
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Aerodynamik und Strömungsmechanik

Numerical Simulation of Cavitating Flows

in Diesel Injection Systems

Felix Martin Örley

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Wolfgang Polifke, Ph.D.
Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Nikolaus A. Adams

2. Prof. Dr.-Ing. Stefan Hickel
Delft University of Technology, The Netherlands

Die Dissertation wurde am 17.12.2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Maschinenwesen am 05.10.2016 angenommen.



Felix Örley
Heßstraße 19

80798 München
Germany

felix.oerley@tum.de

c© Felix Örley, 2015

All rights reserved. No part of this publication may be reproduced, modified, re-written, or
distributed in any form or by any means, without the prior written permission

of the author.

Released December 31, 2015
Typesetting LATEX



Abstract

Numerical simulations offer great potential to gain insight into the flow dynamics of high
pressure Common Rail Diesel injection systems. In this work, we develop the necessary
building blocks to perform Large-Eddy Simulation (LES) of turbulent, cavitating flows
in Diesel injection systems including needle movement. All tools are implemented into
the block-structured in-house code INCA of the Institute of Aerodynamics and Fluid
Mechanics of the Technische Universität München.

For representing complex, moving immersed solid boundaries on Cartesian grids, the con-
servative immersed interface method is improved and extended to allow for the simulation
of weakly compressible fluid flows. By introducing an exact reconstruction of the cut-cell
properties directly based on a surface triangulation of the immersed boundary, we are
able to recover a flow evolution free of numerical artefacts. We validate our method with
canonical flows and demonstrate that the method allows for an accurate prediction of flow
problems around moving obstacles also in liquid flows with cavitation.

The cavitation model is based on a thermodynamic equilibrium assumption. We present
an extension of the single-fluid cavitation model to a monolithic, Eulerian two-fluid two-
phase model, which enables the LES of nozzle and jet flows without domain-coupling.
The model easily integrates different fluid descriptions, such as cavitating water and
cavitating ISO4113 Diesel fuel with a non-condensable gas component. We study the
collapse of isolated single bubbles, as well as the primary break-up of cavitating liquid
jets. The investigation reveals that three main mechanisms promote primary jet break-up:
collapse-induced turbulent fluctuations near the outlet, entrainment of free gas into the
nozzle, and collapse events inside the jet near the liquid-gas interface.

The analysis of the flow field inside a 9-hole common rail Diesel injector during a full
injection cycle of ISO 4113 Diesel fuel into air reveals that the opening and closing phase
are dominated by small-scale turbulence. During the main injection phase, large vortical
structures are formed in the needle volume and reach into the nozzle holes. Violent
collapse events of cavitation structures are detected during the closing phase in the nozzle
holes, and after closing in the sac hole region. A comparison with LES results with a
fixed injector needle at different lift positions shows a good agreement for large needle
lifts, while the needle movement has significant effects on of important flow features at
low needle lifts.
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1 Introduction

1.1 Motivation

Technical progress in the automotive industry is strongly driven by the desire to enhance
sustainability. This goal is directly linked to the reduction of emissions of greenhouse
gases, which is a key factor to fight global warming. Transport accounts for approximately
25% of the global CO2 emissions [6, 20]. A major part hereby is caused by passenger cars
[112].

Consequently, legislative rules of the European Union demand a reduction in CO2 emis-
sions [50] and limit particulate matter mass for Diesel engines since 2015 to not exceed a
value of 0.005 g/km (EU6) [51]. To meet future emission standards, automotive manu-
facturers and suppliers focus, for example, on the optimization of combustion engines.
Modern fuel injection systems play a key role by offering a more efficient mixing and com-
bustion process, which thus have a direct impact on fuel economy and emissions ratings
[21, 140]. With the possibility of using direct injection in gasoline and Diesel engines,
intense research focuses on the development of direct injection fuel injectors.

Direct injection is an established method to create an inflammable fuel-air-mixture in the
engine’s combustion chamber. Traditional spark ignited engines use a premixed fuel-air
mixture, which limits the compression ratio because of the possibility of knock. Spark
ignited engines are usually designed to deliver compression ratios of 7:1...13:1 [150]. The
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injection of fuel only after the compression stroke, in contrast, allows for higher com-
pression ratios of the unburnt fuel-air-mixture ranging from 16:1...24:1, thus generating a
higher output of work during one cycle [77]. Since the combustion process is triggered by
auto-ignition, direct injection becomes especially important in Diesel engines. The fresh
air in the combustion chamber undergoes substantial compression, which is increasing the
gas temperature, and finally causes the fuel to ignite. With the current push for regula-
tion of fuel usage efforts are also taken for spark-ignited engines to use direct injection,
since direct injection here also offers great potential [166, 189].

Recent developments in direct Diesel injection systems, but also in gasoline injection
systems, have increased the rail pressures to more than 2500 bar for Diesel injectors [66]
and 1000 bar for gasoline injectors [166]. This trend aims at enhancing jet break-up and
mixing to improve combustion and reduce emissions. Higher flow acceleration, however,
implies thermo-hydrodynamic effects, such as cavitation, which occurs when the liquid
evaporates locally [16]. The subsequent collapse of such vapor structures, when convected
into regions of higher pressure, causes strong shock waves in the surrounding fluid. When
vapor bubbles collapse near a solid wall, intense shock waves and high-velocity liquid jets
directed towards the wall surface are created [56, 144, 179]. Structure loads in this case
can lead to material erosion, which may be so strong that injection performance degrades
severely or devices may fail [5, 42]. On the other hand, these loads are also employed
to clean injection nozzle holes and thottles from surface deposits [18, 128], and they can
promote primary jet break-up [108, 134, 151, 178]. Furthermore, two-phase flows can be
used to maintain choked nozzle conditions, that is, a pressure-drop independent mass flow
rate [139].

1.2 Introduction to Direct Injection Systems

A simplified schematic of a common rail (CR) Diesel injection system is shown in Fig. 1.1.
A large variety of designs for injection systems has been developed, which have been tai-
lored for their specific field of operation. In the following, we briefly discuss the operation
of a sac-hole solenoid CR injector. For a detailed discussion see, e.g., Reif [150].

The functional components of the injector are summarized in Tab. 1.1. The device is
connected to the high pressure reservoir system via the feed line, A. The feed line on the
upper side links the control chamber B with the connection volume C via the Z-orifice, D.
The Z-orifice hydraulically decouples the control chamber from the rail. On the lower side,
the feed line directly connects to the ring chamber, E. When the injector is in the closed
state, Fig. 1.1(a), the control and ring chamber are under equal pressure and, together
with the needle spring, F, maintain a net downward force acting onto the injector needle,
G. The needle is thus pressed into the needle seat, H, and seals the injector.

When the control valve, I, opens, mass leaks from the control chamber via the A-orifice,
J, and the pressure in the plenum drops, Fig. 1.1(b). The control valve is connected
to a solenoid or piezo control unit (not shown here), which allows for small, but fast
displacements of the valve piston. The force imbalance on the injector needle due to the
high rail pressure lifts the needle and fuel injection is initiated. Fuel passes the nozzle
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Figure 1.1: Simplified schematic of a common rail injection system. Red and blue colors
mark regions of high and low pressure, respectively.

line, K, and is injected into the combustion chamber, L, via the nozzle holes, M, which
connect to the sac volume, N. At the end of the injection cycle, the control valve is closed
and the force balance is recovered, which closes the injector.

Cavitation is employed to control a desired mass flux passing the Z- and A-orifice under
choked conditions. In the needle seat, as well as on the needle tip and inside the nozzle
holes often undesired cavitation erosion is found, which stems from strong collapse events
of vapor clouds in these regions.
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Table 1.1: Nomenclature for simplified common rail Diesel injector

Symbol Name

A Feed line
B Control chamber
C Connection volume
D Z-orifice
E Ring chamber
F Needle spring
G Injector needle
H Needle seat
I Control valve
J A-orifice
K Nozzle line
L Combustion chamber
M Nozzle holes
N Sac volume

1.3 Numerical Simulation of Injection Systems

Understanding the flow phenomena inside an injection system is necessary to quantify the
effects of turbulence and cavitation, and their influence on jet and spray characteristics.
Characteristic fuel nozzle dimensions inside Diesel injectors usually are in the range of
tens to several hundred micrometers, which makes the instrumentation with diagnostic
equipment for an experimental flow characterization challenging [14, 126]. Other limiting
factors are high operating pressures and short intrinsic timescales imposed by inherent
flow dynamics, by functional components such as opening or closing of control valves or
the injector needle, or by multiple injections per engine cycle. Experimental assessment
of erosion damage can supply information about regions of high structural stresses, which
may be linked to the occurrence of cavitation [55], but still does not provide access to all
aspects of the underlying flow dynamics needed for optimization. Computational Fluid
Dynamics (CFD) can provide time-resolved information on flow structures in arbitrary
small geometries. Detailed numerical simulations of cavitating flows thus have become an
increasingly important tool in the design process of injection systems.

The computational approach involves a number of fundamental modelling assumptions.

1. Realistic industrial applications usually involve complex geometries. In addition
to the modelling of stationary components, the simulation of moving bodies may
become especially challenging and costly.

2. Flows of technical relevance are often dominated by turbulence. In these kinds of
flows, the smallest scales account for a large part of the energy dissipation and
therefore play a key role in the macroscopic flow behaviour.
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3. The accurate prediction of cavitation is crucial for assessing the overall flow dy-
namics. Multiple cavitation models have been developed over the last years, which
feature different complexity and thus applicability to industrial problems.

4. Since the realistic injection of fuel usually involves gas in the combustion chamber,
the interaction of (cavitating) liquid jets with a gaseous phase becomes important.

In the following, each of these aspects is briefly discussed in the context of numerical
simulations of injection systems.

1.3.1 Grid Generation and Moving Geometries

In an industrial context, the numerical method should provide a simple and easy grid
generation, while technical components of complex shape should be represented with high
accuracy. The most common approaches for grid generation can be summarized as body-
conforming grids and Cartesian grids using immersed boundary methods.

A widely used method for geometry representation is to apply body-conforming grids.
Mesh generation for structured grids in the pre-processing can be very time consuming.
As an alternative, unstructured grids may result in a higher number of mesh cells, larger
numerical errors, and a deterioration of computational efficiency.

The representation of moving obstacles in body-conforming grids by a remeshing strategy
is computationally very costly and can result in a severe degradation of the quality of
the results. Moreover, in the context of numerical simulation of realistic injection cycles,
the representation of closing and opening narrow gaps is difficult or even impossible,
since the timestep based on the CFL criterion becomes arbitrarily small for cells in the
gap region. Chimera techniques partition the computational domain into a system of
geometrically simple, body fitted overlapping grids [87], and are therefore better suited for
simulations of gap regions. Boundary information is exchanged between the underlying
grids by interpolation of the flow variables. The chimera technique often suffers from
strong pressure oscillations due to large non-conservative interpolation errors in practical,
three-dimensional cases [94], and is thus of very limited applicability to cavitating flows.

A highly performant alternative is to compute the flow field on simple Cartesian grids,
which facilitate the implementation of high order numerical schemes, and to use an im-
mersed boundary approach introduced by Peskin [142] to represent arbitrarily complex
geometries. Due to the relatively simple grid, the mesh generation is greatly simplified
and the treatment of moving geometries is facilitated. In their review of immersed bound-
ary methods, Mittal and Iaccarino [124] distinguish two fundamental approaches, namely
the continuous and discrete forcing technique.

The continuous forcing technique introduces a source term into the governing equations,
which is smeared over multiple cells across the fluid-solid interface to fulfil the boundary
condition in an approximate manner [52, 68, 143, 153]. A coupling of fluid-field and
rigid-structure motion has been successfully investigated, e.g., by De Tullio et al. [29, 30].
Although implementation of the model is straightforward and such techniques are able to
handle geometries of large complexity including moving obstacles [25, 191], a drawback
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of these methods is the spurious loss or production of mass, momentum and energy
at the interface [93, 96]. Such non-conservativity poses a particular issue for Large-
Eddy Simulations (LES), which employ coarse grids and rely on an accurate prediction
of physical flow behavior in near-wall regions over large time scales.

The discrete forcing approach, developed by Verzicco et al. [191] and Mohd-Yusof [125],
introduces a predictor-corrector formulation using a discrete forcing function in the mo-
mentum equations for enforcing a wall boundary condition. This approach allows for an
accurate representation of the boundary interface, but still lacks discrete conservativity.

The conservativity issue is met with Cartesian cut-cell methods, which were first intro-
duced by Clarke et al. [23] and Gaffney et al. [57] for inviscid flows and later extended
to viscous flows by Udaykumar et al. [186, 187, 188] and Ye et al. [196]. In this method
the control volumes at the boundaries are reshaped to fit locally the boundary surface
with a sharp interface. Representing a consistent extension of the finite volume method,
the conservation laws are strictly fulfilled both locally and globally [53]. A drawback of
cut-cell methods is that the fluid volume fraction of cut-cells may become very small and
therefore can lead to numerical instability with explicit time integration schemes, or poor
convergence with implicit methods. A stabilization of the underlying scheme is there-
fore required. One way to achieve stable time integration is to employ the cell-merging
technique introduced by Ye et al. [196] and Bayyuk et al. [10], where the fluid part
of cut-cells, whose center is located within the solid, is merged with adjacent fluid cells.
The cell merging process introduces additional complexity into the numerical framework,
since the computational stencil for all cells adjacent to the merged cell and for the merged
cell itself becomes different from that of regular internal cells. Therefore, Kirkpatrick et
al. [97] propose cell-linking rather than merging. A second approach, which is usually
referred to as flux redistribution, was introduced by [24, 141]. The authors apply a re-
distribution of the difference in mass and momentum flux to neighboring cells in a way
that preserves stability and local conservation. Joining the two methods, the so-called
mixing procedure, in which a cut-cell is mixed with one (cell linking) or multiple (flux
redistribution) surrounding cells in a conservative way, was proposed by Hu et al. [86]
for two dimensions and a compressible flow description. The method was revised and ex-
tended to multi-dimensional problems by Lauer et al. [104]. Meyer et al. [114, 115, 116]
have developed a second-order accurate conservative immersed interface method based
on a cut-cell method with conservative mixing procedure for incompressible flows. Meyer
et al. [114, 115, 116, 117] demonstrate good performance and accuracy for laminar and
turbulent flows. Applications to rigid moving-boundary problems in a compressible multi-
dimensional framework were reported by Grilli et al. [70] for laminar flows at a wide range
of Mach numbers, by Günther et al. [73, 74] for the simulation of opening and closing
of gaps in internal flows of combustion engines, and by Schneiders et al. [164] for the
interaction of multiple elastically mounted cylinders and pitching airfoils.

1.3.2 Turbulence Modeling

Until now, the accurate modelling of turbulence is one of the larges fields of ongoing
research in CFD. Over the years, three approaches, which differ in their level of compu-
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tational complexity and accuracy, have been established and are used today in academia
and industry.

Some authors suggest that turbulence does not play a major role in cavitating nozzle flows,
see, e.g., Macian et al. [109] and Salvador et al. [155]. Many numerical and experimental
studies, on the other hand, have shown that the interaction of turbulence and cavitation
is of high importance to capture dominant flow features.

In Direct Numerical Simulations (DNS), all temporal and spatial scales, which range
from the smallest scales (Kolmogorov microscales), up to the integral length scales, are
fully resolved. The computational requirements in terms of grid points scale with N ∼
Re

9/4
L [19], where ReL = UL/ν is the Reynolds number, which is proportional to the

characteristic velocity U , the characteristic length scale L, and the inverse of the kinematic
viscosity ν. For the applications in Diesel injection systems, which involve large Reynolds
numbers inside the nozzle holes, this approach is not feasible and is only applied to study
isolated sub-systems, see, e.g., Duret et al. [43].

Early studies of cavitating nozzle and injector flows were performed by solving the incom-
pressible (unsteady) Reynolds-Averaged Navier-Stokes equations (RANS). This modelling
approach has low computational cost, but may be prone to strong modelling errors. In an
industrial environment, this method is state of the art for application in the development
process. This includes simulations of submerged injection nozzles by Andriotis et al. [3],
Giannadakis et al. [62] and, more recently, Reid et al. [149]. Further examples discuss
cavitating duct flows and single hole injectors [59, 92, 147, 167, 198], five-hole injectors
[122], and six-hole injectors [173, 176].

Befrui et al. [12] and Duke et al. [40], on the other hand, expect that large vortical
structures within the nozzle flows strongly interact with cavitation structures in multi-
phase flows and therefore suggest performing Large-Eddy Simulations (LES). At a higher
cost than RANS, but significantly lower cost than DNS, this method offers high accuracy
and is especially suited for unsteady processes. Recent studies by Desantes et al. [32] for
six-hole injectors present results for various, but steady, needle lifts with incompressible
LES.

1.3.3 Cavitation Modeling and Fluid Compressibility

Based on the pioneering work of Plesset et al. [145, 146] on the growth and collapse of iso-
lated bubbles for different boundary conditions, d’Agostino and Brennen [27] and Delale
et al. [31] developed one-dimensional models of bubbly liquids. Since then, various cavita-
tion models have been proposed, which can be categorized into two main groups: two-fluid
models and single-fluid models. A comprehensive overview is given in Giannadakis et al.
[64] and Battistoni et al. [8].

With two-fluid cavitation models, an individual set of conservation equations is solved
for each species. Eulerian-Eulerian two-fluid models incorporate a mass transfer due to
phase transition between liquid and vapor phases at the phase boundary, which can be
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tracked by a sharp-interface method as proposed by, e.g., Lauer et al. [103, 104]. Eulerian-
Lagrangian two-fluid cavitation models, as investigated by Giannadakis et al. [63, 64],
consider the liquid as a continuous carrier phase in a Eulerian frame of reference, whereas
single vapor bubbles or parcels of bubbles are tracked as Lagrangian elements using the
Rayleigh-Plesset equation for growth and collapse.

Single-fluid cavitation models, which are sometimes referred to as homogenous Eulerian
models, on the other hand treat the fluid as a continuous mixture of liquid and vapor and
solve a single set of conservation equations characterized by average mixture properties,
such as mixture density and mixture viscosity. The void fraction can additionally be
transported separately as with Volume-of-Fluid (VOF) methods [85], allowing for inclusion
of non-equilibrium phase transition as proposed by Kunz et al. [100] or Yuan et al. [198].
Assuming the liquid and gaseous phase to be in thermal and mechanical equilibrium,
Schmidt et al. [159, 160] and Schnerr et al. [165] developed a model in which the two
phases are uniformly distributed within each cell without slip between the liquid and vapor
phases, neglecting surface tension and buoyancy effects. Thermodynamic equilibrium
models exhibit an intrinsic length-scaling capability, see Schmidt et al. [162], and thus
are especially suited for the application in complex flow environments, which include the
interaction with subgrid-scale models for non-resolved flow scales [48].

Some approaches discussed above are based on an incompressible description of the govern-
ing equations. Schnerr et al. [165], on the other hand, argue that considering compressible
effects for the simulation of cavitating flows to resolve wave dynamics is necessary. This
approach allows for the prediction of acoustic cavitation, and for the assessment instan-
taneous pressure fields for predicting surface loads. A compressible LES method in the
context of nozzle cavitation in a gasoline injector is, e.g., presented by Ishimoto et al.
[90].

1.3.4 Multi-Fluid Modeling

A particular challenge in the context of fuel injection into a combustion chamber is the
interaction of cavitating liquids with a non-condensable gas phase. Sou et al. [174, 175]
and Som and Aggarwal [172] find that collapse events of cavitation structures near the
nozzle outlet may enhance turbulent fluctuations, which in turn promote primary break-
up of the liquid jet. This effect is observed at a supercavitating state of the nozzle, i.e.,
when stable cavitation sheets reach from the inlet edge of the nozzle to the outlet region,
see also Shibata et al. [170]. A simultaneous simulation of the cavitating nozzle flow and
the liquid jet is necessary to capture the effect of cavitation structures on jet break-up.
Models in the literature can be classified into Lagrangian and Eulerian multi-fluid models.
Additionally, hybrid approaches, so-called Eulerian-Lagrangian, are distinguished.

Lagrangian particle methods introduced by Dukowicz [41] significantly reduce the required
mesh resolution and are adopted by Som et al. [173], who consequently consider the effects
from nozzle flows when coupling with a subsequent spray simulation.
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To correct for potential inconsistencies of the two-phase models in the two separate sim-
ulations, a combination of the models denoted as Eulerian-Lagrangian-Spray and Atom-
ization (ELSA) model by Blokkeel et al. [15] switches from a Eulerian description of
the nozzle flow to a Lagrangian particle simulation of liquid droplets in the break-up
region. This approach, however, does not incorporate compressibility effects inside the
liquid. Wang et al. [193] propose an eight-equation model based on the work of Saurel
et al. [157, 158], to assess both internal and external 2-D nozzle flows simultaneously
including cavitation effects by a stiffened gas equation of state, whereas gas and vapor
are represented as one single miscible phase.

Simulations of breaking liquid jets were recently presented by Menard et al. [113] and
Desjardins and Pitsch [33] in an Eulerian framework with a VOF method. The authors
apply the method only to external flows. To assess the impact of two-phase nozzle flow
additional simulations of nozzle flows are required. Battistoni et al. [8] compare a non-
equilibrium thermal mixture model with an Eulerian multi-fluid description with Rayleigh
bubble dynamics for phase change. In their simulations of cavitating nozzle flows a free
gas content was considered, but effects on the primary jet break-up were not assessed.
Ishimoto et al. [90] performed the first fully coupled simulation of cavitating nozzle
flow and jet break-up with a fully compressible, barotropic LES model based on a VOF
method.

1.4 State of the Art: Diesel Injector Simulations

Recently, several attempts to include the full, realistic geometry of the Diesel injection
system in numerical simulations to assess the interaction of needle movement onto the
liquid jet during the injection process were presented.

Margot et al. [110] studied a sac-type single-hole injector using an incompressible RANS
approach with a moving mesh strategy. The authors found that the flow inside the nozzle
and near the exit is strongly affected by the needle position. Greif et al. [67] presented
numerical RANS results with an Eulerian multi-fluid model for an eight-hole injector.
In their work, also the effect of off-axis needle displacement in multi-hole injectors was
studied. Unsteady needle lift was based on re-meshing the fluid domain. RANS studies of
a six-hole including a unsteady needle lift were conducted by He et al. [76] and Brusiani
et al. [17] using a moving mesh strategy. The studies again confirmed that the needle
motion is an important parameter to be considered in realistic simulations. Arienti and
Sussmann [4] presented incompressible simulations of one- and six-hole injectors including
unsteady needle lift by a levelset-based Cartesian cut-cell immersed boundary method.
The authors studied the effect of needle motion onto jet break-up, but did not include
a cavitation model. To the authors’ knowledge, Battistoni et al. [9] were the first to
apply a Cartesian cut-cell method to simulate five-hole Diesel injector nozzle and jet flow
characteristics. The authors applied the method to study the effect of off-axis movement
onto the flow field, but no particular focus was put on assessment of cavitation erosion
prediction. The same holds for the studies of Zhao et al. [199]. Koukouvinis et al. [98]
recently for the first time correlated pressure peaks caused by vapour pocket collapse
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events with surface erosion in industrial injectors using a fully compressible LES model
including a moving needle.

In the literature presented above, all authors concluded that needle movement is impor-
tant in the investigation of injection processes. Cavitation has been studied by most of
the authors, but has not been discussed in detail. An evaluation in terms of structural
erosion risk during the injection remains an open question. Many studies furthermore
only consider submerged nozzles, and neglect the effect of non-condensable gas. In this
thesis, we aim at addressing these challenges.

1.5 Contribution and Accomplishments

In this work, we follow an immersed boundary approach for representing the fluid-solid-
interface. We apply a compressible implicit LES model, which is paired with a homogenous
mixture cavitation model to study the dynamics of turbulence and cavitation inside injec-
tion systems. An Eulerian two-fluid two-phase mixture model for the liquid-gas interface
is chosen.

The main technical achievements for the numerical simulation of complex flows and the
physical insights into fluid dynamics related to Diesel injection systems gained during the
course of this work are:

1. Development and validation of an extension to the existing Conservative Immersed
Interface Method (CIIM) of Meyer et al. [114, 115, 116] and Grilli et al. [70] for the
simulation of cavitating liquids interacting with moving boundaries.

2. Development of a generalized thermodynamic description for cavitating liquids with
different equations of state to compute fuel flows inside injection systems.

3. Extension and validation of existing cavitation models to a two-fluid formulation to
study the effect of non-condensible gas onto jet break-up.

4. Numerical simulation of the flow inside a nine-hole solenoid common rail (CR) Diesel
injector including the unsteady needle movement during a full injection cycle.

1.6 Outline

This thesis is divided into seven chapters. All chapters are summarized at the end of
the corresponding section. After the introduction, the physical model and governing
equations are presented in Chapter 2. The focus here is put on the thermodynamic
models and solution strategies utilized in this work. In Chapter 3, the numerical method
is described, which includes a brief introduction to Implicit Large-Eddy Simulation and
the modifications of the ALDM scheme applied for cavitating flows. Furthermore, details
on the cut-element based conservative immersed boundary method are presented. In
Chapter 4, the novel immersed boundary method is validated against well-established
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test-cases, such as the flow around an oscillating cylinder in a fluid at rest, an in-line
oscillating cylinder in a free stream, and two moving cylinders interacting with each other.
We moreover show results for a cavitating 2-D mixer and for a closing 3-D high-pressure
single-fluid liquid fuel injector control valve with inertia-induced and turbulence-induced
cavitation. A validation for the thermodynamic single-fluid two-phase and two-fluid two-
phase model is provided in Chapter 5. In this section, we simulate single bubble collapse
events, and an experimental reference configuration of a cavitating water jet injected
into air. We reveal the main mechanisms for the early stages of primary break-up of
cavitating liquid jets. Finally, numerical simulation results for the flow field inside a nine-
hole solenoid injector during an instationary injection process is presented in Chapter 6.
The work is concluded in Chapter 7, where the main findings are summarized and an
outlook for future work is given.
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2 Physical Model

In the following chapter the governing physical equations for the description of a fluid and
the thermodynamic closure models applied in this work are introduced.

This section has partially been published in Örley et al. [131, 132, 134].

2.1 Governing Equations

We consider the three-dimensional, fully compressible Navier-Stokes equations in conser-
vative form

∂U
∂t

+∇ · F(U) = 0. (2.1)

The state vector U = [ρ, ρu1, ρu2, ρu3, ρE, ρξ] contains the conserved variables density ρ,
momentum ρu, internal energy ρE = ρe+ 1

2
ρukuk, and fluid mass fraction ρξ, if required

by the thermodynamical model. The numerical flux vector F(U) is divided into advection
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Ci(U), and surface stresses due to pressure Pi(U) and shear Si(U) as

Fi(U) = Ci(U) + Pi(U) + Si(U) =


uiρ
uiρu1

uiρu2

uiρu3

uiE
uiρξ

+


0
δi1p
δi2p
δi3p
ukδikp

0

−


0
τi1
τi2
τi3
qi
0

 , (2.2)

where p is the static pressure and τij denotes the viscous stress tensor

τij = µ

(
∂jui + ∂iuj −

2

3
δij∂kuk

)
, (2.3)

with µ being the dynamic viscosity. The heat flux, where applicable, is computed from
Fourier’s law

qi = k∂iT, (2.4)

with k being the heat conductivity of the fluid and T the static temperature.

2.2 Thermodynamic Models

For closing the Navier-Stokes equations introduced in Eq. 2.1, a suitable equation of state
is necessary. In this work, we either use ideal gas, or liquid fluid flows including phase
change and an optional non-condensable gas component. The pure liquid, liquid-vapor-
mixture, and non-condensable gas components are denoted with subscript L, M , and G,
respectively. In the following, the different equations of state and solution procedures for
the individual models are introduced.

2.2.1 Gas Phase

For an ideal gas flow, we distinguish between a framework including full thermodynamics
(i.e., with energy equation), and a barotropic approach, which can be isentropic, or, in
this work, isothermal.

Ideal Gas

In the full thermodynamic case, the Navier-Stokes equations are solved in non-dimensional
form. The pressure p is computed from the total energy

E =
1

γ − 1
p+

1

2
ρuiui. (2.5)
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The equation of state for an ideal gas is defined as

T = κMa2 p

ρ
(2.6)

with the reference Mach number Ma and the ratio of specific heats κ = 1.4. Temperature
dependence of the viscosity and thermal conductivity is accounted for by a power law

µ =
T 0.75

Re
(2.7)

and
k = µ

1

(κ− 1)Ma2Pr
(2.8)

with the reference Reynolds number, Re, and Prandtl number, Pr.

Isothermal, Ideal Gas

In the context of a two-fluid approach, see below, the gas phase is modelled as an isother-
mal, ideal gas

ρG =
p

RTref
(2.9)

at reference temperature Tref = 293.15 K. RG denotes the specific gas constant, we use
RG = 287.06 J/(kg K) for air. The speed of sound for air at reference temperature is

cG =
√
κRGTref = 343.24 m/s. (2.10)

2.2.2 Single-Fluid Cavitation Model

In the following, the single-fluid cavitation model is presented. After a brief discussion of
the homogenous mixture approach, we introduce cavitation models for liquid water and
for ISO 4113 Diesel fluid.

Homogenous Mixture Cavitation Model

Assuming a high concentration of nuclei, a liquid starts to evaporate where the local
pressure drops below a critical value, that is, p < pc. A straightforward approach is to
use the saturation pressure of the liquid phase [62, 198] as the critical pressure, i.e.,

p < psat. (2.11)

The formation of vapor can then be modelled by a homogenous mixture model in thermal
and mechanical equilibrium. The actual vapor-liquid interface, that may consist of several
small vapor bubbles inside one computational cell, is not reconstructed, unlike with sharp-
interface methods, e.g., Lauer et al. [103, 104]. Surface tension thus is neglected.
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In the framework of a finite volume representation the cell-averaged density may be written
as

ρ = αvρvap + (1− αv)ρliq, (2.12)

where αv denotes the vapor volume fraction, and ρliq and ρvap are the densities of liquid
water and pure vapor, respectively. Assuming that phase change occurs instantaneously
and in local thermodynamic equilibrium, the densities of liquid and vapor are ρliq = ρsat,liq
and ρvap = ρsat,vap if 0 < αv < 1. Hence we can compute the local vapor volume fraction
from

αv =
Vvap
V

=

0 , ρ ≥ ρsat,liq
ρsat,liq − ρ

ρsat,liq − ρsat,vap
, else.

(2.13)

Vvap denotes the part of the volume V that is occupied by vapor, and ρsat,liq and ρsat,vap
are the saturation densities of liquid water and pure vapor, respectively.

The homogenous mixture cavitation model described below introduces separate equations
of state for the liquid and the liquid-mixture phase, which are modelled independently
and thus offer a way to include models of different complexity. Depending on the local
vapor volume fraction, we switch between the barotropic equations of state for the pure
liquid (αv = 0), and a liquid-vapor mixture (0 < αv < 1). Often thermodynamic tables
may be used to relate the thermodynamic quantities of complex fluids. In this work, since
no data for Diesel-like fluids is available and the analytical equations of state are easy to
solve, we do not follow this approach.

The homogenous-mixture model for water and Diesel-like fluid flows has been extensively
validated, e.g., for turbulent wall-bounded water flows by Hickel at al. [84], and LES of
turbulent, wall-bounded fuel fuel flows in a generic throttle by Egerer et al. [48].

Single-Fluid Cavitation Model for Water based on Tait Equation

Saurel et al. [156] and, e.g., Schmidt et al. [163] propose to model liquid water as a
barotropic fluid by a modified Tait law

ρL = ρsat,liq ·
(

p+B

psat +B

)1/N

, p ≥ psat, (2.14)

where psat is the saturation pressure for water, and N = 7.1 and B = 3.06 × 108 Pa
are fluid-specific parameters, see Tab. 2.1. The saturation quantities are temperature
dependent. Throughout this work we use numerical values of psat = 2340 Pa and ρsat,liq =
998.1618 kg/m3 for water at a reference temperature of Tref = 293.15 K. A comprehensive
study of the Tait model is given by Sezal [169].

The speed of sound of the liquid phase can be computed from

cL =

(
N · (p+B)

ρ

)1/2

. (2.15)
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Table 2.1: Fluid parameters for water at Tref = 293.15 K.

Property Unit Value

N [-] 7.1
B [×108 Pa] 3.06
psat [Pa] 2340
ρsat,liq [kg/m3] 998.1618

Assuming phase change along an isentropic equilibrium path in the mixture region, we
integrate the definition of the isentropic equilibrium speed of sound of a homogenized
two-phase mixture [54]

cM = ceq =
Lρsat,liq√
cp,liqT

1

ρ
+HOT, (2.16)

which introduces the latent heat L, and compute the local equilibrium density as

ρM =

(
1

ρsat,liq
− p− psat

C

)−1

, p ≤ psat, (2.17)

neglecting higher order terms, HOT . The parameter C, as well as the saturation density
for vapor, ρsat,vap, are temperature dependent. For the chosen reference temperature
Tref = 293.15 K, we use the following numerical values: C = 1468.54 Pa kg/m3 and
ρsat,vap = 0.01731 kg/m3.

Viscous effects in the two-phase fluid are considered by a mixture viscosity model following
Beattie et al. [11] as

µ = (1− αv)
(

1 +
5

2
αv

)
µliq + αvµvap, (2.18)

where the viscosities for the liquid water and vapor phase at the reference temperature
are µliq = 1.002× 10−3 Pa s and µvap = 9.727× 10−6 Pa s, respectively.

Simplified Single-Fluid Cavitation Model for Water

To obtain a formulation for liquid water and water vapor to include in the two-fluid two-
phase model, see below, a model based on the definition of the isentropic speed of sound

c2 =
∂p

∂ρ

∣∣∣∣
s=const

(2.19)

is used. Assuming a constant speed of sound c = const. for each phase, that is, liquid and
liquid-vapor mixture, integration of Eq. 2.19 from saturation density to the cell averaged
density leads to a linearized equation of state

ρ = ρsat,liq +
1

c2
(p− psat). (2.20)
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Figure 2.1: Comparison of linearized equation of state for liquid water to modified Tait
equation [156] and NIST data [105].

Table 2.2: Relative error of linearized equation of state.

Pressure p [×105 Pa] ρNIST (p) [kg/m3] ρlin(p) [kg/m3] |ε|
1.0 998.207 998.206 0.00038%
10.0 998.620 998.616 0.00042%
100.0 1002.692 1002.712 0.00116%
2000.0 1071.433 1089.179 1.41331%

For purely liquid water, that is, p > psat, the speed of sound is c = cL = 1482.35 m/s
at ambient conditions. Comparison to more accurate models, such as the modified Tait
equation proposed by Saurel et al. [156], or NIST data for liquid water [105], shows
negligible deviation even for high pressures, as shown in Fig. 2. The error of the linearized
equation of state relative to accurate NIST data for liquid water [105]

ε =
ρNIST − ρlin

ρNIST
(2.21)

is shown in Tab. 2.2 for a pressure range up to 2000 bar.

We assume that phase change occurs instantaneously and in local thermodynamic equi-
librium. In this case, the same equation of state as introduced in Eq. 2.20 may be used,
but a different speed of sound is employed.

Franc et al. [54] derive the equilibrium speed of sound in the two-phase region as

1

ρc2
=

α

ρvc2
v

+
1− α
ρlc2

l

− (1− α)ρlcp,lT

(ρvL)2
. (2.22)

Neglecting the last term results in the ’frozen’ speed of sound. Franc et al. provide
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numerical values for the two different definitions of the speed of sound at a void fraction of
50% in water, for the equilibrium state ceq = 0.08 m/s, and for the frozen state cfrozen = 3
m/s. Brennen [16] finds that including phase-change effects results in a speed of sound
which lies between these two bounds.

We consider an average of the speed of sound between a frozen and an equilibrium isen-
tropic phase change in the two-phase region. We use a numerical value of c = cM = 1 m/s
in the two-phase region, which satisfies the observation of Brennen.

The combined equation of state for the liquid and liquid-vapor-mixture fluid component
in a linearized approach is summarized as

ρ = ρsat,liq +
1

c2
(p− psat), c =

{
cL, p ≥ psat

cM , p < psat
. (2.23)

Single-Fluid Cavitation Model for ISO 4113 Diesel Fluid

For the simulation of ISO4113 air-free liquid Diesel-like fluid flows we apply a cavitation
model based on the modified Tait equation, Eq. 2.14. This model is later extended to a
generalized two-fluid two-phase model.

To determine the two fluid-specific parameters for the liquid phase of ISO 4113 Diesel
fuel, N and B, we reformulate Eq. 2.14 and Eq. 2.15 as

ρc2

(
ρ

ρsat,liq

)N
− ρc2 − (p− psat)N

(
ρ

ρsat,liq

)N
= 0 (2.24)

and
B =

ρc2

N
− p. (2.25)

We choose a specific reference state, {pref , ρref , cref}, following Dongiovanni et al. [37], see
Tab. 2.3. The saturation quantities for the pressure and density, psat and ρsat,liq are found
in Egerer et al. [48]. We assume a barotropic change of state at reference temperature
Tref = 293.15 K in the liquid regime. Actual inlet temperatures for realistic injectors
in engines can be much larger. In the simulation of a nine-hole Diesel injector, unlike
previous studies where we employ isentropic or fully energetic fluid models, we reproduce
the underlying assumptions of the reference data of Huber and Ulbrich [88], who performed
isothermal computations of the injection cycle at this reference temperature using a one-
dimensional multi-domain simulation model.

The numerical values for the Tait coefficients N , B, as well as the saturation quantities
psat and ρsat,liq for ISO 4113 Diesel fluid at the reference temperature are summarized in
Tab. 2.4.

We compare our model with an equation of state proposed by Dongiovanni et al. [37],

ρ(p, T ) = Kρ1 +

[
1− exp

(
− p

Kρ2

)]
Kρ3p

Kρ4 , (2.26)
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Table 2.3: Reference point for computation of Tait parameters.

Property Unit Value

pref [×108 Pa] 1.0
ρref [kg/m3] 864.7
cref [m/s] 1704.8

Table 2.4: Fluid parameters for isothermal ISO 4113 Diesel fluid at Tref = 293.15 K.

Property Unit Value

N [-] 11.469
B [×108 Pa] 1.191
psat [Pa] 2218.0
ρsat,liq [kg/m3] 819.627

where Kρ1 = 822.8 kg/m3, Kρ2 = 145.8 Pa, Kρ3 = 0.213 kg/m Pa−Kρ4 , and Kρ4 = 0.76
are here evaluated at Tref . Our model for the liquid phase based on the Tait equation is
in good agreement with reference data for pressures up to over 2000 bar, see Fig. 2.2.

In the two-phase region, that is, p < psat, we use a formulation of the linearized equation
of state based on the integrated form of the isentropic speed of sound, see Eq. 2.20, and
choose a constant mixture speed of sound

cM =

(
psat
ρsat,liq

)1/2

. (2.27)

This leads to the linearized equation of state

ρM = ρsat,liq +
1

c2
M

(p− psat), p < psat. (2.28)

We limit the density to a value of αv,lim = 99.5%.

Numerical values for the viscosities for the liquid and vapor phase of ISO4113 Diesel fuel
at the reference temperature are µliq = 3100 × 10−6 Pa s and µvap = 0.1 × 10−6 Pa s,
respectively.

2.2.3 Multi-Fluid Model for Cavitating Flows

The homogenous-mixture single-fluid model for cavitation introduced in Sec. 2.2.2 is ex-
tended by a component of non-condensable gas to a two-fluid mixture model. This ap-
proach is proposed by Mihatsch [118] for degassing effects in cavitation flows and erosion
prediction. The method was partially implemented and extensively tested by T. Trummler
[185].
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Figure 2.2: Comparison of barotropic equation of state in comparison with reference data
of Dongiovanni et al. [37] for ISO4113 Diesel fuel.

non-condensible gasliquid

vapor liquid-vapor-gas mixture

Figure 2.3: Homogenous-mixture model inside a computational cell of a finite volume dis-
cretization: resolved phase interfaces (left); numerical approximation (right).

Eulerian Two-Fluid Model

In this work, we propose a simple, closed-form barotropic two-fluid cavitation model
including non-condensable gases. The thermodynamic model is an extension of the com-
pressible framework for single-fluid implicit Large-Eddy Simulations of turbulent, cavi-
tating flows, recently presented by Egerer et al. [48]. Compared to many previous ap-
proaches, such as a monolithic, Eulerian description of cavitating liquid and gas enables
the analysis of nozzle and jet flows in one single simulation without domain-coupling issues
or parameter calibration. Wave dynamic effects, which may propagate from the nozzle
into the jet, and vice-versa, are fully represented. The framework allows to easily integrate
fluid models with different properties and complexity for a broad range of applications.

In Fig. 2.3, the principle of the homogenous-mixture model inside a computational cell in
the framework of a finite volume discretization is sketched. The actual interface of water
in its liquid and vaporous state, that may consist of several discrete small vapor bubbles
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inside one computational cell, as well as the interface between liquid (or liquid-vapor)
and non-condensable gas, are not reconstructed, unlike with sharp-interface methods,
e.g., Lauer et al. [103]. Surface tension is thus neglected. Instead, we consider the cell-
averaged solution assuming negligible slip between the phases, that is, u = uL = uM = uG,
and equal pressure p = pL = pM = pG.

The volume fraction of component Φ = {L,M,G} inside a control volume V is

βΦ =
VΦ

V
with

∑
Φ

βΦ = 1. (2.29)

Accordingly, the mass fraction with respect to mass m is defined as

ξΦ =
mΦ

m
with

∑
Φ

ξΦ = 1. (2.30)

The density ρΦ of component Φ can be written as

ρΦ =
mΦ

VΦ

=
ξΦm

βΦV
=
ξΦ

βΦ

ρ, (2.31)

and the averaged mixture density is

ρ =
m

V
=
∑

Φ

βΦρΦ. (2.32)

By using barotropic thermodynamic closure relations for each phase, the equation of
state can be formulated in a suitable way to solve for the cell-averaged pressure p = p(ρ).
Hence, mixtures of non-condensable gas and pure vapor / pure liquid may occur locally,
since we differentiate between purely liquid and vapor phase in water only based on the
local pressure. Inter-diffusion of fluids occurs only due to turbulent mixing and numerical
diffusion.

Finally, the local vapor volume fraction in the two-fluid two-phase model can be computed
from

αv =
Vvap
V

=

{
0 , ρ ≥ ρsat,liq

βM
ρsat,liq−ρM

ρsat,liq−ρsat,vap , ρ < ρsat,liq.
. (2.33)

Fluid viscosity in the two-fluid two-phase model is considered following Bensow and Bark
[13] as

µmix = βLM [(1− αv)µliq + αvµvap] + βGµG, (2.34)

where the viscosities for the liquid, vapor-liquid-mixture, and gas phase are evaluated at
the reference temperature Tref = 293.15 K, respectively. The numerical values for water
and ISO 4113 Diesel fluid are summarized in Tab. 2.5.

The model moreover offers a straightforward way for incorporating further extensions,
such as the solution of gas into the liquid and degassing effects by adding a source term to
the gas mass fraction transport equation. This may especially have an effect on cavitation
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Table 2.5: Numerical values for viscosity of different phases at reference temperature
Tref = 293.15K.

Fluid µliq [Pa s] µvap[Pa s] µG[Pa s]

Water 1.002× 10−3 9.727× 10−6 18.24× 10−6

ISO4113 Diesel Fluid 3.1× 10−3 0.1× 10−6 18.24× 10−6

collapse characteristics and, consequently, on the liquid jet when air is entrained into the
nozzle.

Coupling of Multi-Fluid Model with Simplified EOS

A simple model for water jet flows injected into ambient air was developed by integrating
the simplified equation of state for cavitating water flows introduced in Eq. 2.23 into the
two-fluid two-phase framework. To obtain a closed form equation of state for all three
phases, the individual closure relations for each phase are combined via Eq. 2.32 to

ρ = βLM

[
ρsat,liq +

1

c2
(p− psat)

]
+ βG

p

RGTref
, c =

{
cL, p ≥ psat

cM , p < psat
. (2.35)

Following Eq. 2.29, which leads to the relation βLM = 1 − βG for a two-fluid mixture,
Eq. 2.35 can be written as a function of the gas mass fraction ξG using Eq. 2.31 as

ρ =

(
1− ξG

ρRGTref
p

)(
ρs,liq +

1

c2
(p− psat)

)
+ ξGρ, c =

{
cL, p ≥ psat

cM , p < psat
. (2.36)

The mixture pressure p is now obtained by solving the quadratic equation. The volume
fraction of the liquid/liquid-vapor phase βLM is computed from Eq. 2.31. In practice, we
first solve for p for water in a purely liquid state, that is, the speed of sound is set to
c = cL. If no solution is found, we repeat this step for c = cM .

Coupling of Multi-Fluid Model with Tait EOS

For the simulation of cavitating Diesel-like liquids interacting with a non-condensible gas
phase we combine our two-fluid two-phase approach with our model for a Tait fluid,
Eq. 2.14, and choose a set of Tait parameters {B,N}.

For a purely liquid flow, that is, ξG = 0 and p > psat, the Tait equation, Eq. 2.14,
applies directly. Equally, for a mixture fluid without local gas component, that is, ξG = 0
and p < psat, we use the linear approach with a mixture speed of sound as defined in
Eq. 2.27.
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In the case of a local mixture of liquid/mixture and non-condensable gas component, that
is, 0 < ξG < 1, Eq. 2.32 can be written as

ρ = βL/MρL/M + βGρG (2.37)
= (1− βG)ρL/M + βGρG. (2.38)

Combining Eqs. 2.31 and 2.9 leads to

βG = ξG
ρRTref
p

, (2.39)

which can be used to rewrite Eq. 2.38 as

ρ = (1− ξG
ρRTref
p

)ρL/M + ξGρ. (2.40)

For obtaining the pressure p from the above equation, we first evaluate the equation of
state for a liquid-vapor-mixture, Eq. 2.28, for the fuel density ρL/M . This leads to the
expression

(1− ξG
ρRTref
p

)(ρsat,liq +
1

c2
v

(p− psat))− (1− ξG)ρ = 0. (2.41)

which can be solved analytically. If we find that the resulting pressure is higher than the
saturation pressure of the liquid, we repeat this process using the equation of state for
the liquid phase, Eq. 2.14, as(

1− ρξGRT

p

)
ρsat,liq

(
p+B

psat +B

)1/N

− (1− ξG)ρ = 0. (2.42)

Figure 2.4 visualizes the functional behavior of Eq. 2.42. The non-linear equation p =
p(ρ, ξG) is solved with an iterative procedure.

We use an iterative solution procedure based on the Regula-Falsi-method, see, e.g.,
Dahlquist et al. [28], to compute the average cell pressure. The solution procedure is
summarized as follows.

We define the residual

g(p) =

(
1− ρξGRT

p

)
ρsat,liq

(
p+B

psat +B

)1/N

− (1− ξG)ρ. (2.43)

First, we determine a starting interval [p1, p2] based on the local pressure of the previous
timestep, pold as shown in Algorithm 1.

Once the initial pressure interval is known, we run the Regular-Falsi method [28] to
compute the updated cell pressure. The implementation used in this work is summarized
in Algorithm 2.

The termination criteria are set to glim = ε for the residual, where ε is a small number,
and ilim = 100 for the number of iterations. Since the functional behavior of Eq. 2.43 is
well suited for iterative determination of roots usually only few iterations are necessary
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Figure 2.4: Average density over average cell pressure of the two-fluid two-phase fluid
model based on the Tait equation for a range of different non-condensible gas
mass fractions.

Algorithm 1 Find Start Interval [p1, p2]

g1 ← g(pold)
g2 ← g(max(psat, pold/2))
if g1 · g2 < 0 then
p1 ← pold
p2 ← max(psat, pold/2)

else if g1 > 0 and g2 > 0 then
while g(p1) · g(p2) > 0 do
p1 ← p2

p2 ← max(psat, p2/2)
end while

else
while g(p1) · g(p2) > 0 do
p2 ← p1

p1 ← 2 · p1

end while
end if
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Algorithm 2 Determine p with Regula-Falsi-method
g′ ← g′init
g1 ← g(p1)
g2 ← g(p2)
while |p2 − p1| > plim, |g′| > glim, i < ilim do
s← g(p2)−g(p1)

p2−p1
p′ ← p1 − g1/s
g′ ← g(p′)
if g2 · g′ < 0 then
p1 ← p2, p2 ← p′

g1 ← g2, g2 ← g′

else
p1 ← p1, p2 ← p′

g1 ← m · g1, g2 ← g′

end if
i← i+ 1

end while

to obtain a solution in the range of plim = 1 Pa. The adjustment factor is set to m = 0.5
(Illinois algorithm [38]).

2.3 Summary

This chapter has introduced the governing equations, i.e., the Navier-Stokes equations,
which are used to model the fluid flows investigated in this work. The thermodynamic
models used in this work have been discussed. Various models for closing the set of
governing equations are available, which range from ideal and isothermal gas assumptions,
to cavitation models based on the homogenous mixture approach. A single-fluid model,
which allows to consider cavitation effects in a liquid, has been presented. The liquid and
liquid-mixture phases are modelled either by a formulation of a generalized Tait equation
for fluids, or a simplified linearized model based on the definition of the isentropic speed
of sound. Introducing a non-condensible gas component, the cavitation model is extended
to a barotropic two-fluid two-phase mixture model. The equation of state is solved either
directly, where possible, or by an iterative method.
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In the following, we introduce our numerical approach. We briefly discuss the principle
of implicit LES and then present the approach for cut-element based immersed boundary
methods.

3.1 Mathematical Model

The computational domain Ω is divided into a fluid and solid domain, Ωf (t) and Ωs(t),
which are separated by the interface Γ(t) and may be time dependent. We solve the
integral form of Eq. 2.1, where the integral is taken over the volume Ωi,j,k ∩ Ωf (t) of a
computational cell (i, j, k) and time step ∆t = tn+1 − tn as∫ tn+1

tn

∫
Ωi,j,k∩Ωf (t)

(
∂U
∂t

+∇ · F(U)

)
dxdydz dt = 0. (3.1)

Applying Gauss’ theorem on Eq. 3.1 results in∫ tn+1

tn

∫
Ωi,j,k∩Ωf (t)

∂U
∂t

dV dt+

∫ tn+1

tn

∫
∂(Ωi,j,k∩Ωf (t))

F(U) · n dS dt = 0, (3.2)

where ∂(Ωi,j,k ∩ Ωf (t)) denotes the wetted surface of a computational cell (i, j, k). The
above equations are valid for a general spacial discretization. In the following, we consider

27



3 Numerical Method

i, j, k

SOLID

FLUID

Γi,j,kA
i−

1
/
2
,j
,k

∆
y
∆
z

A
i+

1
/
2
,j
,k

∆
y
∆
z

Ai,j+1/2,k∆x∆z

Ai,j−1/2,k∆x∆z

αi,j,k

Figure 3.1: Two-dimensional sketch of a cut-cell (i, j, k).

a Cartesian mesh. Applying a volume average of the conserved variables

Ui,j,k =
1

αi,j,kVi,j,k

∫
Ωi,j,k∩Ωf (t)

U dxdydz, (3.3)

where Vi,j,k = ∆xi∆yj∆zk corresponds to the total volume of a cell Ωi,j,k of a Cartesian
grid, αi,j,k corresponds to the fluid volume fraction, which becomes 0 < αi,j,k < 1 in
cut-cells, and Ui,j,k is the vector of volume-averaged conserved quantities in the cut-cell,
leads to

αn+1
i,j,kU

n+1

i,j,k

=αni,j,kU
n

i,j,k

+
∆t

∆xi

[
Ai−1/2,j,kFi−1/2,j,k − Ai+1/2,j,kFi+1/2,j,k

]
+

∆t

∆yj

[
Ai,j−1/2,kFi,j−1/2,k − Ai,j+1/2,kFi,j+1/2,k

]
+

∆t

∆zk

[
Ai,j,k−1/2Fi,j,k−1/2 − Ai,j,k+1/2Fi,j,k+1/2

]
+

∆t

Vi,j,k
Xi,j,k.

(3.4)

Here, F and A are the average numerical flux over a cell face and the effective fluid
wetted cell face aperture of a cut-cell, respectively. Time-integration of the state vector is
shown here for a forward Euler time integration scheme with a timestep ∆t, which, e.g.,
corresponds to one sub-step when using a higher-order Runge-Kutta method. A sketch
of a two-dimensional cut-cell is shown in Fig. 3.1. The flux Xi,j,k across the interface
Γi,j,k = Γ(t) ∩ Ωi,j,k, which is only present in cells cut by the interface, is discussed in
detail below.
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3.2 Turbulence Modeling

In the following, a brief introduction to the implicit LES model is presented. The dis-
cussion is based on the work of Hickel et al. [82], who in their studies implemented and
validated the compressible version of the implicit LES scheme used in this work.

3.2.1 Introduction to Large-Eddy Simulation

For simplicity, consider a generic nonlinear one-dimensional transport equation

∂tϕ+ ∂xF (ϕ) = 0. (3.5)

Following Leonard [106], a convolution of Eq. 3.5 with a homogenous filter kernel G, which
yields a linear low-pass filter operation

ϕ̄(x) =

∫ +∞

−∞
G(x− x′)ϕ(x′)dx′ = G ∗ ϕ, (3.6)

results in a transport equation for the filtered continuous solution ϕ̄,

∂tϕ̄+G ∗ ∂xF (ϕ) = 0. (3.7)

Subsequent projection onto a numerical grid with a constant spacing h, which yields
xN = {xj}, leads to the discretized form of Eq. 3.7

∂tϕ̄N +G ∗ ∂xFN(ϕN) = −G ∗ ∂xGSGS. (3.8)

The grid projection resembles an additional filtering operation in spectral space with cut-
off at the Nyquist wavenumber kN = π/h. Recovering the grid-projected part of the
unfiltered solution, which is necessary to compute the non-linear term in Eq. 3.8, states
the soft deconvolution problem, ϕN = G−1 ∗ ϕ̄N , and is computed by an inverse-filter
operation. Since wavenumbers with k > kN cannot be represented, the solution of this
operation is ϕN 6= ϕ. This results in a subgrid stress tensor

GSGS = F (ϕ)− FN(ϕN). (3.9)

To find an appropriate model for GSGS states the hard deconvolution problem.

Explicit LES models aim at directly modelling the subgrid stress tensor. Frequently used
models include the classical approach of Smagorinsky [171], the scale similarity model of
Bardina et al. [7], and the Dynamic Smagorinsky Model of Germano et al. [60]. An
overview on explicit LES modelling and common approaches is provided, e.g., in Garnier
et al. [58].

In contrast to explicit SGS models, implicit LES combines turbulence modelling and
numerical discretization of the conservation equations. This approach is based on the
premise that the numerical truncation error of the discretization GN on grids usually used
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for LES studies can outweight the modeling error, as has been shown, e.g., by Ghosal [61]
and Kravchenko and Moin [99].

3.2.2 ALDM

In this work, we use an implicit LES approach based on the Adaptive Local Deconvolution
(ALDM) method by Hickel et al. [80, 82]. ALDM is a nonlinear finite volume method and
incorporates free parameters that control the truncation error. An implicit SGS model
that is consistent with turbulence theory is obtained through parameter calibration, see
Refs. [79, 80, 81] for details, such that the numerical error corresponds to the modeling
error, i.e.

GN ≈ −G ∗ ∂xGSGS. (3.10)

The compressible version of ALDM [82, 83] can capture shock waves while smooth pressure
waves and turbulence are propagated without excessive numerical dissipation. We also
use ALDM for two-dimensional laminar test cases, where it acts as a slightly dissipative
second-order centered scheme. ALDM is used to discretize the hyperbolic terms of the
Navier-Stokes equations. The contribution to the flux from viscous stresses and heat
conduction is discretized by a linear second-order centered scheme.

The discretization is based on a finite volume framework. This corresponds to a convolu-
tion of the unfiltered continuous solution with a top-hat-filter

G(x, Vj) =

{
1/Vj, x ∈ Ωj

0, else.
, (3.11)

where Vj corresponds to the cell volume or the grid spacing of cell Ωj.

Cell Face Reconstruction

The values of the approximate reconstruction of the unfiltered solution, denoted with ϕ̆,
at the left (+) and right (−) cell face are computed from

ϕ̆∓(xj±1/2) =
K∑
k=1

1

3

k−1∑
r=0

ω∓k,r(γk,r, ϕ̄N)ğ∓k,r(xj±1/2), (3.12)

which includes a combination of Harten-type deconvolution polynomials

ğ∓k,r(xj±1/2) =
k−1∑
l=0

c∓k,r,l(xN)ϕ̄(xj−r+l). (3.13)

By choosing the grid-dependent coefficients c∓k,r,l(xN) in a way that the polynomial ğ∓k,r
of degree k − 1 provides an approximation of ϕ(xj± 1

2
) on the order of k on a grid with
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spacing ∆xkj , Eq. 3.13 yields

ğ∓k,r(xj±1/2) = ϕ(xj±1/2) +O(∆xkj ). (3.14)

The degree of the local approximation polynomials is being limited since lower orders of
degree 1 ≤ k ≤ K = 3 are dominant with respect to subgrid-scale modeling [82].

For k = 1, the dynamic weight ω∓k,r in Eq. 3.12 is set to

ω∓1,0 = 1.0. (3.15)

Otherwise, i.e. for 1 < k ≤ K, ω∓k,r is obtained from

ω∓k,r(γk,r, ϕ̄N) =
γk,rβk,r(ϕ̄N)∑k−1
s=0 γk,sβk,s(ϕ̄N)

(3.16)

and introduces an adaptivity of the local deconvolution operator. Equation 3.16 contains
free model parameters γk,r, see Tab. 3.1, and a measure for the smoothness of the solution

βk,r(ϕ̄N , xi) =

(
εβ +

k−r−2∑
l=−r

[ϕ̄(xi+m+1)− ϕ̄(xi+m)]2
)−2

, (3.17)

where εβ is a small number to avoid division by zero.

In this work, the compressible version of the simplified adaptive local deconvolution
method (SALD) with one Gauss point per cell face is applied, which reduces the amount
of computational operations without affecting the quality of the results, see Hickel et al.
[78].

Numerical Flux Function

In addition to the reconstruction, the ALDM framework includes a suitable numerical
flux function which acts on the advective flux and introduces a secondary regularization.
A detailed discussion is provided by Hickel et al. [82].

The numerical flux function used in this work in a general form can be written as

C̆j±1/2 = C (ϕ∗)−Rϕ(σ, ϕ̆∓, ϕ̄) · (ϕ̆+ − ϕ̆−) (3.18)

Here, the physical Navier-Stokes flux C is computed from the cell face value ϕ∗, which
in classical ALDM [82] is defined as the arithmetic mean of both reconstructions of the
unfiltered solution at the considered cell face,

ϕ∗ =
ϕ̆+ + ϕ̆−

2
. (3.19)

The secondary regularization term Rϕ acts on the reconstruction error (ϕ̆+ − ϕ̆−).

31



3 Numerical Method

Based on the definition of the advection flux in Eq. 2.2 for the i-th coordinate direction
on a Cartesian grid, which can be written as

Ci(U) = uiρ[1, u1, u2, u3, E, ξ]
T . (3.20)

ALDM defines the numerical density flux at an arbitrary cell face as

C̆ρ
i = ŭCi · ρ∗ −Rρ

i · (ρ̆+ − ρ̆−) (3.21)

with the transport velocity ŭCi , which is defined below. The consistent numerical flux
function for the momentum components in k-direction is

C̆ρuk
i = C̆ρ

i u
∗
k −Rρuk

i · ρ∗ · (ŭ+
k − ŭ−k ). (3.22)

The numerical flux function for the energy equation, where applicable, is defined as

C̆ρe
i = ŭCi · (ρe)∗ + u∗k

(
C̆ρuk
i − u∗k

2
C̆ρ
i

)
−Rρe

i · (ρ̆e+ − ρ̆e−). (3.23)

The numerical flux for scalar quantities consistent with the ALDM scheme reads

C̆ρξ
i = ŭCi · (ρξ)∗ −Rρξ

i · (ρ̆ξ
+ − ρ̆ξ−). (3.24)

The pressure flux is defined as

P̆i =


0

δi1p̆
∗

δi2p̆
∗

δi3p̆
∗

ŭ∗i p̆
∗

0

 . (3.25)

The interface pressure p̆∗ hereby is computed form the arithmetic mean of the left sided
and right sided interface pressure,

p̆∗ =
p̆+ + p̆−

2
. (3.26)

The numerical transport velocity is computed following the the HLLC-Riemann-solver of
Harten et al. [75] in a modified form [48, 84]

ŭCi = u∗i −
p̆+ − p̆−

ρ̆+(SR − ŭ+
i )− ρ̆−(SL − ŭ−i )

, (3.27)

where
SR = max(ŭ+

i , ŭ
−
i ) + c (3.28)

and
SL = min(ŭ+

i , ŭ
−
i )− c (3.29)
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Table 3.1: Model parameters for ALDM reconstruction and flux computation

Parameter Value

γ+
2,0=γ

−
2,1 1

γ+
2,1=γ

−
2,0 0

γ+
3,0=γ

−
3,2 0.01902

γ+
3,1=γ

−
3,1 0.08550

γ+
3,2=γ

−
3,0 1-γ+

3,0-γ
+
3,1

σρ 0.615
σρu 0.125
σρe 0.615
σρξ 0.615

denote estimates of the fastest right and left running wave speeds with the speed of sound
c.

The dissipation matrix adding to the density, momentum, and energy flux finally is defined
as

Ri =


Rρ
i

Rρu1
i

Rρu2
i

Rρu3
i

Rρe
i

Rρξ
i

 =


σρ|ŭ+

i − ŭ−i |
σρu|ŭ+

1 − ŭ−1 |
σρu|ŭ+

2 − ŭ−2 |
σρu|ŭ+

3 − ŭ−3 |
σρe|ŭ+

i − ŭ−i |
σρξ|ŭ+

i − ŭ−i |

+ fs
|ŭCi |+ |ŭ+

i − ŭ−i |
2


1
1
1
1
1
1

 (3.30)

The values of σρ,σρu, σρe, and σρξ are free model parameters, see Tab. 3.1. For a detailed
discussion on the calibration process refer to Hickel et al. [82].

Since collapse events of vapor structures involve strong shock waves, a second term is
added to the dissipation matrix that contains a sensor functional of Ducros et al. [39] to
capture propagating discontinuities

fs =

{
1, |∇·ū|

|∇·ū|+||∇×ū||+εs ≥ 0.95

0, else
, (3.31)

where εs = 10−15. This modification adds numerical dissipation, which enhances the
stability of the scheme.

Reconstruction and Flux Function for Density and Scalars

Due to large density gradients between water, water vapor, and gas, we modify the recon-
struction of the cell face density ρ∗ and scalar gas mass fraction ξ∗ to enhance numerical
stability. The right- and left-sided cell face values of a quantity ϕ hereby are not com-
puted from Eqn. 3.12, but from a first order (ϕ̇) or a second order reconstruction using
an Van-Albada limiter function (ϕ̈) [190]. The first order method was implemented and
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validated by Egerer et al. [48]. The second order method was investigated in great detail
by Trummler [185] for the Van-Albada limiter as well as other reconstruction schemes.
We choose between first and second order reconstruction in the applications discussed
throughout this thesis based on the desired accuracy.

The reconstruction for the first order scheme yields

ϕ̇− = ϕ̄j−1, (3.32)
ϕ̇+ = ϕ̄j. (3.33)

Using a second order Van-Albada reconstruction we, compute

ϕ̈− = ϕ̄j−1 +
ϕ̄j − ϕ̄j−2

2
· max[(ϕ̄j−1 − ϕ̄j−2)(ϕ̄j − ϕ̄j−1), 0]

(ϕ̄j−1 − ϕ̄j−2)2 + (ϕ̄j − ϕ̄j−1)2 + ε
, (3.34)

ϕ̈+ = ϕ̄j −
ϕ̄j+1 − ϕ̄j−1

2
· max[(ϕ̄j − ϕ̄j−1)(ϕ̄j+1 − ϕ̄j), 0]

(ϕ̄j − ϕ̄j−1)2 + (ϕ̄j+1 − ϕ̄j)2 + ε
, (3.35)

where ε is a small number to avoid a division by zero.

The cell face value (for density and scalar quantities) is subsequently obtained from

ϕ∗ =
1

2

[
(1 + sgn(ŭCi ))ϕ̂− + (1− sgn(ŭCi ))ϕ̂+

]
, (3.36)

where ϕ̂− = {ϕ̇−, ϕ̈−} and ϕ̂+ = {ϕ̇+, ϕ̈+} denote the right- and left-sided cell face values
for first and second order reconstruction, respectively, and ŭCi is the ALDM transport
velocity, Eqn. 3.27.

For the second order upwind scheme, the density flux introduced in Eq. 3.24 is modified
to

C̆ρ
i = ŭCi · ρ∗ − σρ|ŭ+

i − ŭ−i | · (ρ̈+ − ρ̈−), (3.37)

omitting any contribution of the shock sensor, since the reconstruction itself introduces a
sufficient amount of dissipation.

The scalar transport in spatial direction i for both first and second order cell face recon-
struction is computed from a reconstruction of the primitive variables

C̆ρξ
i = ŭCi ρ

∗ξ∗, (3.38)

without further regularization. Hereby the gas mass fraction at the cell face ξ∗ is recon-
structed with the same scheme as the interface density as introduced in Eq. 3.36.

3.3 Conservative Immersed Boundary Method

In previous publications, the immersed boundary method for representing complex im-
mersed solid obstacles or phase interfaces on Cartesian grids has been analysed either
for incompressible fluids or for compressible gas-like fluids. In this work, we present a
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conservative cut-cell method for compressible viscous LES of weakly compressible liquid
fluid flows with cavitation effects through moving geometries. In stiff fluids, such as water
or liquid fuels, an exact representation of the geometry (fluid volume fraction and face
apertures in the cut-cells) is crucial as small errors in these quantities induce large ar-
tificial pressure oscillations in the vicinity of sharp corners. We will show that level-set
based approaches [70, 114, 115, 116] fail to deliver the required accuracy. We propose to
directly reconstruct the geometrical parameters from the cell intersection with a triangu-
lated interface geometry of the immersed boundary rather than from a level-set field. The
method provides sub-cell resolution of the geometry and handles flows through narrow
closing or opening gaps in a straightforward manner. Since this cut-element method pro-
vides a sharp and accurate geometry representation, it is suitable for simulating the flow
around obstacles with prescribed motion, as shown in this work, and moreover introduces
a framework for fluid-structure interaction (FSI) problems, i.e., the interaction of fluid
flow and deformable solid structures.

This section has partially been published in Örley et al. [132].

3.3.1 Geometry Computation

With previous approaches [70, 114, 115, 116] the geometric properties of the cut-cell (fluid
face apertures A, the interface normal vector n, and the fluid volume fraction αi,j,k) were
obtained from a level-set field Φ, which represents a signed distance of a point in the
domain to the immersed boundary. The value of the level-set field in a computational
cell Φi,j,k around the interface is computed based on a search algorithm that finds the
minimum distance to the next interface or by solving a diffusion equation. The level-set
values are subsequently interpolated onto the cell corners and geometric quantities are
computed assuming a linear variation. As a result, a piecewise linear approximation of
the interface Γ(t) is obtained, as shown in Fig. 3.2 (a). This method has been successfully
applied for simple stationary boundaries, see [70, 84, 114, 115, 116]. When dealing with
moving boundaries featuring sharp corners and complex geometries in liquid water flows,
on the other hand, numerical artifacts can develop, which are particularly problematic for
liquid-vapor phase transitions and can lead to unphysical local cavitation regions.

As an example, we consider the translation of a piston with rounded edges at a constant
velocity vgeo = −1 m/s in water, see Fig. 3.3(a). The rounded edge is well resolved by the
interface triangulation (orange line). The isoline for Φ = 0 reconstructed by the level-set
method is shown as a blue line. A significant smoothening of the corner compared to the
original geometry is observed. As soon as the piston moves into neighboring cells, spurious
pressure and density oscillations are generated with the level-set method, see Fig. 3.3(b),
which result in strong, unphysical compressions and expansions in the monitor cells, see
Fig. 3.4(a), where the density ρ of the five monitor cells defined in Fig. 3.3(a) is plotted
over time.

The origin of this phenomenon is as a discontinuity in the fluid volume fraction of the
cut-cells, as shown in Fig. 3.4(b). At t ∼ 0.03 s, a jump in the fluid volume fraction
is detected in monitor cells 3, 4 and 5. With the mass being exactly conserved in the
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Figure 3.2: Computation of geometrical cut-cell properties based on a level-set field Φ (a)
and on exact intersection with a provided surface triangulation (b).
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Figure 3.3: Motion of complex geometries (a); Level-set method: strong pressure oscil-
lations occur when geometry moves into neighboring computational cell due
to jump in fluid volume fraction (b); Cut-element method: oscillation-free
pressure field with accurate geometry computation (c). Orange line: surface
triangles. Blue/white line: wall location computed from level-set Φ.
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(a) (c)(b) (d)

Figure 3.4: Density and fluid volume fraction α over simulation time t in monitored cells
1− 5 (see Fig. 3.3): -·-· monitor cell 1, - - - monitor cell 2, — — monitor cell
3 –··–·· monitor cell 4, — monitor cell 5; level-set based method (a), (b), and
surface triangulation-based method (c), (d).

computational cell, this discontinuity in the density causes a very high pressure peak due
to the low compressibility of liquid water. A phenomenon of this kind is observed for stiff
equations of state, Eq. 2.14, and is much less pronounced for more compressible fluids
such as air. Such small discontinuities of the volume fraction occur independently of the
way the level-set field is computed. They result from truncation errors inherent to the
grid based level-set representation once the geometry exhibits radii that are of the same
order as the cell size. In particular, they are inevitable when the geometry has sharp
corners.

A solution for this issue is to use a more accurate reconstruction of the geometrical param-
eters. We resort to the exact representation of the geometry based on the computational
mesh and the provided surface triangulation, as shown in Fig. 3.2(b). While the level-set
method leads to an averaged interface Γcell as an approximation of the geometry, the
cut-element method represents the interface as a number of cut-elements Γele. Each cut-
cell contains and updates its respective individual set of cut-elements, which is also used
to compute the interface exchange term Xi,j,k for each cut-cell as described below. The
computation of the exact geometry is done by a sub-triangulation of the cell faces and a
sub-tetrahedralization of the fluid volume.

Fig. 3.5 shows the main steps of this procedure for a single cut-element, which is com-
puted from a surface triangle defined by its corner points c = {c1, c2, c3}, its edges
e = {e1, e2, e3} and the triangle normal vector ntri. First, we generate a set of cor-
ner vertices V = {V1,V2,V3, ...} for each cut-element contained in a computational cell
(i, j, k), see Fig. 3.5(a). The set consists of three subsets, which are
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Figure 3.5: Algorithm for computation of geometry parameters based on cut-elements.
Construction of set of element corner vertices V (top) and computation of
wetted cell face area and fluid volume (bottom).
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(1) surface triangle corner points c lying inside the computational cell

vI = c ∩ Ωi,j,k, (3.39)

(2) intersection points of triangle edges e with the cell faces

vII = e ∩ ∂Ωi,j,k, (3.40)

and

(3) intersection points of cell edges E = {E1, E2, ..., E12} with the triangle face Γ∆

vIII = E ∩ Γ∆. (3.41)

Subsets vI , vII or vIII may be empty, depending on the position of the triangle with respect
to the computational cell. In the example sketched in Fig. 3.5(a) only intersections of
triangle edges with the front- and backside cell faces are found.

Subsequently, the full vertex list bounding the cut-element

V = vI ∪ vII ∪ vIII (3.42)

is sorted in a right-hand-system using the triangle normal. Double entries, which can occur
when a triangle and cell edge intersect, are merged. This procedure is repeated until all
surface triangles that intersect with the respective computational cell are captured.

To compute the wetted area Aw for a cell face, we extract a subset f = {f1, f2, ..., fn} of
n points from set V , containing all elements that belong to the cell face, and add all cell
corners of this face that lie inside the fluid domain. After sorting the list using the cell-
face normal vector, a triangulation is constructed by spanning triangles of two adjacent
vertices of f and the cell-face centroid, vcen (see, e.g., Fig. 3.5(b), where the wetted area
of the backside cell face is defined by 7 points). The total wetted face area is obtained
from

Aw = ∆(fn, f1, vcen) +
n−1∑
i=1

[∆(fi, fi+1, vcen)] , (3.43)

where ∆(•, •, •) denotes the area magnitude of the triangle spanned by three points. In
the same way, the area of a cut-element is computed as the sum of the triangle areas
formed by two vertices of set V and the cut-element centroid. The fluid volume of the cell
is computed as the sum of all polyhedra spanned by the area of all cut-elements and the
cell centroid, see Fig. 3.5(c), and of all polyhedra spanned by the wetted face areas and
the cell centroid.

Applying this technique to the aforementioned test case of a moving piston with a rounded
edge results in a fluid volume fraction that is continuous in time, as shown in Fig. 3.4(d),
and hence the pressure and density fields do not show spurious oscillations, see Figs. 3.3(c)
and 3.4(c).
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Table 3.2: Additional computational effort for moving geometry

Case Grid Computational overhead

In-line oscillating cylinder
in a fluid at rest

coarse 16%
medium 22%
fine 19%

Flow past an in-line oscillating
cylinder at Re = 100

coarse 4%
fine 4%

Cavitating control valve ∼ 50%

coarse ∼ 35%
Nine-hole Diesel injector medium ∼ 40%

fine ∼ 35%

For the simulations involving moving geometries, such as those discussed below, the nec-
essary geometry parameters have to be updated in each time-step. The computational
overhead for geometry reconstruction for the examples presented in this paper compared
with an identical, but stationary geometry, is summarized in Tab. 3.2. The overhead
depends on surface triangulation, grid resolution, and the number of cut-cells and thus is
strongly case dependent. Furthermore we found that an optimization of the parallel code
implementation in the control valve case may significantly enhance the computational
efficiency and is thus subject to current investigations.

3.3.2 Treatment of Gaps

With the cut-element method outlined above it is possible to represent more than one
solid boundary within one cell, see Fig. 3.6. To account for this fact we compute a net
face aperture of cell faces cut by multiple boundaries. The fluid volume fraction is treated
accordingly. The computation of the effective cell face aperture for n solid boundaries
inside the computational cell can be written as

Aeff,i,j,k = 1−
[∑

n

(1− An,i,j,k)
]

(3.44)

and the fluid volume fraction

αeff,i,j,k = 1−
[∑

n

(1− αn,i,j,k)
]
. (3.45)

Note that Eqs. 3.44 and 3.45 are based on the (physical) requirement that solid obstacles
do not overlap.
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Solid 1

Solid 2

Ai,j−1/2,kαi,j,k

y
x

z

Ai,j,k−1/2

Aeff,i,j+1/2,k

AS1,i,j+1/2,k

AS2,i,j+1/2,k

Figure 3.6: Cut-cell with multiple solid bodies. Effective face aperture Aeff,i,j+1/2,k is
computed from individual contributions from each of the two solid bodies
AS1,i,j+1/2,k and AS2,i,j+1/2,k.

3.3.3 Interface Exchange Term

Interaction of the fluid with a solid interface is modelled by an interface exchange term
Xi,j,k, as introduced in Eq. 3.4. Following the geometrical approach introduced above,
we can write the interface exchange term as a sum of all individual contributions of all
cut-elements contained within this computational cell in a consistent way as

Xi,j,k =
∑
ele

Xele. (3.46)

The element based interface exchange term Xele includes the source terms for pressure,
viscous effects and heat transfer at the element interface

Xele = Xp
ele + Xν

ele + Xht
ele. (3.47)

The pressure term is

Xp
ele =


0

pΓ,ele∆Γele n
Γ,ele
1

pΓ,ele∆Γele n
Γ,ele
2

pΓ,ele∆Γele n
Γ,ele
3

pΓ,ele∆Γele
(
nΓ,ele · vΓ,ele

)

 , (3.48)

where ∆Γele is the element surface area, nΓ,ele = [nΓ,ele
1 , nΓ,ele

2 , nΓ,ele
3 ] is the element normal

vector obtained directly from the surface triangle, and vΓ,ele is the interface velocity. The
element interface pressure pΓ,ele is obtained by solving a one-sided face-normal Riemann
problem with a suitable approximate or exact Riemann solver.
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The viscous stress at the boundary is modelled by

Xν
ele =


0
D1

D2

D3

C

 , (3.49)

where the contribution to the momentum equation is

D =

∫
Γele

τ · nΓ,eledS (3.50)

and the contribution to the energy equation is

C =

∫
Γele

(τ · vΓ,ele) · nΓ,eledS. (3.51)

τ denotes the local viscous stress tensor, which we approximate as in [115].

In case of an isothermal interface, the heat transfer across the fluid-solid-boundary

q =

∫
Γele

k∇T · nΓ,eledS, (3.52)

needs to be taken into account within the flux balance of the cut-cell by the heat transfer
term

Xht
ele =


0
0
0
0
q

 . (3.53)

3.3.4 Ghost-Cell Boundary Conditions for Solid Walls

Cells in the solid part of the computational domain near the interface, so-called ghost-
cells, contain ghost states that allow boundary conditions at the interface to be satisfied
without requiring a modification of interpolation stencils in the finite-volume reconstruc-
tion scheme. For this purpose, we apply the ghost-cell methodology as originally proposed
by Mittal et al. [123] and further extended to stationary and moving boundary cut-cell
methods by Pasquariello et al. [138]. Finding the ghost-points and extending the solution
into the solid region does not require the fully detailed cut-cell geometry. We therefore
perform this procedure based on the average face centroid and normal vector of the cut-
cell, which is an average of all contained cut-elements weighted by their area. In a first
step, ghost-cells xGP that contribute to the interpolation stencil of the baseline discretiza-
tion are identified, see Fig. 3.7. Next, for each ghost-cell the boundary intercept point
xBI is computed such that the line segment xGPxBI intersects the immersed boundary in
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SOLID
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xGP

xBI

xIP

2∆l
navg

Figure 3.7: Construction of the ghost-cell extending procedure for a cut-cell (i, j, k).

xBI normal to the interface segment. The line segment is extended into the fluid region
to find the image point

xIP = xBI + nΓ,avg ·∆l, (3.54)

where ∆l = ||xBI − xGP || denotes the distance between the ghost-cell and the boundary
intercept. Once the image point has been identified, a bilinear (2-D) or trilinear (3-D)
interpolation is used to calculate the value of a quantity φIP at the image point xIP .
Ghost-cell values are obtained using a linear approximation along the line xGPxBI that
implicitly satisfies the boundary conditions at the boundary intercept location xBI . For
Dirichlet boundary conditions, ghost-cell data are obtained as

φGP = 2 · φBI − φIP +O(∆l2), (3.55)

whereas Neumann boundary conditions are imposed as

φGP = φIP − 2 ·∆l ∂φ
∂n

∣∣∣∣
xBI

+O(∆l2). (3.56)

3.3.5 Treatment of Small Cut-Cells

The time step ∆t is adjusted according to the CFL condition for the underlying Cartesian
grid. To achieve a stable time integration also for small cut-cells without severe time
step restriction, we adopt the conservative mixing procedure from Meyer et al. [115].
The conserved quantities in small cut-cells are mixed with larger neighboring cells in a
conservative way, see Fig. 3.8 , where the exchange rate of mass, momentum and energy
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between two cells is controlled by weights β defined as

βxi,j,k =|nΓ,avg
1 |2 αmixi,j,k

βyi,j,k =|nΓ,avg
2 |2 αi,mixj ,k

βzi,j,k =|nΓ,avg
3 |2 αi,j,mixk

βxyi,j,k =|nΓ,avg
1 nΓ,avg

2 | αmixi,mixj ,k
βxzi,j,k =|nΓ,avg

1 nΓ,avg
3 | αmixi,j,mixk

βyzi,j,k =|nΓ,avg
2 nΓ,avg

3 | αi,mixj ,mixk
βxyzi,j,k =|nΓ,avg

1 nΓ,avg
2 nΓ,avg

3 |2/3 αmixi,mixj ,mixk .

(3.57)

The weights are normalized in such a way that

βxi,j,k + βyi,j,k + βzi,j,k + βxyi,j,k + βxzi,j,k + βyzi,j,k + βxyzi,j,k = 1. (3.58)

The mixing flux Mtrg
i,j,k from a cut-cell (i, j, k) to a suitable target cell trg is subsequently

computed from

Mtrg
i,j,k = ξ(αi,j,k) ·

βtrgi,j,k[(VtrgαtrgU
∗
trg)Vi,j,kαi,j,k − (Vi,j,kαi,j,kU

∗
i,j,k)Vtrgαtrg]

Vi,j,kαi,j,kβ
trg
i,j,k + Vtrgαtrg

(3.59)

where U
∗
i,j,k and U

∗
trg are the vectors of conserved quantities in the cut and target cell

before mixing.

The parameter ξ(αi,j,k) is introduced to achieve a smooth blending between full mixing in
cut-cells with a fluid volume fraction smaller than a threshold value αth, and no mixing
in large cut-cells. This step is important when dealing with moving boundaries, where a
blending factor of the form

ξ(αi,j,k) =

{
0 , αi,j,k ≥ αth

1 , else,
, (3.60)

with a threshold αth < 1 would generate a discontinuity in the flux redistribution and can
generate pressure artifacts [164]. We choose a simple linear blending factor defined as

ξ(αi,j,k) =


0 , αi,j,k = 1
1−αi,j,k
1−αth , 1 > αi,j,k > αth

1 , else,

, (3.61)

where αth is set to 0.6 in all simulations presented in this paper. We also evaluated other
continuous functionals ξ(αi,j,k), and found that the particular choice of ξ had little effect
on the results.

After advancing the solution in time, the volume averaged conserved variables of cut and
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i, j, k

SOLID

FLUID

navg

i, j + 1, k i+ 1, j + 1, k
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Target cell

Figure 3.8: Conservative mixing procedure of a small cut-cell (i, j, k).

target cells are updated with

Ui,j,k = U
∗
i,j,k +

Mtrg
i,j,k

αi,j,kVi,j,k
(3.62)

and

Utrg = U
∗
trg −

Mtrg
i,j,k

αtrgVtrg
, (3.63)

3.4 Time Integration

For time integration, the conditionally stable explicit third-order Runge-Kutta method of
Gottlieb and Shu [65] is used. This time-discretization scheme is strongly stable for CFL
≤ 1. The time-step ∆t in all problems presented here is limited by the propagation speed
of acoustic waves and is computed from

∆t = CFL · 1
|u|+c
∆x

+ |v|+c
∆y

+ |w|+c
∆z

(3.64)

with u, v, w being the velocity components and c the speed of sound, respectively. For
liquid flows, the speed of sound becomes c = cliq, which is approximately 1500 m/s for
the pressure range used in this study, and hence the time-step ∆t is reduced to the order
of 10−10s. This time step size is also needed for resolving wave dynamics which dominate
flow evoluion at such small scales.

3.5 Code Implementation

For our simulations we use the finite-volume Cartesian multi block flow solver INCA. The
code is developed at the Institute of Aerodynamics and Fluid Mechanics at the Technische
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Universität München. It is used in various fields of research, including shock boundary
layer interaction [69, 71, 136], multi-fluid problems [103, 104], aircraft airodynamics [114,
117, 200], supersonic combustion chambers [45, 46, 47], shock induced turbulent mixing in
Richtmyer-Meshkov instabilities [180, 181, 182, 183, 184], and shock induced combustion
processes [34].

The program sequence is sketched in Algorithm 3. The algorithm includes the main steps
related to the treatment of immersed boundaries. INCA is written in Fortran and uses
MPI and OpenMP libraries for massively parallalelized simulations on supercomputers.
For moving-boundary problems, we have extended the partitioning mechanism to account
for the number of moving- and non-moving cut-cells on a block, which add additional
weight to the grid block in a preprocessing step.

To minimize computational costs, INCA is equipped with local grid refinement capabil-
ities at block interfaces based on hanging nodes. In this work, the refinement level is
limited to a maximum of 2, i.e., the cell number with respect to a finer / coarser block
is at most doubled / halved, respectively. Local grid refinement is automated based on
various criteria, such as density gradients, cut-cell and wall regions, or manually selected
refinement regions. Additionally, a comprehensive and powerful tool for mesh generation
and visualization, INCA-BLOXX, has been developed by Eberhardt [45].

3.6 Summary

In this chapter the numerical approach has been discussed. The compressible Navier-
Stokes equations are solved in the computational fluid domain. Turbulent dissipation is
considered by the Adaptive Local Deconvolution Method of Adams et al. [1] and Hickel et
al. [80, 82]. The discretization scheme is optimized for cavitating flows by modifying the
flux functions for density and scalars to a first or second order upwind reconstruction.

We have presented a framework for improving and extending cut-cell based immersed
boundary methods with an emphasis on LES of weakly compressible and cavitating liquid
flows. In the simulation of fuel injection systems the accurate treatment of moving and
stationary parts is critical and generates additional complexity for the numerical method.
Moreover, the method must be able to handle the opening and full closing of gaps in a
conservative way.

Purely level-set based methods were found to be unsuitable for such applications. Strong
artificial pressure and density fluctuations especially in cells in the vicinity of sharp corners
of moving geometries in weakly compressible liquids were observed with such approaches.
It has been shown that numerical errors of the grid-based level-set representation lead to
a discontinuous evolution of fluid volume fraction in these cells.

For the computation of geometry parameters of cells cut by the interface we found it
necessary to replace the level-set based approach by a more detailed representation of the
fluid-solid interface. Intersections of the finite-volume cells with a given surface triangu-
lation of the solid geometry are determined. With this conservative cut-element method
we are able to compute the fluid volume fraction in a cut-cell directly from an arbitrarily
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Algorithm 3 INCA flow solver

Setup simulation:
- distribute blocks on compute nodes
- setup domain
- initialize stationary IBs and walls
- initialize probes and sensorplanes

Run simulation:
repeat

compute timestep ∆t
save old solution
repeat
compute interface exchange term
compute physical fluxes
scale physical flux in CCs with effective face apertures
add interface exchange term to flux
if last RK step then
update moving geometries
- shift stl-triangles
- detect cuts with updated geometry
- compute face apertures and CC volumes
- update entries of moving IBs in BSP-tree

end if
switch CCs to conservative quantities
advance fluid solution
treat CCs
- apply mixing to small CCs
- return to cell-averaged quantities in CCs
- extend solution at IBs
update thermodynamics

until RK steps reached
write output
compute statistics

until stopflag reached
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accurate surface triangulation without further approximation. Sharp corners thus are rep-
resented with sub-cell resolution. Also, the treatment of closing or opening gaps becomes
straightforward. The original interface interaction term, that contains normal stresses,
shear stresses, and heat flux at the solid interface in cut-cells [86, 115], was modified to
operate directly on individual cut-elements inside the cell. The method is especially at-
tractive for immersed moving rigid geometries with prescribed body motion, as presented
in this work, as well as for deformable structures, where the position and forces on the
solid surface may be exchanged between the fluid and a structural solver in a triangu-
lated form without any further interpolation. We emphasize that the effectiveness of the
method is not limited to simple solid geometry motion (e.g. translational only).
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Method

In the following chapter, the ability of our method to represent complex geometries is
shown. First, we validate our method with canonical flows around an oscillating cylinder
in a fluid at rest, an in-line oscillating cylinder in a free stream, and two moving cylinders
interacting with each other. We then demonstrate that the method allows for an accurate
prediction of flows around moving obstacles in weakly compressible liquid flows with cav-
itation effects for a cavitating 2-D mixer. In particular, we show that the cavitating flow
through a closing high-pressure liquid fuel injector control valve, which is an example for
a complex application with interaction of stationary and moving parts, can be predicted
by the method.

This section has partially been published in Örley et al. [132].

4.1 Cylinder Flows

4.1.1 In-Line Oscillating Cylinder in a Fluid at Rest

A well-documented model problem [22, 72, 95, 107, 168, 195] is the interaction of an
oscillating circular cylinder with a surrounding fluid at rest. The two key parameters
are the Reynolds number Re = UmaxD/ν and the Keulegan-Carpenter number KC =
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Umax/fD, with Umax being the maximum velocity of the cylinder, D the diameter of the
cylinder, ν = µ/ρ the kinematic viscosity of the fluid, and f the characteristic frequency
of the oscillation. We selected a setup corresponding to the experiments and numerical
simulations reported by Dütsch et al. [44] at Reynolds number Re = 100 and Keulegan-
Carpenter number KC = 5. The translational motion of the cylinder is prescribed by a
harmonic oscillation of the cylinder center with xc(t) = −A sin(2πft), where A = KC/2π
is the amplitude of the oscillation. We consider a computational domain with Lx = 55D
and Ly = 35D with a convective outflow boundary condition applied at all boundaries.
Three different grid resolutions were tested (coarse: 126 x 100, medium: 250 x 200, and
fine: 500 x 400). Grid-stretching was applied towards the boundaries in such a way that a
uniform grid of 40 x 40 (coarse), 80 x 80 (medium), and 160 x 160 (fine) was maintained
in the region of −D ≤ x ≤ D and −D ≤ y ≤ D, which corresponds to a cell size of
0.05D, 0.025D, and 0.0125D near the cylinder.

All computations are initialized in a fluid field at rest. A total time of ∆ttrans = 8T
(eight cycle periods T ) is computed prior to the analysis to allow for a decay of initial
disturbances until periodic vortex shedding is established. We choose a Mach number of
Ma∞ = 0.3 based on the maximum velocity umax in an ideal gas to allow for comparison
with incompressible results reported in the literature.

In Fig. 4.1, iso-contour lines for the pressure (left) and vorticity field (right) are shown for
four different phase angles. The pressure field is perfectly symmetric with the stagnation
point located on the axis of motion. In Fig. 4.1 a/b, the cylinder moves to the left with a
velocity Umax. Two counter-rotating vortices develop that separate at the turning point
of the cylinder at the left-most location (Fig. 4.1 c/d). During the reverse cycle, the same
process takes place. While moving back into its own wake, the vortex pair created in the
previous half-cylce is pushed away by the cylinder, see Fig. 4.1 e/f. The results compare
very well with results reported in the literature (e.g., Fig. 8 of Ref. [195] or Fig. 12 of
Ref. [107]) and show that the present method for moving obstacles can properly capture
the dynamic process without producing any spurious oscillations of the field quantities.

For a quantitative evaluation of our data, we extract velocity profiles in axial and lateral
direction at different x-locations (x = −0.6D, x = 0.0D, x = 0.6D, and x = 1.2D) for
various phase angles (180◦, 210◦, and 330◦). Fig. 4.2 shows our results for the comparative
grid study. Results for the coarse, medium and find grid differ very little. Results for
the fine grid are compared to reference data from literature in Fig. 4.3. Lines denote
the present study and the reference data of the numerical results of Liao et al. [107]
and experimental data of Dütsch et al. [44] are shown with filled and empty symbols,
respectively. The overall comparison is very good.

In Fig. 4.4 the time evolution of the in-line force acting on the cylinder, Fx, as well as the
pressure force Fx,p and viscous component, Fx,ν , are shown together with results for Fx
obtained from the boundary-conforming simulation of Dütsch et al. [44]. The force acting
on the cylinder surface is obtained by summation of all cut-element interface exchange
terms. Agreement with the reference data is very good, confirming that also integral
quantities can be accurately computed with the present method.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: In-line oscillating cylinder in a fluid at rest (Re = 100 and KC = 5). Pres-
sure (left) and vorticity contours (right) at four different phase-angles (top to
bottom): 0◦, 96◦, 192◦, 288◦.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Grid resolution study for the in-line oscillating cylinder in a fluid at rest (Re =
100 and KC = 5). Comparison of velocity profiles in axial and lateral direction
at 180◦ (a/b), 210◦ (c/d), and 330◦ (e/f) at four different x-locations: (— and
� ) x = −0.6D, ( - - - and 4 ) x = 0.0D, (-·- and © ) x = 0.6D, and (· · ·
and � ) x = 1.2D. Empty symbols correspond to the coarse mesh (126 x
100), filled symbols correspond to the medium mesh (250 x 200), line plots
correspond to the fine mesh (500 x 400).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: In-line oscillating cylinder in a fluid at rest (Re = 100 and KC = 5). Compar-
ison of velocity profiles in axial and lateral direction at 180◦ (a/b), 210◦ (c/d),
and 330◦ (e/f) at four different x-locations: (— and � ) x = −0.6D, ( - - -
and 4 ) x = 0.0D, (-·- and © ) x = 0.6D, and (· · · and � ) x = 1.2D. Filled
symbols correspond to the numerical results of Ref. [107], empty symbols to
the experimental data of Ref. [44].
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Figure 4.4: Time evolution of the in-line force acting on an oscillating cylinder in a fluid
at rest (Re = 100 and KC = 5). Current simulation results: (—) Fx, (-·-)
Fx,ν , (- - -) Fx,p; (◦) reference data of [44].

4.1.2 Flow Past an Oscillating Cylinder at Re=100

Another reference case often reported in the literature is the flow past an in-line oscil-
lating cylinder in a free stream at a Reynolds number of Re = 100 based on free stream
velocity u∞ and cylinder diameter D [89, 107, 177]. According to experimental findings of
Hurlbut et al. [89], choosing a oscillation frequency of the cylinder of approximately twice
the Strouhal frequency of the vortex shedding causes a phase-locking, which effectively
increases the drag coefficient CD,mean and maximum lift coefficient CL,max.

We choose a computational domain with a total length of L = 240D and a total height
of H = 60D to avoid spurious reflections at the in- and outflow boundary conditions.
A local mesh refinement is applied around the cylinder. The resolution in the vicinity
of the cylinder is ∆x = ∆y = 0.025D for the coarse and ∆x = ∆y = 0.0125D for the
fine grid. As in the previous case, we choose a Mach number of Ma∞ = 0.3 in an ideal
gas environment. Non-reflecting boundary conditions are applied at the in- and outlet,
whereas farfield boundary conditions are applied at the bottom and top.

The flow is evolved in time without oscillation of the cylinder until a periodic vortex
shedding is observed. The resulting Strouhal number St = fqU∞/D = 0.166, with fq being
the vortex shedding frequency and U∞ the free stream velocity is then used to modulate
the motion of the cylinder by uc(t) = 2πfcA cos(2πfct), where uc is the cylinder velocity
and A is the amplitude of the oscillation. The prescribed frequency of the cylinder motion
fc is chosen as twice the vortex shedding frequency fc = 2fq. After initial transition the
computed drag and lift coefficients are averaged over 7 shedding cycles.
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4.1 Cylinder Flows

Table 4.1: Comparison of lift and drag coefficients of in-line oscillating cylinder in a free
stream at Reynolds number Re = 100

Re=100 fc/fq CD,mean CL,max

Kimet al. [96] 0 1.33 0.32
2 - -

Meyer et al. [115] 0 1.26 0.34
2 - -

Liao et al. [107] 0 1.36 0.34
2 1.71 0.95

Hurlbut et al. [89] 0 1.41 0.31
2 1.68 0.95

Su et al. [177] 0 1.40 0.34
2 1.70 0.97

Present (n = 40) 0 1.44 0.36
2 1.85 0.97

Present (n = 80) 0 1.39 0.33
2 1.73 0.93

A qualitative analysis of the flow field is shown in Fig. 4.5. Here, the instantaneous
vorticity contours are shown as a time series over one shedding cycle. A significant
amplification of the vortical structures in lateral direction with respect to the free stream
velocity and axis of cylinder motion is observed. A quantitative measure of this effect
is provided in Tab. 4.1, showing the averaged drag and maximum lift coefficients for
stationary and oscillating cases in comparison with results from literature. Additionally,
results for computations without cylinder oscillation by Kim et al. [96] and Meyer et al.
[115] have been included for comparison. The results show a good quantitative agreement
with the reference data for the fine grid for both moving and non-moving cases, whereas
small deviations in the drag coefficient are observed for the coarse grid. We conclude
that our method is able to capture local and global flow properties for moving-boundary
problems.

4.1.3 Two Interacting Moving Cylinders at Re=40

As a last validation case including multiple moving objects we study the interaction of
cylinders with diameter D moving with respect to each other in a fluid at rest. This test
case was first proposed by Russell and Wang [154] and was adopted by Xu and Wang [194]
and Liao et al. [107]. The initial configuration is sketched in Fig. 4.6. In the following,
spatial and temporal quantities are given in non-dimensional form. Reference values are
given by L?ref = D? = 1 m and u?ref = 1 m/s.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.5: Instantaneous vorticity iso-contours of −6 ≤ ωz ≤ 6 in the vicinity and wake
of an oscillating cylinder in a free stream at Re = 100. Solid and dotted
lines show positive and negative values of ωz, respectively: (a) t = T/4;(b)
t = T/2;(c) t = 3T/4;(d) t = T ;(e) t = 5T/4;(f) t = 3T/2;(g) t = 7T/4;(h)
t = 2T ; T is the oscillation period of the cylinder.
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8D

32D

1.5D

16D

y

x

Figure 4.6: Initial configuration for two interacting, moving cylinders at Re=40. The total
domain size is 32D × 16D.

We simulate a domain of spatial dimensions 32D × 16D. The cylinders are placed sym-
metrically at 8D away from the side-walls and with a distance of 1.5D to each other in
y-direction. We maintain a constant grid spacing with 372 × 252 cells in the interaction
region of −3D ≤ x ≤ 3D and −3D ≤ y ≤ 3D. Otherwise, a grid stretching is applied to
minimize computational costs. At all boundaries we apply a linear extrapolation of the
solution. To compare our results with the incompressible reference data, we set the Mach
number to Ma = 0.1 in an ideal gas environment.

The domain is initialized at rest. In the initial phase, 0 ≤ t < 16, we let the cylinders
oscillate symmetrically about their initial position to avoid spurious pressure waves due to
impulsive start of the cylinders. After that, we move the cylinders towards each other for
a time period of 16 ≤ t ≤ 32 at a Reynolds number Re=40. The motion of the cylinder
is thus prescribed as

uU =

{
− cos(πt/4) , 0 ≤ t < 16

−1 , 16 ≤ t ≤ 32
(4.1)

for the upper cylinder (denoted with subscript U), and

uL =

{
cos(πt/4) , 0 ≤ t < 16

1 , 16 ≤ t ≤ 32
(4.2)

for the lower cylinder (denoted with subscript L).

The resulting flow field for the interaction of the two moving cylinders at time t = 24, at
which the cylinders are at their closest position, is shown in Fig. 4.7. The upper figure
shows vorticity contours, the lower figure shows the pressure contours at the same instant
in time. A strong rise in vorticity magnitude is observed, which goes hand in hand with
a decrease in pressure. Otherwise the flow field is perfectly symmetric and no spurious
pressure oscillations are detected. At time t = 32, Fig. 4.8, the two cylinders have passed
each other. The vorticity contours reveal the interaction of the two wakes. The plots
compare well to the results presented by Xu and Wang [194].
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Figure 4.7: Contours of vorticity (upper figure) and pressure (lower figure) around two
interacting cylinders at time t = 24.
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Figure 4.8: Contours of vorticity (upper figure) and pressure (lower figure) around two
interacting cylinders at time t = 32.

58



4.2 Moving Boundaries in Cavitating Flows

-1

-0.5

0

0.5

1

1.5

2

23 23.5 24 24.5 25

C
D
,
C

L
[−

]

t [−]

Figure 4.9: Lift coefficient CL (- - - and filled symbols) and drag coefficient CD (— and
empty symbols) of the upper cylinder obtained from our simulation together
with reference data of Liao et al. [107] (�) and Xu and Wang [194] (◦).

A good quantitative agreement is also found in integral quantities. Figure 4.9 shows the
lift coefficient CL and drag coefficient CD of the upper cylinder when passing the lower
cylinder obtained from our simulation together with reference data of Liao et al. [107]
and Xu and Wang [194]. The agreement with the reference data is very good. Both
coefficients show almost no oscillations.

4.2 Moving Boundaries in Cavitating Flows

We apply the cut-element method to problem sets demonstrating its ability to deal with
complex boundaries including sharp corners, stiff equations of state and flows with strong
interaction of cavitation and turbulence. For the following test cases, we apply a single-
fluid two-phase cavitation model based on the Tait equation introduced in Sec. 2.2.2.

4.2.1 Rotating Cross

First, we focus on rotating geometries in liquid water as a generic test case with possible
application to turbopumps or ship propellers. We compute the flow around a rotating
cross in liquid water, as sketched in Fig. 4.10, and compare our results with that obtained
with a finite-volume ALE approach [36] on a body fitted grid within an inertial frame of
reference. In this validation case physical viscosity is suppressed. The reference data of
the finite-volume ALE approach were provided by Bernd Budich.
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The setup is two-dimensional, the initial pressure is pinit = 1 bar and the surrounding fluid
is at rest. The rotation is instantaneously started at the begin of the simulation with a
constant angular velocity ωz = 20 rad/s around the axis of symmetry. Cavitation occurs
due to strong expansions at concave corners of the moving geometry. The geometry is
contained in a tank of significantly larger dimensions to minimize the effect of pressure
waves reflected at the domain boundaries. In the ALE computations, the computational
domain is circular with the same maximum dimensions as for the Cartesian grid. The
mesh in the vicinity of the cross is shown in Fig. 4.11. The geometry is discretized with
20 cells (medium mesh) across the face of the bar d. The body-fitted grid (Fig. 4.11(a))
features a strong refinement towards the hub, whereas the Cartesian grid (Fig. 4.11(b))
maintains a constant grid spacing also in regions far from the hub.

A grid resolution study on a grid with 10 cells (coarse mesh) and 40 cells (fine mesh) across
the face of the bar d has been performed. In Fig. 4.12 we present the vortex structures
for all three grids at an angular position of 240◦ as well as 1% vapor-fraction contours
shown as a red line. Significant differences in the main vortical structures are observed
when comparing the coarse and the medium grid. Between the medium and the fine grid,
the differences reduce to small-scale vortical structures that do not initiate cavitation.
Otherwise, the overall agreement is good and the large-scale vortices are well resolved.
Please note that in inviscid simulations full grid convergence cannot be achieved, since a
mesh refinement recovers successively smaller vortical structures.

The strong initial acceleration leads to cavitation of the fluid at the suction side of the
bars. This effect is more pronounced for the larger axis. This initial vapor sheet collapses
after a short time, which is shown as a time series in Fig. 4.13 and is assessed with respect
to prediction accuracy of the immersed boundary method. The collapse creates strong
shock waves. A good agreement between the two different approaches is observed. The
discretization scheme for the ALE method applies an up to second order reconstruction
of the flow quantities, as well as a dissipative numerical flux function and thus, compared
to the ALDM method, results in a stronger damping of small-scale acoustic waves caused
by the collapse of vapor structures.

Figure 4.14 shows the instantaneous velocity magnitude at angular positions 120◦, 240◦

and 360◦. The 1% vapor-fraction contour is shown as a red line. The results for both
methods are in good overall agreement. The results obtained on the medium Cartesian
grid exhibit more small-scale details outside of the rotation region, where the body-fitted
ALE grid is too coarse to resolve small vortical cavitation structures.

This effect is also observed in the integrated vapor volume fraction, see Fig. 4.15. The
total vapor volume fraction αtot for the medium and fine grid immersed boundary method,
which again show similar results, is constantly larger than that for ALE due to the resolu-
tion of the small cavitating vortical structures in the outer region. On the coarse immersed
boundary mesh, only the largest cavitating structures are resolved, and the total vapor
volume fraction is underestimated.
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4.2 Moving Boundaries in Cavitating Flows

Figure 4.10: Setup for the simulation of the flow field around rotating cross in liquid
water. Solid line: immersed boundary domain; dashed line: body fitted grid
domain.

(a) (b)

Figure 4.11: Mesh for the rotating-cross setup. Body-fitted grid for ALE simulation (a)
and Cartesian grid for immersed boundary simulation (b)

4.2.2 Cavitating Flow through a Closing Control Valve

As a complex demonstration of the capability of our method we show results for a three-
dimensional, viscous simulation of the flow through a high-pressure fuel injector control
valve. We assess the effect of moving boundaries on the interaction of turbulence with
cavitation.

The setup of the problem is sketched in Fig. 4.16. A round nozzle of diameter d = 1.1 mm
opens into a square plenum with a width H = 5.0 mm containing the control valve needle.
The needle has a diameter of D = 1.5 mm and is rounded at its tip. The valve seat is
rounded with a radius of r = 0.68 mm. The mesh used for the simulation is shown in
Fig. 4.17. We use a total of 3.78 · 106 computational cells. The smallest cells in the
vicinity of the valve seat are cubic with an edge length of ∆x = ∆y = ∆z = 10 µm. Mesh
refinement is applied in the regions of interest and grid coarsening is used towards the in-
and outflow channel. All channel walls and the control valve needle surface are no-slip
walls.

The fluid domain is extended to the left and right to a total length of x = ±1 m to
minimize artifacts from the farfield boundary conditions during the stimulated time span.
Initially, the fluid domain is filled with water at rest. Upstream and downstream of the
valve seat, the fluid is initialized with a pressure of phigh = 200 bar (shaded in red in
Fig. 4.16) and plow = 1 bar (shaded in blue), respectively. This imbalance creates a
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4 Validation of the Immersed Boundary Method

(a) (b) (c)

Figure 4.12: Instantaneous vorticity contour at 240◦ for three immersed boundary grid
levels coarse (left), mid (center) and fine (right); 1% vapor iso contour shown
as red iso line.

(f)(e)(d)

(a) (b) (c)

Figure 4.13: Pressure and 1%-vapor iso contour (red line) during collapse of the vapor
structures created during initial acceleration. Immersed boundary (top) and
ALE approach (bottom).
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(f)(e)(d)

(a) (b) (c)

Figure 4.14: Instantaneous velocity magnitude at 120◦, 240◦ and 360◦ (left to right); 1%
vapor iso contour shown as red iso line. Immersed boundary (top) and ALE
approach (bottom).

Figure 4.15: Integral vapor volume fraction α over time for ALE simulation (- -) and
immersed boundary simulation: coarse (— —), medium (-·-) and fine (—)
grid.
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Riemann problem, where the left-running expansion wave accelerates the liquid towards
the right and causes a steady flow into the outflow chamber.

The simulation is initialized with the needle sitting at its rightmost position (valve fully
open). After starting the simulation, the needle is kept at rest for a time ∆tinit = 0.01 ms
to allow for an initial flow development. During the closing process, the needle is moved
towards the valve seat over a distance of ∆l = 0.5 mm with a constant velocity until the
gap between the needle surface and the seat is sealed.

The time histories of the vapor volume fraction and the needle position are shown in
Fig. 4.18 for three different closing speeds. It can be seen that a higher needle speed
creates a larger total vapor volume fraction.

To assess the impact of the moving body on the flow field in detail, we present a visu-
alization of instantaneous iso-contours of the Q-criterion Q = 1.0 · 1011 s−2 colored by
the axial velocity and the vapor volume fraction α = 0.05 in Fig. 4.19. Snapshots are
taken at the instant in time where the needle reaches a position of ∆x = 0.49 mm, that
is, for a gap width of 0.01 mm. For comparison, we include a snapshot for a station-
ary needle (Fig. 4.19(a)-(b)) as well as snapshots for moving needles with closing speeds
of uc1 = 1 m/s (Fig. 4.19(c)-(d)), uc2 = 5 m/s (Fig. 4.19(e)-(f)) and uc3 = 10 m/s
(Fig. 4.19(g)-(h)).

A significant impact on the turbulent structures is obvious when comparing the stationary
simulation to a simulation with a moving boundary. In all moving cases, vortical struc-
tures are intensified as when compared to the stationary simulation. In addition, larger
vapor structures are found outside the gap region. When comparing the different closing
speeds, it is observed that a faster needle velocity suppresses the transition to a fully de-
veloped turbulent flow. Large vortex rings are visible in case of the fastest closing speed
uc3. Already for the slower closing speed uc2 these rings break up into smaller vortical
structures. In case of very slow needle velocity, uc1, a transition to developed turbulence
is visible. The impact of the vortical structures on the vapor sheet formed by cavitation
in the valve seat is apparent.

For slower speeds, the interaction with turbulent fluctuations ruptures the vapor sheet into
smaller clouds, which are convected downstream in the vicinity of the surface. Thus, in
terms of a prediction of erosion risk of the surface due to collapsing cavitation structures,
this observation suggests that a high shutting speed could be beneficial despite of the
larger vapor production. In this case, the main part of the vapor is contained in stable
vortex rings far away from the surface of the needle. Small vapor clouds near the needle
surface, in contrary, have a higher hydrodynamic aggressiveness and may cause significant
damage to the surface structure during collapse. The needle motion in this setup may
thus be considered as a key parameter to capture the correct turbulent characteristics of
the flow and the erosion risk due to cavitation.
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4.2 Moving Boundaries in Cavitating Flows

Figure 4.16: Setup for the closing-valve simulation shown as a half section. In- and outflow
volume extend to xmin = −1 m and xmax = +1 m.

(a) (b)

Figure 4.17: Mesh and surface triangulation for the closing valve simulation.

Figure 4.18: Integral vapor volume fraction αtot (—) and needle position ∆x (- - -) over
time for needle closing speeds of uc1 = 1 m/s, uc2 = 5 m/s and uc3 = 10 m/s.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.19: Visualization of instantaneous iso-contours of the Q-criterion Q = 1.0 ·
1011 s−2 colored by the axial velocity (left column) and of the vapor frac-
tion α = 0.05 (right column). Snapshots are taken at the same position of
the valve needle ∆x = 4.9 mm for a stationary needle and closing speeds of
uc1 = 1 m/s, uc2 = 5 m/s and uc3 = 10 m/s (from top to bottom row).
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4.3 Summary

To account for complex stationary and moving obstacles in cavitating flows, we have
extended the Conservative Immersed Interface Method (CIIM) of Meyer et al. [70, 114,
115, 116] to represent solid geometries with sub-cell resolution.

Validation studies for oscillating and moving cylinders showed excellent agreement with
the reference data with respect to flow structures and in terms of integral values such as
lift and drag coefficients. A newly proposed test-case of a two-dimensional rotating mixer
with sharp corners in liquid water showed good agreement with results obtained by Bernd
Budich with a finite-volume ALE approach on a body-fitted grid.

We demonstrated the overall capability of our method for a three-dimensional simulation
of the cavitating flow through a generic control valve, which is important for applications
in fuel injection systems. The cut-element immersed boundary method shows good perfor-
mance for cavitating flows of stiff liquids without exhibiting spurious pressure and density
fluctuations at the interface which have rendered previous cut-cell approaches unsuitable
for such flows.
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5 Validation of the Cavitation- and
Two-Fluid Model

In this chapter we discuss the performance of our thermodynamic models. First, we
investigate simple collapse phenomena of isolated single bubbles without and with the
presence of solid walls. Then, we present an extensive study of cavitating jet break-up
inside a gas phase.

5.1 Single Bubble Collapse Events

We first validate our thermodynamic model for water without the effect of an additional
gas content. In this study, we use the barotropic cavitation model based on the Tait
equation for the liquid phase and the homogenous mixture model for the two-phase region,
see Sec. 2.2.2. We investigate three-dimensional collapse events of vapor bubbles in the
free field and in the vicinity of a solid wall.

5.1.1 Isolated Single Bubble Collapse

The temporal evolution of isolated single bubble collapse events has been extensively stud-
ied by theoretical and experimental approaches. The growth and collapse of a spherical
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Figure 5.1: Schematic setup of collapse of an isolated single bubble.

vapor bubble, neglecting viscosity and surface tension, is described by the Rayleigh-Plesset
equation

RR̈ +
3

2
Ṙ2 =

pL − p∞
ρ∞

, (5.1)

see e.g. Young [197]. Here, R is the bubble radius, Ṙ and R̈ are the first and second time
derivative, i.e., the velocity and acceleration of the bubble surface towards the bubble
center, pL is the pressure at the bubble surface, i.e., pL = psat, and p∞ and ρ∞ are the
pressure and density of the free field.

The bubble collapse time can be obtained by integration of Eq. 5.1 and was proposed by
Rayleigh [148] as

tRayleigh ≈ 0.915R0

√
ρ∞

p∞ − psat
, (5.2)

with the initial bubble radius R0.

Following Sezal et al. [169] and Lauer et al. [104], we simulate the collapse of a spherical
vapor bubble of radius R = 400×10−6 m. The setup is sketched in Fig. 5.1. The bubble is
initialized with a vapor content of αinit = 99%. The free field pressure is set to p∞ = 1 bar.
We place the bubble at the center of a domain with length 0.1 m. Since the problem can be
regarded as symmetrical, we only simulate one-eight of the bubble and apply symmetry
boundary conditions where applicable, and outlet boundary conditions, otherwise. To
assess the effect of grid resolution, we investigate three levels of grid refinement with 22
(coarse), 44 (medium), and 88 cells (fine).

The temporal evolution of the normalized bubble radius R/R0 over normalized time
t/tRayleigh is shown in Fig. 5.2. The reference data shows the solution of the Rayleigh-
Plesset equation. Even on very coarse grids, the collapse process is captured with good
accuracy. We observe a grid convergence for the fine grid level, which shows excellent
agreement with the reference data.
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Figure 5.2: Temporal evolution of normalized bubble radius R/R0 obtained on coarse (-
◦-), medium (-�-), and fine grid (-�-), together with reference data (—).

5.1.2 Bubble Collapse near a Solid Wall

We investigate the collapse of a single, spherical vapor bubbles near a solid wall to compare
our results to Lauer et al. [104] obtained with a two-fluid model including a sharp interface
between gaseous and liquid phase. We adopt the setup of Lauer et al. and consider a
single bubble with an initial radius of R0 = 400 × 10−6 m, who’s center is placed at
a distance d = 416 × 10−6 m off the wall, see Fig. 5.3. The bubble is initialized with
a vapor content of αinit = 99%. The free field pressure is set to p∞ = 100 bar, which
corresponds to a high-pressure environment typically found in the context of high-pressure
pumps, control nozzles, and Diesel injectors. The grid spacing the vicinity of the bubble
is equidistant and corresponds to a grid resolution of approx. 90 cells per initial bubble
radius. Towards the outer boundaries, which are modelled as outflows and are located at
a distance of x, y, z = ±0.1 m from the bubble center, we apply a grid stretching. We
simulate the full bubble to evaluate asymmetries in the flow field during and after the
bubble collapse.

Figure 5.4 shows the temporal evolution of the collapse process. At t = 4.16 × 10−6 s,
Fig. 5.4(a), the early stage of the liquid jet is already visible. A region of increased
pressure causes an acceleration of liquid towards the bubble center and, thus, towards the
wall. At t = 4.44×10−6 s, Fig. 5.4(b), the liquid jet has already penetrated through most
of the bubble and has impacted on the lower wall at t = 4.51× 10−6 s, Fig. 5.4(c). This
mechanism is considered to hold the greatest potential for surface erosion due to stresses
inside the wall material. The impinging jet causes a strong shock wave, which travels back
into the field and causes a collapse of the remaining vapor regions at t = 4.57 × 10−6 s,
Fig. 5.4(d). A subsequent expansion wave interacts with vortical structures, Fig. 5.4(e/f),
which originate from the liquid jet, and cause the evaporation of liquid and, finally, a
secondary collapse at t = 4.83 × 10−6 s, Fig. 5.4(g). The liquid jet is deflected away
from the point of impact in radial direction and rolls up in a vortex ring, Fig. 5.4(h). In
the vortex core, vapor regions are found at t = 5.12 × 10−6 s, Fig. 5.4(i), which collapse
and may cause the emission of shock waves and thus potential surface erosion around the
jet impact point at later times, Fig. 5.4(j). Our results, which are obtained with a very
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Figure 5.3: Schematic setup of collapse of a single bubble near a solid wall.

simple model, compare well to the findings of Lauer et al. [104], and in addition describe
the formation of vapor in the low pressure regions after the initial collapse.

A three-dimensional view of the bubble surface visualized by the iso-surface of vapor
volume fraction and the evolution of wall pressure are shown in Fig. 5.5. We study
the effect of fluid viscosity. At t = 4.29 × 10−6 s, Fig. 5.5(a), the liquid jet is already
developing. The first rebound is shown in Fig. 5.5(b). Differences between viscous and
inviscid fluid description are found for times later than t = 4.67× 10−6 s, Fig. 5.5(c). In
the inviscid case, a higher rate of vapor production is found than in the viscous simulation.
In combination with the inviscid wall, this circular vapor structure is convected further
away from the impact point than in the viscous case, and is attached to the wall. In the
viscous case, a stable, cavitating vortex ring is found, which only becomes disturbed and
asymmetrical due to small asymmetries in the flow field at later times.

5.2 LES of Cavitating Nozzle Jets and Liquid Jet
Break-Up

Finally, to validate our thermodynamic model including non-condensable gas effects, we
investigate the complex break-up of a cavitating liquid injected into ambient air. The
considered configuration follows the general setup of a reference experiment, and is a
generic reproduction of a scaled-up fuel injector or control valve as found in an auto-
motive engine. Due to the experimental conditions it operates, however, at significantly
lower pressures. LES results are compared to the experimental reference for validation.
Three different operating points are studied, which differ in terms of the development of
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Figure 5.4: Collapse event of a single, spherical vapor bubble near a solid wall including
viscous effects. Snapshots of instantaneous pressure field and iso-line of α =
5% vapor fraction on the symmetry plane.
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(a) t = 4.29× 10−6 s

(c) t = 4.51× 10−6 s

(e) t = 4.67× 10−6 s

(g) t = 5.02× 10−6 s
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Figure 5.5: Comparison of single bubble collapse near a solid wall with (left column)
and without (right column) considering viscous effects. Instantaneous wall
pressure field pw and iso-surface of α = 5% vapor fraction.
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Figure 5.6: Schematic of the nozzle: side view (left), back view (right).

cavitation regions and the jet break-up characteristics. In the following test case, which
involves a cavitating liquid water jet injected into air, we use the linearized equation of
state for liquid water and liquid-vapor-mixtures described in Sec. 2.2.3.

This section has partially been published in Örley et al. [134]. Reprinted with permission
from Örley, F., Trummler, T., Hickel, S., Mihatsch, M. S., Schmidt, S. J., & Adams,
N. A. (2015). Large-eddy simulation of cavitating nozzle flow and primary jet break-up.
Physics of Fluids, 27(8), 086101. Copyright 2015, AIP Publishing LLC. The simula-
tion setup and grid was partially developed by T. Trummler [185], who in her work also
performed preliminary studies on the cavitating channel flow for the presented and other
operating points.

5.2.1 Setup and Grid

In the following, we present the experimental and computational setup, aside with a grid
sensitivity study.

Experimental Setup

The setup adopted for this validation study was presented by Sou et al. [174, 175] and
can be regarded as a large-scale, generic fuel injector as found in many automotive ap-
plications. A schematic of the setup is shown in Fig. 5.6. Dimensions are summarized in
Tab. 5.1. The rectangular nozzle geometry consists of acrylic flat plates as front and back
walls to gain optical access, and thin stainless steel plates of width WN = 1 × 10−3 m
to form the nozzle geometry of height HN = 4 × 10−3 m and length LN = 16 × 10−3 m.
Upstream of the nozzle, the duct height is HC = 32 × 10−3 m, which corresponds to a
contraction ratio of 8:1, and can thus be regarded as a slot flow. The nozzle opens into
a large reservoir of quiescent ambient air. In the following, we refer to the symmetry
line crossing the nozzle inlet plane as the origin of an underlying Cartesian coordinate
system.

Tap water at Tw = 292 K was processed through an air separation tank and used as
working fluid. A plunger pump was used to control the flow rate and to prescribe a
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Table 5.1: Geometric dimensions of the 2D nozzle

Parameter HN LN WN HC

Value [×10−3 m] 4.0 16.0 1.0 32.0

cavitation number
σ =

p∞ − ps
0.5ρLU2

N

, (5.3)

where p∞ = 1 atm = 1.01325 × 105 Pa corresponds to the surrounding pressure, ρL is
the liquid density and UN is the mean streamwise liquid velocity inside the nozzle. This
non dimensional parameter relates the pressure difference of the surrounding and vapor
pressure to the local dynamic pressure. The Reynolds number is defined as

Re =
UNHN

νL
(5.4)

with the liquid kinematic viscosity νL. Furthermore, we define the non dimensional cav-
itation length L∗c as the ratio of the mean streamwise extent of the cavitation zone and
the nozzle length LN . The Weber number based on the nozzle height is

We =
ρliq,∞U2

NHN

σs
, (5.5)

where σs is the surface tension coefficient.

Sou et al. [174, 175] investigated a variety of cavitation numbers σ = {0.65, 0.78, 1.27}.
The non-dimensional parameters for the operation points investigated in this numerical
study are provided in Tab. 5.2. The non-condensable gas-to-liquid dynamic viscosity ratio
is η = µgas,∞/µliq,∞ = 1.82× 10−2 and the non-condensable gas-to-liquid density ratio is
λ = ρgas,∞/ρliq,∞ = 1.21 × 10−3. Note that, since surface tension is not included in our
present model and the Weber number thus becomes infinity, we only focus on primary
break-up, which is driven by inertia. This simplification is supported by the low non-
condensable gas-to-liquid density and viscosity ratio, and the high Reynolds numbers.
We do not consider secondary break-up and atomization, which is significantly affected
by surface tension, in this work.

Sou et al. [174, 175] investigated a variety of cavitation numbers, where smaller values of
σ represent cases of higher cavitation intensity. In Tab. 5.3, the different cases selected for
this study are summarized together with their cavitation and jet characteristics observed
in the experiment. For cavitation numbers σ > 1.2, no cavitation was observed (L∗c = 0)
and the jet was characterized as ’wavy jet’. For 0.75 ≤ σ ≤ 1.2, cavitation zones at
the inlet region of the nozzle started to develop (L∗c ∼ 0.2 − 0.4), while the liquid jet
characteristics were not altered. A further decrease in the cavitation number to 0.55 <
σ < 0.75 led to a growth of the cavitation zones almost up to the whole nozzle length
(L∗c ∼ 0.8− 0.9) and enhanced primary jet break-up and jet atomization was observed.

Optical data were sampled by transmitted light imaging. Furthermore, quantitative data
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Table 5.2: Experimental conditions investigated by Sou et al. [174, 175].

Mean liquid Cavitation Reynolds Weber
velocity UN [m/s] number σ [−] number Re [−] number We [−]

12.5 1.27 50’000 8’562
16.0 0.78 64’000 14’029
17.5 0.65 70’000 16’783

Table 5.3: Experimental conditions proposed by Sou et al. [174, 175].

Cavitation Cavitation Jet
number σ characteristics surface

1.27 No cavitation Wavy jet
0.78 Developing Cavitation Wavy jet
0.65 Supercavitation Spray

for mean velocity and velocity fluctuations are available from LDV measurements. The
water was seeded with silicone carbide particles. The effect of the particles on the flow-field
was found to be negligible [175].

Computational Setup

The computational domain used in our study is sketched in Fig. 5.7 showing the block
structure. The nozzle is connected to a large outlet region of WO = 160 ×WN , HO =
75 × HN , and LO = 17.5 × LN , which is employed to resemble the injection into free
ambient air while avoiding any influence of the boundary conditions.

A total of ∆x = 24 × 10−3 m of the inlet duct is computed to avoid spurious influence
of the inlet boundary condition. At the inlet we prescribe a purely liquid water flow,
i.e., ξG,in = 0.0. If not stated otherwise, we set a laminar, doubly parabolic stream-wise
velocity profile

u =
9

4
UB

[
1−

(
y

HC/2

)2
][

1−
(

z

WN/2

)2
]
, (5.6)

The bulk velocity, UB = UN/8 according to the ratio of slot and inlet area, is set to
match the corresponding Reynolds number for each operating point. We use Neumann
conditions for the pressure at the inflow boundary and the density is computed from
Eqn. 2.23. At the outlet we apply a static pressure boundary condition p(y, z) = (pout +
plc(y, z))/2, which is computed from the static pressure in the last cell layer, plc(y, z),
and the prescribed pressure pout = 1 atm. This methodology reduces spurious reflections
at the outlet while asymptotically maintaining the desired outlet pressure. All other
quantities are extrapolated linearly. Walls are treated as adiabatic with no-slip condition
for the velocity components and Neumann conditions for all other quantities. The domain
is initialized at rest and is filled with purely liquid water without non-condensable gas
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WO

HO

LO

y

x

z

Figure 5.7: Computational domain and block structure of the quasi two-dimensional throt-
tle (shaded dark gray) connected to a large outflow reservoir (shaded light
gray).

component (i.e. ξG = 0) inside the nozzle for x < 16× 10−3 m, and gas (i.e. ξG = 1) for
x ≥ 16× 10−3 m in the outlet region. The initial pressure is set to pinit = 1 atm.

We discretize the domain on a Cartesian block-structured mesh. To reduce computational
cost we employ a successive grid refinement in the nozzle and near nozzle inlet and outlet
during the simulation. For each case, initially we let the mean flow develop over a long
period of time of approximately 100 flow-through times of the nozzle on a coarse grid,
which consists of roughly 2.7× 106 cells. As soon as the flow has developed, we refine the
grid over several intermediate levels until the final grid resolution is reached. We ensure
a steady or periodic signal of the global vapor mass fraction at each level before refining
the grid. In every step, the grid is refined near the nozzle wall and outflow region by a
ratio of 2 : 1, and the solution of the previous level is interpolated onto the refined grid.
At grid interfaces of different resolution, we apply a conservative interpolation procedure.
We propagate the flow solution on three intermediate grids before sampling data on the
fine grid. The fine grid, which is shown in Fig. 5, contains 43.1× 106 cells with a smallest
cell size of 3.91×10−6 m at the nozzle walls and at the inlet and outlet edges. An analysis
on the grid convergence behavior is given below.

Three-dimensional statistical data of the flow field was sampled on the fine grid every 100
computational time steps (∆ts ≈ 0.6×10−7 s), which corresponds to a sampling frequency
of fs ≈ 14 MHz, over an interval of at least ∆tavg = 3 × 10−3 s, which corresponds to
approx. three flow-through times of the nozzle. Time averaged quantities are denoted by
〈•〉.
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Figure 5.8: Computational grid of the full computational domain: (a) x-y view in the z
symmetry plane; (b) x-z view in the y symmetry plane; (c) x-y view in the z
symmetry plane of the nozzle region; (d) y-z view in the nozzle cross-section.
Only every fourth grid line is shown.
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Grid Sensitivity Study

To demonstrate the grid convergence behavior, we present simulation results for the de-
veloping cavitation number σ = 0.78. As discussed above, we apply 5 different grids,
which range from a very coarse grid, three intermediate grids, to the final fine grid. We
initiate our simulation on the coarse grid (level 1). We then interpolate the solution to
the intermediate grids (level 2-4) and, finally, the fine grid (level 5) as soon as a steady
behavior of the flow is found. Figure 5.9 shows the grid in the nozzle region (left column)
along with instantaneous iso-surfaces of 10%-vapor-volume fraction (right column) for the
coarse grid, Fig. 5.9(a/b), the intermediate level 2, Fig. 5.9(c/d), level 3, Fig. 5.9(e/f), and
level 4, Fig. 5.9(g/h), grids, as well as the fine grid, Fig. 5.9(i/j). Additionally, Fig. 5.10
shows the time evolution of the global vapor volume fraction. Grid levels are marked with
the corresponding numbers.

The level 1 grid is too coarse to predict regions of vapor productions, but is used to develop
the mean flow field. Already on the level 2 grid, a converged flow behavior is found with
respect to the global void fraction. Further refinement to level 3 and higher introduces a
lower shedding frequency, but does not alter the mean value of the vapor volume fraction.
Small scale vapor structures finally are already fully resolved on the level 3 grid.

These findings are also confirmed by the turbulence statistics. Figure 5.11 shows the mean
and fluctuating velocity components for the level 3, level 4, and level 5 grids at different
channel positions. We find a good agreement between all three levels.

5.2.2 Analysis of Cavitating Channel Flow

Cavitation Characteristics

We first compare our numerical results with the available experimental data for three
operating points. Figure 5.12 shows transmitted light images of instantaneous vapor
structures observed in the experiment (right column) in comparison with LES results for
the depth-averaged instantaneous vapor volume fraction 〈α〉z (middle column) and time-
and depth-averaged vapor volume fraction 〈〈α〉〉z (right column).

For a high cavitation number, σ = 1.27, no cavitation is observed in the experiment, see
Fig. 5.12(a). The LES simulation, Fig. 5.12(b-c), predicts a small amount of vapor to
be generated in the shear layer at the nozzle inlet. In contrast to the nozzle geometry
in the experiment, which is assumed to exhibit a small, but unspecified radius due to
manufacturing and hydrodynamic erosion, the numerical grid prescribes a perfectly sharp
edge that promotes rupture of the liquid.

For moderate cavitation numbers, σ = 0.78, cavitation is observed in the shear layer
up to approximately 35% of the nozzle length, see Fig. 5.12(d-f). In the simulation,
these sheets show a periodic shedding, which is induced by the re-entrant jet near the
wall. Furthermore, smaller, cavitating vortices driven by the shear layer detach and are
convected downstream, where they collapse under the higher surrounding pressure. After
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.9: Computational mesh for all applied grid levels 1-5 (from top to bottom): x-y
view of the mesh in the z symmetry plane (left column, only every fourth grid
line is shown); instantaneous iso-surfaces of 10%-void fraction (right column).
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Figure 5.10: Temporal evolution of the global vapor volume fraction αabs for σ = 0.78.
Grid levels are marked with numbers; sampling on the finest grid is started
at the position marked with a dashed line.
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Figure 5.11: Grid convergence study: mean and fluctuating velocity components for σ =
0.78 at positions x = 0.5 mm (-4-), x = 8.0 mm (-�-), and x = 13.0 mm (-�-)
for grid level 3 (· · · ), grid level 4 (- - -), and grid level 5 (—).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.12: Side view of vapor structures inside the nozzle for σ = 1.27 (a-c), σ = 0.78 (d-
f), and σ = 0.65 (g-i). Left column: instantaneous vapor structures observed
in experiments [reprinted from A. Sou, S. Hosokawa, and A. Tomiyama,
Int. J. Heat Mass Transfer 50, 3575 (2007) [174]. Copyright 2007, Elsevier];
middle column: contours of instantaneous, depth averaged vapor volume
fraction 0.01 < 〈α〉z < 1.0 in logarithmic scale; right column: contours of
time and depth averaged vapor fraction 〈〈α〉〉z = {0.01, 0.05, 0.1}.

very strong collapses a subsequent rebound and evaporation of liquid due to the induced
expansion wave is observed in the LES.

The lowest cavitation number under investigation, σ = 0.65, is characterized by a super-
cavitation state and forms a stable vapor sheet, which spans from the nozzle inlet to the
outlet. In contrast to the experiments, Fig. 5.12(g), the LES predicts vapor regimes in the
center of the nozzle starting at approximately 50% of the nozzle length, see Fig. 5.12(h-
i). This can be attributed to large, cavitating vortical structures, which are discussed in
detail below.

Based on the time and depth averaged vapor volume fraction, we determine the non
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Figure 5.13: Non dimensional cavitation length L∗c vs, Reynolds number Re (a) and cavi-
tation number σ (b) from LES simulation (�) and experiments [174] (◦).
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Figure 5.14: First operating point σ = 1.27: Mean and fluctuating velocity components at
positions x = 0.5 mm (-4-), x = 8.0 mm (-�-), and x = 13.0 mm (-�-); filled
symbols / solid lines represent simulation results, empty symbols / dashed
lines are experimental results [174, 175].

dimensional cavitation length L∗c , which we define as the maximum stream-wise extent
of the 5%-iso-contour of the time- and depth-averaged void fraction with respect to the
nozzle length. Figure 5.13 shows L∗c as a function of the Reynolds number (a) and of the
cavitation number (b), together with corresponding experimental data. Our results are
in very good agreement with the experiments by Sou et al. [174].

Velocity Fluctuations

A quantitative comparison with LDVmeasurements, where available, is given in Figs. 5.14-
5.16. The plots show x and y components of mean velocities 〈u〉 and 〈v〉, and velocity
fluctuations u′ and v′ on the z-symmetry plane over the half-width of the duct, where
y = 0 corresponds to the nozzle wall and y = 2 mm to the centerline.

For a cavitation number of σ = 1.27, see Fig. 5.14, mean streamwise velocity compo-
nents show excellent agreement between LES and experiment. An analysis of the velocity
fluctuations reveals a significantly lower turbulence intensity, in particular in the v′ com-
ponent, at the centerline of the incoming flow at x = 0.5 mm, see Fig. 5.14(c-d). The
high level of turbulence in the experimental data is assumed to be due to disturbances
induced by the plunger pump system and by flow deflections and throttles upstream of
the point of interest. Such effects cannot be accounted for in the LES. This is further
elaborated in Sec. 5.2.2, where effects of the inflow boundary conditions are excluded as
a cause for this disagreement between simulation and experiment. Towards the nozzle
outlet the deviation of the velocity fluctuations in the core flow become smaller. At the
edge of the shear layer, which is slightly wider in the LES, both simulation and experiment
show peak values of the stream-wise turbulence intensity of approx. 30%.
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Figure 5.15: Second operating point σ = 0.78: Mean and fluctuating velocity components
at positions x = 0.5 mm (-4-), x = 8.83 mm (-�-), x = 13.0 mm (-�-), and
x = 15.0 mm (-∇-); filled symbols / solid lines represent simulation results,
empty symbols / dashed lines are experimental results [174, 175].
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Figure 5.16: Third operating point σ = 0.65: Mean and fluctuating velocity components
at positions x = 0.5 mm (-4-), x = 8.0 mm (-�-), x = 13.0 mm (-�-), and
x = 15.0 mm (-∇-); filled symbols / solid lines represent simulation results,
empty symbols / dashed lines are experimental results [174, 175].
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A good agreement is also found for a smaller cavitation number of σ = 0.78, see Fig. 5.15.
Again, the level of turbulent fluctuations is underestimated at the inlet, but tends towards
the experimental values in near-wall regions at the nozzle outlet, Fig. 5.15(c-d). LDV
measurements in vapor regions are not possible. Hence, only the LES reveals the peak
in the fluctuation quantities at the edge of the cavitating shear layer at x = 0.5 mm,
and the back-flow region with values of negative stream-wise velocity in the range of
1.7 mm < y < 2.0 mm inside the detached vapor sheet.

The results for a cavitation number of σ = 0.65 are shown in Fig. 5.15. In this case,
the LES predicts larger water-vapor regions than the experiment in the downstream half
section of the duct. Due to the smaller effective nozzle cross-section, this leads to a higher
mean stream-wise velocity than measured in the experiment. The deviation of the mean
velocity 〈v〉 in the range 0.3 < y < 0.5 can likely be accredited to the slightly thicker
boundary layer at this position due to the perfectly sharp inlet edge in the LES grid.
Additionally, the vapor regions damp velocity fluctuations, see, e.g., Duke et al. [40]
and Egerer et al. [48, 49]. Only after x = 15 mm a strong rise in turbulence intensity
is observed when compared to velocity profiles located upstream of this position. This
turbulence amplification is caused by collapse events at the end of the cavitation region
and is further discussed below.

In summary, both a qualitative comparison in terms of position and size of vapor regions as
well as a quantitative analysis of velocity fluctuations show good and reasonable, respec-
tively, agreement between experiment and LES. For small cavitation numbers, the vapor
regions are larger in the simulation, which causes damping of fluctuation quantities.

Discussion of the Inlet Boundary Condition

In the following, we discuss the lower level of turbulent fluctuations in the numerically
predicted incoming flow field compared to the measurements of Sou et al. [174, 175].
Figure 5.17 summarizes the flow conditions at the nozzle inlet at x = 0.5 mm for all
investigated cavitation numbers. The mean streamwise flow velocity shows a very good
agreement between simulation and experimental data. In contrast, the core flow, which
at this position is not affected by the growing boundary layer at the wall, contains a
significantly lower level of velocity fluctuations in the LES. Especially the v′ fluctuations
are considerably larger in the experiment.

To quantify effects of boundary conditions in the inflow section, we conducted a simulation
of the σ = 0.78 configuration including a periodic precursor simulation, as sketched in
Fig. 5.18. The length of the precursor domain is ∆x = 0.01 m. A forcing term is
applied on the periodic precursor to maintain an average bulk velocity ub,σ=0.78 = 2.0 m/s.
The instantaneous velocity field is then mapped onto the inlet boundary of the nozzle
domain.

Fig. 5.19 shows the velocity components at the duct inlet for the experiment, for the LES
with a prescribed laminar profile, and for the LES with precursor simulation. Very little
difference is observed between the two simulation results. The thickness of the shear layer
and the level of streamwise velocity fluctuations are essentially unaltered. v′ fluctuation
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Figure 5.17: Mean and fluctuating velocity components at the nozzle inlet (x = 0.5 mm)
for σ = 1.27 (-4-), σ = 0.78 (-�-), and σ = 0.65 (-�-); filled symbols /
solid lines represent simulation results, empty symbols / dashed lines are
experimental results by Sou et al. [174, 175].

Figure 5.18: Schematic of the mapping strategy in the nozzle LES with precursor
simulation.

components are slightly increased with a precursor simulation, but follow the trend of the
results obtained without a precursor and with a prescribed laminar profile.

We therefore believe that the high level of turbulence intensity does not originate from grid
underresolution of an otherwise turbulent nozzle flow. Note that the Reynolds number
Reτ based on the friction velocity and the boundary layer thickness of the nozzle flow is
on the order of Reτ ∼ 100. A more likely cause are disturbances induced by the pumping
system, and by flow deflections and throttles and pipes connecting the nozzle domain
with the experimental apparatus. These uncertainties cannot be accounted for in the
LES without additional evaluation of the entire upstream flow.

Assessment of the Three-Dimensional Cavitating Nozzle Flow

In the following we analyze the three-dimensional flow field inside the nozzle. Figure 5.20
shows snapshots of iso-surfaces of coherent vortical structures visualized by the λ2 criterion
[91], together with cavitation regions and wall pressure.
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Figure 5.19: Mean and fluctuating velocity components at the nozzle inlet (x = 0.5 mm)
for σ = 0.78 with laminar inflow profile (-4-), fully developed inflow from
precursor simulation (-�-), and experiment (-�-); filled symbols / solid lines
represent simulation results, empty symbols / dashed lines are experimental
results by Sou et al. [174, 175].
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Figure 5.20: Snapshot of iso-surfaces of λ2 = −1×108 1/s2 colored by streamwise velocity
u (left column) together with iso-surfaces of vapor volume fraction α = 0.1
and wall pressure (right column) for σ = 1.27, σ = 0.78, and σ = 0.65 (from
top to bottom). Black dashed marker shows an example for the wall pressure
near a collapse event.
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For cavitation number σ = 1.27, see Fig. 5.20(a-b), a transitional and eventually fully
turbulent duct flow is recovered. Corner vortices, which originate from the boundary
layers upstream of the nozzle, are stretched in stream-wise direction and quickly break
up into small scale turbulence. This phenomenon has been studied extensively by Egerer
et al. [48].

The highly unsteady shedding and collapse of cavitation structures in case of a cavitation
number σ = 0.78, Fig. 5.20(c-d), amplify turbulent fluctuations in the detached recir-
culation zone, which is identified by negative streamwise velocity. As a result, a fully
turbulent flow is achieved earlier than in the non-cavitating case. The highly unsteady
character of the flow at this operating point can also be noticed in the highly fluctuating
wall pressure field, see Fig. 5.20(d), which shows the imprint of previously collapsed vapor
clouds. Near the top wall of the nozzle such a collapse event is captured in the snapshot
(see marked position).

Results for a cavitation number of σ = 0.65, Fig. 5.20(e-f), significantly differ from the
higher cavitation numbers in terms of turbulent fluctuations and cavitation characteristics.
For this operating point, stable corner vortices stretch up to approximately 60% of the
nozzle length. These vortices start to cavitate at approximately 30% of the nozzle length,
and add to the stable cavitation sheet at the wall, which forms at the inlet edge. This
observation is consistent with the work of Egerer et al. [48], who found a similar, even
more pronounced, behavior of cavitating corner vortices in their studies of cavitating
micro-channels in agreement with reference experiments for a cavitation liquid throttle
flow exiting into liquid. It is possible that these vortical structures become unstable in
the experiment and break up due to the high level of turbulence, which would prevent
the formation of stable vortex cavitation, or that geometrical uncertainties, which are not
quantified in the description of the experimental setup, affect the nominal parameters
at the low cavitation number case. Turbulent fluctuations are damped inside the vapor
region and are strongly amplified at the nozzle outlet. This is in agreement with the
findings of Dittakavi et al. [35].

5.2.3 Effect of Cavitating Nozzle Flow on Jet Break-Up

We now discuss the effect of the cavitating nozzle flow onto the liquid jet. Snapshots of
our LES data are put side by side with experimental images in Fig. 5.21. The jet in the
simulation is visualized by a 99%-volume fraction of air. Data are extracted for a range
of 16 × 10−3 m < x < 32 × 10−3 m to match the image selection shown by Sou et al.
[174, 175].

The experimental images show a very similar jet structure for cavitation numbers σ = 1.27
and σ = 0.78, see Fig. 5.21(a/d). For σ = 0.65, Fig. 5.21(g), in contrast, spray formation
is observed. Small droplets and ligaments of liquid detach from the surface and cause an
increased jet angle.

Our numerical results, see Fig. 5.21(b/e/h), show only little effect of the cavitation number
on the average jet angle in the x-y plane. Rather than spray formation, we observe only
a slightly more disturbed jet surface structure at the lowest cavitation number. However,
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Figure 5.21: Experimental transmitted light images (left column) [reprinted from A. Sou,
S. Hosokawa, and A. Tomiyama, Int. J. Heat Mass Transfer 50, 3575 (2007)
[174]. Copyright 2007, Elsevier] and LES snapshots of x-y view (middle
column) and x-z view (right column) showing iso-surfaces of gas volume
fraction βG = 0.99 in the range 16 mm < x < 32 mm for σ = 1.27, σ = 0.78,
and σ = 0.65 (from top to bottom).
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Figure 5.22: Time-averaged gas volume fraction βG on the y-symmetry plane in the range
16 mm < x < 32 mm for σ = 1.27, σ = 0.78, and σ = 0.65 (from left to
right). Black lines show contour levels of βG = {0.8, 0.9, 0.99}.
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significant differences between the higher cavitation numbers σ = 1.27 and σ = 0.78, and
the low cavitation number σ = 0.65 are observed in the x-z plane, see Fig. 5.21(c/f/i).
We clearly notice a widening of the jet and a detachment of large and few small liquid
structures from its surface, which closely resembles the observations in the experiments
of Sou et al. [174, 175]. This effect of the cavitation number on the jet spreading angle is
more clearly visible in the time-averaged data, see Fig. 5.22.

The primary break-up of a liquid jet, which is driven by inertia, can be divided into
two stages. Initial perturbations of the jet surface are triggered near the nozzle exit.
These perturbations are amplified in the liquid-gas shear layer under the influence of
aerodynamic forces, resulting in secondary jet break-up in which the formation of droplets
and ligaments dominate. For the initial stage, momentum generation towards the liquid-
gas interface is of main importance. In addition to initial disturbance of the liquid-air
interface due to Kelvin-Helmholtz type instabilities, we identify three main mechanisms
from an analysis of our simulation data that lead to distortions of the jet surface and
hence to a widening and break-up of the jet: turbulence production in terms of velocity
fluctuations inside the nozzle near the outlet region, entrainment of non-condensable free
gas, which enters the nozzle region from the outlet volume, and collapse events inside the
emerging liquid jet. In the following, each of these mechanisms is briefly discussed.

Kelvin-Helmholtz Instabilities

Liquid jet and gas phase form a shear layer at the interface in the outflow region, which
quickly becomes unstable to small disturbances and forms large-scale Kelvin-Helmholtz
(KH) vortical structures, as has been discussed extensively in the literature [102, 111, 192].
These formations grow until the aerodynamic forces due to the velocity difference with
respect to the quiescent surrounding gas break off large structures, which eventually lead
to Rayleigh break-up and droplet formation[33]. In Fig. 5.23, KH vortical structures are
visualized by contours of the z-vorticity magnitude ωz in the xy-symmetry plane (top
row), and of the y-vorticity magnitude ωy in the xz-symmetry plane. The jet surface is
highlighted by an iso-line of gas volume fraction βG = 0.99.

For the two higher cavitation numners, σ = 1.27 and σ = 0.78, only low values of vorticity
production are found at the liquid gas interface. For a low cavitation number, σ = 0.65,
large KH vortices are clearly visible, which detach from the jet.

Effect of Turbulent Fluctuations

Sou et al. [174, 175] argue that strong turbulent fluctuations induced by collapses of
vapor regimes just upstream of the nozzle exit induce additional momentum towards the
liquid-gas interface and hence may cause the increase in spray angle and, ultimately, jet
atomization observed in their experiments.

The collapse of single bubbles and bubble clouds interacts with the surrounding flow field
on multiple scales. Dabiri et al. [26] observe that vorticity is generated at the surface of a
single bubble in a shear flow during collapse, which could add to larger vortical structures
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Figure 5.23: Contours of z-vorticity magnitude ωz in the xy-symmetry plane (top row),
and y-vorticity magnitude ωy in the xz-symmetry plane (bottom row) to-
gether with iso-contour for gas volume fraction βG = 0.99 (black line) for
σ = 1.27, σ = 0.78, and σ = 0.65 (from left to right).

in the liquid. This effect, however, cannot be resolved in our LES. We suspect that the
observed increase of the small scale fluctuations on the turbulence level are caused by micro
jetting during the collapse process of aspherical vapor structures and vapor clouds, which
creates a strong increase of local kinetic energy, see Adams and Schmidt [2]. Dittakavi et
al. [35] moreover found that the collapse of vapor structures causes a substantial increase
in the baroclinic torque. In addition, turbulent fluctuations are amplified when processed
by shock waves, see, e.g. Larsson et al. [101] and Hickel et al. [82] In a cavitating cloud
collapse, this effect can be intensified by chain reactions of collapsing cavity arrays, as
found by Lauer et al. [103].

Figure 5.24 shows the wall-normal velocity fluctuations in y- and z-direction at the outlet
extracted from our simulations. In the LES, only a small increase in wall-normal velocity
fluctuations, Fig. 5.24(a), is detected in the proximity of the top wall near the nozzle exit
when comparing σ = 0.78 with σ = 0.65. In contrast, in z-direction, see Fig. 5.24(b), a
significant increase in the w′ fluctuation magnitude is found for the supercavitating nozzle
with σ = 0.65. The maximum amplitude of the w′ fluctuations for σ = 0.65 is approx.
2.5 times higher than for σ = 0.78.

In our numerical simulation we detect collapse events with an algorithm developed by
Mihatsch et al. [120, 121], which considers the re-condensation of vapor volume content
inside a computational cell together with an analysis of the local velocity divergence. The
normalized peak collapse pressure pc is obtained by scaling the observed maximum pm
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Figure 5.24: Components of wall-normal velocity fluctuations in y- and z-direction at the
nozzle outlet at x = 15.0 mm (empty symbols / dashed lines) and x =
16.0 mm (filled symbols / solid lines) for σ = 0.78 (-�-) and σ = 0.65 (-�-)

following Schmidt et al. [161] by

pc = pm
V

1/3
Ω

lref
, (5.7)

where we set the reference length scale lref = 3.75× 10−6 m to compensate for the effect
of grid resolution onto the collapse pressure inside the cell with volume VΩ. Figure 5.25
shows the position of detected collapse events during a time interval of ∆t = 2 ms. Each
event is represented by a sphere, whose size and color scales with normalized collapse
pressure pc. In case of σ = 1.27, see Fig. 5.25(a-c), only few weak events are detected
near the nozzle inlet. For σ = 0.78, Fig. 5.25(d-f), the location of collapse events is
restricted approximately to the first 30% of the duct near the upper and lower walls.
Only few collapses, which are mainly caused by rebounding vapor bubbles, are detected
downstream of this region. In the supercavitating case, σ = 0.65, the majority of collapse
events is detected near the nozzle outlet, see Fig. 5.25(g-i). In addition to events at the
upper and lower duct wall at approximately 90% of the nozzle length, strong events are
recorded in the LES at the side walls directly at the outlet edge. The events in this region
are caused by the collapse of vapor structures near the side walls predicted in our LES,
which are not present in the experiment. The position of the collapse events coincides
with the location of amplification of turbulent fluctuations, which confirms the hypothesis
of Sou et al. [174, 175].

Effect of Gas Entrainment

Gas entrainment into the nozzle is found to introduce large disturbances to the jet, which
leads to an increase of the average jet angle. Low pressure vapor regions, which are present
just upstream of the nozzle outlet and extend to the exit at the side-walls, cause a pressure
gradient directed from the nozzle into the gas filled plenum. The initial phase of the
collapse process of a cavitation region furthermore causes an acceleration of surrounding
fluid towards the center of the structure. Near the nozzle outlet, such events cause gas to
enter the duct region.

93



5 Validation of the Cavitation- and Two-Fluid Model

x
y

z
x

y

x

y

z

x
y

z
x

y

x

y

z

x
y

z
x

y

x

y

z

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

1.0 5.0 10.0 pc [×107 Pa]

Figure 5.25: Spatial distribution of isolated collapses detected during an analysis interval
of ∆t = 2 ms for σ = 1.27, σ = 0.78, and σ = 0.65 (from top to bottom).
Size and color of each sphere is based on the normalized collapse pressure pc.
Collapse events with a collapse pressure pc < 30× 105 Pa are not shown.
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This mechanism is depicted as a series of snapshots in Fig. 5.26. Gas that has passed the
exit plane in upstream direction is visualized though green iso-surfaces of βG = 0.1. At
time t = t0, Fig. 5.26(a), a large vapor structure reaches the nozzle outlet. As soon as the
large structure collapses, gas is sucked into the nozzle, see Fig. 5.26(b). When the gas is
pushed back by the liquid, Fig. 5.26(c), a significant acceleration of water in z-direction
is observed, which results in a larger angle of the jet at the outlet. Few instants later in
time, see Fig. 5.26(d/e), the same process is observed in the upper nozzle region.

Effect of Collapse Events inside the Jet

An potential additional mechanism promoting jet break-up is suspected in the collapse of
vapor bubbles near a liquid-gas interface. This phenomenon was, e.g., discussed by Robin-
son et al. [152] and Obreschkow et al. [127], who describe the interaction of collapsing
cavitation bubbles with a free planar and curved surfaces. The authors demonstrate that
a bubble collapse near a liquid-gas interface creates a primary liquid jet pointing away
from the interface, and a secondary jet towards the interface. The latter causes a liquid
jet emerging from the surface. The intensity of this mechanism depends on the size of the
cavitation bubble and its distance from the interface.

To demonstrate the ability of our model to represent this phenomenon, we have conducted
a simple simulation to investigate this mechanism, as shown in Fig. 5.27. We initialize the
domain with a liquid-gas interface at p = 1 atm and place a vapor bubble with αv = 99%
inside the liquid. The bubble has a diameter of D = 0.2 mm and is resolved with approx.
16 cells across the bubble diameter on a homogenous grid. We vary the distance d between
the bubble center and the interface, see Fig 5.27(a).

Snapshots show iso-surfaces of vapor volume fraction, gas volume fraction, and liquid mass
fraction (right half of figures) together with contour-line βG = 0.99 on the symmetry plane
(left half of figures). The liquid-gas interface is colored by interface-normal velocity w.
The bubble collapses under the high surrounding pressure, which is shown as a time
series in Fig. 5.27(b-d). As soon as the bubble has collapsed, Fig. 5.27(c), which causes
the liquid-gas interface to contract towards the collapse center, the formation of two jets
is visible. The primary jet is directed away from the liquid-gas interface. The secondary
jet, as found by experimental studies, points towards the interface and causes a small
jet filled with water to be ejected into the gas domain, Fig. 5.27(c). The intensity of
this jet, as well as inherent time scales, depend on the initial bubble diameter and its
distance from the interface. The simplified study shows that effect of the secondary liquid
jet penetrating the interface can be captured without surface tension in the early stages,
before the formation of droplets and ligaments dominates the process, which cannot be
captured by our current model.

A similar phenomenon, which we suspect to be based on the mechanism of a single bubble
collapse near a liquid-gas interface as discussed above, is observed when cavitation regions
pass the nozzle outlet and collapse inside the liquid jet near the liquid-gas interface. A
confirmation of the occurrence of collapse events beyond the nozzle exit plane (x > 16 mm)
in case of a supercavitating flow is found in Fig. 5.25(h). A time series of what we suspect
to be the footprint of a vapor collapse near the jet surface is presented in Fig. 5.28.
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Figure 5.26: Visualization of gas entrainment process into the nozzle (left column: top
view; right column: perspective view). Snapshots show iso-surfaces of α =
0.1 (blue), together with gas volume fraction βG = 0.99 (gray) and entrained
gas volume fraction βG = 0.1 (green).
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Figure 5.27: Collapse of single cavitation bubbles in the proximity of a liquid-gas interface
at various instants in time. Bubble has an initial diameter D = 0.2 mm
and is placed at a distance d = {0.17, 0.145} mm from the the interface.
Snapshots show iso-surfaces of vapor volume fraction α = 0.1 (blue), gas
volume fraction βG = 0.99 colored by interface-normal velocity w (right half
of figures), and liquid mass fraction on the symmetry plane (shaded grey)
together with contour-line βG = 0.99 (left half of figures).
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We show iso-surfaces of vapor volume fraction α = 0.1 (blue) in a top view without a
visuatization of the jet (left column), together with top (middle column) and side view
(right column) of vapor structures and an iso-surface of the gas volume fraction βG = 0.99
colored by w-velocity.

We follow a cavitation structure marked in Fig. 5.28(a). The structure is convected
downstream and has passed the nozzle exit plane in Fig. 5.28(b). A short time after the
vapor cloud has collapsed under the high pressure that is imposed from the surrounding
fluid, see Fig. 5.28(c). A collapse near the jet surface causes an acceleration of liquid
towards the liquid-gas interface and a small, high velocity liquid spike emerging from the
jet surface, which is marked in Figs. 5.28 (d) and (e).

In summary, the four described mechanisms significantly add to the generation of mo-
mentum directed towards the liquid-gas interface, which causes a widening and primary
break-up of the liquid jet surface.

5.3 Summary

The collapse of isolated single bubbles is often used for a first validation of cavitation
models. We have shown that the homogenous mixture single-fluid two-phase model is
able to accurately predict the collapse of a vapor bubble in liquid water. The bubble
collapse in the vicinity of a solid wall has been found to be in good agreement with
reference data obtained with a sharp interface method.

Many experimental studies show that cavitation phenomena play a crucial role in jet
break-up and vaporization. Still, the simulation of cavitating nozzle flows injected into
a free gas phase remains a challenging task. As many complex models are limited to
relatively simple configurations, one has to find a compromise between feasibility and
applicability to realistic problems. Focus of the validation study is the initial stage of the
jet break-up. The simulation of the secondary break-up, that is, ligament and droplet
formation, has not been considered since the current model does not include surface
tension effects.

The two-fluid two-phase model has been applied to a cavitating nozzle slot and jet flow
injected into air. The setup of the present study has been subject to extensive experimen-
tal investigation. We have performed LES for three different cavitation numbers, each of
which shows different characteristics of the nozzle flow and of the liquid jet. Cavitation
structures within the duct resemble experimental results. Quantitative measurements of
mean and fluctuating velocity components reveal a lower level of turbulence in the sim-
ulation, which we attributed to disturbances induced by the experimental apparatus. In
contrast to the experiments, we have observed that cavitation promotes the break-up of
the jet in lateral direction. In addition to classical Kelvin-Helmholtz type large scale
instabilities of the jet surface, three main mechanisms suggested to be responsible for jet
break-up in cavitating liquid flows have been reproduced and analyzed, namely turbulent
fluctuations induced by the collapse of cavitation structures in the proximity of the exit
plane of the nozzle, entrainment of gas into the nozzle, and collapse events inside the jet
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Figure 5.28: Collapse event inside the jet. Snapshots show iso-surfaces of α = 0.1 (blue),
and gas volume fraction βG = 0.99 colored by w velocity. Snapshots are
taken at the same instant in time. Collapse position and emerging liquid jet
are highlighted by a red-dashed marker.
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near the liquid-gas interface. All three mechanisms induce momentum directed away from
the jet axis and lead to primary break-up of the jet. Collapse events near the exit and
outside the nozzle region were found to be of particular importance. A fully compressible
description of the flow is essential to capture such mechanisms.
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6 Flow Inside a Nine-Hole Diesel
Injector

In the following chapter, we investigate the turbulent multiphase flow inside a nine-hole
common rail Diesel injector during a full injection cycle of ISO 4113 Diesel fuel into air.
The simulation includes a prescribed needle movement obtained from a one-dimensional
Multi-Domain Simulation. The injector geometry is represented by the cut-element based
immersed boundary method. For this study, we employ the barotropic two-phase two-
fluid model introduced in Sec. 2.2.3 for liquid and gaseous ISO 4113 Diesel Fluid, see
Sec. 2.2.2, and non-condensable air.

This section has been published in Örley et al. [131]. Reprinted with permission by Sage
Publishing.

6.1 Simulation Setup

6.1.1 Geometry and Simulation Strategy

We investigate the flow inside a nine-hole CR Diesel injector, which is shown in Fig. 6.1.
The geometry was provided by Huber and Ulbrich [88]. The tapered nozzle holes, which
are inclined by αH = 15.57◦, have an inlet diameter of DH,in = 175 × 10−6 m, an outlet
diameter of DH,out = 135× 10−6 m, and a length of LH = 800× 10−6 m. The K-factor in
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Table 6.1: Geometric parameters of the nine-hole CR Diesel injector.

Symbol Parameter Value

dN1 Main needle diameter 2.8× 10−3 m
dN2 Needle diameter at needle volume 2.0× 10−3 m
αN1 Chamfer angle at needle volume 46.52◦

αN2 Needle seat angle 28.66◦

αN3 Needle tip angle 46.76◦

dNL Inner diameter of nozzle line 3.4× 10−3 m
hS Height of sac volume 0.77× 10−3 m
αH Nozzle hole inclination angle 15.57◦

DH,in Nozzle hole inlet diameter 175× 10−6 m
DH,out Nozzle hole outlet diameter 135× 10−6 m
k K-Factor 4
LH Length of nozzle hole 800× 10−6 m
RH,in Nozzle hole inlet radius 40× 10−6 m
n Number of nozzle holes 9

this case is k = (DH,in −DH,out)/10 = 4. Deviations from the nominal dimensions of the
individual nozzle holes, which may occur under realistic operation of the injection system,
are neglected. The height of the sac-hole volume is hS = 770 × 10−6 m. Details on the
geometrical parameters of the nozzle holes, the needle, and the nozzle line are summarized
in Tab. 6.1.

In our simulation, we model only the nozzle line and half of the ring chamber of the high-
pressure system. Figure 6.2 shows the injector geometry embedded into the computational
domain. To maintain a constant reservoir pressure and to avoid any influence of boundary
conditions close to the region of interest, we connect the ring chamber to a large high-
pressure volume and prescribe total pressure boundary conditions equal to the chosen
rail pressure at the top of the domain, see Fig. 6.2(a). The outlet chamber is modelled
in the same way. The high- and low-pressure chambers are only linked via the injector,
Fig. 6.2(b). All side-walls of the pressure chambers are modelled as slip walls. We initialize
the domain with liquid fuel, that is, ξG = 0, at rest at a rail pressure of pR = 1500 bar
above the needle seat, and gas, that is, ξG = 1, at chamber pressure pC = 10 bar,
otherwise. During the simulation, liquid fuel without a non-condensable gas is prescribed
at the inlet boundary, that is, ξG,in = 0, in order to reproduce the boundary data of the
one-dimensional reference simulation. We also investigated an operation at a rail pressure
of pR = 2000 bar, but found no significant difference in the flow features when compared
to the lower rail pressure. We therefore focus our analysis on the latter case.

Initially, the needle is at its closed state and the high-pressure region is separated from the
low-pressure outlet region. To maintain numerical stability, the minimum lift of the needle
is approximately 4 µm. This means that the immersed boundaries for the injector casing
and needle are within a single computational cell. During the simulation, the needle lift is
prescribed. The needle lift lN and needle lift velocity vN , see Fig. 6.3, are obtained from a
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Figure 6.1: Geometry of the nine-hole CR Diesel Injector [88]: (a) full view of the needle
seat and sac-hole region; (b) detailed view on the symmetry plane of a single
injector hole (marked with dashed line).
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Figure 6.2: Computational domain and block structure of the nine-hole CR injector sim-
ulation: (a) full domain; (b) detailed view on the injector casing and needle
(marked with dashed line).

104



6.1 Simulation Setup

-100

-50

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

l N
[×

10
−
6
m
]

v N
[m

/s
]

t [×10−3 s]

Figure 6.3: Needle lift ( ) and needle velocity ( ) for rail pressure pR = 1500 bar
[88].

dynamic multi-domain simulation model by Huber and Ulbrich [88]. The injection cycle
corresponds to a holding time of the solenoid valve driving current of thold = 0.7 ms. For
injection pressures of pR = 1500 bar, the maximum needle lift is lN,max = 264.4 µm and
the needle is in a ballistic operational mode.

6.1.2 Computational Setup

We discretize the domain with a Cartesian block-structured mesh, see Fig. 6.2. To reduce
computational cost, we employ a local grid refinement near the needle seat, the sac-hole,
the nozzle holes, and in the outflow region. We perform simulations on three different
grid levels with successive refinement in the needle seat and nozzle hole regions. The
coarse grid, subscript c, consists of approx. 35.2 × 106 cells with a smallest cell size of
∆xc = 20 × 10−6 m. The medium, subscript m, and fine grid, subscript f , consist of
approx. 49.5 × 106 and 81.6 × 106 cells with a smallest cell size of ∆xm = 10 × 10−6 m
and ∆xf = 5× 10−6 m, respectively. On the finest grid level, the small cell size and the
large speed of sound of the liquid phase limits the timestep size to 0.74 × 10−9 s. The
grid parameters are summarized in Tab. 6.2. Details on the numerical grid of the three
grid levels are shown in Fig. 6.4. To capture circumferential asymmetries in the flow
field, we compute the full 360◦ geometry including all nine nozzle holes on the coarse and
medium grid. Since a full system simulation is not feasible on the finest grid level, we
reduce our computational domain to 180◦ at the symmetry plane, see Fig. 6.5(a). In the
following, quantities denoted by 〈•〉 are averaged over the nozzle holes. To compare our
results across different grid resolutions, we average nozzle holes inside the 180◦-domain
marked in Fig. 6.5(a). Pressure probe positions are shown in Fig. 6.5(a/b). The probe
positions are denoted by S1-S6. Sensors S1 and S2 are located at equal y-position and
are distributed on a circular line with constant angular spacing. Sensor S3 is located in
the sac-hole. Sensors S4-S6 correspond to measurement points located at the center of
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Table 6.2: Grid parameters for three investigated grid levels.

Grid level Coarse Medium Fine

Cell count [×106] 35.2 49.5 81.6
Min. Cell size [×10−6 m] 20 10 5
Time step [×10−9 s] 3.6 1.75 0.74

the inlet, mid, and outlet cross-section of the nozzle holes.

6.2 Results and Discussion

In the following, we evaluate the results obtained from our LES. We first compare integral
quantities measured on different grids to the results obtained from the multi-domain
simulation model. Subsequently, we assess the three-dimensional flow field of the different
phases of the injection cycle. A focus is put on the assessment of erosion prediction in
terms of the location and dynamics of cavitation regions and their collapse behavior.
Finally, we compare our results including a unsteady needle movement to data obtained
from computations with a steady needle.

6.2.1 Mass Flow and Pressure Measurements during the
Injection Cycle

First we compare the mass flow rate obtained on the three investigated grids. Figure 6.6
shows the temporal evolution of the averaged injection rate and standard deviation to-
gether with reference data [88]. Based on the temporal evolution of the injection rate,
we define four phases of the injection cycle, which significantly differ in terms of injection
rate, fluid flow turbulence, and cavitation characteristics. The different phases are the
startup phase (0 < t < 0.25 ms), main injection (0.25 < t < 0.95 ms), needle closing
(0.95 < t < 1.03 ms), and sealed needle seat (1.03 < t < 1.15 ms), as summarized in
Tab. 6.3.

Our numerical results correspond well to the data obtained with the multi-domain simu-
lation model. During the startup phase 1, our simulation first provides a lower mass flow
than the 1D-simulation. This effect can be accredited to the fact that the multi-domain
simulation model does not include cavitation effects in the needle seat. Our LES shows
that cavitation leads to choked conditions at the needle seat. Once the needle lift is large
enough, the mass flow rate rapidly rises to a value of approximately 6.5 g/s. During the
main injection, phase 2, the mass flow rate is limited by choked conditions in the nozzle
hole outlet area and remains almost constant. As soon as the closing needle has reached a
lift of approximately 50 µm, phase 3, choked conditions in the needle seat again limit the
mass flow rate. After the needle seat is closed, phase 4, the mass flow is blocked in the
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Figure 6.4: Computational grids and Cartesian block structure in the nozzle holes and
needle seat for the coarse grid, medium grid, and fine grid (from top to bot-
tom): z-y view in the x symmetry plane (left column); detailed view of the
nozzle hole in the x symmetry plane (middle column); x-z view in a cut-plane
through the nozzle holes (right column). Contours of the nozzle and needle
geometry on the cut-planes are marked with a line.
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Figure 6.5: Top view (a) and side view (b) of the injector geometry. 360◦ sector computed
on the coarse and medium grid ( ), and 180◦ sector computed on the fine
grid ( ). Probe positions are marked.
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Figure 6.6: Temporal evolution of average injection rate 〈ṁinj〉 of a single hole for coarse
( ), medium ( ), and fine ( ) grid, and needle lift ( ) [88]. The
grey bands show standard deviation between nozzle holes.
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Table 6.3: Definition of four characteristic phases during the injection cycle.

Phase Time interval [ms] Phase description

1 0 < t < 0.25 Startup phase
2 0.25 < t < 0.95 Main injection
3 0.95 < t < 1.03 Needle closing
4 1.03 < t < 1.15 Sealed needle seat

Table 6.4: Total injected mass during one injection cycle.

〈minj〉 [×10−3 g] σ [×10−3 g]

Coarse grid 5.4481 0.0284
Medium grid 5.6671 0.0215
Fine grid 5.5436 0.0265
Reference data [88] 5.2789 -

multi-domain simulation. In the LES, compressibility effects cause a back-flow through
the nozzle holes before all disturbances of the closing process have decayed.

The discharge coefficient, which relates the maximum mass flow measured in the simula-
tion to the maximum theoretical injection rate, is defined as

Cd =
ṁinj,max

ṁinj,th

=
ṁinj,max

AH,out
√

2ρR(pR − pC)
. (6.1)

In our simulations we compute a discharge coefficient of approximately Cd = 0.89 during
the main injection phase, which is a typical value for non-cavitating nozzle flows with a
K-factor of k=4, see, e.g., Schmidt [159].

The total injected mass, minj, during the cycle is obtained by time integration of the
measured mass flow rate for each individual hole. Table 6.4 summarizes the total injected
mass averaged over all holes together with the standard deviation and reference data [88].
For all grids, the injected mass lies within 5% error to the one-dimensional multi-domain
simulation model. The low standard deviation verifies a negligible hole to hole variation.

A comparison of integral quantities, such as injection rate and total injected mass, suggests
that a grid convergence is already reached for very coarse grids. Never the less, the
characteristic flow structures are not well represented on the coarse and medium grid
levels, which is discussed below.

Figure 6.7 shows the temporal evolution of the average pressure signal 〈p〉 at sensor
positions S1-S6 as defined in Fig. 6.5. The pressure level upstream of the needle seat
remains at rail pressure, which validates our method to prescribe a constant high pressure
reservoir via a large connected volume. In the opening phase, the main pressure drop is
observed over the needle seat (S1 to S2/S3). In the main injection phase, the pressure level
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Figure 6.7: Temporal evolution of average pressure signal 〈p〉 at sensor positions S1-S6
( ) computed on the fine grid and needle lift ( ). The grey bands show
standard deviation.

in the sac-hole volume S2/S3 is almost at rail pressure. In this phase, the main pressure
drop occurs over the nozzle holes, that is, S4 to S6. The high standard deviation in this
phase is caused by the highly dynamic flow structures inside the nozzle holes. Closing the
needle raises the pressure level upstream of the needle seat and lowers the pressure in the
sac volume. This leads to the formation and subsequent collapse of a large vapor bubble
At t = 1.1 ms, a high pressure peak in the sensor S3 signal indicates the collapse of this
structure in the sac volume. We will further analyse this process in Sec. 6.2.4 below.

6.2.2 Assessment of the Three-Dimensional Flow-Field

We now turn towards the analysis of the three-dimensional internal flow. In the following,
we will discuss only results obtained on the finest grid level. A comparison to the medium
and coarse grid levels is provided in the next section

Figures 6.8-6.11 show snapshots of velocity contours on the symmetry plane, iso-surfaces
of coherent vortical structures visualized by the λ2 criterion, and iso-contours of the vapor
volume fraction α.

During the startup phase, see Fig. 6.8, which shows a snapshot taken at t = 130 × 10−6

s at a needle lift lN = 30.5× 10−6 m, the flow field is dominated by small scale turbulent
fluctuations inside the sac-hole and the nozzle holes. The turbulence is driven by a
high frequency shedding process, which occurs at the outlet of the needle seat. A large
separation is visible on the upper side of the nozzle holes near the inlet edge. A vapor
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sheet indicates the choked conditions in the needle seat, which limits the mass flow during
this phase.

Figure 6.9 shows snapshots of the main injection phase at t = 580×10−6 s at a needle lift
lN = 264.4× 10−6 m. The flow inside the sac-hole is still fully turbulent. Now, the nozzle
hole outlet area limits the mass flow rate. The velocity level inside the needle seat thus
is lower than in the startup phase. Inside the nozzle holes large, stable vortices in axial
direction now dominate the flow. In each hole, several of these structures are present at
the same time. The origin of these vortices lies upstream of the needle seat in the needle
chamber. At this location large vortex rings are shed by the backward facing needle.
These vortex rings are disturbed when being convected into the needle seat, break up,
and form long, streamwise vortical structures, which are being further accelerated in the
converging needle seat area. Inside the nozzle holes, the vortices are further accelerated
and stretched. As a result, the pressure drops near to saturation pressure on the nozzle
outlet plane. Due to the pressure drop inside the vortex core, the liquid evaporates and
vapor is generated. During the main injection phase, this is the only location where
cavitation is detected.

When the needle comes near to closing the injector, see Fig. 6.10, which shows the flow
field at t = 996×10−6 s at a lift lN = 30.0×10−6 m, the flow inside the nozzle holes again
undergoes transition to a fully turbulent state. Cavitation occurs near the inlet of the
nozzle holes due to the strong acceleration of fluid from the needle seat into the nozzle
holes and the lower pressure level inside the sac-hole compared to the main injection
phase.

Finally, at t = 1082×10−6 s, see Fig. 6.11, the flow is characterized by decaying turbulent
fluctuations after the needle is fully sealed. Inside the sac-hole, we observe the formation
and collapse of cavitation structures, which are generated in the sac-hole by inertia effects
shortly after closing of the needle. In the nozzle holes, a backflow of liquid and gas from
the combustion chamber is observed after the re-condensation of large vapor volumes in
the sac-hole region.

6.2.3 Effect of grid resolution on flow features

In the following, we discuss the effect of grid resolution on characteristic flow features
during the main injection phase. Figure 6.12 shows coherent turbulent structures visual-
ized by the λ2 criterion and the absolute velocity on the symmetry plane obtained on the
three investigated grids at t = 600× 10−6 s and at a needle lift of lN = 262.8× 10−6 m.

On the finest grid, Fig. 6.12(e), as discussed above, vortical structures are created up-
stream of the needle seat and are advected into the nozzle holes, where they are accelerated
and stretched. This process can also be observed on the medium grid, Fig. 6.12(c). Com-
pared to the finest grid, the number of vortices created is smaller, and vortices inside the
nozzle holes are not as well resolved, but nevertheless the overall evolution is found to
be similar. A significant difference is found when comparing the small-scale turbulence
in the sac-hole found on the fine grid, which is not resolved on the medium grid. On
the coarse grid, Fig. 6.12(a), elongated vortical structures are not present. Fluctuations
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Figure 6.8: Snapshots of iso-contours of λ2 = −2× 10−10 s−2 colored by absolute velocity
(a), velocity contours on the symmetry plane (b), and iso-contours of α = 0.05
(c) at t = 130× 10−6 s and needle lift lN = 30.5× 10−6 m.
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Figure 6.9: Snapshots of iso-contours of λ2 = −2× 10−10 s−2 colored by absolute velocity
(a), velocity contours on the symmetry plane (b), and iso-contours of α = 0.05
(c) at t = 580× 10−6 s and needle lift lN = 264.4× 10−6 m.
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Figure 6.10: Snapshots of iso-contours of λ2 = −2×10−10 s−2 colored by absolute velocity
(a), velocity contours on the symmetry plane (b), and iso-contours of α =
0.05 (c) at t = 996× 10−6 s and needle lift lN = 30.0× 10−6 m.
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Figure 6.11: Snapshots of iso-contours of λ2 = −2×10−10 s−2 colored by absolute velocity
(a), velocity contours on the symmetry plane (b), and iso-contours of α =
0.05 (c) at t = 1160× 10−6 s and needle lift lN = 0× 10−6 m.
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in the sac-hole are even more reduced. The velocity magnitude on the symmetry plane
shows a similar evolution for all grid levels, Fig. 6.12(b/d/f), implying a grid-converged
total mass flow. A significant difference again is the visible turbulence in the sac-hole
found on the fine grid, Fig. 6.12(f), as well as a flow detachment at the nozzle inlet, which
increase with grid resolution.

In summary, results for the medium and fine grid compare well in terms of turbulent
structures and integral flow quantities, such as mass flow and pressure measurements,
indicating that the LES on the finest grid provides a reliable database for the analysis of
the flow field during the injection process.

6.2.4 Cavitation Characteristics and Erosion Assessment

A main focus of this study is to identify erosion sensitive areas during operation of the
injector. With our numerical simulation results for the full injection cycle we are able to
resolve and assess the onset of cavitation both spatially as well as temporally. This pro-
vides important information on the location where and the instant in time when damage
due to violent collapse events may be expected.

Figure 6.13 shows the temporal evolution of the total vapor volume αtot within the com-
putational domain. During the opening phase, a peak indicates cavitation in the needle
seat. In the main injection phase, cavitation only occurs inside the vortex cores outside
the nozzle holes. The total vapor volume produced during this phase is very low. The
sharp rise during the closing phase is caused by the development of cavitation inside the
needle seat, and is further increased by the development of cavitation structures in the
nozzle holes and, after the needle seat is sealed, inside the sac volume. Note that the
total vapor fraction is in very good agreement between the medium and fine grid. This
suggests that at least the onset and magnitude of vapor formation can be predicted on a
coarser grid, even if cavitation structures are not well resolved.

After the needle has closed the seat, the liquid inside the nozzle holes, which still has a
high inertia, suddenly is strongly decelerated. This can only be achieved by a significant
pressure drop inside the needle seat outlet and sac-hole region. In these regions large
vapor clouds are generated. The cavitation structures at the time instant at which the
total vapor fraction reaches its maximum are shown in Fig. 6.14(a). The nozzle holes are
still partly filled with vapor. Shortly thereafter, Fig. 6.14(b), the vapor inside the nozzle
holes and near the needle seat has re-condensated. The large vapor structure inside the
sac-hole starts to collapse slightly later under the increasing pressure. This is shown in
a time series in Figs. 6.14(b-j). First, the cloud starts to shrink towards the lowest point
of the sac-hole. The final re-condensation stage, Fig. 6.14(e), results in a strong collapse
event, during which the liquid is strongly accelerated towards the lower sac-hole wall.
The wall pressure, which reaches values of several hundred bars, shows the footprint of
the strong shock wave that is emitted during this event. Significant pressure peaks are
detected on the sac-hole walls, nozzle inlets and the needle tip. The subsequent expansion
again causes the liquid at the bottom of the sac-hole to evaporate, see Fig. 6.14(i/j), and
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Figure 6.12: Snapshots of iso-contours of λ2 = −2×10−10 s−2 colored by absolute velocity
(left column) and velocity contours on the symmetry plane (right column) at
t = 600 × 10−6 s as computed on the coarse (a/b), medium (c/d), and fine
grid (e/f).
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Figure 6.13: Temporal evolution of total vapor volume αtot for coarse ( ), medium
( ), and fine ( ) grid, and needle lift ( ).

leads to several weak rebounds, that is, the formation and collapse of vapor clouds with
decreasing size.

In our numerical simulation we are able detect collapse events with an algorithm of Mi-
hatsch et al. [119, 120], which tracks the re-condensation of vapor volume content inside
a computational cell together with an analysis of the local velocity divergence. The nor-
malized peak collapse pressure pc is obtained by scaling the observed maximum pm

pc = pm
V

1/3
Ω

lref
, (6.2)

where we set the reference length scale lref = 3.75× 10−6 m to compensate for the effect
of grid resolution onto the collapse pressure inside the cell with volume VΩ [2]. We adopt
the value of lref as proposed by Egerer et al. [48] in the study of a similar test case. We
note that this value can be case dependent, and that the effect of its choice has been
investigated for a different setup by Mihatsch et al. [119]. With this collapse detector
we are able to quantify the time, location, and strength of isolated collapse events, which
enables us to characterize the injection phases in terms of their erosion potential.

In Fig. 6.15, we show the collapse events during the four injection phases. Each individual
event is visualized by a single sphere. Size and color of each sphere scale with the normal-
ized collapse pressure pc. In the initial phase 1, Fig. 6.15(a), a small number of collapses is
found at the nozzle hole inlet and near the needle seat. During the main injection phase
2, see Fig. 6.15(b), collapse events are only found in the nozzle hole outlet region and
outside the nozzle hole in the jet. During closing phase 3, Fig. 6.15(c), a large number of
strong events is found over the full length of the nozzle holes, as well as near the needle
seat and tip. After closing, phase 4, the collapse of vapor structures near the needle seat
causes collapse events with very high peak pressure, compare Fig. 6.15(d). Subsequently,
the collapse of the sac-hole cavity and rebound effects causes a large number of strong
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(a) t = 1047.00× 10−6 s

(b) t = 1070.00× 10−6 s

(c) t = 1074.00× 10−6 s

(d) t = 1078.00× 10−6 s

(e) t = 1080.00× 10−6 s

(f) t = 1080.25× 10−6 s

(g) t = 1080.50× 10−6 s

(h) t = 1080.75× 10−6 s

(i) t = 1081.00× 10−6 s

(j) t = 1081.50× 10−6 s
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Figure 6.14: Collapse of sac-hole vapor structure: snapshots of iso-contours of α = 0.05
and wall pressure.
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Figure 6.15: Spatial distribution of isolated collapse events detected during the character-
istic injection phases. Size and color of each sphere is based on the normalized
collapse pressure pc.

events near the lowest point of the sac-hole.

6.2.5 Comparison to Steady Needle Simulations

Finally, we compare our LES of unsteady needle motion with simulation results performed
for a steady needle at different positions. The grid and initial conditions are the same as
for the unsteady simulation. After initialization, we let the flow develop over at least half
an injection cycle before data is extracted for comparison.

Figure 6.16 shows the LES results for the steady and unsteady simulation at full needle lift.
The same characteristic flow features are found in both simulations. As in the unsteady
simulation, the formation of long, streamwise vortical structures originating from the
needle volume is found. In the steady case, these structures are more stable than in the
unsteady case, in which the majority of these vortices break up when passing through
the needle seat. As a result, a larger number of vortical structures is found in the nozzle
holes of the steady simulation. As in the unsteady simulation, vortex cavitation outside
of the nozzle holes is also present in the steady case. In summary, the steady simulation
at full needle lift captures the overall flow features of the unsteady simulation reasonably
well.

At a low needle lift, in contrast, significant differences between steady and unsteady
simulations are observed. In Fig. 6.17, we present the flow field and cavitation structures
at a needle lift of lN,s2 = 30 × 10−6 m during the opening phase, Fig. 6.17(c/d), and at
the same needle lift during the closing phase, Fig. 6.17(e/f).
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Figure 6.16: Steady (top row) vs. unsteady needle lift (bottom row): snapshots of iso-
contours of λ2 = −2× 10−10 s−2 colored by absolute velocity (left column),
and iso-contours of α = 0.05 (right column) for needle at maximum lift
lN,s1 = 264.4× 10−6 m at tN,s1 = 580× 10−6 s.
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Compared to the steady simulation, Fig. 6.17(a/b), the unsteady simulation during the
opening phase does not yet develop vortical structures in the needle chamber. Otherwise,
the flow field compares well with respect to small scale turbulent fluctuations in the sac-
hole and the nozzle holes. A large separation is visible near the hole inlet. In terms of
cavitation prediction, on the other hand, the two results differ significantly. In both cases,
the needle seat is filled with a stable vapor sheet. In the steady simulation, formation of
periodically shedding cavitation sheets is also found at the inlet edge of all nozzle holes,
which is not found during the opening phase of the unsteady simulation.

When comparing the steady simulation to the results of the closing phase at equal needle
lift position, we find that the unsteady simulation predicts higher flow velocities in the
nozzle holes. This is due to the fact that the mass flow in the nozzle holes experiences a
short time lag with respect to the actual needle seat area. Both simulations are in good
agreement in terms of cavitation regions. However, larger cavitation structures are found
in the liquid jets inside the combustion chamber are found in the unsteady simulation.

6.3 Summary

To assess the performance of Diesel injectors in the context of life-cycle and fuel mixing
characteristics, it is important to understand the flow inside these devices, which is dom-
inated by turbulence and cavitation phenomena. Experimental studies are complicated
by the small geometries and timescales, as well as by the high operating pressures.

We have performed well-resolved LES of the flow inside a nine-hole common rail Diesel
injector during a full injection cycle using a fully compressible two-fluid / two-phase
homogenous mixture model for cavitating Diesel and non-condensable gas flows. The
injector operates at a pressure of 1500 bar. The simulations provide detailed insight into
the complex flow structure inside a high-pressure Diesel injection device.

We have defined four different phases of the injection cycle, during which the flow charac-
teristics differ significantly. During the opening phase, small scale turbulent fluctuations
are found inside the sac-hole and nozzle holes. Cavitation in this phase only occurs at
the needle seat and limits the mass flow rate. During the main injection phase, large
vortical structures are created in the needle chamber just upstream of the needle seat,
and dominate the flow inside the nozzle holes. Due to the tapered shape of the nozzle
holes, these vortices are further stretched and cause vortex cavitation at the nozzle outlet
plane. When the injector needle is close to sealing the needle seat, formation of large
cavitation structures is also found at the nozzle hole inlet. After closing of the injector,
strong collapse events of vapor structures in the needle seat and the sac-hole cause the
formation of violent shock waves. A fully compressible description of the flow is essential
to capture such phenomena.

In addition to the simulations including a moving needle, we have performed computations
at different steady needle lifts. In all cases, steady simulations capture the main flow
features reasonably well. Steady needle simulations provide a worst case scenario in
terms of localization and quantification of vapor formation. This information may suffice
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Figure 6.17: Steady (top row) vs. unsteady needle lift (middle and bottom row): snap-
shots of iso-contours of λ2 = −2 × 10−10 s−2 colored by absolute velocity
(left column), and iso-contours of α = 0.05 (right column) for needle at lift
lN,s2 = 30×10−6 m at tN,s2.1 = 128×10−6 s (opening) and tN,s2.2 = 997×10−6

s (closing).
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if one is only interested in the liquid jet break-up inside the combustion chamber during
the main injection phase. The vapor creation during the closing phase, however, is caused
by the liquid inertia distribution in the nozzle holes and thus requires information of the
developed flow field just before closing of the needle seat. Hence, a reliable prediction of
erosion-sensitive areas due to collapse events during and after closing of the needle can
only be predicted accurately by including the unsteady needle motion.
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7 Summary and Conclusion

Modern direct fuel injection systems for automotive applications aim at increasing injec-
tion pressures to reduce emissions and to meet legislative standards. Recently, injection
pressures of more than 2500 bar have been employed in Diesel injectors to support jet
break-up and atomization in order to improve combustion efficiency. As a result, the flow
inside these devices becomes prone to strong turbulence and cavitation effects, which may
affect the injector performance and durability, and must thus be understood and controlled
during the design process to ensure a reliable operation. Experimental characterization
of flow features reaches its limit due to high operating pressures and small spatial and
temporal scales. Numerical simulations, on the other hand, can provide detailed insight
into flow dynamics by highly resolved computations in both space and time.

The scope of this work has been to develop the relevant tools to conduct Large-Eddy
simulations of high-pressure direct Diesel injection systems under realistic thermodynamic
conditions, including movement of the injector needle, cavitation effects and interaction
of gas and liquid phase. This problem has been chosen as an example for a complex,
industrial application. The building blocks that have been investigated in this context
are:

1. Development and improvement of a numerical method to represent moving bodies
of arbitrary shape on Cartesian grids for LES

2. Development of a thermodynamic framework to perform simulations of cavitating
liquids and gases
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3. Validation of the new numerical and thermodynamic methods

4. Analysis of a reference simulation of a full injection cycle

In each chapter of this thesis, a detailed summary of the corresponding topic has been
discussed. In the following, the main findings are briefly summarized.

First, the conservative immersed interface method has been improved for representing
complex immersed solid boundaries on Cartesian grids. This has been found to be a nec-
essary step to allow for numerical simulations of weakly compressible flows when dealing
with moving geometries. It has been demonstrated, that an approximation of moving
interfaces by a level-set field, as has been performed in previous works, results in un-
physical oscillations in the vicinity of sharp corners in weakly compressible fluids. These
numerical artefacts can be omitted when switching to an exact reconstruction of the ge-
ometrical parameters of cut-cells directly from a surface triangulation of the embedded
body. The new method is based on cut-elements. It provides sub-cell resolution of the
geometry and handles flows through narrow closing or opening gaps in a straightforward
manner. The improved version of the immersed boundary method has been validated
against canonical flow problems, such as oscillating cylinder flows and moving cylinders
interacting with each other. The results were in very good agreement with reference
data from the literature. A comparison of integral and instantaneous flow quantities of
a two-dimensional rotating mixer with simulations results obtained from a body-fitted
simulation demonstrated the performance of the new method also in weakly compressible
environments.

An extension of the thermodynamic equilibrium cavitation model to perform monolithic,
fully compressible two-fluid two-phase simulations of cavitating liquid jets injected into
non-condensable gas has been discussed. The model uses an additional transport equa-
tion for the gas mass fraction and states a simple, but robust and effective method for
LES. Different liquid and gas models can be integrated into the modular framework. In
this thesis, different approaches for water and ISO4113 Diesel fuel have been presented.
Validation studies of collapse events of isolated single bubbles showed good agreement
with analytical and numerical reference data. The break-up of a cavitating liquid jet in
air has been investigated. The setup resembles a large-scale injector nozzle operated at
lower injection pressures. The cavitation and Reynolds numbers of the nozzle flow were
σ = {1.27, 0.78, 0, 65} and Re = {50000, 64000, 70000}, respectively. A qualitative com-
parison of cavitation structures showed good agreement with experimental data, while a
comparison of mean and fluctuating velocity components revealed a lower level of turbu-
lence in the simulation. Uncertainties in the inflow conditions were identified as a probable
cause for this effect. The break-up of cavitating jets in the gas volume is strongly enhanced
for low cavitation numbers. Classical Kelvin-Helmholtz type instabilities of the jet surface
were considered to have only a minor impact on jet break-up when compared to effects
induced by cavitation. For a supercavitating nozzle flow, collapse events of vapor struc-
tures near the nozzle exit, gas entrainment into the nozzle, and collapse events near the
liquid-air interface inside the jet were found to be the main source for adding momentum
of the liquid directed away from the jet axis and hence promote primary break-up.
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Finally, high-resolution LES of the flow inside a nine-hole common rail Diesel injector
including prescribed needle movement at a rail pressure of 1500 bar, using the developed
numerical tools and thermodynamic models, have been performed. During opening and
closing of the injector needle, small scale turbulent fluctuations dominate the flow field.
In the main injection phase, large vortical structures are observed inside the nozzle holes
and cause vortex cavitation inside the jet in the combustion chamber. Cavitation inside
the injector occurs mainly during and shortly after the closing phase, which thus are
identified as the phases of highest risk for surface erosion.

In conclusion, it has been shown that cut-element based immersed boundary methods are
suited for the numerical simulation of complex, moving geometries. New thermodynamic
models provided physical insight into jet break-up of cavitating liquid jets. The current
state provides a starting point suitable for further geometry studies and optimization of
injection systems or related industrial problems.
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