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Abstract

Electricity generation is undergoing fundamental changes at the moment. In the
past, electricity was centrally supplied by large plants connected to High Voltage (HV),
high capacity transmission grids and owned by a few utilities. Small decentralized
generation units are now taking over. These units are typically connected in the Low
Voltage (LV) distribution grid and are owned by a multitude of parties. This transition of
the power sector has important consequences for various power dispatch problems. It
changes the number of units to dispatch, the units’ owner structure and the previously
unidirectional active power flow in distribution grids.

This thesis proposes two computational methods for solving such power dispatch
problems arising in the grids of the future. The first method solves the Economic
Dispatch (ED) problem in a distributed fashion that is inspired by Graphical Model
(GM) methods. The second approach targets a technical challenge connected with
distributed feed-in that guarantees voltage quality with a multitude of discretely con-
trollable grid devices. It utilizes the complexity reduction in hand with the numeral
reduction of discrete variables and is inspired by dynamic programming. The com-
monality of both methods is the ‘divide and conquer’ trick: the idea is to split a large,
complex problem into small, simple subproblems, to solve them separately while
coordinating them with the help of functions, and to thereby obtain the optimal overall
solution.

The number of units to dispatch in future grids pushes central Economic Dispatch
(ED) approaches, typically based on Mixed Integer Linear Programming (MILP), to their
limits. Moreover, the required central knowledge of all component models conflicts
with the privacy requirements in competitive, multi-owner markets. Decentralized
dispatch approaches can meet such requirements but have to operate with minimal
communication effort and guarantee the optimality of the results. For this purpose, a
classical machine-learning Message Passing (MP) approach is adapted in two ways,
for discrete and continuous decision variables. The discrete variable method can
straightforwardly be deduced from belief propagation. The method gives an intuitive
introduction and shows the applicability of the approach to distribution grid dispatch
problems. The concept is then extended to the problem of continuous variable dispatch
by exploiting the properties of the optimality conditions for our specific setup and,
similar to approximated inferences, applying functional approximation techniques. The
result is an ED method that can handle very different decision scales in a distributed
fashion, with little communication and near-optimal results.

A technical challenge resulting from widespread generation units in the distribution
grids is that active power flows may alter their direction and lead to dynamic, previously
atypical voltage increases and drops. Reactive power feed-in, the deployment of
capacitor banks and of On-Load Tap Changer (OLTC) are measures currently under
discussion to resolve these issues. However, their control leads to a full Alternating
Current (AC) Optimal Power Flow (OPF) with partially discrete variables. To avoid
the drastic complexity increase arising from the use of discrete variables in classic,
central OPF approaches, a method based on dynamic programming is developed.
The overall problem is divided into problems of a single discrete decision variable,
and these subproblems are coordinated by functions, similar to the messages in the
dispatch approach. This method leads in theory to globally optimal dispatch results; a
practical implementation with compact messages of one dimension can guarantee
optimality if at least the reactive power feed-in of Distributed Energy Resources (DER)
is pre-set.
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Zusammenfassung

Aktuell ist die elektrische Energieerzeugung starken Veränderungen unterwor-
fen. In der Vergangenheit wurde die elektrische Energie zentral von wenigen großen
Kraftwerken, die an das Hochspannungsübertragungsnetz angeschlossen sind und
wenigen Energieversorgern gehören, erzeugt. Jetzt wird mehr und mehr elektrische
Energie dezentral von kleinen Einheiten, die im Verteilnetz angeschlossen sind und
eine Vielzahl von Eignern haben, erzeugt. Diese Entwicklung hat einige Konsequenz-
en für die Steuerung im Verteilnetz, wie den Anstieg der Zahl zu kontrollierender
Einheiten, ihre Eigentumsstruktur und die wechselnde Flussrichtung der Wirkleistung
im Verteilnetz.

Diese Arbeit stellt zwei Methoden vor, die speziell diese Neuerungen berück-
sichtigen. Die Erste ist inspiriert von Lösungsansätzen für probabilistische grafische
Modelle und löst das wirtschaftliche Einsatzplanungsproblem lokal. Die Zweite baut
auf die Prinzipien der dynamischen Optimierung auf und bestimmt die optimale Rege-
lung einer Vielzahl interferierender, diskret steuerbarer elektrischer Anlagen um die
Spannungsqualität sicherzustellen. Gemeinsam ist beiden Methoden der ‘teile und
herrsche’-Ansatz: Ein großes komplexes Problem wird in kleine einfache Teilprobleme
zerlegt und diese Teilprobleme über Funktionen koordiniert, um die übergreifende
Lösung zu finden.

Die große Anzahl der zu steuernden Einheiten bringt viele der derzeitigen zen-
tralen Einsatzplanungsalgorithmen, die häufig auf gemischt ganzzahliger linearer
Optimierung basieren, an ihre Grenzen. Darüber hinaus steht das hierfür zentral
benötigte Wissen im Konflikt mit der Wissenshoheit der unterschiedlichen Eigner.
Dezentrale Ansätze umgehen diese Probleme, jedoch stellt die benötigte Kommu-
nikation und Sicherstellung der Optimalität neue Herausforderungen dar. Um den
Herausforderungen zu begegnen, wird in dieser Arbeit der nachrichtenbasierte Ansatz
des maschinellen Lernens auf zwei Weisen weiterentwickelt, zum einen für diskrete Va-
riablen zum anderen für kontinuierliche Variablen. Der diskrete Ansatz ist eine direkte
Adaption des ‘belief propagation’-Schemas. Er zeigt die Anwendbarkeit des Ansatzes
für die Einsatzplanung und illustriert die Methodik. In diesem diskreten Ansatz ist
es komplex, eine angemessene Diskretisierung zu finden, wenn die Maßstäbe der
Einsatzplanungsvariablen sich stark unterscheiden. Der kontinuierliche Variablen An-
satz baut die Methodik dann über die Optimalitätsbedingungen und Anwendung einer
Funktionsapproximation aus. Diese Schritte ergeben einen dezentralen, wirtschaft-
lichen Einsatzplanungsansatz, der mit stark unterschiedlichen Maßstäben umgehen
kann, minimale Kommunikation gewährleistet und annähernd optimale Ergebnisse.

Eine andere technische Herausforderung, die aus einer Vielzahl von dezentralen
und erneuerbaren Erzeugern erwächst, ist das Alternieren des Wirkleistungsflusses,
der zu schwer vorhersagbaren, kurzfristigen Spannungshüben und senken führt. Diese
Spannungsänderungen können mit Blindleistungseinspeisung, Kondensatorbänken
und regelbaren Ortsnetztransformatoren kontrolliert werden. Ein Teil der Anlagen
können jedoch nur diskret gesteuert werden, somit erweitert sich das komplexe opti-
male Leistungsflussproblem um diskrete Variablen. Um diesen Komplexitätsanstieg
zu begegnen, stellt diese Arbeit einen dynamischen Optimierungsansatz vor, der das
zentrale Problem in Probleme mit einer diskreten Variable zerlegt. Dieser Ansatz führt
in der Theorie zu optimalen Ergebnissen. Eine erste Implementierung mit eindimen-
sionalen Funktionen zeigt, dass die Optimalität garantiert werden kann, solange die
Blindleistungseinspeisung der dezentralen Erzeuger gesetzt ist.
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Chapter 1

Introduction

The German word ‘Energiewende’ is an established term in the energy community world-
wide1 for the ambitious transition towards a “secure, environmentally friendly and econom-
ically successful energy future”[27]. ‘Energiewende’ combines a complex conglomerate
of diverse goals and drivers that interfere with each other. The phase out of nuclear
generation by 2022 in Germany counteracts the primary motivation to reduce the carbon
dioxide emissions, due to the increased reliance on gas and coal. To account for that,
renewable sources and more efficient energy use are planned as a counterbalance.

One of the main measures to implement this transition has been the renewable energy
act, the ‘Erneuerbare Energien Gesetz’, in 2000, which was amended in 2004, 2009, 2012
and 2014 [25]. The ‘Erneuerbare Energien Gesetz’ guarantees a connection to the grid
and a fixed feed-in tariff for newly installed renewable generation units. As a result of this
incentive, the number of installed biomass driven plants, wind turbines and Photovoltaic
(PV) panels has significantly increased in Germany [24], depicted in Figure 1.1.
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Wind Offshore
Wind Onshore
Hydro

Figure 1.1: Development of the installed capacity for renewable energy generation units in
Germany between 1993 and 2014 [24].

1An example is the introduction of the electricity conference at Austin, TX [112].
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With intermittent sources, e.g. wind and sun, oversupply alternates with undersupply,
which needs to be balanced. Demand side management, e.g. heaters [116, 60], Elec-
trical Vehicles (EVs) [80] and deferrable industrial processes [75], can offer flexibility for
this balancing and might add further Distributed Energy Resources (DER) in addition to
the generation. All this results in a steadily growing number of DER that have conse-
quences for dispatch and voltage control in electrical grids. These developments ensue
the algorithmic requirements for such controls. In the following two sections, these re-
quirements are discussed, first for Economic Dispatch (ED) and second for voltage control.

Planning horizons for conventional plants span over several years. Within this time-
frame the conventional plant component model is incorporated into the dispatch program.
Some DER eliminate these long planning horizons: PVs require a few months of planning,
small-scale batteries even less, and EVs are simply plugged in. This is a comparably short
term notice for adaptation and future dispatch approaches have to account for that.

The fixed ‘Erneuerbare Energien Gesetz’ feed-in tariff has made and still makes the
payback of investments in renewables predictable. This relatively low market risk has
attracted small investors. For institutional investors and utilities, the rate of return for these
renewable units was not satisfactory, especially in the beginning. They left the field to
small investors, whose participation in the market was additionally enabled by the lower
investment magnitudes for DER. Municipalities, local manufacturers, cooperatives down
to individuals add to the traditional few utilities and diversify the owner structure. This
diversity hinders freely sharing component models for control applications. Previously,
these models were centrally gathered within one of the few utilities and used for dispatch.

Subsequent to the first boom, scaling effects have reduced the price for renewable units
[13, 135]. This has made renewables economically attractive, not just for environmentally
aware groups but also from a pure investment perspective. Countries like the United States
of America and China are now becoming leaders in capacity expansions of renewables
[93]. This demand for renewable technologies is pushing technological progress and price
reductions, which indicates a lasting growth in renewable units worldwide. In addition
to these renewable units, a significant number of demand side management units might
need to be integrated. Thus, dispatch approaches need to be scalable.

Electricity demand and production need to be balanced, since electricity cannot be
stored directly. Instead of a few centrally placed plants with communication infrastructure,
a large number of DER have to be coordinated with demand. This requires communication
between these units spread in the distribution grid. However, communication infrastructure
in distribution grids is almost non-existent or very limited [34] at the moment. The lack of
bandwidth and the high number of DER to schedule precludes extensive communication,
e.g. to a central intelligence. At the same time, multiple minimal controls are insufficient
due to the required frequent communication and its delay, even when approached in a
decentralized manner. As time is a determining factor for dispatch, not just a minimal but
an appropriately complex control is needed.

In Germany, 73% of the renewables are installed in Low Voltage (LV) and Medium
Voltage (MV) level [26], where the former goes up to 1kV and the latter ranges from 1kV to
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less than 110kV [28] 2. Both constitute the voltage levels in distribution grids. In contrast,
large conventional plants are almost exclusively connected to High Voltage (HV), greater
than or equal 110 kV [28], and high capacity transmission grids. Tighter distribution line
capacities pose active operation restrictions on resources in highly DER penetrated grids.
Moreover, existing electrical equipment, e.g. transformers, may overload because of the
additional flow. An operation of DER with respect to those restrictions significantly reduces
the required distribution grid extensions [3]. Thus, to circumvent costly grid extensions the
operation of all DER has to be aligned with the grid limits.

The transition from a few central plants to a vast number of installed DER in the distri-
bution grid necessitates dispatch approaches, which are scalable, quickly adaptable and
which incorporate grid limits, preserve privacy, and guarantee optimal results with minimal
communication effort. Central optimization approaches conflict with at least three of these
requirements – scalability, quick adaptability and preserve privacy. The idiosyncrasy of
central approaches, like the central Mixed Integer Linear Programming (MILP) approach
in [31], for white box component models contradicts the privacy. Their integration hinders
a quick adoption for new components. Moreover, the scaling of central approaches is
insufficient for an extremely high number of units. This gives rise to the question whether
there exists a decentralized dispatch approach that can handle these challenges: this
question is addressed in the first part of this thesis.

Moreover, the distribution grid infrastructure was built and operated to facilitate voltage
limits for prospective demands. Instead of central demand supply by controllable con-
ventional units, today intermittent renewables spread in the distribution grid contribute a
significant share of this demand or oversupply it. This development forces an infrastructure
designed for unidirectional active power flow to deal with a bidirectional flow [44, 80].

Normally, transformers set a high voltage at the point of connection, which was
consecutively lowered by the demands along the branches, so that the last customer was
supplied with an acceptably high voltage. In the past, the transformer setting was manually
adjusted at most few times a year, according to seasonal load patterns. Now, significant
feed-in by DER alters with demand, either raising or lowering the voltage magnitude to the
limits of the voltage band within a day. This gives rise to transformers that automatically
gradually adjust their tap according to the current situation, i.e. On-Load Tap Changer
(OLTC) [3]. Transformers in one distribution grid interfere with each other leading to a
complex problem of multiple, discrete tap position decisions.

Voltage fluctuations occur not only at the point of connection but also within the grid. A
feed-in dominated branch can in total even-out a demand dominated one and still locally
affect the limits. In the absence of direct measures on the voltage, e.g. transformers, here
reactive power can be utilized to ensure the voltage band [80]. Reactive power can be
used in two ways, either to reduce the voltage drop when its flow is reduced or to increase
the voltage drop when its flow is increased [119]. Some DER allow for continuous reactive
power feed-in or capacitor banks can gradually supply reactive power [38]. Similarly to

2This definition differs slightly from the IEEE definition [43], where the LV is less than 1kV, MV greater
than or equal 1kV and less than 100kV and High Voltage (HV) is greater than or equal 100kV and less than
230kV.
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the transformers, these reactive power sources depend on each other as well as on the
transformer settings.

In addition to the voltage limits, the voltage has an influence on active power losses
that contributes value to its control. Line losses are minimal for a homogenous high
voltage profile since these losses are determined by the current flows [119]. Hence, for
loss reduction the voltages should be as high as possible within its limits. That can be
concurrently obtained by the previously described measures.

Thus, simultaneously with the dispatch of DER, the electrical equipment needs to be
optimally controlled to facilitate a distributed and renewable production. This problem,
to satisfy voltage limits at minimal losses, is called Volt-VAr Control (VVC) problem due
to the two influence factors voltage, Volt, and reactive power, VAr. OLTC and capacitor
banks contribute additional flexibility to ensure voltage limits and reduce losses but have
a discrete control nature. Moreover, these discrete controllable units interfere with each
other via the grid topology, which complicates their control. Optimal control of these
discrete controllable devices is the question addressed in the second part of this thesis.

1.1 Contributions

Grid topology implied problem decomposition is the idea that inspired the methods in this
thesis. The decomposition into subproblems, efficient subproblem solving and coordina-
tion by functions are the methods for the proposed algorithms – ‘divide and conquer’. This
concept is implemented in two fashions, two Graphical Model (GM) inspired methods and
one dynamic programming related method.

The decentralized, cost optimal dispatch algorithms for radial distribution grids are
based on probabilistic GM methods. Therefore, the dispatch problem is reformulated as
an optimization problem on a graph. For this reformulation the algorithms capitalize the
dependence structure given by the grid topology to split the global problem into small
local/nodal problems. Then, these local/nodal problems are coordinated with transportation
cost functions/messages such that the local solution is equivalent to the global solution.
The key for this Economic Dispatch (ED) application is the energy conservation at each
node; it splits the global energy conservation constraint into equivalent nodal balances
based on transport equations. The transportation cost functions/messages enrich the
node with a full knowledge of their influence. Moreover, these approaches ensure the new
requirements: scalable, quickly adaptable, incorporate grid limits and preserve privacy.

The first implementation of this idea is based on discrete variables and has been
introduced by the author in [73]. Here the coordinating variables are assumed to take
values in a discrete set. Hence the communicated transportation cost function/message
is given as a vector of the set size. This allows for arbitrary DER cost function shapes
and non-convex feasibility sets. For rising, non-convex cost functions and on-off ruled
feasibility sets this special purpose solver outperforms the MILP solver CPLEX.

However, for DER and lines of significantly different scales an equally fine discretization
becomes computationally intractable. To overcome this, a continuous variable approach is
formed. This generalization requires the restriction to convex cost functions and feasible
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sets. In this convex framework a novel efficient message update mechanism is developed,
based on local optimality conditions. Here only five parameters fully characterize the
transportation cost function/messages. Thus, the communication effort of this non-iterative
approach is smaller by magnitudes than other decentralized approaches, e.g. Alternating
Direction Method of Multipliers (ADMM) [79].

The optimal VVC problem with a number of discrete controllable variables, i.e. OLTC or
capacitor banks, is addressed by an especially adapted dynamic programming approach.
This dynamic programming procedure splits the complex VVC problem into subproblems
of one discrete variable and coordinates these by pseudo generator functions. The
pseudo generator functions include the optimal subproblem solutions of interrelated
problems by cost of production/cost-to-go, reactive and active power flow. These functions
are effectively obtained by utilizing the monotonous step nature of the optimal discrete
variables. Thereby, this approach finds the optimal solution in contrast to heuristics, like hill
climbing [6, 57]. This is of especial value in future active distribution grids where multiple
tap changers and capacitor banks interfere with each other.

1.2 Overview

This thesis is structured in four main chapters, namely Background, Chapter 2, Economic
Dispatch (ED) as Graph Problem, Chapter 3, Dynamic Programming Volt-VAr Control
(VVC), Chapter 4, and Outlook, Chapter 5.

Chapter 2 provides a formal description of the problems examined in this thesis,
offers a fundamental understanding of the methodology as well as an introduction to the
relevant literature. The ED problem is the starting point, Section 2.1, extended by physical
power flows to Optimal Power Flow (OPF), Section 2.2, and further to the VVC problem,
Section 2.3. The problem formulations are followed by a brief introduction to the basic
methodologies, GM methods Section 2.4 and dynamic programming Section 2.5.

In Chapter 3 the GM inspired methods to solve the ED problem are detailed. First in
Section 3.1 the problem is reformulated as a graph problem, Section 3.2 derives the GM
inspired message based solution strategy and Section 3.3 discusses the implications of
this Message Passing (MP) strategy for ED. Second the implementation and experiment
results for the Discrete Message Passing (DMP) and Continuous Message Passing (CMP)
approach are stated in Section 3.4 and Section 3.5.

Chapter 4 proposes the dynamic programming solution to the VVC problem. The
optimality principle for the VVC subproblems in dynamic programming approach is de-
veloped in Section 4.1 as well as a motivation for its structure. Then the three steps,
namely obtaining subproblems Section 4.2.1, solving these subproblems Section 4.2.2
and re-obtaining the overall solution Section 4.2.3, for an implementation are detailed in
Section 4.2. Finally in Section 4.3 the approach is tested in a simplified distribution grid
Section 4.3.1 and some realistic distribution grids Section 4.3.2.

Chapter 5 sets the requirements for the derived theoretic methods in a practical context.
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1.3 Notation

Let R be the real numbers, C complex numbers and j the imaginary unit. The complex
conjugate transposed for a variable , vector x and matrix X is denoted by ·H and the
componentwise multiplication by �. The variable  upper and lower limit is given by 
and ; the vector x componentwise upper/lower limit is given by x/x. |X | denotes the
cardinality of the set X ; |x| is the vector of the componentwise absolute values. For
x,y ∈ Rn, x ≤ y denotes the componentwise inequality and for x,y ∈ Cn, x ≤ y is used
to represent Re(x) ≤ Re(y) and m(x) ≤ m(y). The diagonal operator dg(X) yields
the main diagonal elements of the matrix X as vector.

A graph G(V, E) is given by its set of vertices V and edges E . An element  ∈V is called
a vertex/node and e ∈E is called an edge. Edges can be either directed, e = (), or
undirected, e = {}. A graph consisting of (un-)directed edges is called (un-)directed.
Two vertices are called adjacent if they have a common edge. All adjacent vertices to 
form the neighborhood N () of , each  ∈ N () is a neighbor of . The subgraph
G[V ] is induced by a subset of nodes V  ⊂V and consists of vertices in V  and all edges
in E connecting two such vertices.

A sequence of unique adjacent vertices is called walk. If all vertices in a walk are
distinct, it is called a path. A walk with the same start and end vertex and distinct vertices
in between is called a cycle. Graphs are categorized as cyclic/loopy if they contain cycles
or acyclic/radial if not. The graph G(V, E) is called complete if each pair of vertices in V
is connected by an edge in E . A clique C is a complete subgraph G[C] of G(V, E). The
clique C is maximal if there exists no complete subgraph greater than and containing C.
The clique size is the maximal number of vertices in a clique in G(V, E).

In this thesis all electrical grid graphs G(V, E) are considered to be undirected and
the introduced graph notation directly transfer to these graphs. By convention, the grid
graph’s root node is the highest voltage level leaf or transformer. The parent set P()
denotes all upstream adjacent nodes, i.e. nodes closer to the root node, and children C()
all downstream adjacent nodes, i.e. nodes further apart from the root node. Power flow
analyze in these grids are carried out in a per-unit system that is relative to nominal voltage
̂,n and apparent power sn. Then, the  node voltage  is defined as a fraction of its
reference voltage level ̂,n ∈ R, i.e. the absolute complex voltage is ̂,n; the same
is true for s. The base values for impedance sn/ ̂,n2 and admittance ̂,n2/sn follow
naturally. The ground node’s reference voltage level is defined to 0,n = 0. In this notation,
the all voltages are relative to their level and thus ease the notation at transformers, e.g.
Section 2.3.



Chapter 2

Background

This chapter provides an overview of the applications and solution methodologies and
introduces the notation and related literature.

The starting point is the overall welfare macro perspective of the Economic Dispatch
(ED), Section 2.1 and see red frame in Figure 2.1. The problem here is to minimize the
production cost minus the utility of consumption, while the active power flow, if under
consideration, is determined by lossless transport. This perspective is refined by the
physical power flow to Optimal Power Flow (OPF) in Section 2.2, blue frame in Figure 2.1,
and further refined by the consideration of the voltage and reactive power to the Volt-VAr
Control (VVC) problem in Section 2.3, green frame in Figure 2.1.

lossless

ED p
C



Y
OPF

q

τ

VVC

Figure 2.1: Overlaps between variables and objectives of the ED, OPF and VVC problem.

Finally the two applied solution methodologies are briefly introduced, Graphical Model
(GM) in Section 2.4 and dynamic programming in Section 2.5. The message based GM
approach is a fine cliques-wise decomposition method, Figure 2.2 in red, that coordinates
the subproblems by functional messages. Dynamic programming in general takes a
coarser decomposition, Figure 2.2 in blue, but utilizes also functions for coordination.

 d b c e

Figure 2.2: Examplary illustration of the decomposition granularity difference between the
GM, red, and the dynamic programming, blue, approach.
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2.1 Economic Dispatch

The Economic Dispatch (ED) problem is to schedule a number of electricity generation
or consumption units such that the overall cost, i.e. the summed cost of all production
minus the utility of all consumption, is minimized under the conservation of active power
[138, 15]. Power lines and generators can pose additional limits on the feasible flows,
generation and consumption. In the following the general ED problem is formulated and
extended to cover those constraints. This problem overlaps with the Unit Commitment
(UC) problem, i.e. the problem to determine which unit should run given the units’ feasible
set P, when focus is turned on the non-convex units’ feasible set P. Likewise, it overlaps
with minimum cost flow problems, i.e. the problem to find the flows in a graph with minimal
costs, when the focus is placed on the feasible transports P. Both foci are discussed
below. Finally, the transport model and its grounds in radial distribution grids are analyzed.

For electricity generation and consumption units V, let p denote the net active power
injection at node  ∈ V, where a positive sign means consumption and a negative sign
production. The associated function C(p) is the cost or negative utility function, which
is defined on the feasibility set P. Then, the one time step ED problem reads as

min
p∈P

∑

∈V
C(p), (2.1)

s.t.
∑

∈V
p = 0. (2.2)

If no constraints apply, i.e. P=R, it holds that an optimal assignment p = (p)∈V of
(2.1) subject to (2.2) satisfies that all marginal costs for generation equal marginal gains
for consumption, i.e. ∂C(p)/∂p = μ for all  ∈ V. Then, neither producers nor con-
sumers improve the overall wealth by altering their active power injection p, due to the
constraint-enforced (2.2) counter action1. When imposing convex feasibility intervals P,
this only needs to hold for the last infinitesimal production and consumption unit. Since
active constraints, i.e. constraints satisfied with equality, enforce higher marginal costs at
the lower interval limit and costs smaller at the upper interval limit2. This parity can be
obtained graphically by observing the intersection of the marginal utility curve and the
marginal costs curve per unit. This is known as the microeconomic supply-and-demand
model, which holds in roughly competitive markets [108].

In energy markets the merit order curve is an approach similar to the marginal supply
curve. A step function where the steps’ heights are fuel cost times heat rate of the
generation units sorted from the lowest to the highest cost and the step lengths are the
summed respective capacities [113], i.e. assuming linear generator cost functions. It
decides which units should run from a pure fuel cost perspective, where only the last
unit’s output needs to be adjusted for non-convex feasibility sets P. For more complex

1This property can also be derived from first KKT condition {∂C(p)/∂p}∈V + eμ = 0 [128, 16],
where e is a vector of ones in dimension p, or via Lagrange multipliers, i.e. C̃(p) =

∑

∈V C(p) +
λ
�∑

∈V p
�

, claim ∂C̃/∂p = 0 and ∂C̃/∂λ = 0 [22].
2Here, the KKT condition reads as {∂C(p)/∂p}∈V + 1μ + eλ − eλ = 0 with λ, λ ∈ R+ [128, 16].
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Figure 2.3: Merit order curves with and without renewable energy. The translucent
staircase represents the supply curve without contributions by the renewable sources and
the more covering staircase represents the supply curve with contributions by renewables;
the blue line shows the demand. The merit order effect is the gap between the market
clearing price in the pure conventional power market (price1) and the clearing price in the
market with renewables (price2).

constellations, e.g. starting costs, ramp rates or transmission constraints, this approach
cannot be straightforwardly applied. Nevertheless, heuristics adjusting for those additional
requirements can still lead to feasible and especially quickly calculable dispatch results
[39], but with limited theoretical guarantees. Similar holds for non-linear generation cost
functions.

Moreover, the merit order effect which describes the electricity price reduction because
of the feed-in of renewables was created using this approach [121]. Since some renewable
generation driving fuels are free of charge, e.g. wind or sun, they are added to the lower
end of the merit order and shift the conventional merit order by their current, intermittent
production, and thus reduce the price at parity, see Figure 2.3 3.

Since for most generators the feasible interval, with minimum p


and maximum p,
generation does not include 0 (if switched on) the overarching feasible set

P = {0} ∪ [p, p]

is non-convex. Determining the set of operating generation units over a number of time
steps minimizing production costs, while satisfying demand, is the UC problem. Here
the complexity arises from the non-convex feasibility set [36]. A variety of methods are
applied to handle these problems; a detailed review can be found in [105]. Similar to
the merit order approach, heuristics, like priority list [85, 120] and expert systems [98],

3The merit order curve is abstracted from German merit order curve per technology in [113].
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can be calculated quickly but lack qualitative guarantees, while a variety of optimization
approaches, e.g. dynamic programming [104] and Mixed Integer Linear Programming
(MILP) [40, 31, 64], also supply qualitative measures for the results’ quality. This thesis
focuses on the MILP method for ED problems. In the MILP approach an additional
binary variable b curtails the production limits to zero in the off status in order to reflect
non-convex P, i.e. b p ≤ p ≤ b p.

This formulation allows for moderate model complexity, e.g. to include start-up costs
[31] or more detailed thermo-physical ruled costs [64], while providing good solver perfor-
mance control and scalability for medium-sized problems. For example, a solution can be
found using the branch-and-bound method, which builds a tree of additional constraints in
order to obtain an integral solution from the enlarged, relaxed problem, i.e. the problem
without integrality constraints. This approach can guarantee a solution within a predefined
accuracy [137]. Moreover, additional constraints added in line with the integrality allow for
additional performance improvements [64]. These additional constraints/cuts make some
non-integral solutions infeasible but let all integral solution feasible, analog to the idea of
the cutting plan approach [118]. For these reasons, MILP has evolved to the dominant
method applied in commercial dispatch systems since its first implementation at a utility
by Dillon et al. [40].

Transport restrictions are becoming more and more prevalent when evolving from large
generation units placed in the transmission grid, with high line capacities, to a multitude
of Distributed Energy Resources (DER) spread in the distribution grid, with small line
capacities. When turning the focus to the transports p with capacities P and defining
the injection via the nodal balance

p =
∑

∈N ()
p,

the optimization problem (2.1) subject to (2.2) can be reformulated as minimum cost
flow problem. A minimum cost flow problem aims at minimizing transport cost subject to
transport constraints and given demands.

In this framework the nodal costs C,  ∈ V, need to be transformed into flow costs,
therefore an additional node 0 is added and edges are drawn from this node to each
initial node  ∈ V. These edges are assigned a flow capacity of P0 = P and costs
C0(p0) = C(p). Then the flows p0 = −p0 are equal to the p, and the p in
the initial formulation drains to the reference node 0 leading to injection p = 0 for all
 ∈ V ∪ {0}. Moreover, p0 = 0 ensures constraint (2.2). Hence the minimum cost flow
problem, with N (0) = V, reads as

min
p∈P

∑

∈V
C0(p0),

s.t.
∑

∈N ()∪{0}
p = 0, ∀ ∈ V ∪ {0}.

Combinatory algorithms to solve the minimum cost flow problem for convex quadratic
costs in polynomial time date back to the 1980s, e.g. [95, 96]. From then onwards different
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algorithms have been proposed, which can be categorized in cycle-cancelling, successive
shortest path and primal-dual out-of-kilter algorithms. Many of them combine a sequence
of shortest path calculations, i.e. finding paths with minimal costs [7]. For example, the
successive shortest path algorithm initially sets the minimal feasible flow p on all edges.
Then, the flows are enlarged along the shortest paths from positive, source

∑

∈N ()∪{0}
p > 0,

to negative, sink
∑

∈N ()∪{0}
p < 0,

imbalanced nodes until all nodal imbalances are resolved. These algorithms are still
of research interest. Modifying these approaches results in powerful polynomial time
algorithms for solving continuous variable minimum cost flow algorithm [129]. Even though
computationally efficient, minimum cost flow algorithms require convex feasibility sets and
global knowledge, e.g. aggregated at additional node 0.

In this setup with known injection p = 0,  ∈ V ∪ {0}, global coordinating node 0
and piece-wise linear cost, Message Passing (MP) which is introduced in Section 2.4 has
been proven to converge to an optimal solution [50]4. Similar guarantees for general loopy
models are still undergoing research.

Gradually aggregating the balances of areas at area aggregator nodes, instead of at
a single node 0, relates the minimum cost flow formulation to local master approaches.
These methods, e.g. [125], received growing interest in recent years, since they handle
a multitude of different operators well, respect transport restrictions and partly secure
information privacy. Other approaches meeting this requirements are market-based, e.g.
SO-EASY [94] and PowerMatcher [76]. Here intelligent local agents bid on a central mar-
ketplace whose market clearing then determines the dispatch result. While this approach
is extremely scalable and suits a competitive environment well, it does not achieve a
globally optimal dispatch result, even if the local agent models are very detailed and are
solved in an optimal way, e.g. by employing dynamic programming approaches [136].

A final remark concerning the models used, all problem formulations have been
represented in the transport model, ignoring for the moment Alternating Current (AC)
flows, which will be discussed in Section 2.2, and the DC-approximation [138]. The
DC-approximation draws the flows closer to the actual physical flows, since a significant
flow on only a section of a cycle in the grid which can result from transport models requires
two different angles θ at one node and is precluded by the angle θ uniqueness. But
for distribution grids, which are radial in nature, this inconsistency does not occur and the
angles θ,  ∈ V, can be directly recalculated from the transport flows. A qualitatively
similar result holds for AC flows in trees, enabling the calculation of the full AC flow by
the branch flow equations [12], called DistFlow. Accordingly, the root node voltage in
combination with real and reactive feed-in at all nodes fully determines the AC power flow.

4The nomenclature belief propagation for the method used in [50] is equal to MP.
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2.2 Optimal Power Flow

The Optimal Power Flow (OPF) problem combines the ED, Section 2.1, with the physical,
Alternating Current (AC) power flow. Here the variables are the complex voltages

 = ̂ exp jθ

at node  ∈ V composed of the voltage magnitude ̂ and voltage angle θ. Thus, the
OPF problem is to determine the complex voltage vector  such that the implied electricity
generation and consumption maximize the overall welfare subject to the limits above.

In the following, all power flows are calculated utilizing the π-model. The current flow
along the line {} ∈ E is fixed by the complex voltage difference ( − ) of its
defining nodes and the opposition of the line, admittance y5, to

 = y( − ).

Additionally, each node has a flow with opposition y0 to the reference/ground node 0
with complex voltage 0 = 0. Those current flows determine by Kirchhoff’s current law
[83, 89] the nodal currents as follows

 = y0 +
∑

∈N ()
y( − ),  ∈ V. (2.3)

In matrix vector notation, (2.3) reads as i = Y with admittance matrix Y, given by its
-entries below

(Y) =















y0 +
∑

{k}∈E
yk  =,

−y  6=,{} ∈ E ,
0 ese.

6 (2.4)

The complex powers are then given by the complex voltage  times the complex conju-
gated current H to

s =  H = p + j q,  ∈ V, (2.5)

here p is the active power and q the reactive power. In matrix vector notation these
read as

s = �iH = �(Y)H, (2.6)

with component-wise multiplication � and complex conjugate transpose ·H.
Then the real power feasible set P needs the reactive power feasible set Q to fully

characterize the node ’s feasibility sets. For convex P and Q this reads as

s ≤ �(Y)H ≤ s, (2.7)

but due to the quadratic nature in  the feasible set in  is not convex. Moreover, the
voltage magnitude band

̂ ≤ || ≤ ̂, (2.8)
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Figure 2.4: Non-convex feasible flow, blue, on a line implied by the voltage limits (2.8).

adds another non-convexity, as shown in Figure 2.4.
Then the feasible voltage set is given by

U = { ∈ C|V | : ̂ ≤ || ≤ ̂∧ s ≤ �(Y)H ≤ s}. (2.9)

A visualization of the non-convex U for a loopy, three-bus grid can be found in [21].
The OPF problem with respect to the feasible set (2.9) is given by

min
∈U

∑

∈V
C(p), (2.10)

s.t. s = �(Y)H. (2.11)

Note that the active power p is set by the complex power s, which are determined
by the constraints (2.11), via definition (2.5). This problem is NP hard despite the cost
function C, due to the non-convex feasible voltage set U .

In order to overcome this issue, a variety of convex relaxations of U have been
proposed. The research focus [83, 124, 84, 82, 89] has usually been on the bus injection
model, stated in (2.11). The complex power equation (2.11) and constraints (2.9) in the
bus injection model can be equivalently rewritten as

s = dg(HYH). (2.12)

Here, the convexification relies on a change of variables from the voltages  to the matrix
W = H � 0 and relaxation of the resulting rank constraint, i.e. rank{W} = 1, as
proposed in [9, 83]. Neccesary and sufficent condition, when this relaxed problem solution
is optimal are discussed in [84], e.g. if by accident the optimal matrix W has rank one.

5The admittance in this thesis is assumed to be in the per unit system, see Section 1.3.
6This thesis is going to be in the directional arrows framework resulting in this notation, while the opposite

signs result for counter rotated directions, e.g. [103, Chapter 13].
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Figure 2.5: Two convexification steps, angle elimination (blue) and relaxation of the equality
constraint (green), for the branch flow formulation.

In contrast to this relatively abstract procedure, an intuitive graphically explainable,
equivalent convexification [21] can be derived from the branch flow formulation [45, 46].
This is based on quadratic approximation ideas as introduced in [53, 68, 69]. Instead of
the directly obtained bus injections s by equation (2.11), flows

s = ̂yH(̂ − ̂e−jθ), {} ∈ E , (2.13)

define the bus injections in the branch flow formulation [45, 46] to

s =
∑

{}∈E
s −

∑

{}∈E
(s − z||2) + yH0| |

2,  ∈ V, (2.14)

where z = 1/y is the impedance of the power line {}. Two steps turn this
formulation into a convex problem, illustrated in Figure 2.5, first eliminating the angles
̃ = ||2 and ̃ = | |2, and then relaxing the non-convex equality constraint

̃ = (p2 + q
2

)/ ̃ to ̃ ≥ (p2 + q

2

)/ ̃.

An optimum of the resulting second order cone programming is a solution to the
OPF if the cost function is monotone rising in ̃, since then the minimum will enforce
the equality, and the angles can be reconstructed from ̃ and ĩ [45]. Similar conditions,
e.g. linear separability requiring non-binding p and q constraints at a minimum of one
node for each line, guarantee exactness of convexified OPF solution in radial grids [90].
For meshed grids tunable phase-shifters need to be applied to obtain equivalent results
[90, 46]. Nevertheless, these criteria are to some extend artificial as they do not arise
from a straightforward implementation of real grids, e.g. [86].

Moreover, this second order cone programming is equivalent to the second order
cone programming [20] arising from the bus injection semidefinite programming by an
edgewise semidefiniteness inspection of W [124]. Similar approaches that exploit the
sparse topology of electrical grids can be employed to circumvent a prohibitively large
matrix in semidefinite programming. In [82], the problem is decomposed in line with the
maximal cliques of a triangulated grid, i.e. the initial grid with additional edges such that
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all circles are cordless 7. Then [82] shows that the run-time is linear with respect to the
number of such cliques. This concept is an analog to the Junction-Tree algorithm in the
GM’s community, see e.g. [130, 77].

Several other methods to decompose the OPF problem have been proposed recently.
The robust augmented Lagrangian method of [74] coordinates the OPF computations in
different electrical regions via Lagrange multipliers. The Alternating Direction Method of
Multipliers (ADMM) proposes an elegant formulation for convex OPFs and can easily be
implemented in a decentralized fashion via exchanging primal and dual variables between
the electrical network nodes [79].

2.3 Optimal Volt-VAr Control

The Volt-VAr Control (VVC) problem in active grids adds an additional variable dimension,
i.e. discrete variables τ for a number of tap changing transformers and capacitor banks,
to the OPF problem in Section 2.2. Instead of an a priori given admittance matrix Y, the
discrete variables τ modify the admittance matrix Y(τ). The optimal VVC problem deter-
mines the complex voltages  and discrete variables τ, such that the implied electricity
generation and consumption maximize the overall welfare, minimize losses and guarantee
regulatory bounds.

Transformers connect different circuits by electromagnetic induction. The AC flow of
one circuit through a winding induces a current flow in the other circuit windings. The
resulting current flow depends on the turn ratio, magnetizing current and non-load losses
[103]. For now, neglecting magnetizing current and non-load losses, the transformer
model in per unit system simplifies [8] to

�




�

=
�

|τ|2y −τHy
−τy y

��




�

,

where τ is the turn ratio. The neglected losses can be partially re-integrated by
adding appropriate shunts y0 and y0. This transformer model is common for most
computational implementations [52].

On-Load Tap Changers (OLTCs) are transformers able to adjust their ratio under load.
They have become more popular in recent years [47, 51, 92, 78, 59], since they offer a
counter action for intraday voltage rises and drops caused by pattern variations from high
feed-in to load in distribution grids. According to the current practice in Germany, the
distribution system operator should ensure the voltage limits for two case scenarios and
extend the distribution grid accordingly if the grid fails to fulfill the voltage limits [2, 1]. In
this framework, [59] showed that OLTCs have the capability to ensure voltage limits within
an existing infrastructure and thus are an alternative to grid extension. The investment
considerations of network extension versus OLTC installation are examined in [92], with
regard to financial, environmental, technological and social dimensions. Moreover, the
adjustment to the current situation enables an operation in higher voltage regimes that

7A circle is cordless if there are exists no edges between nodes in a cycle that are not successors.
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lead to lower losses. In the following, OLTCs are going to be modeled by a discrete set of
feasible turn ratios T, denoted as taps τ ∈ T, in the transformer model.

Another way voltages can be modified and transmission losses reduced are capacitor
banks. A capacitor is charged and discharged by AC flows, which draws reactive power.
Capacitor banks can simply be seen as additional switchable shunt parts. Thus, they are
modeled [8] by scaling y0 according to the feasible switch status τ0 ∈ T0 as follows

 = τ20y0.

By drawing reactive power, the capacitor reduces the voltage drop along a line and thereby
losses [119].

Let E0 = E ∪ {0} × V be the edges E accomplished by reference/ground node 0
and nodal objective function c(s, ) by the per unit complex voltage . The nodal
objective function c aggregates the production cost or negative utility and penalties for
voltage band [ ̂, ̂] violations. A per unit admittance y attributes to each edge
{} ∈ E0 either standing for the line admittance if , ∈ V or shunt admittance if
either  or  equals 0.

Transformers and capacitor banks form a discrete variable subset D ⊂ E0. Each
{} ∈ D is equipped with a turn ratio or capacitance variable τ out of its attainable
discrete position set T, where τ is 1 if n


< n


and otherwise any value in T.

The admittance matrix Y(τ) ∈ C|V |×|V | depending on the discrete variables τ is given by
its -entries, , ∈ V, as follows

Y(τ) =



























∑

{}∈E0\D
y +

∑

{k}∈D
τ2
k
yk  =,

−y  6=,{} 6∈ D,
−ττHy  6=,{} ∈ D,
0 ese.

(2.15)

In this formulation, the complex powers are given by s = �(Y(τ))H. Thus, the active
overall grid optimization problem reads as

min
∈C|V |,τ∈T

∑

∈V
c(s, ), (2.16)

s.t. s = �(Y(τ))H, (2.17)

s ∈ [s, s],  ∈ V. (2.18)

Here the mix of continuous, i.e.  ∈ C|V |, and discrete, i.e. τ ∈ T , variables adds an
additional complexity to the NP hard OPF problem (2.10) subject to (2.11).

In [10], this complexity was addressed by solving a relaxed problem, i.e. continuously
modeled discrete capacitor bank variables and fixed transformer tap τ = 1, and by
re-obtaining the best initial solution by randomized permutations around the relaxed
solution towards the closest discrete variables. This approach relies on the assumption
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that transformer taps are close to their nominal value and line impedances are small [11].
A MILP formulation was proposed in [19] and applied in [111]. It is based on the MILP
formulation for distribution grid configuration, i.e. to find the optimal switch constellation
in distribution grids, in [18] for radial distribution grids. This formulation relies on the
assumption of a fixed p and a small deviation of  from the slack node voltage. The
temporal dynamic programming approach in [91] sets the tap position to the minimal
objective cost one of the three possible taps – current, next lower and higher – for the next
time step and approaches the capacitor banks analogously. This is systematic similar to
the hill climbing approach in [6, 57], which alters tap positions until the objective function
is no longer improved.

Automated control concepts [47, 51, 38, 37, 42, 80], i.e. concepts based on state
estimations of the underlying grid based on a limited number of measurements, are another
research focus. The concept proposed in [47] relies on a single measurement and adjusts
for distributed generation along one feeder by an invariant DER correction, a promising
method despite invariant adjustment [51]. Another source of influence on the voltage is
reactive power feed-in Q(̂) by DER based on locally measured voltage magnitudes ̂,
e.g. evaluated in [38, 37] for different control approaches. A hybrid approach is taken
by [42, 80], where automated control concepts for a single OLTC and multiple DER are
analyzed with regard to the voltage quality improvements and engineering costs. The
inference of a number of OLTC in series at different voltage levels was firstly addressed in
[29].

2.4 Probabilistic Graphical Models

A probabilistic GM describes a family of multivariate probability distributions that share
a common (conditional) independence structure via a graph. In this graph nodes are
random variables and edges show the interrelation of two random variables. This graphical
representation is used to develop efficient graph-based algorithms for various statistical
inference computations, such as testing independence, marginalization or finding the most
likely variable assignment. A detailed introduction to the theory and its applications is
given in [77].

GMs are divided into undirected GMs and directed GMs according to the underlying
graph edge structure, detailed in Section 1.3. This thesis focuses on undirected GMs
since electrical grids relate to undirected GMs. For these undirected GMs, the graph
G(V, E) represents all probability distributions P(V) over random variables ,  ∈ V,
that factor as

P(V) =
1

Z

∏

C∈C
ϕC(C). (2.19)

Here, A for set A denotes the set of all random variables ,  ∈ A. Moreover, C is
the set of all cliques C, i.e. fully connected subsets, and the factors ϕC are non-negative
potential functions over the variables C. Z denotes the necessary normalization factor to
ensure the probability distributions owned property to sum/integrate to unity.
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Figure 2.6: An undirected GM with five nodes , ..., e and three maximal cliques,
{, b, d}, {b, c} and {d, e}.

Now focus on one of these computations that is the closest to the adaptation proposed
in Chapter 3. Finding the maximum probability assignment, i.e. most likely variable
assignment, means determining

V
∗ = rgmx

V

P(V). (2.20)

Factorization in line with the graph structure comes into play to reduce the complexity of
this task. The independence structure related commutative property leads to decomposi-
tion into clique subproblems. A sample GM depicted in Figure 2.6 is used to illustrate this
concept, before a general approach has been given.

The example GM depicted in Figure 2.6 contains three maximal cliques, namely
{, b, d}, {b, c} and {d, e}. Computing the maximum probability can be
reformulated to

mx
,...,e

1

Z
ϕ{bd}(, b, d)ϕ{bc}(b, c)ϕ{ed}(e, d) (2.21)

= mx
,b,d

1

Z
ϕ{bd}(, b, d)

�

mx
c

ϕ{bc}(b, c)
�

︸ ︷︷ ︸

=m{cb}{bd}(b)

�

mx
e

ϕ{ed}(e, d)
�

︸ ︷︷ ︸

=m{ed}{bd}(d)

.

The two variables c/e are solely dependent on b/d and thus its factor maximiza-
tion can be computed independently of the other variables when conditioned on b/d.
These conditional optimization subproblem results can then be integrated into the overall
problem by function-valued messages m{cb}{bd}(b), m{ed}{bd}(d). This shows
that the maximization problem over five variables can be split into two optimizations over
two variables and one over three by exploiting the commutative property of conditional
independence.
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Figure 2.7: Computational complexity of the maximum probability assignment for the GM,
Figure 2.6, with binary variables , ..., e by full enumeration of the first line (2.21) grey
square and reformulated second line (2.21) blue squares.

For this example Figure 2.6 and binary variables , ..., e, full enumeration of the
formula (2.21) in the first line requires 25 computations, equivalent to the grey square area
in Figure 2.7, while the factorization into subproblems (second line) leads to 2 · 22 + 23

computations, equivalent to blue squares in Figure 2.7. In general the reduction is expo-
nential in the problem size for discrete variables  and qualitatively similar results hold
for continuous variables. Thus, this factorization potentially amounts to a tremendous
reduction in computation time – especially if this trick is repeated for larger graphs.

The example above shows the fundamental idea behind the general algorithm, known
as MP, to solve the maximum probability assignment in tree-structured clique graphs. In
the first stage, the messages mj(Sj) from clique C to clique Cj are computed for every
pair of overlapping cliques C and Cj, i.e. cliques where the separator set Sj = C ∩ Cj is
not empty. For each separator set Sj the message is computed as

mj(Sj) =mx
Cj\Sj

ϕCj(Cj)
∏

k 6=
mkj(Skj). (2.22)

The optimal values for variables contained in one of the separator sets Sj are then given
by

∗Sj
= rgmx

Sj

mj(Sj)mj(Sj). (2.23)

Computing the optimal values for variables not contained in one of the Sj is described in
[77, Chapter 10].

The MP starts at a leaf clique, where the maximization problem (2.22) reduces to
a maximization over one potential function ϕC only. Then continues to calculate the
message for separator sets Sj where all messages mk(Sk), k 6= j, from all neighboring
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cliques except the target clique are known until all messages are known. The idea how
a reordering in line with the commutative property can be computationally derived by
messages was proposed by [107]. The formulation backing was based on GMs without
loops since then a feasible ordering can always be found, e.g. by depth-first-search going
from the leafs to the root and back.

However, the commutative property that makes it possible to move the maximum
operation exploited in for the reordering in equation (2.21) holds only for clique trees with
junction tree property, i.e. if for any clique C1 and C2 all cliques on the unique path of the
clique tree joining them contain their separator set S12 [77], also called junction tree. In
clique graphs with at least one circle, the interdependence of the variables contravenes
a reordering. In this case, either a clique tree needs to be constructed by enlarging the
cliques such that the new cliques have tree shape [77], or approximate methods [100],
called loopy MP, have to be applied for this task. The results and methods to obtain a
solution in the first approach are equal to the approaches for GMs that initially have a
junction tree if the enlarged clique tree is a junction tree.

For loopy MP all messages mj are initialized with a value, e.g. 1, and are iteratively
updated by variations of equation (2.22). Thus, loopy MP messages mj are initially wrong
and include the same potential functions multiple times, both is opposed to the optimality
of the result. Still, loopy MP performs incredibly well in praxis, e.g. for error decoding [48],
and for some GM topologies and potential functions the theoretic correctness can even be
derived. For Gaussian GM, i.e. GM with Gaussian potential functions, Weiss and Freeman
[134] showed that if MP converges, it will result in the correct posteriors; qualitatively similar
results have been shown in [131, 114]. The − log relates the maximization problem (2.23)
for Gaussians to unconstrained Quadratic Programming (QP) minimization, for which
[97] proved that the equivalent MP algorithm solution is optimal, given the existence
of an appropriate quadratic approximating sequence. For discrete variables, quotient
metric arguments can derive sufficient conditions for convergence of loopy MP [99, 67].
An intuitive way to understand these results is that the initial bias in the messages is
marginalized by multiple propagation and normalization 1/Z.

This implied error correction cannot be directly transferred to the application in Chap-
ter 3, since the functions C do not need to sum/integrate to an a-priory known value,
particularly not unity. Nevertheless, in radial grids’ GM representations that are described
in Section 3.2, cliques directly correspond to nodes in the electrical graph. Thus, the rep-
resentations’ clique graph is of tree shape and none such iterative procedure is required.
But for multiple time-steps, each step and node would add a mesh with each neighboring
node. This is in contradiction to the clique tree property, which is why the work presented
here focuses on a single time-step dispatch.

For continuous random variables computing the message functions is in many cases
intractable. Therefor, approximate inference algorithms for GMs then try to approximate
those messages with standard function classes, e.g. [130] for an introduction. Projecting
message updates onto a given class of functions in each iteration has been done, e.g. in
[102].
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Using probabilistic GM methods in power grids has been proposed before for state
estimation applications [63, 87]. In [139], a one-to-one matching of customers and
generators is computed using GM algorithms. Nevertheless, the MP techniques, proposed
in Section 3.2, for solving the ED problem is novel, foremost to the specially adapted
approximated inference application in Section 3.5.

2.5 Dynamic Programming

Dynamic programming is an optimization approach that splits a complex large problem
up into a sequence of smaller subproblems interconnected by common variables. On
these common variables defined linking terms, i.e. the cost-to-go functions J and reduced
decision spaces Y, are used to coordinate the subproblems. The cost-to-go functions J
aggregate the optimal objective value of the subsequent subproblems given the common
variables. The reduced decision spaces Y capture the interdependence of the subproblem
conditions. The key property for dynamic programming is that the subproblems’ optimal
solutions need to assemble the overall solution [58]. Thus, the optimization technique
required to solve these subproblems is not a determining factor for dynamic programming,
but the subproblems trace back towards optimality.

The above concept is the common ground for a number of different views on dynamic
programming taken by computer scientists, economists, and engineers. In computer
science the crucial point is the efficient use of storage and non-iterative propagation [36],
based on the function representation J. However, the cost-to-go functions J of continuous
variables take in generally infinitely many values that can neither be fully computed nor
be stored, except if J coincides with an element of a finite-dimensional function class
or can be well approximated by such8. Approximation approaches for the cost-to-go
function J are qualitatively similar to the approximated messages in GM, discussed in
Section 2.4. Economists and engineers often reduce dynamic programming to a tool to
handle multiple time-period decision processes, which can either be in a deterministic or
uncertain environment [17]. The common approach for deterministic processes is forward
processing [109] whereas uncertain processes can better be approached in a backwards
manner, e.g. [30]. The focus on multiple time period decision processes arises from a
classic temporal interpretation of Bellman’s principle of optimality, which states that each
single decision has to be optimal with regard to the resulting state from the initial decisions
[14]9. However, Bellman’s optimality principle allows for a broader concept of dynamic
programming, e.g. [123, Fundamentals], and is detailed in the following.

The dynamic programming concept [123, Fundamentals] works as follows: (1) re-
structure the problem into subproblems, (2) obtain the link between those subproblems,

8 In the machine learning community obtaining such function class combinations is known as deep
learning.

9“An optimal policy has the property that whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the first decisions.” [14]
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(3) solve the subproblems and (4) recover the solution of the initial problem from the
subproblems. In this more general view the optimality principle of Bellman reads as:

Principle 2.5.1. The optimal solution of the subproblem conditioned on its linking terms
must contribute to the optimal overall solution given whatever arises from their common
variables.

The general formulation of dynamic programming for a minimization problem at one
subproblem  ∈ L reads as

J() =min
y

F(,y) +
∑

k∈K()
Jk(yk), (2.24)

s.t. y ∈ Y(), (2.25)

where Y() is the decision space and K() are subproblems with link to  and their optimal
solutions are included in the cost-to-go function Jk, k ∈ K(). In the temporal view  is the
time t and K() reduces to {t + 1}.

Restructuring a problem into smaller subproblems is not always advantageous. Often
there is a trade-off between simplicity of extremely small problems and the mere number
of such problems to solve. The maps J and Y hint at the resulting complexity reduction
of this reformulation [123, Fundamentals]. An additional point is the complexity of the
subproblems in relation to the initial problem, e.g. an optimization problem with multiple
discrete decisions scales exponentially, in contrast to one with a single discrete variable.

An intuitive way to find subproblems satisfying the optimality Principle 2.5.1 is to ex-
ploit the commutative property of conditionally independent subproblems, similar to the
example in Section 2.4. From a dynamic programming perspective, GMs are a special
version of dynamic programming with extremely small subproblems and the message
m equals the cost-to-go J.

Using dynamic programming to solve electrical engineering problems has been stan-
dard for a long time, e.g. UC [62, 104, 106] and for VVC [91, 41]. For the UC problem,
the on-off decision is the relationship between the per time point subproblems. The tap
position evolution over time of an OLTC takes this role in [91]. The broader view discussed
above was taken in [41], where the location, number and size of capacitors in radial grids
is determined by subproblems in line with the grid implied independence. However, the
author is not aware of literature using dynamic programming to enable an optimal VVC
solution for a multitude of interfering discrete components, e.g. OLTC and capacitor banks,
as proposed in Chapter 4.



Chapter 3

Economic Dispatch as Graph
Problem

In this Chapter the dispatch problems, introduced in Section 2.1 and Section 2.2, are
viewed from the Graphical Model (GM) angle and are solved utilizing GM methods.
The focus is on the Economic Dispatch (ED) problem that is to find the active power
consumption and production such that the sum of production cost and negative utility is
minimized in the grid G(V, E). This should be done subject to line capacities and feed-in
restrictions.

In the past, the ED problem was a problem for few utilities. They had to operate
their portfolio of large centrally placed power plants optimally to supply demand. Yet, the
widespread introduction of new technologies has been changing this. Renewable energies,
e.g. Photovoltaic (PV), wind and biomass, are typically small in size and spread throughout
the distribution grids. Moreover, heater, Electric Vehicle (EV) or some industrial processes
are flexible with regard to their consumption. Thus, a large number of Distributed Energy
Resources (DER) with a diverse owner structure need to be dispatched in distribution
grids. These DER are changing the requirements on ED methods to be scalable, quickly
adaptable, incorporate grid limits, preserve privacy and have minimal communication
effort.

The vast number of to control units is one of the challenges for ED in this environment.
Another challenge is the complex interdependence structure of the DER due to the grid
topology as well as the DER implied limits. GM methods are known to be able to handle a
large number of interrelated variables efficiently, e.g. the number of pixels in a picture for
pattern recognition. However, the interdependences for this application are local but the
energy conservation (2.2) is global, in the sense that all variables are coupled. Thus, the
ED is equivalently reformulated to a local problem by the nodal balances. The resulting
local problems are then solved independently and coordinated by messages, in analogy
to Message Passing (MP) in Section 2.4.

For this the problem formulation (2.1) subject to (2.2) is transferred to a graph formula-
tion, Section 3.1. Then MP method, introduced in Section 2.4, is reformulated to solve this
problem, Section 3.2. Section 3.3 discusses the properties this method inherits, before
the discrete approach and continuous approach are detailed, Section 3.4 and Section 3.5.

35
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3.1 Graph Problem Formulation

The underlying idea for the graph formulation is the naturally implied decomposition for
local problems. To obtain a local problem, the global problem (2.1) subject to (2.2) is equiv-
alently reformulated in terms of local active power flows p. This section is based on [73].

In the problem (2.1) subject to (2.2), the power balance (2.2) is the global constraint,
it couples all p decision variables and hinders a simple decomposition of the problem.
Equivalent to (2.2), however, is a set of power flow equations, e.g.,

∑

∈N ()
p = p, (3.1)

where p is the power transport from  to  and p = −p. If those equations are
satisfied at each node, no energy is lost in the network and the overall power balance
constraint (2.2) is satisfied.

Then integrating (3.1) in the problem (2.1) subject to (2.2), the problem reads as

min
p∈P

∑

∈V

C

 

∑

∈N ()
p

!

, (3.2)

s.t.
∑

∈N ()
p ∈ P, (3.3)

p = −p. (3.4)

Like in Section 2.1, C(p) is the cost or negative utility function associated with the
active power p and P, P the feasibility sets for the active power p and the active
power flow p, respectively. This formulation corresponds to a simple lossless power
flow model and is equivalent to the common DC-approximation of the Alternating Current
(AC) power flow equations for radial grids, see Section 2.1.

Note that using formulation (3.1), the optimization problem (3.2), subject to (3.3) and
(3.4) is local in the sense that each term of the objective and the constraints only contains
variables from a neighborhood of  in the graph. Such a graph problem formulation of the
ED problem can be tackled by local operations on the graph, trying to find optimal local
assignments while guaranteeing local consistency between neighboring sites that share
an interrelating active power flow p variables.

In some sense, that is exactly what GM Message Passing (MP) method presented in
Section 3.2 and detailed for discrete variables in Section 3.4 and for continuous variables
in Section 3.5 does. The rewriting of (2.2) into (3.1) is, while almost trivial, important for
the proposed solution strategy.
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3.2 Message Passing Methodology

In this section is shown how the GM framework can be applied for ED problems. Matching
the GM notation introduced in Section 2.4 and using the graph formulation of the ED
problem (3.2), subject to (3.3) and (3.4), Section 3.1, a GM inspired solution methodology
is presented. This idea was firstly proposed by the author in [73] and this section is based
on that.

At first note that due to monotonicity rgmx
∏

c ϕc = rgmin
∑

c− logϕc and the
graph ED problem (3.2) subject to constraint (3.3) can be re-written as

min
p∈P

∑

∈V
C

 

∑

∈N ()
p

!

, (3.5)

where the nodal active power domain constraints
∑

∈N () p = p ∈ P have been
included in the cost function C(p), by setting it to infinity if p 6∈ P.

After this is set an undirected GM is constructed from the electric network as demon-
strated in Figure 3.1. A node is created for each transport variable p and edges are
added between these nodes, if and only if the corresponding electric lines connect to the
same electric bus. Buses in the electric network then matching the cliques in a GM and
the clique potentials ϕC are defined by identifying the cost function of the electrical node,
C

�∑

 6= p
�

, with the negative logarithm of the clique’s potential function in the GM
− logϕC. Since the electrical nodes directly translate to cliques, the electrical network
topology is equivalent to the clique graph. Thus, radial electrical networks lead to clique
trees, Figure 3.1.

p12p1 p2

p25

p5

p23

p3 p34 p4

p56 p6

(a) Electrical Grid

p1 2, p2 3, p2 5

p2 3, p3 4

p2 5, p5 6

p2 3

p2 5

(b) Clique Graph

Figure 3.1: An electrical grid with six power nodes p1, ..., p6 and five power lines (dotted,
solid) with power transport variables p12, ..., p56 (solid lines, filled circles) that corre-
sponds to the five nodes GM shown in Figure 2.6. The clique graph implied by the cost
functions, where the cliques are depict oval and separator set, i.e. intersection of two
adjacent cliques, as rectangle.
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With these findings and connections the following statement holds:

Theorem 3.2.1 ([73]). The maximum probability assignment on the constructed undi-
rected probabilistic GM is equivalent to the economic dispatch problem in the original
electric network.

This equivalence implies that all methods for the decoding of the maximum probability
in probabilistic GMs can also be applied to ED. For the introduced MP the message
computation (2.22) becomes

m(p) = min
pk∈Pk k∈N ()\{}

C

 

∑

∈N ()
pk

!

+
∑

k∈N ()\{}
mk(pk), (3.6)

and (2.23) then reads

p
∗ = rgmin

p
m(p) +m(−p). (3.7)

Thus, using the local power flow equations (3.1) in replacement of the global constraint
(2.2) naturally impose the line limits on power transport, e.g., −p ≤ p ≤ p where
p is the line capacity.

The notation above hints at directly using the active power transport p as optimiza-
tion variables. However, the full AC power flow equations (2.13) can also be employed.
Then the voltage magnitudes ̂ and phase angle differences θ are the optimization
variables. Here, phase angle differences θ = −θ take the active power transport
p role in equation (3.1). Thus, such a formulation preserves the locality property as
defined above and would be amenable to the solution technique shown in this section.
Only the number of real variables in each neighborhood would increase when using the
three variables θ, ̂ and ̂ defining the complex power flow s instead of one active
power transport variable p per line. Using the full AC power flow equations (2.13) then
leads to the following messages

m(̂, ̂, θ) = m̃(s(̂, ̂, θ)). (3.8)

Following this message formulation, the here proposed divide and conquer trick (2.21)
could still be used. However, these multi-dimensional messages are more complex to
obtain and to store so an especially suited approach is needed.

The implementation of this methodology in two fashions is discussed in Section 3.4
and Section 3.5. In Section 3.4 messages are represented via discretization of the active
power flow optimization variables p, denoted as Discrete Message Passing (DMP).
This allows for an exact inference on tree-structured distribution grids and for arbitrary
cost functions C. However, for variables of significantly different scales a common fine
discretization becomes computationally infeasible. Thus, a continuous approach might be
more suitable. An such approach is proposed in Section 3.5, called Continuous Message
Passing (CMP). The approach utilizes the optimality principles to efficiently obtain the
exact messages and a functional approximation to represent them.
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3.3 Properties

The equivalence of the ED problem to the graph problem (3.2) subject to (3.3) and (3.4),
Section 3.1, that is solvable by the MP messages (3.6), Section 3.2, has several important
consequences for ED in smart distribution networks. They concern the in linear run-time
obtained optimal ED result, Section 3.3.1, the inherited information privacy principles,
Section 3.3.2, and the additional local cost knowledge, Section 3.3.3.

3.3.1 Decomposition

The decomposition in line with the commutative property of conditional independent sub-
problems and their coordination via messages, described in Section 3.2, leads to optimal
results. Moreover, the MP method obtains the result in linear time, independent of the ED
cost function shapes but dependent on the grid topology.

MP is known to find the maximum probability assignments on trees. For discrete
variables this holds also for the computational calculation of the maximum probability
assignments. An implementation for continuous variables require the message to be of a
finite-dimensional function class or well approximated by a such, in order to make that hold.
Similar results hold for the broader class of clique trees with junction tree property, i.e. for
each two cliques with common variables these variables need to be part of each separator
set on the path from one to the other. By the generation of the grid respective GM, the
cliques directly relate to nodes in the grid. Applying this algorithm to ED will result in the
globally optimal assignment, if the electrical network is radial since the respective clique
graph is a tree and satisfies by its generation, detailed in Section 3.2, the junction tree
property, i.e. junction tree. Unlike most optimization algorithms, the cost functions and
domain constraints may take any shape, at least for the discrete variable implementation.
But the grid’s topology is the determining factor, since a junction tree is only directly implied
for radial grids.

Low and medium voltage networks are in practice often operated in a tree-shaped con-
figuration [110], i.e. radial. Low Voltage (LV) feeders in rural regions tend to be composed
of several strings connected to one transformer. Here meshed LV feeders rarely exist
because of the operation complexity and higher required investments. Unlike, densely
populated suburban and urban regions low voltage feeders are often built as rings and
feed by two transformers, similar holds for medium voltage. So customers can be supplied
from both sides in the case of line faults. But during normal operation, which is of major
interest to ED, an opened breaker typically splits the loops.

The run-time of this methodology is basically dependent on the number of messages
and their computation. Note that the number of messages is exactly twice the number
of separator sets between cliques, which are in this case equal to buses. Assuming
for now discrete active power flow variables p and let the maximum number of such
discrete values that p can take be k. Moreover, let n be the number of electrical buses
in the system and d denote the maximal clique size of the GM, which is equal to the
degree of the electrical network. Then, for each message at most kd values have to
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be calculated/compared for the minimum operation (3.6), and two such messages have
to be calculated for each of the n buses. Thus, the total run-time of the MP method
is O(2nkd) by using full search for the optimizations in (3.6). Similar, however more
complex and approach dependent, relations hold for continuous flow variables p. Thus,
the total run-time scales linearly in the size of the network, which renders the proposed
methodology suitable for very large networks. Besides, for discrete variables the run-time
is also precisely predictable and independent of the shape of cost functions and constraints.
Similiar, holds just approximately for continuous variables.

The argument above showed that the degree of the electrical buses d has a significant
influence on the computational complexity. Since for high-degree nodes in the electrical
network the minimum calculation in the message optimization problem (3.6) will then
extend over many dimensions. This exponential scaling factor kd is often referred to as
curse of dimensionality. However, a reduction of this factor kd for high-degree nodes in
the electrical network to at most k3 can be achieved by re-writing the electrical network
without changing its physical meaning. Therefore, each node with a degree larger than
three is iteratively split into two new nodes that are connected with an appropriate capacity
and lossless line. The neighborhood connections are distributed between the two new
nodes and thus the original degree of the node is reduced to roughly one half. This
procedure is repeated until all nodes in the graph have a maximum degree of three, i.e.
turning the message calculation (3.6) into a two-dimensional problem. The price of this
reformulation is a few additional edges and hence message computations. However, the
computational effort is constant per edge, whereas the reduction of the neighborhood
dimension leads to an exponential computation cost decrease.

Note that the local approach Section 3.2 is just consistent if the minimizer in each as-
signment calculation (3.7) is unique. The reason is that the individual optimal active power
flows p∗ are computed locally and independently from each other so a non-consistent
selection of one of the solution sets may result for non-unique minimizers, which lead to
non-optimal or even infeasible node injections p. An example for this is a chain of three
nodes where each of the end nodes could supply a load in the middle at identical cost.
Independent decisions on each of the two edges could then lead to the situation where
the load in the middle is covered twice or not at all. It is recommended to break such
potential symmetries to ensure solution uniqueness, e.g. via adding small random terms
onto otherwise identical cost functions.

3.3.2 Information Hiding

To preserve the component models local is the key for the information hiding principle
of the proposed MP method. This privacy preserving property is detailed based on the
two systematically different cases, the self-containded message from a leaf node and the
aggregated message from a non-leaf node.

Solving ED via the MP method means that the component models do not have to be
exchanged if the algorithm is implemented in a distributed fashion. The only exchanged
information is the messages between neighboring nodes. The individual cost functions



3.3. PROPERTIES 41

typically cannot be reconstructed from these messages, since the messages contain
highly aggregated information from several users. This built-in information hiding principle
is helpful for competitive, multi-owner environments, where the true cost structure of a
participant may comprise a privacy issue.

To what degree it is possible to reconstruct the individual cost functions from the
transmitted messages strongly depends on two attributes: a) the prior knowledge of the
shape of the true cost functions and b) the number and position of messages that are used
for reconstruction. A complete characterization under which conditions which knowledge
can be obtained goes beyond the scope of this thesis. Here, only two systematically
different situations are discussed – leaf node messages and non-leaf node messages.

First, the message from a leaf node is the cost function of the leaf node itself

m(p) = C (p) , p ∈ P ∩P,

but C includes also the current demand δ. For assumed quadratic cost functions, the
message

C(p) = αp2 + βp + γ,

for no local demand, i.e. δ = 0, results in exactly the same message m as a cost
function with coefficients

α̂ = α, β̂ = 1/(1 + 2δ)β and γ̂ = γ − δ2α − δ/(1 + 2δ)β

for some demand δ. Thus, already in this extremely simple case the cost function can
not be exactly reconstructed.

For message up the tree-hierarchy, i.e. a message from a non-leaf node, the message
is already a mixture of at least two cost functions. The minimum operator in the message
computation (3.6) is not one-to-one, meaning that only the lowest cost for each value p
is visible in the message and the information about the higher "bids" is lost. Knowing the
potential shapes of cost functions up to a scaling factor, one can eventually estimate the
individual, single cost functions from this partial information. But the assignment of these
function to a particular node, however, would still not be given. In a realistic scenario
with limited prior knowledge one can hence assume that from the messages of a larger
subgraph no exact reconstruction of each node’s contribution is possible.

3.3.3 Local Influence Knowledge

The messages to a node equip the node with a knowledge of their influence on the overall
problem. This nodal insight is similar to the local knowledge in dynamic programming and
is systematically different to marginal knowledge supplied by other approaches, e.g. linear
programming.

The proposed MP framework applied to a string like graph is equivalent to a temporal
dynamic programming approach, introduced in Section 2.5, over several time steps for one
generator. Here the nodes on the string correspond to the time steps, and the messages
to the cost-to-go function. Not time steps are links but lines between electrical nodes for
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MP approach hence MP can also be applied in none string topologies. The proposed
framework thus forms an extension of the temporal dynamic programming approach to
ED for tree-like graphs. Moreover, the MP nodal decomposition is an extreme case for the
general dynamic programming approach, as discussed in Section 2.5.

This observation has an important practical consequence, having received all mes-
sages from the neighborhood each node can locally deduce its influence on the global
problem. For any finite step-size local change, the minimum of the incoming messages
and local cost function gives the global cost when all other variable feed-in and demands
stay constant. In contrast the optimal dual variables of the local power flow equation
for linear programming and Mixed Integer Linear Programming (MILP) return only the
distinctive marginal costs, i.e. the total cost changes for infinitesimal changes in local
demand.

This result can be understood via the similarity between MP, Section 2.4, and dy-
namic programming, Section 2.5, discussed above. From a dynamic programming view,
messages m are the coordinating cost-to-go functions J. The values m(p) thus
express the minimum cost-to-go that would be accumulated in the subtree behind edge
 conditioned on the active power flow p on that line. This viewpoint also explains the
formula (3.7), where the minimum cost of the left half-tree is added to the minimum cost of
the right half-tree in order to obtain the globally optimal decision. This is systematically
equal to the forward-backward pass in dynamic programming. Interpreting the messages
as minimal cost of active power flow p, the finite step-size marginal costs can be
computed by deciding locally at each node for each additional demanded unit from which
source it should be taken, either via transport from one of the neighbor sub-networks
or from a local production. For this computation only the messages from the neighbors
and the node’s own cost function are needed but it results the true global finite step-size
cost-changes of the overall solution.
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3.4 Discrete Message Passing (DMP)

In this section the MP method of Section 3.2 is introduced for discrete power flow p
variables, p ∈ P. Then, the messages m take values for each entry in discrete
set P that are stored in a vector and straightforwardly computed by index operations.
This approach leads to optimal results independent of the function shape C and the
feasible set P, only dependent on the discrete flow sets P. This flexibility is valuable
for a multitude of diverse convex and non-convex component models. The method is
denoted in this thesis as the Discrete Message Passing (DMP) algorithm.

In this discrete setting, Section 3.4.1 describes the Message Passing (MP) algorithm
and the local message calculations. In Section 3.4.2 the DMP approach is compared to
the central MILP with regards to the result and run-time. Finally, a conclusion for DMP is
drawn in Section 3.4.3.

3.4.1 Implementation

Section 3.2 derived the theoretic MP formulation for ED not mentioning the computational
implementation. Now, this is done under the assumption that the variables p on lines
{} ∈ E take values in the discrete set P. Then the messages m are vectors of
size |P| resulting straightforwardly from index operations.

For a transport p in the discrete set P the messages (3.6) read as

m(p) = min
p∈ ×

k∈N ()\{}
Pk

C

�

p +
∑

k ∈ N () \ {}

pk

�

+
∑

k ∈ N () \ {}

mk (pk) , (3.9)

where p is a |N ()|− 1 dimensional vector referencing by pk an entry of the discrete set
Pk, k ∈ N ()\{}. For N ()\{} = {k1, k2} this is the minimum of a |Pk1 ||Pk2 |
matrix, given by the local costs C of all possible combinations of pk ∈ Pk,  ∈ {1,2},
plus the respective message mk(pk),  ∈ {1,2}, illustrated in Figure 3.2.
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Figure 3.2: Illustration of the index operation to solve (3.9) when N () \{} = {k1, k2}.
The colors represent the function values in range from blue low to red high.
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p1∗
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P
1=P

P
2

. . .

Figure 3.3: Propagation of the discrete sets P for three iterations,  ∈ 1,2,3, of the
proposed iterative procedure when the capacities are of strongly different sizes, first red,
second blue and third green.

The UGM toolbox [117], which name was derived from the GMs it handles Undirected
Graphical Models, implementation works exactly in this fashion. It allows for maximal two
variables in one potential, called pairwise potentials. The degree of a node in the electrical
grid corresponds to their potential/cost function scope, see Figure 3.1. Thus, the potential
representation has be separated into auxiliary nodes aggregating two nodes until the initial
potential spans only two nodes, where at least one is an auxiliary node. This strategy,
explained in [133, Appendix], shows that every GM has a pairwise equivalent. Thus, the
restriction to maximal pairwise potentials do not limit the solvable grid topologies.

However, working with non-pairwise potentials, i.e. higher dimensional, is in general
possible and has been implemented. But the results were equal and the run-time not
significant lower. Thus, for matters of comparability, a slightly modified standard algorithm
of the UGM toolbox [117] was used in Section 3.4.2. Since the only interest is the costs,
i.e. log probability functions, the max-product implementation (2.22) was replaced with the
min-sum equations (3.9) for improved numerical stability.

In Section 3.4.2 first example, the line capacities are all equal and their size is on
the same order of magnitude as the generators’ and consumers’ power intake. Thus an
equal and equidistant discretization is taken on all lines. In the second example, the line
capacities are very different from each other and relatively large in comparison to the
loads and generators. In this case an iterative procedure is applied. A fixed number of dis-
cretization points is used for each line and the iteration is started with a large line-capacity
dependent discretization step-size at first, red marks in Figure 3.3. Then a provisional
solution, i.e. red p1∗ in Figure 3.3, with one run of DMP is determined where the power
balance at each node is assumed to hold up to discretization errors only. Afterwards, the
algorithm is rerun with a finer grid, blue P2 in Figure 3.3, around the initial solution
p1∗. This procedure is repeated until an equidistant minimal discretization is reached
for all variables. Hence, the run-time of the algorithm increases by a small factor and is
not guaranteed anymore to find the globally optimal solution, as claimed in Section 3.2.
However, it works well in practice as shown in Section 3.4.2. It allows for tackling complex
optimization problems with variables with largely different value ranges.

As a baseline in Section 3.4.2, the MILP formulation of [31] was implemented. The
implementation is written using the GAMS modeling system calling either the CPLEX
or the SCIP solver. CPLEX is a highly optimized commercial MILP solver whereas
SCIP represents one of the best available open source implementations for MILP. The
piece-wise linear cost functions for the MILP formulation use the same discretization values
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as the DMP approach. While convex generator cost functions with a minimum load require
only one binary variable per generator an additional binary variable is necessary for each
discretization interval for non-convex functions. The additional binary variables indicate
whether the previous interval is fully used. Moreover, since transmission constraints are
of larger interest in distribution grids the formulation in [31] slightly extend by additional
linear constraints on the transported power.

3.4.2 Experiments

The proposed DMP algorithmic framework is tested with two experiments in this section,
exactly as it was done by the author in [73]. First the computational performance of the
DMP framework is compared to MILP for sampled distribution networks that can be scaled
to a very large size. Second, an exemplary smart distribution network of the future is
examined in closer detail.

Computational Scaling Performance

For testing the computational performance of the DMP algorithm in comparison to the
MILP approach, test distribution networks are sampled with different sizes n as illustrated
in Figure 3.4. From a Medium Voltage (MV) ring, n/100 radial LV feeders dissect at
busbar nodes S. This MV ring is fed by two High Voltage (HV)/MV transformers M. The
number of households H in a line is chosen randomly in such a manner that the total
number of households equals n and each feeder connects to at least one household.

S1M1

H1

H2

H3

H4

H5

. . . S2

H6

H7

H8

H9

H10

M2

Figure 3.4: Test system for scaling experiments: Two HV/MV transformers M1 and M2
feed a MV ring of differing size. Radial LV lines with households H dissect at busbar
nodes S.
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Figure 3.5: Computational time of ED for the test distribution systems shown in Figure 3.4,
for convex (dotted) and non-convex (dashed) generator cost functions. Lines represent
the mean computational time over 10 network random samples, shaded areas plus-minus
one standard deviation. DMP algorithm (solid line) is compared to MILP using the CPLEX
solver (fine lines) and the SCIP solver (bold lines).

Cost functions are designed as follows:
1. All households consume one power unit with infinite utility.
2. 70% of households additionally possess a decentralized power generation system

able to produce between three and six units. The cost functions C are polynomials
with maximal degree three and randomized parameters.

3. Busbar nodes do not produce or consume any power.
4. The HV/MV transformers act as slack nodes and supply any needed power at a

constant-per-unit cost.
All LV branches possess a capacity of 3 power units, MV lines a capacity of 6. The
discretization interval is uniformly 1 unit. Both optimization approaches are fed the same
10 independent network samples per network size n ∈ [300,30000]. Timing tests
are run on a virtual windows machine with 8 GB RAM and a 3.20 GHz CPU. To ensure
a comparison on equal terms the solvers called by GAMS are restricted to run on one
processor only and to solve the problems to optimality, i.e., with no remaining optimality
gap. The run-time per problem was limited to 3000s.

When running these problems, all methods yielded the same optimal values up to
machine precision. The different timings are shown in Figure 3.5. In the first set of
experiments, shown as dotted lines, the generator cost functions are chosen to be convex
within the operating range. This convexity is a common assumption in ED applications.
It allows MILP to run with one binary variable per generator node only. Nevertheless,
the SCIP branch-and-bound algorithm still scales exponentially in the network size. The
CPLEX algorithm performs much better due to highly optimized pre-solve routines. The
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DMP approach outperforms both methods in absolute numbers over the whole tested
range of problem sizes. In the second set of experiments, shown as dashed lines,
non-convex generator cost functions are examined. These are for example needed to
describe the cost curves of real gas engines [61]. The MILP formulation then needs
additional binary variables, one for each discretization interval per generator. In this case
the run-time of the MILP solvers soars, while for the DMP approach no difference can
be observed. Note also that the MILP approaches show a large variation in run-time,
due to the fact that the pre-solving might, but is not guaranteed, to find a good starting
point for the branch-and-bound algorithm that is applied afterward. In contrast, the DMP
method has a deterministic run-time. In sum, the DMP method is the only one whose
run-time scales linearly in the problem size. With the given time limit of 3000s, it is the
only method to be able to compute optimal solutions for non-convex networks with more
than 10k nodes. This may not be unrealistic in future smart distribution grids.

An Exemplary Smart Distribution Grid in Detail

In this subsection, a smart distribution network of the future is examined in closer detail.
Grid is constructed based on experience with real projects in Southern Germany. Due to
confidentiality reasons, however, the original grid data could not be used.

The IEEE 123 node test distribution feeder [66] forms the basis for this example. Power
line transmission limits are adjusted using Europe’s 230V distribution grid voltage and the
given consumer demands are scaled such that the smallest consumption of any node
is 1.2 kW, a typical German household consumption. Note though grid has loops, the
network switch states specified in [66] turn it into a tree-structure. The resulting grid model,
see Figure 3.6(a), shows features of a typical distribution grid of today. The line capacities
are dimensioned to cover all demands from the transformer node alone and are rather
large in comparison with individual household consumptions. Line capacities are thus
unlikely to pose an active limitation for dispatch problems. This allows applying common
algorithms such as MILP formulation without line constraints. The situation, however,
changes in the future when additional generation and consumption units are deployed
decentralized throughout the grid, as is demonstrated with this example.

In the following are the prospects for technologies in these grids, Figure 3.6(b), detailed:

1. One EV per household chargeable with a maximal 20 kW and a utility function with
marginal costs in the range 0.6-1 Euro per kW.

2. 60% of all households have an installed PV capacity of 14.9kWpe and offer their
power output at prices between 0 − 0.2 Euro per kW.

3. All PV owners additionally have a battery of equal size to the PV plant, generating a
utility between 0.4 − 0.5 Euro per kW for charging.

4. Ten Combined Heat and Power Plant (CHP) plants with a power rating of 140 kWe

are present in the network, preferably located at nodes with large demand. The
generator model follows [61] where the cost functions are neither convex nor concave
and a minimum load of 35 kWe applies in running state.

5. Households without CHP have an electric heater consuming maximally 10kWPe

while providing a utility of 0.2 − 0.3 Euro per kW.
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(a) Today’s Distribution Grid

demand nodes
neutral nodes
transformer
>×5
×4<. . . <×5
×2<. . . <×3

(b) Future Smart Grid
net demand
net production
PV
0 -150 kW

Figure 3.6: Exemplary Distribution Grid. (a) Structure of the passive distribution network
supplied through the transformer. Triangle size encodes household demand and the
grey round node denotes the transformer. Understanding the network as a tree with
the transformer as the root node, lines are drawn according to the ratio of their capacity
and the accumulated power demand of the subtree below the line. Two lines denote a
capacity more than twice the accumulated demand of the subtree, three lines more than
threefold, four lines more than fourfold and solid lines more than the fivefold accumulated
demand. (b) Structure of a future active distribution grid. Circles denote net production
nodes, where large circles are decentralized CHP plants of different sizes, yellow boxes
PV installations and triangles net demand nodes. The color-coding denotes the result of
the proposed DMP. Note that when using MILP scheduling without line constraints, six
line capacity violations result (red dashed lines).
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Figure 3.7: Relative optimality gap for the iterative implementation of the proposed DMP
approach for 100 independent realizations of the exemplary smart distribution grid, see
Figure 3.6. Each interval is discretized with 25-50 points and the re-discretization in
each iteration takes into account a band of 2, 2.5 or 3 times the previous discretization
interval. The blue boxes envelope the 98% quantiles, red circles the median and blue
circles outliers.

The addition of these new prosumers to the distribution grid means that the network’s
line capacities can be violated for some dispatch assignments. For example in Figure 3.6(b)
it is shown that MILP algorithm without additionally-introduced line constraints leads to
6 line violations for this network instance. In contrast, the DMP approach always yields
feasible dispatch results.

Due to the large difference between line and generator capacities, the implementation
had to resort in this example to an iterative re-discretization scheme as described in
Section 3.4.1. Thus the procedure is not guaranteed to find the global optimum, but it
mostly finds a solution very close to the optimum as is demonstrated by the following
test, see Figure 3.7. For 100 independently sampled realizations of the exemplary smart
distribution grid the optimal dispatch was computed with the MILP and with the proposed
DMP approach. Since the MILP approach with line constraints is guaranteed to find the
optimal solution, it was used as benchmark the quality of the DMP algorithm’s results.
With 50 discretization points for each interval and a re-discretization band of 2.5 times the
discretization interval of the previous iteration, the suboptimality of the iterative approach
is less than 1% in more than 75% of the cases, and less than 4.2% in the worst case.

The proposed DMP approach – despite hiding individual cost functions – delivers very
broad information about the sensitivity of the solution. Remember that the optimal dual
variables of a MILP approach denote the incremental total system cost for an infinitesimal
demand change in one node. In contrast, the messages in the DMP approach allow one
to deduce the exact total system cost increments for all possible demand changes. The
difference is especially large in the case where a small step in the local demand leads
the MILP problem to change its set of active constraints and the local linearization as
expressed in the dual variables is thus no longer valid.



50 CHAPTER 3. ECONOMIC DISPATCH AS GRAPH PROBLEM

(a) Node 25

−25 0 25
1,133

1,159

C
os

t

DMP cost
MILP cost

−25 0 25

0.51

0.65

M
ar

gi
na

lC
os

t

DMP marg
MILP marg

(b) Node 72

−25 0 10
1,132

1,159

C
os

t

DMP cost
MILP cost

−25 0 10

0.5

0.73

M
ar

gi
na

lC
os

t

DMP marg
MILP marg

(c) Node 36

−25 0 25
1,135

1,165

C
os

t

DMP cost
MIP cost

−25 0 25

0.3

0.95

Demand Variation

M
ar

gi
na

lC
os

t

DMP marg
MIP marg

Figure 3.8: Total cost change for a local demand variation – assuming that the rest of the
network stays the same. For three nodes from the network in Figure 3.6, the marginal
cost approach derived from the MILP optimal dual variables is compared with the exact,
locally computable result based on the discrete messages of the DMP approach.

In Figure 3.8, for three exemplary nodes the sum of the incoming messages plus
the local node potential as a function of the local demand, minimized over all other
local variables in the expression are plotted. This local operation derives the curve
of total system cost changes as well as its derivatives. For comparison also the local
linearization as derived from the optimal dual variables of the MILP approach are plotted.
The difference between the local linearization of MILP and the holistic view derived from
the local messages of the DMP approach is especially obvious for nodes close to highly
loaded lines, see e.g. Figure 3.8(b). In this case even a small change in local demand may
lead to infeasibility, and the linear continuation of the MILP costs is not valid any more.
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3.4.3 Conclusion

The ED algorithm detailed in this section is a GM methods inspired DMP approach
proposed in [73] and presented in [72]. The algorithm utilizes the grid topology and
decomposes the ED problem into decentralized computable parts. Only a finite number of
messages are passed between the nodes of the network, e.g. two on each edge. The
algorithm finds the globally optimal solution for discretized variables and does so in linear
time with respect to the grid size. The approach protects the privacy of local cost functions
while giving a comprehensive picture as to how the system cost would change for local,
finite demand variations. These features make this algorithm optimally suited for ED in
future large, multi-owner smart distribution grids.

The classic ED problem is formulated with continuous dispatch variables in contrast to
the discrete variable assumption in this DMP approach. The suitability of this assumption
strongly depends on the structure of the individual problem. The first example in Sec-
tion 3.4.2 shows that if the sizes of producers and consumers are relatively similar and the
line capacities are not too large in comparison the DMP approach works well. However,
the second example points out the arising problems with strongly differing line, generator
as well as consumer sizes. For such problems a continuous approach utilizing the same
divide and conquer method (2.21) could be used. Then, the messages are functions of
continuous parameters and will typically grow to arbitrarily complex functions for large
grid sizes. As discussed in Section 2.4 for approximated inferences, neither their exact
representation nor their exact computation can be obtained in general. An exception are
quadratic functions, since a one-dimensional slice of a multidimensional quadratic function
is a quadratic function so exact message updates can be computed, see Gaussian belief
propagation [77]. This findings support the basic idea for the Continuous Message Passing
(CMP) approach proposed in the following Section 3.5.
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3.5 Continuous Message Passing (CMP)

In this section the discrete approach of Section 3.4 is extended to continuous p, p
variables, denoting the result as the Continuous Message Passing (CMP) algorithm. The
costs C(p) and messages m(p) are assumed to be convex quadratic functions
on compact intervals. This function class choice for the cost functions is motivated by gen-
erator cost curves that, in running mode, can often be approximated well using quadratic
functions in the range between allowed minimum and maximum power production. Using
the same function class for the messages follows naturally, where the interval restrictions
enable additionally the representation of transport capacity limitations. The requirement of
convexity of the cost functions is based on the idea that the chosen function class for the
messages can only represent uni-modal functions well.

This specially adapted approximated inference scheme is built on an efficient message
update mechanism, Section 3.5.1. Based on the approximation results different ways to
derive globally feasible solutions are proposed, Section 3.5.2. Section 3.5.3 demonstrates
CMP algorithm’s features with two simulation experiments and Section 3.5.4 concludes.

3.5.1 Message Update

To derive (approximate) message updates according to equation (3.6) first the exact mes-
sage m is efficiently computed (Phase 1) and then the exact message is re-projected
onto a chosen function class (Phase 2). The resulting procedure is detailed in Algorithm 1
and graphically explained in Figure 3.9.

In this section, the ideas behind the CMP algorithm are described and its correctness is
shown. Starting point is the characterization of the exact message m on the attainable
subset P̂ as being a convex, piece-wise quadratic function in Proposition 3.5.1. This
holds under the assumption that the incoming (approximate) messages m̂k are convex
quadratic functions on intervals and, as stated above, the local cost function C is convex
and quadratic. In Proposition 3.5.2, the CMP is validated for computing the parameters
of the exact message m from Algorithm 1 Phase 1 and the best L2 approximation
given m̂ is derived in Proposition 3.5.3. Finally, in Proposition 3.5.4, it is shown that
the best quadratic approximation of m, the new approximate message m̂, will again
be convex. This result closes the circle to the convexity assumption on the incoming
(approximate) messages m̂ for the next message computation step.

Proposition 3.5.1. Given that all incoming messages m̂k are convex quadratic func-
tions on intervals P̂k and that the local cost function C is convex on interval P, the
exact message update m() in (3.6) is a convex, piece-wise quadratic function.

Proof. Denote the nodal cost function by C(p) = αp2+βp+γ on P = [p, p]
and incoming messages by m̂k(pk) = α̂kp2k + β̂kpk + γ̂k on P̂k = [pk, pk].
Equation (3.6) can then be written as

m() =min
p

ƒ (p, ) (3.10)

s.t. Ap + 

 +  ≤ 0, (3.11)
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Algorithm 1 Approximate Message Update

Input: Parameters of P, m̂k, P̂k and P
Phase 1: // Compute the exact piece-wise quadratic message parameters.

Set ← 0,
P̂ ← [p −

∑

 6= pk, p −
∑

 6= pk] ∩P
0 ←min(P̂)
Solve (3.10),(3.11) for 0 to obtain A1 ← A(0).
while  < p, ←  + 1 do

Determine the coefficients of p() = p + p

, λ() = λ  + λ via (3.12).

Determine and store (α

, β


, γ


) from ƒ (p(), ).

// Find the maximal  where p(), λ() is still primal/dual feasible for current active
index set A.
A

←min

�

(−(k) − A(k, :)p)/(A(k, :)p + 

(k))

�

where k 6∈ A, A(k, :)p + 

(k) > 0)

λ

←min(λ(k)/λ (k) where k ∈ A, λ (k) > 0)

 ←min(A

, λ


)

// Define the candidate sets for entering, leaving A.
A+ ← {j ∈ Ac


:  = (−(j) − A(j, :)p)/(A(j, :)p + 


(j))}

A− ← {j ∈ A :  = λ(j)/λ (j)}
if A+ 6= ∅ then

// Test full row-rank subsets of A ∪ A+ to find A+1 with respective +1 > .
for all subsets Â+1 ⊂ A ∪ A+ with rnk(A(Â+1, :)) = |Â+1| do

Solve
�

A
T(:, Â+1)

�

λ̂ = −(c + c

 + 2Hp()).

if solution exist and all λ̂(j) > 0 then
Find the maximal primal/dual feasible ̂+1 for the possible active index set
Â+1 as above.
Break if ̂+1 > .

end if
end for
A+1 ← Â+1

else
A+1 ← A \A−

end if
end while

Phase 2: // Determine approximation m̂() = α̂ 2 + β̂ + γ̂ in L2-sense.
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Output: (α̂, β̂, γ̂)
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Figure 3.9: Schematic illustration of the message update, see Algorithm 1 Phase 1 and
Phase 2 (Propositions 3.5.1/3.5.4).

where variable  = p, the vector p = (pk)k∈N ()\{} and the objective function
ƒ (p, ) = pTHp+ (c + c


)Tp+ const, for  ∈ P̂ = [p, p]. Here, p


is the maximum of the lower boundary of P and the minimal  for which there exists p
satisfying constraint (3.11). p is defined respectively. The parameters of the objective
function are H = eαeT + dg(α̂k)k∈N ()\{}, c = (β̂k)k∈N ()\{} + β and
c = 2αe, where e is a vector of ones in dimension p. Moreover, the parameters of

constraint (3.11) are given by A =
�

1 −1 e −e
�T

,  =
�

−p p −p p


�T

and 

=
�

0 0 1 −1
�T

, where 1 is the identity matrix in the dimension of p. Since
both the incoming messages and the local cost function are by assumption convex, the
above problem is convex, i.e. H � 0.

For  ∈ P̂ and the corresponding optimal (feasible) p∗() the KKT conditions imply
that there exists at least one minimal active index set A() (i.e. A(A(), :) has full
row-rank, the constraints indexed with A() are satisfied with equality and

[A
T(A(), :)]λ = −(c + c


 + 2Hp())

with λ ≥ 0) and optimal, active dual variables λ∗() ≥ 0 that fulfill
�

2H A
T(:,A())

A(A(), :) 0

��

p∗()
λ∗()

�

=
�

−c − c



−(A()) − 

(A())

�

. (3.12)

This only holds point-wise for each . However, by matrix inversion one can still derive an
expression for

�

p() λ()
�T

that is formally linear in .

Now, it is argued that the thus computed values
�

p() λ()
�T

are in fact optimal on
intervals [1, 2] with equal A(). To see this, assume that 1, 2 have A(1) = A(2).
Then for each convex combination  = μ1 + (1 − μ)2 with μ ∈ [0,1] the linearity of
(3.12) implies that

�

p()
λ()

�

= μ
�

p∗(1)
λ∗(1)

�

+ (1 − μ)
�

p∗(2)
λ∗(2)

�

.
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Such
�

p() λ()
�T

would be primal feasible, by the linearity of (3.11), and dual feasible,
i.e. λ() ≥ 0, and thus be optimal.

On intervals with equal A(), m() = ƒ (p∗(), ) thus is a quadratic, convex
function due to the linearity of p∗() in . Moreover, m() is also convex on all of
P̂, i.e. including points where A() changes. To see this, choose 1, 2 ∈ P̂. The
linear combination μp∗(1) + (1 − μ)p∗(2), μ ∈ [0,1], is again feasible due to the
linearity of (3.11) and the convexity of the objective ƒ (p, ) (3.10) implies that

ƒ (μp∗(1) + (1 − μ)p∗(2), μ1 + (1 − μ)2) ≤
μƒ (p∗(1), 1) + (1 − μ)ƒ (p∗(2), 2) =

μm(1) + (1 − μ)m(2).

Since m(μ1 + (1 − μ)2) ≤ ƒ (p, μ1 + (1 − μ)2) for all feasible p, it follows that
m() is convex.

Proposition 3.5.2. The full parameter set {[α

, β


, γ


, −1, ]}∈[1,n] of the piece-

wise quadratic message function

m() =
n
∑

=1

1[−1,)()(α



2 + β


 + γ

), (3.13)

where 1[−1,)() denotes the indicator function of the interval [−1, ), can be ob-
tained by solving one quadratic optimization problem and a sequence of matrix vector
operations, see Phase 1 of Algorithm 1. The number of pieces is bounded by 22d, where
d is the degree of node .

Proof. The idea behind Phase 1 of Algorithm 1 is as follows: first an initial active index
set A1 is determined by solving the quadratic problem (3.10) subject to (3.11) for the left
boundary 0 of P. Then it is searched for the largest possible 1 whose KKT conditions
still yield the same active index set A1. At this point, the KKT conditions start voting
for another minimal active index set A2. This set is computed and iterate until the right
boundary of P is reached.

To prove the proposition’s claims it is needed to argue that if it has been followed the
rules of Phase 1 of Algorithm 1 the minimal active index set A is valid until  and that the
computed next A+1 is a valid minimal active index set for the KKT conditions from there
on. Moreover, the computational effort for each such iteration as well as the number of
iterations needs to be bounded as claimed.

Determining the next  is done by rewriting equation (3.12) as a linear vector function
of the one-dimensional parameter  and checking how long the thus computed p() and
λ() are still primal and dual feasible. The computation can be performed by solving one
small linear system and a series of minimum operations for determining the smallest  for
which at least one primal/dual feasibility constraint is fulfilled with equality. Since p()
and λ() are primal and dual feasible for all  up to  and condition (3.12) is fulfilled by
construction, the KKT conditions imply that p() is optimal and A valid throughout.

The number of iterations is limited to 22d since each problem has 2d constraints (i.e.
index set elements) where d is node’s  degree and no index set can occur more than
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Figure 3.10: Methods for determining dispatch decisions from the approximated messages
m̂, see Figure 3.9.

once. This is because a minimal active index set that is valid for two values of  is also
valid for all values in-between, see the proof of Proposition 3.5.1.

Now it is argued that the algorithm’s rules for computing A+1 actually yield the minimal
active index set implied by the KKT conditions for the next interval of non-zero length.
Denote the true next index set by A+1. For all indices that are in A+1 the corresponding
primal feasibility constraints are fulfilled with equality for all  in the interval, also at  = .
Indices in A+1 that are not part of A will then be in the candidate set A+ by definition
and it has to hold A+1 ⊆ A ∪A+ . If A+ is not empty, the algorithm checks all subsets
Â+1 of A ∪A+ whether they allow to satisfy the KKT conditions at  and lead to an
+1 > . The KKT conditions for Â+1 are met at  if A(Â+1, :) has full row rank
and the λ̂ satisfying [A

T(:, Â+1)]λ̂ = −(c+ c+ 2Hp()) are all positive.
The algorithm is thus guaranteed to find the next true active index set A+1. If A+ is empty,
it follows that A+1 ⊂ A. In this case, it is set A+1 = A \A− , i.e. deleting all those indices
from A whose dual feasibility constraints become tight at . If this guess for A+1 were to
deleted too many indices from A, the algorithm’s next iteration would yield +1 =  and
would add the needed indices again. This step would then also guarantee that +1 > ,
implying that the algorithm as a whole cannot cycle without making progress on .

Proposition 3.5.3. The quadratic approximation m̂() = α̂ 2 + β̂ + γ̂ of
the piece-wise quadratic function m() =

∑n
=1 1[−1,]()(α




2 + β


+ γ

)

with minimal L2-norm distance is
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(3.14)

Moreover, (Xn − X0) has full rank as long n 6= 0.
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Proof. The L2-norm distance is
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For the minimum it holds that
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 = 0.

Solving for
�

α̂ β̂ γ̂
�T

results in (3.14). Since the determinant (xn−x0)
9

2160 of
(Xn − X0) has its only root at 0 = n, (Xn − X0) has full rank for n 6= 0.

Proposition 3.5.4. A quadratic function m̂ that minimizes the L2-norm distance to a
piece-wise quadratic, convex function m is itself convex.

Proof. Assume that m̂, described in Algorithm 1 Phase 2, is a non-convex, quadratic
function and denote by m


() the linear function either through two intersection points ,

i.e. m̂() =m() for  ∈ , or if it only one intersection point  exists the tangential
line at m̂(). Then it holds that |m() − m̂()| > |m() −m


()| for all

 ∈ P̂ \ {}, since m() is convex. Thus, m
 is a better approximation than

m̂, which contradicts the assumption.

As for classical belief propagation, the message update is computed for a node once
all incoming messages are known. A feasible such ordering can always be found for trees,
e.g. via depth-first search.

3.5.2 From Messages to Decisions

Having computed all messages one can derive the final dispatch decisions for the transport
variables p∗ via equation (3.7). The nodal injections p∗, i.e. the set points for
generators and consumers, follow from p∗ =

∑

∈N () p
∗. This approach is going to

be called the edge based method (E).
However, it may then happen that the resulting nodal injections p∗ are not fully

feasible since the each message update computation contained individually made approx-
imations. This problem cannot easily be resolved completely. Thus, this section describes
two further methods how the final dispatch decisions can be derived from the messages
with different properties, depicted in Figure 3.10. The CMP methods are benchmarked
with the examples in Section 3.5.3. Note that using exact message updates for discretized
values as in Section 3.4 or [73] this problem does not occur.
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In contrast to the edge based method, the node based method (N) asserts the nodal
constraints, but allows for some and hopefully not to large violations of the edge constraints.
It first determines the nodal injections p∗ by minimizing separately for each node the
sum of the nodal costs and the incoming messages, a d-dimensional optimization problem
where d is the node’s degree. This may result in multiple decisions for the transport
variables p∗ that need not be consistent with each other. The true, optimal transport
variables have to be determined by a power flow calculation afterwards, if needed.

The third approach tries to combine (E) and (N). The tree based method (T) calcu-
lates the optimal transports in a tree-aligned order from the leaves to the root. An one-
dimensional optimization problem over p is solved at each node if all {p∗

k
}k ∈ N () \ {}

are already known. Method (T) will typically respect both node and edge constraints.
However, both constraints can be violated as approximation implied non-optimal decisions
in sub-trees are propagated upwards through the tree and lead to small infeasibilities
further up. The transformer to the transmission grid is typically chosen as the root, since
its large capacity and good connection allow to avoid many such problems.

3.5.3 Experiments

To evaluate the proposed CMP methods, first its advantages are highlighted in comparison
to the decentralized methods DMP and Alternating Direction Method of Multipliers (ADMM),
and a central Quadratic Programming (QP) solver for a stylized, easy-to-understand single
distribution grid branch that includes generation nodes of largely different capacity. The
second example then shows that the CMPs approach can solve a more complex, realistic
future distribution grid scenario.

Single Branch Example

The structure of the single branch grid is shown in Figure 3.11 (a). The grid starts with
a demand node with a power demand of one power unit. A sequence of n small
production nodes follows that are able to produce 1/n power unit, representing for
example renewable production units at household connections. The chain is terminated
by a large generation node with capacity 1 power unit, e.g. a CHP unit. The small
production node costs

C(p) = αp2 + βp,  ∈ 1, ..., n,

are sampled uniformly from α ∈ [0.1,0.6] and β ∈ [0.01,0.1]. While, the large
production node cost

Cn+1(pn+1) = αn+1p2n+1 + βn+1pn+1,

is set ex-post such that it is costlier than any small node, i.e. αn+1 = mx∈[1,n] α
and βn+1 = 2/nmx∈[1,n] α + mx∈[1,n] β + 0.001. Line capacities are chosen
such that they do not pose any active restrictions. Given this setup, i.e. cheaper small
production nodes, supplying all demand with the small production nodes is the optimal
solution. All tests were repeated 100 times.
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Figure 3.11: (a) Distribution grid branch where n small production nodes 1, ..., n with
capacity 1/n power unit and one large generator n+1 with capacity 1 power unit have to
supply demand 0 = 1 power unit Costs are set such that production at the small nodes is
optimal. (b) Non-optimal production at the large generator for different dispatch methods.
(c) Computational time for the different methods the shaded areas denote the minimum
and maximum computation time. Method QP denotes solving the problem with CPLEX’s
quadratic programming solver.

DMP uses discretized messages and performs iterative rediscretization from coarse
to fine, see Figure 3.3. It yields non-optimal results for the proposed problem for modest
to large n, see Figure 3.11 (b). For growing n the capacity of the small generators will
at some point be smaller than the discretization interval of the first, coarse discretization
and the algorithm will then yield strongly misleading initial results. Later rediscretization
can only improve things in a neighborhood of the initial solution. In contrast, the fully
continuous approach of this section always yields the optimal result for this example.

Concerning computation time, CMP scales linearly, see Figure 3.11 (c). Computation
times are slightly lower than for DMP since rerunning the model with finer discretization is
avoided. For the non-convex problem setting in Section 3.4.2, the central solver is strongly
outperformed by DMP, shown in Figure 3.5. This does not hold for the continuous, convex
quadratic setting in this section where the QP solver performs much better. However, note
that the QP approach requires full model knowledge in one location – a requirement that
is typically not satisfiable in competitive energy market environments. The computational
time of ADMM is comparably high, where all methods were implemented on a single
processor here.
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n ADMM DMP CMP
Iter # Com Iter # Com Iter # Com

10 35 2940 2 840 1 210
22 69 12420 3 2700 1 450
46 136 50592 3 5580 1 930
100 287 230748 3 12060 1 2010

Table 3.1: Number of iterations and values communicated between electrical nodes for
ADMM, DMP and CMP.

The computations of ADMM, DMP and CMP could be parallelized in practice. On real
field controllers the total execution time would then mostly depend on the communication
pattern between the nodes of each method, see Table 3.1. This is due to typically long
latencies and tight bandwidth restrictions. CMP requires just five values to fully describe
message-functions and exchanges these just once. The messages of DMP are larger and
more iterations are needed. ADMM exchanges only 4 variables between electrical nodes
in each iteration, but requires many iterations to converge. It should be noted that since
CMP messages are computed in tree-order, a CMP iteration requires g communication
cycles where g is the tree-depth of the grid. This reduces CMP’s benefit in comparison to
ADMM in this example where g = n+ 2, but ADMM still needs about three times as many
iterations and cycles. The small communication load of CMP thus seems to be one of its
major advantages.

Realistic Future Distribution Grid

In this section, it is shown that the proposed CMP algorithm can handle realistic future
scenarios, where distributed PV installations together with larger CHP and new controllable
consumers like EV, electric heating or battery storages challenge the electrical distribution
grid. Two or more LV-areas of IEEE 123 [66] topology were simulated that are connected
via a joint MV line to the HV grid and a wind turbine, see Figure 3.12. The future
distribution grids for this experiment were generated as follows. First, it is described how
single LV-areas are constructed from the IEEE 123 distribution grid. Then, the LV-areas’
connection are described. Finally, additional future generators and consumer units and
their parameters are defined that are integrated into the LV-areas.

Special interest lies on the distribution grid integration of renewable energies in Europe
and especially Germany where those issues are most severe today. However, public,
non-confidential material about distribution grids is only available for North America. Thus
the IEEE 123 example feeder was used for the grid topology and the cable parameters,
but adjust the lines’ power limits and the connected demands to a European distribution
setup with only 230V lines instead of the 4kV lines in Northern America. Power limits
follow from the IEEE’s ampacity limits times the distribution voltage. A connection of the
IEEE test feeder supplies on average three houses via a local step-down transformer. In
contrast, each house is connected directly in the European setup. The non-deferrable
demands give in the IEEE test system were scaled such that the average load represents
a typical German household demand.
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Table 3.2: Power limits, cost function and installation rate parameters for all unit types.

type min max α β γ α β γ cD in env
CHP 35 140 0.0095 1.3 -58.3 0.0195 1.63 -58.3 3 0.05 1
EV -10 0 0.125 4.5 0 0.325 5.3 0 3
Stor -5 5 0.075 3.95 0 0.155 4 0 3
Heat -7 0 0.0714 4 0 0.0714 4.45 0 3
PV 0 14 0.0036 0.5 0 0.0061 1 0 3 0.7 0.3
Wind 0 1200 8.3E−5 0.5 0 8.3E−5 1 0 3 1 0.6
GenPs 0 366 0 5 0 0 5 0 3
GenNeg -366 0 0 3 0 0 3 0 3

The LV-areas are connected by a line and a transformer to the MV connector. This line
has a power capacity matching the largest line capacity of the LV-area. The MV line has a
capacity equal to the number of modeled IEEE LV-areas times the LV/MV transformer’s
capacity. It spans from the transformer node to the wind turbine, as shown in Figure 3.12.

The single unit type specifications are detailed in Table 3.2, which row and column
names are introduced in the following by the reference in brackets. Into this classical
demand oriented setup decentralized renewable production, i.e. Photovoltaic (PV) and
Wind (Wind), Combined Heat and Power Plants (CHP), as well as deferrable loads such
as Electric Vehicles (EV), electric Heaters (Heat), and stationary Storages (Stor), were
integrated. The transformer to the transmission grid can act as a Generator, i.e. importing
energy into the modeled system (GenPs), or as a consumer, i.e. exporting energy
(GenNeg).

The parameters of each unit type are specified in Table 3.2. The minimum (min)
and maximum (max) production capacity for environment-dependent generation types is
scaled by the environmental factor (env). The cost functions of degree cD − 1 are given
as

Ctype() =[αtype + (αtype − αtype)ρ1]2+

[βtype + (βtype − βtype)ρ2]+
γtype + (γtype − γtype)ρ3,

(3.15)

where ρ,  ∈ 1, ...,3 is sampled uniformly from [0,1] independently for each unit. The
column (in) specifies the fraction of demand nodes at which units of this type are going to be
installed. Exceptions are the storage installed at each house with PV, the electric heater at
all demand nodes without a CHP and EV at all nodes. Moreover, the PV-installations in the
IEEE LV-areas are clustered based on individual qualities. This leads to to PV-dominated
areas, solar areas, on the one hand, whereas in others PV installations are rare.

In the two LV-areas example, Figure 3.12, the left region is a solar area. This example
is used to illustrate two situations, windy and no-wind. In the windy situation the environ-
mental factor for wind is 0.6, like in Table 3.2. No wind is blowing at all in the no-wind
situation, i.e. the environmental factor for wind is zero. The CMP method applied with
variant (T), is able to produce a valid dispatch for both situations shown in Figure 3.12.
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Figure 3.12: A realistic future distribution grid with two residential, LV-areas connected
via a MV line to the HV grid (transformer at the gray node). A wind turbine outside the
residential areas is connected to the MV line. Many small PV installations (yellow boxes)
are distributed throughout the left LV-area together with several decentralized CHPs (big
circle nodes). The right area represents a classical consumption-dominated grid, again
with a few CHPs. Dispatch results with CMP algorithm, variant (T), are coded as follows:
node color encodes the absolute magnitude of the power injection (loads and generation
connected to the same grid location is summed), triangles denote net consumption, circles
net generation. Double lines denote a transport within 10% of the maximum line capacity.

In the windy situation, the wind turbine’s power is almost fully consumed within the two
LV-areas. In the no wind case, the left solar LV-area supplies the right one with energy
and demand is generally reduced.

This example with more LV-areas is used to compare the different variants of CMP
for deriving dispatch decisions from the approximate messages (all variants yield optimal
results in the first example). Grids with different numbers of LV-areas were dispatched for
the windy setup, ten random samples for each size. The resulting number and quality of
infeasibilities as well as the relative sub-optimality compared to the globally optimal QP
solution is shown in Figure 3.13. The number of infeasible edge and node constraints
increases with the number of LV-areas, since the approximation errors accumulate with
the growing number of nodes and edges. The tree-based variant (T) outperforms the
other two with respect to both the number and severity of the resulting edge or node
infeasibilities. The maximum edge violations for variant (T) is below 20% of the edge
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Figure 3.13: Comparison of quality of the dispatch decisions derived by CMPs algorithm’s
variants (E), (N), and (T) for the grid topology of Figure 3.12 and different numbers of
connected, LV-areas. Lines depict the mean values and shaded areas the band between
minimal and maximal value over 10 samples.

capacity for all computed grids; the maximal violation for an average network is only 3.2%.
Such violations may be acceptable in practice. Moreover, the mean sub-optimality of
the achieved true systems costs for variant (T) is below 4.5% for all network sizes; the
worst-case sample is 8% sub-optimal. Thus, method (T) can be seen as the best option
for future use.
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3.5.4 Conclusion

This section proposes an ED algorithm utilizing methods from non-linear optimization
and approximate inference. Approximated inference is a vital field of studies in the GM
community. However, approximations using the proposed function class, i.e. quadratic
plus interval constraints, for this purpose have apparently not been done before. The
message based dispatch approach detailed in Section 3.1, proposed and evaluated for
discrete variables in [73] or Section 3.4, has been extended to continuous variables. The
DER representation was restricted to convex quadratic functions on compact intervals
and each message projected on the same. Thereby, a similar nodal problem per message
computation was ensured. It was shown based on the KKT-conditions that these nodal
problems could be reduced to one quadratic problem and several linear problems, limiting
the required distributed computational capability.

This CMP approach features a strongly increased practicality in comparison to DMP
and ADMM. First of all, it can solve ED problems with largely different capacities since it
requires no common fine discretization in contrast to DMP, as discussed in Section 3.4.
The messages are given by five values, which significantly reduces communication load.
This was shown in the first example, in Section 3.5.3, where the CMP outperformed ADMM
and DMP with regard to the number of values needed to be communicated, and DMP also
with regard to the dispatch results. Furthermore, the partial information security of the
MP approach was further intensified by the message mapping onto a quadratic function
on a compact interval. The CMP ability to evaluate finite step-size sensitivities and linear
scaling in the network size remain the same as in DMP. The solar village example, the
second example in Section 3.5.3, showed that the approach can balance demand and
supply in large grids of different scales.



Chapter 4

Dynamic Programming Volt-VAr
Control for Active Grids

In this chapter, a dynamic programming method for optimal Volt-VAr Control (VVC) is
proposed. The VVC problem is to find the complex voltages  and a number of discrete
transformer tap positions and/or capacitor bank positions τ such that the costs of power
production minus the utility of power consumption in the grid G(V, E) are minimized. This
has to be done subject to the compulsory voltage limits and feasible sets for the nodal
injections. The minimization directly results in loss minimal solution since higher losses
are directly reflected in a higher objective function value.

The VVC has been the object of renewed interest due to the rise in intermittent renew-
able energy sources installed in distribution grids. The rapid fluctuations in contributions
from the renewables that lead to a voltage rises and voltage drops challenges passive
distribution grids. In order to satisfy the voltage limits, these rises and drops need to be
actively counterbalanced. Thus, active controllable grid components, e.g. On-Load Tap
Changer (OLTC) and capacitor banks, are required. But the number of active components
and their electrical interaction increases the complexity of controlling them optimally and
renders simple heuristics inadequate.

The major source of complexity in the VVC problem is the number of interacting discrete
variables τ. As a rough rule, the runtime of an optimization problem rises exponentially
with the number of discrete variables. To address this issue, the dynamic programming
approach divides the VVC problem into subproblems of one discrete variable and one
coupling variables. The subproblems are then successively solved and coordinated by
functions of the common variables, once coupling variables and once slack variables.
Accordingly, solving the small subproblems lead to an overall solution in line with the
dynamic programming idea, introduced in Section 2.5. Moreover, the structure of the
subproblems is utilized to further reduce the computational effort.

In Section 4.1 the theoretical foundation for the dynamic programming approach is
derived. Based on this foundation, the numeric implementation is detailed in Section 4.2
and experiments in Section 4.3 compare the proposed approach with other commonly
used approaches.

65
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4.1 Volt-VAr Control as Dynamic Programming Problem

This section describes the theoretical foundation for the dynamic programming subprob-
lems. Based on Alternating Current (AC) power flow equations, a dynamic programming
approach for two subproblems is explicitly derived and formulated. The findings are then
utilized to produce subproblems of at most one discrete variable that enable an efficient
solution despite the discrete variable, e.g. by enumeration. Finally, the influence of the
optimal discrete variable on the coordinating functions of the relating variable is discussed,
which is the reason for using only one coupling variable per subproblem.

The AC power flow equations (2.17) are composed of node injection and branch flow
equations. For each node  ∈ V the voltage magnitude ̂ and the power flows s to
the neighboring nodes  ∈ N () determine the node injection as

s =
∑

∈N ()
s + yH0̂

2. (4.1)

Power flows s for their part are given by the angle difference θ and voltage magni-
tudes ̂,̂, i.e.

s = ̂yH(̂ − ̂e−jθ). (4.2)

Since the variables voltage magnitude ̂, active power p, and reactive power flow q
uniquely determine the voltage magnitude ̂ and angle difference θ by the equation
system (4.2), these could alternatively be used as separating, common variables. This
set of variables will allow for a more intuitive reduction of the number of coupling subgrid
variables later on.

sksks

G[V ] G[Vk]

(a) Edge Scope

̂,  ∈ Vk
θ,  ∈ G[Vk]

̂,  ∈ V 
θ,  ∈ G[V ]

̂k , ̂, θk

(b) Separators (̂k , ̂, θk)

̂,  ∈ V 
s,  ∈ G[Vk]

̂,  ∈ V 
s,  ∈ G[V ]

̂, sk

(c) Separators (̂, sk)

Figure 4.1: Illustration of the subgrids G[V ] and G[Vk] with the disconnecting edge
{k} ∈ E (a) and the enlarged clique graph based on AC power flow equations with the
two equivalent separators (b) and (c).
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Let {k} ∈ E be a line that separates the grid G(V, E) into two disconnected grids
G[V ] and G[Vk], where V /k are all nodes attainable from /k without passing k/  and
G[V /k] are the subgrids of nodes V /k and all edges connecting these nodes. Then, for a
fixed power flow on line k, given by {̂k, ̂, θk} or {̂, sk}, the node injection equation
(4.1) for  ∈ V /k as well as the flow equations (4.2) for {} ∈ E[V /k] depend only
on variables in the respective subgrid G[V /k], depicted in Figure 4.1. Thus, the solution
of the VVC problem restricted to G[V ] and G[Vk] are conditioned on the separator
variables independent of each other. This proves the following theorem that is without loss
of generality formulated for G[Vk]:

Theorem 4.1.1. The optimal solution of the subproblem of G[Vk] conditioned on the set
{̂, sk} or the set {̂k, ̂, θk} contributes to an optimal overall solution given whatever
values {̂, sk}/{̂k, ̂, θk} arise from the optimal solution of G[V ].

The three common variables, {̂k, ̂, θk}/{̂, sk}, between G[V ] and G[Vk]
requires a cost-to-go function Jk of three variables to incorporate the optimal G[Vk]
objective into G[V ]. Three-dimensional functions are hard to computationally evaluate and
represent. However, for distribution grids without actively controllable Distributed Energy
Resources (DER), the active pk and reactive qk flow resulting from the deterministic
feed-ins p and q,  ∈ Vk, is only modified by the voltages  dependent losses. For
 = ̂ and known p and q,  ∈ Vk, the voltages  are uniquely determined by the AC
power flow equations (2.17) .Thus, for ̂ reactive Qk(̂) and real power Pk(̂) flow are
determined. These functions set the power flow sk and reduce the coupling variables
to ̂, see separator in Figure 4.1 (c). Moreover, the optimal solution of G[Vk] can be
incorporated in the subproblem of G[V ] by a pseudo generator at node  with costs
function Jk(̂) for generation Qk(̂) and Pk(̂).

Hence, the dynamic programming strategy to solve the VVC problem, (2.16) subject to
(2.17) and (2.18), is to solve first the right and then the left of the following problems

min
∈C|V  |
τ∈T

∑

∈V 

c(s, ) + Jk (̂) ,

s.t. s = �(Y(τ))H,
sk = Pk (̂) + j Qk (̂) ,

and

Jk(̂) = min
∈C|Vk |
τ∈Tk

∑

 ∈ Vk \ {}

c(s, )

s.t. s = �(Yk(τ))H,
̂ = ||,

here � is the component-wise multiplication and ·H the complex conjugate transpose. The
node  gives the coupling between the subproblems in this formulation. It serves as a
slack node with fixed voltage magnitude in the right problem and as a pseudo generator
that mirrors the subgrid G[Vk] in the left problem. In general, for tree-structured subgrids’
clique graphs, a graph where the subgrids G[V ] are nodes and edges {k} are given by
V  ∩ Vk 6= ∅ for this example depicted in Figure 4.1 (b)/(c), an order exists in which the
subproblems can be solved such that the pseudo generator functions Jk,Pk and Qk are
known when solving VVC subproblem on G[V ].
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Thus far, the basis for a dynamic programming formulation has been derived without
considering its motivation, i.e. the exponential rise in complexity for multiple discrete
variables. Nevertheless, the optimality property in Theorem 4.1.1 based on the grid
separating line {k} holds for any line that separates a grid or subgrid and, thus, can
be applied multiple times to generate subgrids with at most one discrete variable. The
subproblems of one discrete variable are solvable in linear time with regard to the discrete
variable’s feasible set, e.g. by full enumeration.

In such a subgrid G[Vk] of one discrete decision variable τk ∈ Tk, the optimal discrete
decision τ∗

k
is solely dependent on ̂k since it implies , i.e. there exists a optimal discrete

decision map Tk(̂). For a transformer, the direct influence on the voltage regime sets the
tap τ∗

k
that steps the voltage as high as possible without violating the voltage band. The

capacitor banks influence is twofold: either by the reduction of the reactive power flows
it reduces the voltage magnitude differences and enlarges the voltage angle differences
or it increases the voltage magnitude differences drop and reduces the voltage angle
differences. Regardless of the discrete controllable equipment type, the discrete variable
only needs to be switched if the voltage band limit is approached in order to stay within
the voltage band or a higher voltage regime becomes feasible within the voltage band.
Moreover, the voltage band hinders this discrete value from recurring. Thus, the optimal
discrete decision map Tk(̂) is a monotone step function.

The step nature of the optimal discrete decisions Tk(̂) is due to its influence on
losses directly reflected in the pseudo generator functions Jk(̂), Qk(̂) and Pk(̂). This
causes these functions to be defined only piece-wise, e.g. in Figure 4.7. The distortions
that arise from various nodes with these piece-wise functions may conflict with an optimal
subproblem solution. Thus, each subgrid should contain at most one coupling node , i.e.
a node with assigned pseudo generator functions. But with the nodal equation (4.1), a
coupling node  can additively aggregate more than one set of pseudo generator functions.
Due to the trade-off between the number of subproblems and their size, the subgrids
should be as large as possible while spanning just over one discrete decision variable and
aggregating node .

4.2 Implementation

In line with the theoretical derivation in Section 4.1, a dynamic programming algorithm is
proposed in this section. The outline of this algorithm, Algorithm 2, is as follows: (1) divide
the overall problem into subproblems, Section 4.2.1, (2) sequentially solve all subproblems,
Section 4.2.2, and (3) reassemble the overall solution from the subproblems, Section 4.2.3.

First, a method is deduced that decomposes the electric graph G(V, E) into subgrids
whose corresponding continuous VVC problem contains at most one discrete decision
variable and at most one coupling node to other subgrids. This is done with regard to a root
node, i.e. the highest voltage leaf node here1. Then, based on the thus derived subgrid
structure, the subproblem for one subgrid is formulated. Second, an efficient solution
procedure for such subproblems is derived. Based on the monotonicity of the optimal

1This is the convention here but it could be in general any node.
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Algorithm 2 Overall Algorithm
Input: G(V, E) Grid

// Split the overall problem into subproblems
{G[V ]}∈L←Grid2Subgrids(G(V, E), D) (Algorithm 3)
// Solve  ∈ L if all {Tk, Jk, Pk, Qk, Uk}k∈K() are known
Cons(L)← 0
while Not all subgrids  ∈ L calculated do

for { ∈ L : (V  ∩ (∪k∈K()∧Cons(k)=0Vk)) = ∅} do
// Determining {τ, J, P, Q, U} supporting points by reduced enumeration
(T̂, Ĵ, P̂, Q̂, Û)← BI-TAP({G[Vk]}k∈K()∪, n) (Algorithm 4)
// Find approximation {T , J, P, Q, U} piece-wise functions
(T , J, P, Q, U)← AP-PIECE(T̂, Ĵ, P̂, Q̂, Û) (Quadratic Approximation)
// Add supporting points by halving the largest n − N intervals
Cons()← 1

end for
end while
// Reassemble solution for G(V, E) from the subproblem solutions
(τ,)← RE-TAP({T , J, P, Q, U}∈L)(Figure 4.4)

Output: τ, 

discrete variable in a subproblem family parameterized by the voltage magnitude ̂, the to
consider discrete variables for the solution of one problem in this family can be significantly
reduced. Solutions of this subproblem family deliver the supporting points that serve as
basis for the piece-wise approximation, i.e. pieces with equal optimal discrete variable, of
the coupling pseudo generator functions. Finally, the overall solution is re-obtained from
the successively solved subproblems in reverse order, i.e. from the root to the leaf nodes.

4.2.1 From the Overall Problem to the Subproblems

The subproblems, in this section, are given by subgrids G[V ] induced by a subset of
nodes V  ⊂ V,  ∈ L. For the subset V  the fundamental requirements are derived that
imply a valid set of subgrids G[V ],  ∈ L. Then, an algorithm is proposed to obtain such
subgrids with at most one discrete variable and at most one coupling node as argued in
Section 4.1. Finally, the subproblem of one subgrid is exemplarily formulated.

All subgrids {G[V ]}∈L need to be connected. Hence each subgrid G[V ] needs to
have at least one common node with another subgrid, i.e. there must exist k ∈ L \ {}
such that |V  ∩ Vk | ≥ 1. The inducing sets V ,  ∈ L, need to be a cover of V, i.e.

∩∈LV  = V,

and pairwise overlapping in at most one node, |V  ∩ Vk | ≤ 1 for all  6= k, , k ∈ L, to
minimize the number of variables covered several times. These fundamental properties
ensure that grid G(V, E) is covered by connected subgrids G[V ],  ∈ L, with minimal
overlap for radial grids. In general, such a restriction to radial grids, is not necessary but
eases the formulation. For loopy grids, in addition, each loop needs to be contained in
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only one subset V , since then also all edges are covered by the G[V ] edges and the
subgrids clique graph2 is of tree shape. This requirement can contradict the at most one
discrete variable and at most one coupling node argument. Since most distribution grids
are operated as radial grids, the loopy case is not considered in the following.

As requirement of Section 4.1, each subgrid G[V ] should contain at most one discrete
variable and at most one coupling node, i.e. a node contained in at least one subgrid
G[Vk] further from the root node. The coupling nodes serve as slack nodes in the primary
subgrid, namely the subgrid further from the root node, and as coordinating pseudo
generators aggregating the optimal cost-to-go Jk(̂), reactive Qk(̂), and real power
Pk(̂) of all downstream subgrids K() in the secondary subgrid.

Subgrids G[V ],  ∈ L, satisfying the above mentioned requirements are obtained
based on two observations – branching nodes and critical number of discrete decision
entries in G(V, E). Branching nodes, i.e. nodes with more than one child C() (neighbors
further from the root node), are able to serve as primary node for more subgrids and bundle
pseudo generator functions at a single node. Moreover, at least two discrete decision
entries need to be downstream from a branching node in order to make it necessary
to split the downstream subgrid into different subgrids of one discrete decision variable.
Thus, the relevant set of branching nodes is

Y∗ = { ∈ V : |C()| ≥ 2∧ |{t ∈ D : dt(t) ≥ dt()}| ≥ 2}, (4.3)

where dt() denotes the discovery time of node  ∈ V in the first depth search started
at the root node and dt({}), {} ∈ E , denotes the lower discovery time of  and
. In case that on the path between two discrete variables no branching node y ∈ Y∗ is
situated then an additional node s is needed to separate the path into two of one discrete
variable. Thus, the branching node set is augmented by the set S of these additional
nodes to

Y = Y∗ ∪ S. (4.4)

These sets are illustrated by colored nodes in Figure 4.2.
Based on Y the subgrids G[V ],  ∈ L, can be obtained as detailed in Algorithm 3 and

depicted in Figure 4.2. Each subgrid G[V ] is determined by a primary node y() ∈ Y
and a child node c() ∈ C(y()) with at least one discrete variable or pseudo generator in
the reachable downstream c() subgraph, i.e. a graph implied by all nodes downstream
from c() and reachable without passing a node in Y . So the subgrid G[V ] defining set of
nodes V  is given by all nodes reachable from c() without passing a node in Y and if c()
has the lowest discovery time of these nodes additionally all nodes reachable in the same
manner from the nodes in C(y) without reachable discrete variable and pseudo generator.
Thus, the subgrid G[V ] spans between at most two nodes in Y, namely its primary node
y() and possible a pseudo generator node ŷ(). Moreover, each subgrid G[V ] contains
by definition of Y no more than one discrete variable.

2The clique graph for the two subgrids G[V ] and G[Vk] is shown in Figure 4.1.
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On-Load Tap Changer (OLTC)

Capacitor

Branching Nodes Y∗

Additional Nodes S
Y

Figure 4.2: Resulting subgrids obtained by Algorithm 3. The colors indicate the iteration
the subgrid is added, first red, second green, third blue and the root node grey.

Algorithm 3 Grid2subgrids
Input: G(V, E), Y and D

// Build a graph of branching nodes Y
G(VY , EY)
// Set considered flag
Con(Y)← 0, dt← discovery time from first depth search
ƒ t← finish time from first depth search
while ∃y() ∈ Y : Con(y()) = 0∧ ∀Con(CY(y)) = 1 do

// Generate subgrids for all children of y()
Con(y)← 1
for c() ∈ C(y())∧∃d ∈ D : dt(d) > dt(c()) or y ∈ Y : dt(y) > dt(c()) do

// get nodes
V  ← { ∈ V : dt() ≥ dt(y)∧ ƒ t() ≤ ƒ t(y)}
// updated discovery and finish time measures
dt(V )← − inf, ƒ t(V )← inf

end for
end while
// Add root node subgrid
V r ← { ∈ V : dt() ≥ dt(r)∧ ƒ t() ≤ ƒ t(r) }
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Since each y() ∈ Y is contained in at least two subgrids, it is employed to interrelate
the respective subproblems. In y()’s primary subgrids it serves as slack node with
fixed voltage magnitude ̂y(). In the other subgrid ŷ() gives a pseudo generator with
costs-to-go Jk(̂ŷ()) for a throughput Qk(̂ŷ()) and Pk(̂ŷ()) that results from its primary
subgrid G[Vk], k ∈ K(), where

K() = {k ∈ L \ {} : (Vk ∩ V ) \ {y()} 6= ∅}. (4.5)

These functions are given by the optimal objective value, reactive and real power in ŷ()’s
primary subgrid problem. The subproblem for the subgrid G[V ] with slack node y() ∈ Y
and a discrete variable feasibility set T reads as

J(̂) = min
∈C|V  |
τ∈T

∑

∈V \ŷ()

c(s, ) +
∑

k∈K()
Jk
�

̂ŷ()
�

, (4.6)

s.t. s = �(Y(τ))H, (4.7)

sŷ() =
∑

k∈K()
Pk
�

̂ŷ()
�

+ j Qk

�

̂ŷ()
�

, (4.8)

̂ = y(), (4.9)

and defines by sy() the functions Q(̂y()) and P(̂y()). Moreover, this solution defines
the discrete variable function T (̂y()) by rgminτ∈T J(̂y()) and voltage magnitude
function U(̂y()) by ̂ŷ(), which is necessary to re-obtain the overall solution in Sec-
tion 4.2.3. Since physical flows depend solely on angle differences the voltage angles
offset of the primary node, i.e. assigning any angle in constraint (4.9), leaves the optimal
power flows unchanged.

For tree-structured subgrid clique graphs an order exists in which the subproblems 
can be solved such that all K() pseudo generator functions, namely cost-to-go Jk

�

̂ŷ()
�

,
active power Pk

�

̂ŷ()
�

, and reactive power Qk

�

̂ŷ()
�

, are known when the problem is
solved. This order starts at leaf subproblems, i.e. subproblems  ∈ L with K() = ∅, and
then sequentially solves the subproblem  when all predecessor subproblems K() are
solved. Moreover, radial grids G(V, E) pass their tree-structure to the subgrids G[V ],
 ∈ L, clique graph.

Since for each subproblem  the pseudo generator functions integrate the optimal
results for the voltage magnitude ̂ŷ() of the subgrids K(), the proposed approach results
in an optimal overall solution.

4.2.2 Solve the Subproblems

In the following, the solution of the problem (4.6), subject to (4.7), (4.8) and (4.9), is
derived. This problem is a family of problems parametrized by the voltage magnitude
̂y() ∈ [ ̂y(), ̂y()] of the primary node y(). Solving or representing the results of
this family of problems for each continuous parametrization variable ̂y() is in general
computationally intractable. However, the monotonous behavior of the optimal discrete
variable T (̂y()) and its influence on the problem enables an efficient computational
evaluation and representation of the functions J, P, Q and U, as detailed in the following.
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Figure 4.3: Restriction of the feasible tap positions based on T (̂) and T (̂j).

For each subgrid  the optimal discrete variable T (̂) is a monotonous step function,
as in Figure 4.7. The discrete variable τ needs to be switched only if the voltage band is
approached or a higher voltage regime turns attainable within the voltage band for ̂. The
dependence on the voltage band also hinders the discrete variable from recurring, which
leads to a monotonously changing optimal discrete variable. This monotonicity restricts
the discrete variable candidates between two voltage magnitudes ̂ and ̂j to

T̂(̂, ̂j) = {τ ∈ T : T (̂) ≥ τ ≥ T (̂j)∨ T (̂) ≤ τ ≤ T (̂j)}, (4.10)

which are the discrete variables in T between T (̂) and T (̂j), illustrated in Figure 4.3.
On the one hand, the monotonous step nature decreases the number of discrete

values τ to be considered for ̂y(). Starting with the voltage band [ ̂y(), ̂y()], the
voltage magnitudes at which the tap position changes are obtained by bisection, i.e. by
halving each interval [ ̂, ̂j] for which |T̂(̂, ̂j)| 6= 1. Thus, each such evaluation of
problem (4.6) subject to (4.7), (4.8) and (4.9) for ̂ = (̂j + ̂)/2 is first reduced to a full
enumeration of T̂(̂, ̂j) and finally further reduced to a power flow problem with known
T (̂). This procedure is detailed in Algorithm 4.

Algorithm 4 BI-TAP
Input: {G[Vk]}k∈K()∪, n

// Initialize discrete variables T(),  ∈ [ ̂y(), ̂y()]
(T̂1/2, Ĵ1/2, P̂1/2, Q̂1/2, Û1/2)← FI-TAP(,T,{G[Vk]}k∈K()∪), N← 2
// Get supporting points by bisection and reduced enumeration
while mx(N) < n do

for All neighboring ̂, ̂j with τ(̂) 6= τ(̂j) do
N← N + 1, ̂N ← (̂ + ̂j)/2
(T̂N, ĴN, P̂N, Q̂N, ÛN)← FI-TAP(̂, T̂(̂, ̂j), {G[Vk]}k∈K()∪) (Algorithm 5)

end for
end while

Output: T̂, Ĵ, P̂, Q̂, Û
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Algorithm 5 FI-TAP
Input: ̂, T, {G[Vk]}k∈K()∪

Solve (4.6), subject to (4.7), (4.8) and (4.9).
J← J(̂), τ← rgminτ∈T J(̂), P← re(s), Q← mg(s), U← ̂ŷ()

Output: τ, J, P, Q, U

On the other hand, the step-wise-nature of T (̂) is reflected in the cost-to-go J(̂),
the optimal active P(̂), and reactive Q(̂) power, see Figure 4.7, since ̂ and T (̂)
influence the losses. The same holds true for the directly influenced U(̂). The pseudo
generator functions are obtained piece-by-piece for the T (̂) steps. For each T (̂)
step the best maximal quadratic approximation onto the supporting points which have
been obtained by bisection represents the pseudo generator function piece, see dotted
lines in Figure 4.7. The small physically attainable scope of ̂ŷ() given ̂y() resolves the
contradiction of the piece-wise non-continuous functions and the optimality of the solution

4.2.3 Reassemble the overall Solution

This section details the reassembling of the overall solution given the subproblem solutions
T , U, J, P and Q,  ∈ L. It relies on a mapping between the secondary node and primary
node that arises from the subgrid structure. This mapping starts at the root node subgrid
G[V r] and progresses to the leaf subgrid nodes.

The voltage magnitude ̂r at the root node is set either to ̂r = 1 or to the minimum
argument of Jr(̂). Hence, the discrete decision Tr(̂r) and the voltage magnitude Ur(̂r)
at the secondary node ŷ(r) are fixed. This secondary node voltage magnitude Ur(̂r)
sets consequently the voltage magnitude in its primary subgrid as well as the discrete
decision variable and the secondary node voltage magnitude. Thus, the optimal value of
G[V ] propagates the setting to G[Vk], k ∈ K(), see Figure 4.4, and the process stops
when K() = ∅. The angles could be included by consecutively adding the angle arising
in U, since flows are solely dependent on angle differences.

̂y()

T 
�

̂y()
�

U(̂y()) ̂y(k2)

̂y(k1)

̂y(k3)

K() = {k1, k2, k3}

......

Figure 4.4: Propagation scheme to reassemble the overall solution based on G[V ] and
the functions T (̂) and U(̂).
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4.3 Experiments

The dynamic programming framework for the VVC problem is tested with two experi-
ments in this section. A stylized distribution grid highlights the differences between the
dynamic programming approach and other commonly used approaches, Section 4.3.1.
Section 4.3.2 shows the ability of the approach to remedy certainly and optimally over-
voltages in highly DER penetrated authentic future distribution grids.

4.3.1 Simplified Distribution Grid

The first example is a very concentrated exemplary distribution grid, shown in Figure 4.5.
This distribution grid consists of a Medium Voltage (MV) branch and six diverging Low
Voltage (LV) grids, which are connected to the MV branch by an OLTC. Each LV grid
has an aggregated feed-in of 0.15 MW assigned to a single node and a line connecting
this node to its MV/LV OLTC with equal impedance zLV = 3.125 − j0.5. Also, the six
line segments on the MV branch possess the same impedance zMV = 0.027 − j0.025.
The OLTC with tap positions {1.03,1.02, . . . ,0.97} are of two types: the High Voltage
(HV) to MV (110kV/30kV) transformer with 26 MVA capacity and MV to LV (20kV/0.4kV)
transformer with 1 MVA capacity. The Line Drop Compensation (LDC) inspired method
and hill climbing (HILL) method are considered as baselines for a comparison to proposed
dynamic programming (DYN) approach.

HV

zLV

zMV

zLV

zMV

zLV

zMV

zLV

zMV

zLV

zMV

zLV

zMV

Figure 4.5: Simplified distribution grid of one MV branch with six LV branches and its seven
subgrids implied subproblems. The subgrids are shown by the colored frames around
the nodes and edges. The primary nodes y() are colored in the respective subgrids
color. These nodes serve as pseudo generator in the subgrid in the different colored frame
around them.
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The LDC approach measures the voltage  and current flow  at the lower voltage/
secondary side of the transformer [51, 47]. On basis of these measurements and an
aggregated feeder impedance ẑ = r̂ + ĵ the voltage magnitude ̂end at the feeder
end is estimated as follows ̂end ≈ ̂ − (̂m() + r̂Re()). In this example the feeder
impedance ẑ of the MV feeder is derived from the sum of the six line impedances times a
factor that adjusts for the flow reduction caused by the in between dissecting LV branches
[35], while the feeder estimate for the LV grids is the line impedance itself. According to
[51] the transformers are set in the following order: first the HV/MV OLTC such that the
voltage rise/drop on MV feeder stays within the voltage band in a voltage regime as high
as possible and then the medium to MV/LV OLTCs are set such that the voltage rise/drop
on their secondary side still satisfies the voltage band in a high voltage regime.

A method based on full knowledge instead of aggregation based estimates is the HILL
approach [6, 91]. Here starting at the initial tap position the next higher and the next
lower tap position are examined and the tap with the lowest objective value fixed. These
comparisons are successively done for each OLTC in an order equal to the LDC approach,
as proposed in [6] to reduce the number of switches, and is started over until the objective
function does no longer improve. The quality of this approach’s result strongly depends
on the initial tap positions. When all initial taps are set to position 1, HILL1, the resulting
OLTC tap positions are not optimal, while starting at 0.97, HILL0.97, the resulting taps
are optimal, see Figure 4.6 and Table 4.1. In the HILL1 case the optimal higher tap at the
HV/MV OLTC disagrees with the voltage band and thus the tap is not change, and the ex
post set MV/LV OLTC have no incentive to lone lower their tap.

The proposed dynamic programming method splits the simplified distribution grid in
seven subgrids, see Figure 4.5. These subgrids have been solved by reduced enumera-
tion to obtain the discrete variable switches and the 40 supporting points for the pseudo
generator functions. For the third subgrid the resulting supporting points and the there
on approximated pseudo generator functions T (̂), J(̂), P(̂) and Q(̂) are depict in
Figure 4.7. The marginal overall cumulated errors are illustrated by the difference between
the recalculated, diamond, and reassembled, cross, power flow voltage, Figure 4.6.

HILL0.97 and the proposed dynamic programming approach found the optimal tap
positions, while small inaccuracies in the estimator misled the LDC method step down
the first MV/LV by one tap, shown in Figure 4.6, which resulted in slightly higher losses,
Table 4.1. The HILL0.97, LDC and DYN method have utilized their additional knowledge
to reduce the losses by 1.39− 1.51% in comparison to the reference feed-in tap setting,
i.e. τMV/LV = 0.97. The HILL1 method does not since the prevalent aim is to satisfy the
voltage band starting from the initial position. So the HILL1 results in an overall lower
voltage regime, see Figure 4.6, and thus higher losses than the reference feed-in tap
setting, see Table 4.1. This shows the draw back of the HILL climbing approach: it might
end up in local minima and the effort to obtain the additional information is lost.

Besides the voltage band, which is satisfied by all methods for this extreme feed-in
scenario (see Figure 4.6), the voltage spread gives significant details of the grid state
[80]. The voltage spread is the difference between the highest and lowest voltage in the
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Figure 4.6: Simplified distribution grid node voltage magnitudes’ evolution according to
the containing subgrid and its topology for the tap positions set to demand tap (τMV/LV =
1.01), dark blue, feed-in tap (τMV/LV = 0.97), light blue, LDC, turquoise, HILL1, green,
HILL0.97, yellow, the proposed DYN approach and respective recalculated power flow,
orange. The line thickness represents the voltage level and dotted lines the link between
the subgrids, i.e. coupling variables.

grid. Similar to the losses and the tap positions, the voltage spreads obtained by DYN,
HILL0.97 and LPC are alike. This good performance of the LDC approach results from
the homogenous feed-in and almost perfect estimator ẑ, which are the assumptions for
this abstraction. However, feed-in and demand often fluctuate non homogenous. These
fluctuations can be partially integrated in the approach by an in-feed reference cell, equal
to the compounding in MV [42]. But that would require detailed measurements to evaluate
the best reference cell and estimates.

Table 4.1: Five methods summary of the simplified grid example.

τMV/LV = 0.97 LDC HILL1 HILL0.97 DYN
poss [MW] 0.0837 0.0826 0.0852 0.0825 0.0825

vs τMV/LV = 0.97 [%] 0 -1.3947 1.7901 -1.5158 -1.5158
spread 0.1029 0.0988 0.1281 0.1001 0.1001
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4.3.2 Realistic Medium Voltage-Low Voltage Distribution Grids

Real distribution grids are complex in comparison to the sketch in Section 4.3.1. The eight
radial distribution grids evaluated in this section comprise around 8000-14000 nodes and
90-165 transformers and a part of a Siemens internal project. The number and size of the
integrated DER are based on a 2020 scenario. Grid topology and DER reason intelligent in-
frastructure, like multiple OLTC, or grid extensions essential to guarantee the voltage band.

In the following a snap shot of the first time point in the year with maximal voltage
magnitude of at least 1.12 is approached by the HILL and DYN. Each of the transformers
was assumed a range of possible turn ratios T = {0.9,0.92, . . . ,1.1}.

The resulting DYN tap positions solve the over voltage issue for the given generation
and demand pattern in all eight grids, see Table 4.2. In contrast, the HILL fails in sixth
distribution grids since it lifted the voltage level on the HV/MV too high and the last
transformers do not have the flexibility to step further down. Moreover, the DYN approach
frees more of the available voltage range, i.e. lower voltage spread see Table 4.2. At
the same time, DYN reduces the losses in comparison to the HILL by up to 9.1% and
in average by 3.6%, see Table 4.2. This is a result of the higher voltage regimes, e.g.
Figure 4.8.

Table 4.2: HILL and DYN approach solutions summary of the eight distribution grids.

Grid 1 2 3 4 5 6 7 8
BASE # Nodes 8813 8382 13662 8142 11075 8487 8109 13085

# OLTC 98 98 165 100 100 104 99 158
mx() 1.1218 1.1465 1.1344 1.125 1.2161 1.1546 1.1683 1.1274
min() 0.9972 0.9966 0.976 0.9636 0.9553 0.9922 0.9942 0.9882
spread 0.1246 0.1499 0.1585 0.1613 0.2608 0.1623 0.1741 0.1393

HILL mx() 1.0964 1.0813 1.0948 1.0904 1.1163 1.1089 1.0954 1.0927
min() 0.9799 0.9237 0.938 0.9581 0.9279 0.9168 0.902 0.9557
spread 0.1166 0.1575 0.1568 0.1323 0.1885 0.1921 0.1934 0.137

poss [MW] 0.0509 0.0358 0.0489 0.0197 0.0451 0.4243 0.3995 0.0356
DYN mx() 1.095 1.0945 1.0951 1.0948 1.0995 1.0909 1.0955 1.0944

min() 0.9799 0.9697 0.9424 0.96 0.9055 0.9522 0.9394 0.9631
spread 0.1152 0.1249 0.1526 0.1348 0.1940 0.1387 0.1561 0.1313

poss [MW] 0.0509 0.0331 0.0469 0.0194 0.0469 0.4068 0.3662 0.035

4.4 Conclusion

This chapter presents a novel dynamic programming VVC algorithm for active radial
distribution grids. It is based on the computational complexity reduction arising from
multiple optimizations over one discrete variable in contrast to an optimization over multiple
discrete interdependent variables. The grid topology is used for a decomposition of the
overall grid into subgrids of one discrete variable, which form together with the coordinating
pseudo generators the subproblems. Pseudo generator functions of the voltage magnitude
at the coupling nodes coordinate the subgrids subproblems such that each local solution
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contributes its parts to the optimal overall solution. Thus, the proposed algorithm finds the
optimal solution.

The simplified distribution grid example in Section 4.3.1 shows this optimality in a very
simplified grid with a homogenous feed-in. In this case perfectly suited for the LDC method,
the DYN approach showed how to find the optimal solution while the approximation within
the LDC slightly weakens this method’s results. Moreover, in this example the hill climbing
heuristic shows its dependence on the initial discrete variables and the lack optimality
for one initial setting even though it has full knowledge of the grid. These results stand
out even more in the authentic distribution grid examples, in Section 4.3.2. Here the hill
climbing approach results in slight over voltages for two out of the eight distribution grids
considered, while the dynamic programming approach resulted in none at lower losses.

The pseudo generator functions give a comprehensive picture of the voltage magnitude
dependent power losses and costs, while the discrete variable mapping function yields
the optimal discrete variables. If the approach is not implemented online, an abstraction
of these mapping functions can be the basis for local control tables given by a few
characteristics, e.g. voltage magnitude, hour and weather. An appropriate set of such
parameters should be the focus of future work.





Chapter 5

Synthesis and Outlook

The proposed theoretical methods require communication and measurements, which do
not exist today in distribution grids. The Message Passing (MP) method for Economic
Dispatch (ED), Chapter 3, is based on communication between the neighboring nodes in
the grid topology. Dynamic programming for Volt-VAr Control (VVC), Chapter 4, demands
measurements as well as communication between subgrids. Today distribution grids lack
communication infrastructure [56] and measurement devices are rare [80]. However, the
dispatch and control in distribution grids with a high number of Distributed Energy Re-
sources (DER) will require these technical tools and they are gaining in research interest
at the moment under the term Smart Grid. Thus, the requirements are just ahead of time
and not standard yet.

Currently, a number of communication technologies are under discussion. The infras-
tructure for power line communication is in place and the connection to the actual device
is in place. However, power lines are noisy channels that make it hard to modulate signals
and the bandwidth is relatively low [56]. A high bandwidth alternative could be the digital
subscriber lines (DSL) or optical fibre lines [132]. DSL has been used at Stadtwerke Em-
den, a municipal utility, as part of a pilot scheme in cooperation with the Deutsche Telekom
[126]. The infrastructure for DSL is an integral component in inhabited areas but the
connections to remote DER, e.g. wind turbines, are expensive. This is no issue for cellular
network communication, for example as used in the IRENE project [70]. Nevertheless,
cellular networks’ reliability is limited in rural areas [56]. At the moment no communication
technology exists that can be recommended for all regions and applications. Hence a
specially adapted combination of technologies might be the method of choice for future
applications [4]. An even more diverse candidate set exists for communication protocols;
an extensive list of these as well as their qualities can be found in [32]. So far, none has
prevailed. Europe made the first steps to define comprehensive standards by a guideline
[55] issued in 2012. However, these standards are currently under review [32] and the
standard committee expects this to be a long-term process [33].

Regardless of the yet to be assembled technological framework, communication is and
will be an essential part of future smart distribution grids, not only with regard to dispatch
but also with implications for default security [56, 132]. For the latter a detailed monitoring
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of the distribution grid status is vital [5] but not yet enabled.
At the moment distribution grids are sparsely monitored, in contrast to the transmission

grids [80, 101]. The mass role out of smart meters can reverse this trend and turn the
distribution grid into a comprehensively monitored part of the electrical grid. First regulatory
steps have been taken towards a roll out of online metering in Germany [49]. Besides
this the incentive structure still needs to be adjusted to foster this roll out [4]. Aside for
measurements at connections, additional measurement units, e.g. phasor measurement
units, at critical locations in the distribution grid can contribute important knowledge of
the grid state [122, 101]. Aggregated and evaluated, e.g. by state estimation techniques
[54, 63, 69, 87], a holistic picture of the distribution grid can be drawn, allowing for a
specially suited control of devices and more efficient use of the existing infrastructure
which leads to a reduction of required grid extensions. Moreover, new technologies might
help to gather additional insights in the state of the grid in future. Autonomous sensors
are currently tested for High Voltage (HV) overhead lines, to maximize the capacities,
which are today operationally restricted by conservative worst case scenarios [81]. Similar
approaches could temporarily enlarge the allowed flows of overhead lines in the distribution
grid. Thus, the capacities may be further increased without grid extensions.

The potential to circumvent costly grid extensions has been the argument for the
coordination of DER and active VVC, which necessitate the aforementioned changes.
However, the required devices are expensive and operational costs occur [4, 3]. On-Load
Tap Changer (OLTC) are approximately four-times as expensive as traditional transformers
and might need to be more regularly maintained [3]. Moreover, meters and measurement
equipment is costly and the data communication and evaluation add operational costs [4].
Additional values have the ability to countervail these operational costs but depend on
additional gains of control beyond the voltage limits.

The reduction of line losses has the potential to be such an additional value. In centrally
supplied grids the line losses were dependent on the distance the power was transported.
The proximity of supply and demand in distribution grids with DER implies a loss reduction.
However, losses due to non homogenous voltages that occur in a static infrastructure
faced with intermittent sources counteract this reduction. Moreover, DER are also not
aligned with load centers [115]. On the whole the line losses have not been declining in the
last five years although the contributions from distributed renewables rose, see Figure 5.1.
In Germany 85%1 of the overall 5− 6% line losses occur in the distribution grid [71]. The
accumulated line losses in distribution grids add up to around 30 TWh a year. This result
in approximately 1.5 bn Euro a year in losses for distribution system operators based on a
price of around 5 Cent/kWh. A small reduction can thus contribute to significant savings.
The realistic distribution grids in Section 4.3.2 indicate that optimally controlled OLTCs can
reduce the losses in comparison with heuristic approaches. Nevertheless, these results
are based on theoretical models, and one should not model for numbers but for insights
[65].

1This estimation is based on the average losses of the local utilities WW Netz, Netz Mittelrhein, Netz
BW, Stadtwerke Rostock, München, Kaiserslautern und Duisburg. Moreover, these values are plausible with
regard to the distribution grid line losses in Europe stated in [127].
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Figure 5.1: Comparison of the contribution of renewables and the line losses occurring in
the electricity generation in Germany between 2008 and 2014.





Glossary

AC Alternating Current.

ADMM Alternating Direction Method of Multipliers. A decomposition method combining
dual decomposition techniques with robust augmented Lagrangian approaches. An
introduction can be found in [23].

CHP Combined Heat and Power Plant.

clique set of vertices where all vertices are pairwise adjacent.

clique graph a graph where cliques are nodes and edges are non empty separator sets
between the variables of cliques.

clique tree singly-connected clique graph.

CMP Continuous Message Passing method detailed in Section 3.5.

DER Distributed Energy Resources refers to small-scale power generation, storage or
deferrable load [88].

DMP Discrete Message Passing method detailed in Section 3.4.

ED Economic Dispatch. The economic dispatch problem is to schedule a number of
electricity generation or consumption units such that the overall welfare, i.e. the
summed utility of all consumption minus the summed cost of all production, is
maximized. This is to be done subject to generation constraints and may include
transportation constraints.

EV Electric Vehicle.

GM Graphical Model describes via a graph a family of multivariate probability distributions
that share a common (conditional) independence structure.

HV High Voltage level, nominal system voltages greater than or equal 110 kV [28].

junction tree clique tree possessing the junction tree property.

junction tree property if for any clique C1 and C2 in a clique tree all cliques on the
unique path joining them contain their separator set S12.
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LDC Line Drop Compensation.

LV Low Voltage level, nominal system voltages less than or equal 1 kV [28].

MILP Mixed Integer Linear Programming.

MP Message Passing.

MV Medium Voltage level, nominal system voltages greater than 1 kV and less than 110
kV [28].

OLTC On-Load Tap Changer.

OPF Optimal Power Flow.

PV Photovoltaic.

QP Quadratic Programming.

UC Unit Commitment. The unit commitment problem minimizes the cost of operation by
optimal dispatch of available electricity generation units subject to load, generation
and/or transmission constrains. Our formulation of ED includes the basic UC on/off
constraint.

VVC Volt-VAr control.



Symbols

C0 transport cost from  to auxiliary node0.

C cost or negative utility function.

P joint probability distribution of random variables V.

T turn ratio or capacitance function of the voltage magnitude ̂.

U voltage magnitude function.

Z normalization factor.

A minimal active index set.

p (active) power flow from node  to .

p net (active) power injection of node  ∈ V.

A inequality constraint matrix of m().

C() set of all children of the vertex  in the graph G(V, E).

 complex current flow from node  to .

 complex current at node  ∈V.

P active power function.

J cost-to-go function.

Q reactive power function.

H matrix for the quadratic part of ƒ (p, ).

K() set of all sub-grid indices interconnected to G[V ].

Y admittance matrix given by (2.4).

P̂ attainable subset of P.

sn reference power at node  ∈V.

s complex power flow from node  to .
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s complex power at node  ∈V.

q reactive power flow from node  to .

q reactive power at node  ∈V.

L index set of all sub-grids G[V ].

T set of feasible discrete turn ratios or capacitance τ.

T set of feasible discrete turn ratios or capacitance τ.

T set of feasible discrete turn ratios or capacitance τ.

U feasible set for .

 complex voltage at node  ∈V.

θ voltage angle difference of the nodes  and .

θ voltage angle at node  ∈V.

[ ̂, ̂] voltage band for ̂.

̂,n reference voltage at node  ∈V.

̂ voltage magnitude at node  ∈V.

α̂ quadratic coefficient of m̂.

β̂ linear coefficient of m̂.

y per unit admittance the line from  to , {,} ∈E .

γ̂ constant coefficient of m̂.

 inequality constraint vector of m().




inequality constraint vector dependent on  of m().

α quadratic coefficient of C.

α


quadratic coefficient of -th piece of (3.13).

m̂ approximated message from node  to .

β linear coefficient of C.

β


linear coefficient of -th piece of (3.13).

·H complex conjugate transposed.

� component-wise multiplication.

c vector for the linear part of ƒ (p, ).
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c


vector for the dependent on  linear part of ƒ (p, ).

δ active power demand at node  ∈V.

γ constant coefficient of C.

γ


constant coefficient of th piece of (3.13).

V set of all random variables ,  ∈ V.

 a random variables.

T̂(̂, ̂j) set of restricted feasible discrete turn ratios or capacitance (4.10).

ẑ impedance estimate of G[V ] in the Line Drop Compensation (LDC) approach.

ŷ() pseudo generator node in G[V ].

r̂ resistance of ẑ.

̂ reactance of ẑ.

1 identity matrix.

C set (collection of maximal) cliques of G(V, E), meaning maximal completely connected
subsets of V.

W variable for H.

e vector of ones.

E0 set of transmission lines in the network and the shunt representing lines to 0.

E set of transmission lines in the network.

G(V, E) graph (directed or undirected) with vertices V and edges E .

N () set of all neighbors of the vertex  in the graph G(V, E).

P() set of all parents of the vertex  in the graph G(V, E).

P feasible set for p.

P feasible set for p.

Q feasible set for q.

V set of buses in the network.

Y∗ index of the restricted branching nodes.

Y index of the restricted branching nodes and the chain separator nodes.

τ discrete turn ratio or capacitance variable vector in T .
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C a clique of G(V, E), meaning maximal completely connected subsets of nodes V.

n


nominal voltage of node .

p maximal active power carrying capacity of line .

p maximal active power carrying capacity of line .

p maximal (active) power output of node  ∈V.

p vector (active) power flows in m, i.e. (pk)k∈N ()\{}.

ϕC potential function of the clique C.

D transformers and capacitor banks discrete variable subset E0.

G[V ] subgraph induced by V  ⊂V , meaning the graph consisting of vertices V  and each
edge in E connecting two vertices V, in electrical grids each edge in E0 connecting
vertices in V ∪ 0.

̃ variable for ||2.

̃ variable for | |2.

τ discrete turn ratio or capacitance variable in T for G[V ].

τ discrete turn ratio or capacitance variable in T for {} ∈D.

p


maximal active power carrying capacity of line .

p


minimal (active) power output of node  ∈V.

0 reference/ground node.

y() primary node in G[V ] and in Y.

b binary variable associated with node  ∈V.

dt distance measure from the reference transformer.

ƒ (p, ) objective function of m().

m message from node  to .
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