
The Priority Division Arbiter for low WCET and high
Resource Utilization in Multi-core Architectures

Hardik Shah1, Kai Huang1,2 and Alois Knoll1
1Department of Informatics VI,Technical University Munich

85748 Garching, Germany
{shah, huang, knoll}@in.tum.de

2School of Mobile Information Engineering, Sun Yat-Sen University
huangk36@mail.sysu.edu.cn

ABSTRACT
Shared memory arbiters play a major role in determining
the Worst Case Execution Time (Wcet) of applications
executing on multi-core architectures. Apart from the
produced Wcet, shared memory utilization is another
important parameter which characterizes the suitability of
an arbiter for a particular system. This paper compares
the traditional arbiters, the Static priority (aka fixed
priority), the Time Division Multiple Access (Tdma) and
the Round robin against the Priority division arbiter on the
above mentioned merits. The paper extends the Priority
division arbiter by providing a new configuration, called h1,
which is highly attractive for mixed critical systems with
a single Hard Real-Time (Hrt) application. The paper
derives formulas to calculate the worst case latency and
the worst case memory utilization. The analysis proves
that the Priority division arbiter outperforms the Tdma
arbiter in memory utilization and the Round robin arbiter
in the produced Wcet. Moreover, the Priority division
arbiter, under the h1 mode, outperforms the Static priority
arbiter in terms of the produced Wcet of the single Hrt
application. The supporting evidences are achieved by
conducting experiments on a quad-core NIOS architecture
built on Altera Fpga. The test applications are chosen from
the Mälardalen Wcet benchmark suit.

1. INTRODUCTION
Today’s safety critical applications have become compu-

tationally intensive. Multi-core architectures are the most
promising candidates to satisfy this need of computation
power due to their high performance per watt ratio.
Typically, multi-core architectures employ shared resources
(memory) to reduce package size and thereby the overall
cost of the product. The interference on the shared memory
prolongs execution of applications unpredictably. This is
considered as the biggest challenge in determining the Wcet
of applications executing on multi-core architectures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
RTNS 2014 , October 8 - 10 2014, Versailles, France
Copyright 2014 ACM 978-1-4503-2727-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2659787.2659817.

To avoid interference on shared memory, a static time slot
can be assigned to each core. This approach is called Time
Division Multiple Access (Tdma). Here, only the assigned
core can access the shared memory in the corresponding
slot. Thus, the interference is avoided altogether, hence, the
experienced latency is the worst case or the best case latency.
Tdma is well known to produce low Wcet bound [12].
However, it leads to reduced shared memory utilization due
to the wastage of slot if the assigned master does not use
it. Shared memory bandwidth is a scarce resource and its
wastage may not be acceptable.

To utilize the wasted slots, Round Robin (Rr) arbiter
and Priority Division (Pd) [16] can be employed. Rr and
Pd have their advantages and drawbacks with respect to the
produced Wcet and the shared resource utilization. Under
all these arbitration schemes (Tdma, Rr and Pd), finite
Wcet of applications executing on multiple cores can be
achieved. Hence, all these arbiters are multi Hrt capable.
Under the Static Priority (Sp) arbitration, finite Wcet of
application executing on only the highest priority core can
be achieved. Hence, it is termed as single Hrt capable.

In this paper, we compare the above mentioned arbiters
in terms of the produced Wcet and the worst case shared
resource utilization. Our analysis and experiments show
that the Pd arbiter, at slight worst case resource utilization
penalty, outperforms the Rr and the Sp in the produced
Wcet. The resource utilization penalty is far less than that
of the Tdma. Additionally, all the arbiters are similar in the
occupied chip area.

The paper compares the effect of different arbiters on
the produced Wcet and Bcet of test applications. Hence,
execution time impacting sources, e.g. cache and pipeline
effects, branch predictor status etc, are assumed with a
constant effect. The motivation behind this assumption is
that these effects are also present in single core architectures
and existing techniques [21] can be employed for their
analysis. The focus of this paper is to study the effect
of shared memory interference on the produced Bcet and
Wcet of applications.

The main contributions of the paper are as follows. i)
The paper derives conditions for the worst case latency and
the worst case resource utilization for the Sp, the Tdma,
the Rr and the Pd arbiters. The latency analysis is done
in isolation considering no knowledge of the co-existing
applications. ii) The paper extends the existing Pd arbiter
by providing a configuration (h1) which is highly attractive
to the mixed critical systems with single Hrt application.

iii) The experiments are conducted on an Fpga board using
a quad-core NIOS processor and test applications from the
Mälardalen Wcet benchmark suit [6].

The paper is organized as follows. Sec. 2 discusses
the existing related work. Sec. 3 builds the background
knowledge. Sec. 4 revisits the Pd arbiter and extends
its capability by providing the h1 configuration. Sec. 5
describes our experimental set-up and compares the arbiters
and Sec. 6 concludes the paper.

2. RELATED WORK
There has been a few arbiter proposals to provide low

latency bound as well as high resource utilization. We
classify these arbiters in the following categories.

Close to traditional: Static priority (Sp), Time
Division Multiple Access (Tdma) and Round Robin (Rr)
are considered traditional arbiters. As described in Sec. 3.5
and Sec. 3.6, Tdma and Rr arbiters either provide low
worst case latency or high resource utilization, respectively.
The Sp provides low worst case latency to only the highest
priority master. For other masters, the worst case latency is
infinite. To balance the worst case latency and the resource
utilization, “close to traditional” arbiters are proposed by
mixing traditional arbiters.

dTDMA [14] dynamically inserts slots for only active
masters in the bus schedule and removes the slot if master
is not active. This results in high bus utilization and
guaranteed bandwidth to each master. The worst case
latencies under the dTDMA is equally high as Rr, hence, it
results in high Wcet bounds. Paolieri et al [11] propose
interference aware bus arbitration scheme. Here, Hrt
tasks have higher priority in accessing the shared resource
compared to Srt. Contention among Hrt is resolved by the
Rr arbitration. Thus, it mixes Sp and Rr scheme. However,
in an all Hrt system, the arbiter behaves as a Rr and carries
the drawback of high worst case latencies.

Poletti et al [13] propose a new arbitration scheme: slot
reservation. The arbitration scheme is similar to FlexRay [1]
where a static slot is assigned to the critical master for
guaranteed bandwidth and dynamic slots are arbitrated
using the Rr scheme by other masters. Thus, it mixes Tdma
and Rr. Like Tdma, the arbiter results in poor resource
utilization if the static slot is unused and incurs high worst
case latencies in the dynamic slot, like the Rr.

Priority Division (Pd) [16] is another“close to traditional”
arbiter. It optimizes the Tdma schedule by re-arbitrating
the unused slots by static priorities. Hence, the advantage of
the Tdma (low Wcet) is preserved, however, the drawback
(wasted slots) is decreased. If all masters utilize their slots,
the Pd behaves exactly as the Tdma. This paper extends
the work presented in [16] by deriving conditions for the
worst case latency and the worst case resource utilization.
Moreover, a new configuration, h1, suitable to the mixed
critical systems with single Hrt is presented.

As explained above, all “close to traditional” arbiters,
in certain situations, behave exactly as the corresponding
traditional arbiters. Apart from the “close to traditional”
arbiters, randomized arbiters and budget based arbiters are
proposed in literature.
Randomized arbiters: Lottery arbiter [10] and [7]

grant the shared resource to a requesting master based
on their probabilistic weight. Hence, assumption of
the worst case latency for every access can be avoided,

instead, a probabilistic latency distribution can be achieved.
RT Lottery [4] employs two level arbitration. Like Pd, the
first level is arbitrated by Tdma and the second level is
arbitrated by the lottery arbitration.

Budget based arbiters: To satisfy bandwidth and
latency requirements of different masters, budget based
arbiters are proposed. They are widely used in the
networking domain. Under these arbitration, the masters
are allocated a number of accesses in a unit time. The
conflict on the shared resource is resolved using priorities,
e.g. in Ccsp [2] and Pbs [20] arbiters. Under MBBA
arbiter [3], number of priority levels are defined, Gi. Each
level has Ni cores. Every group is guaranteed to be
scheduled after every 2Gi slots which can be considered its
budget. Within the slot, the cores are arbitrated using Rr.
The deficit round robin [19] applies Rr under the budgeting.

Arbiter comparisons: Pitter et al [12] and Kopetz et
al [9] compared different traditional arbiters and concluded
that the Tdma is the most predictable arbitration scheme.
Our work adds to theirs by bringing the Sp and the Pd
to the comparison. Moreover, we derive conditions for the
worst case resource utilization and the worst case latency.

The work presented by Kelter et al [8] is the closest work
to ours. They compared the Pd arbiter against the Tdma
and the Rr. They developed a framework to estimate Wcet
of applications executing under the arbitration schemes and
compared the produced Wcet, Average Case Execution
Time (Acet) and the resource utilization. They concluded
that the Pd is a promising alternative for systems running
mixed-criticality workloads. Our work adds to their work by
deriving conditions for the worst case resource utilization as
well as conducting experiments on a real hardware. Their
approach is static timing analysis based while our approach
is measurements based. Additionally, we extends the Pd
by providing a single Hrt capable configuration which
outperforms the Sp in the produced Wcet.

The randomized arbiters and the budget based arbiters
are complex and have large area footprint which hinder
their industrial adaptation. As stated earlier, all “close to
traditional” arbiters, in certain situations, behave exactly as
the corresponding traditional arbiters. Hence, in this paper
we compare the Pd arbiter directly against the traditional
arbiters. The main focus of the paper is to derive conditions
for the worst case latency and the worst case resource
utilization under different arbiters. We also study the
effect of the worst case latency on the produced Wcet of
applications. Since our approach relies on measurements, it
cannot analyze timing anomalies and domino effects [5, 22].

3. BACKGROUND
This section provides the necessary background informa-

tion to facilitate the discussion presented in the paper.

3.1 Shared resources in multi-cores
Cots based multi-core architectures share on-chip re-

sources in order to reduce number of components on-
chip and package size. The reduction in the number of
components and package size reduces the over all cost of
the product. Main memory is the most common shared
resource in multi-core architectures. Fig. 1(b) depicts the
basic multi-core architecture.

Here, N number of CPUs are connected to the main
memory via a shared bus. Each core is equipped with

Shared Bus (Arbiter)

CPU1

I$ D$

Shared
Main

Memory

CPU3

I$ D$

CPU2

I$ D$

CPUN

I$ D$

CPU4

I$ D$

CPU

0x00

0x10

0x20

0x30

CACHE

Off-chip

memory

 (a) Cache-line Mapping (b) Basic Multi-core Architecture

Figure 1: Cache-line Mapping and Basic Multi-core Architecture

instruction and data caches. As long as the required data is
available in the caches (cache hit), the main memory is not
accessed, unless specified explicitly. However, if the accessed
data is not available in the caches (cache miss), the shared
main memory is accessed. As depicted in Fig. 1(a), cache is
configured in cache-lines. Typically, one of the cache-lines
is evicted and the required data is copied from the main
memory and inserted in the place of the evicted cache-line.
To access the main memory, which is slower than caches,
a burst access is issued with burst length sufficient to fill
an entire cache-line. The main memory access pattern of
any core depends on the application being executed on the
respected core, its cache size, cache configuration and the
eviction policy employed in the cache.

3.2 Shared resource access latency and uti-
lization

From Fig. 1(b), it is clear that the shared memory
serves the masters via a single bus-slave interface. Hence,
only one master can access the shared memory at a time.
Typically, an arbiter is employed to resolve conflicts on the
shared memory. In the event of a collision, one of the
cores is granted an access to the shared memory by the
arbiter while the others have to wait until they are granted.
Thus, the experienced latency of any shared resource access
depends on: i) Responsiveness of the shared memory itself
(generally, memories have slower operating frequencies than
the processor cores), ii) The employed arbitration policy,
and iii) The instantaneous activity of co-existing masters in
the system at the time when the access request is issued.

From the above factors, the instantaneous activity of co-
existing masters is extremely difficult to predict which makes
the analysis of the experienced latency extremely difficult.
However, the upper and lower bounds on the access latency
can be analyzed. They are known as the worst case latency
(WL) and the best case latency (BL), respectively.

As explained earlier, the main memory is accessed when
the required data is unavailable in the cache. Hence, the
execution on the waiting cores suspends temporarily until
they are granted an access to the shared main memory and
subsequently, they fill their caches with the required data

from the main memory1. Thus, the BL and WL factors play
an important role in determining the execution time bounds
for an application executing on a particular hardware.

As the WL is used to estimate the Wcet (Sec. 3.3),
the BL is used to estimate the Best Case Execution Time
(Bcet). While deriving the theoretical value of BL, all
favorable scenario is assumed, e.g. no interference or idle
shared resource. If the arbiter does not utilize the shared
resource efficiently, it wastes clock cycles before scheduling
an access in all favorable conditions. Hence, the BL and the
corresponding Bcet is higher in the non-work conserving
arbiters compared to the work conserving2 arbiters. The
Bcet of application is inversely proportional to the number
of clock cycles wasted in scheduling an access from the
application under all favorable conditions. Thus, low Bcet
is an indicator of high shared resource utilization, U .

Equation (1) defines the resource utilization considering
the master, m, on which the test-application is executing
as the only backlogged master (bm = 1). All co-existing
masters are considered not backlogged (bm′ 6=m = 0) to
assume all favorable conditions.

(bm = 1) ∧ (bm′ 6=m = 0) | U =
µbusy × 100

µbusy + µidle
% (1)

In the above equation, the right side of “|” derives a value
provided that the condition on the left side of“|”holds. Here,
µbusy and µidle are the number of clock cycles for which
the shared resource is busy and idle, respectively, when
an access from m is backlogged. Considering a constant
shared resource access pattern and a constant memory
responsiveness, BL, WL and U depend only on the employed
arbitration policy. The remaining paper studies the effect of
the arbitration policy on BL, WL and U .

Asymmetric multiprocessing: In this paper, we
assume asymmetric multiprocessing, i.e. independent appli-

1An out of order core can execute few more instructions
while waiting, if, these instructions are not dependent on
the required data.
2A work conserving arbiter schedules an access immediately
as long as the shared resource is idle.

ST
A

R
T

ST
O

P

T1

e1

L1

T2

e2

L2

T3

e3

L3

T4 T0

ST
A

R
T

ST
O

P

t1

e1

t2

e2

t3

e3

t4 t0

c1 c2 c0 c3

c0 c1 c2 c3

Recorded
Trace

Computation
Trace

WL = Worst case latency, Lx = Measured latency, cx = Computation time,
ex = xth event, Tx = Time in recorded trace, tx = Time in computation trace

ST
A

R
T

c0 c1 c2 c3 WL WL WL

ST
O

P

WCET
Computation

WCET

e0 e4

e0 e4

e1 e2 e3
e0 e4

Figure 2: Wcet Computation using the Computation Trace

cations are deployed on different cores and the applications
do not communicate with each other. The assumption
lets us exclusively focus on execution time variation due to
the shared resource interference. Our analysis is valid for
symmetric multiprocessing as well, however, an additional
dependency analysis must be performed. We leave the
symmetric multiprocessing for future work.

Before we study the arbitration policies in detail, the
following subsection explains the computation trace [18].

3.3 Computation trace
The computation trace is used to estimate the worst case

execution time (Wcet) of a particular application path
considering the worst case interference. It is an execution
trace of an application path where cache misses are denoted
by timeless events and are separated by computation time
(c0, c1, ...). The computation time is the time during which
the processor executes only from the caches and on-chip
registers. The shared main memory is not accessed (cache
miss does not occur). The motivation behind the timeless
events is the following. In the shared memory architecture,
the shared main memory is accessed when a cache miss
occurs. The contention on the shared memory delays
service to this memory access. Typically, the collision of
cache misses on the shared memory is extremely difficult
to predict. Moreover, the delay in service also delays
the subsequent cache misses (memory accesses) of the
application-under-test by the same amount. This causes
difficulties in estimating the worst case interference and its
impact on the Wcet. To avoid these difficulties, at first, we
remove all the latencies related to the memory accesses. This
means, there is no interference at all and the shared memory
takes zero cycles to respond. Later, theoretically calculated
worst possible latency, WL, is added for each cache miss.

Computation trace, depicted in the Fig. 2, can be easily
obtained by simulation or using the technique presented
in [15]. At first, occurrence time (T0, T1, ...) of each
cache miss event (e0, e1, ...), and its experienced latency
(L0, L1, ...) are recorded in a trace by executing the
application on cycle accurate simulation model. Later, these
latencies are removed and each event is shifted towards
left in time. The resulting trace is the computation trace.
Now, to compute the Wcet considering the worst case
interference, each cache miss event in the computation
trace is annotated by the highest possible latency (WL)

considering the worst case interference. Hence, all the
subsequent accesses are shifted to the right. Now, the
computed Wcet contains the effect of the worst possible
interference the application may experience. Similarly, by
inserting BL for each cache miss event, Bcet of application
can be achieved.

The artificial insertion of WL for each cache miss
for conservative Wcet analysis is intuitive for in-order
processor cores. Today’s out-of-order processor cores can
keep on executing instructions after a cache miss occurs
until the execution is blocked by a dependent instruction. In
the following we prove that insertion of worst case latency
(execution blocking time), WL, due to a cache miss is a
conservative assumption also for an out-of-order processor.

Assume that for an event e, occurring at time t in
a computation trace, the execution does not suspend
immediately due to out-of-order execution. Instead, it moves
forward for δ amount of time before being blocked by a
dependent instruction. In our analysis, we assume that the
execution suspends at t and restarts at t+WL. The analyzed
worst case execution blocking time is t + WL − t = WL.
However, in the out-of-order case, execution moves forward
for δ time after experiencing a cache miss at t. Hence, the
effective blocking time = t + WL − (t + δ) = WL − δ <
WL, ∀δ > 0. This proves that insertion of WL as the worst
case latency for each cache miss is a conservative assumption
for both, in order and out-of-order execution. The δ ≥ WL

indicates that the execution does not suspend until the cache
miss is served. In other words, the application has sufficient
independent instructions to execute in pipe-line, hence, the
effective blocking time is 0. Here, again, insertion of WL as
the worst case latency is a conservative assumption.

Note that the latencies in the recorded trace depend on
shared memory interference at the time of measurement.
However, the computation trace remains unchanged3 when
the same path is executed multiple times, provided that each
time we start the application from the same cache state and
use the same data as an input. The Wcet computed using
this method is Wcet of that particular path. To find the
critical path (worst case path), the analysis must be done
for each path through application execution.

3.4 Static Priority Arbiter
Static Priority or Fixed Priority arbiter is one of the

simplest arbiters. Here, each master is assigned a fixed
priority. In the event of contention, the master with the
highest priority is granted the access. The Sp is generally
configured in a non-preemptive mode for shared memory
architectures. Hence, the highest priority master cannot
interrupt an on-going lower priority burst and it is blocked
until the lower priority burst is finished. To prevent
starvation of the highest priority master, the burst length4

is fixed. Let us denote the burst length by SS5. This
guarantees that a new scheduling decision is made, at most,
after every SS clock cycles.

Latency bound: It is clear that only the highest priority

3Here, we assume absence of jitter in occurrence of cache
misses due to operating system, FPU, pipeline etc.
4The maximum number of clock cycles for which a master
can occupy the shared resource after requesting once.
5SS stands for slot size which is explained in the next
subsection

m1

m2m3

m4

SlotSize

(SS)

Switch
owner

m1

m2m3

m4

SlotSize

(SS)

(b)
Arrival of a late

request from m1

(a)
Graphical view

of TDMA

Figure 3: The Tdma Arbiter

master has guaranteed worst case latency bound6. In the
worst case, the highest priority master must assume that
there is an ongoing lower priority burst and it has to wait
until the lower priority master finishes its burst. Thus, in the
worst case, the highest priority master needs in total twice
the SS clock cycles to finish its access. Similarly, in the
best case, the shared resource is idle and the highest priority
master is scheduled immediately. The following equations,
express these bounds.

W sp
L = 2× SS (2)

Bsp
L = SS (3)

To estimate the Wcet under the Sp for the highest
priority master, WL = W sp

L must be appended in the
computation trace. The Sp arbitration is used if there
is only one Hard Real-time (Hrt) application among all
applications mapped to the multi-core. This Hrt appli-
cation gets the first preference in the event of contention.
Certainly, the Hrt application can starve other applications.
However, typically, the Hrt applications are the most
carefully designed and are expected to behave properly with
high confidence. Moreover, their failure to properly behave
may lead to catastrophe, hence, it may be unimportant if
the co-existing Soft Real-time (Srt) applications achieve
deadline or not if the Hrt fails.

Resource utilization: Under Sp the shared resource is
always busy as long as there is at least one pending request.
Hence, µidle = 0 in equation (1). This leads to Usp = 100%
which indicates the highest shared resource utilization.

3.5 Time Division Multiple Access (TDMA)
arbiter

Fig. 3(a) depicts the Tdma arbitration graphically. Here,
the shared resource contenders are assigned fixed number of
slots in a virtual ring. The figure shows four cores (m1, m2,
m3 and m4) in the ring. Each slot has a unique owner. At
the beginning of each slot (denoted by switch owner points
in the figure), owner is switched and new owner is granted
the shared resource. The SlotSize - SS is big enough to
accommodate a burst issued to fill a single cache line. Since
each contender has a unique window in which it can access
the shared resource exclusively, the interference is removed

6For other priority masters the latency bound is positive
infinite since the highest priority master may never let the
shared memory idle.

from the system. Now, application executing on one core
cannot impact execution time of application executing on
another core. However, such predictable execution time
comes at the cost of shared resource utilization.

Latency bound: Under Tdma arbitration collisions
between accesses are avoided by the exclusive slot allotment.
Here, one core cannot impact execution time of another core.
The experienced latency depends on the time when a request
is issued. Considering N masters in a system, the following
equations give the experienced latency Li for the ith access.

ti = N × SS − {ci mod (N × SS)} (4)

Ltdma
i =

{
ti, ti ≥ SS
ti + (N × SS), ti < SS

(5)

The Equation (4) computes amount of time left in the
wheel when the access arrives. Remember that ci is the
time gap between two accesses (cache misses). If ti is less
than SS, the access cannot finish before the next slot starts.
Hence, it has to wait until the wheel turns around and its
slot arrives. However, if there is sufficient time left in the
wheel, then the master is guaranteed to be finished at the
end of the remaining time (last slot).

The Li values are bounded by SS ≤ Ltdma
i ≤ (N + 1) ×

SS, however, for the Wcet analysis, the theoretical bound
is not required. Since one core cannot impact execution
time of other core, the existing single-core techniques can
be used for Wcet measurements. Here, start to end time of
each path through application execution is measured and the
experienced latency can be considered for the Wcet. From
all measured execution times, the highest is considered as
the Wcet and the corresponding path as the critical path.

Resource utilization: Due to the static slot assignment,
the Tdma results in a poor utilization. Consider the scenario
in Fig. 3(b). Here, the master m1 issues a request just
one clock cycle after its scheduling opportunity is passed.
Hence, its ongoing slot is wasted and it has to wait until
the wheel turns around (bus cycle) and its slot arrives. In
the definition of the resource utilization, equation (1), we
assumed that none of the co-existing masters are backlogged.
Thus, all the slots in the ongoing bus cycle are wasted and
the slot of m1 in the next bus cycle is utilized. This results
in tremendous loss of scarce shared memory bandwidth.

If an application does all accesses just one clock cycle after
its slot has started, the worst resource utilization occurs.
Here, the utilization depends on the access pattern and is
given by the following equation.

∀i, ci = (N − 1)× SS + n× SS + 1, n ∈ N0 |

U tdma
w =

100× SS
(N + 1)× SS =

100

N + 1
%

(6)

Similarly, if an application does all accesses just when its
slot is about to start, no slot is wasted which results in the
highest utilization.

∀i, ci = (N−1)×SS+n×SS, n ∈ N0 | U tdma
b = 100% (7)

To maximize the available resource utilization, the round
robin arbitration is employed which is described in the
following subsection.

SlotSize

(SS)

W

B

m1

m2m3

m4

Figure 4: Graphical View of the Round Robin Arbiter

3.6 Round robin arbiter
The Fig. 4 depicts the Round Robin (Rr) arbitration

graphically. Like Tdma, under the Rr scheme, the shared
resource contenders are assigned fixed number of slots in
a virtual ring depending on their bandwidth requirements.
The arbiter continuously searches for a backlogged master.
As soon as a backlogged master is encountered, it is granted
the memory for a predefined maximum number of clock
cycles (SlotSize - SS). After the granted master finishes
its burst access, the search process resumes from the next
slot in the ring. Note, that there is no fixed start time of
a slot. As soon as a backlogged master is encountered, its
slot is started immediately. Thus, the memory is always
occupied as long as there is at least one backlogged master
(hence it is also known as “greedy Tdma”) which maximizes
the resource utilization. This increased resource utilization
comes at the following cost.

Latency bound: Let us assume that the test application
is executing on m1. For this architecture, an access request
from m1 experiences the worst case completion latency
(WL = 4 × SS) if it is issued when the arbiter pointer
is at W in Fig. 4 AND all other masters utilize their
slots. Similarly, an access request experiences the best case
completion latency (BL = 1 × SS) if it is issued when the
arbiter pointer is at B in the figure. If the exact location
of the arbiter pointer AND activity of other masters are
unknown, being conservative, the worst case latency, WL,
must be considered for each cache miss. Hence, the Wcet of
applications executing on the architecture with round robin
arbiter is significantly higher compared to that produced
under the Tdma.

W rr
L = N × SS (8)

Brr
L = 1× SS (9)

Resource utilization: Rr is a work conserving arbiter.
Hence, no clock cycle is wasted as long as there is at least
one backlogged master. Thus, similar to Sp, Rr has the
highest resource utilization. Urr = 100%.

4. PRIORITY DIVISION (PD) ARBITER
This section describes the priority division (Pd) arbiter.

The arbiter has a mix of Tdma and Sp arbitration.

4.1 Basic operation
Fig. 5 depicts the graphical view of the Pd arbiter. Like

Tdma, Pd divides the bus schedule into a number of slots.
Instead of declaring one master as the owner of a particular

SlotSize(SS)

m1,m2
m3,m4

m2,m3
m4,m1

m3,m4,
m1,m2

m4,m1,
m2,m3

Arbitration
points

Figure 5: Graphical View of the Priority Division Arbiter

time slot, the Pd assigns each master a priority in the
according slot. If the highest priority master of a particular
slot is not backlogged at the beginning of its slot (denoted by
arbitration points in the figure), then a backlogged master
is searched in descending priority order. Except in the
h1 configuration (Sec. 4.2), to guarantee starvation free
characteristic to all masters, each master must have highest
priority in at least one time slot. In the figure, each master
has one slot in which it has the highest priority (shown by
bold letters). The numbers within a slot denote priorities of
masters in descending order.

The Pd does not enforce any rule for secondary priorities.
This opens a new dimension of design space exploration
where the combined effect of number of slots and priorities
inside slots can be investigated. However, given that
no knowledge about the requirements of the applications
running on the masters can be obtained, the choice of
priorities is straight forward. To evenly distribute the shared
memory bandwidth not used by the highest priority master,
rotating priorities by one from slot to slot is the simplest
solution (Fig. 5). If it is foreseen that one core is going to
execute memory intensive applications, then this core should
be assigned second highest priority in all slots except the slot
in which it already has the highest priority, already. This
gives the core the first preference to acquire the unused slots.

Latency bound: In Pd, if every core utilizes its slot, the
operation becomes exactly like the Tdma. Since each core
utilizes its slot, the application-under-test does not benefit
by utilizing any idle slot and that results in the worst case
for Pd. Hence, using equations (4) and (5), experienced
latency under the Pd arbitration can be obtained,

W pd
Li = Ltdma

i (10)

If all the co-existing cores are idle, then the master-under-
investigation can be scheduled at the starting point of each
slot. This is the best case latency under the Pd arbitration.

Bpd
Li = (ci mod SS) + SS (11)

To measure the Wcet under the Pd, synthetic stress
patterns are executed on all co-existing cores. Thus, these
cores never give away their slot converting Pd into the Tdma
logically. Hence, like Tdma, end-to end execution time can
be used for the Wcet estimation of the application.

Resource utilization: Under Pd, if the highest priority
master of a particular slot does not want to use its slot,
a lower priority master can use it. However, this happens
only at the arbitration points. Once an arbitration point
is passed and none of the masters issues a request then

the slot is wasted. Hence, under Pd the worst resource
utilization occurs if a master sends a request just one clock
cycle after any slot has begun. This master is guaranteed to
be scheduled in the next slot since the co-existing masters
are assumed inactive.

∀i, ci = n×SS+1, n ∈ N0 | Upd
w =

100× SS
2× SS = 50% (12)

From equation (6) and (12), it is clear that the Pd utilizes
the shared resource more efficiently compared to the Tdma.
Upd

w >> U tdma
w .

Similar to the Tdma, the best resource utilization occurs
if a request arrives at the beginning of a slot.

∀i, ci = n× SS, n ∈ N0 | Upd
b = 100% (13)

4.2 h1 Configuration
The h1 configuration stands for only one Hrt supported.

Under this configuration, the Pd supports only one Hrt
application and the master executing this application has
the highest priority in all slots. Hence, the highest priority
master is guaranteed to be scheduled at the beginning of
each slot, if it requests. This results in always the best case
latency for the critical master.

Lh1
i = (ci mod SS) + SS (14)

From equation (2) and (14), Lh1
i ≤ W sp

L . Both, Sp and
h1 configuration supports only one Hrt. Similarly, if the
system consists only two Hrt, h2 mode can be configured,
and so on. Due to the static slots, the h1 configuration
is expected to produce lower Wcet than the Sp. Indeed,
the Pd under h1 configuration results in the low resource
utilization compared to the Sp due to the static slotting.

5. COMPARISON OF THE ARBITERS
In this section, we compare the Pd arbiter against other

arbiters. In the first test, the Pd arbiter is compared against
Tdma and Rr. The comparison criteria are the following:
i) Increase or decrease in the Wcet due to arbitration, ii)
Increase or decrease in Bcet due to arbitration, and iii)
Required chip area. In the second test, we compare Pd in
h1 configuration against the Sp. Here, both the arbiters
are single Hrt capable arbiters. Before we begin with our
comparison, the following subsection details the test setup.

5.1 Test setup
We implemented the architecture as depicted in the

Fig. 1(b) on Altera Cyclone III Fpga. The multi-core is
built using four NIOS II cores. Each core has a 512 Bytes
of instruction and data caches. The cache-line size is 32
Bytes. We tested applications from the Mälardalen Wcet
benchmark suit. Here, we tested applications with single
path7 through application execution. We implemented all
the arbiters using Vhdl. An on-chip Sram serves as a
shared main memory. We avoided use of wait states during
burst transfers and arbiter lock signals as suggested in [17]
to produce a valid Wcet bound.

7Multi-path applications are targeted in our another
publication [15].

In our setup, core1 (m1) executes test applications from
the Mälardalen Wcet benchmark suit and core2, core3
and core4 execute interfering applications. This is not a
restriction in our approach. The test applications can be
executed on any core, however, the analysis method remains
the same. The only restriction is when analyzing Sp and h1,
understandably, the test applications must be executed on
the highest priority core.

We placed the arbiters one by one between the cores
and the shared memory and conducted measurements for
the utilization, U . The µbusy and µidle were measured by
probing the request and wait signals of m1.

5.2 Starvation free arbiters
For the Tdma arbiter, the execution time of test

application does not deviate depending on the co-existing
cores due to the statically defined exclusive slot allotment.
Hence, the Observed Execution Time (Oet) is equal to,
both, Wcet and Bcet. For the Rr arbiter, the Wcet was
analyzed as explained in Sec. 3.3. Under Pd, the worst
case for the test application occurs when it cannot utilize
any slot of the co-existing cores. Therefore, to create the
worst case, we executed shared memory stressing synthetic
applications8 on co-existing cores.

The Table 1 presents U values in % and Wcet values in
clock cycles under the starvation free arbiters for the test
applications. The Rr arbiter produces the highest Wcet
among the three due to the assumption of always interfering
co-existing masters. The Pd arbiter provides the best trade-
off between shared resource utilization and the worst case
latency. It utilizes the shared memory more than twice as
efficiently as the Tdma arbiter. This expected behavior is
due to the fact that an unused slot is arbitrated instead
of wasted. As explained in Sec. 3.2, the measurement of
utilization is carried out only when an access from the test-
application is pending. During the computation time, the
measurement is paused. Hence, it is interesting to analyze
how much did the application benefit due to this increase
in the utilization. This is depicted in Fig. 6 by decrease in
Bcet compared to the Tdma bar.

The Fig. 6 depicts three factors related to performance
for each application. The first bar shows the % decrease of
Bcet if the Pd arbiter is used instead of the Tdma. The Pd
arbiter can utilize unused slots of co-existing master which
results in high resource utilization compared to Tdma and
subsequently, reduction in the Bcet of application.

The second bar shows the % decrease in the Wcet if the
Pd arbiter is used instead of the Rr. Due to the absence
of fixed slot staring points in the Rr, for conservative
analysis, the worst case latency – WL must be considered
for each shared memory access. This increases the Wcet of
applications significantly. Instead, Pd has statically fixed
slot starting points (arbitration points) and the highest
priority master of any slot is guaranteed access at these
points. Thus, like Tdma, the worst case latency is not
required to consider for every shared resource access.

And the third bar shows the % increase in Bcet if the
Pd arbiter is used instead of the Rr. This is a drawback of
the Pd arbiter. The Pd arbiter does not utilize unused slots

8The synthetic code has a data structure twice the size of
the data cache. Each instruction accesses the data structure
with stride of a cache-line size to make sure that each time
a new cache-line is accessed.

Benchmark TDMA Round Robin Priority Division
U in % OET U in % WCET U in % WCET

compress 30.37 26591 100 30506 71.27 26591
cover 31.56 15805 100 18024 71.97 15805
crc 30.03 106013 100 109163 67.49 106045
duff 34.49 4920 100 5281 76.28 4920
edn 33.62 494584 100 553972 72.04 494584
expint 32.65 16472 100 16708 74.42 16472
fac 30.19 1176 100 1240 70.07 1176
fdct 45.65 21918 100 31837 70.28 21918
fibcall 35.16 1150 100 1228 74.42 1150
fir 32.26 2005692 100 2225970 66.65 2005660
jane 30.35 1016 100 1108 76.19 1016
jfdcint 36.02 31486 100 37035 71.86 31390
matmul 31.01 1633112 100 1764383 67.03 1633048
minver 32.53 161624 100 191270 70.92 161624
ludcmp 34.29 371320 100 456766 69.56 371352
prime 32.58 180831 100 200651 78.17 180990
quart 33.97 223896 100 270686 71.46 223800
recursion 33.33 6813 100 6898 72.72 6813
ud 33.17 40247 100 48212 72.03 40247

Table 1: Execution time in Clock Cycles: Tdma vs Rr vs Pd

0

5

10

15

20

25

30

35

40

%decrease in BCET compared to TDMA % decrease in WCET compared to RR %increase in BCET comapred to RR

Figure 6: Improvement over Tdma and Round robin arbiters

of co-existing cores as efficiently as the Rr arbiter does.
It is interesting to note that the third bar is the smallest
for all applications which means the advantages of the Pd
compared to the Tdma and the Rr outweigh its drawback.

5.3 Single HRT capable arbiters
In this test, we compare the Pd in h1 configuration

against the Sp arbiter. Note that these arbitration schemes
guarantee upper bound on access latency to only the highest
priority master. For all other masters, the worst case access
latency is infinite.

Under the Sp arbitration, the best case latency occurs
when none of the co-existing masters are active. Hence,
an access from the master-under-investigation (highest
priority) is scheduled immediately. The worst case latency

occurs when the master-under-investigation request an
access just one clock cycle after a lower priority master is
scheduled. Here, although the master-under-investigation
has the highest priority, it must wait until the lower priority
master completes its burst.

For Pd in h1 configuration, only one Hrt core is supported
and it has the highest priority in all slots. Only at
the beginning of each slot, scheduling decision is made.
Thus, irrespective of activity of co-existing masters, if the
master-under-investigation (Hrt core) is back-logged at the
beginning of a slot, then it is scheduled immediately. This
removes jitter in execution time due to the interference
completely and the Oet = Wcet = Bcet.

The Table 2 shows execution times under Pd in h1

configuration and the Sp. Again, these results are valid only

0

2

4

6

8

10

12

14

16

18

20

% decrease in WCET compared SP % increase in BCET compared to SP

Figure 7: Improvement over Sp arbiter

Benchmark Static Priority PDh1

Wcet Wcet
compress 20970 17327
cover 12537 10981
crc 103231 100021
duff 4608 4408
edn 439203 402368
expint 16210 16048
fac 1072 1024
fdct 20649 17710
fibcall 1098 1054
fir 1748622 1624372
jane 872 800
jfdcint 28008 25190
matmul 1444996 1352416
minver 126731 108704
ludcmp 296187 255024
prime 157944 143790
quart 180263 155416
recursion 6730 6685
ud 31993 27271

Table 2: Execution time in Clock Cycles: Sp vs Pd in h1

mode.

for the highest priority master. The utilization values for
the Sp is 100 %. For the Pd, the utilization values are the
same as in the Table 1. The h1 mode does not increase the
utilization, it only gives the first preference to the critical
application in all slots. While measuring the utilization, we
turn-off other cores which implicitly give the first preference
to the test-application. Hence, the utilization values are the
same as in the Table 1.

Fig. 7 depicts comparison of these two arbiters quantita-
tively. The first bar shows the % decrease in the Wcet if
Pd is employed in h1 configuration instead of the Sp. The
second bar shows the drawback of Pd compared to Sp. It
shows the increase in the Bcet which indicates inefficient

resource utilization of the Pd arbiter. Similar to the
previous test, the advantage of the Pd in h1 configuration
outweighs its drawback.

5.4 Area overheads

Arbiter Sp Tdma Rr Pd
Number of Logic Elements 281 277 288 285

Table 3: Area overheads of arbiters

The Table 3 lists the required number of Logic Elements
for the arbiters when synthesized for a Cyclone III Fpga and
125 MHz clock frequency. The arbiters are synthesized for
four ports – at most, four cores can be connected to them.

Due to the functional similarities of arbiters, they
consume similar area on chip. The Rr arbiter is slightly
more complex since it needs to maintain dynamic slots.
Tdma and Pd have fixed slot starting times. Apart from
fixed slot starting times, the Pd has to maintain a priority
queue which makes it slightly larger than the Tdma. The
Sp must guarantee that a scheduling decision is made after
each burst access. Hence, the arbiter has to count number of
transfers and implement a dynamic arbitration mechanism.
This makes it slightly larger than the Tdma.

6. CONCLUSION
This paper has compared the traditional arbiters, the

Time Division Multiple Access (Tdma), the Round Robin
(Rr) and the Static priority (Sp) against the Priority
division (Pd) arbiter. The merits for the comparison are the
produced Wcet of applications executing on a multi-core
architecture and the worst case shared resource utilization.
The paper has also extended the Pd arbiter by providing
a single Hard Real-time (Hrt) capable configuration, called
h1. The theoretical analysis of the worst case latency and the
worst case resource utilization is provided. The experiments
are conducted on a quad core NIOS processor built on an
Altera Fpga. The test applications are chosen from the

Mälardalen Wcet benchmark suit. The experiments show
that the Pd arbiter, in its native mode, produces up to
31% less Wcet compared to the Rr arbiter and utilizes
the shared resource more than twice as efficiently as the
Tdma arbiter. In the single Hrt mode, the Pd produces
up to 15% less Wcet compared to the Sp for the highest
priority application. Additionally, the Pd consumes similar
chip area as other arbiters.

The analysis and the experiments presented in this paper
conclude that if a very small utilization penalty is tolerated
(much smaller compared to the Tdma), the Pd arbiter is
an ideal arbiter for the multiple Hrt systems as well as
the single Hrt mixed critical system. The analysis for the
symmetric multiprocessing is left for the future work.

7. ACKNOWLEDGMENTS
This work was funded by German BMBF projects ECU

(13N11936) and Car2X (13N11933).

8. REFERENCES
[1] Flexray communications system.

[2] B. Akesson, L. Steffens, E. Strooisma, and
K. Goossens. Real-time scheduling using credit
controlled static priority arbitration. In RTCSA ’08.

[3] R. Bourgade, C. Rochange, M. De Michiel, and
P. Sainrat. Mbba: a multi-bandwidth bus arbiter for
hard real-time. In Embedded and Multimedia
Computing (EMC), 2010 5th International Conference
on, pages 1–7. IEEE, 2010.

[4] C.-H. Chen, G.-W. Lee, J.-D. Huang, and J.-Y. Jou. A
real-time and bandwidth guaranteed arbitration
algorithm for soc bus communication. In Design
Automation, 2006. Asia and South Pacific Conference
on, pages 6–pp. IEEE, 2006.

[5] G. Gebhard. Timing Anomalies Reloaded. In WCET
2010, Dagstuhl, Germany.

[6] J. Gustafsson et al. The Mälardalen WCET
benchmarks – past, present and future.

[7] J. Jalle, L. Kosmidis, J. Abella, E. Quiñones, and
F. J. Cazorla. Bus designs for time-probabilistic
multicore processors. In Proceedings of the Conference
on Design, Automation & Test in Europe, DATE ’14,
pages 50:1–50:6, 3001 Leuven, Belgium, Belgium,
2014. European Design and Automation Association.

[8] T. Kelter, T. Harde, P. Marwedel, and H. Falk.
Evaluation of resource arbitration methods for
multi-core real-time systems. In OASIcs-OpenAccess
Series in Informatics, volume 30. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[9] H. Kopetz and G. Bauer. The time-triggered

architecture. Proceedings of the IEEE, 91(1):112–126,
2003.

[10] K. Lahiri, A. Raghunathan, and G. Lakshminarayana.
The lotterybus on-chip communication architecture.
Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 14(6):596 –608, june 2006.

[11] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat,
and M. Valero. Hardware support for wcet analysis of
hard real-time multicore systems. SIGARCH Comput.
Archit. News, 37:57–68, June 2009.

[12] C. Pitter and M. Schoeberl. A real-time java

chip-multiprocessor. ACM Transactions on Embedded
Computing Systems (TECS), 10(1):9, 2010.

[13] F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo.
Performance analysis of arbitration policies for soc
communication architectures. Design Automation for
Embedded Systems, 8(2-3):189–210, 2003.

[14] T. Richardson et al. A hybrid soc interconnect with
dynamic tdma-based transaction-less buses and
on-chip networks. In VLSI Design, 2006. Held jointly
with 5th International Conference on Embedded
Systems and Design., 19th International Conference
on, page 8 pp., 3-7 2006.

[15] H. Shah, A. Coombes, A. Raabe, K. Huang, and
A. Knoll. Measurement based wcet analysis for
multi-core architectures. In RTNS 2014, Versailles,
France.

[16] H. Shah, A. Raabe, and A. Knoll. Priority division: A
high-speed shared-memory bus arbitration with
bounded latency. In Proc. DATE, 2011.

[17] H. Shah, A. Raabe, and A. Knoll. Challenges of wcet
analysis in cots multi-core due to different levels of
abstraction. Workshop on High-performance and
Real-time Embedded Systems (HiRES 2013), 2013.

[18] H. Shah et al. Timing Anomalies in Multi-core
Architectures due to the Interference on the Shared
Resources. In ASP-DAC, 2014.

[19] M. Shreedhar and G. Varghese. Efficient fair queueing
using deficit round robin. In Proceedings of the
conference on Applications, technologies, architectures,
and protocols for computer communication,
SIGCOMM ’95, New York, NY, USA, 1995. ACM.

[20] M. Steine et al. A priority-based budget scheduler
with conservative dataflow model. In Proc. DSD, 2009.

[21] R. Wilhelm et al. The worst-case execution-time
problem—overview of methods and survey of tools.
ACM Trans. Embed. Comput. Syst., 7(3), 2008.

[22] R. Wilhelm et al. Memory hierarchies, pipelines, and
buses for future architectures in time-critical
embedded systems. 28(7), 2009.

