
Continuity in Dynamic Geometry
An Algorithmic Approach

Stefan Kranich

Technische Universität München
Fakultät für Mathematik

Continuity in Dynamic Geometry
An Algorithmic Approach

Stefan Helmut Kranich

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Uni-
versität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Oliver Junge

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Jürgen Richter-Gebert

2. Univ.-Prof. Dr. Ulrich Kortenkamp
Universität Potsdam

3. Univ.-Prof. Dr. Elias Wegert
TU Bergakademie Freiberg

Die Dissertation wurde am 12.11.2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Mathematik am 23.03.2016 angenommen.

ii

Acknowledgements

First and foremost, I want to thank my advisor, Jürgen Richter-Gebert. He has
inspired and guided me ever since I have started to work with him. His love for
geometry has permanently rubbed of on me. I thank him for introducing me to the
topic of this thesis, which has been very demanding but also very rewarding for me.
I am indebted to him for giving me great freedom in pursuing my research interests.
Beyond mathematics, as a role model, Jürgen has taught me how to present, how
to teach, and to strive for a healthy balance between perfectionism and pragmatism.
Thank you, Jürgen, for always supporting me in every possible way.

I am very grateful to Ulrich Kortenkamp and Elias Wegert for examining my
thesis. I would also like to thank Elias Wegert for his kind permission to use his
domain colouring colour scheme.
Moreover, I would like to thank all colleagues at the Chair for Geometry and

Visualization for countless wonderful discussions, helpful suggestions, and the great
working atmosphere. I thank Tim Hoffmann for introducing me to discrete Darboux
transformations. I thank Susanne Apel, Martin von Gagern, and Katharina Schaar,
who shared office with me, for many constructive debates and exchanging ideas.
I am especially grateful to Katharina Schaar for reading several manuscripts and
giving valuable feedback. I thank Diane Clayton-Winter for offering her advice as a
native speaker whenever I was struggling with the English language; the remaining
mistakes are all mine.

I want to express my gratitude to DFG Collaborative Research Center TRR 109,
“Discretization in Geometry and Dynamics”, and Technische Universität München,
Department of Mathematics, for funding my research.
Last but not least, I thank my family for their love, continuous support, encour-

agement, and patience. This thesis is dedicated to them.

iii

Contents

1 Introduction 1
1.1 Poncelet’s Principle of Continuity . 2
1.2 Continuity in Dynamic Geometry . 4
1.3 Summary . 7

2 Homotopy Continuation of Systems of Plane Algebraic Curves 11
2.1 Motivation . 12
2.2 Computing an epsilon-delta bound for plane algebraic curves 13
2.3 Certified homotopy continuation of plane algebraic curves 19
2.4 Continuous deformation of closed discrete Darboux transforms . . . 20
2.5 Towards triangular systems of polynomials 24
2.6 Homotopy continuation of systems of plane algebraic curves 25
2.7 Comparison with other approaches 28

3 Complex Tracing in Geometry 33
3.1 Introduction . 34
3.2 Elementary operations as algebraic equations 35
3.3 Circular arithmetic . 36

3.3.1 Arithmetic . 36
3.3.2 n-th root . 38
3.3.3 Inclusion monotonicity . 41

3.4 Algorithm . 42
3.5 Example . 45
3.6 Comparison with Denner-Broser’s approach 47

4 Generation of Real Algebraic Loci via Complex Detours 49
4.1 Introduction . 50
4.2 A locus generation algorithm . 52
4.3 Orientation of complex detours . 54
4.4 Termination . 56
4.5 Generation of real connected components 56
4.6 Examples . 57

4.6.1 Conic through five points in general position 57
4.6.2 Orthogonal projection of a circle onto a line 58
4.6.3 Conchoid of Nicomedes . 60
4.6.4 Watt curves . 62

iv

Contents

5 Identification of Real Algebraic Loci 65
5.1 Introduction . 66
5.2 Algorithms . 66
5.3 Examples . 70

5.3.1 Limaçon (implicit equation) 70
5.3.2 Limaçon (rational parameterization) 74

6 GPU-based Visualization of Algebraic Riemann Surfaces 77
6.1 Introduction . 78

6.1.1 Mathematical background . 78
6.1.2 Previous work . 80

6.2 Algorithms . 81
6.3 Implementation . 84

6.3.1 An implementation in OpenGL 85
6.3.2 An implementation in WebGL 87

6.4 Examples . 89
6.4.1 Domain colouring reference image 90
6.4.2 Complex square root . 91
6.4.3 Folium of Descartes . 93

7 A Survey of Complex Loci 97
7.1 Quadrics . 99

7.1.1 Circle . 100
7.1.2 Ellipse . 104
7.1.3 Hyperbola . 107
7.1.4 Parabola . 110

7.2 Cubics . 113
7.2.1 Folium of Descartes . 113
7.2.2 Right Strophoid . 117

7.3 Quartics . 120
7.3.1 Conchoid of Nicomedes . 120
7.3.2 Limaçon . 123

7.4 Quintics . 126
7.4.1 Pentagon curve . 126

7.5 Sextics . 128
7.5.1 Nephroid . 128
7.5.2 Watt curves . 132

8 Outlook 139

Bibliography 142

v

vi

1 Introduction

1

1 Introduction

1.1 Poncelet’s Principle of Continuity

Jean-Victor Poncelet (1788–1867) was a French engineer and mathematician. From
1808 to 1810, he studied at the École Polytechnique under Gaspard Monge (1746–
1818). In 1812, Poncelet joined the French army in Napoleon’s campaign against
Russia. Poncelet gives the following account of his wartime experiences in the
preface of (Poncelet, 1862). At the Battle of Krasnoi, he was left for dead, captured
by the Russians and imprisoned as a prisoner of war at Saratov (1813–1814). Having
nothing else to do, and not having access to scientific literature, Poncelet began to
redevelop from memory what he had learned at École Polytechnique. He started
to form new ideas on geometry, about which he lectured to fellow polytechniciens
imprisoned with him. After his release in 1814, Poncelet returned to France. He
elaborated and published his ideas from Saratov in his Traité des propriétés des
figures (Poncelet, 1822). In this work, Poncelet laid the foundations for modern
projective geometry.

The programme of the Traité (as Poncelet describes in its introduction) is the
revival of synthetic geometry (‘géométrie ordinaire’) in an attempt to make it an
equal rival to analytic geometry. Poncelet questions what makes analytic geometry
so successful compared to the synthetic geometry of the ancients. He finds that
the power of analytic geometry lies in its possibility to abstract from a concrete
instance of a geometric construction and to obtain general results by manipulation
of equations in which indeterminates replace concrete quantities. Consequently,
Poncelet wants to introduce general principles for proof and discovery to synthetic
geometry that do not rely on abstract algebraic computation with indeterminates.

Unlike his teacher Monge, Poncelet was strongly opposed to use of analytical
methods. Ironically, the edition of his manuscripts from Saratov as Applications
d’analyse et de géométrie (Poncelet, 1862) shows that Poncelet did use analytical
methods to work out his ideas. In any case, Poncelet became one of the main
advocates of synthetic geometry in the ideological war between synthetic and
analytic geometry of the nineteenth century. (Kline, 1972, p. 841f.)

The main ideas of the Traité are the following: Poncelet makes systematic use of
central projection between different planes in three-dimensional space as a unifying
geometric principle. He analyzes which properties of geometric constructions are
preserved under projection and section. Moreover, Poncelet presents the theory
of pole and polar with respect to a conic. The idea of greatest importance for us
is Poncelet’s Principle of Continuity. Related concepts are already present in the
work of Kepler (1571–1630), Leibniz (1646–1716), Monge (1746–1818), and Carnot
(1753–1823). Poncelet introduces it thus:

‘Considérons une figure quelconque, dans une position générale et en
quelque sorte indéterminée, parmi toutes celles qu’elle peut prendre sans
violer les lois, les conditions, la liaison qui subsistent entre les diverses
parties du système; supposons que, d’après ces données, on ait trouvé
une ou plusieurs relations ou propriétés, soit métriques, soit descriptives,

2

1.1 Poncelet’s Principle of Continuity

appartenant à la figure, en s’appuyant sur le raisonnement explicite
ordinaire, c’est-à-dire par cette marche que, dans certains cas, on regarde
comme seule rigoureuse. N’est-il pas évident que si, en conservant ces
mêmes données, on vient à faire varier la figure primitive par degrés
insensibles, ou qu’on imprime à certaines parties de cette figure un
mouvement continu d’ailleurs quelconque, n’est-il pas évident que les
propriétés et les relations, trouvées pour le premier système, demeureront
applicables aux états successifs de ce système, pourvu toutefois qu’on ait
égard aux modifications particulières qui auront pu y survenir, comme
lorsque certaines grandeurs se seront évanouies, auront changé de sens
ou de signe, etc., modifications qu’il sera toujours aisé de reconnâıtre à
priori, et par des règles sûres?’

(Poncelet, 1865, p. xiii), or in English,

‘Let us consider some geometrical diagram, its actual position being
arbitrary and in a way indeterminate with respect to all the possible
positions it could assume without violating the conditions which are
supposed to hold between its different parts. Suppose now that we
discover a property of this figure Is it not clear that if, observing the
given conditions, we gradually alter the original diagram by imposing
a continuous but arbitrary motion on some of its parts, the discovered
properties of the original diagram will still hold throughout the successive
stages of the system always provided that we note certain changes, such
as that various quantities disappear, etc.—changes that can easily be
recognized a priori and by means of sound rules?’

(Shapiro, 2005, p. 259). Geometers of the nineteenth century used the Principle
of Continuity as an axiom that was self-evident and need not be proved (Kline,
1972, p. 844f.).

The novelty in Poncelet’s understanding of the Principle of Continuity lies in the
fact that he considers only those properties of a construction true properties that
remain unaltered under continuous movement of its parts (Shapiro, 2005, p. 259).
Moreover, Poncelet acknowledges that points of a construction can move infinitely
far in the limit—as for example the intersection of two lines that gradually become
parallel—, or can become complex—as for example the intersections of a line and
a circle when line and circle move apart. Consequently, he introduces points at
infinity and complex elements, albeit using a different terminology.
Poncelet calls any element imaginary (‘imaginaire’) that was a real element at

the beginning of a continuous movement but has become inconstructible (as a real
element) in its course; he calls any element ideal (‘idéal’) that remains real although
some elements on which its construction depends have become imaginary—consider
for example the real point of intersection of two complex conjugate lines. Continuous
movement through instances of a construction with imaginary or ideal elements links
otherwise seemingly unrelated instances of the construction and makes it possible
to discover common properties of all instances (Poncelet, 1865, p. 28).

3

1 Introduction

A more modern interpretation of the Principle of Continuity is given by Felix
Klein (1849–1925) in his Vorlesungen über die Entwicklung der Mathematik im
19. Jahrhundert :

‘Was endlich das Prinzip der Kontinuität selbst anbetrifft, so ist auch
dieses mit den Mitteln der modernen Funktionentheorie nicht schwer zu
begründen. Ein jeder geometrischer Satz ist analytisch auszudrücken
(wenn wir Geometrie so umgrenzen, wie es damals üblich war) durch
die Nullsetzung einer algebraischen oder auch nur analytischen Funktion
f(a, b, c, . . .) der darin in Beziehung gesetzten Stücke a, b, c . . . der Figur.
Das Prinzip der Kontinuität spricht dann nichts anderes aus, als daß
eine analytische Funktion, die längs eines noch so kleinen Stückes ihres
Bereiches verschwindet, überhaupt gleich Null ist.’

(Klein, 1926, p. 82), or in English,

‘And as for the principle of continuity itself, it is not hard to estab-
lish rigorously by the modern theory of functions. Every geometrical
statement can be expressed analytically (understanding geometry in the
restricted sense that was usual in Poncelet’s day) by equating to zero an
algebraic or even analytic function f(a, b, c, . . .) of the parts a, b, c, . . .
of the figure. Then the principle of continuity simply states that an
analytic function which vanishes on any part, no matter how small, of
its domain, must vanish everywhere.’

(Klein and Hermann, 1979, p. 75).

1.2 Continuity in Dynamic Geometry

Today, one could argue that we are in a much better position than Poncelet: Firstly,
the Principle of Continuity is theoretically well-justified by analytic continuation,
as outlined in the above citation from (Klein, 1926); we should no longer need to
defend it against the accusation of lack of rigour with which some of Poncelet’s
contemporaries, notably Cauchy, attacked the Principle of Continuity (Kline, 1972,
p. 843). Secondly, continuous movement of parts of a construction is no longer
merely a thought experiment; we have dynamic geometry software at our disposal
with which we can actually move parts of a construction. Such software allows
us to perform geometric constructions, for example a compass and straightedge
construction. In these constructions, we can move a free (i.e. movable) element and
let the software automatically update the positions of all elements depending on the
free element accordingly.
Despite its fundamental role for modern projective geometry, the Principle of

Continuity seems to have been forgotten by the advent of dynamic geometry soft-
ware. Much dynamic geometry software does not obey the Principle of Continuity
and suffers from jumping elements—elements that behave discontinuously under

4

1.2 Continuity in Dynamic Geometry

movement of free elements on which they depend. This problem arises due to the
ambiguity of some geometric operations:
Consider for example the intersection of a circle and a line. In general, there

are two points of intersection. They correspond to the common solutions of the
algebraic equation of the circle and the algebraic equation of the line. Suppose we
colour one of the intersections red and the other one green. Then, if we move the
line or the circle, the software needs to determine new positions for the intersections.
In particular, it needs to determine which of the new intersections corresponds
which of the old intersections, in order to colour them red and green appropriately.
If the software makes the wrong decision, we observe that red and green point of
intersection suddenly exchange positions. This jump may be somewhat unexpected,
is not necessary, and lacks mathematical justification.

As another example, consider a triangle formed by three lines. Every pair of lines
that meet at a vertex of the triangle has two angle bisectors. The triangle has a
total of six angle bisectors. It is well-known that three of the angle bisectors meet
in one point, the triangle incentre. (In fact, the six angle bisectors meet in triples in
the triangle incentre and the three triangle excentres.) Suppose that we construct
the incentre of a triangle formed by three lines as the intersection of three angle
bisectors. If we move a vertex of the triangle, then the software needs to determine
new positions for the angle bisectors. For every angle bisector, there are two possible
choices. If the software makes a wrong choice, we see an angle bisector jump from
one position to the perpendicular position. Consequently, if an odd number of the
three angle bisectors flip, then the three angle bisectors no longer meet in one point.
We can no longer observe that the three angle bisectors always meet in one point.
If the software violates the Principle of Continuity like this, it may be less useful for
discovering properties of a construction by experimentation.
Note that it may not always be possible to distinguish possible choices. If we

move a circle and a line apart, then their two intersections coincide when the line
touches the circle and become complex when we move beyond that point. When the
points coincide, they become indistinguishable. Consequently, if we move from an
initial instance where we can distinguish the intersections beyond the point at which
circle and line touch each other, we can no longer tell which of the complex points
of intersection corresponds to which point of intersection of the initial instance. The
movement has a singularity at the point in time when circle and line touch each
other and both intersections coincide. Analytic continuation of the coordinates of
the intersections along any path containing such a singularity must stop at the
singularity; we cannot continue beyond a singularity, at which the coordinates cease
to be analytic.
For their dynamical geometry software Cinderella (Kortenkamp and Richter-

Gebert, 2006), Kortenkamp and Richter-Gebert resolved the problem as follows: In
order to obtain continuous respectively analytic behaviour of dependent elements,
we must avoid singularities. To that end, we parameterize any movement of a free
element using a time parameter t. Singularities often occur along the real time axis.
Therefore, instead of performing homotopy continuation along the real time axis,

5

1 Introduction

we embed the real time axis as the real axis of the complex plane. This allows us to
let time parameter t take detours through the complex plane between consecutive
sampling points on the real time axis. If we choose such complex detours randomly,
we avoid singularities with high probability. If we use a complex detour free of
singularities as a homotopy path, we obtain a uniquely defined instance of the
construction at its end point. If the real time axis and the homotopy path do
not enclose singularities between them, then by the monodromy theorem they are
equivalent w.r.t. homotopy continuation, i.e. they yield the same final instance of
the construction.

In order to determine the correct final instance of a construction obtained from
homotopy continuation along a given homotopy path of a free element (assumed
to be free of singularities), Cinderella uses a heuristic that appears to work well in
most practical examples (Richter-Gebert, 2014). To decide whether an instance of a
geometric construction results from another instance under homotopy continuation
along a given homotopy path of a free element is the tracing problem of dynamic
geometry. Kortenkamp and Richter-Gebert show that, using geometric straight-line
problems to describe the construction, the tracing problem of dynamic geometry
is NP-hard, already for constructions using only free points, join (connecting line
of two points), meet (intersection of two lines), and angle bisector as admissible
geometric primitive operations (Kortenkamp and Richter-Gebert, 2002, Section 5).
The reachability problem of dynamic geometry, to decide whether an instance of
a construction can be continuously deformed into another by movement of free
elements, is NP-hard, PSPACE-hard, or even undecidable, depending on the set of
admissible geometric primitive operations and depending on the exact modelling of
the problem (Kortenkamp and Richter-Gebert, 2002, Sections 4, 6, and 7). Note that
even though the tracing problem and the reachability problem may be intractable
in the worst case (if P 6= NP), we may still find algorithms for these problems with
acceptable average-case complexity.

Another problem of dynamic geometry closely related to the tracing problem is the
problem of finding loci. Consider a geometric construction with a semi-free element,
i.e. an element constrained to movement with one degree of freedom, for example a
point on a line, a point on a circle, or a line through a point. We call the semi-free
element ‘mover’. Suppose that the elements of the construction behave continuously
under movement of the mover. Then under the constrained one-dimensional motion
of the mover, any point of the construction whose position depends on that of the
mover traces a curve. We call such a point ‘tracer’. If the geometric operations by
which we construct the tracer from the mover and other elements of the construction
possess an algebraic representation, then the curve traced by the tracer is (part
of) a plane algebraic curve. The problem of finding the locus of the tracer under
movement of the mover is to determine the real connected component of the plane
algebraic curve that contains the initial position of the tracer.

The goal of this thesis is to give, analyze, or extend algorithms, some of them based
on previous work by Kortenkamp, Richter-Gebert, Lebmeir, and Denner-Broser,

6

1.3 Summary

that address the tracing problem of dynamic geometry and the problem of finding
loci.

1.3 Summary

We discuss algorithms that realize or exploit continuity in dynamic geometry.

In particular, we examine certified homotopy continuation of systems of plane
algebraic curves (Chapter 2) and of geometric constructions (Chapter 3), generation
and identification of real algebraic loci (Chapter 4 and Chapter 5), and GPU-
based visualization of plane algebraic curves as domain-coloured Riemann surfaces
(Chapter 6). Moreover, we provide a sampler of plane algebraic curves, which we
construct as loci and visualize as domain-coloured Riemann surfaces (Chapter 7).

Chapter 2

In Chapter 2, we explain how, given a plane algebraic curve C : f(x, y) = 0, x1 ∈ C

not a singularity of y w.r.t. x, and ε > 0, we can compute δ > 0 such that
|yj(x1)− yj(x2)| < ε for all holomorphic functions yj(x) that satisfy f(x, yj(x)) = 0
in a neighbourhood of x1 and for all x2 with |x1 − x2| < δ. Consequently, we obtain
a certified algorithm for homotopy continuation of plane algebraic curves. The
certificate is rigorous for exact real arithmetic; for floating point arithmetic, it is
a soft certificate. As an example application, we study continuous deformation of
closed discrete Darboux transforms. Moreover, we discuss a scheme for reliable
homotopy continuation of triangular polynomial systems. A general implementation
has remained elusive so far. However, the epsilon-delta bound enables us to handle
the special case of systems of plane algebraic curves. The bound helps us to determine
a feasible step size and paths that are equivalent w.r.t. analytic continuation to the
actual paths of the variables but along which we can proceed more easily. Several
examples demonstrate the practicability of our approach.

Chapter 3

In Chapter 3, we change perspective from algebraic equations describing geometric
elements of a construction to algebraic equations describing elementary operations
of the computation of coordinates. This leads us from the general scheme for
certified homotopy continuation of triangular systems of polynomials of Section 2.5
to Denner-Broser’s approach to the tracing problem in dynamic geometry (Denner-
Broser, 2008, Section 6; 2013). We model the computation of coordinates as a
special triangular system of polynomials, where each polynomial equation encodes
an elementary operation (arithmetic or n-th root). Analogously to the epsilon-
delta bound of Chapter 2, we use complex circular arithmetic to bound the range
of elementary operations. We obtain an algorithm (based on (Denner-Broser,
2008, Section 6.2, Algorithm 2 and Algorithm 3)) that determines a feasible step size
for homotopy continuation of a sequence of elementary operations. It certifies that

7

1 Introduction

we do not encounter singularities along homotopy paths and that we can choose the
right branch of n-th root operations by proximity.

Chapter 4

In Chapter 4, we discuss the locus generation algorithm used by the dynamic geo-
metry software Cinderella, and how it uses complex detours to resolve singularities.
We show that the algorithm is independent of the clockwise or anticlockwise ori-
entation of its complex detours. We conjecture that the algorithm terminates if
it takes small enough complex detours and small enough steps on every complex
detour. Moreover, we introduce a variant of the algorithm that possibly generates
entire real connected components of real algebraic loci. Several examples illustrate
its use for organic generation of real algebraic loci. Another example shows how we
can apply the algorithm to simulate mechanical linkages. Apparently, the use of
complex detours produces physically reasonable motion of such linkages.

Chapter 5

The locus generation algorithms of Chapter 4 yield a point cloud of points on a locus.
In Chapter 5, we discuss a randomized algorithm that determines an approximate
coefficient vector of a real plane algebraic curve containing a real algebraic locus
from such a point cloud. It is a randomized version of the algorithm presented
in (Lebmeir and Richter-Gebert, 2007). We extend the algorithm so that we can
also determine an approximate rational parameterization for rational plane algebraic
curves.

Chapter 6

In Chapter 6, we examine an algorithm for the visualization of domain-coloured
Riemann surfaces of plane algebraic curves. The approach faithfully reproduces the
topology and the holomorphic structure of the Riemann surface. We discuss how
the algorithm can be implemented efficiently in OpenGL with geometry shaders,
and (less efficiently) even in WebGL with multiple render targets and floating
point textures. While the generation of the surface takes noticeable time in both
implementations, the visualization of a cached Riemann surface mesh is possible
with interactive performance. This allows us to visually explore otherwise almost
unimaginable mathematical objects. As examples, we look at the complex square
root and the folium of Descartes. For the folium of Descartes, the visualization
reveals features of the algebraic curve that are not obvious from its equation.

Chapter 7

Chapter 7 presents a sampler of plane algebraic curves in a novel way. For every
curve, we give a construction that produces the curve as a real algebraic locus.

8

1.3 Summary

Moreover, we visualize the corresponding domain-coloured Riemann surface using
the algorithms of Chapter 6.

Chapter 8

Chapter 8 provides an outlook on open theoretical questions and planned practical
applications.

Previously published work

Chapter 2, Chapter 4, and Chapter 6 are based on three articles posted as preprints
on the arXiv, (Kranich, 2015a; 2015b; 2015c).

9

10

2 Homotopy Continuation of Systems of
Plane Algebraic Curves

11

2 Homotopy Continuation of Systems of Plane Algebraic Curves

2.1 Motivation

In many geometric problems, variables depend analytically on some parameter. If
we want to analyze and experiment with these problems using interactive software,
whenever the user continuously modifies the parameter, we must update the de-
pendent variables accordingly. For many applications, in doing so, the analytical
relationship between variables and parameter should be preserved at all times.
Therefore we need reliable algorithms for analytic continuation.

Consider for example the following problem of discrete differential geometry (Hoff-
mann, 2009, Section 2.6). Let there be a regular discrete curve γ in CP1, i.e. a
polygonal chain with distinct vertices γ0, γ1, . . . , γn ∈ CP1. We define the discrete
Darboux transform γ̃ of γ with initial point γ̃0 ∈ CP1 and parameter µ ∈ C as
follows: for all j = 1, 2, . . . , n, let γ̃j ∈ CP1 be the unique point for which the
cross-ratio

(γj−1, γj ; γ̃j , γ̃j−1) :=
(γj−1 − γ̃j)(γj − γ̃j−1)

(γj−1 − γ̃j−1)(γj − γ̃j)
= µ.

It can be shown that γ̃j−1 is mapped to γ̃j by a unique Möbius transformation,
which depends only on γj−1, γj , and µ, but not on γ̃j . Hence, there exists a unique
Möbius transformation M depending on γ0, γ1, . . . , γn, and µ, which maps an
initial point γ̃0 to the corresponding last point γ̃n of γ̃. Consequently, for every
choice of µ ∈ C, there are two choices of initial point γ̃0 (counted with multiplicity)
such that γ̃ is a closed polygonal chain. These are exactly the fixed points of M
or, in other words, the roots of the characteristic polynomial of M . The vanishing
of the characteristic polynomial establishes an algebraic (particularly analytical)
relationship between µ and γ̃0.
If we want to study closed Darboux transforms of a discrete curve γ for varying

parameter µ using interactive software, then we must analytically continue γ̃0.
Otherwise we may observe sudden jumps of γ̃0 under continuous movement of µ,
which have no mathematical justification.

In practice, of course, we cannot modify a parameter continuously. Instead, we
obtain a series of parameter values at a series of discrete points in time. We do
not know how the parameter moves between sample points. A natural approach
would be to interpolate linearly between consecutive parameter values (using a time
parameter in the unit interval). However, the segment between parameter values may
contain singularities beyond which analytic continuation becomes impossible. Thus
it seems reasonable to analytically continue along the polygonal chain of parameter
values as long as this is possible, and to deviate from that path otherwise. Such
a deviation can still be interpreted as a linear interpolation between consecutive
parameter values if we let the time parameter run from 0 to 1 on an arbitrary path
through the complex plane instead of restricting it to the unit interval.

This is the paradigm of ‘complex detours’ invented by Kortenkamp and Richter-
Gebert for their interactive geometry software Cinderella (Kortenkamp and Richter-
Gebert, 2006). It is described in more detail in (Kortenkamp, 1999, esp. Chapter 7;
Kortenkamp and Richter-Gebert, 2001b; 2002). Essentially the same concept was

12

2.2 Computing an epsilon-delta bound for plane algebraic curves

conceived in the context of homotopy continuation by Morgan and Sommese (Morgan
and Sommese, 1987), who later named it the ‘gamma trick’ (Sommese and Wampler,
2005, Lemma 7.1.3 on p. 94).

Once we have chosen a path for the parameter, we must determine the right
value of the dependent variable at consecutive sample points. How this can be
achieved may in fact be relatively easy to see for us—just determine values in a
way such that there are no jumps—but hard to see for an algorithm. The tracing
problem of dynamic geometry, i.e. tracing the positions of dependent elements of a
geometric construction under movement of a free element, is NP-complete already
for constructions that only involve points, lines through two points, intersection of
lines, and angle bisectors (Kortenkamp and Richter-Gebert, 2002).
The interactive geometry software Cinderella currently uses a heuristic for path

following. Most homotopy continuation methods use a predictor-corrector approach,
which is generally also heuristic. For an overview of homotopy continuation methods,
consider the books by Allgower and Georg (1990) or Sommese and Wampler (2005).
Lately, certified homotopy continuation methods have emerged (Beltrán and Leykin,
2012; 2013; Hauenstein and Sottile, 2012; Hauenstein et al., 2014). They are based
on Smale’s alpha theory (Smale, 1986).

In what follows, we derive a certified algorithm for analytic continuation of plane
algebraic curves based on the following simple observation: Due to continuity, if
the parameter moves little, so does the dependent variable. Hence, if we take
small enough steps along the parameter path, we can choose the right value of the
dependent variable based on proximity. As an application, we return to the example
of continuous deformation of closed discrete Darboux transforms. Moreover, we show
how the algorithm generalizes to systems of plane algebraic curves. A comparison
with other approaches demonstrates the practicability of our algorithms.

2.2 Computing an epsilon-delta bound for plane algebraic

curves

Theorem 2.2.1. Let C : f(x, y) = 0 be a complex plane algebraic curve, where

f(x, y) =
n
∑

k=0

ak(x)y
n−k

is a polynomial of degree n in y whose coefficients ak(x) are polynomials in x. Let
x1 ∈ C be a point in the complex plane at which neither the leading coefficient
a0(x) nor the discriminant of f(x, y) w.r.t. y vanish. Then for every ε > 0, we can
algorithmically compute δ > 0 such that

|yj(x1)− yj(x2)| < ε

for all holomorphic functions yj(x), j = 1, 2, . . . , n, that satisfy f(x, yj(x)) = 0 in a
neighbourhood of x1 and for all x2 with |x1 − x2| < δ.

13

2 Homotopy Continuation of Systems of Plane Algebraic Curves

Remark 2.2.2. How does Theorem 2.2.1 help us to perform analytic continuation?
Let ε be half the minimal distance between the y-values at x1. Then for any x2 less
than δ away from x1 the following holds: The y-value yj(x2), which results from
analytic continuation of yj(x) along the segment from x1 to x2, is closer to yj(x1)
than to any other y-value at x1. In other words, δ provides an upper bound for the
step width of parameter x such that we may match y-values on the same branch
based on proximity.

Our plan for the proof of Theorem 2.2.1 is as follows: We will see that there is an
upper bound of δ depending on

1. the radius of convergence of the Taylor expansion of yj(x) at x1,

2. the modulus of the derivative of yj(x) at x1,

3. the maximum modulus of yj(x) on a circle centred at x1,

for j = 1, 2, . . . , n, respectively. We derive a formula for that upper bound and then
compute bounds for its ingredients. To this end, we need the following lemmas.

Lemma 2.2.3. Let U ⊂ C be an open subset of the complex plane, and let

yj : U → C

be holomorphic. Taylor expansion of yj around x1 ∈ U yields

yj(x2) = yj(x1) + (x2 − x1)y
′
j(x1) + (x2 − x1)

2R(x2),

for all x2 ∈ C such that |x2 − x1| < ρ and sufficiently small ρ > 0. The remainder
R(x2) satisfies

|R(x2)| ≤
M

ρ(ρ− |x2 − x1|)
where

M = max
t∈[0,2π]

|yj(x1 + ρeit)|.

Lemma 2.2.3 is a standard result of complex analysis (Ahlfors, 1979, p. 124–126),
which we therefore do not prove here.

Lemma 2.2.4 (implicit differentiation). Let f(x, y) be a complex polynomial. Let
U ⊂ C be an open subset of the complex plane. Let yj : U → C be a holomorphic
function that satisfies f(x, yj(x)) = 0 for all x ∈ U . Then for all x1 ∈ U with
fy(x1, yj(x1)) 6= 0 it follows that

y′j(x1) = −fx(x1, yj(x1))

fy(x1, yj(x1))
.

14

2.2 Computing an epsilon-delta bound for plane algebraic curves

Proof. By the chain rule, the total differential of f(x, yj(x)) = 0 w.r.t. x is

Df(x, yj(x)) = fx(x, yj(x)) + fy(x, yj(x)) · y′j(x) = 0.

Therefore

y′j(x1) = −fx(x1, yj(x1))

fy(x1, yj(x1))
.

Lemma 2.2.5 (Fujiwara (1916, Inequality 3 on p. 168)). Consider a polynomial

p(x) =
n
∑

k=0

akx
n−k

of degree n with complex coefficients ak ∈ C, k = 0, 1, . . . , n. Then all x̄ ∈ C with
p(x̄) = 0 satisfy

|x̄| < 2max

{

∣

∣

∣

∣

ak
a0

∣

∣

∣

∣

1

k

: k = 1, . . . , n

}

.

Proof. Consider the inequality

|p(x)| ≥ |a0||x|n −
n
∑

k=1

|ak||x|n−k. (2.1)

The RHS of (2.1) is positive if

|a0||x|n ≥ 2k|ak||x|n−k, k = 1, 2, . . . , n,

because then

|a0||x|n > (1− 2−n)|a0||x|n =

n
∑

k=1

2−k|a0||x|n ≥
n
∑

k=1

|ak||x|n−k.

Hence, |p(x)| > 0 if

|x| ≥ max

{

2k
∣

∣

∣

∣

ak
a0

∣

∣

∣

∣

} 1

k

and thus

|x̄| < 2max

{

∣

∣

∣

∣

ak
a0

∣

∣

∣

∣

1

k

: k = 1, . . . , n

}

for all zeros x̄ ∈ C of p(x).

Lemma 2.2.6 (bounds for trigonometric polynomials). Consider a trigonometric
polynomial of degree n of the form

p(x1 + ρeit) =
n
∑

k=0

ak(x1 + ρeit)
n−k

.

15

2 Homotopy Continuation of Systems of Plane Algebraic Curves

Then

|p(x1 + ρeit)| ≤
n
∑

k=0

|ak|(|x1|+ |ρ|)n−k.

Moreover, if the zeros x̄1, x̄2, . . . , x̄n of p(x) satisfy |x̄k − x1| > ρ then

|p(x1 + ρeit)| ≥ |a0|
n
∏

k=0

(|x̄k − x1| − ρ) > 0.

Proof. The upper bound follows from the triangle inequality. The lower bound
follows from the factorization

p(x1 + ρeit) = a0

n
∏

k=0

(x1 + ρeit − x̄k)

and the fact that |x1 + ρeit − x̄k| ≥ |ρ − |x̄k − x1||. Note that the lower bound
is positive by the assumptions that |x̄k − x1| > ρ and that p has degree n, i.e.
a0 6= 0.

Proof of Theorem 2.2.1. Let yj(x), j = 1, . . . , n, denote the holomorphic functions
that satisfy f(x, yj(x)) = 0 in a neighbourhood of x1. By Lemma 2.2.3,

yj(x2) = yj(x1) + (x2 − x1)y
′
j(x1) + (x2 − x1)

2Rj(x2) (2.2)

for all x2 ∈ C such that |x2−x1| < ρ and sufficiently small ρ > 0. If we bring yj(x1)
to the LHS of (2.2), take the absolute value on both sides, and apply the triangle
inequality, we see that

|yj(x1)− yj(x2)| = |x2 − x1||y′j(x1) + (x2 − x1)Rj(x2)|
≤ |x2 − x1|(|y′j(x1)|+ |x2 − x1||Rj(x2)|)
= |Rj(x2)||x2 − x1|2 + |y′j(x1)||x2 − x1|. (2.3)

Hence, under the above assumptions,

|Rj(x2)||x2 − x1|2 + |y′j(x1)||x2 − x1| − ε < 0. (2.4)

is a sufficient condition for |yj(x1)− yj(x2)| < ε.
The LHS of (2.4) is strictly increasing in |y′j(x1)| and |Rj(x2)|. Therefore, if we

plug in the bounds
|y′j(x1)| ≤ max

j
|y′j(x1)| =: Y (2.5)

and

|Rj(x2)| ≤
M

ρ(ρ− |x2 − x1|)
(see Lemma 2.2.3) into (2.4), we obtain a stronger sufficient condition for

|yj(x1)− yj(x2)| < ε,

16

2.2 Computing an epsilon-delta bound for plane algebraic curves

namely

M

ρ(ρ− |x2 − x1|)
|x2 − x1|2 + Y |x2 − x1| − ε < 0

⇔ M |x2 − x1|2 + ρ(ρ− |x2 − x1|)(Y |x2 − x1| − ε) < 0

⇔ (M − ρY)|x2 − x1|2 + ρ(ρY + ε)|x2 − x1| − ερ2 < 0. (2.6)

How we can transform (2.6) into a sufficient bound on |x2 − x1| depends on the sign
of M − ρY .

First case: M − ρY > 0. The LHS of (2.6) describes a smile parabola in |x2 − x1|
with a positive and a negative root. Since |x2−x1| ≥ 0, we need only bound |x2−x1|
from above by the positive root, i.e.

|x2 − x1| <
−ρ(ρY + ε) +

√

ρ2(ρY + ε)2 + 4(M − ρY)ερ2

2(M − ρY)

=

ρ

(

√

(ρY − ε)2 + 4εM − (ρY + ε)

)

2(M − ρY)
.

Second case: M − ρY < 0. The LHS of (2.6) describes a frown parabola in |x2−x1|
with one root greater than ρ and one root between 0 and ρ. Since |x2 − x1| < ρ by
definition, we need only bound |x2 − x1| from above by the smaller root, i.e.

|x2 − x1| <
ρ(ρY + ε)− ρ

√

(ρY + ε)2 − 4(ρY −M)ε

2(ρY −M)

=

ρ

(

√

(ρY − ε)2 + 4εM − (ρY + ε)

)

2(M − ρY)
.

Third case: M − ρY = 0. The LHS of (2.6) reduces to

ρ(ρY + ε)|x2 − x1| − ερ2 < 0 ⇔ |x2 − x1| <
ερ

ρY + ε
.

This bound is asymptotically equivalent to the previous bounds as M approaches
ρY . Altogether, we thus arrive at the sufficient bound

|x2 − x1| <
ρ

(

√

(ρY − ε)2 + 4εM − (ρY + ε)

)

2(M − ρY)
. (2.7)

The RHS of (2.7) has the expected qualitative behaviour: It is strictly increasing in
ε and ρ, and strictly decreasing in M and Y .

It remains to be shown that we can compute bounds for the ingredients ρ, Y , and
M of (2.7).

17

2 Homotopy Continuation of Systems of Plane Algebraic Curves

Lemma 2.2.3 (and thus our argument) is valid if and only if ρ is smaller than the
radius of convergence of the Taylor expansion of yj(x). Therefore, we must choose ρ
smaller than the distance between x1 and the singularities of yj(x), j = 1, 2, . . . , n.
Recall that yj(x) satisfies f(x, yj(x)) = 0 in a neighbourhood of x1, where

f(x, y) =

n
∑

k=0

ak(x)y
n−k.

In particular, ρ must be smaller than the distance between x1 and the zeros of a0(x).
The zeros of a0(x) are exactly the poles of yj(x). The remaining finite singularities
of yj(x) are exactly the finite ramification points of yj(x). These are zeros of the
discriminant of f(x, y) w.r.t. y. Hence, we may choose any

ρ < min{|x1 − x| : a0(x) ·∆y(f(x, y))(x) = 0},

where ∆y(f(x, y))(x) denotes the discriminant of f w.r.t. y.

We can compute

Y = max
j

|y′j(x1)| = max
j

∣

∣

∣

∣

fx(x1, yj(x1))

fy(x1, yj(x1))

∣

∣

∣

∣

by Lemma 2.2.4. Note that the denominator does not vanish by the assumption
that x1 is not a zero of the discriminant of f(x, y) w.r.t. y.

Therefore, M remains to be computed or bounded from above. To that end, we
can apply Lemma 2.2.5 to

f(x, yj(x)) =

n
∑

k=0

ak(x)yj(x)
k,

interpreted as a polynomial in yj(x). By our choice of ρ, the leading coefficient a0(x)
does not vanish for all x with |x− x1| ≤ ρ. For those x and for all j = 1, 2, . . . , n,
Lemma 2.2.5 yields

|yj(x)| < 2max

{

∣

∣

∣

∣

ak(x)

a0(x)

∣

∣

∣

∣

1

k

| k = 1, . . . , n

}

.

Consequently,

M < 2 max
t∈[0,2π]

{

∣

∣

∣

∣

ak(x1 + ρeit)

a0(x1 + ρeit)

∣

∣

∣

∣

1

k

| k = 1, . . . , n

}

.

By Lemma 2.2.6, we can compute upper bounds ãk of maxt∈[0,2π] |ak(x1 + ρeit)| and
a lower bound ã0 > 0 of mint∈[0,2π] |a0(x1+ρeit)|, which are much easier to compute
than these extreme values.

18

2.3 Certified homotopy continuation of plane algebraic curves

The zeros of a0(x) and of ∆y(f(x, y))(x) can be computed (at least to arbitrary
precision) using a root-finding algorithm. Similarly, the values yj(x1), j = 1, 2, . . . , n,
can be computed (at least to arbitrary precision) by solving

f(x1, yj(x1)) = 0

for yj(x1).
Let us summarize our argument: We may choose

δ =

ρ

(

√

(ρY − ε)2 + 4εM − (ρY + ε)

)

2(M − ρY)
, (2.8)

where

ρ < min{|x1 − x| : a0(x) ·∆y(f(x, y))(x) = 0},

Y := max
j

∣

∣

∣

∣

fx(x1, yj(x1))

fy(x1, yj(x1))

∣

∣

∣

∣

, M := 2max
k

(

ãk
ã0

) 1

k

.

Remark 2.2.7. For Theorem 2.2.1 to hold, f(x, y) needs neither be irreducible nor
square-free. However, if f(x, y) is not square-free, the discriminant may vanish
identically and the epsilon-delta bound is no longer useful. If f(x, y) is square-
free but not irreducible, the epsilon-delta bound for y-values on one irreducible
component may be smaller than necessary due to the influence of zeros of the
discriminant of other irreducible components.

2.3 Certified homotopy continuation of plane algebraic

curves

Theorem 2.2.1 enables us to solve the following problem:

Problem 2.3.1. Consider a plane algebraic curve

C : f(x, y) = 0.

Let x : [0, 1] → C, t 7→ x(t) be a monotonic (distance non-decreasing) path, i.e.

|x(0)− x(t1)| ≤ |x(0)− x(t2)| for 0 ≤ t1 ≤ t2 ≤ 1.

Let y(0) ∈ C satisfy f(x(0), y(0)) = 0. If analytic continuation of y along x(t) is
possible, determine the value y(1) that results from initial value y(0) under analytic
continuation of y along x(t).

The algorithm for Problem 2.3.1 follows from Remark 2.2.2:

Algorithm 2.3.2. Let f(x, y), x(t), and y(0) be defined as in Problem 2.3.1.

19

2 Homotopy Continuation of Systems of Plane Algebraic Curves

1. Let T = 0.

2. While T < 1,

a) Let ε be half the minimum distance between the y with

f(x(T), y) = 0.

b) Compute δ by the epsilon-delta bound of Theorem 2.2.1.

c) Use bisection to maximize T ∗ ∈ [T, 1] such that |x(T)− x(T ∗)| < δ.

d) Let T = T ∗.

e) Let y(T) be the y with f(x(T), y) = 0 closest to y(0).

3. Output y(1) and stop.

2.4 Case study: continuous deformation of closed discrete
Darboux transforms

Algorithm 2.3.2 shows how the epsilon-delta bound can be used for certified homotopy
continuation of plane algebraic curves. In this section, as an example application,
let us return to the closed discrete Darboux transform introduced in Section 2.1.
We generally follow the exposition of Hoffmann (2009, Section 2.6) but use a

slightly different definition of cross-ratio. (A value µ of our cross-ratio corresponds
to a value 1− µ of the cross-ratio in (Hoffmann, 2009, Section 2.6) and vice versa.)

Recall the definition of discrete Darboux transform:

Definition 2.4.1 (discrete Darboux transform). Let γ be a regular discrete curve
in CP1 with vertices γ0, γ1, . . . , γn ∈ CP1. We choose an initial point γ̃0 ∈ CP1 and
prescribe a cross-ratio µ ∈ C. The discrete Darboux transform of γ with initial point
γ̃0 and parameter µ is the unique discrete curve γ̃ whose vertices γ̃j , j = 1, 2, . . . , n,
satisfy

(γj−1, γj ; γ̃j , γ̃j−1) :=
(γj−1 − γ̃j)(γj − γ̃j−1)

(γj−1 − γ̃j−1)(γj − γ̃j)
= µ.

Lemma 2.4.2. Let a, b, d ∈ CP1 be in general position. For every µ ∈ C, there
exists a Möbius transformation depending on a, b, and µ that maps d to c ∈ CP1

such that (a, b; c, d) = µ.

Proof. Consider the Möbius transformation

M : x 7→ x− a

x− b
,

which maps a, b, and d to 0, ∞, and d′ respectively. The cross-ratio is invariant
under Möbius transformations. Hence, if we denote the image of c under M as c′,
we want that

(0,∞; c′, d′) =
(0− c′)(∞− d′)

(0− d′)(∞− c′)
=

c′

d′
= µ.

20

2.4 Continuous deformation of closed discrete Darboux transforms

We define the Möbius transformations

N : d′ 7→ c′ = µd′, M−1 : x′ 7→ bx′ − a

x′ − 1
.

Then the Möbius transformation

M−1 ◦N ◦M : d 7→ (µb− a)d− (µ− 1)ab

(µ− 1)d+ b− µa

maps d ∈ CP1 to c ∈ CP1 such that (a, b; c, d) = µ.

Note that (M−1 ◦N ◦M)(a) = a and (M−1 ◦N ◦M)(b) = b, independent of µ.

Lemma 2.4.3. There exists a Möbius transformation depending on γ0, γ1, . . . ,
γn, and µ that maps an initial point γ̃0 of a discrete Darboux transform of γ with
parameter µ to the corresponding end point γ̃n.

Proof. By Lemma 2.4.2, there exist Möbius transformations Mj , j = 1, 2, . . . , n,
depending on γj−1, γj , and µ that map γ̃j−1 to γ̃j . Therefore their composition
Mn ◦Mn−1 ◦ · · · ◦M1 is a Möbius transformation depending on γ0, γ1, . . . , γn, and
µ that maps γ̃0 to γ̃n.

Remark 2.4.4. A discrete Darboux transform γ̃ is closed if and only if its initial
point γ̃0 is a fixed point of the Möbius transformation of Lemma 2.4.3. The Möbius
transformation of Lemma 2.4.3 is of the form

x 7→ ax+ b

cx+ d
,

where a, b, c, and d are polynomials in µ with complex coefficients depending on γ0,
γ1, . . . , γn. Its fixed points are the roots of the equation

(cx+ d)x− (ax+ b) = cx2 + (d− a)x− b = 0.

This equation is quadratic in x. Its degree in µ increases with the number of points
of γ. Equivalently, in homogeneous coordinates, the fixed points are the eigenvectors
of matrix

(

a b
c d

)

.

Example 2.4.5. As a simple but interesting enough example, consider the closed
discrete curve γ spanned by the fifth roots of unity,

γj = e2πij/5, j = 0, 1, . . . , 5.

The relationship between µ and the initial point γ̃0 of a closed discrete Darboux
transform γ̃ of γ is governed by the equation

[((

−3 +
√
5
)

µ2 + 6µ− 3−
√
5
)

γ̃20 +
((

−2− 4
√
5
)

µ+ 1 +
√
5
)

γ̃0

+
(

−3 +
√
5
)

µ2 + 6µ− 3−
√
5
]

(1− µ) = 0.
(2.9)

21

2 Homotopy Continuation of Systems of Plane Algebraic Curves

Figure 2.4.6: continuous deformation of a closed discrete Darboux transform

Equation (2.9) is quadratic in γ̃0, cubic in µ, and has total degree 5. For almost
every value of µ, exactly two values of γ̃0 satisfy the equation. The only exceptions

are µ = 3+
√
5

8 and µ = ∞, which are ramification points of γ̃0, i.e. points where
there is only one value of γ̃0, which is a root of multiplicity 2 of (2.9).

The discrete Darboux transform γ̃ of γ with initial point γ̃0 = γ1 and parameter
µ = 0 is identical to γ up to a rotation by 2π/5, i.e.

γ̃j−1 = e2πi/5 · γj−1 = γj

for all j = 0, 1, . . . , n. Particularly, the discrete curve γ̃ is closed.

We would like to examine how the closed Darboux transform γ̃ behaves when µ

makes two full anticlockwise turns around the ramification point 3+
√
5

8 on a circle

through the origin centred at
(

3+
√
5

8

)

/2 + 1
1000 .

Figure 2.4.6 illustrates the behaviour of the closed Darboux transform γ̃ under
the aforementioned motion of µ. We can read Figure 2.4.6 in two different ways:

Firstly, the left image shows the movement of γ̃0 (grey points) as µ (white points)
completes one full circle. Then the right image shows the movement of γ̃0 (grey
points) as µ (white points) completes another full circle. The position of the Darboux
transform (black) after one turn of µ is identical to the initial position up to rotation.
The final position of the Darboux transform after the second turn is absolutely
identical to the initial position.

Secondly, the left image shows the movement of one choice of γ̃0 such that γ̃ is
closed as µ completes one full circle. The right image shows how the other choice of
γ̃0 such that γ̃ is closed moves at the same time. After one turn of µ we reach the
initial position up to interchanged choices of γ̃0. (In the left image, γ̃0 moves from
γ1 to γ4 while in the right image, γ̃0 moves from γ4 to γ1.) After another turn of µ,
the two choices of γ̃0 reach their initial positions again.

Following Remark 2.2.2, the steps of µ are chosen according to the epsilon-delta
bound of Theorem 2.2.1 for (2.9) with ε half the distance between the two choices

22

2.4 Continuous deformation of closed discrete Darboux transforms

of γ̃0. As we expect, the closer µ approaches the singularity the smaller the steps
become. At its rightmost position, µ is only 1

1000 away from the singularity. It takes
127 steps until µ completes one full circle.

Remark 2.4.7. If we want to prevent jumps, µ and γ̃0 cannot both be freely movable,
i.e. we cannot let µ and γ̃0 interchange their roles as movable and dependent point.
Otherwise, we can force a jump as follows: We move parameter µ to µ = 1. At the
same time, according to (2.9), the two possible initial points of γ̃ move to the origin
and the point at infinity, respectively. Without loss of generality, we assume that
γ̃0 moved to the origin. Note that µ = 1 describes an irreducible component of the
plane algebraic curve (2.9). This means that if we remove γ̃0 from the origin, µ
will simply rest at µ = 1. Then we cannot move µ without a jump of γ̃0 because
in order to move continuously, γ̃0 would initially have to be arbitrarily close to the
origin (or the point at infinity).

Remark 2.4.8. Floating point arithmetic introduces rounding errors into the compu-
tation of γ̃0. This has a peculiar effect: If γ̃ is closed, we know that γ̃0 must be one
of the two fixed points of the Möbius transformation M that maps the initial point
γ̃0 of γ̃ to its last point γ̃n. In general, a Möbius transformation has one attracting
and one repelling fixed point. When the fixed point is repelling, any numerical
error in its position is amplified by Möbius transformation M . Therefore, the closed
Darboux transform may (numerically) no longer be closed when computed naively.
We have observed (see Figure 2.4.6) that we can move from one choice of γ̃0 to
the other by moving µ around a ramification point. The natural domain for the
map c : µ 7→ γ̃0 is a Riemann surface. Different choices of γ̃0 correspond to different
branches of the Riemann surface. When we compute the vertices of γ̃, we step by
step compute M ◦ c = Mn ◦Mn−1 ◦ · · · ◦M1 ◦ c. Note that function M ◦ c is an
example of a function on a Riemann surface that is numerically stable on one branch
and numerically unstable on the other.
Luckily, we can stabilize the computation by considering the inverse Möbius

transformation M−1. A repelling fixed point of a Möbius transformation is an
attracting fixed point of its inverse. We can step by step compute M−1 ◦ c =
M−1

1 ◦M−1
2 ◦ · · · ◦M−1

n ◦ c to obtain the vertices of γ̃ in reversed order. Since the
cross-ratio of A,B,C,D satisfies (A,B;C,D) = (B,A;D,C), we need only change
our algorithm very little in order to obtain M−1 = M1 ◦M2 ◦ · · · ◦Mn instead of
M = Mn ◦Mn−1 ◦ · · · ◦M1; we only need to reverse the order of the vertices of γ̃
before we compute the Möbius transformations.
Besides, we can determine whether γ̃0 approximates an attracting fixed point of

M by considering the derivative of M at γ̃0. The fixed point near γ̃0 is attracting if
the absolute value of the derivative is smaller than 1.

23

2 Homotopy Continuation of Systems of Plane Algebraic Curves

2.5 Towards homotopy continuation of triangular systems

of polynomials

In this section, we discuss a scheme for certified homotopy continuation of triangular
systems of polynomials. A general implementation has remained elusive so far.
However, we later follow the same scheme when we derive an algorithm for certified
homotopy continuation of systems of plane algebraic curves (Algorithm 2.6.4).

Problem 2.5.1. Consider a triangular system of polynomials, without loss of
generality

p1(x0, x1) = 0,

p2(x0, x1, x2) = 0,

...

pn(x0, x1, . . . , xn) = 0.

(2.10)

Let x0(0), x1(0), . . . , xn(0) be initial values that satisfy the system of equations
and let x0(1) be a target value for variable x0, i.e. a value to which x0 should move
continuously. We define function x0(t) as a parameterization of the segment between
x0(0) and x0(1),

x0(t) = (1− t)x0(0) + tx0(1).

By analytic continuation w.r.t. t ∈ [0, 1] we can (unless there are singularities
on the curves along which we perform analytic continuation) step by step define
holomorphic functions x1(t), x2(t), . . . , xn(t). For example, we obtain x1(t) from
p1(x0(t), x1(t)) = 0, then x2(t) from p2(x0(t), x1(t), x2(t)) = 0, etc.

Compute the target values x1(1), x2(1), . . . , xn(1) from the given polynomial
system, all initial values and the first target value.

Remark 2.5.2. Any algorithm for this problem has to face the following fundamental
difficulty: Among all paths xj(t) along which we perform analytic continuation to
define the next path xk(t), generally only x0(t) is linear. The other paths x1(t), x2(t),
. . . , xn(t) are almost always curvilinear—and unknown. We can at best evaluate
x1(t), x2(t), . . . , xn(t) at finitely many discrete points in time and interpolate
between the sample points. However, we must make sure that the approximate
paths we obtain by discretization remain close enough to the actual paths such that
they yield the same result w.r.t. analytic continuation. In particular, we must make
sure that in every step no singularities lie between approximate and actual path. To
make things worse, this includes singularities of variables that occur only in later
equations, whose position in time may change depending on how we approximate
the current step.

One way to attack this difficulty is to eliminate x1, x2, . . . , xn−1 from the
polynomial system (2.11), e.g. using resultants. However, this approach is expensive
and suffers from exponential expression swell. The resulting polynomial equation in
x0, xn very likely has a high total degree, huge coefficients, and many (artificial)

24

2.6 Homotopy continuation of systems of plane algebraic curves

critical points. This means that we can in principle apply the method for analytic
continuation of plane algebraic curves of Algorithm 2.3.2 but that in practice it
will often be too expensive (see Example 2.7.4). If elimination introduces artificial
critical points on the path of x0, Algorithm 2.3.2 does not even terminate.

Instead we pursue the following idea:

Remark 2.5.3 (General scheme for homotopy continuation of triangular systems).
We perform homotopy continuation of one equation after another, interpolating
linearly between sample points (using a time parameter in the unit interval). In
order to obtain sample points on the actual paths of the variables, we synchronize
the time step. This means that we let all variables make time steps of the same
size. We determine a step width such that analytic continuation by proximity is
possible (as in Remark 2.2.2), and such that the linearly interpolated paths between
consecutive sample points are equivalent to the actual paths of the variables w.r.t.
analytic continuation. To fulfil the latter requirement, the step width must be small
enough such that there are no singularities between linearly interpolated paths and
actual paths. We cannot foresee whether linear paths and actual paths enclose
singularities of variables that occur only in later equations. We must determine
whether this is the case when we later analytically continue the respective variable.
Should we find that we have ‘caught’ a singularity, we start over with a smaller step
width. Unless there are singularities on the actual paths of variables, there is a small
neighbourhood around the actual paths that is free of singularities. Eventually, after
finitely many reductions of step size, the linear paths approximate the actual paths
of the variables well enough such that we do not encounter singularities anymore.
Then we can make one synchronized time step with all variables. We proceed until
we reach time t = 1.

2.6 Certified homotopy continuation of systems of plane
algebraic curves

In full generality, it may be very difficult to decide whether or not there are
singularities between linearly interpolated paths and actual paths. (Among other
things, we may want to ensure that the (k − 1)-dimensional discriminant locus of
variable xk w.r.t. equation pk(x0, x1, . . . , xk) = 0 does not intersect the polydisc
around the last sample point with radii lengths of the linear paths.) Therefore, we
restrict ourselves to systems of plane algebraic curves, a special case of Problem 2.5.1.

Problem 2.6.1. Consider a system of bivariate polynomials, without loss of gener-
ality

p1(x0, x1) = 0,

p2(x1, x2) = 0,

...

pn(xn−1, xn) = 0.

(2.11)

25

2 Homotopy Continuation of Systems of Plane Algebraic Curves

Let x0(0), x1(0), . . . , xn(0) be initial values that satisfy the system of equations
and let x0(1) be a target value. We define function x0(t) as a parameterization of
the segment between x0(0) and x0(1),

x0(t) = (1− t)x0(0) + tx0(1).

By analytic continuation w.r.t. t ∈ [0, 1] we can (unless there are singularities
on the curves along which we perform analytic continuation) step by step define
holomorphic functions x1(t), x2(t), . . . , xn(t). For example, we obtain x1(t) from
p1(x0(t), x1(t)) = 0, then x2(t) from p2(x1(t), x2(t)) = 0, etc.
Compute the target values x1(1), x2(1), . . . , xn(1) from the given polynomial

system, all initial values and the first target value.

Before we describe an algorithm for Problem 2.6.1, we need the following lemma.

Lemma 2.6.2. Let C : f(x, y) = 0, x1 ∈ C be defined as in Theorem 2.2.1. Let
ε > 0. Suppose that we have determined δ > 0 by the epsilon-delta bound of
Theorem 2.2.1 such that

|yj(x1)− yj(x2)| < ε

for all holomorphic functions yj(x) that satisfy f(x, yj(x)) = 0 in a neighbourhood
of x1 and for all x2 with |x1 − x2| < δ.
Then for all x2 with δ′ = |x1 − x2| < δ,

ε′ =
δ′

δ
· ε < ε

satisfies
|yj(x1)− yj(x2)| < ε′.

This means that we can find a better estimate for the range of yj(x) w.r.t. an actual
feasible movement of x from x1 to x2.

Proof. Under the assumptions of Lemma 2.6.2,

f(x) =
yj(δx+ x1)− yj(x1)

ε

is a holomorphic function from the open unit disk to the open unit disk. By the
maximum modulus principle, we know that there exists a point on the boundary of
the disk of radius δ′ around x1 where |yj(x)− yj(x1)| is greater or equal than at any
point x with |x− x1| < δ′. Hence, there exists a point on the boundary of the disk
of radius δ′

δ around the origin where |f(x)| is greater or equal than at any point x

with |x| < δ′

δ . Schwarz lemma states that

|f(x)| ≤ |x|

for all x in the open unit disk. Therefore

ε′

ε
= max

t∈[0,1]

∣

∣

∣

∣

f

(

δ′

δ
· e2πit

)∣

∣

∣

∣

≤ max
t∈[0,1]

∣

∣

∣

∣

δ′

δ
· e2πit

∣

∣

∣

∣

=
δ′

δ
,

26

2.6 Homotopy continuation of systems of plane algebraic curves

and thus

ε′ ≤ δ′

δ
· ε

for all x2 with |x1 − x2| < δ′ < δ.

Remark 2.6.3. Alternatively, if we plug in δ = δ′ and ε = ε′ into (2.8) and solve for
ε′, we obtain

ε′ = δ′
(

ỹ +
Mδ′

ρ(ρ− δ′)

)

< ε,

with M , ρ, ỹ as in the proof of Theorem 2.2.1. This yields another better estimate
for the range of yj(x) w.r.t. an actual feasible movement of x from x1 to x2.

Algorithm 2.6.4. Consider the system of bivariate polynomials of Problem 2.6.1
with initial values x0(0), x1(0), . . . , xn(0) and a target value x0(1).

1. Define x0(t) = (1− t)x0(0) + tx0(1).

2. Let T = 1.

3. Let ε′0 = |x0(0)− x0(T)|.

4. For all k = 1, 2, . . . , n:

a) Let εk be half the minimum distance between the xk with

pk(xk−1(0), xk) = 0.

b) Compute δk according to the epsilon-delta bound of Theorem 2.2.1 for
f(x, y) = pk(xk−1, xk), x1 = xk−1(0) and ε = εk.

c) If δk < ε′k−1 then let T = T/2 and go to 3.

d) Let xk(T) be the xk with pk(xk−1(T), xk) = 0 closest to xk(0).

e) Let δ′k = |xk−1(0)− xk−1(T)|.
f) Let ε′k = (δ′k + ǫ)/δk · εk with ǫ > 0.

5. If T = 1 then output x1(T), x2(T), . . . , xn(T) and stop.

6. Let x0(0) = x0(T), x1(0) = x1(T), . . . , xn(0) = xn(T) and go to 1.

Theorem 2.6.5. If the target values x1(1), x2(1), . . . , xn(1) of Problem 2.6.1 are
well-defined, Algorithm 2.6.4 computes them in finitely many steps.

Proof. The first two steps of Algorithm 2.6.4 are initialization steps. In step 1, we
define a linear homotopy between initial value x0(0) and final value x0(1) of x0. We
first want to test whether we can perform analytic continuation of the system in a
single time step. Therefore, in step 2, we set target time T = 1.

Steps 3–6 form the main loop of our algorithm. They are repeated until we reach
time T = 1, in which case step 5 terminates the algorithm.

27

2 Homotopy Continuation of Systems of Plane Algebraic Curves

In step 3, we estimate the range of x0 as it runs from its initial position x0(0) to
its target position x0(T). Since x0(t) is linear by definition (step 1), our estimate
ε′0 = |x0(0)− x0(T)| is exact.
Step 4 is the inner loop of our algorithm, in which we try to perform analytic

continuation equation by equation of our system. Run variable k denotes the index
of the equation pk(xk−1, xk) under consideration.

In steps 4a–4b, we use the epsilon-delta bound of Theorem 2.2.1 and Remark 2.2.2
to compute a feasible step width δk for variable xk−1. If xk−1 moves at most δk
then we can perform analytic continuation of xk w.r.t. pk(xk−1, xk) = 0 by selecting
as xk(T) the value of xk with pk(xk−1(T), xk) = 0 closest to xk(0).

Hence, in step 4c, we test whether feasible step δk is smaller than an upper bound
ε′k−1 of the range of xk−1 as it runs from xk−1(0) to xk−1(T).

If δk < ε′k−1, we cannot be sure that there are no singularities between the actual
path of xk−1 and the interpolated path, i.e. the segment from xk−1(0) to xk−1(T).
Our attempt to reach target time T in one step has failed. Therefore, we halve
target time T and go back to step 3.

Otherwise, if δk ≥ ε′k−1, the epsilon-delta bound of Theorem 2.2.1 guarantees that
actual path and interpolated path of xk−1 are equivalent w.r.t. analytic continuation
of xk. Then in step 4d, we determine target value xk(T). By construction, xk(T) is
a point on the actual path of xk.

In steps 4e–4f, we use Lemma 2.6.2 to compute an upper bound for the range
of xk as it runs from xk(0) to xk(T). The computation is independent of whether
xk−1 runs along actual or interpolated path. The bound ε′k holds for both paths,
particularly also for analytic continuation of xk along the actual path of xk−1.

We then proceed with analytic continuation of the next variable, if any. When we
leave the inner loop (step 4), we obtain valid positions for x1, x2, . . . , xn at target
time T . If T = 1, we output the solution and stop (step 5). Otherwise, we use
x0(T), x1(T), . . . , xn(T) as a valid initial position from which we again try to reach
target time T = 1 (step 6).

By the assumption that x1(1), x2(1), . . . , xn(1) are well-defined, there are only
finitely many singularities in a neighbourhood of the actual paths of x0, x1, . . . , xn.
The algorithm terminates after finitely many steps as eventually the interpolated
paths of x1, x2, . . . , xn approximate the actual paths well enough such that we do
not encounter singularities anymore.

2.7 Comparison with other approaches

Let us discuss more examples, which allow us to compare the performance of our
algorithm with that of other approaches. (The number of steps needed by Al-
gorithm 2.3.2 and Algorithm 2.6.4 stated below relate to an experimental imple-
mentation in Haskell.)

28

2.7 Comparison with other approaches

Example 2.7.1 (Hauenstein et al. (2014, Section 7.1)). Consider the Newton
homotopy

H(x, t) = f(x) + vt

where f(x) = x2 − 1−m and v = m for various values of m > −1. The goal is to
analytically continue x as t moves from 1 to 0.

In Table 2.7.2 and Table 2.7.3, we compare the performance of Algorithm 2.3.2
with that of the algorithms of Beltrán and Leykin (2013) and Hauenstein et al.
(2014), for various values of m. The data for the latter algorithms is quoted
from (Hauenstein et al., 2014, Table 1 and Table 2).

m
Number of steps
of Algorithm 2.3.2

Number of a priori
steps of Beltrán and
Leykin (2013)

Number of a posteri-
ori certified intervals
of Hauenstein et al.
(2014)

10 9 184 51
20 12 217 67
30 14 237 78
40 16 250 82
50 17 260 88
60 18 269 92
70 19 276 96
80 20 282 99
90 21 288 103
100 21 292 105
1000 41 395 162
2000 49 426 180
3000 54 446 191
4000 58 457 197
5000 62 468 204
10000 73 499 220
20000 87 530 238
30000 96 547 250

Table 2.7.2: Performance of Algorithm 2.3.2 in comparison with the algorithms
of Beltrán and Leykin (2013) and Hauenstein et al. (2014), for various
values of m. The data in the last two columns is quoted from (Hauen-
stein et al., 2014, Table 1).

Both Beltrán and Leykin (2013) and Hauenstein et al. (2014) present algorithms
designed for certified homotopy continuation of arbitrary polynomial systems whereas
Algorithm 2.3.2 can only deal with plane algebraic curves. However, the example
indicates that in the univariate case Algorithm 2.3.2 may perform much better than

29

2 Homotopy Continuation of Systems of Plane Algebraic Curves

k
Number of steps
of Algorithm 2.3.2

Number of a priori
steps of Beltrán and
Leykin (2013)

Number of a posteri-
ori certified intervals
of Hauenstein et al.
(2014)

1 5 176 64
2 9 287 68
3 14 390 70
4 18 492 71
5 22 593 71
6 27 695 71
7 31 798 71
8 36 901 71
9 40 1003 71
10 44 1108 71

Table 2.7.3: Performance of Algorithm 2.3.2 in comparison with the algorithms
of Beltrán and Leykin (2013) and Hauenstein et al. (2014), for various
values of m = −1 + 10−k. The data in the last two columns is quoted
from (Hauenstein et al., 2014, Table 2).

those more general algorithms, which do not exploit the special structure of the
univariate case.

Furthermore, let us elaborate on Remark 2.5.2. The following example shows that it
may be better to apply Algorithm 2.6.4 to a system of plane algebraic curves than
to eliminate variables and apply Algorithm 2.3.2 to the resultant.

Example 2.7.4. Consider the system of bivariate polynomials

p1(x0, x1) = −4 + 2x0 + x1 + 2x0x1 + x21 = 0,

p2(x1, x2) = x21 + x32 = 0,
(2.12)

with initial values

x0(0) = 0, x1(0) =
−1−

√
17

2
, x2(0) =

(

−9−
√
17

2

) 1

3

,

and target value x0(1) = 1. The x1-resultant of p1(x0, x1) and p2(x1, x2) is

q(x0, x2) = 16− 16x0 + 4x20 + 9x32 + 4x20x
3
2 + x62 = 0. (2.13)

Let us compare the performance of Algorithm 2.6.4 for (2.12) with the performance
of Algorithm 2.3.2 for (2.13) as x0 moves linearly (in the unit interval) from 0 to 1.
We find that Algorithm 2.6.4 subdivides once, i.e. it needs two steps. In contrast,

30

2.7 Comparison with other approaches

Algorithm 2.3.2 needs six steps. One possible explanation is that x0 = −1
2 is a

singularity of (2.13) but not of (2.12). For x0 = −1
2 , (2.13) has three zeros of

multiplicity two, whereas (2.12) has six simple roots. Each zero of multiplicity two
of (2.13) corresponds to two simple zeros of (2.12) with differing signs of x1.
Generally, elimination introduces artificial singularities. Due to an artificial

singularity it can even happen that we cannot analytically continue the resultant:
For example, the x1-resultant of

p̃1(x0, x1) = −4 + 2x0 + x2 − 2x0x1 + x21 = 0,

p2(x1, x2) = x21 + x32 = 0,

has an artificial singularity at x0 = 1
2 . In this case, Algorithm 2.3.2 does not

terminate whereas Algorithm 2.6.4 produces the desired result.

31

32

3 Complex Tracing in Geometry

33

3 Complex Tracing in Geometry

3.1 Introduction

In this section, we discuss another method for certified tracing of geometric con-
structions.

We have already successfully applied Algorithm 2.3.2 to continuous deformation
of discrete Darboux transforms in Section 2.4.

However, we cannot directly apply the algorithms from the previous chapter
to arbitrary geometric constructions. We can try to describe the lines, circles,
and conics in a geometric construction as plane algebraic curves. In general, the
coefficients of these curves depend on the coordinates of other elements of the
construction. (Consider for example a circle through three points.) In particular,
the coefficients of these curves may depend on the coordinates of two or more points
that are moving simultaneously when we move a free element. Therefore, we need
more than two variables in the equations describing the coordinates of intersections
of such curves; in general, systems of plane algebraic curves do not suffice to describe
a geometric construction.

In a geometric construction, every construction step can only use given elements
and elements constructed in previous construction steps. Analogously, the coordin-
ates of a new element can only depend on the coordinates of given elements and
elements constructed in previous construction steps. Hence, under the assumption
that the primitive operations of a construction are algebraic in the coordinates of
the involved elements, we can describe the construction by a triangular system of
polynomials.

A general implementation of the scheme for certified homotopy continuation of
triangular systems of polynomials from Section 2.5 has remained elusive so far.
However, we can attack the problem at a more fundamental level of abstraction:
If we restrict primitives and geometric operations of a dynamic geometry system
appropriately, then the computation of the coordinates of an element comprises
a sequence of computation steps, each of which uses only arithmetic, square root
or cube root as an elementary operation. For constructions with compass and
straightedge, each computation step can be described using only arithmetic and
square roots; if we introduce conics to our dynamic geometry system, we additionally
need cube roots in order to describe the intersections of two conics. In any case,
every computation step uses only finite input of the computation and intermediate
results of previous computation steps. If we want to trace the computation of the
coordinates of an element under variation of the input (as effected by tracing of
previous construction steps or movement of a free element), we must trace each
computation step. In doing so, we must select the right branch of square roots and
cube roots, avoid singularities of the roots, and avoid division by zero.

We can formulate arithmetic, square root, and cube root as algebraic equations
in at most three variables (one or two input variables and an output variable). The
computation of the coordinates of an element can thus be described as a special
triangular system of polynomials. Every polynomial of the special triangular system
contains at most three variables. Moreover, the polynomials have only few different

34

3.2 Elementary operations as algebraic equations

forms, each corresponding to one of the elementary operations. These restrictions
enable us to trace the special triangular system of polynomials.

In summary, we change perspective from algebraic equations describing geometric
elements to algebraic equations describing elementary operations of the computation
of coordinates. This leads us from the general scheme for certified homotopy continu-
ation of triangular systems of polynomials of Section 2.5 to Denner-Broser’s approach
to the tracing problem in dynamic geometry (Denner-Broser, 2008, Section 6; 2013).

3.2 Elementary operations as algebraic equations

Remark 3.2.1. Let us elaborate how we can describe arithmetic, square root and
cube root using algebraic equations. If z3 is the sum of complex numbers z1 and z2,
we have

z1 + z2 − z3 = 0.

If z3 is the difference of complex numbers z1 and z2, we have

z1 − z2 − z3 = 0.

If z3 is the product of complex numbers z1 and z2, we have

z1z2 − z3 = 0.

If z3 is the quotient of complex numbers z1 and z2 6= 0, we have

z1 − z2z3 = 0.

If z2 is the square root of z1, we have

z1 − z22 = 0.

If z2 is the cube root of z1, we have

z1 − z32 = 0.

In every case, we treat the variable with the highest index as output variable and
the remaining variable(s) as input variable(s).

Example 3.2.2. For example, using the above description of elementary operations,
we can describe the radical expression

√
x− a as a triangular system of polynomials

x− z1 = 0,

a− z2 = 0,

z1 − z2 − z3 = 0,

z3 − z24 = 0.

Remark 3.2.3. Addition, subtraction, and multiplication are free of singularities.
Division has a pole where the divisor is 0. Arithmetic is unambiguous. Square root
and cube root have a ramification point at the origin of the complex plane. The
equations for square root and cube root have two and three solutions, respectively.
These correspond to the different branches of square root and cube root.

35

3 Complex Tracing in Geometry

3.3 Circular arithmetic

Remark 3.3.1. We want to pursue the general approach for certified homotopy
continuation from Section 2.5. To that end, we need a substitute for the epsilon-
delta bound of Theorem 2.2.1 that we can apply to the algebraic equations describing
the elementary operations. For every elementary operation, we must bound the range
of the output variable when the input variables are allowed to vary inside a certain
region of the complex plane. The most natural analogue of the circular regions used
in the epsilon-delta bound of Theorem 2.2.1 is to use complex circular arithmetic
for the elementary operations. Some alternative choices—rectangular arithmetic,
optimal circular arithmetic, and affine arithmetic—are discussed in (Denner-Broser,
2008).

In what follows, we discuss complex circular arithmetic as introduced by Gargantini
and Henrici (1972). We use the n-th root operation in complex circular arithmetic
due to Petković and Petković (1984).

Remark 3.3.2. We adopt the notation (z; r) for a closed disk of radius r ≥ 0 centred
at z ∈ C. Suppose we know that the input variables vary inside (z1; r1) and (z2; r2),
respectively. Then we obtain the range of an elementary operation if we apply it to
every possible combination of values from (z1; r1) for the first input variable and
values from (z2; r2) for the second input variable, if any.

3.3.1 Arithmetic

Lemma 3.3.3. The ranges of addition and subtraction of (z1; r1) and (z2; r2) are
the disks

(z1; r1) + (z2; r2) = (z1 + z2; r1 + r2),

(z1; r1)− (z2; r2) = (z1 − z2; r1 + r2).

In geometry, these operations are known as Minkowski sum and Minkowski difference.

Proof. We show
(z1; r1) + (z2; r2) ⊂ (z1 + z2; r1 + r2)

and
(z1; r1) + (z2; r2) ⊃ (z1 + z2; r1 + r2).

To that end, consider

zk + ρkrke
iϕk ∈ (zk; rk), 0 ≤ ρk ≤ 1, 0 ≤ ϕk ≤ 2π, k = 1, 2.

Then
∣

∣z1 + ρ1r1e
iϕ1 + z2 + ρ2r2e

iϕ2 − (z1 + z2)
∣

∣ =
∣

∣ρ1r1e
iϕ1 + ρ2r2e

iϕ2

∣

∣ and

∣

∣ρ1r1e
iϕ1 + ρ2r2e

iϕ2

∣

∣ ≤
∣

∣ρ1r1e
iϕ1

∣

∣+
∣

∣ρ2r2e
iϕ2

∣

∣ = ρ1r1 + ρ2r2 ≤ r1 + r2.

This shows (z1; r1) + (z2; r2) ⊂ (z1 + z2; r1 + r2). Conversely, consider

z1 + z2 + ρ(r1 + r2)e
iϕ ∈ (z1 + z2; r1 + r2), 0 ≤ ρ ≤ 1, 0 ≤ ϕ ≤ 2π.

36

3.3 Circular arithmetic

Then z1 + z2 + ρ(r1 + r2)e
iϕ = z1 + ρr1e

iϕ + z2 + ρr2e
iϕ ∈ (z1; r1) + (z2; r2). We

have thus proved the statement for addition. The statement for subtraction follows
analogously, since −(z2; r2) = (−z2; r2).

Lemma 3.3.4. The range of multiplication of (z1; r1) and (z2; r2) is not a disk.
However, we can determine a disk centred at z1z2 that contains the range. We obtain

(z1; r1)(z2; r2) ⊂ (z1z2; r1r2 + r1|z2|+ r2|z1|).

Proof. Consider

zk + ρkrke
iϕk ∈ (zk; rk), 0 ≤ ρk ≤ 1, 0 ≤ ϕk ≤ 2π, k = 1, 2.

Then

(z1 + ρ1r1e
iϕ1)(z2 + ρ2r2e

iϕ2) = z1z2 + z1ρ2r2e
iϕ2 + z2ρ1r1e

iϕ1 + ρ1r1e
iϕ1ρ2r2e

iϕ2

= z1z2 + z1ρ2r2e
iϕ2 + z2ρ1r1e

iϕ1 + ρ1ρ2r1r2e
i(ϕ1+ϕ2)

and
∣

∣

∣z1ρ2r2e
iϕ2 + z2ρ1r1e

iϕ1 + ρ1ρ2r1r2e
i(ϕ1+ϕ2)

∣

∣

∣

≤
∣

∣z1ρ2r2e
iϕ2

∣

∣+
∣

∣z2ρ1r1e
iϕ1

∣

∣+
∣

∣

∣
ρ1ρ2r1r2e

i(ϕ1+ϕ2)
∣

∣

∣

≤ |z1| r2 + |z2| r1 + r1r2

Lemma 3.3.5. The reciprocal of (z; r) not containing 0 is the disk

(z; r)−1 = (z̄/(|z|2 − r2); r/(|z|2 − r2)),

where z̄ denotes the complex conjugate of z.

Proof. The map z 7→ 1/z is a Möbius transformation. It maps finite disks not
containing the origin to finite disks not containing the origin. Therefore, the
reciprocal of (z; r) not containing 0 is a finite disk. (Note that the centre of the
reciprocal is not the reciprocal of the centre.) It suffices to show that every point of
the boundary of (z; r),

z + reiϕ, 0 ≤ ϕ ≤ 2π,

is mapped to a point at distance r/(|z|2 − r2) from z̄/(|z|2 − r2). We have

∣

∣

∣

∣

1

z + reiϕ
− z̄

|z|2 − r2

∣

∣

∣

∣

=
1

|z|2 − r2
·
∣

∣

∣

∣

∣

|z|2 − r2 − z̄(z + reiϕ)

z + reiϕ

∣

∣

∣

∣

∣

=
r

|z|2 − r2
·
∣

∣

∣

∣

r + z̄eiϕ

z + reiϕ

∣

∣

∣

∣

=
r

|z|2 − r2
·
∣

∣

∣

∣

∣

eiϕ · z + reiϕ

z + reiϕ

∣

∣

∣

∣

∣

=
r

|z|2 − r2
.

37

3 Complex Tracing in Geometry

Lemma 3.3.6. The range of division of (z1; r1) by (z2; r2) not containing 0 is the
range of multiplication of (z1; r1) and the reciprocal of (z2; r2). It is not a disk, but
contained in a disk defined analogously to that for multiplication.

Proof. This follows directly from (z1; r1)/(z2; r2) = (z1; r1)(z2; r2)
−1.

The above lemmas motivate the following definition:

Definition 3.3.7 (Circular arithmetic). We define circular arithmetic as follows:
For every (z; r), (z1; r1), (z2; r2),

(z1; r1) + (z2; r2) := (z1 + z2; r1 + r2),

(z1; r1)− (z2; r2) := (z1 − z2; r1 + r2),

(z1; r1)(z2; r2) := (z1z2; r1r2 + r1|z2|+ r2|z1|),
(z; r)−1 := (z̄/(|z|2 − r2); r/(|z|2 − r2)), if 0 6∈ (z; r),

(z1; r1)/(z2; r2) := (z1; r1)(z2; r2)
−1, if 0 6∈ (z2; r2).

Remark 3.3.8. Circular arithmetic as defined in Definition 3.3.7 is commutative and
associative. Instead of the distributive law, we have

(z1; r1) ((z2; r2) + (z3; r3)) ⊂ (z1; r1)(z2; r2) + (z1; r1)(z3; r3);

equality holds if r1 = 0 (Gargantini and Henrici, 1972, p. 308).

3.3.2 n-th root

The range of the n-th root of (z; r), n ≥ 2, is not a disk. However, we can determine
a disk centred at n

√
z that contains the range—one such disk for every branch of the

n-th root (Gargantini and Henrici, 1972, for n = 2; Petković and Petković, 1980, for
n ≥ 2). We obtain the following result:

Lemma 3.3.9.
n
√

(z; r) ⊂ (n
√
z; n
√

|z| − n
√

|z| − r)

if (z; r) does not contain 0 and

n
√

(z; r) ⊂ (0, n
√

|z|+ r)

otherwise.

The statement is illustrated by Figure 3.3.10.

Proof. If 0 ∈ (z; r), then the point of (z; r) farthest from 0 has magnitude |z|+r. The
magnitude of the n-th root of a complex number is the n-th root of the magnitude of
the complex number. The non-negative branch of the n-th root is strictly increasing
over the non-negative reals. Consequently, the n-th root of any complex number in
(z; r) has a magnitude smaller or equal n

√

|z|+ r. Hence, n
√

(z; r) ⊂ (0, n
√

|z|+ r).

38

3.3 Circular arithmetic

x

y

(a) 0 ∈ (z; r)

x

y

(b) 0 ∈ ∂(z; r)

x

y

(c) 0 6∈ (z; r)

Figure 3.3.10: An illustration of Lemma 3.3.9, bounding the n-th root in complex
circular arithmetic, for n = 3. The three branches of the cube root
map the closed disk (z; r) (dashed boundary) to the grey region(s)
contained in the disk(s) n

√

(z; r) (solid boundary).

If 0 6∈ (z; r), then the map x 7→ n
√
z − n

√
x is holomorphic on (z; r) for any branch

of the n-th root. By the maximum modulus principle, the maximum absolute value
of n

√
z− n

√
x is attained on the boundary of (z; r). We can write any complex number

on the boundary of (z; r) as z + reiϕ. We obtain

∣

∣

∣

n
√
z − n

√

z + reiϕ
∣

∣

∣ =
∣

∣

n
√
z
∣

∣ ·
∣

∣

∣

∣

1− n

√

1 + r/z · eiϕ
∣

∣

∣

∣

= n
√

|z| ·
∣

∣

∣

∣

1− n

√

1 + r/|z| · ei(ϕ−arg(z))

∣

∣

∣

∣

.

We focus on the factor
∣

∣

∣1− n
√

1 + r/|z| · ei(ϕ−arg(z))
∣

∣

∣. It is of the form

∣

∣

∣1− n
√

1 + p · eiθ
∣

∣

∣ , 0 ≤ p < 1, 0 ≤ θ ≤ 2π.

We can express 1− n
√

1 + p · eiθ in polar coordinates and find the real-valued roots
of the θ-derivative of the square of its absolute value, θ = 0 and θ = π. Thus we

obtain the extrema of
∣

∣

∣1− n
√

1 + p · eiθ
∣

∣

∣, which are 1 − n
√
1− p and n

√
1 + p − 1.

Since 2− n
√
1− p− n

√
1 + p attains its minimum 0 at p = 0, we find that

1− n
√

1− p ≥ n
√

1 + p− 1.

Hence,

max
ϕ−arg(z)

∣

∣

∣

∣

1− n

√

1 + r/|z| · ei(ϕ−arg(z))

∣

∣

∣

∣

= 1− n
√

1− r/|z|.

39

3 Complex Tracing in Geometry

Therefore,

∣

∣

∣

n
√
z − n

√

z + reiϕ
∣

∣

∣
= n
√

|z| ·
∣

∣

∣

∣

1− n

√

1 + r/|z| · ei(ϕ−arg(z))

∣

∣

∣

∣

≤ n
√

|z| · (1− n
√

1− r/|z|)
= n
√

|z| − n
√

|z| − r

and this yields the claim.

Definition 3.3.11. We define the n-th root in circular arithmetic as follows:

n
√

(z; r) := (n
√
z; n
√

|z| − n
√

(|z| − r))

if 0 6∈ (z; r) and
n
√

(z; r) := (0; n
√

(|z|+ r))

otherwise.

The algorithm of the next section relies on the following lemma (cf. (Petković and
Petković, 1984, Theorem 1)):

Lemma 3.3.12 (Separation of branches). If (z; r) does not contain 0 and

r/|z| < 1− (1− sin(π/n))n,

then the disks of Definition 3.3.11 that contain the different branches of n
√

(z; r) do
not intersect or touch each other.

Proof. It suffices to show that the disks of adjacent branches of n
√

(z; r) do not
intersect or touch each other. We denote the centres of such disks by n

√
z and

e2πi/n · n
√
z. The distance between the centres is

∣

∣

∣

n
√
z − e2πi/n n

√
z
∣

∣

∣ =
∣

∣

n
√
z
∣

∣ ·
∣

∣

∣1− e2πi/n
∣

∣

∣

= n
√

|z|
√

(1− e2πi/n)(1− e−2πi/n) = n
√

|z|
√

2− e2πi/n − e−2πi/n

= n
√

|z|
√

2− 2 cos(2π/n) = n
√

|z|
√

4(sin(π/n))2

= 2 n
√

|z| sin(π/n)

According to Definition 3.3.11, the disks have radius

n
√

|z| − n
√

|z| − r = n
√

|z| · (1− n
√

1− r/|z|).

40

3.3 Circular arithmetic

The disks do not intersect or touch each other, if and only if their centres are more
than twice the radius apart. Then we have

∣

∣

∣

n
√
z − e2πi/n · n

√
z
∣

∣

∣ > 2 · n
√

|z| ·
(

1− n
√

1− r/|z|
)

⇔ 2 n
√

|z| sin(π/n) > 2 · n
√

|z| ·
(

1− n
√

1− r/|z|
)

⇔ sin(π/n) > 1− n
√

1− r/|z|
⇔ n

√

1− r/|z| > 1− sin(π/n)

⇔ 1− r/|z| > (1− sin(π/n))n

⇔ r/|z| < 1− (1− sin(π/n))n.

3.3.3 Inclusion monotonicity

For circular arithmetic as defined in Definition 3.3.7 inclusion monotonicity holds:

Theorem 3.3.13 (Inclusion monotonicity of circular arithmetic). Let A1 = (z1; r1),
A2 = (z2; r2), B1 = (z3; r3), and B2 = (z4; r4) be closed disks such that A1 ⊂ B1

and A2 ⊂ B2. Then circular arithmetic as defined in Definition 3.3.7 satisfies

A1 +A2 ⊂ B1 +B2,

A1 −A2 ⊂ B1 −B2,

A1A2 ⊂ B1B2,

A1/A2 ⊂ B1/B2, if 0 6∈ B2.

For a proof, see (Alefeld and Herzberger, 1983, Theorem 9 on p. 56).

Remark 3.3.14. For division-free computations, a weaker version of inclusion mono-
tonicity, where z1 = z3 and z2 = z4 in the definition of A1, A2, B1, B2, suffices for
Algorithm 3.4.1 that we discuss in the next section: For addition, subtraction, and
multiplication, the resulting disks are centred at the sum, difference, and product
of the centres of the operands, respectively. The reciprocal, in terms of which we
defined division, is the only operation that does not map the centre of its operand
to the centre of the resulting disk.

Lemma 3.3.15 (Inclusion monotonicity of n-th root). Let (z1; r1) and (z2; r2) be
closed disks such that (z1; r1) ⊂ (z2; r2). If 0 ∈ (z1; r1) or 0 6∈ (z2; r2), then

n
√

(z1; r1) ⊂ n
√

(z2; r2)

for any branch of the n-th root.

Proof. We know that (z1; r1) ⊂ (z2; r2) if and only if |z2 − z1| ≤ r2 − r1. By the
reverse triangle inequality, we obtain

||z2| − |z1|| ≤ |z2 − z1| ≤ r2 − r1. (∗)

41

3 Complex Tracing in Geometry

We distinguish two cases, depending on whether 0 is contained in none or both of
(z1; r1) and (z2; r2).

Firstly, let 0 6∈ (z1; r1) and 0 6∈ (z2; r2). We have

n
√

(z1; r1) ⊂ n
√

(z2; r2)

⇔ (n
√
z1;

n
√

|z1| − n
√

|z1| − r1) ⊂ (n
√
z2;

n
√

|z2| − n
√

|z2| − r2)

⇔ | n
√
z2 − n

√
z1| ≤ n

√

|z2| − n
√

|z2| − r2 −
(

n
√

|z1| − n
√

|z1| − r1

)

⇔ n
√

|z2| − r2 − n
√

|z1| − r1 ≤ (| n
√
z2| − | n

√
z1|)− | n

√
z2 − n

√
z1| ≤ 0

⇔ |z2| − r2 ≤ |z1| − r1

⇔ |z2| − |z1| ≤ r2 − r1

and the last inequality is satisfied by (∗).
Secondly, let 0 ∈ (z1; r1) and 0 ∈ (z2; r2). We have

n
√

(z1; r1) ⊂ n
√

(z2; r2)

⇔ (0; n
√

|z1|+ r1) ⊂ (0; n
√

|z2|+ r2)

⇔ 0 ≤ n
√

|z2|+ r2 − n
√

|z1|+ r1

⇔ |z1|+ r1 ≤ |z2|+ r2

⇔ |z1| − |z2| ≤ r2 − r1

and the last inequality is satisfied by (∗).

Corollary 3.3.16 (Inclusion monotonicity and separation of branches). Let (z1; r1)
and (z2; r2) be closed disks such that (z1; r1) ⊂ (z2; r2). If (z2; r2) satisfies the
conditions of Lemma 3.3.12, then so does (z1; r1).

Proof. If Lemma 3.3.12 is applicable to (z2; r2), then 0 6∈ (z2; r2). By Lemma 3.3.15,
n
√

(z1; r1) ⊂ n
√

(z2; r2) for any branch of the n-th root. If the disks n
√

(z2; r2) for
different branches of the n-th root do not intersect or touch each other, then neither
do the disks n

√

(z1; r1) contained therein.

3.4 Algorithm

We obtain the following algorithm for certified tracing of a sequence of elementary
operations. It is based on (Denner-Broser, 2008, Section 6.2, Algorithm 2 and
Algorithm 3).

Algorithm 3.4.1. Let a sequence of elementary operations that can be described
by a triangular system of polynomials be given. Without loss of generality, we
assume that we know the values of all input and output variables from a previous
computation of the sequence of elementary operations. (Otherwise, we perform the
computation without tracing, choosing arbitrary branches for root operations, and
remember the values of all input and output variables.)

42

3.4 Algorithm

The goal of the algorithm is to perform homotopy continuation of the sequence of
elementary operations as some (independent) input variables move linearly from
their current value to a new value. For every changing input variable, we setup a
linear homotopy between current value and new value in time parameter t ∈ [0, 1].
Only input variables that do not appear as output variables in the computation are
allowed to change.
We proceed as follows:

1. We set t0 = 0 and h = 1.

2. We set t1 = t0 + h.

3. For every changing input variable, we compute the value at t = t1 according
to the linear homotopy for that variable. To the input variable, we assign the
closed disk centred at the current value of the variable whose radius is the
distance between current value and the value at t = t1.

4. Consider the input variables whose value does not change and that do not
appear as an output variable in the computation. To every such variable, we
assign the closed disk of radius 0 centred at the current value of the variable.

5. We proceed with the computation of the sequence of elementary operations
in circular arithmetic, until we reach a division, a root operation, or the end
of the sequence. If we reach a division, we go to step 6. If we reach a root
operation, we go to step 7. If we reach the end of the sequence, we go to
step 8.

6. If the disk assigned to the input variable of the division contains 0, we might
encounter a singularity. Then we set h = h/2 and go to step 2. Otherwise, we
perform the division in circular arithmetic and go to step 5.

7. Let (z; r) denote the disk assigned to the input variable of the root operation.
If the operation is an n-th root, 0 6∈ (z; r), and r/|z| < 1 − (1− sin(π/n))n,
then we perform the root operation in circular arithmetic. In doing so, we
choose the branch of n

√
z closest to the current value of the output variable.

Otherwise, if 0 ∈ (z; r) or r/|z| ≥ 1− (1− sin(π/n))n, we might encounter a
singularity or we might not choose the right branch of n

√
z by proximity. Then

we set h = h/2 and go to step 2. Otherwise, we perform the root operation in
circular arithmetic and go to step 5.

8. Using circular arithmetic, we have certified that if we make a step from t0
to t1 = t0 + h, we do not encounter a singularity and we can determine the
right branch of root operations by proximity. Hence, we update the changing
input variables to their value at t = t1. Then we perform the computation
in ordinary arithmetic; in the process, for every root operation, we select the
branch that yields the value closest to the current value of the corresponding
output variable.

43

3 Complex Tracing in Geometry

9. If t1 = 1, we output the values of all variables and stop. Otherwise, we set
t0 = t1, h = 1− t0, and go to step 2.

Remark 3.4.2. If homotopy continuation along the linear homotopy between current
and new values of the input variables is at all possible, then no singularities lie
exactly on that homotopy path nor in a small neighbourhood of the homotopy path.
Therefore, after finitely many subdivisions of step width h, we can make a successful
step. Eventually, after finitely many steps, Algorithm 3.4.1 terminates.

Remark 3.4.3. If the homotopy path contains a singularity, Algorithm 3.4.1 does
not terminate. As we approach the singularity, we need to make smaller and smaller
steps lest any disk used in circular arithmetic contains 0.

Remark 3.4.4. We can minimize the probability that we encounter a singularity, if
we choose random complex detours for time parameter t in a small neighbourhood
of [0, 1].

Theorem 3.4.5. If Algorithm 3.4.1 terminates, then it returns those values of the
output variables that are produced by homotopy continuation along a linear homotopy
between old and new values of the changing input variables.

Proof. In step 3 of Algorithm 3.4.1, we let every changing input variable range in a
closed disk that is centred at the current value of the variable and contains the new
value of the variable on its boundary. In step 4, we setup closed disks of radius 0
that analogously represent the ranges of constant input variables.

In steps 5–7, we use circular arithmetic as defined in Definition 3.3.7 to perform
the elementary operations of the computation. Thus we address the problem that,
under homotopy continuation, the paths of the output variables are curvilinear and
unknown. We may not know the actual paths of the output variables, but circular
arithmetic yields closed disks that contain the paths.

In steps 6–7, we test whether a disk, in which the path of a variable used as
radicand or divisor ranges, contains a singularity. If this is the case, we need to
restart the computation using a smaller step width. Otherwise, if the disk is free
from singularities, any two paths running in its interior between the same end
points are equivalent w.r.t. homotopy continuation of the division or root operation.
Circular arithmetic yields disks containing the corresponding range of the output
variable of the division or root operation.

For a root operation, we additionally check whether the disks in which the different
branches of the output variable range intersect or touch each other. In this case,
we cannot assign the correct branch based on proximity; we need to restart the
computation using a smaller step width. Otherwise, if the disks containing the
branches of the output variable do not intersect or touch each other, we can assign
the correct branch based on proximity: In this case, as the input variable moves
away from its current position in the disk containing its path, any branch of the
output variable remains closer to its initial value than to the initial value of any other
branch. Consequently, the right branch for the new value of the output variable is

44

3.5 Example

the branch that yields the new value of the output variable closest to its current
value.

Hence, if we reach step 8, we have certified that we can make a step from t0 to t1
without encountering a singularity and that we can choose the right branches of
root operations by proximity. Therefore, we let the changing input variables make
this step. Then we perform the computation in ordinary arithmetic. For every root
operation, we select the right branch based on proximity. This yields the correct
intermediate values of the output variables at time t = t1.
The algorithm proceeds until we reach time t1 = 1, when all changing input

variables attain their new values. Since the intermediate values of the output
variables are correct at every step, so are the output variables at time t1 = 1.

3.5 Example

We consider intersection of the unit circle

x2 + y2 − 1 = 0

with a vertical line, initially
x = 0.

We want to trace the intersection with coordinates x = 0, y = 1 as the vertical line
moves from x = 0 to x = 2 and back to x = 0. For the y-coordinate, we obtain the
radical expression

y =
√

1− x2.

When the vertical line moves, we always want to select the right branch of the
square root for the y-coordinate so that the y-coordinate behaves like an analytic
function of time.

We apply Algorithm 3.4.1 to the computation of y =
√
1− x2, which we express

by the following sequence of elementary operations:

1. x := x(t),

2. a := 1,

3. b := x · x,

4. c := a− b,

5. y :=
√
c.

We set up the linear homotopy

x(t) = (1− t) · 0 + 2t = 2t.

Table 3.5.1 shows the first iterations of Algorithm 3.4.1. If x = x(t), the abscissa of
the vertical line, moves linearly from 0 to 2 along the real axis, then we encounter a

45

3 Complex Tracing in Geometry

singularity at x = 1. At this point, the two branches of
√
1− x2 coincide. Along

this path of x, we therefore cannot obtain analytic behaviour of y. Algorithm 3.4.1
makes a successful step whenever 0 is not contained in the disk (c; rc) containing the
range of 1− x2. As we approach the singularity at x = 1, the width h of successful
steps of Algorithm 3.4.1 becomes smaller and smaller. We never reach time t = 1/2,
let alone time t = 1.
In order to obtain analytic behaviour of y, we let x circumvent the singularity

at x = 1 on a detour through the complex plane from 0 to 2 and back to 0. To
that end, we use the ‘gamma trick’ of (Morgan and Sommese, 1987): In the linear
homotopy x(t) = 2t, we replace t by teiθ(1−t). We obtain the homotopy

x1(t) = 2teiθ(1−t),

which describes a complex detour from 0 to 2 for any angle θ. We choose θ = −π/2.
For the way back from x = 2 to x = 0, we analogously choose the homotopy

x2(t) = 2(1− teiθ(1−t)).

Note that x1(t) and x2(t) are distance non-decreasing: For any 0 ≤ t0 ≤ t1 ≤ 1, the
disk (x1(t0); |x1(t1)− x1(t0)|) contains all points of x1(t) with t0 ≤ t ≤ t1. Hence,
in Algorithm 3.4.1, we can use such non-linear homotopies for the input variable(s)
as if we used linear ones.

Re

Im

x1(t)

x2(t)

Figure 3.5.2: Homotopies x1(t) and x2(t), their approximations by successful steps
of Algorithm 3.4.1, and approximate corresponding motion of y. All
end points of successful steps (white points) lie on the exact paths of
x and y, up to floating point errors.

When x moves from 0 to 2 along x1(t), y moves from 1 to
√
3i (see Figure 3.5.2);

when x moves from 2 back to 0 along x2(t), y moves from
√
3i to −1. Effectively, x

returns to its original position and y moves from one branch of the square root to
the other.

46

3.6 Comparison with Denner-Broser’s approach

3.6 Comparison with Denner-Broser’s approach

The main differences between Denner-Broser’s approach and our approach are the
following:
Instead of geometric straight-line programs, we use special triangular systems

of polynomials to model computations. Instead of the Radicand Lemma (Denner-
Broser, 2008, Lemma 6.1.1, Lemma 6.6.1), we use Lemma 3.3.12 (cf. (Petković
and Petković, 1984, Theorem 1)) to ensure separation of branches of n-th root
operations.

We separate certification of a feasible step width and computation of the result of
a step. In order to determine the feasibility of a candidate step, it is not necessary
to compute the actual result of the step; for infeasible steps, we thus save some
computational effort.
Denner-Broser manages to generalize her algorithm so that it finds a feasible

step width for a computation with at most one infeasible guess per root or division
operation (Denner-Broser, 2008, Algorithm 4). To that end, she uses a derivative
of geometric straight-line programs and the Cone Lemma (Denner-Broser, 2008,
Lemma 6.3.1), ‘a reformulation of the mean value theorem’ (Denner-Broser, 2008,
p. 79). This is a very nice result from a theoretical viewpoint. Denner-Broser uses
it to bound the time complexity of her algorithm w.r.t. the number of division and
root operations of a computation (Denner-Broser, 2008, Theorem 6.3.4). However,
it is uncertain whether in practice this approach yields a significant performance
improvement compared to bisection, despite the additional computational effort
needed for the computation of the derivative of the geometric straight-line program
and for the computation of the feasible step width using the Cone Lemma.
Denner-Broser analyzes her algorithms in great detail, for example with respect

to numerical robustness, overestimation, and other choices of complex interval
arithmetic—beyond what we can cover here.

47

3 Complex Tracing in Geometry

rou
n
d

1
2

3
4

5
6

t0
0

0
0

1/4
1
/4

1
/
4

h
1

1
/
2

1/4
3/4

3
/8

3
/16

t1
1

1
/
2

1/4
1

5
/8

7
/16

x
(t0)

0
0

0
1/2

1
/2

1
/
2

x
(t1)

2
1

1/2
2

5/
4

7
/
8

y
(t0)

1
1

1
√
3/
2

√
3
/
2

√
3
/2

(x
;r

x)
(0;2)

(0;1)
(0;1

/
2)

(1/2;3/2)
(1/2;3/4)

(1/
2
;3/

8)
(a
;r

a)
(1;0)

(1;0)
(1;0)

(1;0)
(1;0)

(1;0)
(b;r

b)
(0;4)

(0;1)
(0;1/

4)
(1/4;15/

4)
(1/

4;21/16)
(1
/4
;33/

64
)

(c;r
c)

(1;4)
(1;1)

(1;1/
4)

(3/4;15/
4)

(3/
4;21/16)

(3
/4;33/

64)

(y
;r

y)
0
∈
(1;4)!

0
∈
(1;1)!

(1;1−
√
3
/2)

0
∈
(3
/
4;15/4)!

0
∈
(3
/4;21/

16)!
(√

3
/2; √

3
/2−

√
1
5/

8)
x

-
-

1
/2

-
-

7/
8

a
-

-
1

-
-

1
b

-
-

1
/4

-
-

4
9/
64

c
-

-
3
/4

-
-

11/
6
4

y
-

-
√
3/
2

-
-

√
11

/1
6

T
ab

le
3.5.1:

F
irst

iteration
s
of

th
e
com

p
u
tation

of
y
=

√
1−

x
2
b
y
A
lgorith

m
3.4.1

fo
r
x
=

x
(t)

=
2t,

0
≤

t≤
1

48

4 Generation of Real Algebraic Loci via
Complex Detours

49

4 Generation of Real Algebraic Loci via Complex Detours

4.1 Introduction

A locus is a set of points in the plane with a common geometric property. For
example, a circle is the set of points whose distance from the centre of the circle
equals the radius of the circle. Here we focus on loci that are closed curves generated
by dynamic geometric constructions.

The generation of loci has a very long history. We roughly follow the exposition
of (Brieskorn and Knörrer, 1986, Chapter 1). Many ancient Greek mathematicians
studied geometric constructions. Some classical problems, e.g. squaring the circle,
duplication of the cube (Delian problem), and angle trisection, resisted any attempt
of solution using only compass and straightedge. Unlike the ancient Greeks, we know
that these problems cannot be solved by compass and straightedge constructions.1

After many failed attempts using only compass and straightedge, the ancient
Greeks sought other means of solving these problems. Menaechmus (c. 350 BC) found
that duplication of the cube could be performed using compass, straightedge and
conic sections. Other plane algebraic curves classically used as devices for duplication
of the cube and angle trisection include the cissoid of Diocles (c. 180 BC) and the
conchoid of Nicomedes (c. 180 BC). Diocles and Nicomedes solved duplication of the
cube and angle trisection by intersecting these curves with other geometric elements.
In order to find the intersections, it is essential that we can construct not only some
points but whole arcs of these curves in a continuous manner.

To that end, we can use dynamic compass and straightedge constructions. We
move one element of the construction, e.g. we rotate a line about a point or slide
a point on a line/circle, and follow a point constructed from the moving element
as it traces a curve. If the construction steps can be described algebraically, then
the resulting curve is a real connected component of a plane algebraic curve. Such
constructions for various curves were known to the ancient Greeks. Newton, who
investigated this technique, called it ‘organic generation’.

We can use dynamic geometry software to carry out such constructions. Some
applications allow us to select a line through a point or a point on a line/circle,
which shall be the moving element (mover), and a dependent point, which shall be
followed as it traces a curve (tracer). The software then attempts to automatically
generate the real connected component of the real plane algebraic curve that is the
locus of the tracer under movement of the mover.

Depending on the underlying model of geometry (and depending on the algorithm
used), the software may fail to generate the entire real connected component of

1 Wantzel (1837) showed that using compass and straightedge, we can only construct points with
coordinates in a field extension of Q obtained by adjoining all roots of degree a power of two of
rational numbers. He proved that duplication of the cube and angle trisection reduce to solving
irreducible cubic equations, which is therefore impossible using only compass and straightedge.

Squaring the circle reduces to constructing π. In the nineteenth century, it was known that
π is irrational. Mathematicians wondered whether it could be a solution of an equation of
degree a power of two that was potentially solvable using only compass and straightedge by
iterative construction of square roots. Lindemann (1882) settled the case, showing that π is
transcendental, i.e. not a root of any algebraic equation.

50

4.1 Introduction

the real algebraic curve. Kortenkamp (1999, Section 6.2, esp. Theorem 6.8) shows
that dynamic geometry systems with geometric primitives like ‘intersection of a
circle with a line’ or ‘angle bisector of two lines’ cannot be both determined and
continuous: If we require that we can determine a unique instance of a construction
for every possible position of its free elements (movable elements), then we cannot
expect that its dependent elements always move continuously.

The reason behind this is that ‘intersection of a circle and a line’ or ‘angle bisector
of two lines’ are ambiguous geometric operations. In general, a circle and a line
have two (possibly complex) intersections. In general, two lines have two angle
bisectors, which are perpendicular to each other. Consider an angle bisector of two
(unoriented) lines a, b through a common point P . If we rotate a about P and the
angle bisector moves continuously, then the angle bisector rotates at half the angular
velocity. When a has rotated by an angle of π, it has reached its initial position. At
the same time, the angle bisector has rotated by an angle of π/2 and has become
perpendicular to its initial position. We have moved continuously from one possible
instance of the construction to the other. Therefore the dynamic geometric system
cannot be determined.

For that reason, we may sometimes observe dependent elements jump unexpectedly
in most dynamic geometry software. If a tracer jumps during locus generation, the
algorithm may miss part of its real algebraic locus.

As we have seen, if we want to avoid jumping elements, we need to take all
possible output elements of ambiguous geometric operations into account. We
parameterize the motion of the mover using a time parameter t. There may be
some points in time when part of the construction degenerates or when two possible
choices of a dependent element coincide and become indistinguishable. We call such
points in time singularities. For example, the two intersections of a circle and a
line coincide when we move the centre of the circle such that it merely touches
the line. If we can somehow avoid singularities, then we can always distinguish all
possible choices. Hence, we may be able to determine the instance that produces a
continuous evolution of the construction.

In order to avoid jumping elements in their dynamic geometry software Cinder-
ella (Kortenkamp and Richter-Gebert, 2006), Kortenkamp and Richter-Gebert
introduced the paradigm of ‘complex detours’ (Kortenkamp, 1999, esp. Chapter 7;
Kortenkamp and Richter-Gebert, 2001b; 2002): We do not let the time parameter
run along the real time axis where we often encounter singularities. Instead, we
embed the real time axis as the real axis of the complex plane. Between two points
on the real time axis, we let the time parameter take a detour through the com-
plex plane to circumvent singularities. Thus we can avoid singularities with high
probability.

The locus generation algorithm of Cinderella exploits this principle; it has been
working very well in practice for many years, but from a theoretical perspective,
the algorithm has not been examined in more detail yet (Richter-Gebert, 2014). In
what follows, we analyze the algorithm and some assumptions on which it is based.

51

4 Generation of Real Algebraic Loci via Complex Detours

Moreover, we introduce a variant of the algorithm that might always generate an
entire real connected component of a real algebraic locus.

4.2 A locus generation algorithm

The locus generation algorithm addresses the following problem: Consider a geo-
metric construction. Choose an element of the construction whose movement is
constrained to one dimension, e.g. a line through a point, a point on a line, or a point
on a circle. We call this element ‘mover’. Choose a point of the construction whose
position depends on the position of the mover. We call this point ‘tracer’. Suppose
the tracer can be constructed from the mover (and possibly further elements) using
only geometric operations that have an algebraic representation. Then movement of
the mover causes the tracer to move on a real plane algebraic curve. The goal of
the locus generation algorithm is to automatically produce the locus of the tracer
under movement of the mover.

The following locus generation algorithm has two variants. Variant A is essentially
equivalent to the locus generation algorithm implemented in Cinderella. Variant B
possibly generates an entire real connected component of a real algebraic locus
(see Conjecture 4.5.1).

Algorithm 4.2.1 (locus generation algorithm). We rationally parameterize the
motion of the mover using a time parameter t. We assume that we start at a
non-singular initial time t0 ∈ R when the position of the tracer is real-valued.

1. Let s := 1, t := t0.

2. Let t′ := t+ s · ε for some small step size ε > 0.

Consider the circle c in the complex plane that has the segment between t and t′ as
its diameter. We let the time parameter take a complex detour on this circle.

3. Let t take a small step on circle c in anticlockwise direction.

4. We trace the geometric construction as the mover moves according to its
parameterization along the complex detour up to the new position of t.

5. Variant A If t is real-valued and the tracer has real-valued coordinates, the
tracer has reached a point of the real plane algebraic locus. It may happen
that t ends up in its initial position on circle c. In this case, we invert the
direction of movement of the mover. To that end, we set s := −s. (Note
that this affects only the choice of sampling points of time parameter t; the
anticlockwise orientation of complex detours remains the same.) If t = t0 and
the tracer has reached its initial position again, we stop. Otherwise, we go to
step 2.

If t is not real-valued or the tracer does not have real-valued coordinates, we
go to step 3.

52

4.2 A locus generation algorithm

Variant B If the tracer has real-valued coordinates, it has reached a point of
the real algebraic locus. It may happen that t is not real-valued or that it
ends up in its initial position on circle c. In any case, we update the direction
of movement of the mover. To that end, we set

s =
t− a

|t− a| ,

where a denotes the centre of circle c. If t = t0 and the tracer has reached its
initial position again, we stop. Otherwise, we go to step 2.

If the tracer does not have real-valued coordinates, we go to step 3.

Remark 4.2.2. Algorithm 4.2.1 evaluates the geometric construction only at discrete
points in time along a complex detour. At every sampling point, the algorithm should
select the right instance of the construction, i.e. the instance that yields a continuous
evolution of the construction. More precisely, we want that the coordinates of the
elements of the construction are locally analytic functions of time; the algorithm
should select the instance that results from analytic continuation of the coordinate
functions along the complex detours. To that end, we can use Algorithm 3.4.1 to
trace the geometric construction along the complex detour.

Besides the assumption that we start at a non-singular initial time when the position
of the tracer is real-valued, Algorithm 4.2.1 is based on the following assumptions.
(This list of assumptions may not be complete; Algorithm 4.2.1 may be based on
further implicit assumptions.)

Assumption 4.2.3. We assume that we always choose ε small enough so that the
complex detours wind around at most one ramification point of a coordinate of the
tracer, and only around ramification points at which the position of the tracer is
real-valued. Thus we preclude that the tracer jumps from one real arc of the real
algebraic locus to another due to a complex detour around a ramification point of a
coordinate at which the tracer has a complex position close to the real algebraic
locus.

Assumption 4.2.4. We assume that the steps we take on the complex detours are
small enough so that we do not miss a real position of the tracer.

Remark 4.2.5. While we usually satisfy Assumption 4.2.3 in practice, it is not clear
how to guarantee that it is satisfied in general.

Remark 4.2.6. For Variant A of Algorithm 4.2.1, we can satisfy Assumption 4.2.4,
if we ensure that time parameter t always attains the real values on the complex
detours. For Variant B of Algorithm 4.2.1, we must additionally determine complex
points in time on the complex detours when the coordinates of the tracer are real-
valued. We can try to approximate these points in time by bisection if the imaginary
part of a coordinate of the tracer changes sign or has small absolute value; this may
be really difficult in practice.

53

4 Generation of Real Algebraic Loci via Complex Detours

Remark 4.2.7. Since a real algebraic locus can contain points at infinity, it may
sometimes be advantageous to describe the plane algebraic curve containing the
real algebraic locus by a homogeneous equation f(x, y, x) = 0. Thus we can express
points of the locus at infinity using finite coordinates (x, y, z)⊤. We can homogenize
an affine equation f(x, y) = 0 of total degree n by plugging in x = x/z, y = y/z,
and multiplying by zn. If we set z = 1, we return to the affine equation.

Remark 4.2.8. If we use homogeneous coordinates (x, y, z)⊤ to describe the position
of the tracer, we require that none of x, y, and z become infinite; if necessary, we
constantly normalize (x, y, z)⊤ to avoid that one of the coordinates grows too much.

4.3 Orientation of complex detours

In Step 3 of Algorithm 4.2.1, we specify that time parameter t takes complex detours
along circles in the complex plane in anticlockwise direction. In principle, t can
also take complex detours in clockwise direction. Are there constructions where the
generated locus changes depending on the clockwise or anticlockwise orientation of
the complex detours?

In order to answer this question, we make some assumptions on the real algebraic
loci to which we apply our locus generation algorithm, without loss of generality.
Let

C : f(x, y) = 0

denote a plane algebraic curve containing such a locus.

Assumption 4.3.1. We assume that f(x, y) is irreducible. An analytic transition
from one irreducible component of f(x, y) to another is impossible. Therefore,
if f(x, y) is reducible, we can without loss of generality consider the irreducible
component containing the starting point. (Note that the assumption that we
start Algorithm 4.2.1 at a non-singular initial time precludes that we start at an
intersection of irreducible components.)

Assumption 4.3.2. We assume that C has a real connected component. Otherwise,
the locus is not a real connected component of a real plane algebraic curve and the
locus generation algorithm is not applicable.

Lemma 4.3.3. Under Assumption 4.3.1 and Assumption 4.3.2, without loss of
generality, f(x, y) has only real coefficients.

Proof. Conversely, suppose f(x, y) has complex coefficients. Then we can write
f(x, y) in the form f(x, y) = fℜ(x, y) + ifℑ(x, y) such that the real part polynomial
fℜ(x, y) and the imaginary part polynomial fℑ(x, y) possess only real coefficients.
By the assumption that f(x, y) has complex coefficients, fℑ(x, y) does not vanish
identically. If fℜ(x, y) vanishes identically, then f(x, y) = ifℑ(x, y) and we can
cancel the unit i from the equation f(x, y) = 0 to obtain an equation for C with only
real coefficients. Hence, suppose that both real part polynomial and imaginary part

54

4.3 Orientation of complex detours

polynomial do not vanish identically. By Assumption 4.3.2, C has a real connected
component, i.e. over a real interval of x-values, f(x, y) vanishes for real y-values.
This can only be the case if fℜ(x, y) and fℑ(x, y) vanish there, i.e. if fℜ(x, y) and
fℑ(x, y) have infinitely many common zeros. If fℜ(x, y) and fℑ(x, y) have infinitely
many common zeros, then they must have a common component or fℑ(x, y) must
be a non-zero real multiple of fℜ(x, y). By Assumption 4.3.1, fℜ(x, y) and fℑ(x, y)
are irreducible; they cannot have a common component. Therefore, fℑ(x, y) must
be a non-zero real multiple of fℑ(x, y). Hence, we can write fℑ(x, y) = λ · fℜ(x, y)
for some λ ∈ R. Therefore, f(x, y) = (1 + iλ)fℜ(x, y), i.e. f(x, y) has only real
coefficients up to multiplication by a unit in C, which we can cancel from the
equation f(x, y) = 0.

Lemma 4.3.4. Consider a plane algebraic curve K : p(x, y) = 0, where p(x, y) is
a polynomial with only real-valued coefficients. The paths of the y-values on the
complex plane algebraic curve K under complex conjugate movement of x are complex
conjugate.

Proof. K is the zero set of a polynomial p(x, y) with only real coefficients. Real
coefficients are invariant under complex conjugation. Hence, if we consider the
complex conjugate of the defining equation of K, we find that

0 = 0 = p(x, y) = p(x, y),

and p(x, y) vanishes if and only if p(x, y) vanishes.
Let x(t) be a parameterization of the movement of x through the complex plane.

Let y(t) be a parameterization of the corresponding analytic motion of a y-value
so that p(x(t), y(t)) = 0, for all t. Then to complex conjugate movement of
x, parameterized by x(t), corresponds complex conjugate motion of the y-value,
parameterized by y(t), since

p(x(t), y(t)) = 0 ⇔ p(x(t), y(t)) = 0.

(The y-values must be the same in both cases since they must agree at all real
points of the complex plane algebraic curve K, where complex conjugation has no
effect.)

Remark 4.3.5. Suppose we can construct the tracer from the mover (and possibly
further elements) using only geometric operations that have an algebraic representa-
tion. Moreover, suppose that the motion of the mover is rationally parameterized
in time parameter t. Then the x-coordinate and the y-coordinate of the tracer
satisfy algebraic equations g(t, x) = 0 and h(t, y) = 0. In practice, it may often
be too expensive to work these equations out symbolically. But in principle, we
can determine an equation f(x, y) = 0 for the locus of the tracer by taking the
t-resultant of g(t, x) and h(t, y) to eliminate t from these equations.

Theorem 4.3.6. The locus generation algorithm is independent of the clockwise or
anticlockwise orientation of its complex detours.

55

4 Generation of Real Algebraic Loci via Complex Detours

Proof. By Remark 4.3.5, the x-coordinate of the tracer is determined by an algebraic
equation g(t, x) = 0. Analogously to Assumption 4.3.1, Assumption 4.3.2, and
Lemma 4.3.3, we may assume that g(t, x) has only real coefficients, without loss of
generality. If we reverse the orientation of the complex detours, we obtain complex
conjugate movement of time parameter t. By Lemma 4.3.4, the motion of x such
that g(t, x) = 0 under complex conjugate movement of t is complex conjugate.
Particularly, the real values of x resulting from either movement agree. The same
argument applies to the algebraic equation h(t, y) = 0 that governs the motion
of y under movement of t. Consequently, Algorithm 4.2.1 produces the same real
algebraic locus, independent of the clockwise or anticlockwise orientation of its
complex detours.

4.4 Termination

Does the locus generation algorithm always terminate? Or can we get lost on
algebraic Riemann surfaces?
Analogously to the previous section, we assume that f(x, y) is an irreducible poly-
nomial (cf. Assumption 4.3.1) with real coefficients (cf. Assumption 4.3.2 and
Lemma 4.3.3).
Besides, recall the assumptions on which the locus generation algorithm (Al-

gorithm 4.2.1) is based: Firstly, we assume that the complex detours of Al-
gorithm 4.2.1 are small enough so that they wind around at most one ramification
point of a coordinate of the tracer, and only around ramification points at which
the position of the tracer is real-valued (Assumption 4.2.3). Thus we preclude that
the tracer jumps from one real arc of the real algebraic locus to another due to a
complex detour around a ramification point of a coordinate at which the tracer has
a complex position close to the real algebraic locus. Secondly, we assume that the
steps we take on the complex detours are small enough so that we do not miss a
real position of the tracer (Assumption 4.2.4).
A proof of termination of Algorithm 4.2.1 has remained elusive so far. However,

the successful application of Variant A of Algorithm 4.2.1 in Cinderella supports
the following conjecture:

Conjecture 4.4.1. The locus generation algorithm terminates if it takes small
enough complex detours and small enough steps on every complex detour.

4.5 Generation of real connected components

Conjecture 4.5.1. Variant B of Algorithm 4.2.1 generates an entire real connected
component of a real algebraic locus if it takes small enough complex detours and
small enough steps on every complex detour.

Remark 4.5.2. Variant A of Algorithm 4.2.1 need not generate an entire real con-
nected component of a real algebraic locus. It may miss real arcs of a locus that

56

4.6 Examples

correspond to non-real complex values of time parameter t. For an example, see
Section 4.6.2.

Remark 4.5.3. A real connected component of a real algebraic locus need not be
an algebraic curve by itself. For example, consider a four-bar linkage with bars of
lengths 4, 1, 4, and 2. (We discuss how we can express a mechanical linkage in terms
of dynamic geometry in Section 4.6.4.) We leave the first bar of the linkage fixed
and trace the midpoint of the third bar under continuous movement of the linkage.
Then the four-bar linkage generates one of the two real connected components of
the plane algebraic sextic

C : f(x, y) = (6 + 5x− 2x3)
2
+ 3(−45 + 4x(−2 + 2x+ x3))y2

+ 4(11 + 3x2)y4 + 4y6 = 0.

The algebraic curve C is irreducible (over the complex numbers). Thus, each of the
two real connected components by itself cannot be an algebraic curve.

4.6 Examples

4.6.1 Conic through five points in general position

Consider Pascal’s theorem (also known as ‘hexagrammum mysticum’):

Theorem 4.6.1 (Pascal’s theorem). If A,B,C,D,E, F are six points on a conic,
then opposite sides of the hexagon ABCDEF (extended to lines, if necessary) meet
in three collinear points.

For more details and proofs, see (Richter-Gebert, 2011, esp. Section 1.4 and Sec-
tion 10.6).

The converse of the theorem is also true, which gives rise to organic generation of
a conic through five points, by the following construction (see Figure 4.6.2).

Construction 4.6.3. Let A,B,C,D,E be five points of the real projective plane,
in general position.

1. Let a be the line through A and B.

2. Let b be the line through D and E.

3. Let F be the intersection of a and b.

4. Let c be a line through F .

5. Let d be the line through B and C.

6. Let G be the intersection of c and d.

7. Let e be the line through C and D.

57

4 Generation of Real Algebraic Loci via Complex Detours

A

B

C

D

E

F GH

K

a

b

c

d

e

f

g

Figure 4.6.2: An instance of Construction 4.6.3. When line c rotates about point F ,
point K traces the conic through points A,B,C,D,E.

8. Let H be the intersection of c and e.

9. Let f be the line through A and H.

10. Let g be the line through E and G.

11. Let K be the intersection of f and g.

When line c rotates about point F , point K traces the conic through points
A,B,C,D,E.

Remark 4.6.4. Construction 4.6.3 does not distinguish the orientation of line c. Point
K returns to its initial position after half a turn of line c about point F . If line c
makes a full turn, point K traces the conic through points A,B,C,D,E twice.

4.6.2 Orthogonal projection of a circle onto a line

We consider the following (seemingly simple) construction (see Figure 4.6.5), because
it highlights the difference between Variant A and Variant B of Algorithm 4.2.1.

Construction 4.6.6. Let a line b, a circle c0, and a point A on circle c0 be given.

1. Let a be the line through A perpendicular to b.

2. Let B be the intersection of a and b.

When point A moves around on circle c0, point B traces a segment of line b.

Remark 4.6.7. For simplicity, we use the geometric primitive ‘perpendicular to a
line through a point‘. It can be easily constructed with compass and straightedge
(see Book I, Proposition 12 of Euclid’s Elements).

58

4.6 Examples

A B
a

b

c0

Figure 4.6.5: An instance of Construction 4.6.6. When point A moves around on
circle c0, point B traces a segment of line b.

Remark 4.6.8. Line a intersects circle c0 in two points (counted with multiplicity).
Hence there are two positions of point A (counted with multiplicity) for every
position of point B on the segment that point B traces on line b. In other words,
point B covers the segment twice as point A makes a full turn on circle c0.

Let us work out the real algebraic locus of point B under movement of point A on
circle c0 algebraically. Without loss of generality, let c0 be the unit circle and b the
line parallel to the y-axis intersecting the x-axis at x = 2. Let O denote the origin.
We need to parameterize the motion of point A on circle c0. To that end, we can
use trigonometric functions, as follows:

A = (cosϕ, sinϕ)⊤, −π ≤ ϕ ≤ π.

However, this parameterization is not rational. We use tangent half-angle substitu-
tion,

t = tan
ϕ

2
, cosϕ =

1− t2

1 + t2
, sinϕ =

2t

1 + t2
,

and homogeneous coordinates to derive the rational parameterization

A = (1− t2, 2t, 1 + t2)
⊤
, t ∈ R.

Line b has homogeneous coordinates

b = (1, 0,−2)⊤.

Line a is perpendicular to line b and therefore has homogeneous coordinates of the
form

a = (0, 1, z(t))⊤,

where z(t) has to be determined so that point A lies on line a, i.e. so that

〈a,A〉 = 2t+ z(t)(1 + t2) = 0.

59

4 Generation of Real Algebraic Loci via Complex Detours

Hence, homogeneous coordinates of line a are

a = (0, 1 + t2,−2t)
⊤
.

We obtain homogeneous coordinates of point B by taking the cross product of line
a and line b,

B = a× b = (2(1 + t2), 2t, 1 + t2)
⊤ ∼

(

2,
2t

1 + t2
, 1

)⊤
.

The real algebraic locus of point B under movement of point A on circle c0 is
described by the implicit equations

x− 2 = 0

t2y − 2t+ y = 0.

If we take the t-resultant of these equations, we arrive at a single equation for the
real algebraic locus,

(x− 2)2 = 0.

The construction has singularities at t = ±1, where the y-coordinate of point B
equals ±1. If we solve the equation between t and the y-coordinate of point B,

t2y − 2t+ y = 0,

for t, we find that

t =
1±

√

1− y2

y
.

For real y-values of absolute values greater than 1, t becomes complex. Point B
moves higher or lower than the (real-valued) extreme positions of point A on circle
c0 if and only if we allow point A to become complex.

Variant A of Algorithm 4.2.1 does not allow this to happen and skips the branch
of the real algebraic locus where point B has real-valued coordinates, but point A
(and thus t) is complex-valued. It generates that part of the real algebraic locus
where both mover and tracer have real-valued coordinates.

Variant B of Algorithm 4.2.1 does not skip the branch of the real algebraic locus
where point B has real-valued coordinates, but point A (and thus t) is complex-
valued. It generates the entire real algebraic locus.

Variant A seems more appropriate from the perspective of real projective geometry;
Variant B seems more appropriate from the algebraic perspective.

4.6.3 Conchoid of Nicomedes

The conchoids of Nicomedes are a family of quartic plane algebraic curves

C : f(x, y) = (y + a)2(x2 + y2)− b2y2 = 0, a, b > 0.

For organic generation of a conchoid, we can use the following construction.

60

4.6 Examples

a

b
g

h

A

B
C

c0

Figure 4.6.9: An instance of Construction 4.6.10. When point A moves along line g,
point C traces the conchoid with pole B, base g and distance b.

Construction 4.6.10 (conchoid of Nicomedes). Let A be a point on a line g. Let
B be a point at distance a > 0 from g. Let c0 be a circle of radius b centred at A.

1. Let h be the line through A and B.

2. Let C be an intersection of c0 and h.

When point A moves along line g, point C traces the conchoid with pole B, base g,
and distance b.

As mentioned in the introduction, part of the original motivation to study the conch-
oid of Nicomedes was that it can be used for angle trisection. The following construc-
tion is based on (Ferréol and Mandonnet, 2005, Conchöıde de Nicomède, http://www.
mathcurve.com/courbes2d/conchoiddenicomede/conchoiddenicomede.shtml).

D

E F

G

H

c1

l

m

Figure 4.6.11: An instance of Construction 4.6.12. By construction, angle ∠HEG
trisects angle ∠DEF .

Construction 4.6.12 (angle trisection). Let ∠DEF be the angle to be trisected.
We can trisect a right angle by constructing an equilateral triangle. Hence, without
loss of generality, let angle ∠DEF be acute.

1. Let l be the line through E and F .

61

http://www.mathcurve.com/courbes2d/conchoiddenicomede/conchoiddenicomede.shtml

4 Generation of Real Algebraic Loci via Complex Detours

2. Use Construction 4.6.10 to generate the conchoid with pole D, base l, and
distance |DE|.

3. Let c1 be the circle centred at E, through F .

4. Let G be the intersection of c1 with the conchoid that lies on the same side of
l as F .

5. Let m be the line through D and G.

6. Let H be the intersection of l and m.

Then angle ∠HEG trisects angle ∠DEF .

Proof. By construction of the conchoid, points H and E are equidistant to point G.
Therefore, triangle △EGH is equilateral and

∠HEG = ∠GHE.

We apply the exterior angle theorem to triangle △EGH and find that

∠DGE = ∠GHE + ∠HEG = 2 · ∠HEG.

Triangle △GED is equilateral by construction, and thus

∠EDG = ∠DGE = 2 · ∠HEG.

We apply the exterior angle theorem to triangle △HED and conclude

∠DEF = ∠GHE + ∠EDH = ∠GHE + ∠EDG = ∠HEG+ 2 · ∠HEG

= 3 · ∠HEG.

4.6.4 Watt curves

We can use Algorithm 4.2.1 to simulate mechanical linkages. For example, the
following construction uses a four-bar linkage to generate a Watt curve, a plane
algebraic sextic

C : f(x, y) = (x2 + y2)(x2 + y2 − a2 − b2 + c2)
2
+ 4a2y2(x2 + y2 − b2) = 0

with parameters a, b, c > 0.

Construction 4.6.14. Let A and B be two points in the plane at distance 2a from
each other. Let c0 be a circle with centre A and radius b. Let c1 be a circle with
centre B and radius b.

1. Let C be a point on c0.

2. Let c2 be a circle with centre C and radius 2c.

62

4.6 Examples

A B

C D
E

c0 c1

c2

Figure 4.6.13: An instance of Construction 4.6.14. When point C moves on circle c0
according to Algorithm 4.2.1, point E traces a Watt curve with
parameters a = |AB|/2, b = |AC| = |BD|, and c = |CD|/2.

3. Let D be an intersection of c1 and c2.

4. Let E be the midpoint of the segment between C and D.

When point C moves on circle c0 according to Algorithm 4.2.1, point E traces a
Watt curve with parameters a, b, c.

Remark 4.6.15. The first bar of the four-bar linkage, segment AB, has length 2a.
Circles c0, c1, and c2 have fixed radii. Hence, they prescribe the lengths |AC| = b,
|CD| = 2c, and |DB| = b of the remaining bars of the four-bar linkage.

Remark 4.6.16. Depending on parameters a, b, c, Watt curves have a wide variety of
different shapes.

Remark 4.6.17. In Figure 4.6.13, we choose parameters a, b, c so that a > c. There-
fore, the movement of point C on circle c0 is constrained. If point C moved too
far to the left, then circles c1 and c2 would move apart and would no longer have
real-valued intersections. Such movement is not possible without breaking the
linkage. Algorithm 4.2.1 resolves the singularities when circles c1 and c2 merely
touch each other, by taking complex detours around them. At every such singularity,
point C reverses its direction of movement on circle c0. Apparently, Algorithm 4.2.1
produces a physically reasonable motion of the four-bar linkage.

63

64

5 Identification of Real Algebraic Loci

65

5 Identification of Real Algebraic Loci

5.1 Introduction

We would like to determine the equation of the real plane algebraic curve containing
the real algebraic locus generated by our locus generation algorithm (Algorithm 4.2.1).
This may help us to draw the curve more efficiently or to work out characteristic
features of the curve (see (Lebmeir, 2009)). Knowledge of the equation of the plane
algebraic curve is also essential for the visualization technique discussed in the next
chapter.

The locus generation algorithm produces a point cloud of points on the real
algebraic locus. Lebmeir and Richter-Gebert (2007) use an approximate least
squares approach for fitting a real plane algebraic curve to such a point cloud. For
that, they need to determine the degree of the plane algebraic curve. To that end,
they successively test degrees 1, 2, 3, . . . ; reaching the right degree correlates with
a significant drop of the singular value with minimal absolute value of a certain
matrix (Lebmeir and Richter-Gebert, 2007, Section 3).

We follow a slightly different, randomized approach. This allows us to address two
of the open questions of (Lebmeir and Richter-Gebert, 2007, Section 6), ‘To what
extent can randomization techniques be used to speed up the calculations?’ and
‘Can similar approaches be used within the more special class of rational algebraic
functions?’.

5.2 Algorithms

Lemma 5.2.1. A plane algebraic curve of degree n is uniquely determined by
n(n+ 3)/2 points in the plane, in general position.

Proof. Let C : f(x, y) = 0 be a plane algebraic curve of degree n. We plug in
x = X/Z, y = Y/Z into f(x, y) = 0 and multiply by Zn to obtain a homogeneous
equation for C. It has the general form

f(X,Y, Z) =
∑

0≤j,k,l≤n
j+k+l=n

ajklX
jY kZ l = 0.

Every summand has total degree n and a degree between 0 and n in each of the
variables X,Y, Z. Hence, the number of terms equals the number of partitions of n
into three non-negative integers,

(

n+ 2

2

)

=
(n+ 2)(n+ 1)

2
.

Besides, we have one degree of freedom in choosing a non-zero scalar multiple of the
defining equation of C. There remain

(n+ 2)(n+ 1)

2
− 1 =

n(n+ 3)

2

66

5.2 Algorithms

degrees of freedom. If we prescribe a point of the plane algebraic curve, in general
position, the degrees of freedom decrease by one. Consequently, n(n+ 3)/2 points
in general position determine the equation of a plane algebraic curve of degree n, up
to a non-zero scalar multiple. If we plug in Z = 1 into f(X,Y, Z) = 0, we return to
the affine equation f(x, y) = 0. This dehomogenization does not change the number
of terms. Therefore, the argument applies independent of whether we describe C by
an affine equation, f(x, y) = 0, or by a projective equation, f(X,Y, Z) = 0.

Algorithm 5.2.2 (locus identification algorithm). Let a point cloud generated by
Algorithm 4.2.1 be given. Let N denote a maximum degree. Let TOL be a tolerance.

1. For n = 1, 2, . . . , N :

a) From the point cloud, we randomly choose m = n(n + 3)/2 distinct
points,

(xk, yk)
⊤, k = 1, 2, . . . ,m.

b) We solve the underdetermined homogeneous linear system of equations

Ax = 0,

where x is the coefficient vector and A is the m× (m+1) matrix defined
as follows: The k-th row of A contains the monomials of a general
polynomial in x and y of degree n, in a fixed order, evaluated at x = xk,
y = yk.

c) The coefficient vector yields a candidate for the equation defining the
plane algebraic curve containing the point cloud. In order to normal-
ize the candidate equation, we divide its coefficients by the coefficient
with maximum absolute value. We thus obtain a normalized candidate
equation f(x, y) = 0. If all points (x, y)⊤ of the point cloud satisfy
|f(x, y)| < TOL, we output the normalized coefficient vector and stop.

2. If we reach this point, then we could not identify an equation of a plane
algebraic curve of degree ≤ N containing the point cloud up to a tolerance of
TOL. We print an error message and stop.

Remark 5.2.3. The idea behind Algorithm 5.2.2 is the following: By Lemma 5.2.1,
n(n+3)/2 points in the plane, in general position, determine a unique plane algebraic
curve of degree n. We randomize the choice of points from the point cloud in order
to obtain points in general position with high probability.
The k-th row of the underdetermined homogeneous linear system of equations

Ax = 0 represents the condition that point (xk, yk)
⊤ lies on the plane algebraic

curve with coefficient vector x.
We take rounding errors introduced by floating point arithmetic into account

and use a tolerance of TOL to test whether all points of the point cloud lie on the
candidate plane algebraic curve.

67

5 Identification of Real Algebraic Loci

We stop once all points of the point cloud lie on the plane algebraic curve
up to a tolerance of TOL. Thus we try to guard against degree overestimation.
If we overestimated the degree of the plane algebraic curves, we would obtain
additional reducible components as artefacts (see (Lebmeir and Richter-Gebert,
2007, Figure 3)).

Remark 5.2.4. We may use the following approach to solve the underdetermined
homogeneous linear system Ax = 0: We remove a column b of matrix A so
that we obtain the m ×m matrix A

′ with minimal condition number among all
matrices obtained by removing one column from A. Then we solve the linear system
A

′
x
′ = −b and set the coefficient corresponding to column b to 1.

If we choose points in general position, the coefficient vector x is uniquely
determined up to a non-zero scalar factor. Hence, we may choose one non-zero
coefficient to be 1. Equivalently, we may remove one column b from A to obtain the
linear system A

′
x
′ = −b. In practice, matrix A

′ is often nearly singular. Therefore,
we remove the column b of A that yields the best-conditioned matrix A

′.

Remark 5.2.5. We can increase the numerical stability of the algorithm if we use
singular value decomposition to solve the underdetermined homogeneous linear
system Ax = 0. Singular value decomposition is probably also more efficient than
the above approach for solving the linear system.

Remark 5.2.6. We can increase the reliability of Algorithm 5.2.2 if we repeat steps a)
to c) a couple of times for every degree n.

Remark 5.2.7. We can easily adapt Algorithm 5.2.2 to homogeneous coordinates.

Remark 5.2.8. Does the randomization of Algorithm 5.2.2 increase performance
compared to the approach of (Lebmeir and Richter-Gebert, 2007)?

Suppose we use singular value decomposition to solve the underdetermined ho-
mogeneous linear system Ax = 0 in step b) of Algorithm 5.2.2. The algorithm
of (Lebmeir and Richter-Gebert, 2007) performs singular value decomposition on a
matrix defined analogously to matrix A, but with a row for every point of the point
cloud. The point cloud generated by Algorithm 4.2.1 usually consists of several
hundreds of points. Hence, the algorithm of (Lebmeir and Richter-Gebert, 2007)
performs singular value decomposition on a usually much larger matrix.

Algorithm 5.2.2 needs to test whether all points of the point cloud lie on the
candidate plane algebraic curve up to a tolerance of TOL. The algorithm of (Lebmeir
and Richter-Gebert, 2007) simply measures the drop of the singular value of minimal
absolute value.

For large point clouds, the decrease in complexity of the singular value decom-
position likely surpasses the additional cost of randomization and the approximate
incidence test.

Remark 5.2.9. Analogously to Algorithm 5.2.2, we can determine the coefficients
of plane algebraic equations g(t, x) = 0 and h(t, y) = 0 that describe how the
x-coordinate and the y-coordinate depend on time parameter t.

68

5.2 Algorithms

If the plane algebraic curve is rational, equations g(t, x) = 0 and h(t, y) = 0
are linear in x respectively y (or powers of such equations). We can solve for x
respectively y to obtain a rational parameterization of the plane algebraic curve
(see Section 5.3.2).

We obtain the following algorithm:

Algorithm 5.2.10 (rational parameterization). Let a point cloud generated by
Algorithm 4.2.1 be given. Let the motion of the mover be rationally parameterized
in time parameter t. Together with every point (x, y)⊤ of the point cloud, we store
the corresponding parameter value t. Let N denote a maximum degree. Let TOL
be a tolerance.

1. For n = 1, 2, . . . , N :

a) From the point cloud, we randomly choose m = 2(n + 1) − 1 distinct
points,

(tk, xk, yk)
⊤, k = 1, 2, . . . ,m.

b) We solve the underdetermined homogeneous linear system of equations

Agxg = 0,

where xg is the coefficient vector and Ag is the m × (m + 1) matrix
defined as follows: The k-th row of Ag contains the monomials of a
general polynomial in t and x of total degree n+1 that has degree n in t
and is linear in x, in a fixed order, evaluated at t = tk, x = xk.

c) The coefficient vector yields a candidate for equation g(t, x) = 0 describ-
ing the relation between time parameter t and the x-coordinate of the
plane algebraic curve containing the point cloud. In order to normal-
ize the candidate equation, we divide its coefficients by the coefficient
with maximum absolute value. We thus obtain a normalized candidate
equation g(t, x) = 0. Unless all points (t, x, y)⊤ of the point cloud satisfy
|g(t, x)| < TOL, we increment n and go to step 1.

d) We solve the underdetermined homogeneous linear system of equations

Ahxh = 0,

where xh is the coefficient vector and Ah is the m × (m + 1) matrix
defined as follows: The k-th row of Ah contains the monomials of a
general polynomial in t and y of total degree n+ 1 that has degree n in t
and is linear in y, in a fixed order, evaluated at t = tk, y = yk.

e) The coefficient vector yields a candidate for equation h(t, y) = 0 describ-
ing the relation between time parameter t and the y-coordinate of the
plane algebraic curve containing the point cloud. In order to normal-
ize the candidate equation, we divide its coefficients by the coefficient

69

5 Identification of Real Algebraic Loci

with maximum absolute value. We thus obtain a normalized candidate
equation h(t, y) = 0. Unless all points (t, x, y)⊤ of the point cloud satisfy
|h(t, y)| < TOL, we increment n and go to step 1.

f) We solve equation g(t, x) = 0, which is linear in x, for x. Thus we obtain
an approximate rational parameterization x(t) for the x-coordinate of
the plane algebraic curve containing the point cloud.

g) We solve equation h(t, y) = 0, which is linear in y, for y. Thus we obtain
an approximate rational parameterization y(t) for the x-coordinate of
the plane algebraic curve containing the point cloud.

h) We output x(t), y(t) and stop.

2. If we reach this point, then we could not identify an approximate rational
parameterization x(t), y(t) of the plane algebraic curve containing the point
cloud up to a tolerance of TOL. We print an error message and stop.

Remark 5.2.11. We can easily adapt Algorithm 5.2.10 to homogeneous coordinates.

5.3 Examples

5.3.1 Limaçon (implicit equation)

A limaçon is a quartic plane algebraic curve

C : f(x, y) = (x2 + y2 − ax)
2 − b2(x2 + y2) = 0

with parameters a, b > 0.

A
B

C

D

c0

g

h

Figure 5.3.1: An instance of Construction 5.3.2

70

5.3 Examples

Construction 5.3.2. Let A be a point at the origin. Let B be the point with
coordinates (a, 0)⊤. Let c0 be a circle with centre B and radius b. Let C be a point
on circle c0.

1. Let g be the tangent to c0 through C.

2. Let h be the line through A perpendicular to g.

3. Let D be the intersection of g and h.

When point C moves around circle c0, point D traces a limaçon with parameters
a, b.

We apply Algorithm 5.2.2 with N = 5 and TOL = 10−8 to a point cloud P of 100
points for Construction 5.3.2 with a = 2 and b = 1 generated by Algorithm 4.2.1:

n = 1: We randomly choose m = 2 points from point cloud P :

k xk yk

1 0.9837075567601544 0.10313000277768827
2 0.5542546231506568 −0.36845625340204335

We solve the underdetermined homogeneous linear system of equations
(

x1 y1 1
x2 y2 1

)

x =

(

0
0

)

for coefficient vector x. We obtain

x ≈ (1,−0.9107,−0.8898)⊤.

Not all points of the point cloud lie on the line

C1 : f1(x, y) = x− 0.9107y − 0.8898 = 0

up to a tolerance of TOL = 10−8 (see Figure 5.3.3a); we have

max
(x,y)⊤∈P

|f1(x, y)| ≈ 2.741 > TOL.

n = 2: We randomly choose m = 5 points from point cloud P :

k xk yk

1 1.000684030023719 1.7321822891433003
2 0.4140819900035717 1.4815690462555489
3 0.8390765389044432 −0.29244507461933433
4 0.2008179994763873 0.23252610465687165
5 0.04507584020146185 −1.0822869715963503

71

5 Identification of Real Algebraic Loci

We solve the underdetermined homogeneous linear system of equations

x21 x1y1 y21 x1 y1 1

x22 x2y2 y22 x2 y2 1

x23 x3y3 y23 x3 y3 1

x24 x4y4 y24 x4 y4 1

x25 x5y5 y25 x5 y5 1

x =

0

0

0

0

0

for coefficient vector x. We obtain

x ≈ (−0.9598, 0.2362,−0.02711, 1,−0.1307,−0.1413)⊤.

Not all points of the point cloud lie on the quadric

C2 : f2(x, y) = −0.9598x2 + 0.2362xy − 0.02711y2 + x− 0.1307y − 0.1413 = 0

up to a tolerance of TOL = 10−8 (see Figure 5.3.3b); we have

max
(x,y)⊤∈P

|f2(x, y)| ≈ 5.842 > TOL.

n = 3: We randomly choose m = 9 points from point cloud P :

k xk yk

1 −0.10351064449890579 −0.6996980293839725
2 0.04507584020146185 −1.0822869715963503
3 0.958509489360396 0.16186019754438224
4 −0.020306267659636154 −0.9573734228502432
5 2.3192631886089474 1.403761324155898
6 1.000684030023719 1.7321822891433003
7 0.7558692942720825 0.33629628143593643
8 0.9894372968119147 −0.0833476962694887
9 0.7085849638314798 −0.35197717330088585

We solve the underdetermined homogeneous linear system of equations

x31 x21y1 x1y
2
1 y31 x21 x1y1 y21 x1 y1 1

x32 x22y2 x2y
2
2 y32 x22 x2y2 y22 x2 y2 1

...
...

...
...

...
...

...
...

...
...

x39 x29y9 x9y
2
9 y39 x29 x9y9 y29 x9 y9 1

x =

0

0

...

0

for coefficient vector x. We obtain

x ≈ (0.1361,−0.6368, 0.6121,−0.1269,−0.3765, 1,−0.3812, 0.3657,

−0.3816,−0.1280)⊤.

72

5.3 Examples

Not all points of the point cloud lie on the cubic

C3 : f3(x, y) = 0.1361x3 − 0.6368x2y + 0.6121xy2 − 0.1269y3

− 0.3765x2 + xy − 0.3812y2 + 0.3657x− 0.3816y − 0.1280

= 0

up to a tolerance of TOL = 10−8 (see Figure 5.3.3c); we have

max
(x,y)⊤∈P

|f3(x, y)| ≈ 4.905 > TOL.

n = 4: We randomly choose m = 14 points from point cloud P :

k xk yk

1 0.6336502032010924 −0.36606057164931516
2 0.8919996499197558 −0.24930393291812158
3 0.18917628065488942 1.2787696513841564
4 2.9988757784209676 −0.06360733730558996
5 −0.038149399652683026 0.9159806679983081
6 0.22195976803923528 −1.3144092689217712
7 0.9223067627678522 0.21606894691608589
8 1.5080577401686142 1.7461721201951905
9 0.5909862893052821 −1.5903956586621792
10 0.7775259536846537 −0.32708270617380014
11 0.8199652707774099 0.30469665211710856
12 0.01843561397549349 −0.03045891072577873
13 0.4140819900035717 1.4815690462555489
14 0.7369743269307526 −1.6564449122519318

We solve the underdetermined homogeneous linear system of equations

x41 x31y1 x21y
2
1 x1y

3
1 y41 · · · x1 y1 1

x42 x32y2 x22y
2
2 x2y

3
2 y42 · · · x2 y2 1

...
...

...
...

... · · · ...
...

...

x414 x314y14 x214y
2
14 x14y

3
14 y414 · · · x14 y14 1

x =

0

0

...

0

for coefficient vector x. We obtain

x ≈ (−0.2500, 1.624× 10−15,−0.5000,−6.581× 10−15,−0.2500, 1, 1.880× 10−15,

1, 5.528× 10−15,−0.7500, 5.353× 10−15, 0.2500,−1.651× 10−14,

−7.741× 10−15, 5.480× 10−17)⊤.

73

5 Identification of Real Algebraic Loci

(a) n = 1 (b) n = 2 (c) n = 3 (d) n = 4

Figure 5.3.3: limaçon point cloud and candidate real algebraic loci

All points of the point cloud lie on the quartic

C4 : f4(x, y) = −0.2500x4 + 1.624× 10−15x3y − 0.5000x2y2 − 6.581× 10−15xy3

− 0.2500y4 + x3 + 1.880× 10−15x2y + xy2 + 5.528× 10−15y3

− 0.7500x2 + 5.353× 10−15xy + 0.2500y2

− 1.651× 10−14x− 7.741× 10−15y + 5.480× 10−17

= 0

up to a tolerance of TOL = 10−8 (see Figure 5.3.3d); we have

max
(x,y)⊤∈P

|f4(x, y)| ≈ 4.517× 10−14 < TOL.

Therefore, we stop. Indeed, f4(x, y) = 0 is reasonably close to the exact equation

(x2 + y2 − 2x)
2 − (x2 + y2) = x4 + 2x2y2 + y4 − 4x3 − 4xy2 + 3x2 − y2 = 0,

divided by 4.

Remark 5.3.4. In contrast to the algorithm of (Lebmeir and Richter-Gebert, 2007),
Algorithm 5.2.2 does not attempt to find curves of degree n = 1, 2, 3 that best
approximate all points of the point cloud (compare Figure 5.3.3 and (Lebmeir and
Richter-Gebert, 2007, Figure 3)). When we reach the right degree, Algorithm 5.2.2
approximates the curve much better than before. If we use only m = n(n+ 3)/2
points to determine approximate curves, we artificially increase the difference of
approximation quality between the approximate curve of the right degree and its pre-
decessor. Consequently, we could also use a significant drop of max(x,y)⊤∈P |f(x, y)|
as a stopping criterion.

5.3.2 Limaçon (rational parameterization)

Using Algorithm 5.2.10, we can (approximately) determine a rational parameteriza-
tion for the limaçon from the previous subsection (Construction 5.3.2 with a = 2

74

5.3 Examples

and b = 1): In Construction 5.3.2, we could parameterize the motion of point C
along circle c0 by

C(ϕ) = (a, 0)⊤ + b · (cosϕ, sinϕ)⊤, −π ≤ ϕ ≤ π.

However, this parameterization is not rational. We use tangent half-angle substitu-
tion,

t = tan
ϕ

2
, cosϕ =

1− t2

1 + t2
, sinϕ =

2t

1 + t2
,

to derive the rational parameterization

C(t) = (a+ b · (1− t2)/(1 + t2), b · 2t/(1 + t2))
⊤
, t ∈ R.

Together with every point (x, y)⊤ of the point cloud, we store the corresponding
parameter value t. We use Algorithm 5.2.10 to determine algebraic equations
g(t, x) = 0 and h(t, y) = 0 that describe the relation between t and x respectively t
and y. Since the limaçon is a rational plane algebraic curve, we can find algebraic
equations g(t, x), h(t, y) that are linear in x respectively y. For the degree in t, we
would generally test degrees n = 1, 2, . . . successively; here, we elaborate only the
decisive step of the procedure:

n = 4: We randomly choose m = 2(n+ 1)− 1 = 9 points from point cloud P :

k tk xk yk

1 4.260998791303504 0.7085849638314798 −0.35197717330088585
2 3.730086748535029 0.6336502032010924 −0.36606057164931516
3 7.293038268798594 0.8919996499197558 −0.24930393291812158
4 0.8629471643344457 0.18917628065488942 1.2787696513841564
5 −0.010604004580936474 2.9988757784209676 −0.06360733730558996
6 1.042515626323568 −0.038149399652683026 0.9159806679983081
7 −0.8452911790931055 0.22195976803923528 −1.3144092689217712
8 −8.652722941075382 0.9223067627678522 0.21606894691608589
9 0.45767653215895854 1.5080577401686142 1.7461721201951905

We solve the underdetermined homogeneous linear systems of equations

t41x1 t31x1 t21x1 t1x1 x1 −t41 −t31 −t21 −t1 −1

t42x2 t32x2 t22x2 t2x2 x2 −t42 −t32 −t22 −t2 −1

...
...

...
...

... · · · ...
...

...
...

t49x9 t39x9 t29x9 t9x9 x9 −t49 −t39 −t29 −t9 −1

xg =

0

0

...

0

,

t41y1 t31y1 t21y1 t1y1 y1 −t41 −t31 −t21 −t1 −1

t42y2 t32y2 t22y2 t2y2 y2 −t42 −t32 −t22 −t2 −1

...
...

...
...

... · · · ...
...

...
...

t49y9 t39y9 t29y9 t9y9 y9 −t49 −t39 −t29 −t9 −1

xh =

0

0

...

0

75

5 Identification of Real Algebraic Loci

for coefficient vectors xg,xh. We obtain

xg ≈ (−0.2500, 7.109× 10−15,−0.5000, 3.652× 10−15,−0.2500,−0.2500,

6.254× 10−15, 1,−2.449× 10−15,−0.7500)⊤,

xh ≈0.1667,−1.332× 10−15, 0.3333,−2.374× 10−15, 0.1667, 1.011× 10−16,

−0.3333,−5.664× 10−15, 1, 1.497× 10−17⊤.

All points (t, x, y)⊤ of the point cloud lie on the quintics

Cg : g(t, x) = −0.2500t4x+ 7.109× 10−15t3x− 0.5000t2x+ 3.652× 10−15tx

− 0.2500x− 0.2500t4 + 6.254× 10−15t3 + t2 − 2.449× 10−15t

− 0.7500

= 0,

Ch : h(t, y) = 0.1667t4y − 1.332× 10−15t3y + 0.3333t2y − 2.374× 10−15ty

+ 0.1667y − 1.011× 10−16t4 + 0.3333t3 + 5.664× 10−15t2 − t

− 1.497× 10−17

= 0

up to a tolerance of TOL = 10−8; we have

max
(t,x,y)⊤∈P

|g(t, x)| = 1.035× 10−9 < TOL,

max
(t,x,y)⊤∈P

|h(t, y)| = 7.490× 10−9 < TOL,

Therefore, we stop. Indeed, g(t, x) = 0 and h(t, y) = 0 are reasonably close to the
exact equations

(t4x+ 2t2x+ x− t4 + 4t2 − 3)/4 = 0,

(t4y + 2t2y + y + 2t3 − 6t)/6 = 0.

We solve g(t, x) = 0 for x and h(t, y) = 0 for y. This yields a rational parameteriz-
ation that is a close approximation of the exact rational parameterization of the
limaçon with parameters a = 2, b = 1 from Construction 5.3.2,

x(t) =
t4 − 4t2 + 3

t4 + 2t2 + 1
, y(t) =

−2t3 + 6t

t4 + 2t2 + 1
, t ∈ R.

76

6 GPU-based Visualization of
Algebraic Riemann Surfaces

77

6 GPU-based Visualization of Algebraic Riemann Surfaces

6.1 Introduction

Suppose we generate a real algebraic locus by Algorithm 4.2.1 and approximate the
equation of the real plane algebraic curve that contains the locus by Algorithm 5.2.2.
Then we may want to visualize the corresponding complex plane algebraic curve
as a Riemann surface on which the tracer moves along the complex detours of
Algorithm 4.2.1. Ideally, such a visualization can help improve our understanding
of the complex structure of algebraic loci.

6.1.1 Mathematical background

The following basic example illustrates what we would like to visualize.

Example 6.1.1. Let y be the square root of x,

y =
√
x.

If x is a non-negative real number, we typically define y as the non-negative real
number whose square equals x, i.e. we always choose the non-negative solution of
the equation

y2 − x = 0 (6.1)

as y =
√
x. For negative real numbers x, no real number y solves Equation 6.1.

However, if we define the imaginary unit i as a number with the property that
i2 = −1 then the square root of x becomes the purely imaginary number

y = i
√

|x|.

Together, these two conventions yield a continuous square root function

√
· : R → C.

For complex numbers x, Equation 6.1 has exactly two complex solutions (counted
with multiplicity), the square roots of x.

We have seen that, for real numbers x, we can choose one solution of Equation 6.1
for the square root and obtain a square root function that is continuous over the real
numbers. In contrast, we cannot for every complex number x choose one solution
of Equation 6.1 so that we obtain a square root function that is continuous over the
complex numbers: If we plot the two solutions of Equation 6.1 as x runs along a
circle centred at the origin of the complex plane, we observe that y moves at half the
angular velocity of x (see Figure 6.1.2). When x completes one full circle and reaches
its initial position again, the square roots have interchanged signs. Therefore, a
discontinuity occurs when x returns to its initial position after one full turn and the
square root jumps back to its initial position.
Note that by choosing the values of the square root in a different manner, or,

equivalently, letting x start at at a different position, we can move the discontinuity

78

6.1 Introduction

Re

Im

Re

Im

Figure 6.1.2: When a complex number (black points) runs along a circle centred at
the origin of the complex plane, its square roots (white points) move
at half the angular velocity (left image). After a full turn of x, the
square roots have interchanged positions. The real part of the square
root that initially had positive real part has become negative, and vice
versa (right image).

to an arbitrary position on the circle. Moreover, note that there is (at least) one
discontinuity on any circle of any radius centred at the origin.

In order to define the principal branch of the complex square root function, we
usually align the discontinuities along the negative real axis, the canonical branch
cut of the complex square root function, and choose those values that on the real
axis agree with the square root over the real numbers.

Alternatively, we can extend the domain of the complex square root to make it
a single-valued and continuous function. To that end, we take two copies of the
extended complex plane and slit them along the negative real axis. On the first
copy, we choose the solution of Equation 6.1 with non-negative real part as the
complex square root of x; on the second copy, we choose the other solution. We
glue the upper side (lower side) of the slit of the first copy to the lower side (upper
side) of the slit of the second copy and obtain a Riemann surface of the complex
square root. (In three dimensions, this is not possible without self-intersections.)

Remark 6.1.3. On the Riemann surface, the complex square root is single-valued
and continuous. It is even analytic except at the origin and at infinity, which are
exactly the points where the two solutions of Equation 6.1 coincide.

Remark 6.1.4. The branch cut is not a special curve of the Riemann surface. When
we glue the Riemann surface together, the branch cut becomes a curve like every
other curve on the Riemann surface. If we had used a different curve between the
origin and infinity as branch cut, we would have obtained the same result.

Remark 6.1.5. Equation 6.1 describes a parabola. We can proceed analogously to
obtain Riemann surfaces for other plane algebraic curves.

79

6 GPU-based Visualization of Algebraic Riemann Surfaces

6.1.2 Previous work

Probably the most common approach for visualization of functions is to plot a
function graph. However, for a complex function

g : C → C,

the function graph

{(z, g(z)) | z ∈ C} ⊂ C× C ≃ R2 × R2

is a (real) two-dimensional surface in (real) four-dimensional space.
One way to visualize a four-dimensional object is to plot several two- or three-

dimensional slices. This approach seems less useful for understanding the overall
structure of the object.
Another traditional method to visualize complex functions is domain colouring.

The principle of domain colouring is to colour every point in the domain of a
function with the colour of its function value in a reference image. If we choose the
reference image wisely, a lot of information about the complex function can be read
off from the resulting two-dimensional image (see e.g. (Poelke and Polthier, 2012)
and (Wegert, 2012)). The idea of lifting domain colouring to Riemann surfaces is
due to Poelke and Polthier (2009).
We can interpret a Riemann surface of a plane algebraic curve

C : f(x, y) = 0 (6.2)

as a function graph of a multivalued complex function, which maps every x to
multiple values of y. If f(x, y) is a polynomial of degree n in y, there are exactly n
values of y for every value of x that satisfy f(x, y) = 0 (counted with multiplicity).
Every such pair (x, y) corresponds to a point on the Riemann surface. In other
words, the Riemann surface is an n-fold cover of the complex plane.

Let π : (x, y) 7→ x denote a projection function on the Riemann surface. Then the
values of y at x correspond to the elements of the fibre π−1(x). The situation is
analogous to function graphs of single-valued functions from the real numbers (or
the real plane) to the real numbers, where one function value lies above every point
in the domain.

We can transfer the Riemann surface from (real) four-dimensional space into (real)
three-dimensional space by introducing a height function H : C → R. We typically
use the real part as a height function. We plot the surface

{(Rex, Imx,H(y)) | x, y ∈ C : f(x, y) = 0}

and use domain colouring to represent the value of y at every point of the surface.
In practice, we want to generate a triangle mesh that approximates the Riemann

surface as the graph of a multivalued function over a triangulated domain in the
complex plane. The Riemann surface mesh approximates the continuous Riemann

80

6.2 Algorithms

surface in the following sense: The y-values at the vertices of a triangle of the
Riemann surface mesh result from each other under analytic continuation along
the edges of the underlying triangle in the triangulated domain. If f(x, y) = 0 is
a polynomial of degree n in y there are n values of y above every vertex x of the
triangulated domain. Hence, we have to determine which of the 3n values of y above
a triangle in the triangulated domain form triangles of the Riemann surface mesh.
A wrong combination of values of y to triangles might for example occur due to
discontinuity if we used the principal branch of the square root function for the
computation of y. This would produce artefacts in the visualization for which there
is no mathematical justification.

For the generation of such a Riemann surface mesh, previous algorithms have
solved systems of differential equations (Trott, 2008; Nieser et al., 2010) or explicitly
identified and analyzed branch cuts to remove discontinuities (Kranich, 2012; Wegert,
2012, Section 7.6).

In the next section, we discuss an algorithm based on a different idea: We can
exploit that y(x) is continuous almost everywhere on the Riemann surface and
therefore, if x changes little, so does y(x).

6.2 Algorithms

In this section, we describe algorithms for generating and visualizing domain-coloured
Riemann surface meshes of plane algebraic curves. Let

C : f(x, y) = 0 (6.3)

be a complex plane algebraic curve. In particular, let f be a polynomial with
complex coefficients of degree n in y. Moreover let U ⊂ C be a triangulated domain
in the complex plane. (In practice, U is typically rectangular.)

We want to generate a Riemann surface mesh of C. The mesh discretizes a part of
a (real) two-dimensional surface in (real) four-dimensional space. We can visualize it
using a height function and domain colouring, as described in the previous section.

We obtain a Riemann surface mesh of C as a graph of the multivalued function
induced by Equation 6.3, which maps every value of x in U to n values of y such
that f(x, y) = 0.

For every triangle in U , we thus obtain n values of y at each of its three vertices.
The problem is to determine whether, and if so, how, the 3n values of y can be
combined to form triangles of the Riemann surface mesh. The resulting triangles
should be consistent with the fact that y as a function of x is analytic almost
everywhere on the Riemann surface. This is impossible if the triangle in U contains
a ramification point of y(x). In this case, we subdivide the triangle to obtain smaller
triangles mostly free of ramification points. Otherwise, the triangles of the Riemann
surface mesh are uniquely determined by analytic continuation of y(x) along the
edges of the triangle in U .

81

6 GPU-based Visualization of Algebraic Riemann Surfaces

In order to find these triangles of the Riemann surface mesh, we use the following
idea: Consider a triangle △x1x2x3 in U that is free of ramification points of y(x).
Under this assumption, y(x) is continuous on those parts of the Riemann surface
that lie above △x1x2x3. Hence, for every ε > 0 there exists δ > 0 such that
|y(x1)−y(x2)| < ε for all x1, x2 with |x1−x2| < δ. If ε is half the minimum distance
between the n values of y(x) at x1 and |x1 − x2| is smaller than the corresponding
δ, then the values of y(x) at x2 are closer to the corresponding values of y(x) at x1
than to any other value of y(x) at x1.
In other words, if triangle △x1x2x3 is small enough, we can combine the values

of y at its vertices to triangles of the Riemann surface mesh based on proximity:
Among the 3n values of y at the vertices of triangle △x1x2x3, every three values of
y closest to each other form a triangle of the Riemann surface mesh.
We can algorithmically compute a δ > 0 as above using the epsilon-delta bound

for plane algebraic curves of Theorem 2.2.1. Theorem 2.2.1 is of essential importance
for our approach. Our approach only works because Theorem 2.2.1 provides us with
a reliable bound computable as a function of x that depends only on a few constants
derived from the coefficients of f(x, y).
If triangle △x1x2x3 is not small enough to correctly combine the values of y at

its vertices based on proximity, we subdivide the triangle.
In summary, we obtain the following algorithm:

Algorithm 6.2.1 (Generation of a Riemann surface mesh). Let U ⊂ C be a
triangulated domain in the complex plane. Let

C : f(x, y) = 0

be a complex plane algebraic curve and f(x, y) a polynomial of degree n in y. We
prescribe a maximal subdivision depth (as a maximal number of iterations or as a
minimal edge length).

1. Compute the global ingredients of the epsilon-delta bound of Theorem 2.2.1
for y(x).

2. For every triangle △x1x2x3 in U :

a) Compute the 3n values of y(x) at x1, x2, x3,

{yk(xj) | f(xj , yk(xj)) = 0, j = 1, 2, 3, k = 1, 2, . . . , n}.

b) Compute half the minimum distance between the values of y(x) at each
of the vertices of △x1x2x3,

ε(xj) =
1
2 min

k 6=l
|yk(xj)− yl(xj)|, j = 1, 2, 3.

c) Compute δ(xj) by the epsilon-delta bound of Theorem 2.2.1 so that

|y(xj)− y(x)| < ε(xj), if |xj − x| < δ(xj), j = 1, 2, 3.

82

6.2 Algorithms

Figure 6.2.2: Adaptive refinement patterns used in Algorithm 6.2.1

d) Determine which of the edges of △x1x2x3 are longer than the minimum
of the δ(xj) at their endpoints and must be subdivided.

e) Select the right adaptive refinement pattern (see Figure 6.2.2) and sub-
divide △x1x2x3 accordingly.

3. Repeat step 2 until the maximal subdivision depth is reached.

4. Discard every triangle in U with an edge longer than the minimum of the
δ(xj) at its endpoints.

5. For every triangle △x1x2x3 in U , combine the values of y(x) at its vertices to
triangles of the Riemann surface mesh based on proximity. More formally, the
triangles added to the Riemann surface mesh comprise the vertices

(x1, yk(x1)),

(x2, argmin
yl(x2)

|yk(x1)− yl(x2)|),

(x3, argmin
yl(x3)

|yk(x1)− yl(x3)|),

for k = 1, 2, . . . , n.

6. Output the Riemann surface mesh and stop.

Remark 6.2.3. By construction, Algorithm 6.2.1 generates a Riemann surface mesh
that is consistent with the analytic structure of the Riemann surface of C.
Remark 6.2.4. The adaptive refinement patterns used for the subdivision of triangles,
whose edges are too long, produce a watertight subdivision.

Remark 6.2.5. Step 4 of Algorithm 6.2.1 produces holes around the ramification
points of y(x). We can make these holes very small if we choose the maximal
subdivision depth appropriately.

For the visualization of a Riemann surface mesh, we use the following algorithm:

Algorithm 6.2.6 (Visualization of a Riemann surface mesh). Let a Riemann
surface mesh and a domain colouring reference image be given. We choose a height
function H : C → R to transform a point on the Riemann surface mesh from (real)
four-dimensional space to a point in (real) three-dimensional space,

(x, y(x)) 7→ (Rex, Imx,H(y(x))).

83

6 GPU-based Visualization of Algebraic Riemann Surfaces

1. Draw the mesh that results from transforming every vertex of the Riemann
surface mesh as above.

2. Interpolate the value of y(x) on the transformed mesh.

3. Assign to every point on the transformed mesh the colour in the reference
image of the value that y(x) attains at that point on the transformed mesh.

Remark 6.2.7. If we choose the real (or imaginary) part of y(x) as a height function,
the transformation from (real) four-dimensional to (real) three-dimensional space
becomes a projection.

Remark 6.2.8. Using the real part of y(x) as a height function has the advantage that
the visualization then contains the image of C interpreted as a real plane algebraic
curve. It is the intersection of the visualization of the Riemann surface mesh in
(real) three-dimensional space with the Rex-Re y-plane (the xz-plane, if we label
the coordinate axes of real three-dimensional space such that the x-axis points to
the right and the z-axis points upwards).

Remark 6.2.9. The computation of the Riemann surface mesh by Algorithm 6.2.1 is
independent of the choice of height function used for its visualization.

6.3 Implementation

In this section, we discuss how Algorithm 6.2.1 and Algorithm 6.2.6 can be implemen-
ted using OpenGL and WebGL. Since WebGL targets a much wider range of devices,
its API is more limited than that of OpenGL. Consequently, our implementation
using WebGL differs substantially from our implementation using OpenGL. Before
we discuss each setup separately, let us talk about what they have in common.

The main part of our programs is written in shading language (GLSL for OpenGL
and ESSL for WebGL) and runs on the GPU.1 We use the CPU to compute the
global ingredients for the epsilon-delta bound, to generate shading language code
that computes the epsilon-delta bound for C : f(x, y) = 0 as a function of x, and to
generate a coarse triangulation of the input domain.

The implementations in OpenGL and WebGL share some shading language code.
Since there is no native type for complex numbers, we represent them using two-
dimensional floating point vectors. Common routines include complex arithmetic,
numerical root-finding algorithms, the computation of the epsilon-delta bound, and
domain colouring.

The implementation of complex arithmetic is straightforward and we shall not go
into detail about it.
1A shading language program consists of different shaders (vertex, geometry, or fragment shaders)
that operate on different primitives (vertices, triangles, or fragments of a pixel). In a shader,
we specify how a single primitive should be processed; the GPU automatically executes each
shader for many primitives in parallel. This parallelization makes GPU-based algorithms really
fast. Therefore, we try to maximize the amount of code that runs on the GPU, and try to avoid
using the CPU.

84

6.3 Implementation

We need numerical root-finding algorithms to approximate roots of polynomials in
order to compute values of y(x) (and to compute the global ingredients of the epsilon-
delta bound). For instance, Laguerre’s method (Press et al., 2007, Section 9.5.1)
and deflation (Press et al., 2007, Section 9.5.3) or Weierstraß–Durand–Kerner
method (Weierstraß, 1891; Durand, 1960; Kerner, 1966) are well-suited. The latter
may be a little easier to implement in shading language (due to the absence of
variable-length arrays).

For the computation of the epsilon-delta bound, see Theorem 2.2.1. Note that
the computation is parallelizable since the epsilon-delta bound can be implemented
as a function of x that depends on only a few constants derived from the coefficients
of f(x, y).

Instead of computing texture coordinates, which would depend on the range of
y(x) on the input domain, we generate the domain colouring procedurally on-the-fly.
To that end, we use a variation of the enhanced phase portrait colour scheme
of (Wegert, 2012, Section 2.5). The reference image is shown in Figure 6.4.1. We
discuss the colour scheme in Section 6.4.1.

The main difference between the implementations in OpenGL and WebGL is how
the common routines can be combined to realize Algorithm 6.2.1 and Algorithm 6.2.6.

6.3.1 An implementation in OpenGL

Implementation of Algorithm 6.2.1 in OpenGL

Our implementation of Algorithm 6.2.1 in OpenGL comprises three GLSL programs,
for initialization, subdivision, and assembly of the Riemann surface mesh. We cache
the output of each program using transform feedback2 and feed it back to the next
program.

The initialization program consists only of a vertex shader, which operates on the
vertices of the triangulated input domain. For every vertex x, we compute yk(x),
k = 1, 2, . . . , n, and δ(x).

After initialization, we run the subdivision program. The program consists
of a pass-through vertex shader and a geometry shader. The geometry shader
operates on the triangles of the triangulated input domain or of its last subdivision,
respectively. We have access to the values of xj , δ(xj), and yk(xj), k = 1, 2, . . . , n,
j = 1, 2, 3, at the vertices of each triangle △x1x2x3. We determine which edges of
triangle △x1x2x3 are longer than the minimum of the δ(xj) at their endpoints. In
order to subdivide these edges, we compute their midpoints x, and δ(x) and yk(x),
k = 1, 2, . . . , n, at the midpoints. We use the appropriate adaptive refine pattern
of Figure 6.2.2 and output between one and four triangles for every input triangle.
In doing so, we reuse previously computed values rather than recomputing them.

2Transform feedback is a mechanism that allows us to store the output of a GLSL program in
GPU memory and to reuse it as the input to another GLSL program. The mechanism is more
efficient than some other approaches because it reduces expensive data transfer between GPU
and CPU memory.

85

6 GPU-based Visualization of Algebraic Riemann Surfaces

We run the subdivision program iteratively until we reach the prescribed maximal
subdivision depth.

The assembly program consists of a pass-through vertex shader and a geometry
shader. The geometry shader operates on the triangles of the adaptively subdivided
input domain. We again have access to the values of xj , δ(xj), and yk(xj), k =
1, 2, . . . , n, j = 1, 2, 3, at the vertices of each triangle △x1x2x3. For every triangle
△x1x2x3, we test whether one of its edges is longer than the minimum of the δ(xj)
at its endpoints. In this case, we discard the triangle. Otherwise, we determine the
triangles of the Riemann surface mesh by proximity (see Algorithm 6.2.1, step 5)
and output these n triangles.

We also cache the assembled Riemann surface mesh using transform feedback so
that we can pass it as input to our implementation of the visualization algorithm
(Algorithm 6.2.6).

Implementation of Algorithm 6.2.6 in OpenGL

Our implementation of Algorithm 6.2.6 in OpenGL consists of one GLSL program
with a vertex and a fragment shader.

The vertex shader operates on the vertices of a Riemann surface mesh generated
by our implementation of Algorithm 6.2.1. We apply height function H : C → R to
map each (real) four-dimensional vertex

(Rex, Imx,Re y(x), Im y(x))

to a (real) three-dimensional vertex

(Rex, Imx,H(y(x))).

We homogenize the coordinates of this vertex and transform them using the model-
view-projection matrix. We pass y(x) as a varying variable to the fragment shader.

The fragment shader operates on the interpolated value of y(x) at a fragment
of a pixel of the output device. We compute the colour of y(x) according to our
domain colouring reference image.

Remarks

Using our implementation, the generation of a Riemann surface mesh takes little
but noticeable time. The bottlenecks of the implementation are numerical root-
finding and iterative subdivision. However, if we use transform feedback to cache
the Riemann surface mesh and pass it to the implementation of the visualization
algorithm, we obtain interactive performance.

Another advantage of using transform feedback to cache the Riemann surface mesh
is that we can easily export the data. If we additionally compute texture coordinates
and a high-resolution reference image, we can even print our visualization using a
full colour 3D printer (see Figure 6.3.1).

86

6.3 Implementation

Figure 6.3.1: 3D-printed models of domain-coloured Riemann surfaces of square root,
folium of Descartes, and unit circle (clockwise). The merchandise coffee
mug of DFG Collaborative Research Center TRR 109, “Discretization
in Geometry and Dynamics”, is included in the picture as an indicator
for the size of the models.

6.3.2 An implementation in WebGL

In order to support a wider range of devices, the WebGL API is much more limited
than the OpenGL API. Particularly, in WebGL, geometry shaders and transform
feedback are currently unavailable. (The WebGL 2 draft includes transform feedback
and compute shaders.) Therefore our implementation in WebGL differs substantially
from our implementation in OpenGL.

How to replace transform feedback

Instead of transform feedback, our implementation in WebGL uses floating point
textures (specified in the OES texture float extension) and multiple render targets
(specified in the WEBGL draw buffers extension). I do not claim originality of this
approach. It is commonly used for running simulations on the GPU. The original
idea may be due to (Crane et al., 2007). We number the vertices of every mesh
consecutively and pass this number (index) to the vertex shaders along with the
other attributes. In particular, vertices that are shared among several triangles
must be duplicated and numbered separately. Hence, we assume that every triangle
appears as three consecutive vertices in array buffer storage (triangle soup). We use

87

6 GPU-based Visualization of Algebraic Riemann Surfaces

floating point textures essentially as we would arrays of floats, indexed by vertex
number. We store values corresponding to the k-th vertex in the k-th pixel of a
texture. We can store up to four floats per pixel of a floating point texture, namely
one float each in the red, green, blue, and alpha channel. If we need to store more
than four floats, we use multiple render targets which allows us to colour the same
pixel of several textures simultaneously.

We want to store values we compute for a vertex in textures (‘transform’ in
transform feedback). To that end, we bind the array buffers and draw the contents
as points (as opposed to triangles). In the vertex shader, we compute the positions
of the point with index k (in normalized device coordinates) so that it is rasterized
as the k-th pixel of the render target textures. Recall that normalized device
coordinates range in [−1, 1]3. For example, if h and w denote the height and width
of the textures in pixels, we assign to the point with index k the position

(

2 · (k mod w) + 1

w
− 1,

2 · ⌊k/w⌋+ 1

h
− 1, 0

)

.

In the fragment shader, we compute the values to be stored and assign them as
output colours in a specific order (as we later want to retrieve them).

We want to read stored values for a vertex from textures (‘feedback’ in transform
feedback). To that end, we bind the textures and an array buffer containing a range
of vertex numbers (indices). We draw the contents of the array buffer as points or
triangles (depending on whether we want to send the output to different textures
or to the screen). In the vertex shader, we compute texture coordinates for the
point with index k which allow us to lookup the k-th pixel from the textures. Recall
that texture coordinates range in [0, 1]2. For a texture of height h and width w, we
compute the texture coordinates

(

(k mod w) + 0.5

w
,
(k mod w) + 0.5

h

)

.

Adding 0.5 in the numerators accounts for the fact that we want to obtain coordinates
for the centre of a pixel in order to avoid interpolation with adjacent pixels. We
pass the texture coordinates to the fragment shader, where we can use them to
perform a texture lookup.

In order to access data of a whole triangle (as in geometry shaders), we can, in
the vertex shader, determine the indices of the other vertices of the triangle. For
example, the point with index k is part of the triangle whose vertices have indices

k − (k mod 3), k − (k mod 3) + 1, and k − (k mod 3) + 2.

We compute normalized device coordinates or texture coordinates for all three
indices and pass them to the fragment shader, together with the index of the triangle
vertex currently under consideration.

88

6.4 Examples

How to replace geometry shaders

We replace the geometry shader of the subdivision program of our implementation
in OpenGL using a variation of a method proposed by Boubekeur and Schlick (2008).
The method works as follows: We precompute all adaptive refinement patterns
up to a certain subdivision depth, in our case eight adaptive refinement patterns
up to depth one (see Figure 6.2.2). We use barycentric coordinates to store the
positions of the triangle vertices of each refinement pattern in an array buffer. Using
array buffers of different lengths allows us to achieve variable-length output, as with
geometry shaders. For every triangle of a coarse input mesh, we draw the triangles
in the array buffer of the appropriate adaptive refinement pattern. We use the
vertex positions of the input triangle (read from a texture or from uniform variables)
and the barycentric coordinates of the triangles of the adaptive refinement pattern
to compute the vertex positions of the output triangle.

We can combine this method with floating point texture and multiple render tar-
gets as outlined above, if we number the vertices of each adaptive refinement pattern
consecutively and store those indices together with the barycentric coordinates. We
pass an offset as a uniform variable to the vertex shader that needs to be added to
the indices. We draw the adaptive refinement pattern and increment the offset by
the number of vertices in the adaptive refinement pattern.

The geometry shader of the assembly program has fixed-length output. It generates
exactly n triangles of the Riemann surface mesh per triangle of the (subdivided)
input mesh. We can replace it with n invocations of a vertex shader, one for every
sheet of the Riemann surface mesh. We pass the number of the current sheet to the
vertex shader as a uniform variable.

Remarks

We cannot expect our WebGL implementation to reach the same performance as
our OpenGL implementation. In the subdivision program, since we draw a different
adaptive refinement pattern for every triangle of the input mesh, we lose parallelism.
Consequently, subdivision in WebGL is much slower than its OpenGL counterpart.
However, if we cache the assembled Riemann surface mesh (in textures) and pass it
to our implementation of the visualization algorithm, we can still achieve interactive
performance.

6.4 Examples

In this section, we discuss domain-coloured Riemann surface meshes for the complex
square root function and for the folium of Descartes. Before that, let us explain
our domain colouring reference image so that we can interpret the domain-coloured
Riemann surface meshes.

89

6 GPU-based Visualization of Algebraic Riemann Surfaces

6.4.1 Domain colouring reference image

Recall that the basic idea of domain colouring is the following: If we want to visualize
a complex function

f : K ⊂ C → C,

we face the problem that its graph is real four-dimensional. However, we can
visualize the behaviour of the function by colouring every point in its domain with
the colour of the function value at that point in a reference image. The reference
image is the domain colouring of the complex identity function.

Depending on what reference image we choose, we can read off various properties
of a function from its domain colouring. For an overview of different colour schemes,
we refer to (Poelke and Polthier, 2012; Wegert, 2012).

As our reference image, we use a variation of the enhanced phase portrait colour
scheme of (Wegert, 2012, Section 2.5). The reference image is best described using
polar coordinates

reiϕ = r(cosϕ+ i sinϕ)

of a complex number with modulus r > 0 and phase ϕ ∈ [0, 2π).

Firstly, we encode the phase at any point in the domain as the hue of its colour
(in HSI colour space). In a square with side length 10 centred at the origin, we thus
obtain the colour wheel shown in Figure 6.4.1a. As the phase changes from 0 to 2π,
we obtain every colour of the rainbow. Positive real numbers, which have phase 0,
are coloured in pure red. Negative real numbers, which have phase π, are coloured
in cyan. Purely imaginary numbers do not have such distinctive colours. (This
can be fixed using the NIST continuous phase mapping, which scales the phase
piecewise linearly so that purely imaginary numbers with positive imaginary part
become yellow and purely imaginary numbers with negative imaginary part become
blue. See (NIST, 2014, http://dlmf.nist.gov/help/vrml/aboutcolor#S2.SS2).
For simplicity, we do not follow this approach here.)

Secondly, we add contour lines of complex numbers of the same phase at integer
multiples of 15 degrees (see Figure 6.4.1b). To that end, we change the intensity of
the colour by multiplying it with a sawtooth function

0.7 + (1.0− 0.7) · (ϕ/(π/12)− ⌊ϕ/(π/12)⌋) .

Because phase corresponds to hue, the points of such a contour line are all of the
same colour.

Finally, we add contour lines of complex numbers of the same modulus on a
log-scale (see Figure 6.4.1c). To that end, we change the intensity of the colour by
multiplying it with a sawtooth function

0.7 + (1.0− 0.7) · (log(r)/(π/12)− ⌊log(r)/(π/12)⌋) .

Note that the contour lines of phase and modulus intersect each other orthogonally.
The scaling factor 1/(π/12) in the sawtooth function for the modulus contour lines

90

http://dlmf.nist.gov/help/vrml/aboutcolor#S2.SS2

6.4 Examples

(a) (b) (c)

Figure 6.4.1: Composition of domain colouring reference image: If we (a) represent
phase by hue, (b) add contour lines of phase and (c) add contour
lines of modulus, we obtain our domain colouring reference image, a
variation of the enhanced phase portrait colour scheme of (Wegert,
2012, Section 2.5).

deliberately matches the scaling factor used in the sawtooth function for the phase
contour lines. Consequently, the regions enclosed by the contour lines of phase and
modulus are squarish in appearance.

6.4.2 Complex square root

Recall the construction of a Riemann surface of the complex square root from
Section 6.1.1 where we glued together its two branches at a branch cut along the
negative real axis.

The domain colouring of the two branches of the complex square root over a
square of side length 10 centred at the origin is shown in Figure 6.4.2.

On the sheet shown in Figure 6.4.2a, the complex square root takes values with
negative real part (coloured green to blue). On the sheet shown in Figure 6.4.2b, it
takes values with positive real part (coloured purple to yellow). (The sheet shown
in Figure 6.4.2b corresponds to the principal branch of the complex square root.)

On both sheets, twelve contour lines of phase are visible, half as many as in the
reference image. We can see that the phase of the complex square root function
changes at half the angular velocity of its argument.

Moreover, the discontinuity at the branch cut along the negative real axis is
clearly visible. We also see that there is a smooth transition between the second
(third) quadrant of Figure 6.4.2a and the third (second) quadrant of Figure 6.4.2b.

If we cut the two sheets along the negative real axis and glue the upper side of
the cut of one sheet to the lower side of the cut of the other sheet, and vice versa,
we obtain a Riemann surface of the complex square root. The resulting Riemann
surface, produced with Algorithm 6.2.1 and Algorithm 6.2.6 using real part as

91

6 GPU-based Visualization of Algebraic Riemann Surfaces

(a) (b)

Figure 6.4.2: Domain colouring of the two sheets of the complex square root

height function, is shown in Figure 6.4.3 (perspective) and Figure 6.4.4 (multiview
orthogonal).

Figure 6.4.3: Domain-coloured Riemann surface of the complex square root in per-
spective projection

Note that the self-intersection of the surface in Figure 6.4.3 is only an artefact of
using a height function to map the Riemann surface mesh from real four-dimensional
to real three-dimensional space. Evidently, the two values of the complex square
root at each point of the self-intersection do not agree: they are coloured differently,
in green and purple, respectively.

In Figure 6.4.4b, we see the parabola that the real parts of the y-values describe
according to the equation y2 − x = 0 when x takes values on the non-negative real
axis.

92

6.4 Examples

(a) (b) (c) (d)

Figure 6.4.4: Domain-coloured Riemann surface of the complex square root in or-
thogonal projection from left, front, right, and back (from left to
right)

6.4.3 Folium of Descartes

x

y

Figure 6.4.5: The folium of Descartes as a real plane algebraic curve

The folium of Descartes is a classical plane algebraic curve of order three,

C : f(x, y) = x3 + y3 − 3xy = 0. (6.4)

The cubic curve is nowadays called ‘folium’ after the leaf-shaped loop that it describes
in the first quadrant of the real plane (see Figure 6.4.5). It is named in honour
of the French geometer René Descartes (1596–1650), who was among the first
mathematicians to introduce coordinates into geometry. Originally, the curve was
called fleur de jasmin since Descartes and some of his contemporaries, who were
working out the principles of dealing with negative and infinite coordinates, initially
wrongly believed that the leaf-shaped loop repeated itself in the other quadrants
and therefore resembled a jasmine flower (Loria, 1910, p. 53).
Figure 6.4.6 shows three domain-coloured sheets of the folium of Descartes over a
square of side length 10 centred at the origin of the complex plane. We can generate
these sheets by sorting the y-values that satisfy Equation 6.4 at every point x of
the domain according to their real part. The sheet shown in Figure 6.4.6a uses the
y-value with the smallest real part, the sheet shown in Figure 6.4.6b the y-value
with the second-smallest real part, and the sheet shown in Figure 6.4.6c the y-value
with the largest real part.

93

6 GPU-based Visualization of Algebraic Riemann Surfaces

(a) (b) (c)

Figure 6.4.6: Domain colouring of three sheets of the folium of Descartes

We see that the first sheet carries y-values with negative real part (coloured green
to blue). At the centre of the second sheet, we identify a zero of order two, which
we can recognize from the fact that the colours of the colour wheel used in our
reference image wind around it twice in the same order as in the reference image. It
is the node of the leaf-shaped loop. The third sheet carries y-values with positive
real part (coloured purple to yellow).

There are three branch cuts (discontinuities of hue) on the first sheet, six on
the second sheet and three on the third sheets. We can see how the sheets of the
Riemann surface are connected to each other along the branch cuts: First and
second sheet are connected at the branch cuts of the first sheet. Second and third
sheet are connected at the branch cuts of the third sheet. First and third sheet are
not connected directly with each other. (Imagine how much harder it would be to
read this off from Equation 6.4.)

Apart from the branch cuts, the map from x to y(x) is conformal (angle-preserving)
on every sheet. We can see that the contour lines of phase and modulus intersect
each other orthogonally on every sheet, as in our reference image.

If we cut the sheets along the branch cuts and glue them together correctly, we
obtain a Riemann surface for the folium of Descartes.

The resulting Riemann surface, produced with Algorithm 6.2.1 and Algorithm 6.2.6
using real part as height function, is shown in Figure 6.4.7 (perspective) and Fig-
ure 6.4.8 (multiview orthogonal).

Again, the self-intersections of the surface in Figure 6.4.7 are only an artefact
of using a height function to map the Riemann surface mesh from (real) four-
dimensional to (real) three-dimensional space.

Figure 6.4.7 makes it obvious that cutting a Riemann surface into sheets by
sorting y-values by real part may be the most straightforward but not necessarily
the geometrically most appropriate method. Our Riemann surface of the folium of
Descartes in large part appears to be composed of three copies of the complex plane
(which looks like our reference image). Complications seem to arise only near the
origin.

94

6.4 Examples

Figure 6.4.7: Domain-coloured Riemann surface of the folium of Descartes in per-
spective projection

If we look closely at Figure 6.4.8b, we may see how we obtain the real folium
of Descartes (as a real plane algebraic curve) as the intersection of our Riemann
surface mesh with the Rex-Re y-plane. The leaf-shaped loop is clearly visible as a
hole in our visualization. One of the ‘complex planes of which the Riemann surface
is composed’ is so thin that it is barely visible from this perspective. It is almost
asymptotic to the ‘wings’ of the folium of Descartes (as a real plane algebraic curve)
in the second and fourth quadrant of the real xy-plane.

Right below the centre of Figure 6.4.8c, we see two leaf-shaped loops in complex
directions. Perhaps Descartes and his contemporaries were not entirely wrong after
all to believe that the folium of Descartes has more than one leaf. Indeed, if we
let x′ = e±iπ/3x, we discover that in the Rex′-Re y-plane the curve describes a
leaf-shaped loop, which is exactly half as high as that in the Rex-Re y-plane (this
also holds for the ‘wings’) and rotated into a different quadrant (see Figure 6.4.9).

95

6 GPU-based Visualization of Algebraic Riemann Surfaces

(a) (b) (c) (d)

Figure 6.4.8: Domain-coloured Riemann surface of the folium of Descartes in or-
thogonal projection from left, front, right, and back (from left to
right)

(a) (b)

Figure 6.4.9: Leaf-shaped loops of the folium of Descartes in complex directions.

96

7 A Survey of Complex Loci

97

7 A Survey of Complex Loci

This chapter gives a survey of some plane algebraic curves from the Famous
Curves Index (O’Connor and Robertson, 2006) and the Encyclopédie des formes
mathématiques remarquables (Ferréol and Mandonnet, 2005). We examine how these
curves can be constructed as loci. Moreover, we visualize the loci as domain-coloured
Riemann surfaces using the algorithms from Chapter 6.
Since the chapter is intended as a handy reference, it contains not only new

material, but also some constructions and figures from other parts of the thesis.

98

7.1 Quadrics

7.1 Quadrics

Quadrics and conics are synonymous. They comprise circles, ellipses, hyperbolas,
and parabolas. A conic is uniquely defined by five points in general position. We
obtain a conic through five points in general position by the following construction.

A

B

C

D

E

F GH

K

a

b

c

d

e

f

g

Figure 7.1.1: An instance of Construction 7.1.2. When line c rotates about point F ,
point K traces the conic through points A,B,C,D,E.

Construction 7.1.2. Let A,B,C,D,E be five points of the real projective plane,
in general position.

1. Let a be the line through A and B.

2. Let b be the line through D and E.

3. Let F be the intersection of a and b.

4. Let c be a line through F .

5. Let d be the line through B and C.

6. Let G be the intersection of c and d.

7. Let e be the line through C and D.

8. Let H be the intersection of c and e.

9. Let f be the line through A and H.

10. Let g be the line through E and G.

11. Let K be the intersection of f and g.

By Pascal’s theorem (Theorem 4.6.1), when line c rotates about point F , point K
traces the conic through points A,B,C,D,E.

99

7 A Survey of Complex Loci

7.1.1 Circle

The plane algebraic curve

C : f(x, y) = (x− a)2 + (y − b)2 − r2 = 0

describes a circle with centre (a, b)⊤ and radius r.
There are various possible ways to define a circle. Each yields a different con-

struction of a circle as a locus.

A B

C

a b

Figure 7.1.3: An instance of Construction 7.1.4. By Thales’ theorem, when line a
rotates around point A, point C traces the circle with diameter AB.

Construction 7.1.4 (circle by diameter). Let A and B be two points in the plane.

1. Let a be a line through A.

2. Let b be the line through B perpendicular to a.

3. Let C be the intersection of a and b.

By Thales’ theorem, when a rotates around A, then C traces the circle with segment
AB as diameter.

Construction 7.1.6 (circle with given centre through given point). Let A and B
be two points in the plane.

1. Let a be a line through A.

2. Let b be the line through A and B.

3. Let c be an angle bisector of a and b.

4. Let d be the line through B perpendicular to c.

5. Let C be the intersection of a and d.

When a rotates around A, then C traces the circle through B centred at A.

100

7.1 Quadrics

A B

C

a

b

c

d

Figure 7.1.5: An instance of Construction 7.1.6. When line a rotates around point
A, point C traces the circle through B centred at A.

a

b

c

d

A

B

C

D

E

F

e

f

g

h

Figure 7.1.7: An instance of Construction 7.1.8. When e rotates around F , then G
traces the circle through A, B, and C.

Construction 7.1.8 (circle through three points). Let A, B, and C be three points
in the real projective plane, in general position.

1. Let a be the line through A and B.

2. Let b be the line through B and C.

3. Let D be the midpoint of the segment between A and B

4. Let E be the midpoint of the segment between B and C

5. Let c be the line through D perpendicular to a.

6. Let d be the line through E perpendicular to b.

7. Let E be the intersection of c and d.

Point F is the circumcentre of triangle △ABC. We proceed analogously to Con-
struction 7.1.6 to construct the circle through B centred at F .

101

7 A Survey of Complex Loci

8. Let e be a line through F .

9. Let f be the line through F and B.

10. Let g be an angle bisector of e and f .

11. Let h be the line through B perpendicular to g.

12. Let G be the intersection of e and h.

When e rotates around F , then G traces the circle through A, B, and C.

Consider the unit circle, i.e. the circle centred at the origin with radius 1,

C : f(x, y) = x2 + y2 − 1 = 0.

We visualize the Riemann surface of its y-coordinate as a domain-coloured function
graph of the multivalued function y(x) over a square of side length 10 centred at
the origin.

Figure 7.1.9 shows the domain colouring of two sheets of the Riemann surface of
the unit circle over a square of side length 10 centred at the origin. On the sheet
shown in Figure 7.1.9a, the y-coordinate takes only non-positive values. On the
sheet shown in Figure 7.1.9b, the y-coordinate takes only non-negative values. On
both sheets, the branch points at x = −1 and x = 1 are clearly visible. From −1,
a branch cut runs along the negative real axis. From 1, a branch cut runs along
the positive real axis. Note how the domain colouring extends smoothly from one
side of the branch cut on one sheet to the other side of the branch cut on the other
sheet.

(a) (b)

Figure 7.1.9: Domain colouring of two sheets of the unit circle

Figure 7.1.10 and Figure 7.1.11 show the corresponding domain-coloured Riemann
surface, using the real part of y as a height function. Note that the Riemann surface
does not actually intersect itself; this is an artefact of the projection from (real)
four-dimensional space into (real) three-dimensional space that results from using
the real part of y as a height function.

102

7.1 Quadrics

Figure 7.1.10: Domain-coloured Riemann surface of the unit circle in perspective
projection

(a) (b) (c) (d)

Figure 7.1.11: Domain-coloured Riemann surface of the unit circle in orthogonal
projection from left, front, right, and back (from left to right)

103

7 A Survey of Complex Loci

7.1.2 Ellipse

The plane algebraic curve

C : f(x, y) = (x/a)2 + (y/b)2 − 1 = 0

is an ellipse with semi-axes of length a and length b.
The following construction imitates how a gardener draws an ellipse, using the

pen to pull tight a piece of string attached to two pegs at the foci of the ellipse.
The construction relies on the fact that the sum of the distances between any point
of the ellipse and its foci is constant.

g

h

k

A B

C

D

E

F

G

c0

c1

c2

Figure 7.1.12: An instance of Construction 7.1.13. When point D moves back and
forth on line g, point G traces the ellipse through C with foci A and
B.

Construction 7.1.13. Let A and B be points at the foci of the ellipse. Let C be
a point on the ellipse.

1. Let g be the line through A and B.

2. Let D be a point on g not further from B than C.

3. Let c0 be the circle through D centred at B.

4. Let h be the line through B and C.

5. Let E be the intersection of c0 and h on the same side of B as C.

6. Let c1 be the circle through E centred at C.

104

7.1 Quadrics

7. Let k be the line through C and A.

8. Let F be the intersection of c1 and k furthest from A.

9. Let c2 be the circle through F centred at A.

10. Let G be an intersection of c0 and c2.

When D moves back and forth on g, then G traces the ellipse through C with foci
A and B.

Figure 7.1.14 shows the ellipse with parameters a = 2, b = 1 as a real plane algebraic
curve. Figure 7.1.15 shows the domain colouring of two sheets of its Riemann surface
over a square of side length 10 centred at the origin. Figure 7.1.16 and Figure 7.1.17
show the corresponding domain-coloured Riemann surface, using the real part of y
as a height function.

x

y

Figure 7.1.14: The ellipse with parameters a = 2, b = 1 as a real plane algebraic
curve

(a) (b)

Figure 7.1.15: Domain colouring of two sheets of the ellipse with parameters a = 2,
b = 1

105

7 A Survey of Complex Loci

Figure 7.1.16: Domain-coloured Riemann surface of the ellipse with parameters
a = 2, b = 1 in perspective projection

(a) (b) (c) (d)

Figure 7.1.17: Domain-coloured Riemann surface of the ellipse with parameters
a = 2, b = 1 in orthogonal projection from left, front, right, and back
(from left to right)

106

7.1 Quadrics

7.1.3 Hyperbola

The plane algebraic curve

C : f(x, y) = (x/a)2 − (y/b)2 − 1 = 0.

is a hyperbola with parameters a, b.
The following construction of a hyperbola relies on the fact that the difference of

the distances between any point of the hyperbola and its foci is constant.

g

h

k

l
m

A

B

C

DE

F

G
H

c0

c1

c2

c3

Figure 7.1.18: An instance of Construction 7.1.19. When point D moves back and
forth on line g, point H traces the hyperbola through C with foci A
and B.

Construction 7.1.19. Let A and B be points at the foci of the hyperbola. Let C
be a point on the hyperbola.

1. Let g be the line through A and B.

2. Let h be the line through B and C.

3. Let c0 be the circle through A centred at C.

4. Let c1 be the circle through B centred at C.

5. Let D be a point on g.

107

7 A Survey of Complex Loci

6. Let c2 be the circle through D centred at B.

7. Let E be the intersection of c0 and h on the same side of C as B.

8. Let F be the intersection of c2 and h on the same side of B as E.

9. Let k be the line through A and E.

10. Let l be the line through F parallel to k.

11. Let m be the line through A parallel to h.

12. Let G be the intersection of l and m.

13. Let c3 be the circle through G centred at A.

14. Let H be an intersection of c2 and c3.

When D moves back and forth on g, H traces the hyperbola through C with foci A
and B.

Figure 7.1.20 shows the hyperbola with parameters a = b = 1 as a real plane
algebraic curve. Figure 7.1.21 shows the domain colouring of two sheets of its
Riemann surface over a square of side length 10 centred at the origin. Figure 7.1.22
and Figure 7.1.23 show the corresponding domain-coloured Riemann surface, using
the real part of y as a height function.

x

y

Figure 7.1.20: The hyperbola with parameters a = b = 1 as a real plane algebraic
curve

108

7.1 Quadrics

(a) (b)

Figure 7.1.21: Domain colouring of two sheets of the hyperbola with parameters
a = b = 1

Figure 7.1.22: Domain-coloured Riemann surface of the hyperbola with parameters
a = b = 1 in perspective projection

(a) (b) (c) (d)

Figure 7.1.23: Domain-coloured Riemann surface of the hyperbola with parameters
a = b = 1 in orthogonal projection from left, front, right, and back
(from left to right)

109

7 A Survey of Complex Loci

7.1.4 Parabola

The plane algebraic curve

C : f(x, y) = ay2 + by + c− x = 0

is a parabola with parameters a, b, c.
The following construction of a parabola relies on the fact that any point of the

parabola is equidistant to a fixed point, the focus of the parabola, and to a fixed
line, the directrix of the parabola.

g

h

k l

m

n

AB

C

D

E

c0

Figure 7.1.24: An instance of Construction 7.1.25. When point B moves back and
forth on line h, point E traces the parabola with focus A and directrix
g.

Construction 7.1.25. Let a point A and a line g be given.

1. Let h be the line through A perpendicular to g.

2. Let B be a point on h.

3. Let c0 be the circle through B centred at A.

4. Let C be a point on g and not on h.

5. Let k be the line through C and B.

6. Let l be the line through A parallel to k.

7. Let m be the line through C parallel to h.

8. Let D be the intersection of k and h.

9. Let n be the line through D parallel to g.

110

7.1 Quadrics

10. Let E be an intersection of c0 and n.

When C moves back and forth on h, E traces the parabola with focus A and directrix
g.

In what follows we visualize the parabola with parameters a = 1, b = c = 0,

C : f(x, y) = y2 − x = 0.

Note that in this case, y(x) is the (multi-valued) complex square root function.
Figure 7.1.26 shows the parabola with parameters a = 1, b = c = 0 as a real

plane algebraic curve. Figure 7.1.27 shows the domain colouring of two sheets of its
Riemann surface over a square of side length 10 centred at the origin. Figure 7.1.28
and Figure 7.1.29 show the corresponding domain-coloured Riemann surface, using
the real part of y as a height function. See Section 6.4.2 for an interpretation of the
visualization in terms of the complex square root function.

x

y

Figure 7.1.26: The parabola with parameters a = 1, b = c = 0 as a real plane
algebraic curve

111

7 A Survey of Complex Loci

(a) (b)

Figure 7.1.27: Domain colouring of two sheets of the parabola with parameters
a = 1, b = c = 0

Figure 7.1.28: Domain-coloured Riemann surface of the parabola with parameters
a = 1, b = c = 0 in perspective projection

(a) (b) (c) (d)

Figure 7.1.29: Domain-coloured Riemann surface of the parabola with parameters
a = 1, b = c = 0 in orthogonal projection from left, front, right, and
back (from left to right)

112

7.2 Cubics

7.2 Cubics

7.2.1 Folium of Descartes

The folium of Descartes is a cubic plane algebraic curve

C : f(x, y) = x3 + y3 − 3axy = 0

with parameter a > 0.
The following construction of the folium of Descartes is given by de Longchamps

(1890, p. 104f.).

g

k

l

h

m

n

o
p

q

rs

A

B

C

D

E

F

G

H

K

L

c0

Figure 7.2.1: An instance of Construction 7.2.2. When line k rotates around point
A, point L traces the folium of Descartes with apex B = 3/2 · (a, a)⊤.

Construction 7.2.2. Let g be the angle bisector of the first and third quadrant.
Let h be the angle bisector of the second and fourth quadrant. Let A be a point at
the origin. Let B be a point on g.

1. Let k be a line through A.

2. Let l be the line through B parallel to h.

3. Let C be the intersection of k and l.

4. Let m be the line through B perpendicular to k.

5. Let D be the intersection of k and m.

6. Let c0 be the circle through C centred at D.

7. Let E be the intersection of c0 with k other than C.

113

7 A Survey of Complex Loci

We construct the harmonic conjugate L of C w.r.t. A and E:

8. Let F be a point not on k.

9. Let n be the line through A and F .

10. Let o be the line through E and F .

11. Let p be a line through C not through F .

12. Let G be the intersection of n and p.

13. Let H be the intersection of o and p.

14. Let q be the line through E and G.

15. Let r be the line through A and H.

16. Let K be the intersection of q and r.

17. Let s be the line through F and K.

18. Let L be the intersection of k and s.

When k rotates around A, L traces the folium of Descartes with apex B = 3/2 ·
(a, a)⊤.

Figure 7.2.3 shows the folium of Descartes with parameter a = 1 as a real plane
algebraic curve. Figure 7.2.4 shows the domain colouring of three sheets of its
Riemann surface over a square of side length 10 centred at the origin. Figure 7.2.5
and Figure 7.2.6 show the corresponding domain-coloured Riemann surface, using
the real part of y as a height function.

x

y

Figure 7.2.3: The folium of Descartes with parameter a = 1 as a real plane algebraic
curve

114

7.2 Cubics

(a) (b) (c)

Figure 7.2.4: Domain colouring of three sheets of the folium of Descartes with
parameter a = 1

Figure 7.2.5: Domain-coloured Riemann surface of the folium of Descartes with
parameter a = 1 in perspective projection

115

7 A Survey of Complex Loci

(a) (b) (c) (d)

Figure 7.2.6: Domain-coloured Riemann surface of the folium of Descartes with
parameter a = 1 in orthogonal projection from left, front, right, and
back (from left to right)

116

7.2 Cubics

7.2.2 Right Strophoid

The right strophoid is a cubic plane algebraic curve

C : f(x, y) = (a+ x)y2 − (a− x)x2 = 0

with parameter a > 0.

The following construction of the right strophoid is given in (Ferréol and Mandon-
net, 2005, Strophöıde droite, http://www.mathcurve.com/courbes2d/strophoid
droite/strophoiddroite.shtml). It is a generalization of a construction of the
bicorn in (de Longchamps, 1897, p. 39f.).

a

g h

k
l

A

B

C

D

c0

Figure 7.2.7: An instance of Construction 7.2.8. When point C moves along circle
c0, point D traces the right strophoid with parameter a.

Construction 7.2.8. Let A be a point at the origin. Let B be the point with
coordinates (a, 0)⊤.

1. Let c0 be the circle through B centred at A.

2. Let C be a point on c0.

3. Let g be the line through B and C.

4. Let h be the line through A and C.

5. Let k be the line through A perpendicular to g.

6. Let l be the line through B perpendicular to h.

7. Let F be the intersection of k and l.

When C moves along c0, D traces the right strophoid with parameter a.

117

http://www.mathcurve.com/courbes2d/strophoiddroite/strophoiddroite.shtml
http://www.mathcurve.com/courbes2d/strophoiddroite/strophoiddroite.shtml

7 A Survey of Complex Loci

Figure 7.2.9 shows the right strophoid with parameter a = 1 as a real plane algebraic
curve. Figure 7.2.10 shows the domain colouring of two sheets of its Riemann surface
over a square of side length 10 centred at the origin. Figure 7.2.11 and Figure 7.2.12
show the corresponding domain-coloured Riemann surface, using the real part of y
as a height function.

x

y

Figure 7.2.9: The right strophoid with parameter a = 1 as a real plane algebraic
curve

(a) (b)

Figure 7.2.10: Domain colouring of three sheets of the right strophoid with parameter
a = 1

118

7.2 Cubics

Figure 7.2.11: Domain-coloured Riemann surface of the right strophoid with para-
meter a = 1 in perspective projection

(a) (b) (c) (d)

Figure 7.2.12: Domain-coloured Riemann surface of the right strophoid with para-
meter a = 1 in orthogonal projection from left, front, right, and back
(from left to right)

119

7 A Survey of Complex Loci

7.3 Quartics

7.3.1 Conchoid of Nicomedes

The conchoids of Nicomedes are a family of quartic plane algebraic curves,

C : f(x, y) = (y + a)2(x2 + y2)− b2y2 = 0,

with parameters a, b > 0. They can be generated as loci using the following
construction.

a

b
g

h

A

B
C

c0

Figure 7.3.1: An instance of Construction 7.3.2. When point A moves along line g,
point C traces the conchoid with pole B, base g and distance b.

Construction 7.3.2. Let A be a point on a line g. Let B be a point at distance
a > 0 from g. Let c0 be a circle of radius b centred at A.

1. Let h be the line through A and B.

2. Let C be an intersection of c0 and h.

When point A moves along line g, point C traces the conchoid with pole B, base g,
and distance b.

Figure 4.6.9 shows the conchoid of Nicomedes with parameters a = 1, b = 2 as a real
plane algebraic curve. Figure 7.3.4 shows the domain colouring of four sheets of its
Riemann surface over a square of side length 10 centred at the origin. Figure 7.3.5
and Figure 7.3.6 show the corresponding domain-coloured Riemann surface, using
the real part of y as a height function.

120

7.3 Quartics

x

y

Figure 7.3.3: The conchoid of Nicomedes with parameters a = 1, b = 2 as a real
plane algebraic curve

(a) (b)

(c) (d)

Figure 7.3.4: Domain colouring of four sheets of the conchoid of Nicomedes with
parameters a = 1, b = 2

121

7 A Survey of Complex Loci

Figure 7.3.5: Domain-coloured Riemann surface of the conchoid of Nicomedes with
parameters a = 1, b = 2 in perspective projection

(a) (b) (c) (d)

Figure 7.3.6: Domain-coloured Riemann surface of the conchoid of Nicomedes with
parameters a = 1, b = 2 in orthogonal projection from left, front, right,
and back (from left to right)

122

7.3 Quartics

7.3.2 Limaçon

A limaçon is a quartic plane algebraic curve

C : f(x, y) = (x2 + y2 − ax)
2 − b2(x2 + y2) = 0,

with parameters a, b > 0.

A
B

C

D

c0

g

h

Figure 7.3.7: An instance of Construction 7.3.8

Construction 7.3.8. Let A be a point at the origin. Let B be the point with
coordinates (a, 0)⊤. Let c0 be the circle with centre B and radius b. Let C be a
point on circle c0.

1. Let g be the tangent to c0 through C.

2. Let h be the line through A perpendicular to g.

3. Let D be the intersection of g and h.

When point C moves around circle c0, point D traces a limaçon with parameters
a, b.

Figure 7.3.9 shows the limaçon with parameters a = b = 1.5 as a real plane algebraic
curve. Figure 7.3.10 shows the domain colouring of four sheets of its Riemann
surface over a square of side length 10 centred at the origin. Figure 7.3.11 and
Figure 7.3.12 show the corresponding domain-coloured Riemann surface, using the
real part of y as a height function.

123

7 A Survey of Complex Loci

x

y

Figure 7.3.9: The limaçon with parameters a = b = 1.5 as a real plane algebraic
curve

(a) (b)

(c) (d)

Figure 7.3.10: Domain colouring of four sheets of the limaçon with parameters
a = b = 1.5

124

7.3 Quartics

Figure 7.3.11: Domain-coloured Riemann surface of the limaçon with parameters
a = b = 1.5 in perspective projection

(a) (b) (c) (d)

Figure 7.3.12: Domain-coloured Riemann surface of the limaçon with parameters
a = b = 1.5 in orthogonal projection from left, front, right, and back
(from left to right)

125

7 A Survey of Complex Loci

7.4 Quintics

To the best of my knowledge, there are no ‘famous’ quintic plane algebraic curves
that arise as a locus in a geometric construction. Therefore, we only treat the
quintic that describes the relationship between cross-ratio µ (here: x) and initial
point γ0 (here: y) of a closed discrete Darboux transform of a regular pentagon
(cf. Equation 2.9 in Section 2.4).

7.4.1 Pentagon curve

Consider the quintic plane algebraic curve

C :
[((

−3 +
√
5
)

x2 + 6x− 3−
√
5
)

y2 +
((

−2− 4
√
5
)

x+ 1 +
√
5
)

y

+
(

−3 +
√
5
)

x2 + 6x− 3−
√
5
]

(1− x) = 0

(cf. Equation 2.9 in Section 2.4).

x

y

Figure 7.4.1: Pentagon curve as a real plane algebraic curve

(a) (b)

Figure 7.4.2: Domain colouring of two sheets of a Pentagon curve

126

7.4 Quintics

Figure 7.4.3: Domain-coloured Riemann surface of a Pentagon curve in perspective
projection

(a) (b) (c) (d)

Figure 7.4.4: Domain-coloured Riemann surface of a Pentagon curve in orthogonal
projection from left, front, right, and back (from left to right)

127

7 A Survey of Complex Loci

7.5 Sextics

7.5.1 Nephroid

A nephroid is a sextic plane algebraic curve

C : f(x, y) = (x2 + y2 − 4a2)
3 − 108a4y2 = 0

with parameter a > 0.
A nephroid with parameter a > 0 is an epicycloid with two cusps. It arises as

the locus of a point on a circle of radius a that rolls without slipping on a circle of
radius 2a. This yields the following construction:

Construction 7.5.1. Let A be a point at the origin. Let c0 be the circle of radius
3a centred at A. Let B be a point on c0. Let c1 be the circle of radius a centred
at B.

1. Let g be the line through A and B.

2. Let C be an intersection of g and c1.

3. Let h be the line through B parallel to the y-axis.

4. Let D be an intersection of h and c1.

5. Let c2 be the circle through D centred at C.

6. Let E be the other intersection of c1 and c2.

7. Let c3 be the circle through C centred at E.

8. Let F be the intersection of c2 and c3 other than C.

When point B moves around circle c0, then point F traces the nephroid with
parameter a.

Figure 7.5.3 shows the nephroid with parameter a = 1 as a real plane algebraic
curve. Figure 7.5.4 shows the domain colouring of six sheets of its Riemann surface
over a square of side length 10 centred at the origin. Figure 7.5.5 and Figure 7.5.6
show the corresponding domain-coloured Riemann surface, using the real part of y
as a height function.

128

7.5 Sextics

g

h

A

B

CD

E

F

c0

c1

c2

c3

Figure 7.5.2: An instance of Construction 7.5.1

x

y

Figure 7.5.3: The nephroid with parameter a = 1 as a real plane algebraic curve

129

7 A Survey of Complex Loci

(a) (b) (c)

(d) (e) (f)

Figure 7.5.4: Domain colouring of six sheets of the nephroid with parameter a = 1

130

7.5 Sextics

Figure 7.5.5: Domain-coloured Riemann surface of the nephroid with parameter
a = 1 in perspective projection

(a) (b) (c) (d)

Figure 7.5.6: Domain-coloured Riemann surface of the nephroid with parameter
a = 1 in orthogonal projection from left, front, right, and back (from
left to right)

131

7 A Survey of Complex Loci

7.5.2 Watt curves

Watt curves are a family of sextic plane algebraic curves

C : f(x, y) = (x2 + y2)(x2 + y2 − a2 − b2 + c2)
2
+ 4a2y2(x2 + y2 − b2) = 0

with parameters a, b, c > 0. They can be generated as loci using a four-bar linkage
according to the following construction.

Construction 7.5.7. Let A and B be two points in the plane at distance 2a from
each other. Let c0 be a circle with centre A and radius b. Let c1 be a circle with
centre B and radius b.

1. Let C be a point on c0.

2. Let c2 be a circle with centre C and radius 2c.

3. Let D be an intersection of c1 and c2.

4. Let E be the midpoint of the segment between C and D.

When point C moves on circle c0, point E traces a Watt curve with parameters
a, b, c.

Depending on parameters a, b, c, Watt curves possess a wide variety of different
forms. In what follows, we consider two different sets of parameter values.

Watt curve with parameters a = 2, b = 2.5, c = 1.5

A B

C
DE

c0 c1

c2

Figure 7.5.8: An instance of Construction 7.5.7. When point C moves on circle c0,
then point E traces a Watt curve with parameters a = |AB|/2 = 2,
b = |AC| = |BD| = 2.5, and c = |CD|/2 = 1.5.

132

7.5 Sextics

(a) (b) (c)

(d) (e) (f)

Figure 7.5.9: Domain colouring of six sheets of a Watt curve with parameters a = 2,
b = 2.5, c = 1.5

Figure 7.5.10: Domain-coloured Riemann surface of a Watt curve with parameters
a = 2, b = 2.5, c = 1.5 in perspective projection

133

7 A Survey of Complex Loci

(a) (b) (c) (d)

Figure 7.5.11: Domain-coloured Riemann surface of a Watt curve with parameters
a = 2, b = 2.5, c = 1.5 in orthogonal projection from left, front, right,
and back (from left to right)

Figure 7.5.12: Domain-coloured Riemann surface of the Watt curve with parameters
a = 2, b = 2.5, c = 1.5 in orthogonal projection from front, cut off
at the real plane. The Watt curve as a real plane algebraic curve is
visible as part of the cross section of the Riemann surface at the real
plane.

134

7.5 Sextics

Watt curve with parameters a = 2, b = 3, c = 2

The Watt curve with parameters a = 2, b = 3, c = 2,

C : f(x, y) = (x2 + y2)(x2 + y2 − 22 − 32 + 22)
2
+ 4 · 22y2(x2 + y2 − 32)

= (x2 + y2 − 9)(x4 + 2x2y2 + y4 − 9x2 + 7y2) = 0,

decomposes into two irreducible components, a circle and a lemniscate.

x

y

Figure 7.5.13: The Watt curve with parameters a = 2, b = 3, c = 2 as a real plane
algebraic curve

A B

C DE

c0 c1

c2

(a)

A B

C

D
E

c0 c1

c2

(b)

Figure 7.5.14: Two instances of Construction 7.5.7. When point C moves on circle c0,
then point E traces an irreducible component of the Watt curve
with parameters a = |AB|/2 = 2, b = |AC| = |BD| = 3, and
c = |CD|/2 = 2, which decomposes into a circle and a lemniscate.

Whether the locus generation algorithm produces the circle or the lemniscate as a
locus depends on the initial position of point E, respectively on which intersection
of circles c1 and c2 we select for point D.

135

7 A Survey of Complex Loci

(a) (b) (c)

(d) (e) (f)

Figure 7.5.15: Domain colouring of six sheets of the Watt curve with parameters
a = 2, b = 3, c = 2.

Note that the sheets of the circle, shown in Figure 7.5.15a and Figure 7.5.15f, and
the sheets of the lemniscate, shown in Figure 7.5.15b–Figure 7.5.15e, have only the
ramification points at −3 and +3 in common. Circle and lemniscate are irreducible
components of the Watt curve; they are not analytically path-connected.

136

7.5 Sextics

Figure 7.5.16: Domain-coloured Riemann surface of the Watt curve with parameters
a = 2, b = 3, c = 2 in perspective projection

(a) (b) (c) (d)

Figure 7.5.17: Domain-coloured Riemann surface of the Watt curve with parameters
a = 2, b = 3, c = 2 in orthogonal projection from left, front, right,
and back (from left to right)

137

7 A Survey of Complex Loci

Figure 7.5.18: Domain-coloured Riemann surface of the Watt curve with parameters
a = 2, b = 3, c = 2 in orthogonal projection from front, cut off at the
real plane. The irreducible components of the Watt curve as a real
plane algebraic curve, a circle and a lemniscate, are visible as part of
the cross section of the Riemann surface at the real plane.

138

8 Outlook

139

8 Outlook

Theory

The epsilon-delta bound of Theorem 2.2.1 is applicable to plane algebraic curves
defined by an affine algebraic equation f(x, y) = 0. It allows us to perform certified
homotopy continuation of plane algebraic curves. Projective plane algebraic curves,
defined by a homogeneous algebraic equation f(x, y, z) = 0, are tractable via suitable
projective transformations z = β1x + β2y + β3 with β3 6= 0. Thus we only need
to consider Euclidean coordinate patches. This approach is commonly used for
homotopy continuation of systems of polynomials (Morgan and Sommese, 1987,
Theorem 2, Theorem 3, and Section 3; Sommese and Wampler, 2005, Chapter 3).
Can we generalize the epsilon-delta bound so that it applies more directly to
projective plane algebraic curves? Can we find similar bounds of simpler form?

Moreover, a generalization of the algorithm for certified homotopy continuation of
systems of plane algebraic curves (Algorithm 2.6.4) to arbitrary (triangular) systems
of polynomials might be an interesting challenge for further research.

In Chapter 3, we have discussed an approach, based on (Denner-Broser, 2008;
2013), for tracing a sequence of elementary operations (arithmetic and n-th roots). In
principle, we can use it to automatically trace certain computations in programming
languages. For example, we may want to trace certain computations written in
CindyScript, the scripting language of Cinderella (Kortenkamp and Richter-Gebert,
2006). Can we extend the approach to trigonometric functions, inverse trigonometric
functions, exponential function, and logarithms? To that end, we would need to
define operations in circular arithmetic for these functions; for inverse trigonometric
functions and logarithms, we would also need to find suitable bounds that allow us
to select the right branch by proximity.

The locus generation algorithm of Chapter 4 is based on several assumptions.
We assume that its complex detours always wind around at most one ramification
point of a coordinate of the tracer, and only around ramification points at which
the position of the tracer is real-valued (Assumption 4.2.3). If the assumption is
violated, the algorithm may miss part of a real algebraic locus. When we trace a
geometric construction, can we ensure that a complex detour of time parameter t
winds around at most one ramification point?

Besides, the locus generation algorithm is based on the assumption that it does
not miss a real position of the tracer (Assumption 4.2.4). For Variant B of the
algorithm, this means that we must determine complex points in time along a
complex detour when the position of the tracer is real-valued. Can we somehow
reliably approximate such points in time?

Can we prove Conjecture 4.4.1 that the locus generation algorithm terminates if
it takes small enough complex detours and small enough steps on every complex
detour? Can we prove Conjecture 4.5.1 that Variant B of the locus generation
algorithm generates an entire real connected component of a real algebraic locus if
it takes small enough complex detours and small enough steps on every complex
detour?

140

In Chapter 5, we have discussed randomized algorithms for identification of
real algebraic loci from a point cloud generated by the locus generation algorithm.
Algorithm 5.2.2 allows us to determine an approximate implicit equation of a
real plane algebraic curve containing the real algebraic locus; for real algebraic
loci contained in rational plane algebraic curves, Algorithm 5.2.10 allows us to
determine an approximate rational parameterization. For both algorithms, we need
to determine whether all points of the input point cloud lie on a candidate plane
algebraic curve up to a tolerance TOL. How do we best measure whether a point lies
on a plane algebraic curve? How should we choose TOL depending on the degree of
the candidate equation and depending on the precision of the point cloud? What is
the maximum degree of a plane algebraic curve C : f(x, y) = 0 that we can likely
identify for a given input precision? Can we generalize the approach to determine
polar equations of (rational) plane algebraic curves?
We have used Algorithm 6.2.1 to generate Riemann surface meshes for a plane

algebraic curves and Algorithm 6.2.6 to visualize them as domain-coloured surfaces.
The quality of the visualization depends to a large extent on the quality of the
root-finding algorithm used in the generation of the Riemann surface mesh. Are
there better choices than Laguerre’s method or Weierstraß–Durand–Kerner method
that are more well-suited for implementation in GPU shaders?

Practice

It would be nice if the algorithms of this dissertation could be used by anybody to
interactively experiment with geometric constructions and gain insight about their
dynamic behaviour, beyond the examples discussed in this dissertation.
To that end, the development of CindyJS (The CindyJS Project, 2015), a reim-

plementation of Cinderella as a JavaScript framework for interactive (mathematical)
content, provides a great opportunity. The project plans to implement and compare
various approaches for complex tracing of geometric constructions. The approach of
Chapter 3, based on (Denner-Broser, 2008; 2013), could be among them. For draw-
ing rational plane algebraic curves containing a real algebraic locus, the algorithm
for approximate rational parameterization (Algorithm 5.2.10) could be used.
I would like to release the WebGL implementation of the algorithms for the

visualization of algebraic Riemann surfaces (Algorithm 6.2.1 and Algorithm 6.2.6)
as a CindyJS plugin. I would also like to develop a website where users can visualize
algebraic Riemann surfaces by entering the defining equation of a plane algebraic
curve.

141

Bibliography

Ahlfors, Lars Valerian. 1979. Complex Analysis, 3rd ed., McGraw-Hill, Singapore.

Alefeld, Götz and Jürgen Herzberger. 1983. Introduction to Interval Computations, translated by
Rokne, Jon, Academic Press, New York, NY, USA.

Allgower, Eugene L. and Kurt Georg. 1990. Numerical Continuation Methods: An Introduction,
Springer Series in Computational Mathematics, vol. 13, Springer, Berlin.

Beltrán, Carlos and Anton Leykin. 2012. Certified Numerical Homotopy Tracking, Experimental
Mathematics 21, no. 1, 69–83, DOI 10.1080/10586458.2011.606184.

. 2013. Robust certified numerical homotopy tracking, Foundations of Computational
Mathematics 13, no. 2, 253–295, DOI 10.1007/s10208-013-9143-2.

Boubekeur, Tamy and Christophe Schlick. 2008. A Flexible Kernel for Adaptive Mesh Refinement
on GPU, Computer Graphics Forum 27, no. 1, 102–113, DOI 10.1111/j.1467-8659.2007.01040.x.

Brieskorn, Egbert and Horst Knörrer. 1986. Plane algebraic curves, translated by Stillwell, John,
Birkhäuser, Basel (English).

The CindyJS Project. 2015. CindyJS: A JavaScript framework for interactive (mathematical)
content. http://cindyjs.org.

Crane, Keenan, Ignacio Llamas, and Sarah Tariq. 2007. Real-Time Simulation and Rendering of
3D Fluids, GPU gems 3 (Hubert Nguyen, ed.), Addison-Wesley, pp. 633–675.

Denner-Broser, Britta. 2008. Tracing-Problems in Dynamic Geometry, dissertation, Freie Uni-
versität Berlin.

. 2013. About Tracing Problems in Dynamic Geometry, Discrete & Computational Geometry
49, no. 2, 221–246, DOI 10.1007/s00454-012-9473-x.

NIST (ed.) 2014. NIST Digital Library of Mathematical Functions. Release 1.0.9 of 2014-08-29.
Online companion to (Olver et al., 2010). http://dlmf.nist.gov.

Durand, Émile. 1960. Equations du type F (x), racines d’un polynôme, Solutions numériques des
équations algébriques, vol. 1, Masson, Paris.

Ferréol, Robert and Jaques Mandonnet. 2005. Encyclopédie des formes mathématiques remarquables,
http://www.mathcurve.com.

Fujiwara, Matsusaburô. 1916. Über die obere Schranke des absoluten Betrages der Wurzeln einer
algebraischen Gleichung, Tohoku Mathematical Journal, First Series 10, 167–171.

Gargantini, Irene and Peter Henrici. 1972. Circular Arithmetic and the Determination of Polynomial
Zeros, Numerische Mathematik 18, 305–320.

Hauenstein, Jonathan D., Ian Haywood, and Alan C. Liddell Jr. 2014. An a posteriori certification
algorithm for Newton homotopies, ISSAC ’14 (Kobe, Japan, 2014), Proceedings of the 39th
International Symposium on Symbolic and Algebraic Computation, ACM, New York, NY, USA,
pp. 248–255, DOI 10.1145/2608628.2608651.

Hauenstein, Jonathan D. and Frank Sottile. 2012. Algorithm 921: alphaCertified: Certifying
Solutions to Polynomial Systems, ACM Transactions on Mathematical Software 38, no. 4, 28:1–
28:20, DOI 10.1145/2331130.2331136.

Hoffmann, Tim. 2009. Discrete Differential Geometry of Curves and Surfaces, MI Lecture Notes,
vol. 18, Faculty of Mathematics, Kyushu University, Japan.

142

http://cindyjs.org
http://dlmf.nist.gov

BIBLIOGRAPHY

Kerner, Immo O. 1966. Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen,
Numerische Mathematik 8, no. 3, 290–294, DOI 10.1007/BF02162564.

Klein, Felix. 1926. Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert (Richard
Courant and Otto Neugebauer, eds.), Vol. 1, Springer, Berlin.

Klein, Felix and Robert Hermann. 1979. Development of mathematics in the nineteenth century,
translated by Ackerman, M., Mathematical Science Press, Brookline, MA, USA. English translation
of (Klein, 1926), with an appendix by Robert Hermann.

Kline, Morris. 1972. Mathematical Thought from Ancient to Modern Times, Oxford University
Press, New York, NY, USA.

Kortenkamp, Ulrich. 1999. Foundations of Dynamic Geometry, dissertation, ETH Zürich, Zurich.

Kortenkamp, Ulrich and Jürgen Richter-Gebert. 2001a. Decision Complexity in Dynamic Geometry,
Automated Deduction in Geometry (Jürgen Richter-Gebert and D. Wang, eds.), Lecture Notes in
Artificial Intelligence, vol. 2061, Springer, Heidelberg, 2001, pp. 216–220.

. 2001b. Grundlagen dynamischer Geometrie, Zeichnung – Figur – Zugfigur: Mathematische
und didaktische Aspekte dynamischer Geometrie-Software (H.-J. Elschenbroich, Th. Gawlick, and
H.-W. Henn, eds.), Franzbecker, Hildesheim, pp. 123–144.

. 2002. Complexity issues in dynamic geometry, Festschrift in the honor of Stephen Smale’s
70th birthday (M. Rojas and Felipe Cucker, eds.), World Scientific, pp. 355–404.

. 2006. Cinderella: The interactive geometry software. http://cinderella.de.

Kranich, Stefan. 2012. Real-time Visualization of Geometric Singularities, Master’s thesis, Tech-
nische Universität München.

. 2015a. An epsilon-delta bound for plane algebraic curves and its use for certified homotopy
continuation of systems of plane algebraic curves, arXiv:1505.03432 [math.CV], available at
http://arxiv.org/abs/1505.03432.

. 2015b. GPU-based visualization of domain-coloured algebraic Riemann surfaces,
arXiv:1507.04571 [cs.GR], available at http://arxiv.org/abs/1507.04571.

. 2015c. Generation of real algebraic loci via complex detours, arXiv:1510.05464 [math.AG],
available at http://arxiv.org/abs/1510.05464.

Lebmeir, Peter and Jürgen Richter-Gebert. 2007. Recognition of Computationally Constructed
Loci, Automated Deduction in Geometry: 6th International Workshop, ADG 2006, Pontevedra,
Spain, August 31–September 2, 2006. Revised Papers (Francisco Botana and Tomas Recio, eds.),
Lecture Notes in Computer Science, vol. 4869, Springer, Berlin, pp. 52–67, DOI 10.1007/978-3-
540-77356-6 4.

Lebmeir, Peter. 2009. Feature Detection for Real Plane Algebraic Curves, dissertation, Technische
Universität München.

Lindemann, Ferdinand. 1882. Ueber die Zahl π, Mathematische Annalen 20, no. 2, 213–225, DOI
10.1007/BF01446522.

de Longchamps, Gaston Albert Gohierre. 1890. Essai sur la Géométrie de la Règle et de l’Équerre,
Librairie Ch. Delagrave, Paris.

. 1897. Note sur le bicorne, Journal des mathématiques spéciales 21, 35–41.

Loria, Gino. 1910. Spezielle algebraische und transzendente ebene Kurven: Theorie und Geschichte,
2nd ed., translated by Schütte, Fritz, Vol. 1, Teubner, Leipzig (German).

Morgan, Alexander and Andrew Sommese. 1987. A Homotopy for Solving General Polynomial
Systems That Respects m-Homogeneous Structures, Applied Mathematics and Computation 24,
101–113.

Nieser, Matthias, Konstantin Poelke, and Konrad Polthier. 2010. Automatic Generation of Riemann
Surface Meshes, Advances in Geometric Modeling and Processing (Bernard Mourrain, Scott
Schaefer, and Guoliang Xu, eds.), Lecture Notes in Computer Science, vol. 6130, Springer, Berlin,
pp. 161–178, DOI 10.1007/978-3-642-13411-1 11.

143

http://cinderella.de
http://arxiv.org/abs/1505.03432
http://arxiv.org/abs/1507.04571
http://arxiv.org/abs/1510.05464

BIBLIOGRAPHY

O’Connor, John J and Edmund F Robertson. 2006. Famous curves index, http://www-history.
mcs.st-and.ac.uk/history/Curves/Curves.html.

Olver, F. W. J., D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.) 2010. NIST Handbook of
Mathematical Functions, Cambridge University Press, New York, NY. Print companion to (NIST,
2014).

Petković, M. and Ljiljana Petković. 1980. On a representation of the k-th root in complex circular
interval arithmetic, Interval Mathematics (Karl L. E. Nickel, ed.), Academic Press, pp. 473–479,
DOI 10.1016/B978-0-12-518850-0.50039-1.

Petković, Ljiljana and M. Petković. 1984. On the k-th Root in Circular Arithmetic, Computing 33,
27–35.

Poelke, Konstantin and Konrad Polthier. 2009. Lifted Domain Coloring, Computer Graphics
Forum 28, no. 3, 735–742, DOI 10.1111/j.1467-8659.2009.01479.x.

. 2012. Domain Coloring of Complex Functions: An Implementation-Oriented Introduction,
IEEE Computer Graphics and Applications 32, no. 5, 90–97, DOI 10.1109/MCG.2012.100.

Poncelet, Jean-Victor. 1822. Traité des propriétés projectives des figures, Mallet-Bachelier, Paris.

. 1862. Applications d’analyse et de géométrie, Vol. 1, Mallet-Bachelier, Paris.

. 1865. Traité des propriétés projectives des figures, 2nd ed., Gauthier-Villars, Paris.

Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 2007.
Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, New
York.

Richter-Gebert, Jürgen. 2011. Perspectives on Projective Geometry: A Guided Tour Through Real
and Complex Geometry, Springer, Berlin.

. 2014. Personal communication.

Shapiro, Stewart (ed.) 2005. The Oxford Handbook of Philosophy of Mathematics and Logic, Oxford
University Press, New York, NY, USA.

Smale, Steve. 1986. Newton’s Method Estimates from Data at One Point, The Merging of Disciplines:
New Directions in Pure, Applied, and Computational Mathematics (Richard E. Ewing, Kenneth I.
Gross, and Clyde F. Martin, eds.), Springer, New York, pp. 185–196, DOI 10.1007/978-1-4612-
4984-9 13.

Sommese, Andrew J. and Charles W. Wampler II. 2005. The Numerical Solution of Systems of
Polynomials Arising in Engineering and Science, World Scientific, Singapore.

Trott, Michael. 2008. The Return of the Riemann Surface, The Mathematica Journal 10, no. 4,
626–656, DOI 10.3888/tmj.10.4-1.

Wantzel, Pierre Laurent. 1837. Recherches sur les moyens de reconnâıtre si un problème de
Géométrie peut se résoudre avec la règle et le compas, Journal de Mathématiques Pures et
Appliquées 1, no. 2, 366–372.

Wegert, Elias. 2012. Visual Complex Functions: An Introduction with Phase Portraits, Birkhäuser,
Basel.

Weierstraß, Karl. 1891. Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränder-
lichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen,
Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin 2, 1085–1101.

144

http://www-history.mcs.st-and.ac.uk/history/Curves/Curves.html
http://www-history.mcs.st-and.ac.uk/history/Curves/Curves.html

	1 Introduction
	1.1 Poncelet's Principle of Continuity
	1.2 Continuity in Dynamic Geometry
	1.3 Summary

	2 Homotopy Continuation of Systems of Plane Algebraic Curves
	2.1 Motivation
	2.2 Computing an epsilon-delta bound for plane algebraic curves
	2.3 Certified homotopy continuation of plane algebraic curves
	2.4 Continuous deformation of closed discrete Darboux transforms
	2.5 Towards triangular systems of polynomials
	2.6 Homotopy continuation of systems of plane algebraic curves
	2.7 Comparison with other approaches

	3 Complex Tracing in Geometry
	3.1 Introduction
	3.2 Elementary operations as algebraic equations
	3.3 Circular arithmetic
	3.3.1 Arithmetic
	3.3.2 n-th root
	3.3.3 Inclusion monotonicity

	3.4 Algorithm
	3.5 Example
	3.6 Comparison with Denner-Broser's approach

	4 Generation of Real Algebraic Loci via Complex Detours
	4.1 Introduction
	4.2 A locus generation algorithm
	4.3 Orientation of complex detours
	4.4 Termination
	4.5 Generation of real connected components
	4.6 Examples
	4.6.1 Conic through five points in general position
	4.6.2 Orthogonal projection of a circle onto a line
	4.6.3 Conchoid of Nicomedes
	4.6.4 Watt curves

	5 Identification of Real Algebraic Loci
	5.1 Introduction
	5.2 Algorithms
	5.3 Examples
	5.3.1 Limaçon (implicit equation)
	5.3.2 Limaçon (rational parameterization)

	6 GPU-based Visualization of Algebraic Riemann Surfaces
	6.1 Introduction
	6.1.1 Mathematical background
	6.1.2 Previous work

	6.2 Algorithms
	6.3 Implementation
	6.3.1 An implementation in OpenGL
	6.3.2 An implementation in WebGL

	6.4 Examples
	6.4.1 Domain colouring reference image
	6.4.2 Complex square root
	6.4.3 Folium of Descartes

	7 A Survey of Complex Loci
	7.1 Quadrics
	7.1.1 Circle
	7.1.2 Ellipse
	7.1.3 Hyperbola
	7.1.4 Parabola

	7.2 Cubics
	7.2.1 Folium of Descartes
	7.2.2 Right Strophoid

	7.3 Quartics
	7.3.1 Conchoid of Nicomedes
	7.3.2 Limaçon

	7.4 Quintics
	7.4.1 Pentagon curve

	7.5 Sextics
	7.5.1 Nephroid
	7.5.2 Watt curves

	8 Outlook
	Bibliography

