to find out, if we should look for alternative mod-
elling approaches.

Model validation

The model validation will be done based on the best model we have set up so far, i.e. on
the model including weekend seasonality and interaction terms.

Investigating the residual plots, we consider the following graphs: A plot of the deviance
residuals against time, a normal Q-Q plot, a plot of the fitted values versus the deviance
residuals and the plots of the covariates against the deviance residuals. As the latter look
quite similar for all of our covariates, we only present one of them. The full set of plots
can be found in the appendix 7.4 and 7.5.
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Figure 3.18: Residual analysis for the Poisson model including time effects and interac-
tions: The left upper plot shows the deviance residuals for the 730 observations and the
right upper plot the normal Q-Q plot of the deviance residuals. The lower plots show the
expected response and exemplary one covariate against the deviance residuals.

The left upper plot just shows the deviance residuals for all 730 observations. As these
are randomly scattered around zero, this plot does not indicate any lack of fit. The Q-Q
plot of the deviance residuals helps on checking the desired normal distribution. When
the residuals follow a normal distribution, they completely lie on the bisection line, which
here is represented by a solid black line. Whereas for the residuals lying between -4 and
4, a normal distribution seems to be a good fit, we detect stronger deviations from the
straight line for small and above all for large residuals. Thus, our distribution is slightly
positively skewed and heavy tailed.

Furthermore, we should check, if the residuals are independent of the variables. We plot
the estimated expectation of the response and the covariates against the deviance resid-
uals, where no pattern, i.e. randomly scattering around zero, indicates a good fit. As all
of our covariates have a rather low number of different levels, we use mean plots for the
graphical representation. These plots show the group means and the corresponding confi-
dence intervals. Concerning the response variable, the condition of independence from the
residuals seems to be fulfilled, which is not the case for the covariates. This is exemplary
shown in the plot for the average product price.

Let us now move on to the link function. When performing a Poisson regression model,
typically the log-link is chosen. To check, if this fits well to the data, we plot the linear
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predictors versus the response variable, where we expect randomly scattering around the
exponential function. As this is rather hard to see from the plot, we consider the plot
of the fitted means versus the response variable instead. This means, we do not use the
linear predictor x;‘ffi’, but we consider the exponential values exp(xﬁﬁ). Here, in case of a
suitable link specification, we expect the values to lie on the bisection line.

quantity sold
50 100 150

0

0 20 40 60 80
fitted values

Figure 3.19: Check of the log-link specification: Plot of the linear predictor versus the
response variable.

We conclude, that the log-link seems to be a good choice for our model. Nevertheless, we
have seen, that the overall fit of the Poisson models is not sufficient.

An apparent reason for the bad model fit could be, that the strict model assumption
of equal mean and variance is not met by the data. The way larger residual deviance than
the number of degrees of freedom is a first hint at possible overdispersion. Of course, this
must not be the case, but since we have already investigated on interaction effects and
verified the link specification, overdisperion is not far to seek. Thereof, we conclude, that
Negative Binomial regression models probably are more appropriate to describe our data.
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3.2.3 Negative Binomial regression models for article Ag

To keep the Negative Binomial models comparable to the Poisson regression performed
before, we stay with the same covariates. Here, too, we consider three different regression
models: a simple Negative Binomial model, a Negative Binomial model covering time ef-
fects and one including interaction terms.

The regression results of the simple Negative Binomial regression model look as follows:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.53 0.73 3.48 0.00
medium price -0.09 0.04 -2.06 0.04
high price -0.43 0.07  -6.38 0.00
spec_nl_A6 0.05 0.11 0.46 0.64
general_nl 0.18 0.03 6.68 0.00
log(avg_comp_A6) -0.30 0.61 -0.49 0.62
log(avg_prod_A6) -0.94 0.51  -1.83 0.07
log(avg_subst_P3) 2.60 0.83 3.12 0.00
Null deviance: | 968.94 on 729 degrees of freedom
Residual deviance: | 741.02 on 722 degrees of freedom
AIC: | 6080.61

Table 3.13: Regression results for article Ag in the simple Negative Binomial regression
model.

Concerning the regression coefficients, the Poisson model and the Negative Binomial model
yield very similar results. Further, neglecting the level of significance for a moment, the
two models more or less yield agreeing results regarding significance.

Concerning the deviance, we recognise strong improvements. It decreased from 3481.87 to
741.02, which gives a dispersion parameter very close to 1. This supposes, that we have
a much better fit in the Negative Binomial model. At the same time, the standard errors
double when using Negative Binomial regression. This does not mean that the estimates
are less precise. The larger standard errors are appropriate, reflecting the fact, that there
is more uncertainty than the Poisson model allows due to E(Y) = Var(Y).

We now check, if we can improve our model including weekend seasonality.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.22 0.90 3.58 0.00
medium price -0.07 0.04 -1.76 0.08
high price -0.42 0.06 -6.77 0.00
spec_nl_A6 0.04 0.10 0.37 0.71
general nl 0.10 0.02 4.11 0.00
log(avg_comp_A6) -0.28 0.56 -0.50 0.62
log(avg_prod_A6) -0.51 0.52  -0.99 0.32
log(avg_subst_P3) 1.49 1.20 1.25 0.21
weekend -0.35 0.02 -15.35 0.00
trend 0.00 0.00 1.33 0.18
Null deviance: | 1271.2 on 729 degrees of freedom
Residual deviance: | 738.98 on 720 degrees of freedom
AIC: | 5881.874

Table 3.14: Regression results for article Ag in the Negative Binomial regression model
including time effects.

Again, the dummy variable covering the weekend seasonality is classified as significant.
But, in contrast to the Poisson model, the effect of the trend variable is not supported by
the Negative Binomial model. Apart from this, we get similar regression results like before.

Next, we investigate the interaction effects. This time, the model will be fitted using
the stepwise AIC approach, which can be calculated automatically using 'R’. Therewith,

we get the following model:

Estimate Std. Error z value Pr(>|z])

(Intercept) 3.94 0.03 112.83 0.00

medium price -0.10 0.04 -2.65 0.01

high price -0.32 0.06 -5.04 0.00

spec_nl_centr 0.24 0.13 1.86 0.06

gen_nl_centr 0.10 0.02 4.28 0.00

avg_comp_centr -0.41 0.54 -0.76 0.45

weekend -0.36 0.02 -15.71 0.00

trend 0.00 0.00 4.62 0.00

high:avg_comp_centr 7.31 2.25 3.24 0.00

spec_nl_centr:gen_nl_centr -0.47 0.20 -2.37 0.02
Null deviance: | 1292.84 on 729 degrees of freedom

Residual deviance: | 737.39 on 720 degrees of freedom
AIC: | 5867.834

Table 3.15: Regression results for article Ag in the Negative Binomial regression model
including time effects and interactions.

This model suggests to include two interaction terms, namely the one between the high
article price and the average competitor price, as well as the one between the two differ-
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ent kinds of advertisement. Further, the main effect concerning the average price of the
remaining articles belonging to product Ps, as well as the one covering the average price
for the substitute product do not appear any more in this model.

Due to this ’reduction’ of the main effects, we are not able to compare this interac-
tion model to the models we have fitted so far. We thus have limited the number of steps
allowed in the stepwise AIC approach to a number, which only just avoids, that any main
effect is deleted. This yields the following regression results:

Estimate Std. Error z value Pr(>|z])

(Intercept) 3.98 0.06  70.30 0.00

medium price -0.09 0.04 -2.28 0.02

high price -0.31 0.07 -4.23 0.00

spec_nl_centr 0.23 0.13 1.74 0.08

gen_nl_centr 0.10 0.02 4.30 0.00

avg_comp_centr -0.40 0.55 -0.72 0.47

Prod_centr -0.24 0.51 -0.46 0.64

Sub_centr 1.04 1.19 0.87 0.38

weekend -0.36 0.02 -15.70 0.00

trend 0.00 0.00 1.52 0.13

high:avg_comp_centr 7.09 2.27 3.12 0.00

spec_nl_centr:gen_nl_centr -0.46 0.20 -2.29 0.02
Null deviance: | 1294.49 on 729 degrees of freedom

Residual deviance: | 737.48 on 718 degrees of freedom
AIC: | 5870.987

Table 3.16: Regression results for article Ag in the 'refitted’ Negative Binomial regression
model including time effects and interactions.

This model suggests the same interaction terms like the one performed above and the AIC
only worsens slightly. Hence, the two interaction models are very close. Due to reasons
of comparability we will refer to the just performed one when speaking of the Negative
Binomial interaction model.

All in all, the Negative Binomial regression definitely is more appropriate to describe
our data. So, the next step is, to find the best fitting one among the three of them per-
formed above.

Regarding the residual deviance divided by the number of degrees of freedom, we get
a value of about 1.03 for all the three models. The AIC is minimised in the model includ-
ing weekend seasonality and interactions. This is a first indicator, that this model is our
best fit. Also the y2-test strongly suggests this model. The details on this test can be found
in the appendix 7.3. Thus, again, we choose the model including weekend seasonality and
interaction effects as our best fit.
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To assess the goodness of fit of our 'best model’, we use the residual deviance test. This
test is based on the fact, that the deviance is given by the y2-value at a certain degree of
freedom df. In order to test for significance, we can find out the associated p-value, which
calculates as 1 — X3eviance.arr We Of course aim at accepting the null hypothesis that our
model is 'good enough’. Thus, we need high p-values. In our example, we get a p-value of
0.30 and do not reject the null hypothesis. Thus, all in all, our Negative Binomial regres-
sion model including weekend seasonality and interaction terms seems to be an acceptable
fit to our data.

Performing Negative Binomial regression models also for the remaining articles belonging
to product Ps, we get similar results. For more details on that, please refer to the model
summaries, which are presented in table 7.1 and in table 7.2 in the appendix.

Checking the residuals

Poisson regression and Negative Binomial regression are closely related in the sense, that
the Poisson regression is a special case of the Negative Binomial regression. Checking for
the goodness of fit, we thus can proceed just as before, when investigating the residual
plots.
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Figure 3.20: Residual analysis for Negative Binomial regression model including time ef-
fects and interactions: The left upper plot shows the deviance residuals of the 730 observa-
tions and the right upper plot the Q-Q plot of the deviance residuals. The lower plots show
the expected response and exemplary one covariate against the deviance residuals.The full
set of plots can be found in the appendix 7.6 and ?7?.
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Again the residuals randomly scatter around zero. Furthermore, we notice, that the de-
viance is much smaller now. Whereas in case of Poisson regression, we get values lying
between -5 and 10, we now are between -4 and 4.

All in all, we definitely improved the model fit using Negative Binomial regression models.

3.3 Count regression models for the daily amount
sold per product

3.3.1 A Negative Binomial regression model for product P;

Considering product P;, we have already built appropriate generalised linear models for
the individual articles Ag, A7 and Ag. For article Ag we did not set up a separate model,
because Ay is a special offer, which was available only for a short period of time. This of
course comes with raw data for the article.

We now pool all of the articles belonging to P3 and compare the results. This way we
check, how detailed we have to proceed to get an acceptable sales prediction.

Our best fit for the individual articles always was a Negative Binomial model. We thus
assume the whole product to follow a Negative Binomial distribution, too.

Since we now have to deal with different packaging sizes, we can no longer stay with
the quantity sold as response variable. Instead, we consider the units sold, i.e. we take
wa,, - ba,, - na,,+, where wy,, is the weight of article A,,, ba,, the bundle size and ny,,
the quantity sold of article A,, at time point ¢. For each time point ¢ we then sum up over
all articles belonging to product Ps. Since there are some packaging sizes of for example
4.5 kilogram, we furthermore multiply the units sold by 2. This ensures that we stay with
an integer valued response variable, which is a necessary condition to be able to perform
the desired Negative Binomial regression model.

Our response variable thus is defined as
9
Npgt =23 cwa, ba, na,.

To get an appropriate price for our product, we take the weighted mean over the basic
prices of the individual articles. The basic price accordingly is measured per one half
kilogram and thus calculates as

Z?n:6 nAmyt : pAm»t ) wAm
23 A, WA, ba,
Concerning the article-specific advertisement, for each time point ¢, we take the sum over
the boolean flags of all the articles belonging to product P3. This gives us an integer value

lying between 0 and 4 for the newsletter advertisement, which indicates, how many of the
considered product variants were in advertisement at which time point. We define

PPSvt =
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9
adp, ==Y . _sada,,.

For the competitor prices, we of course take the average basic price over all product
variants per one half kilogram. This results in

1 9

a . a

Pyt = 9 CaAm,t-
2- Zsz 1{C?4m,t>0} m=6

The variable covering the influence of the other product variants of course has to be
dropped, since these are already pooled and modelled as a whole now.

Concerning substitution effects, too, the average price of the substitute product P per
one half kilogram is considered.

Exploratory data analysis

Since we want to build a Negative Binomial model with log-link, we at first check for the
linear dependence between the logarithm of the response variable and the covariates.

To be able to interpret the regression coefficients concerning prices as elasticities, we
need to measure them on logarithmic scale. This gives us the following plots:
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Figure 3.21: Checking for linearity: Plots of the logarithm of the response variable versus
the covariates.

From the plots, we conclude, that the assumption of linearity is more or less fulfilled for
most of the covariates.
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Seasonal effects

As we have seen above, there is some seasonality present in the data for article Ag. We
thus expect a similar seasonal pattern for the whole product P;. We again check both,
seasonal effects on monthly basis and weekday seasonality.
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Figure 3.22: Seasonal effects on monthly basis for product P3. The curves for the individual
articles belonging to P; are also shown.

The behaviour of the different articles belonging to product Pj is very similar. We notice
immediately, that apart from the beginning of the period of observation, the whole product
behaves exactly like the article Ag, which, due to the comparatively high number of sales,
has a lot of influence on the product’s behaviour. The deviations at the beginning result
from the special offer Ay, which was available in the shop at that time and influenced the
sales significantly.

Due to the lack of a clear pattern, we do not take into account this type of seasonality.
But, we notice, that the sales seem to grow over time, which of course will be regarded
when modelling.

Concerning weekday seasonality we get very similar results for all of the articles belonging
to product Ps. Thus, at least in connection with this product, this seems to be the typical
customer behaviour.
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Figure 3.23: Checking for weekday seasonality of product Ps. The curves for the individual
articles, which belong to product Pj, are also shown.
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Model selection

Of course, for the product Ps, too, we could perform different Poisson regression models
and Negative Binomial regression models and then choose a model based on appropriate
statistical tests or coefficients. But, we have already seen in the exploratory data analy-
sis, that, concerning time effects, the whole product behaves exactly like the individual
articles and should further also follow a Negative Binomial distribution.

Above, we always decided in favour of the Negative Binomial regression model includ-
ing time effects and interaction terms. So this is very likely to be an appropriate model
for the product as a whole, too. But, since the Poisson model and the Negative Binomial
model did not agree on which interaction terms to include into the model and we further
could only improve the model fit very slightly when using interactions, for the product as
a whole, we only perform a Negative Binomial model including time effects, but without
interaction terms.

This model yields the following regression results:

Estimate Std. Error z value Pr(>|z)
(Intercept) 6.61 0.30  22.01 0.00
log(price_P3) -8.01 0.29 -27.76 0.00
spec_nl_P3 0.03 0.04 0.79 0.43
general nl 0.13 0.03 4.36 0.00
log(avg_comp_P3) 2.93 0.95 3.10 0.00
log(avg_subst_P3) 1.90 1.40 1.36 0.18
weekend -0.33 0.03 -11.70 0.00
trend -0.00 0.00 -2.82 0.00
Null deviance: | 1651.09 on 729 degrees of freedom
Residual deviance: | 743.43 on 722 degrees of freedom
AIC: | 13487.22

Table 3.17: Regression results for product P; in the Negative Binomial regression model
including time effects.

Concerning the scale, the sign and the significance level of the regression coefficients,
we get very similar results like in case of the Negative Binomial regression models for
the individual articles, and the residual deviance divided by the degree of freedom again
yields a value of 1.03. We suppose, that this model is an appropriate choice for modelling
the product as a whole, too. But, of course, we have to investigate the residuals to get a
more detailed insight into the goodness of fit of this model.
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Residual analysis

Like for the other generalised linear models, we now perform a residual analysis to check
the goodness of fit.
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Figure 3.24: Residual analysis for the Negative Binomial regression model including time
effects for product Ps: The left upper plot shows the deviance residuals for the 730 ob-
servations and the right upper plot the normal Q-Q plot of the deviance residuals. The
lower plots show the expected response and exemplary one of the covariates against the
deviance residuals.The full set of plots can be found in the appendix 7.7.

This model obviously does not really fit to our data. We suppose, that this is due to the
non-linear relationship between the response variable and some of the covariates. Using
variable transformations, we were not able to compensate these non-linearities. Thus, in
the next chapter, we try to improve the model fit using generalised additive models.

Model interpretation

Up to now, we have set up different count models on article basis and for the product as a
whole. We now want to check, if the regression coefficients are economically interpretable.
On that point, we will not only concentrate on one model at a time, but we want to
compare the model outcomes for the different articles belonging to product Pj, and the
model for the product as a whole.
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In the following, we will always refer to the Negative Binomial models including time
effects, since these provide a quite good fit across all the articles and for the product as a
whole.

Covering the shop price in a factor variable for the individual articles, we unfortunately
do not get the price elasticity out of the corresponding models. Nevertheless, we read out
from the regression coefficients, that the customers react on price changes in a reasonable
manner: Our reference level for the shop price always was the lowest price available. The
regression coefficients of the remaining prices, which are higher than the reference price,
all have a negative sign. This means, that in comparison to the lowest price, there were
less articles sold at all of the higher prices. Furthermore, the regression coefficient for the
most part becomes smaller with growing prices, i.e. the effect strengthens with growing
prices. This exactly is what we have expected: The quantity sold decreases with increasing
prices.

For the product as a whole, the shop price was brought into the model on logarithmic
scale. This exactly yields the price elasticity. Having a regression coefficient of -8.01 hence
tells us, that sales would decrease by about 8%, if the product price was increased by
1%. Investigating the product P; in more detail, this is quite convincing: The product
appeared in the newsletter advertisement for several times and there is a special offer ar-
ticle among its product variants. Thus, the customer is used to special offers and reduced
prices for this product, which possibly makes him 'price sensitive’ in the sense, that some
get into the habit of panic buying and store up with this product to overcome the time
periods with less attractive prices.

Concerning advertisement, we get positive signs for all of the regression coefficients.
This approves the uplift of sales generated by newsletter advertisement.

Regarding article Ag, we find, that the quantity sold increases by about 4% if the ar-
ticle appears in the newsletter. The general advertisement however seems to have more
than twice this effect on that article. Concerning article A7, we draw similar conclusions.
But, for article Ag we observe a clearly larger regression coefficient for the article-specific
newsletters than for general advertisement.

Comparing these regression coefficients to the box plots in figure 3.9, 3.10 and 3.11, we can
verify our regression results: All of the regression coefficients attribute a relative uplift of
sales lying between 4% and 42% to article-specific newsletter advertisement and of about
10% to 14% to general advertisement. Regarding the box plots in figure 3.8, we conclude,
that these seem to be typical values.

Also regarding the product P5 as a whole, the regression results are very convincing, which
can be verified by summarising the effect of advertisement across the individual articles
belonging to product P3 and taking account of the respective numbers of sales.

Concerning the average competitor prices, we do not find agreeing results concerning
the sign of the regression coefficient. For article A; and Ag, as well as for the product P;
as a whole, we get a positive regression coefficient, which tells us, that sales in general
increase with increasing competitor prices. This is absolutely what we have expected. Nev-
ertheless, things are different for article Ag, where we get a negative regression coefficient.
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Let us investigate that in more detail:

For the whole product P3, we get a regression coefficient of 2.93, which, due to the log-
arithmised covariate, can be interpreted in the way, that sales increase by 2.93% if the
average competitor price raises by 1%. This is absolutely convincing: When the average
competitor price raises, some of the customers will search for cheaper offers and thus
probably prefer our multipacks or special offers rather than their 'ususal’ article at the
competitor’s online shop.

This also gives a good explanation for the negative sign of the regression coefficient for ar-
ticle Ag: This is the smallest packaging size of this product, which is available at our shop
and which thus is the most expensive one referring to the basic prices. If customers visit
our online shop because of too expensive prices at the competitors, they will rather take
the large packages with the lower basic prices because it is very likely, that the basic price
of the small package is still higher than the price for the large package at the competitors.
So customers are rather unlikely to change the online shop, if, neglecting packaging size
for a moment, the product is available at a lower basic price at their habitual online shop.
This dependence between the competitor prices and the packaging size become even more
convincing, if we compare the regression coefficients of article Ag, A7 and Ag: Whereas
we make out an average decrease in sales of about -0.28% per 1% uplift in the competitor
prices concerning article Ag, we find an uplift of about 1.19% when considering article A,
and of even 4.40% concerning article Ag.

The regression coefficients of the other product variants show similar characteristics
like the ones concerning the competitor prices: Price adjustments usually strike the whole
product and not only individual product variants. Thus, if the prices for one of the articles
raise, so will do the prices of the remaining articles of this product, too. Hence, having
again a negative regression coefficient for article Ag, but positive ones for article A; and
Ag, we conclude, that customers are more likely to buy larger packaging sizes with grow-
ing product prices. This again can easily be explained by the fact, that the basic prices
decrease with growing packaging size.

Although sales increase for the medium and large packaging size with growing product
price, we suppose a decrease in sales when considering the product P; as a whole. Since all
articles belonging to product P; are clustered together in the respective product model,
we of course do not have a covariate covering the influence of 'the other product variants’.
But, we have the price sensitivity, which, due to the negative sign tells us, that sales
decrease with growing product prices.

Further, if we do not have a general price adjustment, but just set the prices from reduced
price to 'normal price’, the customers probably have stored up with this product during
the period of price reduction. This makes buying the product at normal price temporarily
quite unattractive.

We conclude, that price appreciations on the one hand make customers switch to larger
packaging sizes, but bring about a decrease in sales regarding the product as a whole.

Concerning the substitute product Py, we get positive regression coefficients for the
article Ag and the product P3 as a whole, whereas the models for article A; and Ag suggest
a negative sign for the substitution effect. This could at best be interpreted in the sense,
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that customers temporarily switch from product Py to small packages of product Pj in
case of price appreciation for product Pjy. But, we cannot explain why the number of
sales should decrease for the larger packaging sizes at the same time. Hence, we suppose
these effects to be random. This assumption is confirmed by the fact, that substitution
does not reach the significance level of 0.05 in any of the models.

3.3.2 Generalised additive models (GAM) on product basis

For each of the eleven products, we now fit an appropriate Negative Binonmial generalised
additive model including time effects.

Using this model type, we are able to cover non-linear dependencies of the response vari-
able on the covariates, which cannot be resolved using a simple transformation. For this
purpose, we fit a spline to the concerned covariates. Since it is rather difficult to identify
these covariates before setting up the model, our first approach for each of the products
will be to fit a spline to each of the covariates concerning prices as well as to the one
covering the overall trend.

Having set up these models, we check the splines that were fitted to the different co-
variates. If these look linear, we conclude, that it is not worth fitting a spline, because
this would increase the model complexity without improving the fit. The concerned co-
variates then will be included as simple main effect into the model.

The covariates for the weekend seasonality and for the different kinds of advertisement
will always come into the model as simple main effects, since it is not reasonable to fit a
spline to dummy variables with two possible values only.

For each of the products contained in our data set, we present the set of plots resulting
from the first modelling approach. The 95% confidence intervals are also drawn. Further,
the model summary of the final GAM is displayed.
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Product P,

Product P; consists of the three articles A;, Ay and As. For these articles, there is no
article-specific newsletter advertisement, but we have competitor prices available as well
as the prices of six possible substitute products of the same product type. This results in
a model including the article price, the general advertisement, the influence of the com-

petitor prices, the influence of the substitute products and the time effects.

To check for non-linear dependencies, we investigate the spline plots of the different co-

variates.
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Figure 3.25: Plots of the splines which were fitted to the covariates of the Negative Bino-
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mial GAM for product P;. Confidence intervals are also drawn.

Table 3.18: Regression results of the final Negative Binomial GAM for product P;.

A. parametric coefficients Estimate Std. Error t-value  p-value
(Intercept) 8.5048 0.0217 391.7097 < 0.0001
general_nl 0.1029 0.0397 2.5905 0.0096
weekend -0.2912 0.0367  -7.9308 < 0.0001
B. smooth terms edf Ref.df F-value  p-value
s(price_P1) 7.6619 8.5510 296.2195 < 0.0001
s(avg_comp_P1) 2.3069 2.8937  29.7761 < 0.0001
s(avg_subst_P1) 2.4123 29746  15.1414 0.0011
s(trend) 7.0344 8.0473  57.9398 < 0.0001
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Product P

Product P, consists of the two articles A; and As. Here, too, we do not have article-
specific newsletter advertisement but six substitute products. Furthermore, we have some
competitor prices available.
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Figure 3.26: Plots of the splines which were fitted to the covariates of the Negative Bino-
mial GAM for product P,. Confidence intervals are also drawn.

The plots indicate, that there is no need for a spline concerning the prices of the substitute
products. Thus, we include this covariate as simple main effect.

A. parametric coefficients Estimate Std. Error t-value  p-value
(Intercept) 8.4248 1.2745 6.6101 < 0.0001
general_nl 0.1245 0.0351 3.5468 0.0004
avg_subst_P2 1.9194 3.1974 0.6003 0.5483
weekend -0.3498 0.0317 -11.0210 < 0.0001
B. smooth terms edf Ref.df  F-value  p-value
s(price_P2) 3.6784 4.3917 130.6987 < 0.0001
s(avg_comp_P2) 1.7366 2.1428 1.4504 0.5093
s(trend) 1.3115 1.5270 2.9612 0.2305

Table 3.19: Regression results of the final Negative Binomial GAM for product Ps.
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Product Ps

Concerning product P3, we have already seen a lot of details on the individual articles
Ag to Ay, as well as on the product itself. For this product, too, we now fit a generalised
additive model and see if we can improve the fit compared to the generalised linear model
from above.
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Figure 3.27: Plots of the splines which were fitted to the covariates of the Negative Bino-
mial GAM for product P;. Confidence intervals are also drawn.

A. parametric coefficients Estimate Std. Error t-value  p-value
(Intercept) 8.9958 0.0226 398.7704 < 0.0001
spec_nl_P3 0.0954 0.0578 1.6503 0.0989
general_nl 0.1171 0.0415 2.8171 0.0048
weekend -0.3223 0.0374  -8.6257 < 0.0001
B. smooth terms edf Ref.df  F-value  p-value
s(price_P3) 8.3488 8.8683 358.7439 < 0.0001
s(avg_comp_P3) 2.5892 3.2840 9.5921 0.0252
s(avg_subst_P3) 1.6992 2.0688 8.2220 0.0178
s(trend) 8.3524 8.8362  26.8904 0.0011

Table 3.20: Regression results of the final Negative Binomial GAM for product Ps.
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Product P,

Belonging to product type ’a’, product P, has six possible substitute products. The two
articles A;g and Ajp, of which product P, consists, do not appear in the article-specific
newsletter advertisement, but we have some competitor prices available.
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Figure 3.28: Plots of the splines which were fitted to the covariates of the Negative Bino-
mial GAM for product P;. Confidence intervals are also drawn.

The spline for the price of the substitute products is not necessary. Thus, we refit the
model with this covariate as simple main effect.

A. parametric coefficients FEstimate Std. Error  t-value  p-value
(Intercept) 0.9075 1.4465  0.6274 0.5304
general_nl 0.1156 0.0405  2.8537 0.0043
avg_subst_P4 16.9280 3.6224  4.6732 < 0.0001
weekend -0.3473 0.0366 -9.4806 < 0.0001
B. smooth terms edf Ref.df F-value  p-value
s(price_P4) 3.0215 3.7172  21.3864 0.0003
s(avg_comp_P4) 4.9076 59010 7.3762 0.2768
s(trend) 2.6185 3.2480  9.6663 0.0582

Table 3.21: Regression results of the final Negative Binomial GAM for product FP.
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Product F;

Product Ps also belongs to product type 'a’ and consequently has six possible substitute
products. It consists of article A;5 and A3, which do not appear in the article-specific
advertisement but for which there are some competitor prices available.
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Figure 3.29: Plots of the splines which were fitted to the covariates of the Negative Bino-
mial GAM for product Ps. Confidence intervals are also drawn.

We drop the spline for the competitor price.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 7.0015 1.46564  4.7780 < 0.0001
general_nl 0.1196 0.0385  3.1053 0.0019
avg_comp_P5 -0.3666 3.1387 -0.1168 0.9070
weekend -0.3374 0.0350 -9.6295 < 0.0001
B. smooth terms edf Ref.df F-value  p-value
s(price_P5) 7.8792 8.6590 90.9503 < 0.0001
s(avg_subst_P5) 2.8276 3.5251  4.9763 0.3151
s(trend) 4.3870 5.3989 12.0368 0.0473

Table 3.22: Regression results of the final Negative Binomial GAM for product Ps.
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Product F;

Product Fs is the only product of product type 'c’ and consists of the three articles Ay,
A5 and Aqg. There are some competitor prices available and two out of the three articles
appeared in the article-specific newsletter advertisement.
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Figure 3.30: Plots of the splines which were fitted to the covariates of the Negative Bino-
mial GAM for product Fs. Confidence intervals are also drawn.

We drop the spline for the average competitor price.

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 6.7041 0.3636  18.4402 < 0.0001
spec_nl_P6 0.1054 0.0789 1.3367 0.1813
general_nl -0.0066 0.0178  -0.3722 0.7097
avg_comp_P6 0.7005 0.6625 1.0574 0.2903
weekend -0.0333 0.0167  -1.9910 0.0465
B. smooth terms edf Ref.df  F-value  p-value
s(price_P6) 7.0778 8.1617  77.6089 < 0.0001
s(trend) 8.5731 8.9465 157.4948 < 0.0001

Table 3.23: Regression results of the final Negative Binomial GAM for product F.
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Product FP;

Product P, consist of the two articles A;; and A;g and is of product type ’a’. It has
six possible substitute products and does not appear in the article-specific newsletter
advertisement. There are no competitor prices available, because product P; is a private

label product.
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Figure 3.31: Plots of the splines which were fitted to the covariates of the Negative Bino-
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mial GAM for product P;. Confidence intervals are also drawn.

Table 3.24: Regression results of the final Negative Binomial GAM for product P.

0.40 0.41
Sp,

A. parametric coefficients FEstimate Std. Error  t-value  p-value
(Intercept) 6.7760 0.0369 183.8541 < 0.0001
general nl 0.0741 0.0685 1.0823 0.2791
weekend -0.2746 0.0613  -4.4825 < 0.0001
B. smooth terms edf Ref.df  F-value  p-value
s(price_P7) 7.7170 8.5568 247.5148 < 0.0001
s(avg_subst_P7) 6.3688 7.4823  13.0744 0.0759
s(trend) 6.9784 7.9955  20.5493 0.0083
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Product Py

Product Py consists of the three articles A9, Agy and Asq. It is of product type 'a’ and has
six possible substitute products. Since it is a private label product, there are no competitor
prices available. Further, the product did not appear in the article-specific advertisement.
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Figure 3.32: Plots of the splines which were fitted to the covariates of the Negative Bino-
mial GAM for product Fs. Confidence intervals are also drawn.

We do not need the spline for the price of the substitute products.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 4.6825 1.9594 2.3898 0.0169
general nl 0.1072 0.0793 1.3519 0.1764
avg_subst_P8 7.7213 4.8380 1.5960 0.1105
weekend -0.0841 0.0741  -1.1346 0.2565
B. smooth terms edf Ref.df  F-value  p-value
s(price_P8) 5.5814 6.6781 295.5534 < 0.0001
s(trend) 3.4164 4.2197 8.5145 0.0893

Table 3.25: Regression results of the final Negative Binomial GAM for product Fk.
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Product Py

Product Py, too, is of product type 'a’ and thus there are six possible substitute products.
It consists of the three articles Agg, Ass and Asy, where two out of them did appear in the
article-specific newsletter advertisement. Since Py is a private label product, there are no
competitor prices available.
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Figure 3.33: Plots of the splines which were fitted to the covariates of the Negative Bino-
mial GAM for article Ag. Confidence intervals are also drawn.

A. parametric coefficients FEstimate Std. Error  t-value  p-value

(Intercept) 8.0646 0.0305 264.2631 < 0.0001
spec_nl_P9 0.5387 0.2488 2.1648 0.0304
general nl 0.0684 0.0566 1.2094 0.2265
weekend -0.2438 0.0508  -4.7958 < 0.0001
B. smooth terms edf Ref.df  F-value p-value
s(price_P9) 8.8971 8.9963 400.2889 < 0.0001
s(avg_subst_P9) 4.6018 5.5389  33.1451 < 0.0001
s(trend) 6.9910 8.0276  40.6523 < 0.0001

Table 3.26: Regression results of the final Negative Binomial GAM for product F.
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Product P

105

Product Pjo consists of the three articles Ags, Aog and Ag7. It is of product type b’ and
there is one possible substitute product. The product did not appear in the article-specific

advertisement and there are no competitor prices available.
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Figure 3.34: Plots of the splines which were fitted to the covariates of the Negative Bino-

mial GAM for product P;. Confidence intervals are also drawn.

We drop the spline for the average price of the substitute product.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 3.6576 0.7123 5.1347 < 0.0001
general_nl 0.0418 0.0437 0.9549 0.3396
avg_subst_P10 2.0718 1.0032 2.0651 0.0389
weekend -0.1297 0.0400  -3.2455 0.0012
B. smooth terms edf Ref.df  F-value  p-value
s(price_P10) 7.4661 8.3805 149.1011 < 0.0001
s(trend) 7.5693 8.4921  31.6039 0.0002

Table 3.27: Regression results of the final Negative Binomial GAM for product Pjp.
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Product P

Product P;; consists of the two articles Asg and Asg and is the only product of product
type 'd’. The product did not appear in the article-specific newsletter advertisement, but
there are some competitor prices available.
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Figure 3.35: Plots of the splines which were fitted to the covariates of the Negative Bino-
mial GAM for product P;;. Confidence intervals are also drawn.

We skip the spline for the average competitor price.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 2.6689 1.2205 2.1867 0.0288
general_nl 0.0696 0.0500 1.3913 0.1641
avg_comp_P11 1.0261 0.6389 1.6060 0.1083
weekend -0.2348 0.0455  -5.1556 < 0.0001
B. smooth terms edf Ref.df  F-value  p-value
s(price_P11) 7.7966 8.5645 119.7222 < 0.0001
s(trend) 5.5153 6.7194 8.3696 0.3168

Table 3.28: Regression results of the final Negative Binomial GAM for product Pi;.
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Model interpretation

Inspecting the models we find, that the covariate for the product price needed a spline
in every model. The expected global tendency of a negative price elasticity is clearly
reflected. Some splines are rather 'wiggly’, e.g. the one for the prices of product Ps; and
Py or for the time trend of product Fy. It is doubtful, whether this is meaningful in reality.

The adjusted R? as a measure for the goodness of fit looks as follows:

| Product | adjusted R |

12 0.52
P, 0.66
P 0.64
P, 0.55
P 0.32
P 0.33
P; 0.46
P 0.64
P, 0.52
Pro 0.29
P, 0.13

Table 3.29: Summary of the goodness of fit of the different models.

All in all, the model fit is satisfying.

3.4 Copula modelling on deviance residuals

In this section, we investigate the dependence structure between the deviance residuals of
the Negative Binomial GAMs including time effects for the different products.

3.4.1 Exploratory data analysis

Before we start with copula modelling, we apply a probability integral transform to the
deviance residuals, which are assumed to be asymptotically normally distributed. If the
normal distribution however is no good approach, we check, if using a skew-t distribution
yields better results.

This analysis will be done graphically. That means, we investigate the normal Q-Q plots
of the deviance residuals to check the appropriateness of a normal distribution. If these
plots indicate any lack of fit, we try to improve the approach fitting a skew-t distribution.
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To be able to decide which of the distributions is more appropriate, we have a look
at the histograms of the probability integral transform. Due to

Fy(y) = P(Y <y) = P(Fx(X) <y) = P(X < Fx(y) ') = Fx(Fx(y) ") =y

we have Y ~ U|[0, 1] for any random variable Y. Hence, for our deviance residuals, we will
always choose the distribution with the histogram which is closer to the one of a uniformly
distributed random variable.

We use the following notation:

e 1; represents the deviance residuals for the Negative Binomial GAM including time
effects for product P,

e [y represents the distribution function of any normal distribution

e F} represents the distribution function of any skew-t distribution.
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Figure 3.36: Residual analysis for the Negative Binomial GAMs of product P; to P3: For
each of the products, there is drawn a normal Q-Q plot of the standardised deviance
residuals and the corresponding histograms after having applied a normal probability
integral transform and a skew-t probability integral transform, respectively.
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Figure 3.37: Residual analysis for the Negative Binomial GAMs of product P, to Py: For
each of the products, there is drawn a normal Q-Q plot of the standardised deviance
residuals and the corresponding histograms after having applied a normal probability
integral transform and a skew-t probability integral transform, respectively.
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Figure 3.38: Residual analysis for the Negative Binomial GAMs of product Py to Pii:
For each of the products, there is drawn a normal Q-Q plot of the standardised deviance
residuals and the corresponding histograms after having applied a normal probability
integral transform and a skew-t probability integral transform, respectively.

From these plots we conclude, that for our data the skew-t distribution always fits better.
However, for some of the products, none of these two distributions provides an appropri-
ate approach. This especially is the case for product Fy, Ps, Pig and Py;. Without further
refinement, these products thus are useless for further modelling. For this reason, they will
be excluded in the following and we confine ourselves to the reduced data set consisting

of the products P, P, P3, P,, P5, P; and P,.

The plot matrix below shows the histograms of the probability integral transform of the
deviance residuals on the diagonal. Since we need a measure for the strength of depen-
dence between the different products for further modelling, we furthermore compute the
pairwise Kendall’s 7, where higher absolute values indicate stronger dependencies. These
are displayed in the upper panel. For better visualisation of the strength of dependencies
we use a heat map, where a darker colouring means a stronger dependence. The lower
panel shows the pairwise contour plots.
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Figure 3.39: On the diagonal there are drawn the histograms of the probability integral
transform of the deviance residuals of the Negative Binomial GAMs for the selected subset
of products. The upper panel shows a heat map of the absolute values of the pairwise
Kendall’s 7 and the lower panel the pairwise contour plots.
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The absolute values of Kendall’s 7 all lie between 0.01 and 0.31. We conclude, that there
only are weak dependencies present in our data. We further read out from the plot, that
dependencies can mostly be detected between the deviance residuals of the models for
product P; to P5, whereas dependencies are weaker regarding product P; and product Fy.
Putting that into the context of the structure of the product group as shown in figure 3.2,
some results can be read out:

e The dependencies between the products Py, P», Py and Ps are rather strong. This
is just what we have expected, because these four products all are of the same type.
Since the absolute values of Kendall’s 7 are highest among the products belonging
to brand B, we conclude, that dependencies within a brand are stronger than within

a type.

e The private label products P; and Py apparently do not depend on each other and
show weak dependencies to the remaining products, too. This is probably due to the
fact, that the private label products are mostly cheaper than the products of the
well-known brands, which makes price comparisons more or less unnecessary. So,
price sensitive customers probably just buy one these products regardless of brand
and without further price comparisons. This is reflected by the small values of the
Kendall’s 7.

e There are comparatively strong dependencies between the products P, to Ps, which
all come from well-known manufacturers and are popular brands. This nevertheless
is surprising insofar, that product P; belongs to product type 'b’, whereas the other
products belong to product type ’a’. We conclude, that the brand awareness for
these products is even stronger than the preference of a product type.
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3.4.2 Copula modelling on the deviance residuals of the GAMs
for a selected subset of products

To find an appropriate copula model for our data, we compare different approaches using
R-Vines, Gauss-Vines, C-Vines and D-Vines. A Gauss-Vine is an R-Vine, where the only
family permitted is the Gaussian copula. Each time we fit one vine object excluding the
independence copula and another including the independence copula. This gives us a set
of eight different models.

For each of these eight models, we start with a sequential estimation using a forward
selection of trees. Based on this tree structure and the selected pair-copula families, we
optimise the models via maximum likelihood estimation.

In total, we thus fitted 16 different models. The results are summarised in the table below.
For each of the models, there are given the number of parameters and the log-likelihood,
as well as the two information criteria AIC and BIC. The results for the sequentially
estimated models are always denoted by ’-seq’ and for the maximum likelihood optimised
model by ’-mle’, respectively. Further, -ind’ means, that we permitted for the indepen-
dence copula.

par | loglik_seq loglik_mle | AIC_seq AIC_mle | BIC_seq BIC_mle

R-vine | 26 462.12 462.70 | -872.24  -873.39 | -752.82  -753.97
R-vine-ind | 18 451.79 452.45 | -867.59  -868.90 | -784.91  -786.22
Gauss-vine | 21 417.01 417.01 | -792.03  -792.03 | -695.57  -695.57

Gauss-vine-ind | 14 410.83 410.83 | -793.66  -793.66 | -729.36  -729.36

C-vine | 25 473.83 474.09 | -897.66  -898.19 | -782.84  -783.36
C-vine-ind | 20 468.31 468.62 | -896.63  -897.23 | -804.77  -805.37

D-vine | 26 458.04 458.72 | -864.08  -865.44 | -744.66  -746.02
D-vine-ind | 18 446.51 44713 | -857.02  -838.27 | -774.35  -775.59

Table 3.30: Sequential and maximum likelihood optimised approach of the fitted vine
models. Each time the number of parameters and the log-likelihood, as well as the AIC
and the BIC are displayed. The results for the sequentially estimated models are denoted
by -seq’ and for the maximum likelihood optimised models by -mle’, respectively. If the
independence copula is permitted, this is denoted by ’-ind’.

We read out from the table, that for each of the different vine types the log-likelihood as
well as the AIC and the BIC improve slightly in case of the maximum likelihood optimised
model. We thus restrict our further analysis to these eight models.

If two models are of the same vine type, the model including the independence copula and
the one excluding the independence copula of course are nested. This justifies the above
evaluation using the AIC and the BIC. Concerning the full set of the eight maximum like-
lihood optimised models, these are not nested, but closely related to each other. For this
reason, the AIC and the BIC cannot be used. Instead, we perform a Vuong test for the
models each against the others, which is a correct method to compare non-nested models.
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In the table below, ’stat’ denotes the classical Vuong statistic whereas 'stat_A’ and ’stat_S’
denote the penalised versions thereof according to Akaike and Schwarz, respectively. The
corresponding p-values are denoted by 'p_val’, 'p_val_ A’ and 'p_val_S’.

stat  p_val | stat_A p_val_A | stat_S p_val_S
R-vine vs. R-vine-ind | 2.21  0.03 | 0.48 0.63 -3.48  0.00
R-vine vs. Gauss-vine | 4.33  0.00 | 3.86 0.00 2.77 0.01

R-vine vs. Gauss-vine-ind | 4.52  0.00 | 3.47 0.00 1.07 0.28

R-vine vs. C-vine | -2.51 0.01 | -2.73 0.01 -3.23  0.00
R-vine vs. C-vine-ind | -1.10 0.27 | -2.21 0.03 -4.77  0.00
R-vine vs. D-vine | 1.08 0.28 | 1.08 0.28 1.08 0.28
R-vine vs. D-vine-ind | 2.64 0.01 | 1.28 0.20 -1.84 0.07

R-vine-ind vs. Gauss-vine | 3.33  0.00 | 3.62 0.00 4.26 0.00
R-vine-ind vs. Gauss-vine-ind | 3.99 0.00 | 3.61 0.00 2.73 0.01
R-vine-ind vs. C-vine | -3.16 0.00 | -2.14 0.03 0.21 0.83
R-vine-ind vs. C-vine-ind | -2.73 0.01 | -2.39 0.02 -1.62 0.11
R-vine-ind vs. D-vine | -1.05 0.29 | 0.29 0.77 3.37 0.00
R-vine-ind vs. D-vine-ind | 1.28 0.20 | 1.28 0.20 1.28 0.20

Gauss-vine vs. Gauss-vine-ind | 1.74 0.08 | -0.23 0.82 -4.74  0.00
Gauss-vine vs. C-vine | -5.22 0.00 | -4.85 0.00 -4.01  0.00
Gauss-vine vs. C-vine-ind | -4.68 0.00 | -4.77 0.00 -4.98  0.00
Gauss-vine vs. D-vine | -3.93 0.00 | -3.46 0.00 -2.38  0.02
Gauss-vine vs. D-vine-ind | -2.83 0.00 | -3.12 0.00 -3.77  0.00
Gauss-vine-ind vs. C-vine | -5.32 0.00 | -4.39 0.00 -2.27  0.02
Gauss-vine-ind vs. C-vine-ind | -5.08 0.00 | -4.55 0.00 -3.34  0.00
Gauss-vine-ind vs. D-vine | -4.19 0.00 | -3.14 0.00 -0.73 047
Gauss-vine-ind vs. D-vine-ind | -3.47 0.00 | -3.09 0.00 -2.21  0.03
C-vine vs. C-vine-ind | 1.72  0.08 | 0.15 0.88 -3.46  0.00

C-vine vs. D-vine | 2.65 0.01 | 2.82 0.00 3.22 0.00

C-vine vs. D-vine-ind | 3.52 0.00 | 2.61 0.01 0.51 0.61
C-vine-ind vs. D-vine | 1.52 0.13 | 2.44 0.01 4.56 0.00
C-vine-ind vs. D-vine-ind | 3.01  0.00 | 2.73 0.01 2.09 0.04
D-vine vs. D-vine-ind | 2.46 0.01 | 0.76 0.45 -3.14  0.00

Table 3.31: Vuong tests for all possible pairs of maximum likelihood optimised vine models.
The classical Vuong statistic as well as the two corrected versions according to Akaike and
Schwarz are displayed with the respective p-values. The abbreviations ’stat’, ’stat_A’ and
'stat_S’ denote the classical Vuong statistic, and the penalised Vuong statistic according
to Akaike and Schwarz, respectively. The corresponding p-values are denoted by 'p_val’,
‘p_val_A’” and 'p_val_S’.
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Immediately the question arises, which of the above given statistics to use for the model
selection. To decide on this, let us first compare the results from the Vuong test for all
the three of them. Comparing the models each to the others, the table below summarises,
how many times the individual models were preferred against another according to the
different variants of the Vuong test. We distinguish between significant preference and
non-significant preference at a significance level of 0.05.

sig Nsig tot | A_sig A_Nsig A_tot | S_sig S_Nsig S_tot
R-vine | 4 1 5 2 3 5 1 2 3
R-vine-ind | 2 1 3 2 2 4 4 2 6
Gauss-vine | 0 1 1 0 0 0 0 0 0
Gauss-vine-ind |0 0 0 0 1 1 1 0 1
C-vine |6 1 7 6 1 7 4 1 5
C-vine-ind | 4 2 6 6 0 6 6 1 7
D-vine | 3 1 4 2 1 3 1 1 2
D-vine-ind | 2 0 2 2 0 2 3 1 4
total | 21 7 28 | 20 8 28 20 8 28

Table 3.32: Summarising the results from the different versions of the Vuong test. The
abbreviations ’sig’, ’A_sig’ and 'S_sig’ denote a significant preference for the model, and
"Nsig’, ’A_Nsig” and "S_Nsig’ a non-significant preference, respectively. The columns ’tot’,
"A_tot’ and ’S_tot” sum up the significant and the non-significant preferences for each of
the models, whereas the row "total’” gives the overall numbers for the different versions of
the Vuong test.

This table yields the following results:
e The non-penalised version of the Vuong test clearly prefers the C-vine.

e The penalised version according to Akaike yields a similar result, but here, we cannot
decide between the C-vine and the C-vine-ind based on the significant preferences.
Only when we include the non-significant preferences into decision making, we again
come to the C-vine, which shows, that there only is a weak penalisation, which still
prefers more complicated models.

e The penalisation of large number of parameters makes its presence felt, when cor-
recting the Vuong statistic according to Schwarz, since we here clearly decide in
favour of the C-vine-ind and not in favour of the C-vine without the independence
copula.

Summarising the table, we notice, that the C-vine and the D-vine obviously yield different
model fits. This is not very surprising, since both are special cases of R-vines but with
strict boundary conditions, which are more or less suitable depending on the data.
Further, the Gauss-vine seems not to be an appropriate choice for our data. Also this
is understandable regarding the families which where chosen in the different models, be-
cause the Gaussian family appears rather seldom. For more details on that, please refer
to appendix 7.3.
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But we wonder, why we always decide in favour of a C-vine: At first glance, we would
of course expect the R-vine to yield the best results, since C-vines and D-vines are just
special cases of R-vines. So, despite both these structures are permitted in case of an
R-vine, the heuristic algorithm suggests another, apparently less fitting tree structure.
But we notice, that the R-vine and the C-vine are very close in the Vuong test. So, let us
investigate them in more detail.

We have already seen, that the values for Kendall’s 7 most often are rather small, and
thus including the independence copula into the model absolutely makes sense. Further,
we always prefer simple models according to ’KISS’. Thus, we base our decisions on the
Vuong test statistic corrected according to Schwarz and compare the first tree of the two
best fitting models, i.e. of the R-vine-ind and of the C-vine-ind, respectively:

Tree 1 Tree 1

SBB7,0.34

SBB%,0.23

SBB#0.34 SBB%,0.26

SBB7,0.26

=

BB1,0.21

Figure 3.40: Comparing the R-vine-ind and the C-vine-ind: The first three of the R-vine-
ind on the left, and the first tree of the C-vine-ind on the right.

The first tree of the R-vine-ind and the C-vine-in are very similar concerning the structure
and the pair copula families. That the R-vine does not exactly correspond to the C-vine
is probably due to the kind of 'soft facts’ based decisions of the heuristic algorithm, since
it obviously is not reasonable to try all possible vine structures. So, we conclude, that it
absolutely makes sense to examine the special cases of C-vines and D-vines to achieve the
best possible model fit.

In the following, we investigate our best fitting model, i.e. the C-vine-ind, in more detail.
At first, we have a closer look at the values of the conditional pairwise Kendall’s 7. These
are summarised in the table below:
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1

2

3

4

bt

6

7

tree6
treeb
treed
tree3
tree2
treel

0.00
0.00
0.00
0.07
0.07
0.07
0.26

0.00
0.00
0.00
0.05
0.00
0.06
0.12

0.00
0.00
0.00
0.00
0.07
0.15
0.34

0.00
0.00
0.00
0.00
0.08
0.16
0.23

0.00
0.00
0.00
0.00
0.00
0.06
0.29

0.00
0.00
0.00
0.00
0.00
0.00
0.08

0.00
0.00
0.00
0.00
0.00
0.00
0.00

Table 3.33: Values of the fitted Kendall’s 7 associated to the conditional pair copulas in
the selected C-vine model (C-vine-ind).

Calculating the corresponding ranges of the fitted Kendall’s 7 for each of the trees in the
vine tree sequence, we get the following:

min

max

tree 1
tree 2
tree 3
tree 4
tree 5
tree 6

0.08
0.06
0.00
0.00
0.00
0.00

0.34
0.16
0.08
0.07
0.00
0.00

Table 3.34: Ranges of the fitted Kendall’s 7 for each of the trees in the vine tree sequence
of the selected C-vine model (C-vine-ind).

We check, if it is reasonable to consider the corresponding truncated C-vine at level 3

instead:

par loglik AIC BIC

C-vine-ind 20 468.62 -897.23 -805.37
C-vine-ind-trunc 18 461.25 -886.51 -803.83
(C-vine) 25 474.09 -898.19 -783.36
(C-vine-trunc) 19 464.18 -890.36 -803.09

Table 3.35: Comparing the selected C-vine model (C-vine-ind) and the corresponding
model truncated at level 3. For information, there is also given the C-vine and the trun-
cated version thereof at level 3. For each of the models, there are given the number of
parameters, the log-likelihood, the AIC and the BIC.
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Due to the model simplification, we normally expect an improvement of the AIC and the
BIC by truncating the model. This is, what we get when comparing the C-vine without
the independence copula with the truncated C-vine at level 3: There is a decline in the log-
likelihood, but, since the truncated model has 6 parameters less than the non-truncated
one, we notice a slight improvement in the AIC and in the BIC.

Comparing the C-vine-ind and the truncated version thereof at level 3, we make out,
that the truncation does not improve the model. This is quite understandable, since we
already allowed for the independence copula in the C-vine-ind. As we have seen above,
this resulted in a model, which is truncated at level 4 and which additionally includes
two further independence copulas at lower levels. So, the independence test reveals, that
some pair copula family is more appropriate than the independence copula at level 4 and
thus, the non-truncated model yields the better fit, which can be read out comparing
the log-likelihoods. Despite the reduction of the parameters from 20 to 18, the AIC and
the BIC did not improve, because the model fit however worsened. So, we stay with the
non-truncated C-vine including the independence copula as our best fit.

Let us consider this best fitting model in more detail.



3.4. COPULA MODELLING ON DEVIANCE RESIDUALS 119

Tree 1 Tree 2

Tree 3 Tree 4

Tree 5 Tree 6

\\ \
\
- - |.Q
I — \
/
/ \

Figure 3.41: Vine tree sequence for the selected C-vine model (C-vine-ind).
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The corresponding C-Vine Matrix is given by

RVM =

W H = O Ot
WK = O O
N W b= OO
W I = OO Oo
~N W o o oo
N O OO OO
OO OO o OO

2 2 22077

This matrix describes the constraints within the trees, where each row corresponds to one
tree.

The numbers in the matrix represent the index of the product in the data frame parsed
to the function calculating the C-Vine.

VineIndex | 1 | 2 | 3 |4 |5 |6 |7
Product P1 P2 P3 P4 P5 P7 Pg

Table 3.36: Mapping of the C-Vine matrix indices to the products.

The bottom row refers to the unconditional tree (tree 1). Going up the rows, you get
the trees for copulas with preconditions. The third tree for example contains one edge
described in column one, which is the connection between product P; and product P;
under condition of product P, and product Ps.

Next, we have a look at the chosen pair copula families and the corresponding family
parameters:

o O O

—_
S

families =

&2 N S s B e B @)
— s O O O O
TrLw o o oo
O OO oo
_ o O O o oo
S OO o oo

—_
Ne}
= ot O

19 19 9 0

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

par = |0.1052 1.0506 0.0000 0.0000 0.0000 0.0000 0.0000
0.6757 0.0000 1.0732 0.1666 0.0000 0.0000 0.0000

0.5993 0.5739 0.2258 1.4292 0.5332 0.0000 0.0000

[1.2526  0.1911 1.5664 1.1833 1.3090 1.0924 0.0000 |
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[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

par2 = [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10.4341  0.0000 0.4266 0.3849 0.4639 0.0000 0.0000

Summarising the chosen pair copula families yields the following table:

index familyName count

Independence 5)
Gaussian 3
Clayton 1
Gumbel 2
Frank 5
Joe-Clayton 1
4 Survival Gumbel 1
9 Survival Joe-Clayton 3

== O O W= O

From the table we read out, that there appear seven different pair copula families in
the above tree structure. Furthermore, due to the small values of the Kendall’s 7, the
independence copula often is the most appropriate approach.

3.4.3 Simulating from the copula

Next, we simulate from our chosen copula model to check if we were able to describe our
data properly. Based on this simulated data, we create a plot matrix with the correspond-
ing histograms on the diagonal, with the absolute values of Kendall’s 7 in the upper panel
and with the corresponding contour plots in the lower panel. We expect a plot similar to
the one showing the observed data in figure 3.39.

Since the simulated values disperse in each simulation, we furthermore run another simu-
lation with ten times as many simulated points. The following figure shows the plot matrix
obtained from the observed data as well as the one based on a simulation of length 730
and on one of length 7300, respectively.

All the plots show a similar heat map for the Kendall’s 7. The simulation from the 7300
simulated points has almost unified histograms and the absolute values of the Kendall’s
T are very close to the ones obtained from the observed data. Hence, our model provides
an acceptable fit.
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Figure 3.42: Observed data and simulation values of the selected C-vine model (C-vine-
ind) with 730 and 7300 simulated values, respectively: On the diagonal there are drawn
the histograms. The upper panel shows the pairwise Kendall’s 7 and the lower panel the
pairwise contour plots.



Chapter 4

Validation of the results in the
economical context

Having fitted a lot of different models to our data, we want to transfer the gained insights
to our research question: Which influences do affect the sales to what extent? .

For this purpose, we assess the goodness of fit within the different model types, com-
pare the quality of prediction across the model types and check the explicability of the
modelling results in the economical context. It is important to factor in these three aspects
simultaneously, because considering only one single aspect could be misleading.

Furthermore, we put the models into the context of the questions arising from the shop
business.

Goodness of fit

The goodness of fit has already been carefully optimized with the relevant techniques and
examined in detail during the process of model fitting.

The typical measures for goodness of fit only allow to compare models of the same type,
but nevertheless, they already give some absolute indication of suitability.

Regarding the models on article basis, we conclude, that all of the Poisson models showed
an unacceptably bad fit, whereas the Negative Binomial models seem to be an appropri-
ate choice for our data. Also regarding the generalized additive models, we reached an
acceptable level of fit. The table below gives a short overview. 'Rd. of xx on yy df.” denotes
"Residual deviance of xx on yy degrees of freedom’.

123
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’ item \ model \ Goodness of fit \ rating ‘
Ag simple Poisson 4520.32 on 729 degrees of freedom -
Ag + time effect 4520.32 on 729 degrees of freedom -
Ag + interaction 4520.32 on 729 degrees of freedom -
Ag simple NegBin 968.94 on 729 degrees of freedom ++
Ag + time effect 1271.2 on 729 degrees of freedom ++
Ag + interaction 1294.49 on 729 degrees of freedom | ++
Py NegBin + time effects 1651.09 on 729 degrees of freedom | ++
P; | NegBin + time effects (GAM) | 0.64 ++

Table 4.1: Summary of the goodness of fit of the different models.

Quality of prediction

Besides the goodness of fit, we need a common criterion to measure the quality of predic-
tion independent of the type of the model. The probably most important method to use is
the root of the mean squared error (RMSE), which is also known as the standard error of
the regression. This measure is particularly suitable for comparison, since it decides on the
width of the confidence intervals for the predictions in the sense that the 95% confidence
interval is approximately equal to the prediction plus and minus twice this standard error.
Please note, that the RMSE does not give an absolute indication of 'good’ or 'bad’; but
that it is very suitable when comparing predictions relatively to each other.

Due to the fact that our regression models use log-link, we have to interpret the RMSE
and the confidence intervals for the quantity sold. We did the following calculations:

The RMSE for the i-th value of the logarithmised quantity sold is derived as

RMSE; = \J1 0 (5 — 910)%

where
e 1 is the number of observations
® y; s is the i-th value of the simulated response
® y;, is the i-th value of the observed response.

With the above definition of the RMSE, we use the following formula for the 95% confi-
dence interval:

log(quantity sold) := prediction 4+ 1.96 - RMSE.
This yields

quantity sold = eprediction . e:|:1.96-RMSE.
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Thus, due to the log-link, the confidence interval for the quantity sold is defined by mul-
tiplying with the factor e*!9RMSE ingtead of just adding +1.96 - RMSE.

This leads to the inequality

—1.96-RMSE  ~ quantity sold < e+1.96-RMSE

€ eprediction
Defining

A= quantity sold
T eprediction

as the accuracy of prediction, we can interpret our results: A = 1 means a perfect predic-
tion. Thus, the smaller the confidence interval, the better the accuracy of prediction.

The following tables show the RMSE for the log-link and the 95% confidence interval
for the accuracy of prediction. Let us first inspect article Ag.

article model RMSE | 95% confidence interval
Ag simple Poisson 0.32 054 <A<187
Ag + time effect 0.28 058 < A<1.72
Ag 4+ interaction 0.27 059 <A<17
Ag simple NegBin 0.32 054 <A<187
Ag + time effect 0.28 058 < A<1.72
Ag + interaction 0.27 059 <AI1T1

Table 4.2: Overall comparison of the different models for article Ag based on the root of
the mean squared error, which is given for the logarithm of the quantity sold.

Comparing these models, the following points come up:

e Model type: Due to the strong relation between the Poisson type models and the
Negative Binomial type models, it is not very surprising, that the RMSE behaves
similarly. But this also shows, that decisions should not only be based on the RMSE;,
since the goodness of fit is not covered sufficiently. Consequently, due to the overall
bad performance of the Poisson type models, it is not reasonable to pick one of these
for application or for further analysis.

e Time effect: Enhancing the model by time effects, the RMSE drops noticeably.

e Interaction effects: Including interaction effects on top of the time effects only im-
proves the RMSE slightly. It thus is not worth including the additional parameters
that come into the model using this approach.
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The table below compares the RMSE of the models for product P; and the ones of the
Negative Binomial models including time effects for the articles belonging to product Ps.

item model RMSE | 95% confidence interval
Ag NegBin + time effects 0.28 058 < A<1.72
A NegBin + time effects 0.29 0.56 < A <1.78
Ag NegBin + time effects 0.57 0.32 < A <3.08
P; NegBin + time effects 0.35 0.5 <AL2
Ps NegBin + time effects (GAM) 0.28 057 < A<1.75

Table 4.3: Overall comparison of the different Negative Binomial models including time
effects for product P; and for the articles belonging to Ps, i.e. for article Ag, A7 and As.
Again, the comparison is based on the root of the mean squared error, which is given for
the logarithm of the quantity sold.

Explainability

Explainability does not mean to explain, how the model parameters are derived. On the
contrary, it means to explain, if the derived model can be aligned with the reality. To
judge this, we need an appropriate indicator.

When setting up the models, we already spent some efforts on defining reasonable covari-
ates. Now we evaluate the models and determine the lever of each of the covariates. We
concentrate on the question: 'How big is the change of the predicted quantity sold when
varying one covariate within the range of the observed values?’.

This lever does not reflect the statistical significance of the covariates in the model, but
it describes the economical importance on the sales.

When calculating these levers, we assume the range of the individual covariates to be
a set of ’typical values’, out of which we calculate the maximal impact by taking the
minimum and the maximum value of the observed data. We have to differentiate between
several cases:

e the untransformed variables,

e the covariates that come into the model on logarithmic scale,
e the factor variables,

e the covariates to which a spline was fitted (in case of GAM).

For our purpose we define the lever of a covariate as the variance of the response on
varying this covariate. The lever is characterised by a factor, which is the ratio of the
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response at the maximal value of the covariate and the response at the minimal value
of the covariate. This factor can be derived from the basic equation, which describes our
models:

quantity sold, = efo+Ax a1it+ixg log(@a)+..

To calculate the factor for the untransformed covariate x; we set
e 1y; as the minimal value of the covariate xq,
e 7, as the maximal value of the covariate x; and
e 1y as an arbitrary value of xa (not to be varied),

and receive:

Bo+PBxq - T1i+Pxq log(war)+-.. Bxy . ..
(& 1 2 _ er*1 - T, _ eﬁxl'(xli*xlj)
660+ﬁx1 '$1j+ﬁxz-log($2k)+~~- eﬁx1 . mlj ’

factory, =

where all not-varied terms can be cancelled.

For the variable x5, which is assumed to come into the model on logarithmic scale, the
factor correspondingly calculates as:

B0ty ikt Bz log(z2i) s oBxa L Jog (29;) i) 2
factory, = = =

e/BO‘i’ﬁxl'$1k+/3x2‘10g(x2j)+"' B eﬁxz . 1Og(l‘2j) - SCQj

Due to the strict monotonicity of Sy, - Xa or Py, - log(xa), respectively, we can use the
formulas above and get the minimum and maximum response on inspecting the minimum
and maximum value of the covariate x,. For a positive sign of Sy, we get a factor greater
than 1 meaning an increasing response on increasing covariate values. For a negative sign
of fx, we get a factor less than 1 meaning a decreasing response on increasing covariate
values.

For factor variables and GAM-splines we have to adjust our approach. Factor variables
as well as GAM-splines do not have a strict monotonicity. Equally to before, we deter-
mine the variance of the response on varying one covariate in its observed range. To get
a similar information like above, whether increasing covariate values on the whole lead to
increasing response or not, we determine the all-over tendency by inspecting the slope of
the simple linear regression of the covariate x; on the predicted response. Thus, we use
the following formula, where

e 13; denotes the value of the covariate x3 with the maximal response,
e 13, denotes the value of the covariate xg with the minimal response,

e 19 denotes an arbitrary value of the covariate x2 (not to be varied) and
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e m, denotes the regression coefficient (slope) of the linear regression of the predicted
response,

and receive:

€ﬂ0+5(z3i)+8($2k)+..‘ sign(m.)
factorxg = 650+5(x3.7)+5($2k)+---

65(903i) sign(my.)
\ eslas))

(es(xai)*s(ﬁz’,j))Sign(m” )

To handle factor variables, we have to prepare some data. The original covariate x; with
its n levels is split up into n — 1 new covariates zy, with their corresponding [, where
the first level of the original covariate is factored into the intercept. The latter can also
be expressed as a new covariate with the corresponding # = 0. We shortly denote this in
the equation:

quant/ii;soldi = Bty BrzanitBy w2it...

where 7 = 1 denotes the first level of the covariate and subsequently 5; = 0. The used
level of the original covariate is indicated by setting the k-th new covariate zj equal to
1 and setting the others equal to 0. This yields to n predictions for the n levels of the
covariate. We do a linear regression of the covariate x; on the predicted response. Now we
can use a similar formula like for GAM-splines.

To analyse the factor for the factored covariate x4 we use
e 7 as the level of the covariate x4 with the maximal response and thus we set z4; = 1,
e s as the level of the covariate x4 with the minimal response and thus we set zy; = 1,
e 19 as an arbitrary value of x5 (not to be varied) and

e m, as the regression coefficient (slope) of the linear regression of the predicted
response,

and receive:

61804‘57"247«7; +,8m2 “Toi+... sign(mr)
faCtOrx4 — eﬁ0+65'z43i+612'x2i+---

Gﬁr sign(my.)
B

_ (eﬁr_gs)sign(mr) '
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For easier comprehension, we transform this factor into a percentage increase or decrease
compared to the base value, which is our desired lever:

lever = (factor — 1) - 100%.

The following two tables show these levers exemplary for our favourite models for article
Ag and product Ps, respectively.

NegBin with time effects Ag
covariate range lever | impact
price_A6 [1.55,1.78] [ -34 % | +++
spec_nl_A6 {0; 1} 4 %
general_nl {0; 1} 10 % +

avg_comp_A6 | [1.69,1.84]| -2 %
avg_prod_ A6 | [1.28 ,1.5] | -8% +
avg subst_P3 [ [0.96 ,1.06] | 15% | ++
weekend {01} 30 % | 4+
trend {0;...;730} | 16 % ++

Table 4.4: Levers of the different covariates on the predicted quantity sold in the Negative
Binomial model including time effects for article Ag.

In general, all the levers are quite plausible regarding their sign and amount. It is not very
surprising, that the article price has the largest influence on the sales. Also the high lever
of the weekend can easily be explained: Since the customers are not bound to opening
hours, they probably spend their free time on the weekend on leisure activities. The small
lever of the article-specific newsletter advertisement may result from the sparseness of
this variable and the general unattractiveness of this article compared to the remaining
articles belonging to product Ps, where the latter may also explain the low influence of
the competitor prices. The time trend reflects the general growth of the shop.

Next, we investigate the whole product P3; in more detail. Please remember, that the
covariates concerning prices are measured per half kilogram in the corresponding models.
This is the reason for the large differences in the price ranges compared to article Ag.
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NegBin with time effects (GAM) Pj

covariate range lever | impact

price.P3 | [0.58,0.79] | 91 % | +++
spec_nl_P3 {0; 1} 10 % +
general_nl {0;1} 12 % +
avg_comp_P3 | [0.75,0.81] | -28% | ++
avg subst_P3 | [0.96, 1.06 ] | 99 % | +++
weekend {0; 1} 28 % | 4+
trend {0;...;730} | -61 % | +++

Table 4.5: Levers of the different covariates on the predicted quantity sold in the Negative
Binomial model including time effects (GAM) for product Ps.

Also for the whole product, most of the levers are quite plausible regarding their sign
and amount. The high lever of the article-specific newsletter advertisement results from
the large packaging sizes and multipacks, which are included when modelling the whole
product. This also explains the high lever of the price. The negative time trend may result
from the fact, that the special offer article with very high quantity sold was removed from
the shop’s assortment during the time period of observation. Although the splines fitted to
the covariates lead to a good model fit, the negative time trend is hardly to be reasonable
for prediction. If this trend was true, the demand for this product would shrink to a
negligible amount. This product thus needs some attention in order to mitigate this.
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Summary and Outlook

We started with a large data set from the online shop. After inspecting and cleaning the
data, we restricted to the 29 articles with sufficient data quality.

Having analysed this data, we used different modelling approaches regarding model type
and aggregation level of the articles. We assumed Poisson and Negative Binomial distri-
butions for the response variable and used GLMs, GAMs and copula models on deviance
residuals to describe our data.

Three levels of aggregation were examined: the articles, the products and the product
group as a whole.

In the end, the following covariates turned out to be reasonable:

e Influences controlled by the online shop:
The sales price, the article-specific newsletter and the general newsletter are impor-
tant control variables for the online shop to stimulate sales.

e Market influence:
Of course, the competitor prices are very important. So they are consequently mon-
itored and taken into account in the pricing strategy.

e Customer behaviour:
Sales depend on the customers’ behaviour and preferences. The decision for pur-
chasing a single article among other things depends on the availability of attractive
substitute items of the online shop. These substitution effects have been considered
and modelled on each level of aggregation.

e Secasonal effects:
The influence of the weekend and of the all-over time trend were remarkable.

In general, good model fits were achieved. Further, the modelling results were explainable
and well balanced considering simplicity and preciseness. Interactions between the chosen
covariates seem not to be relevant.

Validating the models, we see a good support to optimise our pricing strategy and the
product assortment. Of course, the expected tendencies regarding e.g. the price elastic-
ity and the effect of advertising were confirmed. At the starting point we were already
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aware of the dependencies between the response variable and the covariates in a qualita-
tive manner. During this thesis we quantified the effects by retrieving the corresponding
parameters in the simple case of GLMs or have the regression splines in case of GAMs.
Thus, we are now able to predict the customer demand and can support the optimisation
of the strategy of the online shop.

Article-based models

The models for the individual articles can be used for the day-to-day business of pricing.
For example, if our supply is short we could adjust the prices according to the model
coefficients. This reduces sales in a manner to avoid running out of stock, which otherwise
might annoy some of the customers. This way, despite the poor availability, the shop is
able to satisfy the customers’ demand sufficiently.

Product-based models

The product model however is useful when analysing the shop’s strategy. The influences
of rather general covariates like for example advertisement or competitor prices can be
interpreted more easily when regarding the whole product, since there might just be some
shifts among the different articles belonging to the product, but no overall effect on the
product itself, which cannot be seen when just regarding one single article at a time.
Furthermore, the product model can help to make out the ’position’ of the product in
the shop’s assortment, which may be helpful if we are interested in how to compose the
assortment.

Copula-based models for the product group

A first assumption was, that we do not expect a substitution effect between different prod-
uct types. A second assumption was, that grouping the products by brand for evaluation
of substitution effects generally is a sufficient approach for modelling. Doing copula mod-
elling, some more elaborate dependencies were found. Within brand B, P, and P, have
a stronger dependency than both of them with P5. Surprisingly, a comparatively strong
dependency between P; from 'type b’ and P, and P, from ’type a’ is derived. For the fu-
ture shop strategy, it will be helpful to understand the underlying mechanism of customer
behaviour and subsequently optimise the portfolio using these insights. Of course, one has
to be careful, because the underlying mechanisms may not be basic rules and hence may
vary due to 'temporary fashion’ .

Outlook

Besides using the models for now, some further activities are left.
The current models predict the quantity sold. The gross profit, which is most important
in the end, has to be calculated separately. If the price is set below the break-even-point,
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then the predicted quantity sold may be incredible high, but you receive losses. Doing the
maths, you can optimise the gross profit in absolute figures.

All in all, we received relevant models for the different levels of the shop’s strategy. Since
the parameters used in the models are comparatively volatile e.g. due to new products,
eco-trends or health-trends, it is recommended to implement a continuous monitoring
process to keep the models up to date.
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Figure 7.1: Article A; to article Ag: Box plots of the quantity sold over the shop price for
the individual articles. The data is given on daily basis.

142



7.1.

AT
relative frequencies:
0.33 0.25 0.19 0.18 0.05

o
250 —
.
-+ °
200 | '
.
' .
' -
< 150 ! 8 i
c ' —_ o
' -
100 T . .
' -
- A EHES
-~ o~ o
—_
o
0 T T T T T
) [} < < o
[} 5} < < 1]
“ — — — -
Pa;
Al0
relative frequencies:
0.35 0.33 0.01 031
o
.
100 .
—_
80 - .
' .
5 ' M
EE 60 . ' —_
'
_ — '
40 — ' !
' |_| — ]
e ——
20 T ' —_ T
' '
! —_ —_
T T T T
-—c ~ @ o
~ ~ ~ ~
<) <) =) =)
Pay
A13
relative frequencies:
0.35 042 0.24
12 3
o
10 .
—_— . .
8 '
1 | _ .
. : : -
o ] H '
g 6 ' , '
N '
4 ] .
» —
' '
' T '
0 - —_ —_ —_
T T T
© © —
© =]
=} <)
Pay;
Al6
relative frequencies:
0.22 0.01 0.03
80 — T
'
'
'
- '
60 '
<
c 40 - —_
_ '
'
' ]
'
20 ' 1
' —_
T
—_
T T T
o 7o) —
= ]
<)
Payg

na,

NAy

NAw,

NAy

600

500

400

300

200

100

25

20

15

10

40

30

20

10

15

10

Al: OUTSOURCED FIGURES

A8
relative frequencies:
0.03 021 0.01 0.34 0.37 0.04

1.33 |--|I|--|» oo

.
.
T T T T
— IN] 0 <
~ N N <
“ — - -
Pag
All
relative frequencies:
0.35 0.65
o
.
.
.
—_
'
. '
: |
—_— '
' N
'
'
— .
v '
' '
_ _
T T
[ ©
~ @
<) <)
Pay,
Al4

relative frequencies:
0.06 0.03 0.28 0.1 0.27

o
o
. . .
—_ .
_ ' - .
' ' H
' ' ' o
! ' ' - '
! ' ' '
E E I ;
'
. E
_ '
—_ ' '
' '
—_ —_
T T T T T
“ ~ ™ ~ ®
] - - N
— — -
Pay,
A7
relative frequencies:
0.12 0.88
.
o
.
.
—_— .
' —_—
'
'
'
'
'
L 1
_ _
T T
™ ]
~ o
<]
Pay;

Na,

NA,,

NAs

NAsg

120

100

80

60

40

20

40

30

20

10

30

25

20

15

10

60

50

40

30

20

10

143

A9
relative frequencies:
0 _0.05
_
'
'
'
'
'
—
'
'
'
'
'
'
'
_
T T
@ o
< <
— —
Pa,
Al2
relative frequencies:
035 04 0.25
B
o
.
o
.
- s
s
'
| ' |
'
' | :
T E E
' T
, ' :
' —_
. —_
T T T
< © [}
~ @ @
=} (<) =}
Pay,
Al5
relative frequencies:
0.22 0.31 0.46
°
.
o
o
.
o
o . o
—_
—_
' '
'
. ' A
e =
: =
—_ !
—_ —_
T T T
~ N <
— —
Pays
Al8
relative frequencies:
1
.
H
8
3
.
'
'
'
'
'
'
'
_
PAy,

Figure 7.2: Article A; to article Ajg: Box plots of the quantity sold over the shop price

for the individual articles. The data is given on daily basis.
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Figure 7.3: Article Ajg to article Asg: Box plots of the quantity sold over the shop price
for the individual articles. The data is given on daily basis.
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Figure 7.4: Residual analysis for the Poisson model for article Ag including time effects
and interactions (part 1): Plots showing the covariates against the deviance residuals.
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Figure 7.7: Residual analysis for the Negative Binomial model including time effects for
product Pj: Plots showing the covariates against the deviance residuals.
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7.2 A2: Outsourced regression results

Estimate Std. Error t value Pr(>]t|)

(Intercept) 4.04 0.84 4.80 0.00

price level 2 -0.24 0.03 -8.32 0.00

price level 3 -0.24 0.05 -5.40 0.00

price level 4 -0.20 0.06 -3.52 0.00

price level 5 -0.93 0.08 -11.41 0.00
spec_nl_A7 0.08 0.10 0.74 0.46
general nl 0.12 0.02 4.80 0.00
log(avg_comp_AT) 1.19 0.51 2.33 0.02
log(avg_prod_A7) 1.84 0.60 3.09 0.00
log(avg_subst_P3) -0.82 1.23 -0.66 0.51
weekend -0.32 0.02 -13.96 0.00

trend 0.00 0.00 3.54 0.00

Null deviance:
Residual deviance:
AIC: 6839.889

1596.02 on 729 degrees of freedom
746.97 on 718 degrees of freedom

Estimate Std. Error t value Pr(>]t|)

(Intercept) 4.58 1.33 3.44 0.00

price level 2 -0.13 0.11 -1.21 0.23

price level 3 -0.69 0.20 -3.53 0.00

price level 4 -0.57 0.11 -5.36 0.00

price level 5 -0.73 0.11 -6.87 0.00

price level 6 -2.43 0.13 -18.54 0.00
spec_nl_AS8 0.42 0.16 2.63 0.01
general_nl 0.14 0.04 3.63 0.00
log(avg_comp_AS8) 4.40 0.82 5.34 0.00
log(avg_prod_AS) 0.05 0.09 0.57 0.57
log(avg_subst_P3) -0.28 1.92  -0.14 0.89
weekend -0.33 0.04 -9.26 0.00

trend -0.00 0.00 -1.49 0.14

Null deviance:
Residual deviance:
AIC: 8192.525

1331.71 on 729 degrees of freedom

768.4 on 717 degrees of freedom
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Table 7.1: Regression results for article A; in the Negative Binomial regression model
including time effects.

Table 7.2: Regression results for article Ag in the Negative Binomial regression model
including time effects.
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x2-test for article Ag in the Negative Binomial models including time effect with and
without interactions:

Resid. Df Resid. Dev. Df Deviance Rao Pr(>Chi)
1 720.00 738.98
2 718.00 737.48 2.00 1.49 15.01 0.00

Table 7.3: x3-test for article Ag: The Negative Binomial model including time effects with
and without interactions.



7.3. A3: OUTSOURCED DETAILS ON COPULA MODELS 151

7.3 A3: Outsourced details on copula models

R_mle_seq:

[0 0 0 0 0 0 O]

3 0 0 0 0 00

1 23 0 0 0 00

families= |5 16 13 0 0 0 0

5 13 4 13 0 0 0

1 5 4 1 1 00

19 2 7 9 19 1 0]

[ 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0383  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000
—0.0412 —0.0629 0.0000 0.0000 0.0000 0.0000 0.0000

par = | 0.6346  1.0177 0.0845 0.0000 0.0000 0.0000 0.0000
0.4049  0.0745 1.0708 0.0917 0.0000 0.0000 0.0000
0.1332  0.3976 1.1640 0.2258 0.1166 0.0000 0.0000

| 1.2515  0.1888  0.2441 1.2807 1.5653 0.1910 0.0000 |

[0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

par2 = [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10.4287 12.3066 1.1331 0.4867 0.4243 0.0000 0.0000
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R_mle_ind:

o O OO

families =

O OO O OO
—
w

— oo oo
N BN e i e e Rl

Y e i el e I e Bl
—Fo o000 oo
cCoococooo

1
2 19 9 19

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
par = [0.0000 0.6572 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 1.0740 0.0920 0.0000 0.0000 0.0000
0.0000 0.1332 1.1669 0.2258 0.1166 0.0000 0.0000
10.1887 1.2456 0.2398 1.2801 1.5639 0.1911 0.0000 |

[ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
par2 = | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
12,3048 0.4319 1.1276 0.4900 0.4213 0.0000 0.0000
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Gauss_mle_seq:

families =

— = = e = = O
e e = )
— === O OO
—_0 O O O O
_ O OO O OO
OO OO oo o

_ =0 OO OO

[ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
—0.0298 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
—0.0546 0.0303 0.0000 0.0000 0.0000 0.0000 0.0000
par = | 0.0071 0.0684 0.1143 0.0000 0.0000 0.0000 0.0000

0.0469 0.0892 0.1209 0.0731 0.0000 0.0000 0.0000

0.0720  0.0963 0.2525 0.2431 0.1531 0.0000 0.0000
| 0.1932  0.1911 0.3343 0.4476 0.5198 0.4182 0.0000

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
par2 = [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Gauss_mle_ind:

families =

—_— o oo o oo
=0 OO OO
— === O OO
—_ == O O OO
—_0 O O O O
_ O OO O OO
OO OO oo o

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

par = [0.0000 0.0000 0.1143 0.0000 0.0000 0.0000 0.0000
0.0000 0.0892 0.1209 0.0731 0.0000 0.0000 0.0000

0.0000 0.0963 0.2525 0.2431 0.1531 0.0000 0.0000

10.1932 0.1911 0.3343 0.4476 0.5198 0.4182 0.0000 |

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

par2 = [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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C_mle_seq:

[0 0
13 0
1 33
families= [ 1 14

5 13

5 5
(19 1

e )
Gwoooo
o oo oo
cocoococoo

—
SO OO O oo

99 4

—_
Ne}
—_

[ 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0426 ~ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
—0.0333 —0.0635 0.0000 0.0000 0.0000 0.0000 0.0000
par = | 0.1052  1.0496 1.0149 0.0000 0.0000 0.0000 0.0000

0.6791  0.0941 1.0761 0.1622 0.0000 0.0000 0.0000

0.5913  0.5800 0.2258 1.4306 0.5512 0.0000 0.0000
| 1.2566  0.1910 1.5677 1.1877 1.3108 1.0933 0.0000 |

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
par2 = [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10.4303 0.0000 0.4259 0.3795 0.4632 0.0000 0.0000
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C_mle_ind:

0
0
0

—_

4

families =

- O O O O

0
0
0
1
5
)

TrLw O o oo
T O OO OO

0
o 1
19 1 19 1

_ o O O o oo
S OO o oo

Ne}

9

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
par = |0.1052 1.0506 0.0000 0.0000 0.0000 0.0000 0.0000
0.6757 0.0000 1.0732 0.1666 0.0000 0.0000 0.0000
0.5993 0.5739 0.2258 1.4292 0.5332 0.0000 0.0000
[1.2526  0.1911 1.5664 1.1833 1.3090 1.0924 0.0000 |

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

par2 = [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10.4341  0.0000 0.4266 0.3849 0.4639 0.0000 0.0000
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D_mle_seq:

[0 0 0 0 0 0 O]

0O 00 0 0 0 O

5 0 0 0 0 0 O

families= (13 0 5 0 0 0 O

130 13 5 0 0 0

30 9 1 1 0 0
(0 2 7 19 19 19 0]

[ 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0359  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.4677 —0.0393 0.0000 0.0000 0.0000 0.0000 0.0000
par = | 0.1263  1.0380 0.6403 0.0000 0.0000 0.0000 0.0000

0.1542  0.0300 0.2182 0.4102 0.0000 0.0000 0.0000

0.1753  0.4003 1.1294 0.2881 0.1332 0.0000 0.0000
| —0.0067 0.1888  0.2121 1.2679 1.5715 1.2510 0.0000 |

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
par2 = [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000  0.0000 0.1239 0.0000 0.0000 0.0000 0.0000
10.0000 12.3072 1.1422 0.4017 0.4109 0.4278 0.0000
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D_mle_ind:

[0 0 0 0 0 0 O]

0O 00 0 0 0 0

5 0 0 0 0 0 0

families= (13 0 5 0 0 0 O

13 0 13 5 0 0 0

130 9 1 1 0 0
(0 2 7 19 19 19 0]

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.4825 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
par = [0.1293 0.0000 0.6490 0.0000 0.0000 0.0000 0.0000
0.1579 0.0000 0.2169 0.4120 0.0000 0.0000 0.0000
0.1763 0.0000 1.1294 0.2926 0.1376 0.0000 0.0000
10.0000 0.1939 0.2153 1.2684 1.5741 1.2498 0.0000 |

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
par2 = [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000  0.0000 0.1231 0.0000 0.0000 0.0000 0.0000
10.0000 12.5760 1.1404 0.4022 0.4120 0.4281 0.0000




7.4. LIST OF THE VARIABLES OF IMPORTANCE

7.4 List of the variables of importance

variable | description

wa,, Weight of article A,,.

ba,, Bundle size of article A,,.

NA,, ¢ Quantity sold of article A,, at time ¢.

Np,, + Quantity sold of product P, at time ¢.

DAt Shop price of article A,, per kilogram at time t.

Pp, 4 Avg. price of product P, per half kilogram at time ¢.

o Price of article A,, per kilogram at time ¢ at competitor y.

Ny Minimum competitors price for article A,, at time ¢.

Ch,. Average competitors basic price for article A4,, at time t.

Cp Average competitors basic price for product P, at time t.

Ve Minimal price for the remaining articles belonging to the same
product per kilogram at time .

Ve Average basic price for the remaining articles belonging to the
same product per kilogram at time t.

s, Minimal price for the substitute product per kilogram at time t.

S Average basic price for the substitute product per kilogram at
time t.

Ses Average basic price for the substitute product per half kilogram
at time t.

ada,, + Boolean flag: TRUE if article A,, appeared in the newsletter at
time ¢.

adp,, ¢ Integer value indicating how many product variants of product
P, appeared in the newsletter at time t.

ad® Boolean flag: TRUE if there was general advertisement active at

time ¢.
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